
The Library Infrastructure Project

Isaac Jones
HIM: Saturday 29 August, 2003

– p. 1

Our Thanks to λµ

For the use of his lazer pointer

Lambda’s Namesake:

– p. 2

Overview & Goals

“Languages flourish when libraries are plentiful,
reliable, and well documented.” – SPJ

Currently, there is no great way for tool authors to
contribute and widely distribute their libraries and tools

Except to have them included with the
implementations.

BUT... This is a strain on the implementation & library
authors.

Lets give library & tool authors a way to “contribute”
their software

– p. 3

Issues Facing 3rd Party Tool Authors

Difficult to distribute binary Haskell libraries

... so the end user must build (and rebuild) all the
libraries on their own system

... but there is no standard build system

... all of which make it hard to build Debian packages
(for instance)

– p. 4

...Issues Facing 3rd Party Tool
Authors

Several Haskell implementations which treat
“packages” differently (different binary formats,
different means of collecting packages)

Language extensions and supporting libraries are a
moving target (and oh, so tempting), causing the bitrot
of tools that aren’t actively maintained

No way to express dependency on particular libraries,
compilers, or versions thereof (job of the packaging
system?)

No central repository for packages / libraries

– p. 5

Why Should We Solve This

Its all about the community...

Help operating system packagers build packages
(Debian, RPM, etc) to keep users happy

Give library authors ways to contribute their libraries in
a “Bazaar” style

Help the community feel they “own” the open-source
projects and give them a common set of tools to
maintain them, as Debian does.

In Debian, everyone knows how to: file bugs, download
& build source, submit patches, announce new
projects, ask for help maintaining tools, flame

– p. 6

What a Solution Might Look Like

A nice build system with which a library author can
build binary versions for a variety of architectures and
implementations (in practice, this is a very large
number of binaries)

A repository where the author can announce or upload
their tool

– p. 7

We’re Already on Our Way

Building
“FPTools” make-based system. Point of contact:
Alastair Reid
Yale’s make-based system. Point of contact: Henrik
Nilsson
HMake Haskell-based system. Point of contact:
Malcolm Wallace

Announcing
Haskell mailing lists
The haskell.org web page and Wiki

These are a big step forward! Keep up the good work!

– p. 8

A Haskell-Based System

I propose a Haskell-based build system which performs the
following tasks:

Compiles or prepares Haskell libraries and tools
By reusing code from hmake to build directly or
By calling through to a make-based system

Installs Haskell libraries and tools

Tracks metadata about installed packages and Haskell
implementations (a new packaging system)

– p. 9

...A Haskell-Based System

Taking a page from Python’s book, each distributed library
or tool (except for the compilers) comes with a Haskell
program, Setup.hs which provides standard targets to wrap
other build systems, or builds the packages itself.

– p. 10

Why Haskell-Based?

The one thing that all the systems of interest have in
common: Haskell

Side-effect of improving the libraries needed for
common scripting tasks (lets steal some of the market
from Python)

Haskell beats Make for abstraction and reuse

Reuse: Each piece of the project (Building, Installing,
and Packaging) can be leveraged elsewhere if we
make them into libraries

“Eat your own dogfood” is a good policy

– p. 11

Outline

Building: Strategies for build systems

Installing: Setup.hs scripts to build and install Haskell
libraries and Tools

Packaging: How we can store and leverage what we
know when we know it

Tool Support: Tools which could be layered on top of a
module

– p. 12

Module Hierarchy for Distribution

Distribution.Build
dependencies :: [Package] -> Graph Packages
build :: Package -> Compiler -> IO ()

Distribution.Package
data Package {...}
getSystemConfig :: IO SystemConfig

Distribution.Installation
install :: Package -> Compiler -> IO ()
register :: Package -> IO ()
sourceDist :: Package -> IO ()
bdist_debian :: Package -> IO ()

– p. 13

System Overview

– p. 14

End of Overview

That is the end of the overview. At this point, I hope you
understand:

The motivation for this project

Some implementation ideas for this project

Who would use it and how

– p. 15

Building

Why building is hard:

Several very different Haskell implementations

A variety of operating systems and hardware
architectures

Lots of preprocessors and foreign libraries

– p. 16

Building: Basic strategy

For simple tools like Haskell modules, leverage
HMake’s abilities and create a Haskell-based system
(which may evolve to do more complex tasks.)

Complex systems can use “fptools” or Yale’s
Make-based system, or their own build system.

All systems will be wrapped in a common veneer
(Haskell program) so they look the same to the
average user, and to layered tools (like Debian).

– p. 17

Tasks for Distribution.Build

API For:

Compiling for a particular Implementation (like hmake)

Compiling for all installed implementations

Abstracting some implementation-specific flags

Can be used for:

Asking compilers to build Haskell code

Dealing with some preprocessors

Building higher-level tools on top (later slide)

Recompiling when a new Implementation is installed

Implementing a generic /usr/bin/haskell (like hi)
– p. 18

Installation

The main feature of the Installation Module is a script
which imports Distribution.Build, and interfaces with the
packaging mechanisms discussed below.

– p. 19

Setup.hs Strategies

#!/usr/bin/env haskell (something haskell-interactive
inspired?)

Import Distribution.{Build,Install,Package} which can
take care of major tasks

main = distributionMain Package{...insert package
meta info here...}

Standard libraries may need richer OS operations

...but this is a good thing, it can help Haskell to get
more market share in the scripting area

– p. 20

Command-line arguments

./Setup.hs

install-{default,all,nhc,ghc,hugs}

build-{default,all,nhc,ghc,hugs}

bdist-{deb,rpm}

sdist –makes a tarball on unix

– p. 21

Example Setup Program

#!/usr/bin/env haskell

import DistUtils.Core

import DistUtils.ToolInfo

toolInfo = (basicPackage (OtherTool "HUnit")

(Version 1 0 0))

{haskellSources=[

"HUnitLang98.lhs","HUnitLangExc.lhs",

"Terminal.lhs", "HUnitTest98.lhs", ...],

docs = ["Example.hs", "Guide.html", ...]}

main = distUtilsMain toolInfo
– p. 22

Packaging

Much of this becomes easier with a more generic package
system, which has benefits outside of this project.

– p. 23

Jobs of a Packaging System

Track which Haskell Implementations are installed

Track which preprocessors are installed

Track which libraries and tools are installed

Find the source code for modules when needed

– p. 24

Packaging

– p. 25

Package Meta Information

Think of debian/control combined with Package.conf

Things the build system cares about: Source Files,
Build Flags, Build Dependencies

Things the build system doesn’t care about: Name,
Dependancies, Description, Version, License
Information, Home Page

– p. 26

System Overview

– p. 27

Tools layered on Packaging System

Build & Install system

Debuggers which need to instrument code

Source code browsers

The Glorious Glasgow Haskell Compiler Source Code
Deleter (find other versions of software and “repair”
any possible type errors)

– p. 28

Layered Tools

Creating distribution packages (Debian, FreeBSD,
Windows, etc.)

Web database of Haskell tools

Installation (usually already there)

Removal (often not there)

Package registering and rebuilding

Downloading and installing dependancies (job of
parent system?)

Verifying authenticity of packages (via cryptographic
signature)

– p. 29

Conclusions & Directions

I have implemented a prototype (which interfaces with
Debian’s build system), but its blocked on a packaging
system

After HIM I will write a new proposal and try to create
consensus

But where do you think I should direct my attention
(make-based system? CPAN-type archive?
Distribution module?)

My opinion: Packaging decisions, then Distribution
module

– p. 30

Discussion

(Assuming that we haven’t run overtime and everyone is
ready to go to lunch)

– p. 31

	The Library Infrastructure Project
	Our Thanks to $lambda mu $
	Overview & Goals
	Issues Facing 3rd Party Tool Authors
	...Issues Facing 3rd Party Tool Authors
	Why Should We Solve This
	What a Solution Might Look Like
	We're Already on Our Way
	A Haskell-Based System
	...A Haskell-Based System
	Why Haskell-Based?
	Outline
	Module Hierarchy for Distribution
	System Overview
	End of Overview
	Building
	Building: Basic strategy
	Tasks for Distribution.Build
	Installation
	Setup.hs Strategies
	Command-line arguments
	Example Setup Program
	Packaging
	Jobs of a Packaging System
	Packaging
	Package Meta Information
	System Overview
	Tools layered on Packaging System
	Layered Tools
	Conclusions & Directions
	Discussion

