
Haskell Communities
and Activities Report
http://www.haskell.org/communities/

– second edition –

May 8, 2002

Claus Reinke (editor), University of Kent at Canterbury, UK
Manuel Chakravarty, University of New South Wales, Australia

Olaf Chitil, The University of York, UK
Antony Courtney, Yale University, USA

Sigbjorn Finne, Galois Connections, USA
Andre W B Furtado, Federal University of Pernambuco, Brazil

Andy Gill, Galois Connections Inc., USA
Dean Herington, University of North Carolina at Chapel Hill, USA

Johan Jeuring, Utrecht University, The Netherlands
Daan Leijen, Utrecht University, The Netherlands

Rita Loogen and Steffen Priebe, University of Marburg, Germany
Jan-Willem Maessen, Massachusetts Institute of Technology, USA

Simon Marlow, Microsoft Research Cambridge, UK
Henrik Nilsson, Yale University, USA

Johan Nordlander, Chalmers University, Sweden
Ross Paterson, City University London, UK

Simon Peyton Jones, Microsoft Research Cambridge, UK
Robert Pointon, Heriot-Watt University, UK

Bernie Pope, University of Melbourne, Australia
Chris Reade, Kingston University, UK

Alastair Reid, Reid Consulting (UK) Ltd., UK
Satnam Singh, Xilinx Inc, USA

Martin Sulzmann, University of Melbourne, Australia
Wolfgang Thaller, Graz, Austria

Peter Thiemann, University of Freiburg, Germany
Phil Trinder, Heriot Watt University, UK

Malcolm Wallace, The University of York, UK
Ashley Yakeley, Seattle WA, USA

http://www.haskell.org/communities/

Preface

Another 200 or so emails later, the editor and
the many contributors are happy to present
the second edition of the Haskell Commu-
nities and Activities Report (I’m still look-
ing for that magical instance declaration
instance Haskeller p => DeepSeq p where ..).

The idea behind these reports is simple: twice a
year (currently, in April and October), a call goes
out to the main Haskell mailing list, inviting all
Haskellers to contribute brief summaries of their area
of work, be it language design, implementation, type
system extensions, standardisation of GUI APIs, ap-
plications of Haskell, or whatever. The summaries
introduce the area of work, the major achievements
over the previous six months, the current hot topics,
and the plans for the next six months. They also
provide links to further information.

So, every six months (currently, in May and
November), all Haskellers should get a bird’s-eye
view of the Haskell community as a whole, and
pointers to more in-depth information. This makes
it a lot easier to try and keep up to date with
what the various specialist communities and projects
are working on, without having to follow all of the
dozens of relevant mailing lists. It should also make
it possible for individual Haskellers to find the com-
munities they are most interested in, and to join
their efforts. Projects and individuals currently
working separately on related topics might feel en-
couraged to coordinate their work and cooperate.

Those interested in specific tools or resources can
find them via the Haskell home page http://www.

haskell.org, but the Activities Report will tell you
which new entries have become available over the
last six months, which of the existing entries are still
actively being worked on, and what the recent and
planned developments for these are. Even just know-
ing that a certain tool is still being maintained, and
who felt responsible for it when the latest edition of
this report came out, can be important information
if you want to base your next project on it.

Last, but not least, the reports also give non-
Haskellers (or not-yet Haskellers;-) an opportunity
to get an overview of what is currently going on in
“Haskell Land”, helping them to decide whether to
go deeper in, and where. Welcome to our new visi-
tors – be sure to visit the Haskell home page and the

two main mailing lists as well (see section 1.1). If
you are already a Haskeller and find yourself wanting
to explain what it is all about to someone you know
(your boss, perhaps?-), you might find it helpful to
pass on the latest edition of this report.

To the specialist communities, these bi-annual re-
ports offer an occasion for distributing discussion
documents to the main community, asking for feed-
back and for contributions. The Revised Haskell
98 Report is stabilizing (section 1.2), and be sure
to check the documents describing the new Foreign
Function Interface (section 3.1) and the new Hierar-
chical Module Namespace (section 3.2).

My greatest concern for this second edition was
whether there would be much new to report after
just six months. There are a few projects which will
provide major updates only in every second edition
(the reports affected by this are explicitly marked as
unchanged). Other projects that reported declining
activity in the last edition have been dropped in this
one, as these reports focus on recent activities only.
Some entries have shrunk to little more than valu-
able pings, confirming that the project/software is
still actively maintained, and giving a contact.

As it turns out, all of this has been more than off-
set not only by a lot of activity reported in the other
projects, but by several completely new entries and
a growing chapter on Haskell applications. So far,
it seems that the six month interval for our reports
can be sustained easily by new developments. And
so I’m sure you’ll find this edition at least as in-
teresting a read as the first one, thanks to the many
volunteers whose contributions make up the heart of
this report, and thanks to many more whose work
gives us something interesting to report on.

In spite of the wealth of topics covered, this sec-
ond edition still does not cover all current work
on or with Haskell. Little chance of that – Syd-
ney and Melbourne recently reported that each of
them introduces more than 1000 new first-year stu-
dents to Haskell every year. But I hope that still
more Haskellers will contribute summaries of their
favourite Haskell topics in the future. Please put
October 2002 into your diaries now! Someone will
be asking for your contributions to the November
2002 edition of this report then!-)

Claus Reinke,
University of Kent at Canterbury, UK

1

http://www.haskell.org
http://www.haskell.org

Contents

1 General 4
1.1 Haskell Central - WWW and Mailing Lists . 4
1.2 Revised Haskell 98 Report . 4
1.3 Tips, Tricks, Tours and Tutorials . 4
1.4 Haskell-related Publications . 5

2 Implementations 7
2.1 The Glasgow Haskell Compiler . 7
2.2 Hugs . 8
2.3 nhc98 . 8
2.4 Eager Haskell . 9

3 Language Extensions 10
3.1 Foreign Function Interface . 10
3.2 Hierarchical Module Namespace . 10
3.3 Non-sequential Programming . 10

3.3.1 Concurrent Haskell . 10
3.3.2 GpH – Glasgow Parallel Haskell . 10
3.3.3 GdH – Glasgow Distributed Haskell . 11
3.3.4 Eden . 11

3.4 Type System/Program Analysis . 12
3.4.1 A General Type Class Framework based on Constraint Handling Rules 12
3.4.2 Program Analysis for Haskell . 12

3.5 Generic Programming . 12
3.5.1 Preprocessors . 12
3.5.2 Languages . 12

3.6 Syntactic Sugar . 12
3.6.1 Arrow Notation . 12

4 Libraries 13
4.1 Graphical User Interfaces . 13

4.1.1 GUI Library API Task Force . 13
4.1.2 Object I/O for Haskell . 13
4.1.3 Gtk+HS . 13

4.2 Graphics . 14
4.2.1 HGL Graphics Library . 14
4.2.2 Haven, a Functional Vector Graphics Library . 14
4.2.3 HOpenGL – OpenGL Haskell Binding . 14
4.2.4 FunGEn - Functional Game Engine . 14

4.3 Web Programming . 15
4.3.1 WASH/CGI – Web Authoring System for Haskell . 15

2

5 Tools 16
5.1 Foreign Function Interface . 16

5.1.1 C–>Haskell . 16
5.1.2 GreenCard . 16
5.1.3 GCJNI . 16
5.1.4 Java VM Bridge . 16

5.2 Meta Programming . 17
5.2.1 Haskell Frontends . 17
5.2.2 Haskell Preprocessors . 18

5.3 Program Development . 18
5.3.1 Tracing and Debugging . 18
5.3.2 Testing . 18
5.3.3 Documentation . 19

5.4 Scanning and Parsing . 19
5.4.1 Happy . 19
5.4.2 Parsec . 19

6 Applications, Groups, and Individuals 20
6.1 Non-Commercial Applications . 20

6.1.1 VOP – Vision of Persistence . 20
6.1.2 Knit . 20

6.2 Commercial Applications . 20
6.2.1 Lava at Xilinx . 20
6.2.2 Galois Connections, Inc. 21

6.3 Research Groups . 21
6.3.1 Functional Programming at Yale . 21
6.3.2 Functional Programming Research Group at Kingston Business School (Kingston University) 21
6.3.3 Functional Programming at UKC . 22

6.4 Individual Haskellers . 22
6.5 Haskell Spin-Offs . 24

6.5.1 Timber . 24

3

Chapter 1

General

1.1 Haskell Central - WWW and
Mailing Lists

http://www.haskell.org
Haskell’s central information resource, has the language and
standard library definitions, links to Haskell implementations,
libraries, tools, books, tutorials, people’s home pages, com-
munities, projects, news, conferences & workshops, a wiki,
question & answers, applications, educational material, job
adverts, Haskell humour, and even merchandise. Be sure to
visit, there may be parts you haven’t noticed.
haskell.org also hosts most of the Haskell-related mailing lists
and CVS repositories (15 mailing lists at a recent count, plus
about another dozen of CVS-related lists). While the overall
structure of the web site has been relatively stable for some
time now, the maintainers John Peterson and Olaf Chitil are
aiming to keep the contents in each part up to date.
Most Haskell-related information is reachable from
haskell.org, and anything that isn’t, should be. Do not
just wait for John or Olaf to pick URLs and infos from
lengthy messages in long-running threads on the Haskell
lists: send new or updated entries (category + link + short
description) directly to John or Olaf.
And please, could everyone take the release of this Communi-
ties Report as an occasion for going through the information
on haskell.org relating to our own interests and send in up-
dates, where appropriate? As its says on haskell.org: “This
web site is a service to the Haskell community. The site is
maintained by John Peterson and Olaf Chitil. Suggestions,
comments and new contributions are always welcome. If you
wish to add your project, compiler, paper, class, or anything
else to this site please contact us.”

Further reading:

http://www.haskell.org
http://www.haskell.org/mailinglist.html

1.2 Revised Haskell 98 Report

The revision has been in bug-fix-only mode for a while now,
and Simon Peyton Jones’s declared plan as the editor has
been to freeze the report after a month with no bug reports.
Mischievously, though, people always seem to keep back a

bug or two, sending them in for the bug of the month (no,
there is no such competition;-), always just in time to reset
the freezing criterion.
It’s probably a good sign that Haskellers are finally test-
ing, and asking for clarification of, all the odd corners in the
Haskell Report. But as the contents have been fixed for quite
a while now, and are already being used as the reference point
for implementations, it might be time to move the Revised
Report into place over the next couple of months, treating
any further bugs there.

Further reading:

http://www.haskell.org/definition/

1.3 Tips, Tricks, Tours and Tutorials

It seems that some Haskellers have documented their own
hard-won experience to help others. They have been work-
ing on web pages, short papers, tours, and tutorials touching
on introductory examples of monads&co, giving guided tours
and explanations of prelude, libraries & syntax, or tips about
programming and resource tuning, even explaining the inter-
nals of GHC (scary;), or interpreting Hugs error messages.
With this new section, we’ll try to enhance the visibility of
such valuable resources, but ultimately, all these things should
be linked from the Haskell bookshelf (have another look, it is
not limited to books:):
http://www.haskell.org/bookshelf/
One such resource is “A Tour of the Haskell Prelude”, orig-
inally a paper by Bernie Pope, intended as a guide to the
functions, operators, and classes of the Haskell 98 Prelude,
now HTML-ised and updated by Arjan van IJzendoorn:
http://www.cs.uu.nl/~afie/haskell/tourofprelude.
html
Arjan has recently added “The Tour of the Haskell Syntax”,
an overview of the Haskell syntax, intended as a teaching aid
for use alongside Haskell textbooks:
http://www.cs.uu.nl/~afie/haskell/tourofsyntax.
html
Miloslav Nic <nicmila@systinet.com> has been working on
a Haskell Reference, based on Haskell 98 Report and Haskell
98 Libraries Report:
http://zvon.org/other/haskell/Outputglobal/

4

http://www.haskell.org
http://www.haskell.org
http://www.haskell.org/mailinglist.html
http://www.haskell.org/definition/
http://www.haskell.org/bookshelf/
http://www.cs.uu.nl/~afie/haskell/tourofprelude.html
http://www.cs.uu.nl/~afie/haskell/tourofprelude.html
http://www.cs.uu.nl/~afie/haskell/tourofsyntax.html
http://www.cs.uu.nl/~afie/haskell/tourofsyntax.html
http://zvon.org/other/haskell/Outputglobal/

He writes: “The current version is of beta-release quality.
There are unfinished sections in it and some functions are
missing, but I hope that it is already useful.
In the final version there should be examples of use for every
construct, links to relevant materials discussing usage pat-
terns, theoretical matters, source codes, There is a long
way to go, but I can be patient (see Zvon RFC repository for
a proof.) If you have some relevant examples and/or links,
please, send them to me.”
Those who encounter the oracle of Hugs error messages for
the first time will have noticed that they tend to tell the
truth, but challenge you to find it!-) In those circumstances,
Simon Thompson’s collection of “Some common Hugs error
messages” might be helpful.
http://www.cs.ukc.ac.uk/people/staff/sjt/craft2e/
errors/allErrors.html

He writes: “Working out why Hugs gives you a particular
error message can be tricky. This page pulls together a col-
lection of error messages and the code that produced them;
the entry for the error message you have provoked can hope-
fully help you to diagnose your particular problem”
Oleg <oleg@pobox.com> suggests his collection of Haskell
programming miscellanea: “This web designs several monads
(including a Monte Carlo monad to operate ‘fuzzy numbers’
of arbitrary distribution). Also included an illustration of
an ST monad for emulating a CPU with predicated instruc-
tions. The page also contains the description, correctness
proof and an optimal pure functional implementation of the
perfect shuffle algorithm.”
http://pobox.com/~oleg/ftp/Haskell/misc.html

He also gives an introductory example of monadic program-
ming – in Scheme! He juxtaposes Haskell code for a particular
state monad with the corresponding Scheme code:
http://pobox.com/~oleg/ftp/Scheme/monad-in-Scheme.
html

Not for beginners, but certainly necessary, is Manuel
Chakravarty’s GHC Commentary: “The Glasgow Haskell
Compiler (GHC) Commentary aims to explain the magic be-
hind GHC. It is an evolving resource that describes the struc-
ture and to some extent the implementation details of various
subsystems of GHC and is mainly directed at people who like
to tinker with GHC. As the Commentary is relatively young
and GHC rather huge, only part of the system is covered so
far. The master copy of the Commentary is located in GHC’s
CVS repository, so that all developers can contribute their
wizardly insights. The CVS version is mirrored at the follow-
ing web site, where it is updated daily:”
http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/

And even if you’re not a compiler hacker, you’ll sooner or later
run into the problem of controlling the resource usage of your
Haskell programs (analysing resource usage is better covered,
and supported by various useful profiling tools). Amanda
Clare has documented tools and techniques that have been
useful to her while using Haskell for data mining in bioinfor-
matics data:
http://users.aber.ac.uk/ajc99/stricthaskell.html

1.4 Haskell-related Publications

Last time, we reported on what looks to be a very interest-
ing special issue on Haskell (http://www.cs.nott.ac.uk/
~gmh/jfp.html, expected publication sometime in 2002) in
The Journal of Functional Programming. Thanks to Graham
Hutton, guest editor for that special issue, we had the titles,
authors, and abstracts for the six papers that will appear in
it. We’ll try to turn this into a permanent section pointing
to recent Haskell-related publications (books, conference pro-
ceedings, special issues in journals, PhD theses, etc.), with
brief abstracts. In future editions, this will be coordinated
with Jim Bender’s “Online Bibliography of Haskell Research”
(http://haskell.readscheme.org).
This time, we have a fun demonstration of program derivation
in the context of the Countdown game, Keith Wansbrough’s
thesis on simple polymorphic usage analysis, and a paper on
“Fine Control of Demand”, which, in case you didn’t guess
from the title, includes “a calculational, dynamic semantics
of a large subset of Haskell”. Combined with the work we
reported on last time, this indicates further progress in clos-
ing the embarassing gaps in Haskell’s formal basis, a very
welcome development.

“The Countdown Problem”, Graham Hutton; to appear
as a Functional Pearl in the Journal of Functional Program-
ming, 2002.
This paper develops a Haskell program to solve the numbers
game from Countdown, a popular quiz show on British televi-
sion. The aim wasn’t to produce solutions as fast as possible
(although in absolute terms the final program actually per-
forms rather well), but to show how the program itself could
be developed in systematic way in conjunction with a proof of
its correctness. It’s the kind of example that can be covered
as part of a Haskell course, and the powerpoint slides that
I produced for my Haskell course in Nottingham are freely
available. The paper, source code, and slides can be obtained
on the web from:
http://www.cs.nott.ac.uk/~gmh/bib.html#countdown

“Fine Control of Demand”, William Harrison, Tim
Sheard and James Hook; to be published this July at
MPC2002 (Mathematics of Program Construction) held in
Dagstuhl.
Just how does Haskell differ from the lazy lambda calculus?
We answer this question by introducing a calculational, dy-
namic semantics for a large subset of Haskell that exposes
the interaction of its strict features with its default laziness.
In the semantics, features perturbing Haskell’s standard lazy
evaluation order are specified computationally (i.e., monadi-
cally) rather than as pure values (i.e., functions, scalars, etc.).
http://www.cse.ogi.edu/~wlh/

Keith Wansbrough (http://www.cl.cam.ac.uk/~kw217/)
has recently completed his PhD, “Simple Polymorphic
Usage Analysis” (http://www.cl.cam.ac.uk/~kw217/
research/phd/index.html). He developed a type-based
analysis that discovers the “usage” of each thunk in a Haskell
program – either at most once, or possibly many times. If

5

http://www.cs.ukc.ac.uk/people/staff/sjt/craft2e/errors/allErrors.html
http://www.cs.ukc.ac.uk/people/staff/sjt/craft2e/errors/allErrors.html
http://pobox.com/~oleg/ftp/Haskell/misc.html
http://pobox.com/~oleg/ftp/Scheme/monad-in-Scheme.html
http://pobox.com/~oleg/ftp/Scheme/monad-in-Scheme.html
http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/
http://users.aber.ac.uk/ajc99/stricthaskell.html
http://www.cs.nott.ac.uk/~gmh/jfp.html
http://www.cs.nott.ac.uk/~gmh/jfp.html
http://haskell.readscheme.org
http://www.cs.nott.ac.uk/~gmh/bib.html#countdown
http://www.cse.ogi.edu/~wlh/
http://www.cl.cam.ac.uk/~kw217/
http://www.cl.cam.ac.uk/~kw217/research/phd/index.html
http://www.cl.cam.ac.uk/~kw217/research/phd/index.html

a thunk is known to be used at most once, it need not be
updated with its value after evaluation, and it may be inlined
without wasting work. A number of other optimisations are
also enabled by this information.
The approximating analysis developed for the purpose, sim-
ple polymorphism, is of independent interest and should be
applicable to other problems. The analysis was implemented
in GHC, and measurements showed a moderate performance
benefit; more work remains to be done in making use of the
information provided by the analysis. It has not yet been
decided whether the analysis will be integrated with released
versions of GHC.

If you are interested in further Haskell-related research pub-
lications, be sure to have a look at Jim Bender’s “On-
line Bibliography of Haskell Research” (http://haskell.
readscheme.org). He writes: “My aim has been to gather
together links to research publications (technical reports, the-
ses, conference publications, etc.)–and to actively maintain
this collection. Though in a sense there is overlap with the
“Bookshelf” at Haskell.org, my aim is different. The “Book-
shelf” is, in effect, a best of collection, with a focus on be-
ing tutorial in nature (at least currently). My focus is more
narrow–to concentrate on research only–but the coverage (of
research publications) is also more extensive.”
And if you still haven’t come across the Haskell bookshelf,
you’ll find it at http://www.haskell.org/bookshelf/. It
lists textbooks, papers (especially of tutorial nature), pro-
ceedings of the “Advanced Functional Programming” summer
and spring schools, as well as reference material, often created
in the context of Haskell courses (see also our tips&tricks sec-
tion 1.3).

6

http://haskell.readscheme.org
http://haskell.readscheme.org
http://www.haskell.org/bookshelf/

Chapter 2

Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones

The Team

Simon Peyton Jones, Simon Marlow (with particular help
recently from Sigbjorn Finne, Koen Claessen, Wolfgang
Thaller)

Current status

We released GHC 5.02.3 in early April. 5.02 is a nice, stable
compiler and we intend to treat it as our stable baseline for
some time to come.
Meanwhile, there have been quite a lot of developments on
the HEAD, leading to two ‘snapshot’ releases of GHC 5.03. (A
snapshot release comes with a health warning; it’s an alpha-
quality thing.) Our plan is to produce a full 5.04 (or perhaps
6.00!) release in May.

New stuff in 5.03/6.0

• The big thing in 5.03 are the new hierarchical libraries
(see section 3.2) GHC now fully supports the new library
system.

• Going along with the new libraries is a Haskell docu-
mentation tool, Haddock, written by Simon M. It pro-
vides rather spiffy HTML-browsable documentation by
processing the Haskell source code in a somewhat intel-
ligent way. See section 5.3.3.

• Heap profiling has been beefed up significantly, with
support for retainer profiling and biographical profiling
(lag/drag/void) a la Nhc98. We used the new tools on
GHC itself, and fixed several space leaks (the changes
were backported into the 5.02.2 release).

• The GHC commentary keeps on growing. If you’ve not
had a look, you might like to: http://www.cse.unsw.
edu.au/~chak/haskell/ghc/comm/

• Type system things:

1. Arbitrary-rank polymorphism is now fully imple-
mented. Mark Shields and Simon PJ are writing
a paper. This means that you can have functions
with truly bizarre types like:

f :: ((forall a. Ord a => a->a)->Int)->Int

provided you supply enough type signatures (not
many). Incidentally, GHC has supported rather
general type synonyms for some time, so you can
abbreviate like this:
type T = forall a. Ord a => a -> a

f :: (T -> Int) -> Int

2. Linear implicit parameters are an experimental fea-
ture. They feature implicit “splitting” of an implicit
parameter so you can distribute (say) a unique sup-
ply, or a random-number supply around your pro-
gram using implicit parameters. Whether this is a
good thing or not is a moot point. Documented in
the user manual.

3. Generalised ‘deriving’ for newtypes. You can now
say
newtype T = MkT RepT deriving(MyClass)

Provided that RepT is an instance of MyClass
(which need not be a built-in class), the instance
of MyClass RepT will be ‘lifted’ to T. John Hughes
suggested the idea. It’s a bit more general than it
looks here, as the user manual shows.

4. Optional explicit kind annotations at the binding
site of type variables. E.g.
data T (k :: *->*) = T (k Int)

This can be useful when there isn’t enough context
from the type declaration to describe the kind you
want.

• There is now an almost-complete port of GHC to MacOS
X, thanks mostly to the work of Wolfgang Thaller
<wolfgang.thaller@gmx.net>.

• Mark and Simon wrote a paper about scoped type
variables as implemented in GHC. http://research.
microsoft.com/~simonpj/papers/scoped-tyvars/

• Interface files (Foo.hi) are now in binary format. (Use
ghc --show-iface Foo.hi to see it in readable format.)
This is faster to print and parse, and easier to extend.
There will be a re-usable library for the Binary class;
but we need to discuss with folk what it should look like.
Any takers?

• Koen Claessen wrote a parser monad to support the
Read class. It should provide parsers that are much

7

http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/
http://www.cse.unsw.edu.au/~chak/haskell/ghc/comm/
http://research.microsoft.com/~simonpj/papers/scoped-tyvars/
http://research.microsoft.com/~simonpj/papers/scoped-tyvars/

smaller (in code size) and much faster to execute
than the existing implementation. The underlying li-
brary is useful in its own right, and is exposed as
Text.ParserCombinators.ReadP. The lexical analyser
is exposed as Text.Read.Lex

• Sigbjorn has implemented support for Haskell-calls-C-
calls-Haskell, which involves quite a bit of cunning. It’s
documented in the GHC commentary. [Not quite com-
plete.]

• The new Foreign Function Interface is almost fully
implemented (thanks to Manuel C for doing most
of the work). http://www.cse.unsw.edu.au/~chak/
haskell/ffi/ The omissions relate only to the C API
for calling Haskell from C.

• Generic classes are working again.

Remaining on the agenda

• GHC.NET

• Non-blocking I/O for Windows

• Meta Haskell

Further reading:

http://www.haskell.org/ghc/

2.2 Hugs

Report by: Sigbjorn Finne

Team / status

The Hugs98 interpreter is now maintained by Sigbjorn Finne
and Jeffrey Lewis, both of Galois Connections. The previous
maintainer, Johan Nordlander, has moved on to pastures new,
but still helps out whenever possible.
Since the last community report (Nov ’01), a new major re-
lease of Hugs98 was released in December; a release consoli-
dating fixes and additions made during 2001. It has proven
to be a good, stable one.

Future plans

Apart from inching Hugs98 closer to the Haskell98 standard,
the next big thing for Hugs is to switch over to using the new
Haskell hierarchical library. When this will happen is depen-
dent on the amount of free time available to the maintainers
over the next couple of months, but our best estimate of when
this will be done is before the summer (of 2002 :-) is up.

Further reading:

http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users/

2.3 nhc98

Report by: Malcolm Wallace

Current Status

The most recent version of nhc98 is 1.12, released in March
2002. It continues to receive bugfixes and minor improve-
ments, primarily in response to reports and requests on the
mailing list. The current part-time maintainers are Malcolm
Wallace and Olaf Chitil, but as with any open-source project,
all of you are encouraged to send patches, add extensions, or
even adopt components if you wish. (Many thanks to the
contributors who have already submitted improvements.)

Highlights

• The Hat tracing system continues to improve in usability,
and now in addition to the original version that is fully
integrated with nhc98, a new portable version that works
with ghc is also included in the distribution. Eventually,
Hat will be fully separated into a compiler-independent
tracing/debugging system.

• Coming in the next release of nhc98 is an 8% improve-
ment in the runtime of compiled programs - thanks to a
one-line(!) patch from Thomas Nordin. Thomas is also
responsible for various other time and space performance
improvements in the compiler itself.

Lowlights

• Although nhc98 remains the most portable Haskell’98
compiler on Unix-like machines, it has recently become
more difficult to build nhc98 on a Windows/Cygwin ma-
chine if you already have ghc installed. We hope to fix
at least some of these issues over the summer.

Future Plans

• The next release (1.14) will probably occur in early Sum-
mer 2002.

• We also plan to move our CVS repository to
cvs.haskell.org, where more people can potentially have
immediate access for development.

• After that, we still want to add the same set of utility
libraries to nhc98 that are already distributed with both
Hugs and ghc, once they are converted fully to the new
hierarchical naming scheme.

• The new syntax for the standard FFI will probably be
adopted around the same time as the hierarchical li-
braries.

• Beyond that, plans for new features are in your hands!
Hack them yourself, or suggest them on the nhc-users
mailing list.

Further reading:

http://www.cs.york.ac.uk/fp/nhc98/

8

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://www.haskell.org/ghc/
http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users/
http://www.cs.york.ac.uk/fp/nhc98/

2.4 Eager Haskell

Report by: Jan-Willem Maessen
Project status: currently slowed down by thesis
Compiles arbitrary Haskell programs, but happens to run
them eagerly using resource-bounded execution. There
should be no difference in observed program behavior—every
Haskell program is a valid Eager Haskell program (except
that our compiler doesn’t yet cover all of Haskell 98—we’re
missing qualified names and field names).
Except for the missing bits of language and libraries, this is
a real honest-to-goodness Haskell implementation. It’s even
easy to hack.

Goals:

Make it easy to write efficient programs (eg tail-recursive
loops) in Haskell. Explore the efficiency tradeoffs between
eager and lazy execution. Extract parallelism from ordinary
haskell programs without annotating them.

Status:

Eager Haskell is still chugging along; those interested
in the Hacker’s Release should drop me a line at
<jmaessen@mit.edu>. My thesis is basically complete, and
I’m defending May 8, so I’m a bit preoccupied at the moment.

People:

me. Thus the stealthy pace.

Further reading:

http://csg.lcs.mit.edu/~earwig/eager-haskell.html

9

http://csg.lcs.mit.edu/~earwig/eager-haskell.html

Chapter 3

Language Extensions

3.1 Foreign Function Interface

Report by: Manuel Chakravarty
Project status: Version 1.0 almost stable
Release Candidate 4 of the Haskell 98 FFI Addendum has
just been circulated for public review. The changes between
different versions of the release candidates are minor and,
for all practical purposes, the addendum can be regarded as
stable. The current version of the addendum is available from
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
GHC now supports the FFI extension as defined in the ad-
dendum, in addition to the pre-standard syntax for backward
compatibility. Other systems still need to be revised to con-
form to the addendum.

Further reading:

http://haskell.org/mailman/listinfo/ffi/

3.2 Hierarchical Module Namespace

Report by: Simon Marlow
There hasn’t been any significant activity since the previous
report. However, I’m expecting things to ramp up in two
ways now: firstly the next release of GHC will have the hi-
erarchical libraries in their full glory, and secondly I’d like to
start documenting what we have using Haddock. Then I’m
hoping the other implementations will come on board (Hugs
is planning to ship with the full set of hierarchical libraries in
its next release, I’m not sure about nhc98).

Further reading:

http://www.haskell.org/~simonmar/libraries/
libraries.html
http://www.haskell.org/mailman/listinfo/libraries/

3.3 Non-sequential Programming

3.3.1 Concurrent Haskell

Report by: Simon Marlow
Project status: no changes since last time

Concurrent Haskell is a set of extensions to Haskell to sup-
port concurrent programming. The concurrency API (Con-
current) has been stable for some time, and is supported in
two forms: with a preemptive implementation in GHC, and
a non-preemptive implementation in Hugs. The Concurrent
API is described here:
http://www.haskell.org/ghc/docs/latest/set/
sec-concurrent.html

3.3.2 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Recent work covers language, system and appli-
cations aspects, and consistently emphasises the
architecture independence (cf. http://www.cee.
hw.ac.uk/~dsg/gph/arch-indep.html) of our ap-
proach. The latest version of GpH (GUM-4.06) is
available for RedHat-based Linux machines (binary
snapshot ftp://ftp.cee.hw.ac.uk/pub/gph/gum-4.
06-snap-i386-unknown-linux.tar; installation instruc-
tions ftp://ftp.cee.hw.ac.uk/pub/gph/README.GUM). A
version for Sun shared-memory machines is available on
request <gph@cee.hw.ac.uk>. More information on research
projects, group members and publications is available from
GpH http://www.cee.hw.ac.uk/~dsg/gph/papers/

Language We have produced a truly parallel implemen-
tation of a referentially transparent bottom-avoiding choice
operator (http://www.cee.hw.ac.uk/~dsg/gph/papers/
drafts/flops-submitted.ps.gz) and used it to explore
a new class of parallel algorithms in GpH, namely branch-
and-bound. It reveals an interesting relationship between
non-strict and speculative parallel evaluation.

System In order to improve the architecture independent
performance of GpH we have added new features to its im-
plementation (GUM). The load balancing (http://www.cee.
hw.ac.uk/~dsg/gph/papers/drafts/sfp01-gum.ps.gz) in
GUM has been made more flexible by implementing low-
and high-watermarks on the spark pools, which represent po-
tential parallelism. Thread migration is being implemented
as a technique of avoiding gross load imbalance in applica-
tions with a small amount of parallelism. For a better control
of data locality in GpH programs we are currently exploring

10

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://haskell.org/mailman/listinfo/ffi/
http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/mailman/listinfo/libraries/
http://www.haskell.org/ghc/docs/latest/set/sec-concurrent.html
http://www.haskell.org/ghc/docs/latest/set/sec-concurrent.html
http://www.cee.hw.ac.uk/~dsg/gph/arch-indep.html
http://www.cee.hw.ac.uk/~dsg/gph/arch-indep.html
ftp://ftp.cee.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.cee.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.cee.hw.ac.uk/pub/gph/README.GUM
http://www.cee.hw.ac.uk/~dsg/gph/papers/
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/flops-submitted.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/flops-submitted.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/sfp01-gum.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/sfp01-gum.ps.gz

language constructs with explicit placement parameters as
well as abstractions over these basic constructs. We have im-
proved the distributed shared memory performance (http://
www.cee.hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz) of
GUM, in particular global address management and the graph
packing, enabling the user to optimise the parallel execution
for execution time or heap space.
An implementation of a time and space static analysis is near-
ing completion. Although the current analysis is for a strict
language, the intention is to use the result of the analysis to
select appropriate computations for parallel evaluation.

Applications We have produced detailed compar-
isons of three parallel functional languages : GpH
(http://www.cee.hw.ac.uk/~dsg/gph/), Eden (http:
//www.mathematik.uni-marburg.de/~loogen/eden.html),
PMLS (http://www.cee.hw.ac.uk/Research/funct_prog.
html), discussing language and implementation differences
(http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/
hosc-submitted.ps.gz). Detailed performance results
of several parallel programs on a Beowulf cluster are
given. A survey of parallel and distributed Haskells (http:
//www.cee.hw.ac.uk/~dsg/gph/papers/ps/jfp01.ps.gz)
will also soon appear in the JFP special issue.
We are investigating the architecture independence of GpH by
developing a significant application (genetic alignment) for a
variety of parallel architectures: a Beowulf cluster, a Sun-
Server SMP. We have also published careful measurements of
the Naira parallel Haskell compiler.

Further reading:

http://www.cee.hw.ac.uk/~dsg/gph/

3.3.3 GdH – Glasgow Distributed Haskell

Report by: Robert Pointon
The following projects are ongoing:

1. We are investigating alternative distributed computation
and communication strategies. Non-strict languages al-
low a range of strategies in a distributed system: e.g. the
client may issue request messages serially, or as a group
of requests, and the requested values may be computed
sequentially or in parallel, and by client or server.

2. We are investigating the design and implementation is-
sues of introducing mobile computations into our family
of languages.

3. We have won a £180K EPSRC research project to in-
vestigate the value of high level programming techniques
for developing distributed telecommunications software
in Erlang and GdH. The project is in collaboration with
Motorola UK Research Labs, and work will start in
May. More information on this project is available here
(Telecoms Project Homepage http://www.cee.hw.ac.
uk/~dsg/telecoms/).

4. We have recently been investigating the use of GdH
to prototype parallel extensions for GpH (http://www.
cee.hw.ac.uk/~dsg/gph/).

Further reading:

Papers describing these projects are available from:

1. GdH Homepage http://www.cee.hw.ac.uk/~dsg/gdh/

2. Phil Trinder’s Homepage http://www.cee.hw.ac.uk/
~trinder/publications.html

3.3.4 Eden

Report by: Rita Loogen and Steffen Priebe
Project status: no changes, work ongoing
Eden extends Haskell by a small set of syntactic constructs for
explicit process specification and creation. While providing
enough control to implement parallel algorithms efficiently it
frees the programmer from the tedious task of managing low-
level details by introducing automatic communication (via
head-strict lazy lists), synchronisation, and process handling.
Eden’s main constructs are process abstractions and process
instantiations. The expression process x -> e of a prede-
fined polymorphic type Process a b defines a process ab-
straction mapping an argument x::a to a result expression
e::b. Process abstractions of type Process a b can be com-
pared to functions of type a -> b, the main difference being
that the former, when instantiated, are executed in parallel.
Process instantiation is achieved by using the predefined infix
operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining higher-order
functions over these basic constructs. Such skeletons, ranging
from a simple parallel map to sophisticated replicated-worker
schemes, have been used to parallelise a set of non-trivial
benchmark programs.
Eden has been implemented by modifying the parallel runtime
system GUM of GpH. Differences include stepping back from
a global heap to a set of local heaps to reduce system message
traffic and avoid global garbage collection. The current (freely
available) implementation is based on GHC 3.xx. An Eden
implementation based on GHC 5.xx will be available in the
near future.
Eden has been jointly developed by two groups at Philipps
Universität Marburg, Germany and Universidad Com-
plutense de Madrid, Spain. The project has been ongoing
since 1996.
Current and future topics include program analysis, skeletal
programming, and polytypic extensions.

Further reading:

http://www.mathematik.uni-marburg.de/inf/eden/

11

http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/
http://www.mathematik.uni-marburg.de/~loogen/eden.html
http://www.mathematik.uni-marburg.de/~loogen/eden.html
http://www.cee.hw.ac.uk/Research/funct_prog.html
http://www.cee.hw.ac.uk/Research/funct_prog.html
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/hosc-submitted.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/hosc-submitted.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/jfp01.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/jfp01.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/
http://www.cee.hw.ac.uk/~dsg/telecoms/
http://www.cee.hw.ac.uk/~dsg/telecoms/
http://www.cee.hw.ac.uk/~dsg/gph/
http://www.cee.hw.ac.uk/~dsg/gph/
http://www.cee.hw.ac.uk/~dsg/gdh/
http://www.cee.hw.ac.uk/~trinder/publications.html
http://www.cee.hw.ac.uk/~trinder/publications.html
http://www.mathematik.uni-marburg.de/inf/eden/

3.4 Type System/Program Analysis

3.4.1 A General Type Class Framework
based on Constraint Handling Rules

Report by: Martin Sulzmann
We use Constraint Handling Rules (CHRs) to describe various
type class extensions. Under sufficient conditions on the set
of CHRs, we have decidable operational checks which enable
type inference and ambiguity checking for type class systems.
We have incorporated the ideas of the CHR-based overload-
ing approach into an actual programming language called
Chameleon. The syntax of Chameleon follows mostly Haskell.
We plan to use Chameleon as an experimental test-bed for
possible type system extensions. We are currently trying to
integrate a type-debugging tool into Chameleon.

Further reading:

CHR-type systems general: http://www.cs.mu.oz.au/
~sulzmann/chr/
Chameleon: http://www.cs.mu.oz.au/~sulzmann/
chameleon/

3.4.2 Program Analysis for Haskell

Report by: Martin Sulzmann
Project status: on-going
Our goal is to develop a generic constraint-based program
analysis framework for Haskell. Haskell improves programmer
productivity, but compilers require complex program analyses
to make programs run efficiently.
We have designed and implemented a binding-time, strict-
ness and exception analysis for Haskell and incorporated both
analyses into the GHC compiler. The analysis deals with all
features of Haskell such as polymorphic programs and struc-
tured data.
The team: Kevin Glynn, Harald Sondergaard, Peter
Stuckey, Martin Sulzmann

Further reading:

http://www.cs.mu.oz.au/~sulzmann/mupag/

3.5 Generic Programming

Report by: Johan Jeuring
Project status: only small changes in topics&goals
Software development often consists of designing a datatype,
to which functionality is added. Some functionality is
datatype specific, other functionality is defined on almost all
datatypes, and only depends on the type structure of the
datatype. Examples of generic (or polytypic) functionality
defined on almost all datatypes are the functions that can
be derived in Haskell using the deriving construct, storing a
value in a database, editing a value, comparing two values for
equality, pretty-printing a value, etc. A function that works
on many datatypes is called a generic function.

There are at least two approaches to generic programming:
use a preprocessor to generate instances of generic functions
on some given datatypes, or extend a programming language
with the possibility to define generic functions.

3.5.1 Preprocessors

DrIFT (http://www.cs.york.ac.uk/fp/DrIFT/) is a pre-
processor which generates instances of generic functions. It
is used in Strafunski (http://www.cs.vu.nl/Strafunski/)
to generate a framework for generic programming on terms.

3.5.2 Languages

PolyP (http://www.cs.chalmers.se/~patrikj/poly/) is
an extension of a subset of Haskell in which generic func-
tions can be defined and type checked. Polyp allows the def-
inition of polytypic functions on a limited set of datatypes.
Hinze has shown how to overcome some of the limitations of
Polyp by extending Haskell with a construct for defining type-
indexed functions with kind-indexed types. Generic Haskell
(http://www.generic-haskell.org/) is based on Hinze’s
ideas. Also GHC has an extension that uses Hinze’s idea
to add derivable type classes to Haskell.

Current Hot Topics: Generic Haskell: XML tools as
generic programs, an implementation of type checking and
inferencing, adding views and data types as fixed-points, dif-
ferent styles of generic definitions.

Major Goals: Extend Generic Haskell with features that
simplify the construction of XML tools, and several other
generic programming problems, such as programming on
terms. Next release of Generic Haskell: somewhere this sum-
mer. Strafunski: first-class generic functions.

Further reading:

http://www.cs.york.ac.uk/fp/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
There is a mailing list for Generic Haskell: generic-
haskell@cs.uu.nl. See the homepage for how to join.

3.6 Syntactic Sugar

3.6.1 Arrow Notation

Report by: Ross Paterson
A preprocessor for arrow notation was reported at ICFP’01.
This has now been packaged by the Yale FRP group, who
are using it in a new arrow-ized version of FRP, which should
appear soon. The preprocessor itself is fairly stable, but I’m
still taking requests, and am very keen to hear from any users.
A library of arrow transformers is under development.
http://www.haskell.org/arrows/

12

http://www.cs.mu.oz.au/~sulzmann/chr/
http://www.cs.mu.oz.au/~sulzmann/chr/
http://www.cs.mu.oz.au/~sulzmann/chameleon/
http://www.cs.mu.oz.au/~sulzmann/chameleon/
http://www.cs.mu.oz.au/~sulzmann/mupag/
http://www.cs.york.ac.uk/fp/DrIFT/
http://www.cs.vu.nl/Strafunski/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.york.ac.uk/fp/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.haskell.org/arrows/

Chapter 4

Libraries

4.1 Graphical User Interfaces

4.1.1 GUI Library API Task Force

Report by: Manuel Chakravarty
Project status: idling. . .
The main goal is the development of a GUI library API for
Haskell that is portable across Haskell systems and operat-
ing/windowing systems. While several Haskell GUI libraries
are now available (see below), no progress has been made on
defining a common minimal API.

Further reading:

http://www.haskell.org/mailman/listinfo/gui/

4.1.2 Object I/O for Haskell

Report by: Krasimir Andreev
The Object I/O is a flexible library for building rich user in-
terfaces. It is a port of the popular Clean Object I/O to
Haskell (http://www.cs.kun.nl/~clean/). The current im-
plementation for Clean and Haskell supports only the Win-
dows platform but the library is done keeping in mind its
portability. The Linux version based on GTK+ for Haskell is
being developed. The aim is to create a highly portable GUI
library. In this way the programs will be translated to differ-
ent platforms without rewriting. The second requirement to
the library is to give the programs a native look and feel for
the target platform. The main difference between Object I/O
and TclHaskell, FranTk and some other, is that Object I/O
uses a native interface (Win32 API for Windows and GTK+
for Linux) instead of a scriptable interface (Tcl/Tk). This is
more difficult to implement but is more effective.
The library uses nonstandard type system extensions: explicit
universal quantification and existentially quantified data con-
structors, which aren’t compliant with Haskell98 standard,
but are a part of what we call Haskell-2-pre specification.
The current implementation works only with GHC-5.02 or
higher compatibles and is a part of hslibs collection. There
aren’t any plans to port the library to other compilers (NHC
and/or Hugs). The package is distributed together with the
port of original examples contributed with Clean Object I/O.
These examples help the customers understand how to work
with the library and how to understand the differences be-

tween the implementation for Haskell and Clean (for these
who have experience with Clean). There is also a draft of
Object I/O quick reference.
The port supports all features except features related to print-
ing. Maybe I will implement printing in the future. Currently
I redesign the library to implement modern hierarchical mod-
ule names. Porting GUI applications from Clean to Haskell is
not trivial but relatively easy task. In many cases the trans-
lation is just syntactical

Further reading:

http://www.haskell.org/ObjectIO/

4.1.3 Gtk+HS

Report by: Manuel Chakravarty
Project status: beta release
Gtk+HS is a Haskell binding to the GTK+ GUI toolkit
(http://www.gtk.org/), which is the toolkit on which the
Gnome desktop is based. GTK+ is a fully-fledged modern
widget set and all its basic and some of its advanced function-
ality is already available from Haskell. The current binding
is to GTK+ 1.2, but it will be extended to also support the
new GTK+ 2.0 API in the next couple of months.
Gtk+HS is an API binding; that is, it remains close to the
original C API, which implies a very stateful way of program-
ming in the IO monad. More functional layers on top of the
basic binding are under investigation. Gtk+HS includes sup-
port for two non-standard extra widgets: GtkGLArea sup-
ports OpenGL-based 2D and 3D graphics in GTK+ inter-
faces and GtkEmbedMoz facilitates embedding the render-
ing engine (Gecko) of the Mozilla web browser into Haskell
programs. Moreover, the visual GUI builder Glade (http:
//glade.gnome.org/) can be used to design interfaces for
Gtk+HS.

Further reading:

http://www.cse.unsw.edu.au/~chak/haskell/gtk/

[Axel Simon has recently released an alternative Haskell bind-
ing to Gtk2: http: // gtk2hs. sourceforge. net/ (ed.)]

13

http://www.haskell.org/mailman/listinfo/gui/
http://www.cs.kun.nl/~clean/
http://www.haskell.org/ObjectIO/
http://www.gtk.org/
http://glade.gnome.org/
http://glade.gnome.org/
http://www.cse.unsw.edu.au/~chak/haskell/gtk/
http://gtk2hs.sourceforge.net/

4.2 Graphics

4.2.1 HGL Graphics Library

Report by: Alastair Reid
Project status: Maintained, stable
The HGL gives the programmer access to the most inter-
esting parts of the Win32 and X11 library without exposing
the programmer to the pain and anguish usually associated
with using these interfaces. The library is distributed as open
source and is suitable for use in teaching and in applications.
The library currently supports:

• Filled and unfilled 2-dimensional objects (text, lines,
polygons, ellipses).

• Bitmaps (Win32 version only, for now).

• Control over text alignment, fonts, color.

• Simple input events (keyboard, mouse, window resize) to
support reactivity.

• Timers and double-buffering to support simple anima-
tion.

• Use of concurrency to avoid the usual inversion of the
code associated with event-loop programming.

• Multiple windows may be handled at one time.

To keep the library simple and portable, the library makes no
attempt to support:

• User interface widgets (menus, toolbars, dialog boxes,
etc.)

• Palette manipulation and other advanced features.

• Many kinds of input event.

Status: The library works on both Win32 and X11 under
Hugs and (unsupported) GHC. The API is stable and the li-
brary is used throughout Paul Hudak’s ‘School of Expression’
textbook (http://haskell.org/soe/). The last release was
2.0.4 in December 2001.

Further reading:

HGL web page: http://haskell.org/graphics/
School of Expression web page: http://haskell.org/soe/
Author’s web page: http://www.cs.utah.edu/~reid/

4.2.2 Haven, a Functional Vector Graphics
Library

Report by: Antony Courtney
Project status: Active, maintained, (relatively) stable
Haven is a library for vector graphics in Haskell. Haven sup-
ports a number of features, including bezier curves, high-
quality fonts, anti-aliased rendering, alpha-blending (trans-
parency), constructive-area geometry and more. Haven
presents a purely functional API, but is implemented using
the Java2D renderer.

Further reading:

For more information on Haven, including examples and
download instructions, please visit the haven web page at:
http://www.haskell.org/haven/

4.2.3 HOpenGL – OpenGL Haskell Binding

Last time, Sven Panne reported that his HOpenGL had been
used by a handful users over the last two years and that it
seemed to have gained some momentum recently. Well, that
certainly rings true now, as we see the first two HOpenGL-
based projects in this edition. As usual for Haskell applica-
tions, it is not always easy to find a clear boundary between
libraries, embedded domain-specific languages, and stand-
alone applications. You’ll find FunGEn, a functional game
engine, here in the libraries section (section 4.2.4), and VOP,
a POV-Ray scene previewer, in the applications part (section
6.1.1). HOpenGL itself has recently (21/04/2002) seen an-
other compatibility release: “Apart from some minor fixes to
make it work with GHC >= 5.x and some strange GLU ver-
sions, it includes support for 3D textures. The installation
procedure has been vastly improved, too.”.

Further reading:

http://www.haskell.org/mailman/listinfo/hopengl/
http://www.haskell.org/HOpenGL/

4.2.4 FunGEn - Functional Game Engine

Report by: Andre W B Furtado
Project status: new project
The objective of the FunGEn project is to create a high-level
game engine in and for Haskell. A game engine, roughly
speaking, is a tool intended to help a game programmer to
develop games in a faster and automated way, avoiding him
to worry about low-level implementation details. The main
advantage of using a game engine is that, if it is built in a
general and modular architecture, it can be used to develop
many different types of games.
The first release of FunGEn (April/2002) consists of a 2D
platform-independent game engine, whose implementation is
based in HOpenGL (Haskell Open Graphics Library). It sup-
ports:

• Initialization, updating, removing, rendering and group-
ing routines for game objects;

• Definition of a game background (or map), including
texture-based maps and tile maps;

• Reading and intepretation of the player’s keyboard input;

• Collision detection;

• Time-based functions and pre-defined game actions;

• Loading and displaying of 24-bit bitmap files;

• A few debugging and game performance evaluation facil-
ities;

• Sound support (for windows platforms only... :-[)

14

http://haskell.org/soe/
http://haskell.org/graphics/
http://haskell.org/soe/
http://www.cs.utah.edu/~reid/
http://www.haskell.org/haven/
http://www.haskell.org/mailman/listinfo/hopengl/
http://www.haskell.org/HOpenGL/

The final objective of FunGEn is to support both 2D and 3D
enviroments, some game programming tools (such as map ed-
itors) and advanced game functionalities (such as multiplayer
networking), although it is actually far away from that.
FunGEn is being maintained at the Informatics Center of the
Federal University of Pernambuco, by Andre W B Furtado
(assisted by lecturer Andre Santos), and it’s wide open for
any implementation contributions.

Further reading:

http://www.cin.ufpe.br/~haskell/fungen/
http://www.cin.ufpe.br/~haskell/hopengl/
http://www.haskell.org/HOpenGL/

4.3 Web Programming

4.3.1 WASH/CGI – Web Authoring System
for Haskell

Report by: Peter Thiemann
Project status: new project
WASH/CGI is an embedded DSL (read: a Haskell library)
for server-side Web scripting based on the purely functional
programming language Haskell. Its implementation is based
on the portable common gateway interface (CGI) supported
by virtually all Web servers. WASH/CGI offers a unique and
fully-typed approach to Web scripting. It offers the following
features

• a monadic interface to generating HTML output

• type-safe compositional approach to specifying form ele-
ments

• callback-style programming interface for forms

• automatic error detection

• complete interactive script in one program

• type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persistent
server-side

• integration with CSS yields compositional style descrip-
tions

• on-the-fly generated graphics

• high-level interface to email generation

Current work includes

• incorporation of WASH/HTML, a typed interface for
generating mostly valid HTML documents

• preprocessor for translating markup in XML syntax into
WASH/HTML

• database interface

• authentication

• user manual

Further reading:

WASH Webpage http://www.informatik.uni-freiburg.
de/~thiemann/WASH/ includes examples, a tutorial, papers
about the implementation.

15

http://www.cin.ufpe.br/~haskell/fungen/
http://www.cin.ufpe.br/~haskell/hopengl/
http://www.haskell.org/HOpenGL/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

Chapter 5

Tools

5.1 Foreign Function Interface

5.1.1 C–>Haskell

Report by: Manuel Chakravarty
Project status: beta release
The FFI binding generator C–>Haskell has recently been ex-
tended with support for semi-automated argument and result
marshalling, which significantly reduces the amount of code
the author of a binding has to write. A binary release of the
0.10 series is forthcoming.

Further reading:

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

5.1.2 GreenCard

Report by: Alastair Reid
Project status: Maintained, stable
Portability: Hugs, GHC, NHC and C, C++
GreenCard is a foreign function interface preprocessor for
Haskell and has been used (amongst other things) for the
Win32 and X11 bindings used by Hugs and GHC. Source and
binary releases (Win32 and Linux) are available. The last
release was 2.0.3 (November 2001).

Further reading:

http://www.haskell.org/greencard/

5.1.3 GCJNI

Report by: Antony Courtney
Project status: Active, maintained, (relatively) stable
GCJNI is a library that allows Haskell to invoke Java code
via the Java Native Interface (JNI). The implementation uses
GreenCard to make the JNI (a C language interface) available
to Haskell. GCJNI includes a few convenient features, such
as:

• Integration of the Haskell and Java garbage collectors,
so that Java objects are garbage collected when they are
no longer accessible from Haskell.

• Type class based overloading, which makes it easy to pass
common types (like Int, Float and String) to or from Java
code.

• A tool (GenBindings) which uses Java reflection on a
set of compiled Java classes to generate a Haskell mod-
ule with a simple, high-level, type-safe interface to the
underlying Java code.

GCJNI has been successfully tested using both hugs98 and
ghc under both Linux and Windows. The distribution in-
cludes a unified Makefile system and detailed release notes
that makes it very easy to configure, compile and install for
any supported combination of Haskell implementation and
platform.

Further reading:

More information (including pointers to the relevant distri-
butions) is available from the GCJNI web page at:
http://www.haskell.org/gcjni/

5.1.4 Java VM Bridge

Report by: Ashley Yakeley
Java VM Bridge is a GHC package intended to allow full
access to the Java Virtual Machine from Haskell, as a simple
way of providing a wide range of imperative functionality. Its
big advantage over earlier attempts at this is that it includes a
straightforward way of creating Java classes at run-time that
have Haskell methods (using DefineClass and the Java Class
File Format). It also features reconciliation of thread models
without requiring GPH.
It is intended to make writing “Java in Haskell” as straight-
forward as possible. To this end, each Java class is a separate
type, and the argument lists of methods of automatically-
generated interfaces to Java classes make use of subtype class
relations to minimise explicit upward casting. Java exceptions
are represented as Haskell monadic exceptions, and may be
caught or thrown accordingly. Also, the two garbage collec-
tors are integrated in such a way that cross-collector reference
loops won’t happen.
As a point of cleanliness and principle, it makes no use of
“unsafe” Haskell calls (or pure function FFI). The layered
design allows access to either lifted monads that keep track
of context data (specifically, the JNIEnv pointer) and do all

16

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.haskell.org/greencard/
http://www.haskell.org/gcjni/

the work of preloading for you, or “IO”-based functions if you
want to do all that yourself.

Current Status: A beta-quality 0.1 was released in De-
cember 2001, for x86 Unix only. Release 0.2 will also be
available for Windows and MacOS X, just as soon as stable
5.04 GHC is available on those platforms (unless I get tired
waiting).

Contact: Ashley Yakeley <ashley@semantic.org>

Further reading:

http://sourceforge.net/projects/jvm-bridge/

5.2 Meta Programming

“Why write a program when you can write a program to write
a program?” (author unknown).
Even in a language where functions are first-class citizens, you
sometimes want to write programs at a meta level, be it to
get that extra leverage in productivity, to test some ideas for
language extensions, for debugging/instrumenting your code,
or for analyses and transformations. Unfortunately, generic
tool support for this kind of tasks has been somewhat lacking,
so that Haskell meta-programmers currently have to imple-
ment their tools almost from scratch (Drift, HAT, Sugar for
Arrows, Haddock, labelled fields before they became part of
the language, . . .). In this section, we hope to document any
progress being made in this area.

5.2.1 Haskell Frontends

Report by: Bernie Pope

Parsing/Printing Haskell Source

HsSource A full parser for Haskell 98 source, based on the
Happy parser generator (see section 5.4.1), is maintained in
the GHC CVS repository:
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
hslibs/hssource/
The project is currently active and the parser is kept up to
date with the Haskell 98 Language Report. The basic com-
ponents of the project are a lexer, a parser, a pretty printer
and an abstract syntax representation. The parser requires
Happy.
Infix applications are parsed without reference to precedence
levels of operators. This means that the abstract syntax rep-
resentation may need restructuring after parsing is finished.
Currently the project does not support this restructuring.
The difficulty is that infix rules may be imported from other
modules, and there is no way to know these infix rules when
parsing a single module, without (partially) parsing other
modules also. This is not a limitation of the code, but rather
a limitation imposed by the definition of Haskell 98.

The parser is designed to process a whole module at a time,
which makes parsing only fragments of code difficult or im-
possible. However, there is no such limitation on the pretty
printer. The pretty printer can output code in layout sensi-
tive and layout insensitive modes. Error messages are very
minimal, and would require improvement for tasks that need
to provide detailed feedback to the user.
This project is well suited to whole module analysis and whole
module transformation, particularly because of the conve-
nient abstract syntax representation.

Type inference/checking

Bernie Pope (http://www.cs.mu.oz.au/~bjpop/) and oth-
ers at Melbourne University are working on a type checking
tool for Haskell 98. The parsing is done by HsSource (see
above). The typing algorithm is based on Mark Jones’ “Typ-
ing Haskell in Haskell” (http://www.cse.ogi.edu/~mpj/
thih/).
This is work in progress. Currently the program can type
a single module program which imports the Prelude. Multi-
module programs are not yet supported, however, most of the
infrastructure is ready to do so.
One of the main aims of the project is to provide detailed
information about the static properties of a Haskell module
including:

• identifier binding locations, binding methods, and depen-
dency relationships,

• the type class hierarchy,

• kinds, and

• types for top and let/where bound identifiers and data
constructors

A release for the current version of the project is due within
a couple of weeks of this version of the Haskell Communities
Report. We hope that other interested parties would like to
collaborate, or contribute some work on the code to support
more of the Haskell language, so that it may be a useful tool
for the Haskell community.

[At least two other related efforts are known (see the Novem-
ber 2001 edition of this report, section 1.3, for further details),
but we have not been able to get hold of more recent informa-
tion on these. (ed.)]

A note on why the front-ends of existing compilers do
not meet the needs of the Meta Programming com-
munity

One would think that instead of writing another parser and
type checker for Haskell you could simply extract the front
end of one of the existing compilers/interpreters. There are
really two main problems with this:

1. The front-ends of the compilers tend to be designed with
the rest of the compiler in mind, thus making it difficult
to select only the parsing and typing code out from them.

17

http://sourceforge.net/projects/jvm-bridge/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/hslibs/hssource/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/hslibs/hssource/
http://www.cs.mu.oz.au/~bjpop/
http://www.cse.ogi.edu/~mpj/thih/
http://www.cse.ogi.edu/~mpj/thih/

2. The compilers support their own specific set of extensions
to the language which effect some aspects of the parsing
and typing code. From this position it is harder to make
a parser and type checker follow the Report correctly.

Having a reference parser and type checker which is inde-
pendent of the compilers might also help us to reason about
the static properties of Haskell 98 in a non-compiler-specific
manner.

5.2.2 Haskell Preprocessors

DrIFT

DrIFT is Noel Winstanley’s utility for deriving instances of
Haskell classes. If you feel you are writing almost the same
class instances again and again (observe? record field up-
date?), this is one place to look for help. The tool formerly
known as something else may face yet another name change
(jDrIFT?), but more importantly, it seems to have acquired
a new maintainer. John Meacham <john@foo.net> has not
only started to add new features, he is also working on bring-
ing together the various useful patches other DrIFT users
have been making:
“It appears that there is popular support for a maintained
version of DrIFT somewhere. I would be most willing to
take over as project maintainer. Judging from the emails
I received, it appears that many people have written small
patches to DrIFT but with no where to send them, they just
kept them to themselves. Since there already is a version
in the fptools CVS, it would make sense to use that as the
main repository for development, I guess a good plan of action
would be for me to create a main web page (. . .) to distribute
it from and then bring the cvs tree up to date with all my
changes + the others people are submitting and then develop
from there.”

Further reading:

http://homer.netmar.com/~john/computer/haskell/
DrIFT/

5.3 Program Development

5.3.1 Tracing and Debugging

Report by: Olaf Chitil
There exist several tools with rather different approaches to
tracing Haskell programs for the purposes of debugging and
program comprehension.
Hood, the portable library for observing data structures at
given program points, has remained unchanged in the last
half year. John Meacham’s recent version of DrIft supports
the generation of instances of the Hood class Observable for
user defined data types, thus making Hood nearly as easy
to use with any Haskell compiler as with Hugs. The latter
directly supports a variant of Hood. GHood, the graphical

back end for Hood which can animate observations, remains
unchanged as well.
Freja, the algorithmic debugger for a subset of Haskell has not
been developed further. The algorithmic debugger Buddha is
not yet available, but it is making progress. Its developer
Bernie Pope recently released low-level libraries for accessing
the heap of ghc from Haskell.
In the middle of March, version 1.12 of Hat, the Haskell trac-
ing (and debugging) system, appeared. Hat can now be used
not only with nhc98 but also with ghc, that is, Hat transforms
a Haskell 98 program into another Haskell program which
can be compiled with ghc. The compiled program generates
a trace file alongside its computation. With several new or
improved tools the trace can be viewed in various ways: algo-
rithmic debugging a la Freja; Hood-style observation of top-
level functions; stack-trace on program abortion; backwards
exploration of a computation, starting from (part of) a faulty
output or an error message. All tools inter-operate and use a
similar command syntax. A new tutorial introduction to Hat
shows how to generate traces, how to explore them, and how
they help to debug Haskell programs. The next improved
version of Hat will appear end of May.

Further reading:

http://www.haskell.org/libraries/#tracing

5.3.2 Testing

HUnit

Report by: Dean Herington
Project status: new tool
Hunit is a unit testing framework for Haskell similar to JUnit
for Java. With HUnit, a Haskell programmer can easily create
tests, name them, group them into suites, and execute them,
with the framework checking the results automatically. Test
specification is concise, flexible, and convenient.
HUnit is free software that is written in Haskell 98 and runs
on Haskell 98 systems. The software and documentation can
be obtained at http://hunit.sourceforge.net.

QuickCheck

No recent developments have been reported for this tool, but
as the Testing section is new here, Koen Claessen and John
Hughes’ QuickCheck http://www.cs.chalmers.se/~rjmh/
QuickCheck/ should be mentioned.
QuickCheck is a tool for testing Haskell programs automat-
ically. The programmer provides a specification of the pro-
gram, in the form of properties which functions should sat-
isfy, and QuickCheck then tests that the properties hold in
a large number of randomly generated cases. Specifications
are expressed in Haskell, using combinators defined in the
QuickCheck library. QuickCheck provides combinators to de-
fine properties, observe the distribution of test data, and de-
fine test data generators.

18

http://homer.netmar.com/~john/computer/haskell/DrIFT/
http://homer.netmar.com/~john/computer/haskell/DrIFT/
http://www.haskell.org/libraries/#tracing
http://hunit.sourceforge.net
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://www.cs.chalmers.se/~rjmh/QuickCheck/

5.3.3 Documentation

Haddock

Report by: Simon Marlow
Project status: new tool
Haddock is a new tool for generating interface documenta-
tion from Haskell source. It takes a collection of plain Haskell
source modules, optionally containing documentation anno-
tations in the form of special comments, and generates an
HTML or DocBook interface document. The documentation
is fully hyperlinked and contains an index.
Because Haddock parses the source and contains a partial
implementation of the Haskell module system, it can generate
an accurate description of the API exported by a module. It
also handles re-exporting of entities correctly.
There’s still lots to do, and comments & suggestions are wel-
come.
Haddock’s home page is here:
http://www.haskell.org/haddock/

5.4 Scanning and Parsing

5.4.1 Happy

Report by: Simon Marlow
Nothing significant since the previous report.
Paul Callaghan has sent me code to implement GLR (gen-
eralised LR) parsing written by a student of his (Ben Med-
lock). GLR parsing generates *all* the parses for a particular
input, rather than selecting one of the possible parses when
the grammar is ambiguous. The multiple parse trees are rep-
resented in a compact way. GLR parsing will hopefully be
incorporated in the next release of Happy.
http://www.haskell.org/happy/

5.4.2 Parsec

Report by: Daan Leijen
Parsec is a monadic combinator library for parsing. Allthough
combinator parsing is well known in literature, most libraries
are only implemented for personal use or for small research
examples. Parsec is designed from scratch as an “industrial-
strength” parser library. It is safe, documented, has extensive
libraries and good error messages. It is also fast, doing thou-
sands of lines per second on todays machines, which might
make it an acceptable alternative to bottom-up parser gener-
ators like Happy.
Parsec is currently part of the GHC libraries and part of the
CVS repository: anonymous@cvs.haskell.org:/home/cvs/
root, in fptools/hslibs/text/parsec
Pre-packaged releases and documentation can be found on the
Parsec home page: http://www.cs.uu.nl/people/daan/
parsec.html
The current library is quite complete but (in the next 6
months?) we plan to add:

• combinators for parsing Haskell “layout”

• a full Haskell parser

• error-recovery combinators

• more documentation, especially about the proper use of
the “try” combinator

19

http://www.haskell.org/haddock/
http://www.haskell.org/happy/
anonymous@cvs.haskell.org:/home/cvs/root
anonymous@cvs.haskell.org:/home/cvs/root
http://www.cs.uu.nl/people/daan/parsec.html
http://www.cs.uu.nl/people/daan/parsec.html

Chapter 6

Applications, Groups, and Individuals

6.1 Non-Commercial Applications

This section lists applications developed in Haskell, be it in
academia, in industry, or just for fun, which achieve some
non-Haskell-related end.

6.1.1 VOP – Vision of Persistence

Report by: Wolfgang Thaller
Project status: new project
VOP (“Vision of Persistence”) is a freeware program that
reads POV-Ray scene description files and displays them us-
ing OpenGL. POV-Ray (http://www.povray.org) is a free-
ware ray-tracing program that can create very realistic images
and animations, but takes a lot of time to do so. VOP is in-
tended to speed up the trial-and-error cycle by providing a
fast low-quality preview. VOP consists of almost 10000 lines
of Haskell code, plus a few lines of C++ which could all be
reimplemented in Haskell.
Source code and binaries for MacOS X, Linux/x86 and
Windows are available from http://www.kfunigraz.ac.at/
imawww/thaller/wolfgang/vop-intro.html

6.1.2 Knit

Report by: Alastair Reid
Project status: Active, maintained, semi-stable
Portability: GHC (maybe Hugs, still), Linux, FreeBSD
Knit is a component definition and linking language for sys-
tems programming based on the Unit component program-
ming model. Knit lets you turn ordinary C code (e.g., bits
of the Linux kernel) into components and link them together
to build new programs. Since the freedom to do new things
brings with it the freedom to make new errors, Knit pro-
vides a simple constraint system to catch component config-
uration errors. Knit also provides a cross-component inliner
and schedules initialization and finalization of components.
Or, from a functional programmer’s perspective, Knit is
a 2nd-order lazy functional programming language (i.e., a
linker) with an obscure variant of Haskell’s type class mech-
anism to detect cycles and which uses a dependency analysis
to determine a feasible evaluation order for the initialization
routines. :-)
Knit is released under a BSD-style license, is written in
Haskell (and a little C) and includes a C parser and pretty-

printer. A useful little utility included in the distribution is
a tool for renaming symbols in ELF-format object files.
Current work aims to extend error checking into the real-time
domain, to automate generation of components, and to turn
Knit into an architecture description language (ADL) instead
of just a module interconnection language (MIL).

Further reading:

http://www.cs.utah.edu/flux/alchemy/

6.2 Commercial Applications

6.2.1 Lava at Xilinx

Report by: Satnam Singh
Lava has been used at Xilinx to design several high perfor-
mance circuits that were difficult or almost impossible to pro-
duce using conventional techniques. Examples include signal
processing and image filters, sorting networks, arithmetic net-
works (e.g. high speed pipelined adder trees) and distributed
serial arithmetic implementations of arithmetic functions and
filter blocks. Lava is distinguished from conventional lan-
guages by its ability to express the layout of circuits in a
tractable and flexible manner. Lava also greatly eases the
rapid design of new circuit cores by allowing designers to
define new “glue” to compose circuits (circuit combinators
implemented as higher order functions).
The Xilinx Lava implementation can generate VHDL, Verilog,
SystemC [soon] as well as implementation netlist formats like
EDIF which can be decorated with precise layout information.
These outputs can be fed into a conventional tool flow to
produce real circuits for download onto Xilinx’s FPGAs.
Xilinx Lava is currently being updated to provide support
for interfacing to external tools like SAT-solvers and model
checkers. This will allow us to perform circuit transforma-
tions and optimisation and then check to see if they were
valid. Another project that we are contemplating is to try
and get an “embedded” version of ghc running on our new
chips which contain between one and four IBM PowerPC405
processors which are directly connected to the reconfigurable
fabric of our chips via IBM’s CoreConnect bus. It would
be wonderful to have Haskell programs running directly on
our chips! Alternatively we may have to come up with

20

http://www.povray.org
http://www.kfunigraz.ac.at/imawww/thaller/wolfgang/vop-intro.html
http://www.kfunigraz.ac.at/imawww/thaller/wolfgang/vop-intro.html
http://www.cs.utah.edu/flux/alchemy/

specific requirements for an “embedded lazy functional lan-
guage” and see to what extent this can be a slight variant of
Haskell. For more information about Xilinx’s latest chips see
http://www.xilinx.com/virtex2pro/.
We are now designing Lava circuits with bus interfaces which
poses new challenges for us as well as new research opportu-
nities. We plan to design special combinators to facilitate the
connection of regular circuits to buses by trying to abstract
away as much detail as possible about the bus-interface logic.
Bus-interface logic is also very tricky to get right and we plan
to try and use external tools to make sure that we comply
with the bus interface standard (e.g. make sure that two
circuits do not simultaneously try to write to the bus).
There will be a public release of Lava available for download
from Xilinx. This will be a ghc binary and will include sup-
port for using Lava in the ghc interpreter ghci as well as full
binaries for all the Lava libraries.

Further reading:

For more information see http://www.xilinx.com/labs/
lava/ or contact <Satnam.Singh@xilinx.com>

6.2.2 Galois Connections, Inc.

Report by: Andy Gill
Galois Connections is a contract engineering and product de-
velopment software house that uses Haskell as the language of
choice. We are a Haskell success story - a profitable startup
that is employing around a dozen Haskell engineers.

Further reading:

For more details, goto http://www.galois.com, or contact
<andy@galois.com>.

6.3 Research Groups

Many research groups have already been covered by their
larger projects in other parts of this report, especially if they
work almost exclusively on Haskell-related projects, but there
are more groups out there who count some Haskell-related
work among their interests. Unfortunately, we don’t seem to
reach some of them yet, so if you’re reading this, please make
sure that your group is represented in the next edition!

6.3.1 Functional Programming at Yale

Report by: Henrik Nilsson
The functional programming group at Yale is using Haskell
and general functional language principals to design domain-
specific languages. We are particularly interested in domains
that incorporate time flow. Examples of the domains that
we have addressed include robotics, user interfaces, computer
vision, and music. The languages we have developed are usu-
ally based on Functional Reactive Programming (FRP). Par-
ticular examples are Frob (Functional Robotics) and FVision
(Functional Vision). FRP was originally developed by Conal

Elliott as part of the Fran animation system. It has three
basic ideas: continuous- and discrete-time signals, functions
from signals to signals, and switching. FRP is particularly
useful in hybrid systems: applications that have both contin-
uous time and discrete time aspects.
FRP is a work in progress: there are many decision points in
the FRP design space and we view FRP as a family of lan-
guages rather than a specific one. We have recently changed
our perspective a bit, emphasizing the notion of signal func-
tions while signals are no longer first class entities. This has
a number of notational as well as operational advantages.
Moreover, It has enabled us to recast the central ideas from
FRP in the setting of John Hughes’s arrows framework (see
section 3.6.1). The result is AFRP, Arrowized FRP, which is
where we currently focus our implementation efforts as far as
Haskell-based FRP-implementations are concerned.
Although FRP has traditionally been implemented in Haskell,
we have also been looking at direct compilation of FRP pro-
grams. We are particularly interested in compilation for
resource-limited systems such as embedded controllers.
We have not yet formally released a version of FRP or our
FRP-based languages such as Frob or FVision. However,
source snapshots for some of our systems are available for
downloading (“as is”), and anyone interested in our other
systems are encouraged to get in touch with us.
At present, the members of our group are Paul Hudak, John
Peterson, Henrik Nilsson, Walid Taha, Antony Courtney,
Zhanyong Wan, and Liwen Huang.

Further reading:

http://haskell.org/frp/
http://haskell.org/afrp/
http://www.haskell.org/yale/

6.3.2 Functional Programming Research
Group at Kingston Business School
(Kingston University)

Report by: Chris Reade
Application Area: Internet applications
Members:
(Kingston) Chris Reade, Dan Russell, Phil Molyneux, Barry
Avery, David Martland
(British Airways) Dominic Steinitz
Contact: Dan Russell <D.Russell@kingston.ac.uk>
This is a relatively new community which has been developing
internet applications using advanced language features (func-
tional, typed and higher order). Part of our motivation is to
investigate advantages of a functional approach to such ap-
plication areas, but also to identify areas for further language
and library development.
We have built an LDAP client with a web user interface en-
tirely in Haskell (reported at the 3rd Scottish Functional Pro-
gramming Workshop in August 2001). This has been further
developed to include asynchronous processes (using Concur-
rent Haskell) and a review of robustness issues. We are also
extending this work to include SNMP.

21

http://www.xilinx.com/virtex2pro/
http://www.xilinx.com/labs/lava/
http://www.xilinx.com/labs/lava/
http://www.galois.com
http://haskell.org/frp/
http://haskell.org/afrp/
http://www.haskell.org/yale/

Libraries for the LDAP, ASN.1 and BER will be made avail-
able as open source very soon.

Further reading:

FP Group: http://www.kingston.ac.uk/~bs_s075/
Research/fpres.html
Chris Reade: http://www.kingston.ac.uk/~bs_s075/

6.3.3 Functional Programming at UKC

Report by: Claus Reinke
Here at the University of Kent at Canterbury, about half a
dozen people pursuing research interests in functional pro-
gramming have formed a functional programming interest
group. Haskell is a major focus of teaching and research,
although we also look at other languages (such as Erlang
http://www.erlang.org;-).
Keith Hanna is continuing development of Vital, a visual
interactive implementation of (a subset of) Haskell intended
for general use in scientific/financial applications. In Vital,
the visual representation of Haskell datatypes is determined
by a user-defined stylesheet and the structure/content of data
structures can be edited by mouse-based copy-and-paste ges-
tures. An overview of Vital, a web-based simulation and a
prototype are available; a new release is planned for later this
year.
Axel Simon has just released a Haskell binding for Gtk2.
The Gtk toolkit in the most recent version 2.0 features a new
List and Edit widget, Unicode and (in the next minor release)
Win32 support. Rewritten from scratch, gtk2hs makes all
these features available while providing automatic memory
management and simpler type and signal handling.
Claus Reinke (yours truly) is still working on the combina-
tion of functional programming and virtual worlds (3d ani-
mated graphics). A draft paper and presentation (animated
3d, of course!-) from last year’s IFL are available, describing
a VRML-based version of FunWorlds. But while the initial
results still look promising, the frustrating shortcomings of
VRML have so far kept me from a proper release. Currently,
I’m trying to rebuild on top of HOpenGL instead, for greater
flexibility – watch this space, as they say!-)
Chris Ryder is continuing his work on software metrics.
The Medina library now contains functionality to write simple
metrics and display them in a variety of visualisation styles,
mostly using web browsers as the output medium. Chris is
currently working on integrating Medina with CVS reposito-
ries to enable temporal operations (such as looking at how
a metric value changes over time). This is working towards
some validation of metrics by looking at the correlation be-
tween various metric values for various programs and the
change history of those programs.
As reported last time, Simon Thompson and Claus
Reinke have been investigating the potential for refactor-
ing functional programs. The project has been granted fund-
ing and it now seems that we will have somone in place on
the project researcher position early this summer, so that

the work can start for real then. Refactoring means chang-
ing the structure of existing programs without changing their
functionality, and has become popular in the object-oriented
and extreme programming communities as a means to achieve
continuous evolution of program designs. We want to explore
the wealth of functional program transformation research to
bring refactoring to Haskell programmers.

Further reading:

FP group:
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/
Vital:
http://www.cs.ukc.ac.uk/people/staff/fkh/Vital/
Gtk2HS: http://gtk2hs.sourceforge.net/
FunWorlds:
http://www.cs.ukc.ac.uk/people/staff/cr3/FunWorlds/
Haskell metrics:
http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/
Refactoring Functional Programs:
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/

6.4 Individual Haskellers

The call for contributions for this section asked: “what are
you using Haskell for?” – the implementation mailing lists are
full of people sending in bug reports and feature suggestions,
stretching the implementations to their limits. Judging from
the “reduced” examples sent in to demonstrate problems,
there must be quite a few Haskell applications out there that
haven’t been announced anywhere (probably because Haskell
is “just” the tool, not the focus of those projects).
If you’re one of those serious Haskell users, why not write a
sentence or two about your application? We’d be particularly
interested in your experience with the existing tools (e.g., that
all-time-favourite: how difficult was it to tune the resource
usage to your needs, after you got your application working?
Which tools/libraries where useful to you? What is missing?).

Amanda Clare <ajc99@aber.ac.uk> writes: I’m currently
using Haskell as a tool to write a data mining program which
finds frequent patterns or associations in relational bioinfor-
matics data. I also use it for general data processing/ collect-
ing stats/ etc. I’m doing a PhD in computational biology at
Aberystwyth, UK.
The data is structured (relational) - things like “gene X is
similar (50%) to gene Y which has a large molecular weight
and an alpha helix of length 9 at position 14”. Then there
are hierarchies wherever you look in biology, for species tax-
onomy, gene functional class, etc. Even my frequent patterns
have common subsections that nicely fit a tree structure. So
I don’t think it’s an unusual task for Haskell, I wouldn’t like
to handle all these data structures in a C-like language. Also
running speed is not really such an issue for me here. If this
program runs in 3 weeks rather than 3 days, well, that’s okay
since the data collection took months (not that I think there
would be this much discrepancy anyway). I need the results

22

http://www.kingston.ac.uk/~bs_s075/Research/fpres.html
http://www.kingston.ac.uk/~bs_s075/Research/fpres.html
http://www.kingston.ac.uk/~bs_s075/
http://www.erlang.org
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/
http://www.cs.ukc.ac.uk/people/staff/fkh/Vital/
http://gtk2hs.sourceforge.net/
http://www.cs.ukc.ac.uk/people/staff/cr3/FunWorlds/
http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/

but my time spent in programming is limited too. In this
university if we take longer than 4 years for a PhD we fail
automatically.
Along the way I’ve had to do lots of “resource usage tuning”.
I ended up writing down things I should remember to do next
time to combat unwanted laziness, in http://users.aber.
ac.uk/ajc99/stricthaskell.html . It’s about the tools
and techniques that were useful to me. Tuning is difficult,
especially if you’re the only person using Haskell in your in-
stitution. The mailing lists and profilers, particularly nhc98’s
excellent profiles, are especially useful! What’s missing? I
think a Strict Haskell is missing.

Tom Pledger <Tom.Pledger@peace.com> points out that
some isolated Haskell users are poorly placed for informal
collaboration:
Last year, some of my Haskell-related tinkerings turned from
a hobby into an official 1-person research project. My em-
ployer regards some key features of the project as trade se-
crets and potentially patentable. I refrain from asking related
questions on the Haskell mailing lists, because it would be

• deceitful, like soliciting answers to homework assign-
ments but in a commercial setting, and

• harmful to my employer’s chances of getting a patent,
because I’d be provoking people to think up related prior
art and release it into the public domain.

Wolfgang Jeltsch (http://www.wolfgang.jeltsch.net/)
is a student in Computer Science at the Brandenburg Uni-
versity of Technology at Cottbus, Germany. In his free time,
he is working on a project called the Haskell Web Publisher.
The HWP shall be a software package allowing website imple-
mentations in Haskell. By using Haskell’s type system appro-
priately, several validity and consistency constraints shall be
forced by the Haskell compiler. In connection with the HWP,
Wolfgang is developing Seaweed, a small library containing
utilities concerning XML, the internet and other areas. He
has also the vision of adapting the ideas behind HWP for
typesetting. This could lead to some kind of TeX replace-
ment where documents are written in Haskell. Wolfgang is
looking for people who are interested in helping him realiz-
ing HWP and Seaweed. The projects are hosted on Source-
Forge.net and a paper describing the basic ideas is available
via his home page.

Ketil Z. Malde <ketil@ii.uib.no> writes: I’m using Haskell
to implement a bioinformatics algorithm, more specifically se-
quence (EST) clustering. As usual, using better algorithms
means that I can beat hand-crafted C. I hope :-)
Sorry, there’s nothing on my home page yet, but hopefully
I’ll be able to finish this some time before Summer.

Johannes Waldmann <joe@isun.informatik.uni-
leipzig.de> reports on two projects in the context of
his university teaching (not only Haskell). Source code for
both is available via anon. CVS:

1. autotool (automatic homework assessment)

The system autotool is used at Leipzig University to
grade students’ homework for courses in theoretical com-
puter science, in particular for exercises on automata,
grammars, and recursive functions. The system is imple-
mented with Haskell, and accessed via an email interface.

The novel aspect of autotool is that students send their
solutions as Haskell code, which then gets dynamically
loaded into a grading program. That way, the system
makes use of advantages of embedded (over interpreted)
domain specific languages. In particular, it uses Haskell
syntax and typing.

Strict typing is not only a pedagogical aim. The implied
distinction between values and IO actions is crucial for
the safe execution of the simulator.

Project home page (in German): http://theopc.
informatik.uni-leipzig.de/~autotool/

Project description (in English): http://www.
informatik.uni-leipzig.de/~joe/pub/draft/hw01.
ps

2. Modules for Boardgames

At the Institute for Informatik, University of Leipzig, we
regularily run student programming contests for board
games. (In 2001: Connections, in 2002: Philosopher’s
Phutball.)

We use a generic game server that is written in Haskell.
It uses GHC’s Socket and Concurrent library.

Also, there is a generic Haskell program for Alpha/Beta
game tree search. This serves as a default opponent for
the students’ programs.

It is straightforward to extend the system for new games.
All you need to do is implement

• a referee (that knows the rules) on the server side,
• a move generator and evaluation function on the

client side,
• a Java applet (if you want to play directly)

Contest home page (in German): http://theopc.
informatik.uni-leipzig.de/~joe/phutball/

Kevin Backhouse (http://web.comlab.ox.ac.uk/oucl/
work/kevin.backhouse/) is in the final stages of his D.Phil.
research on “Abstract Interpretation of Domain-Specific Em-
bedded Languages”. He sends the following abstract:
Embedded Languages are a promising new approach to the
design of Domain Specific Languages (DSLs). Rather than
designing new languages from scratch, they are created by
writing subroutine libraries in a functional language. The
most popular language for this purpose is Haskell, because
its higher order functions, polymorphism and laziness make
it possible to create languages that are concise and declar-
ative without the overhead of having to write a new com-
piler or interpreter. Unfortunately, this approach to creat-
ing DSLs can make it harder to implement domain specific

23

http://users.aber.ac.uk/ajc99/stricthaskell.html
http://users.aber.ac.uk/ajc99/stricthaskell.html
http://www.wolfgang.jeltsch.net/
http://theopc.informatik.uni-leipzig.de/~autotool/
http://theopc.informatik.uni-leipzig.de/~autotool/
http://www.informatik.uni-leipzig.de/~joe/pub/draft/hw01.ps
http://www.informatik.uni-leipzig.de/~joe/pub/draft/hw01.ps
http://www.informatik.uni-leipzig.de/~joe/pub/draft/hw01.ps
http://theopc.informatik.uni-leipzig.de/~joe/phutball/
http://theopc.informatik.uni-leipzig.de/~joe/phutball/
http://web.comlab.ox.ac.uk/oucl/work/kevin.backhouse/
http://web.comlab.ox.ac.uk/oucl/work/kevin.backhouse/

error-checking. For example, parsers can be written very eas-
ily using combinator libraries such as Swierstra’s (http://
www.cs.uu.nl/groups/ST/Software/UU_Parsing/) or Lei-
jen’s (http://www.cs.uu.nl/~daan/parsec.html). How-
ever, these libraries do not have a mechanism for statically
detecting errors such as ambiguity and left-recursion. Such
static checking is a distinct advantage of parser generators
such as Happy (http://www.haskell.org/happy/). Parser
combinators are based on LL parsing, so it is a shame that
the well-known LL(k) test cannot be applied. This problem is
solved in my forthcoming thesis. A general framework (based
on abstract interpretation) is also introduced for analysing
other embedded languages. See my homepage for more infor-
mation.
He also writes: “Unfortunately, my thesis is currently still
in draft form and it is not on the web yet, but it should be
coming soon.”.

Mike Thomas <mthomas@gil.com.au> writes: I’m working
on small bindings to the MPICH (open source parallel pro-
cessing by message passing) and Proj (open source map pro-
jection) libraries in conjunction with a Haskell library to read,
write, display and process GRASS (an open source geographic
information system) mapsets and of doing some geochemical
modelling, hopefully with the ability to distribute large map
computations with MPICH. The Windows version of GHC is
my compiler of choice.
None of this work is available on the web but more informa-
tion on GRASS may be found at:
http://grass.itc.it

And MPICH:
http://www-unix.mcs.anl.gov/mpi/mpich/

6.5 Haskell Spin-Offs

Quite a different kind of Haskell applications are those that
take the experience accumulated with Haskell to start some-
thing new. While it wouldn’t be appropriate to classify the
work in such projects as Haskell activities, it is useful to know
about such spin-offs. Our first entry in this category, Tim-
ber, continues the work originally started on O’Haskell, but
deviates further from Haskell itself.

6.5.1 Timber

Report by: Johan Nordlander
Timber is a Haskell-related programming language being de-
veloped at OHSU (formerly OGI) and Chalmers, as part
of the Timber project (http://www.cse.ogi.edu/PacSoft/
projects/Timber/). Timber aims at being a real-time, reac-
tive, object-oriented, and concurrent programming language
that incorporates the full power of pure functional program-
ming via the monadic separation of expressions and com-
mands also utilized by Haskell. Unlike Haskell, however, Tim-
ber is based on a strict evaluation semantics, which makes it
incorrect to classify Timber simply as a Haskell extension.

Still, it shares many of its basic features with Haskell: ba-
sic syntax for expressions, bindings and types; a type system
based on qualified types (including most Haskell extensions);
and pure (although strict) expression evaluation semantics.
The main differences to Haskell are:

• A different top-level monad, that supports concurrent
reactive objects as the principal structuring concept.

• A built-in notion of time and a time-constrained reaction.

• Named records and subtyping.

Timber also represents the continued development of
O’Haskell (http://www.cs.chalmers.se/~nordland/
ohaskell/), a language in which many of the distinguishing
features of Timber where first introduced. Apart from the
switch to strict evaluation, the major change in Timber
w.r.t. O’Haskell is the introduction of real-time constraints
into the programming model. Moreover, unlike O’Haskell,
Timber fully integrates its support for subtyping into the
qualified types framework.
An interpreter that illustrates some of the core Timber
concepts exists in the shape of an extended O’Haskell inter-
preter (http://www.cs.chalmers.se/~nordland/ohugs/,
latest CVS version). A compiler for the full Timber language
is currently under development, and an initial release is
planned for later this year.
Current participants include Andrew Black, Magnus
Carlsson, Mark Jones, Dick Kieburtz, Johan Nordlander, and
Björn von Sydow.
Contact: Johan Nordlander <nordland@cs.chalmers.se>

24

http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://www.cs.uu.nl/~daan/parsec.html
http://www.haskell.org/happy/
http://grass.itc.it
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.cse.ogi.edu/PacSoft/projects/Timber/
http://www.cse.ogi.edu/PacSoft/projects/Timber/
http://www.cs.chalmers.se/~nordland/ohaskell/
http://www.cs.chalmers.se/~nordland/ohaskell/
http://www.cs.chalmers.se/~nordland/ohugs/

	General
	Haskell Central - WWW and Mailing Lists
	Revised Haskell 98 Report
	Tips, Tricks, Tours and Tutorials
	Haskell-related Publications

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	Eager Haskell

	Language Extensions
	Foreign Function Interface
	Hierarchical Module Namespace
	Non-sequential Programming
	Concurrent Haskell
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell
	Eden

	Type System/Program Analysis
	A General Type Class Framework based on Constraint Handling Rules
	Program Analysis for Haskell

	Generic Programming
	Preprocessors
	Languages

	Syntactic Sugar
	Arrow Notation

	Libraries
	Graphical User Interfaces
	GUI Library API Task Force
	Object I/O for Haskell
	Gtk+HS

	Graphics
	HGL Graphics Library
	Haven, a Functional Vector Graphics Library
	HOpenGL -- OpenGL Haskell Binding
	FunGEn - Functional Game Engine

	Web Programming
	WASH/CGI -- Web Authoring System for Haskell

	Tools
	Foreign Function Interface
	C-->Haskell
	GreenCard
	GCJNI
	Java VM Bridge

	Meta Programming
	Haskell Frontends
	Haskell Preprocessors

	Program Development
	Tracing and Debugging
	Testing
	Documentation

	Scanning and Parsing
	Happy
	Parsec

	Applications, Groups, and Individuals
	Non-Commercial Applications
	VOP -- Vision of Persistence
	Knit

	Commercial Applications
	Lava at Xilinx
	Galois Connections, Inc.

	Research Groups
	Functional Programming at Yale
	Functional Programming Research Group at Kingston Business School (Kingston University)
	Functional Programming at UKC

	Individual Haskellers
	Haskell Spin-Offs
	Timber

