
Haskell Communities and Activities Report
http://www.haskell.org/communities/

– fourth edition –

May 12, 2003

Claus Reinke (editor), University of Kent, UK
Perry Alexander, The University of Kansas, USA

Krasimir Angelov, Bulgaria
Sengan Baring-Gould, National Semiconductor Corporation

Mark T.B. Carroll, Aetion Technologies LLC, USA
Manuel Chakravarty, University of New South Wales, Australia

Olaf Chitil, The University of York, UK
Matthew Donadio

Joe English, Advanced Rotorcraft Technology, Inc., USA
Levent Erkok, OGI School of Science and Engineering, OHSU, USA

Andre W B Furtado, Federal University of Pernambuco, Brazil
Murray Gross, City University of New York, USA

Jurriaan Hage, Utrecht University, The Netherlands
Keith Hanna, University of Kent, UK

Dean Herington, University of North Carolina at Chapel Hill, USA
Johan Jeuring, Utrecht University, The Netherlands

Ralf Lämmel, VU and CWI, Amsterdam, The Netherlands
Daan Leijen, Utrecht University, The Netherlands

Rita Loogen, University of Marburg, Germany
Christoph Lüth, George Russell, and Christian Maeder, University of Bremen, Germany

Simon Marlow, Microsoft Research Cambridge, UK
Jens Petersen, Red Hat, Japan

John Peterson, Yale University, USA
Henrik Nilsson, Yale University, USA
Rex Page, Oklahoma University, USA

Sven Panne, Germany
Simon Peyton Jones, Microsoft Research Cambridge, UK

Bernie Pope, University of Melbourne, Australia
Alastair Reid, Reid Consulting (UK) Ltd., UK

Chris Ryder, University of Kent, UK
Uwe Schmidt, Fachhochschule Wedel, Germany

Axel Simon, University of Kent, UK
Ganesh Sittampalam, Oxford University, UK

Doaitse Swierstra, Utrecht University, The Netherlands
Anthony Sloane, Macquarie University, Australia

Martin Sulzmann, National University of Singapore, Singapore
Wolfgang Thaller, Graz, Austria

Peter Thiemann, University of Freiburg, Germany
Phil Trinder, Heriot Watt University, Scotland

Eelco Visser, Utrecht University, The Netherlands
Malcolm Wallace, The University of York, UK

Ashley Yakeley, Seattle WA, USA

http://www.haskell.org/communities/

Preface

Welcome to the fourth edition of our Haskell Com-
munities and Activities Reports! As always, the idea
is to give regular snapshots of all things Haskell, in-
cluding a brief overview of the last 6 months and
an outlook of plans for the next 6 months, confir-
mation of maintainance for existing software, and
invitations to contribute to new and ongoing discus-
sions and developments in the numerous communi-
ties working on, with or inspired by Haskell.

Editing these reports can be a trying experience at
times, so pardon me if I start with some frequently
questioned answers that might help to improve the
process and ultimately the result: yes, we are inter-
ested in what you are doing with Haskell, especially
so if it seems an unusual or new application area.
Even to those not working in your particular area,
such reports may suggest new inspirations. Yes, we
do want to hear from maintainers of Haskell soft-
ware even if there have been no new developments
over the last 6 months. A brief confirmation that
your software is still actively maintained helps po-
tential users in their choice of tools. Yes, it would
be much appreciated if everyone could submit their
contributions by the end of April (for the May edi-
tions) and October (for the November editions). If
you leave it late, you’re holding up the distribution
of information from those who contributed on time.

No, these reports are not about eternal truths.
They are about recent events, and if your previ-
ous contribution still reads “right” to you 6 months
later, it is probably not focussing on where the ac-
tion is. No, a mere pointer to some webpages is not
the kind of contribution we have in mind. While
these reports are useful prompts for you to undust
your webpages, your contributions should comple-
ment the webpages by highlighting and summaris-
ing recent activites. And no, these reports are not
half as formal as the end result may sometimes look.
It usually takes less time to compose a useful con-
tribution (plain ASCII is best) than it would take
to negotiate a late submission in the vain hope of
finding time for some grandiose authoring event.

Also, these reports have a wider distribution than
the Haskell mailing list where the calls for contribu-
tions are posted, and there are many Haskell projects
out there from which we have yet to receive sum-
maries of their work. So if you read this, and would

like your work to be represented in the next edition,
please take out your diary: submissions to the
November edition are due by the end of Oc-
tober. If you you do not have the time follow the
Haskell mailing list closely anymore and would like a
personal reminder in mid October, just let me know
now and I’ll add you to the list!-)

Okay, enough of that, let’s look at the contents.
The trend towards catering more and more for prac-
tical needs is unbroken, and is reflected not only in
tools, libraries, and applications. More and more
emphasis is also placed on how to organise deliv-
ery of Haskell software, how to ensure compatibility,
portability, documentation and other aspects of a
good user experience, and how to ease maintenance,
to make sure that all those goodies are there to stay.

Apart from the ongoing convergence of language
and extensions supported by Haskell implementa-
tions (2), the hierarchical libraries are being fleshed
out and ported, and there is an ongoing discussion
about streamlining the processes of contributing and
distributing “standard” libraries (4.1). Authors and
users of the currently so numerous GUI libraries are
not only exchanging views and tips, but have also re-
sumed work towards a common API (4.3.1). Again,
it is no longer seen as sufficient to provide any kind of
GUI, but it has to be easily portable and maintable,
and while platform independence is one way to get
there, user expectations about look&feel are of in-
creasing importance.

If one had to pick one area of particular success for
Haskell, my bet would be on domain-specific lan-
guages, and while most of these come in the form
of embeddings in Haskell, there is also a continu-
ous flow of stand-alone implementations (2.5 and
6). And of course, there is steady and encourag-
ing progress in support for parallel, concurrent and
distributed programming (3.2).

But now sit back and enjoy the read, then follow
the pointers and try things out, give the authors
feedback on their work, discuss, contribute, collabo-
rate, or start your own little projects and excursions
into Haskell land. And, please, remember to come
back in 6 months and report!-)

As always, this edition is the result of your work
and contributions, and so I’d like to close with a big
thanks to all contributors!

Claus Reinke,
University of Kent, UK

1

Contents

1 General 4
1.1 Haskell.org . 4
1.2 Revised Haskell 98 Report . 4

2 Implementations 5
2.1 The Glasgow Haskell Compiler . 5
2.2 Hugs . 5
2.3 nhc98 . 6
2.4 hmake . 6
2.5 Domain-specific variations . 6

2.5.1 Haskell on Handheld Devices . 7
2.5.2 Helium . 7
2.5.3 Educational Domain Specific Languages . 7
2.5.4 Vital: Visual Interactive Programming . 7

3 Language Extensions 8
3.1 Foreign Function Interface . 8
3.2 Non-sequential Programming . 8

3.2.1 Concurrent Haskell . 8
3.2.2 GpH – Glasgow Parallel Haskell . 8
3.2.3 GdH – Glasgow Distributed Haskell . 9
3.2.4 Eden . 9

3.3 Type System/Program Analysis . 10
3.3.1 Chameleon/A General Type Class Framework based on Constraint Handling Rules 10
3.3.2 Constraint based type inferencing at Utrecht . 10

3.4 Generic Programming . 11
3.5 Syntactic Sugar . 12

3.5.1 Recursive do notation . 12

4 Libraries 13
4.1 Hierarchical Libraries . 13
4.2 Data and Control Structures . 13

4.2.1 Strafunski . 13
4.2.2 DSP Libraries . 13
4.2.3 Parsec . 14
4.2.4 DData . 14
4.2.5 Yampa . 14

4.3 Graphical User Interfaces . 14
4.3.1 The Common GUI Library Task Force . 14
4.3.2 HTk . 15
4.3.3 Object I/O for Haskell . 15
4.3.4 HToolKit . 15
4.3.5 wxHaskell . 15
4.3.6 Gtk+HS . 16
4.3.7 Gtk2hs . 16

4.4 Graphics . 16

2

4.4.1 HGL Graphics Library . 16
4.4.2 Win32 and Xlib Libraries . 16
4.4.3 HOpenGL – A Haskell Binding for OpenGL and GLUT . 16
4.4.4 FunGEn – A game engine for Haskell . 17
4.4.5 FunWorlds – Functional Programming and Virtual Worlds . 17

4.5 Tool Frameworks . 18
4.5.1 Medina – Metrics for Haskell . 18

4.6 XML and Web Programming . 18
4.6.1 HaXml . 18
4.6.2 HXML . 18
4.6.3 Haskell XML Toolbox . 19
4.6.4 WASH/CGI – Web Authoring System for Haskell . 19

5 Tools 20
5.1 Foreign Function Interface . 20

5.1.1 C–>Haskell . 20
5.1.2 GreenCard . 20
5.1.3 Java VM Bridge . 20

5.2 Meta Programming . 20
5.2.1 Scanning, Parsing, and Analysis . 20
5.2.2 Haskell Transformations . 21

5.3 Program Development . 22
5.3.1 Tracing and Debugging . 22
5.3.2 Refactoring . 22
5.3.3 Testing . 22
5.3.4 Documentation . 23

6 Applications, Groups, and Individuals 24
6.1 Non-Commercial Applications . 24

6.1.1 HScheme . 24
6.1.2 Haskell in Alchemy . 24
6.1.3 Analysis Tools for Rosetta . 25
6.1.4 Hircules, an IRC client . 25

6.2 Commercial Applications . 25
6.2.1 Reid Consulting Ltd . 25
6.2.2 Aetion Technologies LLC . 25
6.2.3 Binary Parser . 25

6.3 Haskell in Education . 26
6.3.1 Beseme Project . 26

6.4 Research Groups . 26
6.4.1 Formal Methods at Bremen University . 26
6.4.2 The Yale Haskell Group . 27
6.4.3 Functional Programming at Brooklyn College, City University of New York 27
6.4.4 Functional Programming at Macquarie University . 27
6.4.5 Functional Programming at Utrecht University . 27
6.4.6 Functional Programming at the University of Kent . 29
6.4.7 Programming Languages & Systems at UNSW . 29
6.4.8 Parallel and Distributed Functional Languages Research Group at Heriot-Watt University 29

6.5 Individual Haskellers . 30

3

Chapter 1

General

1.1 Haskell.org

Report by: John Peterson
Haskell.org belongs to the entire Haskell community - we all
have a stake in keeping it as useful and up-to-date as possible.
Anyone willing to help out at haskell.org should contact
John Peterson (<peterson-john@cs.yale.edu>) to get access
to this machine. There is plenty of space and processing power
for just about anything that people would want to do there.
What can haskell.org do for you? There are a lot of things
we can do that are of use to members of the haskell commu-
nity:

• Advertise your work: whether you’re developing a new
application, a library, or have written some really good
slides for your class you should make sure haskell.org
has a pointer to your work.

• Hosting: if you don’t have a stable site to
store your work, just ask and you’ll own
haskell.org/yourproject.

• Mailing lists: we can set up a mailman-based list for you
if you need to email your user community.

• Sell merchandise: give us some new art for the cafepress
store. Publicize your system with a T-shirt.

The biggest problem with haskell.org is that it is difficult
to keep the information on the site current. At the moment,
we make small changes when asked but don’t have time for
any big projects. Perhaps the biggest problem is that most
parts (except the wiki) cannot be updated interactively by
the community. There’s no easy way to add a new library or
project or group or class to haskell.org without bothering the
maintainers. The most successful sites are those in which the
community can easily keep the content fresh. We would like
to do something similar for haskell.org.
Just what can you do for haskell.org? Here are a few ideas:

• Haskell programmers are not graphic designers. Just
about anyone could make haskell.org look nicer and
more professional.

• Make the site more interactive. Allow people to add new
libraries, links, papers, or whatever without bothering
the maintainers. Allow people to attach comments to
projects or libraries so others can benefit from your ex-
perience. Help tell everyone which one of the graphics
packages or GUI’s or whatever is really useful.

• Develop a system where the pages for haskell.org live
in a CVS repository so that we can more easily share out
maintenance.

• Add searching capability to haskell.org.

• Take over the cafepress store and get more merchandise
in there.

Some of these ideas would be good student projects. Be lazy
- get students to do your work for you.

Further reading:

http://www.haskell.org
http://www.haskell.org/mailinglist.html

1.2 Revised Haskell 98 Report

Report by: Simon Peyton Jones
The Haskell 98 Report (Revised) is now finally published, in
electronic form at http://haskell.org/definition, as Vol
13(1) (Jan 2003) of the Journal of Functional Programming,
and as a book published by Cambridge University Press.
The copyright issue was resolved by CUP granting unlimited
copying rights, exactly as the previous version of the Report
had. This is most unusual for a printed book, and is extremely
generous of CUP. I hope you all go out and buy a copy!
I do not propose to make further changes to the Report, but
I will continue to accumulate an errata list, so you can send
me further bug reports! I have a few already (see the above
URL).
Thank you to everyone who contributed. The result
is something for us all to be proud of. I gave a
“Retrospective on Haskell” talk at POPL’03, which you
can find at http://research.microsoft.com/~simonpj/
papers/haskell-retrospective

Further reading:

http://www.haskell.org/definition/

4

http://www.haskell.org
http://www.haskell.org/mailinglist.html
http://haskell.org/definition
http://research.microsoft.com/~simonpj/papers/haskell-retrospective
http://research.microsoft.com/~simonpj/papers/haskell-retrospective
http://www.haskell.org/definition/

Chapter 2

Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones
The last few months have been mainly consolidation for GHC.
We made a couple more releases on the 5.04 branch, which is
now very stable, and we are about ready to release GHC 6.0.
The main new features in 6.0 will be

1. A new numbering scheme. We think we’ll go 6.0, 6.2 etc
now, instead of 6.00, 6.02, etc. (In the unlikely event that
we do more than five major releases before bumping the
major version number, we’ll go from 6.8 to 6.10, which
seems to be emerging as standard practice.)

2. Template Haskell. We described this in the last
Communities Newsletter, and quite a few people are
now using it. I’d still describe it as alpha-quality
though. More info: http://research.microsoft.com/
~simonpj/papers/meta-haskell/.

3. Eval/apply. In the last Communities Newsletter we
floated a possible change in GHC’s basic evalua-
tion model, from push/enter to eval/apply. After
quite a bit of experimentation, we decided to com-
mit this change, which will be in 6.0. It’s not a
programmer-visible change, but it does make code gen-
eration and the runtime system rather easier to deal
with. We made lots of measurements and submitted
a paper to ICFP (http://research.microsoft.com/
~simonpj/papers/eval-apply).

There are several other projects on the go:

1. Robert Ennals, a Cambridge research student, has a cun-
ning scheme called optimistic evaluation, which aims to
use call-by-value instead of call-by-need by default, with
an abortion mechanism to ensure that the semantics of
the program is unchanged. He’s implemented this idea in
GHC (twice!) and gets very encouraging results: many
programs go much faster (doubling in speed is not un-
usual), while none slow down significantly. There’s a
paper at http://research.microsoft.com/~simonpj/
papers/optimistic/.

We will almost certainly fold this into the main GHC
development trunk sometime in the next few months.

2. Umut Acar, a CMU research student, has been
visiting for a few months, and is implementing a

system of polymorphic records for GHC. The de-
sign is at http://research.microsoft.com/~simonpj/
Haskell/records.html; it’s a bit less powerful than
TRex, and easier to implement. We’re not sure how
records should develop in Haskell – it seems impossible
to avoid conflict with the existing record syntax – but
this is one attempt to make progress.

3. The “Scrap your boilerplate” approach to generic
programming in Haskell looks pretty promis-
ing (http://research.microsoft.com/~simonpj/
papers/hmap/) so we are in the process of implementing
deriving(Typeable) and deriving(Data), so that it’s
both less painful and more efficient to use these classes.
(The Data class is called Term in the paper.) We’re
considering removing the derivable-type-class extension,
which few people are using, but we’ll wait to see if there
are any applications that the old approach can handle
but the new one can’t.

Further reading:

http://www.haskell.org/ghc/

2.2 Hugs

Report by: Alastair Reid
Project status: Actively maintained, stable
Hugs is a very portable, easily installed Haskell-98 compliant
interpreter that supports a wide range of type-system and
runtime-system extensions including typed record extensions,
implicit parameters, the foreign function interface extension
and the hierarchical module namespace extension.

Team / status

The Hugs98 interpreter is now maintained by Sigbjorn Finne
and Jeffrey Lewis, both of Galois Connections, with help from
Alastair Reid of Reid Consulting and Ross Paterson of City
University London and others.
The last major release (November 2002) greatly improved
compatibility between Hugs and GHC by providing a signif-
icant subset of GHC’s hierarchical libraries and adding the
standard FFI interface extension.

5

http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://research.microsoft.com/~simonpj/papers/eval-apply
http://research.microsoft.com/~simonpj/papers/eval-apply
http://research.microsoft.com/~simonpj/papers/optimistic/
http://research.microsoft.com/~simonpj/papers/optimistic/
http://research.microsoft.com/~simonpj/Haskell/records.html
http://research.microsoft.com/~simonpj/Haskell/records.html
http://research.microsoft.com/~simonpj/papers/hmap/
http://research.microsoft.com/~simonpj/papers/hmap/
http://www.haskell.org/ghc/

Future plans

Since the last release, Hugs has undergone an internal cleanup
to aid future development: long-dead features are being re-
moved and internals are being reorganized. As promised in
the previous report, future releases will not have as much
backwards compatability as the last release. Ross Paterson
is adding many of the hierarchical libraries omitted from the
last release. We are also making moves to create a new users
guide which documents all of Hugs’ extensions and recent ad-
ditions.

Further reading:

http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users/

2.3 nhc98

Report by: Malcolm Wallace
nhc98 is a small, easy to install, standards-compliant compiler
for Haskell 98, the lazy functional programming language.
It is very portable, and aims to produce small executables
that run in small amounts of memory. It produces medium-
fast code, and compilation is itself quite fast. It also comes
with extensive tool support for automatic compilation, foreign
language interfacing, heap and time profiling, tracing, and
debugging.

Recent news

The latest release of nhc98 is 1.16, available since early March,
and its features of note are:

• A large subset of the ‘base’ package of hierarchical li-
braries is now included in the build.

• The primitive FFI mechanism has been updated to
match the latest official spec, and the full Foreign li-
braries are also included (in hierarchical form).

• nhc98 once again builds on Windows (Cygwin) with ghc.

• nhc98 now works correctly in the presence of gcc-3.x.

• The library function List.sortBy now uses a stable O(n
log n) mergesort.

• Numerous other small fixes, including revisions to the
Haskell’98 standard.

• The website is now hosted at haskell.org

• Our CVS repository is also now hosted at cvs.haskell.org

Future plans

The nhc98 compiler is pretty stable and reliable and we don’t
have any particular plans for new features. Bugfixes will ap-
pear as and when necessary. However, you users may have
ideas for exciting things to add into the compiler, and you
are encouraged to get your hands dirty, implement them, and
submit them for distribution.

Further reading:

http://www.haskell.org/nhc98/

2.4 hmake

Report by: Malcolm Wallace
Hmake is an intelligent compilation management tool for
Haskell programs. It automatically extracts dependencies be-
tween source modules, and issues the appropriate compiler
commands to rebuild only those that have changed, given
just the name of the program or module that you want to
build.

Recent news

The latest release of hmake is 3.07, available since early
March. This fresh version has the following improved con-
figuration features over previous releases:

• Hmake now once again builds cleanly with GHC under
Cygwin.

• Better handling of config files. Your personal config file
is now used as an override for the system-wide config file,
rather than being used instead of it. Hence, any global
config updates are now automatically propagated to all
users.

• The new command ‘hmake-config new’ is now needed to
begin a fresh personal config file, rather than one being
created for you silently against your expectations.

• ‘hmake-config list’ can now take a specific compiler ar-
gument to show detailed info for that compiler.

Future plans

It has been suggested that hmake should allow the external
configuration of different source code preprocessors in a sim-
ilar manner to the way it currently supports different com-
pilers. This sounds like a useful idea, which we will probably
introduce sometime soon.

Further reading:

http://www.haskell.org/hmake

2.5 Domain-specific variations

In addition to the well known major Haskell implementations,
there are now several domain-specific implementations, where
suitability for the intended application domain is deemed
more important than full support for Haskell 98, or where in-
deed the language subset and design modifications have been
explicitly tailored to the domain..

6

http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users/
http://www.haskell.org/nhc98/
http://www.haskell.org/hmake

2.5.1 Haskell on Handheld Devices

Report by: Anthony Sloane
In 2002 one of our honours students, Matthew Tarnawsky,
completed an initial port of the nhc98 runtime to Palm OS.
The port is only really of alpha status, but simple programs
can be compiled and linked on a desktop machine, installed
on a Palm and executed. Limited support for interfacing with
the Palm OS GUI libraries is included.
Our current work (cf. section 6.4.4) involves redoing the im-
plementation to bring it up to the latest release of nhc98,
reconsidering some of the design decisions made during
Matthew’s project, and improving the integration with Palm
OS. We hope to have a beta version and a report ready for
submission to this year’s Haskell workshop.

2.5.2 Helium

Report by: Daan Leijen
(Arjan van IJzendoorn, Bastiaan Heeren, Daan Leijen, Rijk-
Jan van Haaften)
The purpose of the Helium project is to construct a light-
weight compiler for a subset of Haskell that is especially di-
rected to beginning programmers. We try to give useful feed-
back for often occurring mistakes. To reach this goal, Helium
uses a sophisticated type checker described in section 3.3.2.
Helium now has a simple graphical user interface that pro-
vides online help. We plan to extend this interface to a full
fledged learning environment for Haskell. The complete type
checker and code generator has been constructed with the
attribute grammar (AG) system developed at Utrecht Uni-
versity (section 6.4.5). One of the aspects of the compiler
is that it also logs errors, so we can track the kind of prob-
lems students are having, and improve the error messages and
hints. The compiler uses Daan Leijen’s LVM (Lazy Virtual
Machine) as back-end. The LVM uses a portable instruction
set and file format that is specifically designed to execute lazy
higher-order languages.

Further reading:

http://www.cs.uu.nl/research/projects/helium/

2.5.3 Educational Domain Specific Lan-
guages

Report by: John Peterson
Project status: maintained, stable
The goal of this project is to bring functional programming
to users that are not trained computer scientists or program-
mers. We feel that the simplicity of functional programmiung
makes it an ideal way to introduce programming language
concepts to students of all ages. We also believe that domain
specific languages based on Haskell can enhance learning in
other domains such as mathematics.
Our languages are media oriented. They allow students to
explore the basic principles of functional programming while
creating images, animations, or music.

These languages have been used for high school mathemat-
ics education, an introduction to functional programming for
students in high school programming classes, and as a gen-
tle way to present functional programming in a programming
language survey class. The graphics language (Pan#) is ca-
pable of handling all of the examples in Conal Elliott’s Fun
of Programming chapter.
There are two languages under development. The first is
Pan#, a port of Conal Elliott’s Pan compiler to the C# lan-
guage. This runs on Windows using .NET and is very easy
to install and use. This probably would run on Linux using
Mono (.NET for other platforms) but we have not attempted
this yet. The front end of this system is a mini-Haskell in-
terpreter which is currently somewhat unsophisticated - we
plan to customize Helium (section 2.5.2) for this purpose in
a future release. Our website contains a number of examples
produced by this language and some instructional materials.
Our second language describes music using Paul Hudak’s
Haskore system. We are currently re-packaging Haskore using
Helium to make the system more student friendly.

Further reading:

http://haskell.org/edsl

2.5.4 Vital: Visual Interactive Program-
ming

Report by: Keith Hanna
Project status: on-going
Vital is a Haskell-based, visual environment intended for
the interactive, exploratory development of programs by non
computer-specialist end-users (engineers, analysts, etc.).
In the environment, each Haskell module is associated with
a worksheet on which its declarations and expressions may
be located and their values graphically displayed (in a form
determined by a type-indexed stylesheet).
The environment embodies the principles of direct manipu-
lation. In particular, it allows the graphical displays to be
edited by mouse gesture (for example, the values in an array
or the shape of a tree might be changed) with such changes
being reflected in the Haskell source code.
A release of a fairly comprehensive implementation of Vital
is planned for this summer.

Further reading:

http://www.cs.kent.ac.uk/projects/vital/

7

http://www.cs.uu.nl/research/projects/helium/
http://haskell.org/edsl
http://www.cs.kent.ac.uk/projects/vital/

Chapter 3

Language Extensions

3.1 Foreign Function Interface

Report by: Manuel Chakravarty
Project status: Version 1.0 (RC8)
The Haskell 98 FFI Addendum is meanwhile up to Release
Candidate 8, which resolves the issues surrounding finalizers
for foreign objects that was mentioned in the previous HC&A
Report. The current interface definition is available from
http://www.cse.unsw.edu.au/~chak/haskell/ffi/

Further reading:

http://haskell.org/mailman/listinfo/ffi/

3.2 Non-sequential Programming

3.2.1 Concurrent Haskell

Report by: Simon Marlow
Project status: maintained, stable
Concurrent Haskell is a set of extensions to Haskell to sup-
port concurrent programming. The concurrency API (Con-
current) has been stable for some time, and is supported in
two forms: with a preemptive implementation in GHC, and
a non-preemptive implementation in Hugs. The Concurrent
API is described here:
http://www.haskell.org/ghc/docs/latest/html/base/
Control.Concurrent.html
There is an ongoing discussion to decide how Concurrent
Haskell should work in a system with OS-level threading;
in particular what minimal support is required to give the
programmer enough control over the correspondence between
OS-level threads and Haskell threads in order to use some ex-
isting foreign-language libraries that make use of OS thread-
local state. The discussion is taking place on the FFI list; see
http://www.haskell.org/pipermail/ffi/
Wolfgang Thaller summarizes: All current implementations
of Concurrent Haskell do their own scheduling; none currently
use the thread functionality provided by the OS; instead, they
execute all Concurrent Haskell threads in one OS thread. This
has some advantages (much better performance, for example),
but it also causes problems. Some foreign libraries (most no-
tably OpenGL) rely on using thread-local state for their inter-
face. Using these libraries from multiple Haskell threads leads

to major confusion. These libraries can currently only be used
from a single thread by Haskell programs, or sometimes even
not at all. Over the past months, I’ve been “annoying” people
on the FFI mailing list by posting various proposals on how
to deal with this problem. The general idea is to “bind” some
Haskell threads to specific OS threads; all foreign calls from
those threads are guaranteed to be executed in a dedicated
OS thread, so that thread-local state causes no problems any-
more. I’m also planning to implement the proposal that we’ll
finally agree on for GHC, hopefully before the next major
release.

3.2.2 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder

The Team: Phil Trinder, Kevin Hammond, Hans-
Wolfgang Loidl, Abyd Al Zain, Jost Berthold, Murray Gross,
Andre Rauber du Bois, Alvaro Rebon Portillo, Leonid Timo-
chouk.

Status: A complete, GHC-based implementation of the
parallel Haskell extension GpH and of evaluation strategies
is available. Extensions of the runtime-system and lan-
guage modules, to improve performance and support for
architecture-independence, are under development.

Implementations: The GUM implementation of GpH is
available in two development branches.

• The stable branch (GUM-4.06.2, based on GHC-4.06) is
available for RedHat-based Linux machines: as source
bundle and as a binary snapshot for RedHat 8.0. A
slightly older version GUM-4.06 is available as source
bundle or binary snapshot for RedHat 7.0 Intel Linux
(libc2.1). See installation instructions. The stable
branch is available from the GHC CVS repository via
tag gum-4-06.

• The unstable branch (GUM-5.02, based on GHC-5.02) is
currently being tested on a Beowulf cluster. Most of our
test programs run already, with minor issues left to be
resolved before this version will become our main devel-
opment version. The unstable branch is available from
the GHC CVS repository via tag gum-5-02-3.

8

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://haskell.org/mailman/listinfo/ffi/
http://www.haskell.org/ghc/docs/latest/html/base/Control.Concurrent.html
http://www.haskell.org/ghc/docs/latest/html/base/Control.Concurrent.html
http://www.haskell.org/pipermail/ffi/

Our main hardware platform are Intel-based Beowulf clusters.
Work on ports to other architectures is also moving on (and
available on request):

• A port to a Sun-Solaris shared-memory machine exists
but currently suffers from performance problems, which
we are trying to track down.

• A port to an SGI-Irix multi-processor is underway at
Universidad Complutense de Madrid.

• A port to a Mosix cluster is being built in the Metis
project at Brooklyn College (section 6.4.3), with a first
version available on request from Murray Gross.

System Evaluation and Enhancement:

• We have undertaken a comparison of implemen-
tation designs for parallel functional languages
(http://www.macs.hw.ac.uk/~dsg/gph/papers/
drafts/ppdp.ps.gz), specifically GUM implementation
of GpH with the Skeleton-based parallel ML implemen-
tation PMLS (http://www.cee.hw.ac.uk/Research/
funct_prog.html)

• We have evaluated the effect of introducing thread migra-
tion (http://www.macs.hw.ac.uk/~dsg/gph/papers/
ps/Migration-IFL02.ps.gz) in GUM (IFL02).

• We are currently investigating the challenges posed by
porting GUM to a computational GRID, replacing the
current PVM layer with IMPICH-G2.

• We are starting to investigate engineering a combined,
modular Eden (section 3.2.4)/GpH implementation

GpH Applications:

• A new EPSRC project (GR/R91298) has just started at
St Andrews University to investigate providing parallel
implementations of the GAP group algebra libraries us-
ing GpH.

• We have investigated the architecture independence
(http://www.macs.hw.ac.uk/~dsg/gph/papers/
drafts/hlpp03.ps.gz) of GpH by measuring a sig-
nificant application (genetic alignment) on two very
different architectures: a Beowulf cluster, a SunServer
SMP.

Language: We are constructing efficient implementations
of algorithmic skeletons in GdH, and plan to experiment with
their use, in conjunction with evaluation strategies.

Further reading:

http://www.macs.hw.ac.uk/~dsg/gph/
<gph@macs.hw.ac.uk>

http://www.macs.hw.ac.uk/~dsg/gph/papers/
abstracts/strategies.html

3.2.3 GdH – Glasgow Distributed Haskell

Report by: Phil Trinder

The Team: Phil Trinder, Hans-Wolfgang Loidl, Jan Henry
Nystrom, Robert Pointon, Andre Rauber du Bois.

Status: Steaming Ahead!

Implementation: An alpha-release of the GdH implemen-
tation is available on request <gph@macs.hw.ac.uk>; it
shares substantial components of the GUM implementation
of GpH (Glasgow parallel Haskell, section 3.2.2).

GdH Applications and Evaluation:

• An EPSRC project High Level Techniques for Dis-
tributed Telecommunications Software (GR/R88137) has
just started at Heriot-Watt University to evaluate GdH
and Erlang in a telecommunications context (http://
www.cee.hw.ac.uk/~dsg/telecoms/). The project is in
conjunction with Motorola UK Research Labs.

• A GdH prototype has been constructed of a proposed
Haskell extension to support mobility(WFLP’03;
http://www.macs.hw.ac.uk/~trinder/papers/
mHaskellDesign.ps).

• GdH is being used to construct efficient implementations
of algorithmic skeletons for use in parallel GpH programs.

• GdH and Eden (section 3.2.4) are being compared, based
on a distributed file server constructed in both.

Further reading:

http://www.macs.hw.ac.uk/~dsg/gdh/

3.2.4 Eden

Report by: Rita Loogen

Eden has been jointly developed by two groups at Philipps
Universität Marburg, Germany and Universidad Com-
plutense de Madrid, Spain. The project has been ongoing
since 1996. Currently, the team consists of:

Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Rafael Martinez, Clara Segura

Marburg: Rita Loogen, Jost Berthold, Steffen Priebe

Eden extends Haskell by a small set of syntactic constructs for
explicit process specification and creation. While providing
enough control to implement parallel algorithms efficiently it
frees the programmer from the tedious task of managing low-
level details by introducing automatic communication (via
head-strict lazy lists), synchronisation, and process handling.
Eden’s main constructs are process abstractions and process
instantiations. The expression process x -> e of a prede-
fined polymorphic type Process a b defines a process ab-
straction mapping an argument x::a to a result expression

9

http://www.macs.hw.ac.uk/~dsg/gph/papers/drafts/ppdp.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/papers/drafts/ppdp.ps.gz
http://www.cee.hw.ac.uk/Research/funct_prog.html
http://www.cee.hw.ac.uk/Research/funct_prog.html
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/Migration-IFL02.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/Migration-IFL02.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/papers/drafts/hlpp03.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/papers/drafts/hlpp03.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/strategies.html
http://www.cee.hw.ac.uk/~dsg/telecoms/
http://www.cee.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~trinder/papers/mHaskellDesign.ps
http://www.macs.hw.ac.uk/~trinder/papers/mHaskellDesign.ps
http://www.macs.hw.ac.uk/~dsg/gdh/

e::b. Process abstractions of type Process a b can be com-
pared to functions of type a -> b, the main difference being
that the former, when instantiated, are executed in parallel.
Process instantiation is achieved by using the predefined infix
operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining higher-order
functions over these basic constructs. Such skeletons, ranging
from a simple parallel map to sophisticated replicated-worker
schemes, have been used to parallelise a set of non-trivial
benchmark programs.
Eden has been implemented by modifying the parallel runtime
system GUM of GpH (section 3.2.2). Differences include step-
ping back from a global heap to a set of local heaps to reduce
system message traffic and to avoid global garbage collection.
The Eden runtime system has recently been restructured to
exhibit a layered structure. The main idea has been to specify
the process control in Haskell and to restrict the extensions
of the low-level runtime system to a few selected primitive
operations. Details can be found in the forthcoming Euro-
Par paper “High-level Process Control in Eden”. The current
(freely available) implementation is based on GHC 5.02.3. A
source code version is available via the ghc CVS repository
with tag eden-5-02-3. We are eager to catch up to the current
ghc version.

Current activities:

• Yolanda and Mercedes are working on the denotational
semantics for Eden. They have already developed a
continuation-based model for process creation and single-
value communication. Currently they are continuing
work in three directions:

1. extending the model to deal with streams and non-
determinism;

2. relating the model to their operational semantics;
3. applying their continuation-based model to other

parallel functional languages, namely, pH and GpH.

• Ricardo and Clara have just finished the correctness proof
of their non-determinism analysis with respect to a sim-
plified denotational semantics for Eden.

• Raphael and Ricardo are porting the Eden compiler to
the IRIX-MIPS multiprocessor platform. Moreover, they
are developing an interface between Eden and the com-
puter algebra system Maple. Thus, it will soon be pos-
sible to run computation-intensive algorithms from the
algebra field in parallel.

• Steffen is working on analysis techniques and a polytypic
skeleton library.

• Jost has incorporated several optimisations into the Eden
runtime system: large data will automatically be split
and sent in several messages while small pieces of data
which have to be sent to the same processor element will
automatically be collected into one message to reduce
communication costs.

• Kevin Hammond, Jost and Rita are investigating the use
of Template Haskell for automatically selecting appropri-
ate skeleton implementations at compile-time.

• Rita and Jost plan to develop a generic parallel runtime
system that can support multiple high-level languages
and that offers implicit control of key runtime aspects
such as thread management, synchronisation and com-
munication. First, an aspect-oriented generic toolkit for
high-level parallel computations will be built.

Further reading:

http://www.mathematik.uni-marburg.de/inf/eden

3.3 Type System/Program Analysis

3.3.1 Chameleon/A General Type Class
Framework based on Constraint Han-
dling Rules

Report by: Martin Sulzmann
Project status: on-going
We use Constraint Handling Rules (CHRs) to describe various
type class extensions. Under sufficient conditions on the set
of CHRs, we have decidable operational checks which enable
type inference and ambiguity checking for type class systems.
We have incorporated the ideas of the CHR-based overload-
ing approach into an actual programming language called
Chameleon. The syntax of Chameleon follows mostly Haskell.
We plan to use Chameleon as an experimental test-bed for
possible type system extensions. Recent developments:

• Chameleon now comes with a declarative type debugging
interface.

• We can handle a significant subset of Haskell.

• As an undocumented feature, the latest release compiles
Chameleon to plain Haskell (via the evidence translation
scheme). Some proper documentation will follow shortly.

Further reading:

http://www.comp.nus.edu.sg/~sulzmann/chr/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/

3.3.2 Constraint based type inferencing at
Utrecht

Report by: Jurriaan Hage
Project status: on-going

Participants: Jurriaan Hage, Bastiaan Heeren, Doaitse
Swierstra; all from Universiteit Utrecht.
With the generation of understandable Haskell error messages
in mind we have devised a constraint based type inference
method which is currently being used in the Helium (section
2.5.2) compiler developed at Universiteit Utrecht.
The main characteristics of the inferencer are the following.

10

http://www.mathematik.uni-marburg.de/inf/eden
http://www.comp.nus.edu.sg/~sulzmann/chr/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/

• We generate precise position information and preserve
type synonyms in error messages.

• The programmer can choose the type inference strategy
of his liking (M and W and other greedy variants, and the
unbiased type graph based implementations have been
implemented).

• The type graph implementation uses quite a number of
heuristics to decide what is the most likely source of the
error.

• A logging facility is available in Helium which has given
us a large amount of correct and erroneous Haskell pro-
grams which can be used to improve our type inferencer.
In the future these programs can also be used for bench-
marking optimizations and many other purposes.

• A major innovation is the ability for a Helium program-
mer to develop his own type rules for any combinator
library he might be writing. In addition to having a
large degree of control over the type inference process,
the system allows a programmer to generate domain spe-
cific error messages and specify that certain functions are
often mixed up (the compiler may for instance give the
hint that (++) should be used instead of (:), because
(++) happens to fit in the context). The user defined
type inference rules are automatically checked for sound-
ness, and a programmer does not have to be familiar with
the process of type inferencing as it currently takes place
within the compiler.

At this point, the Helium compiler does not include type
classes, records and a few other elements of Haskell. Type
classes shall be included in one form or another on short no-
tice. Our type inferencer shall be extended accordingly.

Further reading:

http://www.cs.uu.nl/research/projects/top/

3.4 Generic Programming

Report by: Johan Jeuring
Software development often consists of designing a (set of mu-
tually recursive) datatype(s), to which functionality is added.
Some functionality is datatype specific, other functionality is
defined on almost all datatypes, and only depends on the type
structure of the datatype. Examples of generic (or polytypic)
functionality defined on almost all datatypes are the functions
that can be derived in Haskell using the deriving construct,
storing a value in a database, editing a value, comparing two
values for equality, pretty-printing a value, etc. Another kind
of generic function is a function that traverses its argument,
and only performs an action at a small part of its argument.
A function that works on many datatypes is called a generic
function. There are at least two approaches to generic pro-
gramming: use a preprocessor to generate instances of generic
functions on some given datatypes, or extend a programming
language with the possibility to define generic functions.

Preprocessors DrIFT is a preprocessor which generates
instances of generic functions. It is used in Strafunski (section
4.2.1) to generate a framework for generic programming on
terms.

Languages Light-weight generic programming: Generic
functions for data type traversals can (almost) be written
in Haskell itself, as shown by Ralf Lämmel and Simon Pey-
ton Jones in ‘Scrap your boilerplate’ (http://research.
microsoft.com/Users/simonpj/papers/hmap/). The scrap
your boilerplate ideas are currently being implemented in
GHC, using the deriving construct. In ‘Strategic polymor-
phism requires just two combinators!’ (http://www.cwi.nl/
~ralf/ifl02/), Ralf Lämmel further develops these ideas.
Another light-weight approach, using type representations
inside Haskell, was presented by Cheney and Hinze at the
Haskell workshop, and further elaborated upon by Hinze in
Gibbons and de Moor (editors), The Fun of Programming,
Palgrave, 2003. Generic programs can also be implemented in
a language with dependent types, as shown by McBride and
Altenkirch in a paper in WCGP’02, see http://www.dur.
ac.uk/c.t.mcbride/generic/. More about generic pro-
gramming and type theory (‘Generic Haskell in type the-
ory’) can be found in Ulf Norells recent MSc thesis http:
//www.cs.chalmers.se/~ulfn.
The Generic Haskell release of last summer supports type-
indexed data types, dependencies between generic functions,
and special cases for constructors (besides the ‘standard’
type-indexed functions and kind-indexed types). These ex-
tensions are described in the “Type-indexed data types” paper
presented at MPC’02, and the “Generic Haskell, Specifically”
paper at WCGP’02. The new Generic Haskell release was
used in the Summer School in Generic Programming in Ox-
ford last August, at which Ralf Hinze and Johan Jeuring pre-
sented two tutorials: Generic Haskell - theory and practice,
and Generic Haskell - applications. The former tutorial in-
troduces Generic Haskell, and gives some small examples, the
latter tutorial discusses larger applications such as an XML
compressor. The tutorials will appear in LNCS.
A small group at Chalmers is working under the slo-
gan “Functional Generic Programming - where type theory
meets functional programming” (http://www.cs.chalmers.
se/~patrikj/poly/), and has written a paper on different
universes of codes for types (avaliable upon request). PolyP
is not really actively developed anymore, but a new version
using a class-based translation is available upon request.
Roland Backhouse and Jeremy Gibbons will start a project
on datatype-generic programming in August 2003. The goal
of this project is, amongst others, to develop a methodology
for constructing generic programs.

Current Hot Topics: Generic Haskell: “Dependency-style
Generic Haskell” introduces a new type system for Generic
Haskell that at the same time simplifies the syntax and pro-
vides greater expressive power. Immediately after the next
release of Generic Haskell we will start adding type check-
ing and inferencing to the dependency-style Generic Haskell

11

http://www.cs.uu.nl/research/projects/top/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://www.cwi.nl/~ralf/ifl02/
http://www.cwi.nl/~ralf/ifl02/
http://www.dur.ac.uk/c.t.mcbride/generic/
http://www.dur.ac.uk/c.t.mcbride/generic/
http://www.cs.chalmers.se/~ulfn
http://www.cs.chalmers.se/~ulfn
http://www.cs.chalmers.se/~patrikj/poly/
http://www.cs.chalmers.se/~patrikj/poly/

compiler, and we will implement explicitly recursive generic
functions. Other: the relation between generic programming
and dependently typed programming; the relation between
generic programming and Template Haskell (which in proto-
type form has been implemented in GHC, email <template-
haskell@haskell.org> to gather feedback, and see section 2.1);
methods for constructing generic programs.

Major Goals: Next release of Generic Haskell: very soon,
before summer 2003. Use generic programming to provide
a data binding from XML schema to (Generic) Haskell. Ef-
ficient generic traversal based on type-information for pre-
mature termination (see the Strafunski project). Exploring
the differences in expressive power between the lightweight
approaches and the language extension(s).

Further reading:

http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
There is a mailing list for Generic Haskell: <generic-
haskell@cs.uu.nl>. See the homepage for how to join.

3.5 Syntactic Sugar

3.5.1 Recursive do notation

Report by: Levent Erkok
Project status: Implemented in both Hugs and GHC

People: Levent Erkok, John Launchbury
The recursive do-notation (a.k.a. the mdo-notation) is sup-
ported by all Hugs releases since February’01. For GHC (as
of 5.04.3), only the latest CVS version supports mdo. (The
next major release for GHC will include direct support.) Both
implementations are stable and actively supported.

Further reading:

http://www.cse.ogi.edu/PacSoft/projects/rmb/

12

http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cse.ogi.edu/PacSoft/projects/rmb/

Chapter 4

Libraries

4.1 Hierarchical Libraries

Report by: Simon Marlow
Portability of the hierarchical libraries is improving: Hugs
has shipped a new version with a substantial subset of the
hierarchical libraries, and the NHC is rumoured to work with
some of these libraries too.
The hierarchical replacement for the old Posix library is about
95% complete, and will ship with the next release of GHC.
An important issue that remains to be addressed satis-
factorily is the means by which implementations of li-
braries are contributed to the community. A discussion
on this subject was recently started on the Haskell mail-
ing list: http://www.haskell.org/pipermail/haskell/
2003-April/011624.html If you have opinions or ideas,
please contribute to the discussion.
Contributions of documentation for libraries are still needed:
many of the implementations of “standard” libraries that
originated in the Haskell 98 language & library reports are
poorly documented, and in many cases not documented at
all beyond the basic documentation that Haddock extracts
from the source.

Further reading:

http://www.haskell.org/~simonmar/libraries/libraries.

html

http://www.haskell.org/~simonmar/lib-hierarchy.html

http://www.haskell.org/mailman/listinfo/libraries/

4.2 Data and Control Structures

4.2.1 Strafunski

Report by: Ralf Lämmel
Project status: no change, active, maintained
Portability: Hugs, GHC, DrIFT
Strafunski is a Haskell-based bundle for generic programming
with functional strategies, that is, generic functions that can
traverse into terms of any type while mixing type-specific and
uniform behaviour. This style is particularly useful in the
implementation of program analyses and transformations.
Recent papers on Strafunski cover application domains such
as Cobol reverse engineering, Java software metrics, and
Haskell reengineering:

• A Strafunski application letter (PADL 2003) http://
www.cwi.nl/~ralf/padl03/

• A Framework For Datatype Transformations (LDTA
2003) http://www.cwi.nl/~ralf/fdt/

The current Strafunski release followed closely the previous
edition of this HC&A report (November 2002). Strafunski
bundles now the following components:

• the library StrategyLib for generic traversal and others;

• precompilation support for user datatypes based on
DrIFT (section 3.4);

• the library ATermLib for data exchange;

• the tool Sdf2Haskell for external parser integration.

The Strafunski-style of generic programming can be seen as
a lightweight variant of generic programming (section 3.4)
because no language extension is involved, but generic func-
tionality simply relies on a few overloaded combinators that
are derived per datatype.

Further reading:

http://www.cs.vu.nl/Strafunski/

4.2.2 DSP Libraries

Report by: Matthew Donadio
Project status: resurrected, active, maintained

The Haskell DSP library has grown by leaps and bounds since
I resurrected the project a few months ago. The webpage
hasn’t been updated in a few weeks, but represents what func-
tions are available.
In particular, there is an FFT library that works for real and
complex data, and for all sizes sizes of N. It is also designed
to make it easy for users to experiment with gluing together
the algorithms in their own way. There are functions for basic
DSP functions such as correlation, convolution, FIR filtering,
and IIR filtering. Work has begun on adding functions for
both FIR and IIR filter design. There are also algorithms for
frequency and spectral estimation.
Some of the modules have broader applications than just DSP.
I will be soliciting comments and opinions on this on the
libraries list in a few weeks.

13

http://www.haskell.org/pipermail/haskell/2003-April/011624.html
http://www.haskell.org/pipermail/haskell/2003-April/011624.html
http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/~simonmar/lib-hierarchy.html
http://www.haskell.org/mailman/listinfo/libraries/
http://www.cwi.nl/~ralf/padl03/
http://www.cwi.nl/~ralf/padl03/
http://www.cwi.nl/~ralf/fdt/
http://www.cs.vu.nl/Strafunski/

There are some bits and pieces that rely on GHC extensions,
otherwise, it should work with all Haskell98 implementations.
While still experimental, it is currently usable. The library
was used to verify methods and generate data for an article
submitted to the IEEE Signal Processing Magazine.
Work is underway to migrate everything to a hierarchical li-
brary, add Haddock style documentation, and provide more
demo applications. Be warned, though, that the API is ex-
perimental and will likely change.
If anyone uses the library, please let me know what you think.

Further reading:

http://users.snip.net/~donadio/haskell/

4.2.3 Parsec

Report by: Daan Leijen
Parsec is a practical parser combinator library for Haskell
that is well documented, has extensive libraries, and good
error messages. It is currently part of the standard Haskell
libraries and, fortunately, no new bugs have been reported for
a while now. We plan to update Parsec this summer by fixing
some naming issues within the new hierarchical namespace,
bringing the standalone version in sync with the GHC ver-
sion, and by adding a module that adds combinators to parse
according to the (full) Haskell layout rule.

Further reading:

http://www.cs.uu.nl/~daan/parsec.html

4.2.4 DData

Report by: Daan Leijen
DData is a library of efficient data structures and algorithms
for Haskell (Set, Bag, and Map). I noticed that I used these
data structures (and algorithms) a lot, but surprisingly, there
are not many “off the shelf” libraries available. The mod-
ules are extensively documented and are not dependent on
each other or other support modules. The modules are im-
plemented to be easy to use (just import it), efficient (use the
best known implementation techniques), and fairly complete
(lots of operations).

Further reading:

http://www.cs.uu.nl/~daan/ddata.html

4.2.5 Yampa

Report by: Henrik Nilsson
Yampa is the culmination of the Yale Haskell Group’s ef-
forts to provide domain-specific embedded languages for the
programming of hybrid systems. Yampa differs from previ-
ous FRP based system in that it makes a strict distinction
between signals (time-varying values) and functions on sig-
nals. This greatly reduces the chance of introducing space
and time leaks into reactive, time-varying systems. Another

difference is that Yampa is structured using the arrow combi-
nators. Among other benefits, this allows Yampa code to be
written employing the syntactic sugar for arrows.
We have released a preliminary version of Yampa that con-
tains:

• The Yampa Base Library, containing generic func-
tions for the expression of signal functions operating
on continuous as well as discrete signals, and advanced
switching constructs for the interaction between the con-
tinuous and discrete worlds.

• The Yampa Robotics Library, containing entities tai-
lored for controlling mobile robots, both real and simu-
lated, in the style of Frob, our FRP-based robotics lan-
guage. The simulator is written using Yampa’s Base and
HGL, the Haskell Graphics Library (section 4.4.1), and
performs physical modelling of mobile differential-drive
robots equipped with several kinds of sensors. A pre-
configured version of the simulator allows one to play
RoboCup Soccer.

• A tutorial (from the 2002 Summer School on Advanced
Functional Programming, Oxford, UK).

With the Base Library and HGL (or any other graphics li-
brary), it is easy to write reactive animation programs in the
style of Fran. Thus there is no need for a special library to
support graphics and animation.

Further reading:

http://www.haskell.org/yampa

4.3 Graphical User Interfaces

Haskell continues to attract new approaches to GUI library
provision. If all past Haskell GUI libraries were still in ex-
istence, and still maintained, and available on all platforms,
one could easily use a different one for each window. Unfor-
tunately most of them aren’t, aren’t, and never were.
Currently, we seem to have entered a new era of GUI diversity,
and it is encouraging that so many Haskellers are able to
create new GUI bindings from scratch when the existing ones
do not suit their needs (in addition to those listed here, see
also Mike Thomas’ entry on Japi in section 6.5).
Even more encouraging, however, is that todays GUI develop-
ers are very much concerned with practical issues (how easy
is it to create and maintain a GUI library, how easy is it to
port to the major platforms, what GUI library users want).
Difficulties encountered during attempts to port the other-
wise very promising ObjectIO to Gtk have also restarted the
discussions and activities towards a common, platform inde-
pendent GUI API on the gui mailing list.

4.3.1 The Common GUI Library Task Force

Report by: Axel Simon
Project status: revived
Haskell suffers from too many half-baked GUI libraries. This
task force set out to define a common GUI API (CGA for

14

http://users.snip.net/~donadio/haskell/
http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.uu.nl/~daan/ddata.html
http://www.haskell.org/yampa

short) that defines a portable interface for all major plat-
forms. A discussion early this year resulted in the following
requirements:

• Platform independence: Programs written according to
the Common GUI API should run on all platforms.

• Look-and-Feel: The CGA will only provide functionality
that maps to all supported platforms without violating
the native style guide. Thus the CGA will exhibit some
kind of subset of all platforms. The fixed set of supported
platforms is as follows: Win32, Mac OS X, Gnome (Gtk),
X11/Xt (Motif/Athena).

• Extensibility: Additional functionality that cannot be
expressed with the native look-and-feel can and should
be provided by the different back-ends.

• Medium abstraction level: The CGA will not impose any
functional model but an imperative interface on which
high-level approaches can be based.

The discussion is open to everyone. We discuss
on the <gui@haskell.org> mailing list. Documents
we create are available in the Haskell CVS repos-
itory at http://cvs.haskell.org/cgi-bin/cvsweb.cgi/
haskell-report/gui/.

Further reading:

http://www.haskell.org/mailman/listinfo/gui/

4.3.2 HTk

Report by: Christoph Lüth and George Russell
Project status: no changes
HTk is an encapsulation of the graphical user interface toolkit
and library Tcl/Tk for the functional programming language
Haskell. It allows the creation of high-quality graphical user
interfaces within Haskell in a typed, abstract, portable man-
ner. HTk is known to run under Linux, Solaris, Windows 98,
Windows 2k, and will probably run under many other POSIX
systems as well. It works with GHC, versions 5.02.3 and later.

Further reading:

http://www.informatik.uni-bremen.de/htk

4.3.3 Object I/O for Haskell

Project status: completed, but no longer maintained
The Object I/O is a flexible library for building rich user in-
terfaces. It is a port of the popular Clean Object I/O to
Haskell (http://www.cs.kun.nl/~clean/). The current im-
plementation for Clean and Haskell supports only the Win-
dows platform. Attempts to port the Haskell version to Gtk
turned out to be difficult, highlighting platform-specific as-
sumptions in the design, and prompting a renewed discussion
on portable GUI APIs on the gui mailing list.
While the implementation is still available, it is no longer
developed or maintained (Krasimir is now working on a suc-
cessor, HToolKit, see below).

Further reading:

http://www.haskell.org/ObjectIO/

4.3.4 HToolKit

Report by: Krasimir Angelov

The HToolkit is the direct descendant of the ObjectIO. How-
ever they are very different. A certain time after I have com-
pleted the port of ObjectIO from Clean to Haskell, I was
working on the port of Object IO to Linux. Unfortunately
the task was harder than I thought. The main difficulty is
that the Linux port requires lots of changes on low levels,
which sometimes affect the higher-level interface. To solve
this difficulty I decided to start the new HToolkit Project.
The main objectives are:

1. Development of platform independent GUI library.

2. The library should use only native libraries and where
possible native controls. Neither Qt nor GTK use native
controls. This means that the applications would look
different on different platforms (following the native look
and feel as far as possible).

3. The OS dependent layer of the library should be writ-
ten in C. This will allow the library to be used by other
languages (SmallTalk, Python, Eiffel). Two months ago
Daan Leijen offered to separate the OS dependent layer
as a separate library, independent of Htoolkit. The new
library was named Port. This change will allow to exper-
iment with libraries of higher level with various designs
by using one and the same OS layer. On top of Port
Daan built GIO Library. Its design follows the design of
Yahu. For the time being Daan does not support GIO
but I decided to continue GIO/Port development. The
most peculiar about GIO is the way to get/set the at-
tributes of graphical components. From the discussion
in gui@haskell.org I am under the impression that the
idea is widely accepted from the community. I don’t
know how “Common GUI API (CGA)” will look like
(discussed in gui@haskell.org). Probably the GIO in-
terface will be rather different from CGA but I hope that
the efforts put into Port should be reused in CGA.

Further reading:

http://htoolkit.sourceforge.net

4.3.5 wxHaskell

Report by: Daan Leijen
Project status: alpha
wxHaskell is a Haskell binding to the wxWindows GUI li-
brary. The wxWindows library is a large C++ library that is
portable to all major GUI platforms - Windows, GTK, Motif,
X11, MacOS 9, and MacOS X. Furthermore, it is a mature li-
brary (in development since 1992) that supports a wide range
of widgets with a native look-and-feel.

15

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/haskell-report/gui/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/haskell-report/gui/
http://www.haskell.org/mailman/listinfo/gui/
http://www.informatik.uni-bremen.de/htk
http://www.cs.kun.nl/~clean/
http://www.haskell.org/ObjectIO/
http://htoolkit.sourceforge.net

We hope that this “industrial strength” library can serve as
the standard low-level GUI library for Haskell. By using a
standard library like wxWindows we will be able to support
a wide range of platforms and widgets with almost no effort
on our side – we just have to keep in sync with the library.
Note that the languages Eiffel, Perl, and Python have also
chosen this library for writing complex graphical user inter-
faces (wxEiffel, wxPerl, and wxPython respectively).
The “core” Haskell binding to wxWindows is generated auto-
matically from the wxEiffel binding and contains about 2500
methods in 500 classes with 1000 constant definitions. As
such, most of the wxWindows functionality is supported, just
excluding more exotic widgets like dockable windows and the
OpenGL canvas. On top of the core binding, we are writing
a small library that offers a somewhat more friendly inter-
face to the raw wxWindows interface. This library is closely
structured after GIO and Yahu.
The project is in its startup phase - no binary releases have
been made and only development is supported. The library
has currently only been tested on win32 and GTK (Linux)
platforms with GHC 5.03+ and only small examples have
been written. We plan to release the initial alpha release in
May 2003.

Further reading:

http://wxhaskell.sourceforge.net

4.3.6 Gtk+HS

Report by: Manuel Chakravarty
Project status: beta release
Gtk+HS is a Haskell binding to the GTK+ GUI toolkit http:
//www.gtk.org/, which is currently at version 0.15.2. Since
the last HC&A Report, it has acquired a range of new widgets
as well as significantly extended support of the iHaskell layer,
which enables GUI programming without mutable variables.

Further reading:

More details as well as source and binaries packages are at
http://www.cse.unsw.edu.au/~chak/haskell/gtk/

4.3.7 Gtk2hs

Report by: Axel Simon
Project status: beta
Gtk2hs is a wrapper around the latest Gtk release (Version 2.2
or Gtk 2 for short). Although it provides a similar low level
veneer like Gtk+HS, it is completely rewritten from scratch,
reflecting the new object hierarchy of Gtk 2. The binding
works on Unix, MacOS X and Windows (mingw32). A thin
wrapper called MOGUL (MOnadic GUi Library) provides
some convenience functions and will be extended to exhibit
the Common GUI API once it is defined. All widgets are
bound, although a couple of functions are still missing. Future
additions will include the OpenGL widget GtkGLExt and the
Pixbuf image manipulation library.

Our current work is done in a CVS repository which can be
found on http://sourceforge.net/projects/gtk2hs/.

4.4 Graphics

4.4.1 HGL Graphics Library

Report by: Alastair Reid
Project status: Maintained, stable
Portability: GHC, Hugs, Linux, FreeBSD, Solaris, MacOS X,

Windows

The HGL provides an easy to use, portable interface to Win32
and X11 which supports simple 2-dimensional graphics, key-
board, mouse and timer input events and multiple windows.
The library is distributed as open source and is suitable for
use in teaching and in applications.
Status: The library works on both Win32 and X11 under
Hugs and GHC. The API is stable and the library is used
throughout Paul Hudak’s ‘School of Expression’ textbook.
The last release was 2.0.4 in December 2001. A release that
works better with the new release of Hugs (notably the sup-
port for hierarchical module namespace) and current releases
of GHC will be available soon.

Further reading:

HGL web page: http://haskell.org/graphics/
School of Expression web page: http://haskell.org/soe/
Author’s web page:

http://www.reid-consulting-uk.ltd.uk/alastair/

4.4.2 Win32 and Xlib Libraries

Report by: Alastair Reid
Project status: Maintained, stable
The Win32 library is a set of bindings to over 450 functions
in the standard Windows C libraries.
Portability: GHC, Hugs, Windows

The Xlib library is a set of bindings to over 300 functions in
the standard Xlib C library.
Portability: GHC, Hugs, Linux, FreeBSD, Solaris, MacOS X

Status: These libraries have been distributed for Hugs for
some years and have worked with GHC for almost as long
but they have suffered from second class status since they
have always been treated as just one of the prerequisites for
installing the HGL. We have recently moved them over into
the hierarchical namespace and are almost ready to make a
proper release.

4.4.3 HOpenGL – A Haskell Binding for
OpenGL and GLUT

Report by: Sven Panne
Project status: active, maintained
The goal of this project is to provide a binding for the
OpenGL rendering library which utilizes the special features
of Haskell, like strong typing, type classes, modules, etc., but

16

http://wxhaskell.sourceforge.net
http://www.gtk.org/
http://www.gtk.org/
http://www.cse.unsw.edu.au/~chak/haskell/gtk/
http://sourceforge.net/projects/gtk2hs/
http://haskell.org/graphics/
http://haskell.org/soe/
http://www.reid-consulting-uk.ltd.uk/alastair/

is still in the spirit of the official API specification. This en-
ables the easy use of the vast amount of existing literature and
rendering techniques for OpenGL while retaining the advan-
tages of Haskell over lower-level languages like C. Portability
in spite of the diversity of Haskell systems and OpenGL ver-
sions is another goal.
HOpenGL includes the simple GLUT UI, which is good to
get you started and for some small to medium-sized projects,
but HOpenGL doesn’t rival the GUI task force efforts in any
way. Smooth interoperation with GUIs like gtk+hs on the
other hand is a goal.
The latest release (version 1.04 on 21/01/03) marks the begin-
ning of API transition: The GLUT binding has been rewrit-
ten completely, using only Haskell-98 features plus FFI and
hierarchical modules, both widely available extensions. Fur-
thermore, using quadrics and tessellators has been vastly sim-
plified, offering a much more Haskell-like interface. The rest
of HOpenGL is currently being rewritten, too, people inter-
ested in the latest development can check out the libraries
part of GHC’s fptools repository. A new release is planned
for Q3 2003, offering:

• Full OpenGL 1.4 support

• Some ARB extensions

• An improved API, centered around OpenGL’s notion of
state variables

• Extensive hyperlinked online documentation

• No GreenCard dependency anymore

Further reading:

http://www.haskell.org/mailman/listinfo/hopengl/
http://www.haskell.org/HOpenGL/

4.4.4 FunGEn – A game engine for Haskell

Report by: Andre W B Furtado
Project status: (still) being rebuilt
The objective of the FunGEn project is to create a high-level
game engine in and for Haskell. A game engine, roughly
speaking, is a tool intended to help game programmers to
develop games in a faster and automated way, avoiding them
to worry about low-level implementation details. The main
advantage of using a game engine is that, if it is built in a
general and modular architecture, it can be used to develop
many different (types of) games.
The first release of FunGEn (April/2002) consisted of a 2D
platform-independent game engine, which implementation
was based in HOpenGL (Haskell Open Graphics Library).
It supported:

• Initialization, updating, removing, rendering and group-
ing routines for game objects; definition of a game back-
ground (or map), including texture-based maps and tile
maps; loading and displaying 24-bit bitmap files;

• Reading and interpretating player’s keyboard input; col-
lision detection; time-based functions and pre-defined

game actions; a few debugging and game performance
evaluation facilities;

• Sound support (for windows platforms only... :-[)

Some feedback indicated that the first version of FunGEn
was not as “functional” as it was desired: some game issues
were still being dealt through an imperative fashion. This
way, the authors of this project decided to change the game
engine philosophy: programmers should describe a game as
a set of “specifications” rather than defining its behavior im-
peratively. The chosen alternative for accomplishing this task
was to port the Clean Game Library (CGL) to Haskell, adding
some FunGEn/(H)OpenGL specific features, such as mouse
handling. Hence, the main idea is to rebuild FunGEn, in or-
der to provide game programming mechanisms following the
CGL concepts.
This rebuilding task, however, is taking much more time than
initially planned. Some very complex (and still unexplained)
environment setup problems froze the engine development
for months. The authors of the FunGEn project concluded
that the heterogeneous environment in which the software
was being produced had become impracticable: Windows98
and Cygwin presented many compatibility problems regard-
ing HOpenGL, GHC and FunGEn setup.
As the development environment has changed (WindowsXP
is being used instead of Windows98), FunGEn finally had
a chance to evolve again. Unfortunately, new problems are
still challenging the project: some compatibility issues arising
from the use of the most recent version of HOpenGL had to be
solved and some difficulties regarding Haddock compatibility
with Cygwin is demanding special attention.
Besides all problems, the authors of the project expect a new
version to be released as soon as possible.
The final objective of FunGEn is to support both 2D and 3D
environments, some game programming tools (such as map
editors) and advanced game functionalities (such as multi-
player networking), although it is actually far away from that.
FunGEn is being maintained at the Informatics Center (Cen-
tro de Informatica) of Universidade Federal de Pernambuco
(UFPE), by Andre W B Furtado (assisted by lecturer Andre
Santos), and it’s wide open for any implementation contribu-
tions. We would like to thank Mike Wiering, the creator of
Clean Game Library.

Further reading:

http://www.cin.ufpe.br/~haskell/fungen/

http://cleangl.sourceforge.net/ (Clean Game Library)

4.4.5 FunWorlds – Functional Programming
and Virtual Worlds

Report by: Claus Reinke
Project status: moved to HOpenGL, release delayed
FunWorlds is an ongoing experiment to investigate language
design issues at the borderlines between concurrent systems,

17

http://www.haskell.org/mailman/listinfo/hopengl/
http://www.haskell.org/HOpenGL/
http://www.cin.ufpe.br/~haskell/fungen/
http://cleangl.sourceforge.net/

animated reactive 2&3d graphics, and functional program-
ming. One of the aims is to get a suitable platform for ex-
pressing such things visually, preferably from Haskell, contin-
uing from the start that functional reactive programming and
especially Conal Elliott’s Fran made in that direction.
With the reimplementation of FunWorlds on top of HOpenGL
(earlier versions were based on VRML), the focus has shifted
towards a redesign of some fundamental FRP concepts, to-
wards a simpler operational semantics as a basis for uncom-
plicated implementations with more predictable performance
characteristics. At the same time, I still want to be able to
use Fran’s high-level modeling approach.
The initial release has been delayed, simply because I haven’t
been able to allocate much time for this project. The stop-
ping stone is not so much functionality (the first release will
not have substantially more functionality than the snapshot
presented at IFL’2002, so it will be pretty basic), but the need
to write some form of introductory tutorial on the new DSEL
design and how one might use it. Once we’ve got some more
experience with the language basics, graphics functionality
will be added on demand.
The good news is that trying to write the tutorial and exam-
ples has forced me to simplify the language still further (when-
ever something seems to require complicated explanations, I
go back and try to simplify the design and implementation
instead, maintaining expressiveness). If I don’t manage to
get back to this project soon to prepare a proper release, I’ll
probably just make snapshots available to interested parties.

Further reading:

http://www.cs.kent.ac.uk/~cr3/FunWorlds/

4.5 Tool Frameworks

Instead of developing fixed tools, it is sometimes possible to
generalize the code implementing the tool functionality into
a library, so that the code can be reused for a family of tools.

4.5.1 Medina – Metrics for Haskell

Report by: Chris Ryder
The Medina library is a Haskell library for GHC that provides
tools and abstractions with which to build software metrics
for Haskell programs.
The library includes a parser and several abstract representa-
tions of the parse trees and some visualisation systems includ-
ing pretty printers, HTML generation and callgraph brows-
ing. The library has some integration with CVS to allow tem-
poral operations such as measuring a metric value over time.
This is linked with some simple visualisation mechanisms to
allow exploring such temporal data. These visualisation sys-
tems will be expanded in the near future.
Currently we are working on some case studies to provide
some validation of metrics by looking at the change history
of a program and how various metric values evolve in relation
to those changes. In order to do this we have implemented

several metrics using the library, which has given some valu-
able ideas for improvements.

Further reading:

http://www.cs.kent.ac.uk/~cr24/medina/

4.6 XML and Web Programming

4.6.1 HaXml

Report by: Malcolm Wallace
Project status: stable, maintained
HaXml provides many facilities for using XML from Haskell.

Recent news The latest release of the HaXml suite of li-
braries and tools is 1.09, just about to be published.

• Mostly a bugfix release, with some very minor changes
to the API for reading and writing typed values to/from
files, and a few minor configuration enhancements etc.

• HaXml is now available from CVS at cvs.haskell.org.

Future plans HaXml is in stable (bugfixes only) mode at
the moment. Users regularly contribute improvements, which
are usually adopted strightforwardly.

Further reading:

http://www.haskell.org/HaXml

4.6.2 HXML

Report by: Joe English
Project status: no developments, but actively maintained
HXML is a non-validating XML parser written in Haskell.
It is designed for space-efficiency, taking advantage of lazy
evaluation to reduce memory requirements. HXML may be
used as a drop-in replacement for the HaXml (section 4.6.1)
parser in existing programs. HXML includes a module with
functionality similar to HaXml’s ‘Combinator’ module, but
recast in an Arrow-based framework.
HXML also provides multiple representations for XML doc-
uments: a simple algebraic data type containing only the es-
sentials (elements, attributes, and text), a tree representation
which exposes most of the full XML Information Set, and a
navigable tree representation supporting all of the principal
XPath axes (ancestors, following-siblings, etc).
HXML has been tested with GHC 5.02, GHC 5.04, NHC 1.12,
and most recent versions of Hugs. NHC 1.10 requires a patch.
HXML is basically in maintenance mode right now until I can
find some spare time; support for XML Namespaces is next
on the TODO list.

Further reading:

http://www.flightlab.com/~joe/hxml/

18

http://www.cs.kent.ac.uk/~cr3/FunWorlds/
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.haskell.org/HaXml
http://www.flightlab.com/~joe/hxml/

4.6.3 Haskell XML Toolbox

Report by: Uwe Schmidt (uwe@fh-wedel.de)
Project status: second major release
The Haskell XML Toolbox is a collection of tools for process-
ing XML with Haskell. It is itself purely written in Haskell.
The core component of the Haskell XML Toolbox is a vali-
dating XML-Parser that supports almost fully the Extensible
Markup Language (XML) 1.0 (Second Edition).
The Haskell XML Toolbox bases on the ideas of HaXml and
HXML, but introduces a more general approach for process-
ing XML with Haskell. The Haskell XML Toolbox uses a
generic data model for representing XML documents, includ-
ing the DTD subset and the document subset, in Haskell.
This data model makes it possible to use filter functions as a
uniform design of XML processing applications. The whole
XML parser including the validator parts was implemented
using this design. Libraries with filters and combinators are
provided for processing the generic data model.

Features:

• validating XML parser

• very liberal HTML parser

• XPath support

• full Unicode support

• support for XML namespaces

• uniform data modell for DTDs and XML content

• support of http: and file: protocol

• tested with W3C XML validation suite

Current Work:

• XSLT implementation

• better error reporting

Further reading:

The Haskell XML Toolbox Webpage http://www.fh-wedel.
de/~si/HXmlToolbox/index.html includes downloads, on-
line documentation and a master thesis describing the design
of the toolbox. The design of the XPath module is described
in a diploma thesis (in german).

4.6.4 WASH/CGI – Web Authoring System
for Haskell

Report by: Peter Thiemann
WASH/CGI is an embedded DSL (read: a Haskell library)
for server-side Web scripting based on the purely functional
programming language Haskell. Its implementation is based
on the portable common gateway interface (CGI) supported
by virtually all Web servers. WASH/CGI offers a unique and
fully-typed approach to Web scripting. It offers the following
features

• a monadic interface to generating HTML output

• type-safe compositional approach to specifying form ele-
ments; callback-style programming interface for forms

• automatic error detection

• complete interactive script in one program

• type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persistent
server-side

• integration with CSS yields compositional style descrip-
tions

• on-the-fly generated graphics

• high-level interface to email generation

New/completed Items are:

• API for reading email

• Haddock-generated documentation

• support for hooking directly into Simon Marlow’s Haskell
Webserver

• support for generating forms that can be stored in files
or sent via email or news

• simple support for frames

• beyond-Haskell98 interface: slightly simplifies program-
ming of forms with more than one input

• incorporation of WASH/HTML, a typed interface for
generating mostly valid HTML documents

Current work includes

• package-ifycation of WASH

• authentication interface

• new paper about WASH

Items still on the to do list

• preprocessor for translating markup in XML syntax into
WASH/HTML

• database interface

• user manual

Further reading:

WASH Webpage http://www.informatik.uni-freiburg.
de/~thiemann/WASH/ includes examples, a tutorial, papers
about the implementation.

19

http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

Chapter 5

Tools

5.1 Foreign Function Interface

5.1.1 C–>Haskell

Report by: Manuel Chakravarty
Project status: beta release
C–>Haskell is an interface generator that simplifies the devel-
opment of Haskell bindings to C libraries. It has recently ac-
quired support for conditional compilation, which facilitates
supporting multiple versions of a C library within a single
Haskell binding. Moreover, inline C declaration can be in-
cluded into the binding, which is convenient if custom C code
is needed for impedance matching between C and Haskell.
The tool is currently at version 0.11.3 and it now has its own
mailing list at <c2hs@haskell.org>. It has been stress tested
in the development of the Gtk+HS GUI library.

Further reading:

Source and binary packages as well as a reference manual
are available from http://www.cse.unsw.edu.au/~chak/
haskell/c2hs/

5.1.2 GreenCard

Report by: Alastair Reid
Project status: Maintained, stable
Portability: Hugs, GHC, NHC and C, C++

GreenCard is a foreign function interface preprocessor for
Haskell and has been used (amongst other things) for the
Win32 and X11 bindings used by Hugs and GHC. Source and
binary releases (Win32 and Linux) are available. The last re-
lease was 2.0.4 (August 2002). A release that provides access
to and takes advantage of the new Foreign Function Interface
libraries will be available soon.

Further reading:

http://www.haskell.org/greencard/

5.1.3 Java VM Bridge

Report by: Ashley Yakeley (<ashley@semantic.org>)
Java VM Bridge is a GHC package intended to allow full
access to the Java Virtual Machine from Haskell, as a simple
way of providing a wide range of imperative functionality. Its

big advantage over earlier attempts at this is that it includes a
straightforward way of creating Java classes at run-time that
have Haskell methods (using DefineClass and the Java Class
File Format). It also features reconciliation of thread models
without requiring GPH.
It is intended to make writing “Java in Haskell” as straight-
forward as possible. To this end, each Java class is a separate
type, and the argument lists of methods of automatically-
generated interfaces to Java classes make use of subtype class
relations to minimise explicit upward casting. Java exceptions
are represented as Haskell monadic exceptions, and may be
caught or thrown accordingly. Also, the two garbage collec-
tors are integrated in such a way that cross-collector reference
loops won’t happen.
As a point of cleanliness and principle, it makes no use of
“unsafe” Haskell calls (or pure function FFI). The layered
design allows access to either lifted monads that keep track
of context data (specifically, the JNIEnv pointer) and do all
the work of preloading for you, or “IO”-based functions if you
want to do all that yourself.

Current Status: A beta-quality 0.2 was released in April
2003 in source-code form. It compiles on Linux and Mac OS
X with Sun’s JVM, and should work with a number of others.
Future plans include using the hierarchical module structure,
separating out pure (non-FFI) Haskell into a separate pack-
age, and making the IO-based interface cleaner and friendlier.

Contact: Ashley Yakeley

Further reading:

http://sourceforge.net/projects/jvm-bridge/

5.2 Meta Programming

“Why write a program when you can write a program to write
a program?” (author unknown).

5.2.1 Scanning, Parsing, and Analysis

See also constraint-based program analysis (section 3.3),
the Parsec parser-combinator library (section 4.2.3) and the
group of tools developed in Utrecht (section 6.4.5).

20

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.haskell.org/greencard/
http://sourceforge.net/projects/jvm-bridge/

Alex
Report by: Simon Marlow

Alex version 1 status: (not maintained)
Alex is a lexical analyser generator for Haskell, similar to the
tool lex for C. Alex takes a specification of a lexical syntax
written in terms of regular expressions, and emits code in
Haskell to parse that syntax. A lexical analyser generator is
often used in conjunction with a parser generator (such as
Happy) to build a complete parser.
Alex homepage (temporary):
http://www.syntaxpolice.org/~ijones/alex/

Alex version 2 status: (in development)
I’ve recently been developing a new version of Alex based on
Chris Dornan’s original code. The current status can be seen
by browsing the “simonm-hackery-branch” branch of the CVS
repository in fptools/happy/alex. The main aims are:

1. To make Alex work better with Happy. As a first step,
this involves making the syntax more Happy-like (and
indeed more lex-like). Ultimately having a combined
grammar file and eliminating much of the tedious glue
which is necessary between the parser and lexer would
be desirable.

2. To improve the programmer experience. The aim is to
abstract the lexer over (a) the input type and (b) the
underlying monad, making Alex lexers more flexible in
how they can be incorporated into a program.

3. To add support for Unicode.

4. To improve performance and size of the generated lexer
code. Dramatic improvements have been made here, us-
ing traditional table compaction methods and some GHC
extensions to improve performance of lexers when com-
piled with GHC.

The current status is that (1) is partly done (the syntax
changes), (2) is partly done and (4) is done (but further table
compaction could be done if it turns out to be necessary). (3)
I have some ideas about.
Isaac Jones <ijones@syntaxpolice.org> has been writing the
documentation for the next version of Alex.

Happy
Report by: Simon Marlow
Project status: stable, maintained
There have been no new releases of Happy since June of
last year. Happy is still in constant use by GHC and other
projects, and remains in maintenance mode.
There aren’t any major developments on the horizon, al-
though I have been putting some work into a new version
of Alex which might have an impact on Happy; no details
yet, but the aim is to make it easier to construct a complete
parser using Alex and Happy together.

Further reading:

http://www.haskell.org/happy/

5.2.2 Haskell Transformations

Also see Strafunski’s StrategyLib (section 4.2.1) for transfor-
mation support, and the Haskell Refactorer (section 5.3.2) for
an application of transformations in program development.

MAG

Report by: Ganesh Sittampalam
Project status: actively maintained
MAG is a transformation tool for a small Haskell-like lan-
guage which tries to make it easy to mechanise some com-
plex program transformations with the help of user-supplied
rewrite rules. Examples this has been tried with include cat-
elimination and alpha-beta pruning.
Although not much time is being spent on it, it is still actively
maintained and some work is being done on improving the
higher-order matching algorithms that underpin its operation.
We would of course be very happy to hear from anyone who is
interested in using it (for example for teaching), or improving
it. It was recently the basis for a chapter in “The Fun of
Programming” (produced in honour of Richard Bird’s 60th
birthday).

Further reading:

http://web.comlab.ox.ac.uk/oucl/research/areas/
progtools/mag/

HsOpt: Helium/LVM Optimization in Stratego

Report by: Eelco Visser
HsOpt is an optimizer for the Helium compiler implemented
in the transformation language Stratego. Helium (section
2.5.2) is a subset of Haskell developed at Utrecht University
(section 6.4.5). The optimizer works on the code produced by
the Helium front-end, which is code for Daan Leijen’s Lazy
Virtual Machine (LVM). The goal of this project is to validate
the paradigm of transformation strategies for the implemen-
tation of an optimizing compiler.
Alan van Dam has written the first version of the optimizer
consisting of a basic simplifier in the style of the GHC. The
main target of this simplifier has been the optimization of pat-
tern matching code. The naive translation of pattern match-
ing by the Helium front-end keeps it simple, but produces
rather ugly code. Using a small set of transformation rules
and an appropriate strategy the code can be reduced to more
sane code, often similar to code that would be written by
hand. This first simplification step produces an optimization
of about 10%.
Plans for the near future are to include an inliner (currently
only local let bindings are inlined, not global function defini-
tions), and to incorporate the earlier work on deforestation.

Further reading:

http://www.stratego-language.org/Stratego/HsOpt

21

http://www.syntaxpolice.org/~ijones/alex/
http://www.haskell.org/happy/
http://web.comlab.ox.ac.uk/oucl/research/areas/progtools/mag/
http://web.comlab.ox.ac.uk/oucl/research/areas/progtools/mag/
http://www.stratego-language.org/Stratego/HsOpt

5.3 Program Development

5.3.1 Tracing and Debugging

Report by: Olaf Chitil and Bernie Pope

By now there exist a number of tools with rather different
approaches to tracing Haskell programs for the purpose of
debugging and program comprehension.

Hood and its variant GHood, for graphical display and an-
imation, enable the user to observe data structures at given
program points. Hood and GHood are easy to use, because
they are based on a small portable library. They have re-
mained unchanged for over a year.

The Haskell tracing system Hat is based on the idea that
a specially compiled Haskell program generates a trace file
alongside its computation. This trace can be viewed with sev-
eral tools in various ways: Hood-style observation of top-level
functions; backwards exploration of a computation, starting
from (part of) a faulty output or an error message. All tools
inter-operate and use a similar command syntax. A tutorial
explains how to generate traces, how to explore them, and
how they help to debug Haskell programs. Hat can be used
both with nhc98 and ghc. Hat can be used for Haskell 98
programs that use some language extensions.

On 26 March 2003 Hat 2.02 was released. That release
added — besides numerous bugfixes and minor improvements
— support for multi-parameter type classes and functional
dependencies, provided your underlying compiler supports
them, the hierarchical module namespaces, and includes a
tracing version of (a subset of) the base package of standard
hierarchical libraries.

For the future we plan to add a number of new tools for
viewing the trace; in particular we want to resurrect a tool
for algorithmic debugging of Haskell programs, which had
been part of previous releases of Hat.

Buddha is a declarative debugger for Haskell 98. It is based
on program transformation. Each module in the program un-
dergoes a transformation to produce a new module (as Haskell
source). The transformed modules are compiled and linked
with a library for the interface, and the resulting program
is executed. The transformation is crafted such that execu-
tion of the transformed program constitutes evaluation of the
original (untransformed) program, plus construction of a se-
mantics for that evaluation. The semantics that it produces
is a tree with nodes that correspond to function applications.

Currently buddha works with GHC version 5.04 or greater.
No changes to the compiler are needed. There are no plans
to port it to other Haskell implementations, though there are
no significant reasons why this could not be done.

Version 0.5 is freely available as source. This version supports
most of Haskell 98, however there are a few small items that
are not supported. These are listed in the documentation.
Future releases will include support for the missing features,
and a much improved user interface. Version 0.6 should be
available “real soon now” which has an automated front end.

Further reading:

http://www.haskell.org/libraries/#tracing
http://www.cs.mu.oz.au/~bjpop/buddha

5.3.2 Refactoring

Report by: Claus Reinke
Team: Huiqing Li, Claus Reinke, Simon Thompson
Refactorings are source-to-source program transformations
which change program structure and organisation, but not
program functionality. Documented in catalogues and sup-
ported by tools, refactoring provides the means to adapt and
improve the design of existing code, and has thus enabled the
trend towards modern agile software development processes.
Refactoring has taken a prominent place in software develop-
ment and maintenance, but most of this recent success has
taken place in the OO and XP communities.
In our project ‘Refactoring Functional Programs’, we ex-
plore the prospects for refactoring functional programs, tak-
ing Haskell as a concrete case-study. Following the exper-
iments we reported on last time, we have now established
the meta-programming infrastructure we need by building
on the Programatica (http://www.cse.ogi.edu/PacSoft/
projects/programatica/) project’s Haskell-in-Haskell fron-
tend (providing parsing, static analysis and type analysis)
and the Strafunski project’s support for generic and strate-
gic programming (see section 4.2.1). We are also acquiring
the necessary expertise for integrating our prototype refac-
torer into Vim and Emacs, according to our survey the main
Haskell program development environments.
Programatica’s frontend supports nearly all of Haskell 98, and
would be our frontend of choice, but it still hasn’t been re-
leased, and there are still some question marks on its license
and whether that would impede our own project. Strafunski
has proven invaluable in avoiding unmanageable amounts of
boilerplate code, enabling us to focus on the essence of pro-
gram transformations when implementing refactorings over
the complex Haskell grammar.
Built on top of all that infrastructure, work on our proto-
type refactoring tool is now progressing well, and the Haskell
Refactorer already supports a handful of smaller-scale refac-
torings, like renaming, moving definitions, extracting and in-
lining definitions, and the like. A paper (“Tool Support for
Refactoring Functional Programs”) describing some of the
challenges in implementing such a tool is in preparation and
the draft should be available from our project page within a
couple of weeks. A first release of our Haskell Refactorer later
this year should accompany the publication of that paper.

Further reading:

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.3 Testing

HUnit

Report by: Dean Herington

22

http://www.haskell.org/libraries/#tracing
http://www.cs.mu.oz.au/~bjpop/buddha
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cs.kent.ac.uk/projects/refactor-fp/

Project status: maintained, update delayed
Hunit is a unit testing framework for Haskell similar to JUnit
for Java. With HUnit, a Haskell programmer can easily create
tests, name them, group them into suites, and execute them,
with the framework checking the results automatically. Test
specification is concise, flexible, and convenient.
HUnit is free software that is written in Haskell 98 and runs on
Haskell 98 systems. While written in Haskell 98, HUnit 1.0 is
sensitive to the format of exception strings, which it inspects
to judge the outcome of tests. The planned minor revision
(HUnit 1.1), to adapt to recent GHC (5.04) and Hugs (Oct.
2002) versions, should get rid of this sensitivity, but has been
delayed and will have to wait until after someone’s Master’s
degree is finished.
The root cause for this problem seems to be the lack of ex-
tensibility in Haskell’s exception mechanism. A tool such as
HUnit shouldn’t have to resort to tricks like the one involved
here. It should be possible to cleanly define and use an “HU-
nit” kind of exception.

Further reading:

The software and documentation can be obtained at http:
//hunit.sourceforge.net.

5.3.4 Documentation

Haddock

Report by: Simon Marlow
Project status: stable, maintained
There have been no new releases of Haddock since July last
year. A few bugfixes have been applied to the main source
tree, along with a couple of minor improvements, so another
release will be forthcoming soon.
Haddock is relatively stable, and I intend to keep maintain-
ing it for the forseeable future. I don’t have much time for
wholesale improvements, although contributions are of course
always welcome. There is a TODO list of outstanding bugs
and missing features, which can be found here:
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
haddock/TODO

Further reading:

http://www.haskell.org/haddock/

23

http://hunit.sourceforge.net
http://hunit.sourceforge.net
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://www.haskell.org/haddock/

Chapter 6

Applications, Groups, and Individuals

6.1 Non-Commercial Applications

This section lists applications developed in Haskell, be it in
academia, in industry, or just for fun, which achieve some
non-Haskell-related end.

6.1.1 HScheme

Report by: Ashley Yakeley (<ashley@semantic.org>)
Project status: being rewritten
HScheme will be a Scheme interpreter written in Haskell.
There should be stand-alone interpreter program, or you can
attach the library to your program to provide “Scheme ser-
vices”. It’s very flexible and general with types, and you
can pick the “monad” and “location” types to provide such
things as a purely functional Scheme, or a continuation-
passing Scheme (that allows call-with-current-continuation),
or a fixed-point Scheme (that allows call-with-result), etc.

Current status: My first attempt was slow: programs
spent a large amount of time looking up symbol bindings.
You can play with the interpreter for this attempt on the web
at http://hscheme.sourceforge.net/interpret.html.
I’m currently rewriting it to resolve programs’ symbols before
running them. I don’t expect any releases in the next few
months.

Further reading:

http://hscheme.sourceforge.net/

6.1.2 Haskell in Alchemy

Report by: Alastair Reid

Knit

Project status: Active, maintained, no recent news
Portability: GHC (maybe Hugs, still), Linux, FreeBSD

Knit is a component definition and linking language for sys-
tems programming based on the Unit component program-
ming model. Knit lets you turn ordinary C code (e.g., bits
of the Linux kernel) into components and link them together
to build new programs. Since the freedom to do new things

brings with it the freedom to make new errors, Knit pro-
vides a simple constraint system to catch component config-
uration errors. Knit also provides a cross-component inliner
and schedules initialization and finalization of components.
Knit is released under a BSD-style license, is written in
Haskell (and a little C) and includes a C parser and pretty-
printer. A useful little utility included in the distribution is
a tool for renaming symbols in ELF-format object files.
The current Knit release acts post-compilation: we compile
C code as normal and then rename symbols in object files
before linking. We are rewriting Knit to act pre-compilation:
manipulating the source code before compilation. This will
bring the much needed ability to import and export types
from modules.

Flatten: Cross Module Inliner for C

Project status: Active, maintained
Portability: GHC, Linux, FreeBSD

Flatten can make existing, profiled, tuned and optimized C
programs go 5-20% faster by performing performing inlin-
ing across module boundaries. More usefully, flatten lets you
write C without making compromises to performance such as
confusing interface with implementation (putting functions in
header files) or writing overly large files.
Flatten works by parsing your C files, merging all the files into
one, discards dead code, discards the user’s guesses as to what
functions should be inlined (this feature can be turned off),
marking functions to be inlined, sorting function definitions
to put definitions before uses and generating a single, giant
C file for gcc to chew on. Flatten can cope with systems
that contain assembly language, link with binary libraries,
and other things that real code does. Flatten is an outgrowth
from the Knit/Alchemy project which aims to bring some of
the strengths of Haskell and Haskell tools to programmers on
the street.
We are currently in the “release engineering” phase: more
testing, add documentation, think of cooler name, commit
to a license and package and aim to have a release out this
summer.

Further reading:

http://www.cs.utah.edu/flux/alchemy/

24

http://hscheme.sourceforge.net/interpret.html
http://hscheme.sourceforge.net/
http://www.cs.utah.edu/flux/alchemy/

6.1.3 Analysis Tools for Rosetta

Report by: Perry Alexander
The Systems Level Design Group at the University of Kansas
Information and Telecommunication Technology Center is us-
ing Haskell to develop analysis tools for the Rosetta (http:
//www.sldl.org) requirements modeling language. We have
been building upon work on modular interpreters to pro-
vide an ability to compose simulators for Rosetta domains,
with the goal of performing dynamic analysis of heteroge-
neous models. While the work is in its early stages, we have
been encouraged by preliminary results. Haskell is also being
used extensively in the development of a toolset for the static
analysis of Rosetta models.

Further reading:

http://www.ittc.ku.edu/Projects/SLDG/

6.1.4 Hircules, an IRC client

Report by: Jens Petersen
I have recently been working on an IRC client which I’m call-
ing “Hircules” written in Haskell using gtk2hs for the GUI. It
already works reasonably well and I expect to make an initial
public release within the next week or so, and will then of
course welcome contributions, bug reports, rfe’s, etc. I took
the code from lambdabot as the starting point, though it is
already starting to diverge a bit. Currently it features tabs
for channels and private conversions and retains lambdabot’s
bot features too. There is also an all channels tab and a raw
IRC message tab for debugging and irc fanatics. I hope to
add more features, like coloured nicks, utf-8 support, message
alerting, etc, to follow.

Further reading:

http://haskell.org/hircules/

6.2 Commercial Applications

6.2.1 Reid Consulting Ltd

Report: Alastair Reid <alastair@reid-consulting-uk.ltd.uk>
Many companies are starting to allow their programmers to
develop small prototypes in Haskell but few are willing to
take a chance on using Haskell on a large project. The risks
to these companies include lack of support for tools, lack of
tutorials and training courses, gaps in the set of available
libraries, and lack of ‘gurus’ to call on when things go wrong.
Reid Consulting can meet those needs. Our background and
continuing involvement in the development of Haskell tools
and compilers (GreenCard, Hugs, GHC, etc.) and the Haskell
language and library design (the Haskell report, the Standard
libraries, the Hugs-GHC libraries, the Foreign Function Inter-
face and the HGL Graphics Library) and our use of Haskell
to develop large systems, provide the experience and the con-
tacts needed for effective support of real projects.

Where acceptable to clients, we have a policy of releasing any
fixes or developed code as OpenSource for use by the wider
Haskell community.

Further reading:

http://www.reid-consulting-uk.ltd.uk/

6.2.2 Aetion Technologies LLC

Report: Mark T.B. Carroll (<Mark.Carroll@Aetion.com>)
Aetion Technologies LLC, a small defense contractor based
in Columbus, Ohio, USA, is using Haskell in-house for most
of its software development. Our software is largely a set of
small- to medium-sized programs that are written to demon-
strate a range of new capabilities to the Department of De-
fense.
Where helping the Haskell community coincides with our
commercial aims, we manage to spare some time to do that.
Activities, mainly led by Isaac Jones, include packaging for
Debian GNU/Linux, writing documentation, working on the
Wiki, answering people’s Haskell questions, and reporting
bugs.
Features that draw us to Haskell are: reusability; program
correctness (supported by high-level features, a lack of side
effects, and strong, static typing); cleanliness; and, multiple
liberally-licensed compilers. We make use of multi-parameter
typeclasses, and we have been using Haddock to help with
our documentation. Probably, we see Haskell’s main (fix-
able) weakness as being a shortage of dependable libraries
that are well-maintained and that offer introductory and ref-
erence documentation for the working programmer.
Although the Haskell community may seem small and mostly
academic, we believe that there is real potential for Haskell in
industry, and that Haskell’s future is sure enough to warrant
the strategic decision of using it commercially. Hiring Haskell
programmers, or people capable of quickly becoming such,
does not seem to be a problem.
It is probable that, at some stage, a customer will require
that a product be delivered in an “industry standard” lan-
guage; it remains to be seen if it is then practical to continue
research and development in Haskell, and to do ports to other
languages when necessary.

6.2.3 Binary Parser

Report by: Sengan Baring-Gould
Project status: no changes
Sengan Baring-Gould <Sengan.Baring-Gould@nsc.com> at
National Semiconductor is developing a binary parser which
given a grammar is able to extract fields from values. This is
used as part of an internal ICE (hardware debugger).
Binary parser provides the ability to reference by name val-
ues which may be composed of other values. It goes one
step further in that the client program does not need to know
where particular value is buried, only what its value is. Binary
parser grammars are intended to enable non-programmers to

25

http://www.sldl.org
http://www.sldl.org
http://www.ittc.ku.edu/Projects/SLDG/
http://haskell.org/hircules/
http://www.reid-consulting-uk.ltd.uk/

access fields of their registers, without requiring the ICE-
developer to write explicit code to do so. For instance a
technical writer could write a binary parser grammar for a
device of which the ICE developer has never heard. Stress
has been put on generality and simplicity, rather than effi-
ciency. For instance binary parser allows multiple definitions,
cyclic definitions, etc.
Binary Parser is implemented in Haskell whereas the current
ICE is not (C++) – but the next generation will be. Currently
communication is achieved using pipes so as to be compati-
ble with both windows and unix (binary parser is used by 2
internal tools, one is unix one is windows).
Binary parser simplifies the porting of the ICE from chip to
chip where the location of register-fields may change but their
functionality does not.

6.3 Haskell in Education

6.3.1 Beseme Project

Report by: Rex Page
Studying connections between programming effectiveness and
practice in reasoning about software.
Lecture notes comprise over 350 animated slides (all both
PowerPoint and PDF formats). About two-thirds of the ma-
terial centers around mathematical logic. After the introduc-
tion of predicates, all of the examples in the logic portion
of the course involve reasoning about properties of software,
most of which is expressed in Haskell (a few are conventional
looping functions).
Software examples include sum, sequence concatenation, log-
ical operations on sequences, the Russian peasant algorithm,
insertion and lookup in AVL trees, and other computations.
Most of the properties verified relate to aspects of program
correctness, but resource utilization properties are also veri-
fied in some cases. Several semesters worth of exams (finals
and exams given during the term) are provided. The slides
have matured through several offerings of the course.
The remaining third of the course discusses other standard
topics in discrete mathematics, such as sets, functions, rela-
tions, trees, and counting. The web page provides access to a
preview of the material. Exams and solutions are protected
by a login procedure (to increase the comfort level of instruc-
tors wishing to use them in courses). The web page provides
a link through which instructors may gain access to the full
website.
A statistical study of grades earned in a course for which dis-
crete mathematics is a prerequisite shows a statistically sig-
nificant difference between the grades of students who studied
the Beseme materials and those of students who studied dis-
crete mathematics in the traditional way. Beseme students
earned higher programming grades, on the average, com-
pared with students of comparable ability from the traditional
group. Details of are available on the Beseme website.

Further reading:

http://www.cs.ou.edu/~beseme/

6.4 Research Groups

Many research groups have already been covered by their
larger projects in other parts of this report, especially if they
work almost exclusively on Haskell-related projects, but there
are more groups out there who count some Haskell-related
work among their interests. Unfortunately, we don’t seem to
reach some of them yet, so if you’re reading this, please make
sure that your group is represented in the next edition!

6.4.1 Formal Methods at Bremen University

Report by: Christoph Lüth and Christian Maeder

Members: Christoph Lüth, Klaus Lüttich, Christian
Maeder, Achim Mahnke, Till Mossakowski, George Russell,
Lutz Schröder
The activities of our group are centered on the UniForM work-
bench and the Common Algebraic Specification Language
(CASL).
The UniForM workbench is an integration framework
mainly geared towards tools for formal methods. It uses a
simple, powerful and flexible notion of events to model all
interactions between tools and users. In particular, the work-
bench provides HTk, an encapsulation of Tcl/Tk based on
our event model (see section 4.3.2).
The workbench is actively used in the MMiSS project that
aims to set up a multimedia internet-based adaptive educa-
tional system covering the whole subject of safe systems. The
workbench currently contains over 80k lines of Haskell code
(plus a few hundred lines of C), and compiles with the Glas-
gow Haskell Compiler, making use of many of its extensions,
in particular concurrency.
We are also using GHC to develop tools, like parsers and static
analysers, for languages from the CASL family, in particular
CASL itself, HasCASL, and HetCASL.
Several parsers have been written using the combinator li-
brary Parsec (section 4.2.3). (Annotated) terms (from the
ATerm Library) are used as a data exchange format and we
use DrIFT (section 3.4) to derive instances for conversions.
Documentation is generated using Haddock (section 5.3.4).
(for ATerm see http://haskell.org/libraries/)
The CASL extension HasCASL combines specification and
functional programming. The executable parts of a Has-
CASL specification are to be translated into Haskell (using
the haskell-src package).
The language HetCASL is a combination of several spec-
ification languages used in formal methods, such as CSP,
CASL, HasCASL, and Modal and Temporal Logic. We ex-
ploit Glasgow Haskell’s multiparameter type classes, hierar-
chical name spaces, functional dependencies, existential and
dynamic types.

26

http://www.cs.ou.edu/~beseme/
http://haskell.org/libraries/

Further reading:

Group activities overview: http://www.informatik.
uni-bremen.de/agbkb/forschung/formal_methods/
UniForM workbench

http://www.informatik.uni-bremen.de/uniform/wb
HTk Graphical User Interfaces for Haskell Programs

http://www.informatik.uni-bremen.de/htk
MMiSS Multimedia instruction in safe systems

http://www.mmiss.de
CASL specification language

http://www.informatik.uni-bremen.de/cofi

6.4.2 The Yale Haskell Group

Report by: John Peterson
The members of our group are Paul Hudak, John Peterson,
Henrik Nilsson, Antony Courtney, and Liwen Huang.
The functional programming group at Yale is using Haskell
and general functional language principals to design and im-
plement domain-specific languages. We are particularly inter-
ested in domains that incorporate time flow. Examples of the
domains that we have addressed include robotics, user inter-
faces, computer vision, and music. FRP was originally devel-
oped by Conal Elliott as part of the Fran animation system.
It has three basic ideas: continuous- and discrete-time sig-
nals, functions from signals to signals, and switching. FRP is
particularly useful in hybrid systems: applications that have
both continuous time and discrete time aspects.
Yampa is the culmination of our efforts to support domain-
specific embedded languages using FRP. Yampa, packaged
with a robot simulator, is currently in release (see section
4.2.5)
John Peterson is working on DSL’s for educational use (see
section 2.5.3). Antony Courtney is working on yet another
graphics library for Haskell to provide capabilities similar to
the Java 2-D graphics library. This is in support of functional
GUIs constructed using FRP. Henrik Nilsson is using FRP
principles in a hybrid modelling language. He is interested
in non-causal modelling in which a system is described by a
system of signal relations rather than functions.
Liwen Huang is working on a language which describes the
motion of humanoid robots. Paul Hudak works a little bit on
each of the above topics, and also on the Haskore computer
music library. Most recently he’s developed an algebraic the-
ory of polymorphic temporal media.

Further reading:

http://www.haskell.org/yale

6.4.3 Functional Programming at Brooklyn
College, City University of New York

Report by: Murray Gross
One prong of the Metis Project at Brooklyn College, City Uni-
versity of New York, is research on and with Parallel Haskell
(section 3.2.2) in a Mosix-Cluster environment. At this time,

after correcting some small bugs in the run time system, we
have the current version of the GUM run-time system for
parallel Haskell operating, and, in order to make the system
more compatible with Mosix, we are currently removing the
PVM dependency. A preliminary version of PVM-free GUM
is currently being tested.
In coming months we expect to apply parallel Haskell to
research on pseudorandom number generation (the shuffled
nested Weyl generator of Holian, Percus, Warnock and Whit-
lock, Phys. Rev. E., <50>, 1607 (1994)) and image process-
ing for extremely-high resolution medical-image visualization.

Further reading:

http://www.sci.brooklyn.cuny.edu/~metis

6.4.4 Functional Programming at Mac-
quarie University

Report by: Anthony Sloane

Group leaders: Anthony Sloane, Dominic Verity.
Within our Programming Language Research Group we are
working on a number of projects with a Haskell focus.

• We are looking at using our port of Haskell (see sec-
tion 2.5.1) for embedded DSLs to build handheld appli-
cations.

• Kate Krastev is investigating specialisation of the nhc98
runtime with a view to code compaction.

• Phuong Tri is working on program proving for Haskell
using Isabelle.

• We are also interested in using Haskell or similar lan-
guages as the basis for language processor specification,
so we are looking at topics such as parser combinators
and first-class attribute grammars.

Further reading:

Our web page is currently being re-developed. In the mean-
time, please contact us via email to <plrg@ics.mq.edu.au>.

6.4.5 Functional Programming at Utrecht
University

Report by: Doaitse Swierstra

All UU Software (http://www.cs.uu.nl/groups/ST/)
We are well on our way to make all our Haskell modules mu-
tually consistent and to make them available through a CVS
server at cvs.cs.uu.nl, in the directory uust. Currently
included are our parser combinators, pretty printers and at-
tribute grammar system. Further software will be added in
the near future.

27

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/uniform/wb
http://www.informatik.uni-bremen.de/htk
http://www.mmiss.de
http://www.informatik.uni-bremen.de/cofi
http://www.haskell.org/yale
http://www.sci.brooklyn.cuny.edu/~metis
http://www.cs.uu.nl/groups/ST/

Parser Combinators (Doaitse Swierstra, Arthur Baars,
Rui Guerra)
The current version of the parser combinators constructs an
online result, in the sense that parts of the result can be ac-
cessed even when parsing has not yet finished. This is espe-
cially useful when parsing and processing large files of similar
information. Furthermore error messages are displayed while
parsing (using unsafePerformIO). The underlying mechanism
for achieving this is relatively costly, although parsing speed is
not much slower than that of parsers generated off line using
Frown or Happy (section 5.2.1).
Furthermore we added combinators that construct parsers
that reorder the recognized elements (merging or permuta-
tion parsing) and keep track of this reordering by returning
a function that can be used to reconstruct the original order.
Inspiration for this came from the wish to retain the original
input in such a way that error messages can be easily added
to it. We also added a combinator that can be used to con-
struct parsers for languages that follow the Haskell off side
rule when parsing. This turned out to be quite complicated
since the precise parsing rules have been defined in terms of
parse errors.

Helium (Arjan van IJzendoorn, Bastiaan Heeren, Daan
Leijen, Rijk-Jan van Haaften)
See the description of Helium in section 2.5.2.

Improving Type Errors (Bastiaan Heeren, Jurriaan
Hage, Doaitse Swierstra)
See the description of the constraint based type inferencer in
section 3.3.2.

Generic Haskell (Johan Jeuring, Andres Loh, Dave
Clark, Doaitse Swierstra)
See the description in section 3.4.

The attribute grammar system AG (Arthur Baars,
Doaitse Swierstra)
The AG system offers Haskell programmers a seamless way
to integrate the “attribute grammar” programming style with
Haskell. This allows you to separate aspects of a program in
more powerfull way than laziness and functions alone offer.
The AG system has for example been used extensively in
the implementation of Helium compiler to specify aspects like
pretty printing, static analysis, and other tranformations.
The system has been bootstrapped, and now provides exten-
sive error messages in case the attribute grammar contains
errors. Only the type checking of the semantic functions is
postponed to the Haskell compiler that is processing the out-
put of the system. In a newer version we have added the
conventional data flow analyses, so we may point at circu-
larities, and can do experiments with generating more strict
evaluators, that may run faster. The system is used in the
course on Implementation of Programming Languages.
We are now investigating how to make language definitions
more compositional, and how to capture recurring patterns
of analysis and data flow in compilers. Ideally we should

like to have so-called first class aspects. It is a matter of
research however how to integrate type checking and aspect
oriented programming. Attempts using extendible records
almost seem to do the job, but unfortuantely incorrect use
leads to pages of error messages. We hope that following
the techniques explained in http://www.cs.uu.nl/people/
arthurb/dynamic.html may help to solve the problem.

Type Checker for Extended Haskell (Atze Dijkstra,
Doaitse Swierstra)
As a companion to Mark Jones’ “Typing Haskell in Haskell”
we are constructing a type inferencer for full (extended)
Haskell. Some of its features are a consistent way of han-
dling existential and polymorphic types, and the use of poly-
morphic kinds (if you want to know what they are good
for read the “Typing Dynamic Typing” paper presented
at the ICFP2002, http://www.cs.uu.nl/people/arthurb/
dynamic.html). We are currently rounding of this construc-
tion with the less interesting, but more laborious parts of full
Haskell. We plan to use this material later this year in a
course on “Type Systems”.

Pretty Printing (Pablo Azero, Doaitse Swierstra)
Our pretty printing combinators have been silently doing their
work over the years. Currently we are updating them, so they
can be generated by the new version of the AG system. They
too will have a more flexible interface allowing naming of
subformats by using a monadic top layer.

Proxima (Martijn Schrage, Johan Jeuring, Lambert
Meertens, Doaitse Swierstra)
Proxima is a generic graphical structure editor with sup-
port for free editing (ie. normal typing instead of selecting
transformations from menus) and computations over the data
structure. The system has a layered architecture, which is de-
scribed and implemented using a library of architecture com-
binators. For the presentation of the document data struc-
ture, the graphical presentation combinator library Xprez has
been developed. The user interface will be implemented using
the upcoming wxHaskell GUI library (section 4.3.5).
One of the intended applications of Proxima is an editor/IDE
for the language Helium. It will support editable pretty
printed code in which types and error messages can be shown.
Sources can be edited by normal typing (also for changing lay-
out) as well as by performing structural edit commands.
A prototype of Proxima is expected to be ready in the second
half of 2003.

Syntax Macros (Arthur Baars, Doaitse Swierstra)
The syntax macros are now in a state that one gets a macro
mechanism for free when using our attribute grammar sys-
tem and parser combinators in constructing a front end of a
compiler. Most of the necessary glueing code is automatically
generated. The syntax macros make it possible to extend the
context free grammar of a language on a per program ba-
sis. Examples of constructs that no longer have to be part

28

http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.cs.uu.nl/people/arthurb/dynamic.html

of the standard language, but could have been defined us-
ing our macro mechanism are the do-notation, and the no-
tation for list comprehensions. An open question, on which
we work, is how to provide feedback to the user in terms
of his original program. The current version is available at:
http://www.cs.uu.nl/people/arthurb/macros.html

6.4.6 Functional Programming at the Uni-
versity of Kent

Report by: Claus Reinke
Here at what is now called the University of Kent, the func-
tional programming interest group currently includes about
a dozen people pursuing research interests in functional pro-
gramming. Haskell is a major focus of teaching and research,
although we also look at other languages (such as Erlang
http://www.erlang.org).
Our members pursue a variety of Haskell-related projects,
many of which are reported in other sections of this report.
Keith Hanna is continuing his work on visual interactive pro-
gramming with Vital (see section 2.5.4). Axel Simon develops
the Gtk2hs binding to version 2.2 of the Gtk GUI library (sec-
tion 4.3.7). Chris Ryder is now evaluating his Metrics and Vi-
sualization library Medina (section 4.5.1) through some case
studies.
Huiqing Li, Simon Thompson and Claus Reinke are making
good progress building a prototype Haskell Refactorer (sec-
tion 5.3.2), and Claus Reinke is also making slow progress
and would like to be able to spend much more time (. . .)
on his project combining functional programming and virtual
worlds (section 4.4.5).
Stefan Kahrs works on the expressiveness of programming
languages, e.g. what one can do with certain language fea-
tures in Haskell. In this vein is his work on red black
trees http://www.cs.kent.ac.uk/~smk/redblack/rb.html
and showing, via a Haskell implementation, the relative com-
pleteness of PCF http://www.cs.kent.ac.uk/~smk/PCF/
Untyped_PCF.html .

Further reading:

FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
Vital: http://www.cs.kent.ac.uk/projects/vital/
Gtk2HS: http://gtk2hs.sourceforge.net/
FunWorlds: http://www.cs.kent.ac.uk/~cr3/FunWorlds/
MEDINA: http://www.cs.kent.ac.uk/~cr24/medina/
Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

6.4.7 Programming Languages & Systems
at UNSW

Report by: Manuel Chakravarty
PLS is a young research group at the University of New
South Wales whose Haskell-related activities comprise high-
performance arrays for Haskell, whole program optimisation

of Haskell programs, optimisation of Embedded Domain Spe-
cific Languages (EDSLs) in Haskell, Haskell to Java trans-
lation, and a Haskell to ObjectiveC bridge. Moreover, we
work on the use of λ-calculus as an intermediate language for
optimising compilers of conventional languages, the safe exe-
cution of untrusted code, Python for the Single Address Space
Operating System (SASOS) Mungi, and cluster computing.

Further reading:

Further details about PLS and the above mentioned activities
can be found at http://www.cse.unsw.edu.au/~pls/ or be
obtained by sending an email to <pls@cse.unsw.edu.au>

6.4.8 Parallel and Distributed Functional
Languages Research Group at Heriot-
Watt University

Report by: Phil Trinder
The Parallel and Distributed Functional Languages (PDF)
research group is part of the Dependable Systems Group in
Computer Science at the School of Mathematics and Com-
puter Science at Heriot-Watt University.

Members: Abyd Al Zain, Andre Rauber Du Bois, Hans-
Wolfgang Loidl, Robert Pointon, Greg Michaelson, Phil
Trinder, Jan Henry Nystrom, Mustafa Khalifa Asawd, Nor-
man Scaife, Chunxu Liu, Graeme McHale
The group investigates the design, implementation and
evaluation of high-level programming languages for high-
performance, distributed and mobile computation. The group
aims to produce notations with powerful yet high-level co-
ordination abstractions, supported by effective implementa-
tions that enable the construction of large high-performance,
distributed and mobile systems. The notations must have
simple semantics and formalisms at an appropriate level of
abstraction to facilitate reasoning about the coordination in
real distributed/mobile systems i.e. to transform, demon-
strate equivalence, or analyse the coordination properties.
In summary, the challenge is to bridge the gap between dis-
tributed/mobile theories, like the pi and ambient calculi, and
practice, like CORBA and the OGSA.

Languages The group has designed, implemented, eval-
uated and used several high performance/distributed func-
tional languages, and continues to do so. High performance
languages include Glasgow parallel Haskell (section 3.2.2) and
Parallel ML with skeletons (PMLS). Distributed/mobile lan-
guages include Glasgow distributed Haskell (section 3.2.3) Er-
lang (http://www.erlang.org/), Hume (http://www-fp.
dcs.st-and.ac.uk/hume/) and Camelot.

Collaborations Primary industrial collaborators include
groups in Microsoft Research Labs (Cambridge), Motorola
UK Research labs (Basingstoke), Ericsson, Agilent Technolo-
gies (South Queensferry).

29

http://www.cs.uu.nl/people/arthurb/macros.html
http://www.erlang.org
http://www.cs.kent.ac.uk/~smk/redblack/rb.html
http://www.cs.kent.ac.uk/~smk/PCF/Untyped_PCF.html
http://www.cs.kent.ac.uk/~smk/PCF/Untyped_PCF.html
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/vital/
http://gtk2hs.sourceforge.net/
http://www.cs.kent.ac.uk/~cr3/FunWorlds/
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cse.unsw.edu.au/~pls/
http://www.erlang.org/
http://www-fp.dcs.st-and.ac.uk/hume/
http://www-fp.dcs.st-and.ac.uk/hume/

Primary academic collaborators include groups in Com-
plutense Madrid, JAIST, LMU Munich, Phillips Universität
Marburg, and St Andrews.

Further reading:

http://www.macs.hw.ac.uk/~ceeatia/PDF/

6.5 Individual Haskellers

“What are you using Haskell for?” – the implementation
mailing lists are full of people sending in bug reports and fea-
ture suggestions, stretching the implementations to their lim-
its. Judging from the “reduced” examples sent in to demon-
strate problems, there must be quite a few Haskell applica-
tions out there that haven’t been announced anywhere (prob-
ably because Haskell is “just” the tool, not the focus of those
projects).
If you’re one of those serious Haskell users, why not write a
sentence or two about your application? We’d be particularly
interested in your experience with the existing tools (e.g., that
all-time-favourite: how difficult was it to tune the resource
usage to your needs, after you got your application working?
Which tools/libraries where useful to you? What is missing?).

Tom Pledger <Tom.Pledger@peace.com> writes:
Since 2001 my work has mainly been the design and imple-
mentation a business data processing language. It is lazy,
functional, and has a lot in common with discrete Functional
Reactive Programming. I tried and failed to implement it as
a Haskell library, before committing to a separate language.
A prototype of the runtime virtual machine, implemented in
Haskell, passed some initial tests in April 2002. We expect
to get a text based prototype working in May 2003, complete
with its database interface and interpreter front end. We have
plans for a graphical user interface, comprising an Integrated
Development Environment and a runtime debugger.
I take care not to ask for related free advice on the Haskell
mailing lists, because my employer expects to own and profit
from what I produce.

Graham Klyne (http://www.ninebynine.org/, http://
www.ninebynine.net/) writes:
My primary interest is in Semantic Web (http://www.w3.
org/2001/sw/) and RDF technologies, and I am a partici-
pant in the W3C RDFcore working group (http://www.w3.
org/2001/sw/RDFCore/). I’m a developer rather than a re-
searcher, and am currently working toward using RDF in net-
work configuration applications. I aim to develop inference
rules to map general network policy descriptions (in RDF) to
device-specific configuration files and/or instructions. I see
the Web in general, and the Semantic Web in particular, as
a natural territory for application of functional programming
techniques. The availability of open, high quality language
implementations, and a vibrant user community are impor-
tant considerations in choosing Haskell.
I aim to use Haskell to explore simple inference tech-
niques for RDF data, motivated in part by limitations I

have encountered when using simple off-the-shelf RDF in-
ference tools. I find it particularly appealing that Haskell
has the full power of a general purpose programming
language, but supports programming styles that can be
matched very closely to formal specifications, thus provid-
ing extra validation for Internet/Web protocol specifica-
tions. So far, in Haskell, I have released a URI process-
ing package and test cases (http://www.ninebynine.org/
Software/Intro.html#URIsInHaskell) with a URI parser
based closely on a proposed revision of the URI specifi-
cation, and am currently working on an RDF graph API,
graph-isomorphism tester, Notation3 parser (http://www.
w3.org/DesignIssues/Notation3.html) and Notation3 for-
matter (mostly working, but not yet released). With the
recent availability of XML parsers with namespace support,
I’d also like to tackle a full RDF/XML parser based on the
new proposed RDF syntax specification (http://www.w3.
org/TR/rdf-syntax-grammar/).
Once I have some basic RDF processing tools in place, I plan
to apply them to network access control and configuration
applications.

Dean Herington <heringto@cs.unc.edu> writes:
I’m presently completing a Master’s thesis for which I built
a small domain-specific language (embedded in Haskell, of
course) to coordinate the execution of cooperating but inde-
pendent application programs. Participating programs and
data files are described formally. A compound execution–
termed a federation–is expressed in Haskell, extended with
operations for large-grain program description and coordina-
tion. The declarative expression of a federation in terms of
data flow among the component programs captures synchro-
nization requirements implicitly and can exploit the inherent
concurrency automatically. Haskell compilation, notably its
rigorous type checking, ensures the consistency of the fed-
eration. I applied the coordination framework to one large
problem, the federation of several existing Fortran programs
that simulate environmental processes in the Neuse River es-
tuary of North Carolina.

Oleg Kiselyov <oleg@pobox.com> continues to extend
his collection of Haskell programming miscellanea, explor-
ing algorithms and programming techniques, with exten-
sively commented example code http://pobox.com/~oleg/
ftp/Haskell/index.html: One recent addition is a page
that discusses several approaches to number-parameterized
types, i.e., datatypes that depend on unary or deci-
mal numbers. http://pobox.com/~oleg/ftp/Haskell/
number-parameterized-types.html

Examples include arrays parameterized by their length (like
an array type in Pascal), bitfields of a statically known size
and Zn types for modular groups or rings with a statically
known modulus. An attempt to add, for example, two bitvec-
tors (arrays, modular integers) of different sizes results in a
compiler error with a clear error message. Often the numer-
ical parameter is an unary (Church) numeral. We will also
show an implementation of number parameterized types with
decimal numerals. The latter are far easier to use. We also

30

http://www.macs.hw.ac.uk/~ceeatia/PDF/
http://www.ninebynine.org/
http://www.ninebynine.net/
http://www.ninebynine.net/
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/RDFCore/
http://www.w3.org/2001/sw/RDFCore/
http://www.ninebynine.org/Software/Intro.html#URIsInHaskell
http://www.ninebynine.org/Software/Intro.html#URIsInHaskell
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://pobox.com/~oleg/ftp/Haskell/index.html
http://pobox.com/~oleg/ftp/Haskell/index.html
http://pobox.com/~oleg/ftp/Haskell/number-parameterized-types.html
http://pobox.com/~oleg/ftp/Haskell/number-parameterized-types.html

demonstrate arithmetic on (decimal) number parameterized
types, which lets us statically typecheck operations such as
array concatenation.
We should stress that the basic number-parameterized types
can be implemented entirely in Haskell98. Advanced oper-
ations such as type arithmetic require Haskell extension to
multi-parameter classes with functional dependencies.
The pure-functional λ-calculator project has been developed
further and has a new web page:
http://pobox.com/~oleg/ftp/Computation/
lambda-calc.html
The project implements a domain-specific language of the
pure untyped λ-calculus embedded into Haskell. The new
project page describes several applications of the calculator:

• λ-calculus of negative numbers and division (the code
has been ported to the notation of the Haskell-based cal-
culator)

• P-numerals: arithmetically more convenient and efficient
numerals than Church numerals. P-numerals are a func-
tional equivalent of a list data structure.

• A solution to a bluff combinator problem in λ-calculus

Mike Thomas <mthomas@gil.com.au> writes:
I’m working on Haskell bindings to the Japi (C wrapped Java
GUI), Grass (geographic information system), MPICH (par-
allel processing by message passing) and Proj (map projec-
tion) libraries to allow me to read, write, display and pro-
cess GRASS mapsets and to do some geochemical modelling,
hopefully with the ability to distribute large map computa-
tions with MPICH.
Windows GHC is my compiler of choice and until recently I
relied heavily on the Parsec and ObjectIO libraries, each of
which is an excellent development tool.
However, the demise of the GTK ObjectIO library port led
me to drop it as the GUI component of the project. Instead, I
released a Haskell binding to a substantial subset of the Japi
GUI library. Although that library is not as slick as Objec-
tIO, the Haskell binding is easily ported to other platforms
and compilers and is also easily maintained by myself with-
out depending on the trials and tribulations of third party
libraries or on other programmers’ coding assistance. To add
practical weight to this aspect of the binding I recently com-
menced work make the binding work with NHC98. (On the
side, I also made a complete binding for GNU Common Lisp
which is available from the Savannah CVS repository.)
I have also changed direction on my interface to GRASS,
preferring now to port libgis to the MinGW32 Windows C
compiler rather to rewrite substantial chunks of functional-
ity in Haskell. Although the Haskellisation process was an
interesting experience, there is now little left for me to gain
by that duplication, and much to lose in terms of extra work
as GRASS itself evolves through time. In general I think
that unnecessary duplication in the open source community
can lead to dissipation of part time programmer-years which
might otherwise be better spent.

The Japi Haskell binding is publicly available in the libraries
subdirectory of the GHC fptools CVS tree. The remainder
of this work is not available on the web as it is relatively
incomplete and I have not decided on a release model.

Further reading:

on GRASS: http://grass.itc.it
on MPICH: http://www-unix.mcs.anl.gov/mpi/mpich/
and Japi: http://www.japi.de/

31

http://pobox.com/~oleg/ftp/Computation/lambda-calc.html
http://pobox.com/~oleg/ftp/Computation/lambda-calc.html
http://grass.itc.it
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.japi.de/

	General
	Haskell.org
	Revised Haskell 98 Report

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	hmake
	Domain-specific variations
	Haskell on Handheld Devices
	Helium
	Educational Domain Specific Languages
	Vital: Visual Interactive Programming

	Language Extensions
	Foreign Function Interface
	Non-sequential Programming
	Concurrent Haskell
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell
	Eden

	Type System/Program Analysis
	Chameleon/A General Type Class Framework based on Constraint Handling Rules
	Constraint based type inferencing at Utrecht

	Generic Programming
	Syntactic Sugar
	Recursive do notation

	Libraries
	Hierarchical Libraries
	Data and Control Structures
	Strafunski
	DSP Libraries
	Parsec
	DData
	Yampa

	Graphical User Interfaces
	The Common GUI Library Task Force
	HTk
	Object I/O for Haskell
	HToolKit
	wxHaskell
	Gtk+HS
	Gtk2hs

	Graphics
	HGL Graphics Library
	Win32 and Xlib Libraries
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	FunGEn -- A game engine for Haskell
	FunWorlds -- Functional Programming and Virtual Worlds

	Tool Frameworks
	Medina -- Metrics for Haskell

	XML and Web Programming
	HaXml
	HXML
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell

	Tools
	Foreign Function Interface
	C-->Haskell
	GreenCard
	Java VM Bridge

	Meta Programming
	Scanning, Parsing, and Analysis
	Haskell Transformations

	Program Development
	Tracing and Debugging
	Refactoring
	Testing
	Documentation

	Applications, Groups, and Individuals
	Non-Commercial Applications
	HScheme
	Haskell in Alchemy
	Analysis Tools for Rosetta
	Hircules, an IRC client

	Commercial Applications
	Reid Consulting Ltd
	Aetion Technologies LLC
	Binary Parser

	Haskell in Education
	Beseme Project

	Research Groups
	Formal Methods at Bremen University
	The Yale Haskell Group
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at Utrecht University
	Functional Programming at the University of Kent
	Programming Languages & Systems at UNSW
	Parallel and Distributed Functional Languages Research Group at Heriot-Watt University

	Individual Haskellers

