
Haskell Communities and Activities Report
http://www.haskell.org/communities/

– sixth edition –

May 25, 2004

Arthur van Leeuwen (ed.) Krasimir Angelov Alistair Bayley Jérémy Bobbio
Björn Bringert Mark Carroll Manuel Chakravarty Olaf Chitil Andrew Cooke
Iavor Diatchki Peter Diviánszky Shae Erisson Levent Erkok Simon Foster
Andrew Frank Leif Frenzel Murray Gross Walter Guttmann Jurriaan Hage

Thomas Hallgren Keith Hanna Anders Höckersten Dean Herington Johan Jeuring
Oleg Kiselyov Graham Klyne Daan Leijen Andres Löh Ralf Lämmel Rita Loogen

Christoph Lüth Ian Lynagh Ketil Z. Malde Simon Marlow Serge Mechveliani
Brandon Moore Henry Nystrom André Pang Sven Panne Ross Paterson

Jens Petersen John Peterson Simon Peyton-Jones Jorge Sousa Pinto Bernie Pope
Alastair Reid Claus Reinke Frank Rosemeier David Roundy Chris Ryder

David Sabel Uwe Schmidt Axel Simon Ganesh Sittampalam Anthony Sloane
Dominic Steinitz Martin Sulzmann Wolfgang Thaller Peter Thiemann

Simon Thompson Phil Trinder Eelco Visser Malcolm Wallace Ashley Yakeley

http://www.haskell.org/communities/

Preface

After the initial scare that the May 2004 edition of
the Haskell Communities & Activities Report might
be without an editor, you see that any statements to
the effect that the Report would no longer be a going
concern were wildly exaggerated. It still muscles up
to them eyes and vooms through the mind, showing
how sizzling the community is. Somewhat clearer:
you now behold the Sixth edition of the Haskell
Communities and Activities report, a collection of
contributions of Haskell enthousiasts worldwide, de-
scribing the things they are currently working on,
and the plans they have for future work.

We are glad that this report has had even more
contributions than the previous report, so that al-
though a number of entries have been dropped, the
total count has increased. This has also increased
the total size of the report so that it is no longer
easily read within half an hour. Whether that is
a good thing or not is debatable — it does how-
ever show that many people are actively contribut-
ing. We would very much like even more contribu-
tions though! As mentioned before, contributing to
the Haskell report is easy: a few words describing
what the current status of your work is may well suf-
fice. For examples, look at sections 4.7.2 and 6.1.3.
Of course, you are best equipped to actually write
those words, and we hope you will again, in time for
the November edition of the Haskell Communities
& Activities Report.

Once more, we remind you that these reports are
not intended as a formal description of the state of
Haskell. Quite the opposite in fact! They are in-
tended as an informal look into the Haskell kitchen,
a chance to let others smell all the interesting stuff
you are cooking up. So please take out your di-
aries, and mark the last weeks of October, as
the contributions to the November edition
are due by then. Naturally, you can always send
in reports to <hcar@haskell.org>, and we will then
consult you in the weeks before the deadline to see if
anything interesting has happened in the meantime.

This report shows how many-faceted the Haskell
community really is. The applications of Haskell
range from bio-informatics (section 8.3) through re-
vision control (section 6.1.6) to Bayesian networks
(section 6.1.11). A general trends emerge from the
collection though: many people are using Haskell
for practical programming, as can be seen from the
increase not only in the number of Applications re-
ported on, but also from the increased number of
libraries dealing with user interfaces, foreign func-
tion interfaces and database interfaces. Of particu-
lar note is that there are now two efforts underway to
incorporate Haskell programming in existing IDE’s
(sections 5.5.1, 5.5.2).

Furthermore, we are pleased to note that a fair
number of contributions appear in this report for
the first time. You may well be in for a few
little surprises! Development of wxHaskell also
seems to continue at an almost frightening pace,
and some projects previously thought dead, such as
HaskellDB, have been resurrected. Besides these ex-
citing developments, it is good to see that the old
standbys are still standing by. GHC is still going
strong, as are Hugs and NHC.

All this implies a new surge in the uptake of
Haskell, and seemingly from people new to the lan-
guage, and quite excited by it. One testament to
that is the interim editor of this report: just a bit
more than a year ago I had not written any Haskell,
and now I have had the great joy of compiling this
report. Many thanks for all the encouraging words
and signs of gratitude for doing this are in order,
therefore: a big thank you to you all. The report
would not have existed without you.

With that we leave you to read the report, and
we hope you will come back in October to report to
Andres as plentifully as you did for this report, and
help him do the best job he can.

Once again, many thanks to all contributors, and
have fun reading and programming!

Arthur van Leeuwen, University of Utrecht, NL

1

Contents

1 General 6
1.1 haskell.org . 6
1.2 #haskell . 6
1.3 The Haskell HaWiki . 7
1.4 Haskell related events . 7

2 Implementations 8
2.1 The Glasgow Haskell Compiler . 8
2.2 Hugs . 9
2.3 nhc98 . 9
2.4 hmake . 9
2.5 Haskell-Clean Compiler . 10
2.6 Domain-specific variations . 10

2.6.1 Haskell on handheld devices . 10
2.6.2 Helium . 10
2.6.3 Educational Domain Specific Languages . 10
2.6.4 Vital: Visual Interactive Programming . 11
2.6.5 hOp . 11

3 Language Extensions 12
3.1 Foreign Function Interface . 12
3.2 Non-sequential Programming . 12

3.2.1 Concurrent Haskell . 12
3.2.2 GpH – Glasgow Parallel Haskell . 12
3.2.3 GdH – Glasgow Distributed Haskell . 13
3.2.4 Eden . 14

3.3 Type System/Program Analysis . 15
3.3.1 Chameleon . 15
3.3.2 Constraint Based Type Inferencing at Utrecht . 16

3.4 Generic Programming . 16
3.5 Template Haskell . 18
3.6 Syntactic sugar . 18

3.6.1 Recursive do notation . 18
3.6.2 Arrow notation . 18

2

4 Libraries 19
4.1 Packaging and Distribution . 19

4.1.1 Library Infrastructure Project . 19
4.1.2 PreludeExts . 19
4.1.3 Haskel User Submitted Libraries . 19

4.2 General libraries . 20
4.2.1 System.Time: a redesigned Time library . 20
4.2.2 A redesigned IO library . 20
4.2.3 System.Process: a platform-independent API for external process control 20
4.2.4 The Haskell Cryptographic Library . 21
4.2.5 Yampa . 21
4.2.6 The revamped monad transformer library . 21
4.2.7 HBase . 22
4.2.8 Pointless Haskell . 22

4.3 Parsing and transforming . 22
4.3.1 Parsec . 22
4.3.2 UPC – Utrecht Parser Combinators . 22
4.3.3 Strafunski . 23
4.3.4 Medina – Metrics for Haskell . 23
4.3.5 Template Greencard . 24

4.4 Data handling . 24
4.4.1 DData . 24
4.4.2 HSQL . 24
4.4.3 Takusen . 24
4.4.4 HaskellDB . 25

4.5 User interfaces . 25
4.5.1 The Common GUI API effort . 25
4.5.2 wxHaskell . 25
4.5.3 HToolkit . 26
4.5.4 gtk2hs - A binding to the Gtk GUI library version 2.0 - 2.4. 26
4.5.5 HTk . 26
4.5.6 HSX11 . 26
4.5.7 Fudgets . 27

4.6 Graphics . 27
4.6.1 HOpenGL – A Haskell Binding for OpenGL and GLUT . 27
4.6.2 FunWorlds – Functional Programming and Virtual Worlds . 27
4.6.3 PanTHeon . 28
4.6.4 Pancito . 28

4.7 Web and XML programming . 28
4.7.1 Halipeto . 28
4.7.2 HaXml . 29
4.7.3 Haskell XML Toolbox . 29
4.7.4 WASH/CGI – Web Authoring System for Haskell . 29
4.7.5 HAIFA . 30
4.7.6 Haskell XML-RPC . 30

3

5 Tools 31
5.1 Foreign Function Interfacing . 31

5.1.1 GreenCard . 31
5.1.2 C–>Haskell . 31
5.1.3 JVM Bridge . 31
5.1.4 PHI – Python Haskell Interface . 31
5.1.5 HOC: A Haskell to Objective-C binding . 32

5.2 Scanning, Parsing, Analysis . 32
5.2.1 Alex version 2 . 32
5.2.2 Happy . 32
5.2.3 HaLex . 32
5.2.4 LRC . 33
5.2.5 Sdf2Haskell . 33
5.2.6 The Utrecht attribute grammar system UAG . 33
5.2.7 DrHylo . 33

5.3 Transformations . 33
5.3.1 The Programatica Project . 33
5.3.2 Ultra . 34
5.3.3 Hare – The Haskell Refactorer . 34
5.3.4 VooDooM . 34

5.4 Testing and Debugging . 35
5.4.1 Tracing and Debugging . 35
5.4.2 Hat . 35
5.4.3 buddha . 35
5.4.4 HUnit . 36

5.5 Development . 36
5.5.1 Visual Studio support for Haskell . 36
5.5.2 Haskell support for the Eclipse IDE . 36
5.5.3 Haddock . 36

6 Applications 37
6.1 Non-commercial applications . 37

6.1.1 HScheme . 37
6.1.2 Curryspondence . 37
6.1.3 lambdabot . 37
6.1.4 HWS-WP . 37
6.1.5 Hircules, an irc client . 38
6.1.6 Darcs . 38
6.1.7 Yarrow . 38
6.1.8 HasLaTeX . 38
6.1.9 DoCon, the Algebraic Domain Constructor . 38
6.1.10 lhs2TEX . 39
6.1.11 NetEdit . 39

6.2 Commercial users . 39
6.2.1 Reid Consulting Ltd . 39
6.2.2 Aetion Technologies LLC . 39

6.3 Haskell in Education . 40
6.3.1 Haskell in Education at Universidade de Minho . 40
6.3.2 Beseme Project . 40

4

7 Groups 42
7.1 Research Groups . 42

7.1.1 Artificial Intelligence and Software Technology at JWG-University Frankfurt 42
7.1.2 Formal Methods at Bremen University . 43
7.1.3 Functional Programming at Brooklyn College, City University of New York 43
7.1.4 Functional Programming at Macquarie University . 43
7.1.5 Functional Programming at the University of Kent . 44
7.1.6 Parallel and Distributed Functional Languages Research Group at Heriot-Watt University 44
7.1.7 Programming Languages & Systems at UNSW . 45
7.1.8 Institute for Geoinformation at TU Vienna . 45
7.1.9 Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga,

Portugal . 46
7.1.10 Functional Programming at Utrecht University . 46

7.2 Other groups . 47
7.2.1 Debian Users . 47
7.2.2 Fedora Haskell packages . 48

8 Individuals 49
8.1 Oleg’s Mini tutorials and assorted small projects . 49
8.2 Graham Klyne . 49
8.3 Bioinformatics tools . 50

5

Chapter 1

General

1.1 haskell.org

Report by: John Peterson

haskell.org belongs to the entire haskell community - we
all have a stake in keeping it as useful and up-to-date as
possible. Anyone willing to help out at haskell.org should
contact John Peterson (<peterson-john@cs.yale.edu>) to get
access to this machine. There is plenty of space and process-
ing power for just about anything that people would want to
do there.

Thanks to Fritz Ruehr for making the cafepress store on
haskell.org a lot more exciting and to Jonathan Lingard
for adding some nice style sheets to our pages.

What can haskell.org do for you?

• advertise your work: whether you’re developing a new
application, a library, or have written some really good
slides for your class you should make sure haskell.org
has a pointer to your work.

• hosting: if you don’t have a stable site to store your work,
just ask and you’ll own haskell.org/yourproject.

• mailing lists: we can set up a mailman-based list for you
if you need to email your user community.

• sell merchandise: give us some new art for the cafepress
store. publicize your system with a t-shirt.

The biggest problem with haskell.org is that it is difficult
to keep the information on the site current. At the moment,
we make small changes when asked but don’t have time for
any big projects. Perhaps the biggest problem is that most
parts (except the wiki) cannot be updated interactively by
the community. There’s no easy way to add a new library or
project or group or class to haskell.org without bothering the
maintainers. the most successful sites are those in which the
community can easily keep the content fresh. We would like
to do something similar for haskell.org.

Just what can you do for haskell.org? Here are a few
ideas:

• make the site more interactive. allow people to add new
libraries, links, papers, or whatever without bothering
the maintainers. allow people to attach comments to
projects or libraries so others can benefit from your ex-
perience. help tell everyone which one of the graphics
packages or gui’s or whatever is really useful.

• develop a system where the pages for haskell.org live
in a cvs repository so that we can more easily share out
maintenance.

• add searching capability to haskell.org.

Some of these ideas would be good student projects. Be
lazy - get students to do your work for you.

Further reading:

http://www.haskell.org
http://www.haskell.org/mailinglist.html

1.2 #haskell

Report by: Shae Erisson

The #haskell IRC channel is a real-time text chat where
anyone can join to discuss Haskell. Point your IRC client to
irc.freenode.net and join the #haskell channel.

The #haskell.se channel is the same subject but discus-
sion happens in Swedish. This channel tends to have a lot of
members from Gothenburg.

6

http://www.haskell.org
http://www.haskell.org/mailinglist.html

1.3 The Haskell HaWiki

Report by: Shae Erisson

The Haskell wikiwiki is a freely editable website designed
to allow unrestricted collaboration. The address is http:
//www.haskell.org/hawiki/ Some highlights are:

• http://www.haskell.org/hawiki/
CommonHaskellIdioms

• http://www.haskell.org/hawiki/
FundamentalConcepts

Feel free to add your own stuff.

1.4 Haskell related events

You may want to participate in some of the following Haskell
related events:

SBLP 2004 O 8o Simpósio Brasileiro de Linguagens de Pro-
gramação sera... my apologies. The 8th Brazilian Sym-
posium on Programming Languages will be held at the
Universidade Federal Fluminense in the city of Niterói,
Brazil, between the 26th and the 28th of May. See
http://sblp2004.ic.uff.br.

ICFP Programming contest Do you want to have your
favorite language declared ‘A fine tool for discerning
hackers’, and gather eternal fame? Participate in the
Seventh ICFP Programming Contest, starting June 4th
2004 and lasting for 72 hours. See http://www.cis.
upenn.edu/proj/plclub/contest/.

EuroHaskell Less talks, more code! On june 10th through
12th, European Haskell developers are welcome in
Gothenburg to meet and code. See also http://www.
haskell.org/hawiki/EuroHaskell.

The Succ Zero IOHCC The Succ Zero International Ob-
fuscated Haskell Code Contest is coming soon to a web-
site near you!
http://www.ScannedInAvian.org/iohcc

AFP 2004 To learn advanced functional programming tech-
niques from those that have developed them, what is a
better place than the Summer School on Advanced Func-
tional Programming? The 2004 edition will be held in
the beautiful Estonian city of Tartu, from the 14th to
the 21st of August. See http://www.cs.ut.ee/afp04/.

IFL’04 The 16th International Workshop on Implementa-
tion and Application of Functional Languages provides
you with an excellent forum to present your work. It
will be held in Lübeck, Germany, on September 8th
through 10th. See http://www.isp.uni-luebeck.de/
ifl04/Deadlines/index.htm.

ICFP04 The big one, the International Conference on Func-
tional Programming, this year will be held in Snowbird,
Utah, USA, from the 19th to the 22nd of September.
See http://www.cs.indiana.edu/icfp04/.

Haskell Workshop 2004 Next to the ICFP, on the 22nd
of September, the annual Haskell Workshop awaits your
input, also in Snowbird, Utah, USA. See http://www.
cs.nott.ac.uk/~nhn/HW2004/.

TFP’04 On an undisclosed date somewhere this year, Mu-
nich will provide a venue for the Symposium on Trends
in Functional Programming. For more information, see
http://www.cee.hw.ac.uk/~dsg/sfp/.

7

http://www.haskell.org/hawiki/
http://www.haskell.org/hawiki/
http://www.haskell.org/hawiki/CommonHaskellIdioms
http://www.haskell.org/hawiki/CommonHaskellIdioms
http://www.haskell.org/hawiki/FundamentalConcepts
http://www.haskell.org/hawiki/FundamentalConcepts
http://sblp2004.ic.uff.br
http://www.cis.upenn.edu/proj/plclub/contest/
http://www.cis.upenn.edu/proj/plclub/contest/
http://www.haskell.org/hawiki/EuroHaskell
http://www.haskell.org/hawiki/EuroHaskell
http://www.ScannedInAvian.org/iohcc
http://www.cs.ut.ee/afp04/
http://www.isp.uni-luebeck.de/ifl04/Deadlines/index.htm
http://www.isp.uni-luebeck.de/ifl04/Deadlines/index.htm
http://www.cs.indiana.edu/icfp04/
http://www.cs.nott.ac.uk/~nhn/HW2004/
http://www.cs.nott.ac.uk/~nhn/HW2004/
http://www.cee.hw.ac.uk/~dsg/sfp/

Chapter 2

Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones

GHC status (April 2004) We released GHC 6.2 in De-
cember 2003, with a bug-fix release of 6.2.1 in April.

Here are some development highlights from the last few
months. None of them are in the released compiler yet –
indeed not all of the developments described in the November
2003 Report are in 6.2 either. We expect to release 6.4, with
all this new stuff, in May or June.

• In January and February we did a complete rewrite of
GHC’s back end. The hoary old data types AbstractC
and Stix have gone, and in their place is a new, much
smaller data type Cmm. This data type is inspired directly
by the C-- language, and indeed, we can now generate
C-- as well as C and native code.
Not only is the result far cleaner and easier to maintain,
but

1. it’s at least 1500 lines shorter
2. everything works via the native code generator

route (previously profiling and ticky-ticky counting
did not)

Final step: replace the old “.hc” files in the runtime
system with shiny new C-- files, and persuade GHC to
parse them into Cmm. Then we can (optionally) abandon
the via-C route altogether if we want.
Many thanks to Don Stewart, who has helped a lot with
this stuff.

• Further developments on the scrap-your-boilerplate front
are fully implemented. A new paper is now avail-
able at http://research.microsoft.com/~simonpj/
papers/hmap/gmap2.htm

• A slew of Template Haskell improvements, notably the
introduction of an abstract type Name, as envisaged in
the (still rather scrappy) design note http://research.
microsoft.com/~simonpj/tmp/notes2.ps.

• On Windows, GHC can now readily be built from source
using MSYS, as well as Cygwin. MSYS is a cut-down
version of Cygwin; the build goes significantly faster.

• A few improvements to the way in which overlapping
instances are handled. In particular, overlap is now
checked lazily. So it’s OK to have:

instance C Int b where ...
instance C a Int where ...

Then if you need (C Int Bool), the first applies unam-
biguously, and there is no problem. Only if you need (C
Int Int), which matches both, is an overlap reported.

Future plans:

• Simon M. will do more work on the GHC Visual Studio
plug-in.

• Geoffrey Washburn is coming to Cambridge for an in-
ternship. We plan to implement so-called “first-class
phantom types”, also called “guarded recursive data
types” (Xi), “inductive types” (Coq), and “equality-
qualified types” (Sheard).

• We still are actively working with Isaac Jones on plans
for library packaing, and will adapt GHC to work with
the new scheme.

As ever, we are grateful to the many people who sub-
mit polite and well-characterised bug reports. We’re even
more grateful to folk actually helping to develop and main-
tain GHC. The more widely-used GHC becomes, the more

8

http://research.microsoft.com/~simonpj/papers/hmap/gmap2.htm
http://research.microsoft.com/~simonpj/papers/hmap/gmap2.htm
http://research.microsoft.com/~simonpj/tmp/notes2.ps
http://research.microsoft.com/~simonpj/tmp/notes2.ps

Simon M. and I rely on you to help solve people’s problems,
and to maintain and develop the code. We won’t be around
for ever, so the more people who are involved the better. If
you’d like to join in, please let us know.

2.2 Hugs

Report by: Ross Paterson
Status: stable, actively maintained, volunteers welcome

Hugs is a very portable, easily installed Haskell-98 compli-
ant interpreter that supports a wide range of type-system and
runtime-system extensions including typed record extensions,
implicit parameters, the foreign function interface extension
and the hierarchical module namespace extension.

Current State

The most recent release of Hugs was in November 2003, mark-
ing a shift to the Haskell hierarchical libraries, though many
old libraries are implemented by compatibility stubs. Some
day these old interfaces will disappear; users are encouraged
to migrate to the new interfaces, which are more powerful
and offer greater compatibility with other Haskell implemen-
tations.

The development version incorporates support for Unicode,
thanks to Dimitry Golubovsky <dimitry@golubovsky.org>.
There is also a steady trickle of fixes and minor enhance-
ments.

Future plans:

The manpower available for Hugs development and mainte-
nance remains very limited. Contributions from volunteers
are welcome. We would particularly like to hear from people
prepared to build, test and debug on Windows. (A full build
requires one of the free Unix-like environments for Windows.)

We would like to do the next release in the summer, in
time for classes in the northern hemisphere, but we’ve not
managed that in the last few years. (See the request for
volunteers above.)

The next release will probably include more third party li-
braries than previous ones, though in such a way as to make
separate upgrades of these libraries fairly painless. The idea
is to provide a substantial Haskell system out of the box. We
will also cooperate with the Library Infrastructure Project
(section 4.1.1), and will use it if it is ready in time. Library
authors who would like to participate should make their li-
braries work with Hugs and contact us.

2.3 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98, a small, easy to install, standards-compliant com-
piler for Haskell 98, is in stable maintenance-only mode. The
public release remains at version 1.16 for the moment. Main-
tenance and bugfixes continue to the CVS tree at haskell.org.
When sufficient serious fixes have accumulated, a new pub-
lic release will be forthcoming. No innovative new features
are currently planned, unless you, dear reader, would like to
volunteer!

Further reading:

http://www.haskell.org/nhc98

2.4 hmake

Report by: Malcolm Wallace
Status: stable, maintained

Hmake is an intelligent compilation management tool for
Haskell programs. It is stable at public release version 3.08,
with occasional maintenance and bugfixes to the CVS tree at
haskell.org.

Future plans:

The hmake source code is being used as a basis for parts of the
new library infrastructure project. It has also recently con-
tributed code to ‘cpphs’, a minimal replacement in Haskell for
the C-preprocessor. The latter will hopefully develop further
into a useful tool in its own right.

Further reading:

http://www.haskell.org/hmake
http://www.haskell.org/cpphs

9

http://www.haskell.org/nhc98
http://www.haskell.org/hmake
http://www.haskell.org/cpphs

2.5 Haskell-Clean Compiler

Report by: Peter Diviánszky
Status: experimental

About our Haskell-Clean compiler found at http://aszt.
inf.elte.hu/~fun_ver/#ToC11:

• It is an experimental version.

• It could be updated because the vesion of current Clean
System is 2.1 and it was developed with version 2.0.2
(However, the distribution contains the 2.0.2 Clean Sys-
tem)

• We are working on a refactoring tool for Clean. We
intend to refactor Haskell programs with the same tool.
If it will be possible, our Haskell-Clean compiler will be
revisited. Until then, we do not think we will develop or
update it.

2.6 Domain-specific variations

2.6.1 Haskell on handheld devices

Report by: Anthony Sloane
Status: unreleased
Work on our port of nhc982.3 to Palm OS is continuing but,
unfortunately, is not ready for public release at this stage. In
our revised schedule we plan to have something released by
the end of this year.

2.6.2 Helium

Report by: Daan Leijen
Status: active development
Participants: Arjan van IJzendoorn, Bastiaan Heeren,
Daan Leijen, Rijk-Jan van Haaften

The purpose of the Helium project is to construct a light-
weight compiler for a subset of Haskell that is especially di-
rected to beginning programmers (see “Helium, for learning
Haskell”, Bastiaan Heeren, Daan Leijen, Arjan van IJzen-
doorn, Haskell Workshop 2003). We try to give useful feed-
back for often occurring mistakes. To reach this goal, He-
lium uses a sophisticated type checker described in section
3.3.2 (see also “Scripting the type inference process”, Basti-
aan Heeren, Jurriaan Hage and S. Doaitse Swierstra, ICFP
2003).

Helium now has a simple graphical user interface that pro-
vides online help. We plan to extend this interface to a full

fledged learning environment for Haskell. The complete type
checker and code generator has been constructed with the
attribute grammar (AG) system developed at Utrecht Uni-
versity (section 7.1.10) One of the aspects of the compiler
is that it also logs errors, so we can track the kind of prob-
lems students are having, and improve the error messages
and hints.

Currently, the Helium compiler has been used successfully
for the third time during the functional programming course
at Utrecht University. There is also initial support for type
classes, but we are still investigating the quality of error mes-
sages in the presence of overloading.

Further reading:

http://www.cs.uu.nl/research/projects/helium/

2.6.3 Educational Domain Specific Lan-
guages

Report by: John Peterson
Status: maintained, stable

The goal of this project is to bring functional program-
ming to users that are not trained computer scientists or
programmers. We feel that the simplicity of functional pro-
gramming makes it an ideal way to introduce programming
language concepts and encourage a basic literacy in compu-
tational principles. Languages can also be used as part of
a domain-centered learning experience, allowing functional
programming to assist in the instruction of subjects such as
mathematics or music.

Our languages are media oriented. They allow students to
explore the basic principles of functional programming while
creating artifacts such as images, animations, and music.

These languages have been used for high school mathemat-
ics education, an introduction to functional programming for
students in high school programming classes, and as a gentle
way to present functional programming in a programming
language survey class. The graphics language, Pan#, runs
all of the examples in Conal Elliott’s Fun of Programming
chapter with only a few minor changes. It also runs many of
the examples found in Jerzy Karczmarczuk’s Clastic system.

There are two languages under development. The first is
Pan#, a port of Conal Elliott’s Pan compiler to the C# lan-
guage. This runs on Windows using .NET and is easy to in-
stall and use. This probably would run on Linux using Mono
(.NET for other platforms) but we have not attempted this
yet. The front end of this system is a mini-Haskell interpreter
which is currently somewhat unsophisticated. Version 1.0 of

10

http://aszt.inf.elte.hu/~fun_ver/#ToC11
http://aszt.inf.elte.hu/~fun_ver/#ToC11
http://www.cs.uu.nl/research/projects/helium/

Pan# was released in March and the system finally has a
type checker. Pan# is an excellent introduction to functional
programming and can be used in conjunction with the Fun
of Programming chapter as an excellent way to teach func-
tional languages. Our website contains a number of examples
produced by this language and some instructional materials.

Our second language describes music using Paul Hudak’s
Haskore system. We are currently re-packaging Haskore to
simplify the language somewhat and add a few new capabil-
ities, including support for randomized music. We are cur-
rently working on a tutorial for the system and should have
a release ready in June 2004.

Further reading:

http://haskell.org/edsl/

2.6.4 Vital: Visual Interactive Program-
ming

Report by: Keith Hanna
Status: active (latest release: May 2004)

Vital is a visual environment that aims to present Haskell
in a form suitable for use by engineers, mathematicians, an-
alysts and other end users who often need a combination of
the expressiveness and robustness that Haskell provides to-
gether with the ease of use of a ’live’ graphical environment
in which programs can be incrementally developed.

In Vital, Haskell modules are presented as ’documents’
having a free-form layout and with expressions and their val-
ues displayed together. These values can be displayed ei-
ther textually or graphically (as linked data structures), and
can be edited using conventional Copy/Paste mouse gestures.
This gives end users a convenient, intuitive way of inputting
or modifying complex literal data structures. For example, a
value of type Tree can be displayed graphically and subtrees
selected, copies and pasted between nodes.

A recent development allows Vital documents to include
hyperlinked comments, allowing a user to navigate freely
between documents without needing to be concerned about
loading them explicitly.

A collection of interactive tutorial documents (including
a couple illustrating approaches to Exact Real Arithmetic)
have recently been added.

The Vital system can be run via the web: a single mouse-
click is all that is needed!

Further reading:

http://www.cs.kent.ac.uk/projects/vital/

2.6.5 hOp

Report by: Jérémy Bobbio
Status: beta, active development

hOp is a micro-kernel based on the run-time system (RTS)
of the Glasgow Haskell Compiler. It is meant to enable people
to experiment with writing various components of an oper-
ating system in Haskell. This includes device drivers, data
storage devices, communication protocols and tools required
to make use of these components.

The February release of hOp consists of a trimmed-down
RTS that does not depend on features usually provided by an
operating system. It also contains low-level support code for
hardware initialization. This release makes most functions
from the base hierarchical library available (all but the Sys-
tem modules), including support for threads, communication
primitives, and the foreign function interface (FFI).

Building on the features of the initial release, we designed
and implemented an interrupt handling model. Each inter-
rupt handler is run in its own thread, and sends events to
device drivers through a communication channel. We tested
our design by implementing a simple PS/2 keyboard driver,
and a “shell” that allows running a “date” command, which
accesses the real time clock of the computer.

We are currently working towards integrating GHCi to the
system, to be used as a shell. We plan to add the necessary
features for the system to be able to compile itself (boot-
strap), including some kind of data storage facility, an as-
sembler and a linker (all of course implemented in Haskell).

Further reading:

Further information and source code are available here:
http://www.macs.hw.ac.uk/~sebc/hOp/

11

http://haskell.org/edsl/
http://www.cs.kent.ac.uk/projects/vital/
http://www.macs.hw.ac.uk/~sebc/hOp/

Chapter 3

Language Extensions

3.1 Foreign Function Interface

Report by: Manuel Chakravarty
Status: Version 1.0

Version 1.0 of the Haskell 98 FFI Addendum has finally
been released. The report has been through many revisions
and is fully implemented by GHC and Hugs and mostly im-
plemented by NHC98. As with Haskell 98, the FFI standard
is meant to be a stable interface that Haskell developers can
rely on in the midst of new extensions and language features.
Details are available from
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
As the editor of the report, it is my pleasure to thank the

many people who have contributed to the FFI standard by
proposing designs, reading and correcting the report, imple-
menting the various revisions of the standard, and by testing
it in their software. As a result of the broad involvement, the
FFI Addendum is a community product, just like Haskell
itself.

What is missing, at the moment, is a good tutorial that
serves as a companion to the standards document and ex-
plains FFI programming by way of a comprehensive set of
examples. If anybody feels the urge to help out by contribut-
ing all or parts of such a tutorial, please let me know at
<chak@cse.unsw.edu.au>.

3.2 Non-sequential Programming

3.2.1 Concurrent Haskell

Report by: Wolfgang Thaller

The threaded RTS for GHC, including the new “bound
threads” feature, has become part of the standard distribu-
tion of GHC, starting with 6.2.1; the feature is activated by

passing a command-line flag (-threaded) to GHC when link-
ing.

3.2.2 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder

The Team

Phil Trinder, Kevin Hammond, Hans-Wolfgang Loidl, Abyd
Al Zain, Jost Berthold, Xiao Yan Deng, Murray Gross, Stef-
fen Priebe, Andre Rauber du Bois, Leonid Timochouk, Yang
Yang.

Status

A complete, GHC-based implementation of the par-
allel Haskell extension GpH (http://www.macs.hw.
ac.uk/~dsg/gph/#GPH) and of evaluation strategies
(http://www.macs.hw.ac.uk/~dsg/gph/papers/html/
Strategies/strategies.html) is available. Extensions of
the runtime-system and language to improve performance
and support new platforms are under development.

System Evaluation and Enhancement

The first 3 items are linked by a British Council/DAAD
project (http://www.macs.hw.ac.uk/~dsg/projects/
GpHGRID.html).

• We have ported GUM to computational GRIDs, re-
placing the current PVM communications layer with
MPICH-G2. Measurements show that standard GUM
gives good performance on a single cluster and on mul-
tiple clusters with low-latency interconnect. However
standard GUM gives poor performance on multiple clus-
ters connected with high-latency interconnect and we are

12

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~dsg/projects/GpHGRID.html
http://www.macs.hw.ac.uk/~dsg/projects/GpHGRID.html

developing GRIDGum - an implementation with specific
adaption techniques for this shared, heterogeneous and
hierarchical architecture.

• We are designing a generic parallel runtime environment
encompassing both the Eden (section 3.2.4) and GpH
runtime environments

• We are investigating cost models for distributed compu-
tations designing an integrated runtime environment for
both Eden and GpH.

• In separate work GpH is being used as a vehicle for in-
vestigating scheduling on the GRID.

• We are teaching parallelism to undergraduates using
GpH at Heriot-Watt (http://www.macs.hw.ac.uk/
~trinder/ParDistr/ and Phillips Universität Marburg
(http://www.mathematik.uni-marburg.de/~loogen/
Lehre/ws02/pfp/vor02WSpfp.shtml).

GpH Applications

• GpH is being used to parallelise the GAP mathematical
library in EPSRC project (GR/R91298).

Implementations

The GUM implementation of GpH is available in two devel-
opment branches.

• The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines: bi-
nary snapshot at ftp://ftp.macs.hw.ac.uk/pub/gph/
gum-4.06-snap-i386-unknown-linux.tar (see instal-
lation instructions in README.GUM). The stable branch
is available from the GHC CVS repository via tag
gum-4-06.

• The unstable branch (GUM-5.02, based on GHC-5.02)
is currently being tested on a Beowulf cluster. The un-
stable branch is available from the GHC CVS repository
via tag gum-5-02-3.

Our main hardware platform are Intel-based Beowulf clus-
ters. Work on ports to other architectures is also moving on
(and available on request from <gph@macs.hw.ac.uk>):

• A port to a Sun-Solaris shared-memory machine exists
but currently suffers from performance problems.

• A port to a Mosix cluster has been built in the Metis
(section 7.1.3) project at Brooklyn College, with a
first version available on request from Murray Gross
(<mgross@dorsai.org>).

Further reading:

GpH Home Page: http://www.macs.hw.ac.uk/~dsg/gph/

3.2.3 GdH – Glasgow Distributed Haskell

Report by: Jan Henry Nyström
The Team: Phil Trinder, Hans-Wolfgang Loidl, Jan Henry
Nyström, Robert Pointon, Andre Rauber du Bois

Status:

Steaming ahead!

Implementation:

An alpha-release of the GdH implementation is available on
request <gph@macs.hw.ac.uk>. It shares substantial compo-
nents of the GUM implementation of GpH (Glasgow parallel
Haskell; section 3.2.2).

GdH Applications and Evaluation

• An EPSRC project High Level Techniques for Dis-
tributed Telecommunications Software (http://www.
macs.hw.ac.uk/~dsg/telecoms/, GR/R88137) is now
underway and is entering its first GdH phase. The
project evaluates GdH and Erlang in a telecommuni-
cations context, the work is a collaboration between
Heriot-Watt University and Motorola UK Research
Labs.

• There is a forthcoming Ph.D. thesis on the design, im-
plementation and use of GdH by Robert Pointon (http:
//www.macs.hw.ac.uk/~rpointon/).

Further reading:

http://www.macs.hw.ac.uk/~dsg/gdh/

13

http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~dsg/gdh/

3.2.4 Eden

Report by: Rita Loogen

Description.

Eden has been jointly developed by two groups at Philipps
Universität Marburg, Germany and Universidad Com-
plutense de Madrid, Spain. The project has been ongoing
since 1996. Currently, the team consists of the following peo-
ple:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén, Alberto
de la Encina, Mercedes Hidalgo, Rafael Mart́ınez, Clara
Segura

in Marburg: Rita Loogen, Jost Berthold, Steffen Priebe,
Pablo Roldán Gómez

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation. While
providing enough control to implement parallel algorithms
efficiently, it frees the programmer from the tedious task of
managing low-level details by introducing automatic commu-
nication (via head-strict lazy lists), synchronization, and pro-
cess handling.

Eden’s main constructs are process abstractions and pro-
cess instantiations. The function process :: (a -> b) ->
Process a b embeds a function of type (a -> b) into a pro-
cess abstraction of type Process a b which, when instanti-
ated, will be executed in parallel. Process instantiation is ex-
pressed by the predefined infix operator (#) :: Process
a b -> a -> b. Higher-level coordination is achieved by
defining skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been used
to parallelise a set of non-trivial benchmark programs.

Eden has been implemented by modifying the parallel run-
time system GUM of GpH (see above). Differences include
stepping back from a global heap to a set of local heaps to
reduce system message traffic and to avoid global garbage
collection. The current (freely available) implementation is
based on GHC 5.02.3. A source code version is available via
the ghc CVS repository with tag eden-5-02-3. We are eager
to catch up to the current ghc version.

Recent Publications

survey:

Rita Loogen, Yolanda Ortega-Mallén and Ricardo Peña:
Parallel Functional Programming in Eden, submitted

to the Journal of Functional Programming special issue
on Functional Approaches to High-Performance Parallel
Programming 2004, to appear.

runtime-system level optimisations:

Jost Berthold: Dynamic Chunking in Eden, Proceedings
of Implementation of Functional Languages, IFL 2003,
Edinburgh (UK), September 2003, Springer LNCS, to
appear.

generalised runtime system:

Jost Berthold: Towards a Generalised Runtime Environ-
ment for Parallel Haskells, Workshop on Practical As-
pects of High-level Parallel Programming (PAPP 2004),
Kraków, Poland, June 2004.

Eden-Maple interface:

Rafael Mart́ınez and Ricardo Peña: Building an Inter-
face Between Eden and Maple: A way of Paralleliz-
ing Computer Algebra Algorithms, Proceedings of Im-
plementation of Functional Languages, IFL 2003, Edin-
burgh (UK), September 2003, Springer LNCS, to appear.

semantics:

1. Mercedes Hidalgo-Herrero and Yolanda Ortega-
Mallén: Continuation Semantics for Parallel
Haskell Dialects, APLAS’03 — the First Asian
Symposium on Programming Languages and Sys-
tems, Beijing, China, November 27–29, Springer
LNCS.

2. M. Hidalgo-Herrero: Formal Semantics for a paral-
lel functional language, Ph.D. Thesis, Universidad
Complutense de Madrid 2004 (in spanish).

Current Activities

• Yolanda and Mercedes have developed a denotational se-
mantics for Eden which is based on a continuation-based
model for process creation and single-value communica-
tion. Mercedes has finished her Ph.D. thesis on formal
semantics for a parallel functional language.

• Rafael and Ricardo do experiments with computation-
intensive computer-algebra algorithms on the recently
developed Eden-Maple interface.

• Jost is working on a new, more general implementation
of parallel Haskell dialects in a shared runtime system.
Starting point is the support for Eden in GHC 6.x, but
the overall target is a generic parallel platform that can

14

support multiple high-level languages and that offers im-
plicit control of key runtime aspects such as thread man-
agement, synchronization and communication.

• The use of Template Haskell to improve or simplify the
compilation of Eden programs will be investigated by
the Marburg group. In particular, Steffen’s work on the
polytypic skeleton library for Eden benefits from the new
meta-programming facilities.

• Pablo has extended the Eden runtime environment to
output trace information which can be visualized by a
newly developed trace viewer.

Further reading:

http://www.mathematik.uni-marburg.de/~eden

3.3 Type System/Program Analysis

3.3.1 Chameleon

Report by: Martin Sulzmann and Jeremy Wazny
Status: on-going
Participants: Gregory J. Duck, Simon Peyton Jones,
Peter J. Stuckey, Martin Sulzmann, Jeremy Wazny

Chameleon is an experimental version of Haskell which in-
corporates a user-programmable type system based on Con-
straint Handling Rules (CHRs). Chameleon programs are
compiled to plain Haskell, i.e. can be executed by any stan-
dard Haskell system such as GHC etc.

In our most recent work we focus on the following topics:

Type annotations in Haskell: We consider type infer-
ence in Haskell in the presence of type annotations, i.e.
user-provided type declarations. Existing implementa-
tions such as HUGS and GHC have some clear limita-
tions. Some programs are rejected despite being well-
typed. We propose two novel inference schemes which
significantly improve over previous formulations. One
is based on logic formulae. We can state some suffi-
cient conditions under which we achieve principal types.
In general, inference via logic formulae is not feasible.
Therefore, we propose a slightly weaker formulation in
terms of Constraint Handling Rules (CHRs). The CHR-
based inference system has been fully implemented as
part of the Chameleon system (experimental version of
Haskell).

Improving Type Error Diagnosis: We present a number
of methods for providing improved type error reports in
the Haskell and Chameleon programming languages. We
build upon previous work (see Haskell’03 paper) where
we first introduced the idea of discovering type errors by
translating the typing problem into a constraint prob-
lem and looking for minimal unsatisfiable subsets of con-
straints. This allowed us to find precise sets of program
locations which are in conflict with each other. Here we
extend this approach by extracting additional useful in-
formation from these minimal unsatisfiable sets. This
allows us to report errors as conflicts amongst a num-
ber of possible, candidate types. The advantage of our
approach is that it offers implementors the flexibility to
employ heuristics to select where, amongst all the loca-
tions involved, an error should be reported. In addition,
we present methods for providing improved subsumption
and ambiguity error reporting.

Functional dependencies (FDs) are a popular and useful ex-
tension to Haskell style type classes. We gave a refor-
mulation of functional dependencies in terms of CHRs
which has the following merits:

• CHRs give us a language in which to explain more
precisely what functional dependencies are. In par-
ticular, we are able to make the so-called “improve-
ment rules” implied by FDs explicit in terms of
CHRs.

• Based on this understanding, we provide the first
concise proof that the restrictions imposed by
Jones on functional dependencies (described in his
ESOP’00 paper) ensure sound and decidable type
inference.

• Jones’s restrictions can be very limiting. We pro-
pose “more liberal FDs” which seem to be a de-
sirable extension. We establish some concise condi-
tions under which liberal FDs are sound. In general,
liberal FDs are undecidable. Therefore, we impose
a novel termination check on CHRs. We identify
sufficient conditions under which CHRs are guar-
anteed to terminate.

Further reading:

http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~sulzmann/chr/

15

http://www.mathematik.uni-marburg.de/~eden
http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~sulzmann/chr/

3.3.2 Constraint Based Type Inferencing at
Utrecht

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Jurriaan Hage, Doaitse
Swierstra

With the generation of understandable Haskell error mes-
sages in mind we have devised a constraint based type in-
ference method which is currently being used in the Helium
compiler (section 2.6.2) developed at Universiteit Utrecht.

The main characteristics of the inferencer are the following.

• Our philopsophy is that no single type inferencer works
best for everybody all the time. Hence, we want a
tunable type inferencer adaptable to the programmer’s
needs without the need for him to delve into the com-
piler.

• We generate precise position information and preserve
type synonyms in error messages.

• The programmer can choose the type inference strategy
of his liking (M and W and other greedy variants, and the
unbiased type graph based implementations have been
implemented).

• The type graph implementation uses quite a number of
heuristics to decide what is the most likely source of the
error.

• A logging facility is available in Helium which has given
us a large amount of correct and erroneous Haskell pro-
grams which can be used to improve our type inferencer.
In the future these programs can also be used for bench-
marking optimizations and many other purposes. The
programs have been anonymized, but the relation be-
tween programs by the same programmer has been kept
intact. Various questions can then be answered: Do our
hints help? Are they used? It is easy to come up with
many interesting questions. Currently we have infor-
mation from two instances of a first year programming
course.

• A major innovation is the ability for a programmer to
develop his domain specific type rules for a combinator
library he might be writing. In addition, he may specify
that his experiences are that certain functions are often
mixed up. As a result, a compiler may give the hint
that (++) should be used instead of (:), because (++)
happens to fit in the context.

The domain specific type inference rules are automati-
cally checked for soundness, and a programmer does not
have to be familiar with the process of type inferencing
as it currently takes place within the compiler.

An article on this facility can be found in the ICFP ’03
proceedings.

The underlying machinery for the type inferencer has been
published in the Proceedings of the Workshop of Immedi-
ate Applications of Constraint Programming held in October
2003 in Cork, Ireland.

Since the report of Nov 2003

• We have separated the general aspects of the solver from
the Helium type inferencer so that a lot of the functional-
ity can be used in other projects too. A notable example,
on which a student is currently working, is to perform
constraint based strictness analysis for Haskell.

• We have been working on type inference directives for
type classes and have added type classes information to
the already existing type inference directives and heuris-
tics. We expect to report on this soon.

• Second, the type inference directives need to be improved
for usability, for which we have plenty of ideas, but these
still have to be implemented and reported on.

• On the technical level, we have made some progress with
making the underlying machinery more elegant. Some
of these changes are instigated by a need for integrat-
ing the various ’phases’ of type inferencing such as the
unification phase, the reduction of class constraints, the
checking for ’declared type too general’ and so on.

Further reading:

Project website: http://www.cs.uu.nl/groups/ST/
Center/Top

3.4 Generic Programming

Report by: Johan Jeuring

Software development often consists of designing a (set
of mutually recursive) datatype(s), to which functionality is
added. Some functionality is datatype specific, other func-
tionality is defined on almost all datatypes, and only depends
on the type structure of the datatype.

Examples of generic (or polytypic) functionality defined
on almost all datatypes are the functions that can be derived

16

http://www.cs.uu.nl/groups/ST/Center/Top
http://www.cs.uu.nl/groups/ST/Center/Top

in Haskell using the deriving construct, storing a value in a
database, editing a value, comparing two values for equality,
pretty-printing a value, etc. Another kind of generic function
is a function that traverses its argument, and only performs
an action at a small part of its argument. A function that
works on many datatypes is called a generic function.

There are at least two approaches to generic programming:
use a preprocessor to generate instances of generic functions
on some given datatypes, or extend a programming language
with the possibility to define generic functions.

Preprocessors

DrIFT is a preprocessor which generates instances of generic
functions. It is used in Strafunski (section 4.3.3) to generate
a framework for generic programming on terms.

Languages

Light-weight generic programming: Generic functions for
data type traversals can (almost) be written in Haskell it-
self, as shown by Ralf Laemmel and Simon Peyton Jones
in ‘Scrap your boilerplate’ (http://research.microsoft.
com/Users/simonpj/papers/hmap/). The “Scrap your boil-
erplate” approach to generic programming in Haskell has
been further elaborated, see the recently submitted paper
“Scrap more boilerplate: reflection, zips, and generalised
casts” available from http://www.cs.vu.nl/boilerplate/.
This papers shows how to fill some of the gaps (such as generic
zips) which previously were difficult to solve in this approach.

In “Generics for the masses”, Ralf Hinze shows how to
write generic programs in Haskell98, without any fancy exten-
sions. See http://www.informatik.uni-bonn.de/~ralf/.

Generic Haskell: ‘Dependency-style’ Generic Haskell in-
troduces a new type system for Generic Haskell that at the
same time simplifies the syntax and provides greater expres-
sive power, see the ICFP paper by Andres Löh, Dave Clarke
and Johan Jeuring for a description. A type-checker has been
implemented for dependency-style Generic Haskell. Andres
Löh will defend his PhD thesis on this topic this summer,
electronic copies will be available when the thesis is ready.

Generic Haskell is used in ‘UUXML: A Type-Preserving
XML Schema - Haskell Data Binding’ by Frank Atanassow,
Dave Clarke and Johan Jeuring (to appear in PADL’04) to
implement a Haskell-XML data binding from XML Schemas
to Haskell. Furthermore, Atanassow and Jeuring show how to
use this data binding together with legacy code in ‘Inferring
Type Isomorphisms Generically (to appear in MPC’04).

A new generation of PolyP has seen the light of day ac-
companied by a paper “Generic programming in Haskell” by

Norell and Jansson (in submission - presented at IFL’03).
The new approach embeds polytypic functions in Haskell us-
ing a type classes. This means that PolyLib, the library
of polytypic functions, is now available as a Haskell library.
Thus the separate PolyP compiler is not strictly needed any-
more. (The compiler provides a more convenient syntax for
definition of new polytypic functions and it automatically
derives instances for regular datatypes.) Furthermore, Ulf
Norell and Patrik Jansson at Chalmers have been working
on “Prototyping Generic Programming in Template Haskell”
(paper accepted for MPC 2004).

The code generated by Generic Haskell, PolyP, and Clean
contains many conversions between structure types and data
types, which slows down the generated code. To remove
these conversions, a special-purpose partial evaluator has to
be written. Alimarine and Smetsers show how to do this
(for Clean) in Optimizing generic functions (to appear in
MPC’04). Martijn de Vries (University of Groningen) has
written an MSc thesis on how to apply similar techniques in
Generic Haskell (email the report author for a copy).

The Datatype-Generic Programming project at Oxford
and Nottingham (http://www.comlab.ox.ac.uk/oucl/
research/areas/ap/dgp) started in August 2003, with aims,
amongst others, to develop a methodology for constructing
generic programs. Jeremy Gibbons and Bruno Oliviera are
studying different approaches for generic programming based
on Haskell; Roland Backhouse and Fermin Reig are looking
at termination properties of generic functions.

Current Hot Topics: Generic Haskell: incorporating views
on data types in the language. Other: the relation between
generic programming and dependently typed programming;
the relation between coherence and generic programming;
better partial evaluation of generic functions; methods for
constructing generic programs.

Major Goals: Efficient generic traversal based on type-
information for premature termination (see the Strafunski
project). Exploring the differences in expressive power be-
tween the lightweight approaches and the language exten-
sion(s).

Further reading:

http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/

There is a mailing list for Generic Haskell: <generic-
haskell@generic-haskell.org>. See the homepage for how to
join.

17

http://research.microsoft.com/Users/simonpj/papers/hmap/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://www.cs.vu.nl/boilerplate/
http://www.informatik.uni-bonn.de/~ralf/
http://www.comlab.ox.ac.uk/oucl/research/areas/ap/dgp
http://www.comlab.ox.ac.uk/oucl/research/areas/ap/dgp
http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/

3.5 Template Haskell

Report by: Ian Lynagh

Template Haskell has been growing steadily over the past
6 months, with support for various GHC extensions being
added on demand. If you find yourself needing something
that isn’t yet implemented, please let us know at <template-
haskell@haskell.org>. The good work of Simon Peyton Jones
has seen a number of new features, including:

• Prefixes ’ and ’’ to get (non-monadic) Names of values
and types, e.g. ’map :: Name and ’’Int :: Name

• Additional reification information from a normal func-
tion reify of type Name -> Q Info

• Error reporting and recovery functions

report :: Bool {- True <=> fatal -}
-> String
-> Q ()

recover :: Q a -> Q a -> Q a

plus of course the odd bug-fix!
The naming seems to have stabilized now, so if you haven’t

experimented with Template Haskell already then perhaps
this would be a good time to do so! And we’re always inter-
ested to hear what people are using it for.

3.6 Syntactic sugar

3.6.1 Recursive do notation

Report by: Levent Erkok (nov 2003)
Status: stable

The recursive do-notation (a.k.a. the mdo-notation) is sup-
ported by all Hugs releases since February ’01, and GHC ver-
sions 6.0 and newer. (In the GHC implementation, the re-
cursive blocks can also be marked by the keyword rec) Both
implementations are stable and actively supported.

Further reading:

http://www.cse.ogi.edu/PacSoft/projects/rmb/

3.6.2 Arrow notation

Report by: Ross Paterson (nov 2003)
Status: stable

“GHC is full.”
— Simon M. (before arrow notation was added)

Arrow notation allows one to program using John Hughes’s
“arrows”, a generalization of monads, without being con-
strained to a point-free style. It has been supported for some
time by a preprocessor, written in Haskell 98 and generating
Haskell 98. This approach is portable, but makes it difficult
for users of the notation to track their errors back to their
original source. Simon Peyton Jones and I have added di-
rect support for arrow notation to GHC; it is part of the 6.2
release. The notation supported differs a little from earlier
versions, mainly in advanced features, and the preprocessor
has been updated to match. Thus GHC will be a comfort-
able environment for developing arrows programs, but they
will still be runnable on other Haskell implementations, via
the preprocessor.

There is also an experimental arrow transformer library
in the Haskell CVS repository, and also on the arrows page.
The combinators in this library are designed to work with
the notation, but do rely on type class extensions currently
available only in GHC and Hugs. The interface is likely to
evolve. Any feedback would be welcome.

Further reading:

http://www.haskell.org/arrows/

18

http://www.cse.ogi.edu/PacSoft/projects/rmb/
http://www.haskell.org/arrows/

Chapter 4

Libraries

4.1 Packaging and Distribution

4.1.1 Library Infrastructure Project

Report by: Isaac Jones

Background:

The Library Infrastructure Project is an effort to provide a
framework for developers to more effectively contribute their
software to the Haskell community.

The Haskell Implementations come with a good set of stan-
dard libraries included, but this set is constantly growing and
is maintained centrally. This model does not scale up well,
and as Haskell grows in acceptance, the quality and quantity
of available libraries is becoming a major issue.

It can be very difficult for an end user to manage a wide
variety of dependencies between various libraries and Haskell
implementations, and to build all the necessary software at
the correct version numbers on their platform: there is cur-
rently no generic build system to abstract away differences
between Haskell Implementations and operating systems

The Library Infrastructure Project seeks to provide some
relief to this situation by building tools to assist developers,
end users, and operating system distributers.

Such tools include a common build system, a packaging
system which is understood by all of the Haskell Implemen-
tations, an API for querying the packaging system, and mis-
cellaneous utilities, both for programmers and end users, for
managing Haskell software.

Status:

After several prototypes, Isaac Jones visited GHC Headquar-
ters in Cambridge and met with Simon Peyton Jones, Simon
Marlow, Malcolm Wallace, and Ross Patterson to come to a
consensus on implementation details. It was pretty fun :). A

new proposal is nearly ready for release, and Isaac and Simon
Marlow have done some hacking on it already. We expect a
beta release in the near future.

Further reading:

http://www.haskell.org/libraryInfrastructure/
http://www.haskell.org/libraryInfrastructure/
proposal/

4.1.2 PreludeExts

Report by: Shae Erisson

The PreludeExts wiki page started with an oft-pasted
email on the #haskell IRC channel, where at least once
a week someone asked for a permutations function. That
sparked a discussion of what code is missing from the Pre-
lude, once the wiki page was started, submissions poured in,
resulting in a useful and interesting collection of functions.
http://www.haskell.org/hawiki/PreludeExts

4.1.3 Haskel User Submitted Libraries

Report by: Shae Erisson

The Haskell User Submitted Libraries project is a code
repository (a kind of cvs-wiki) where Haskell users can store
their Haskell code and coordinate development, including
documentation, releases, and bug tracking. The purpose of
this repository is to centralize resources for both developers
and users of Haskell software.

This sourceforge project is open for any haskell devel-
opers who wish to contribute: http://sf.net/projects/
haskell-libs/ We also have an experimental darcs reposi-
tory on http://www.ScannedInAvian.org/repos/hlibs/

19

http://www.haskell.org/libraryInfrastructure/
http://www.haskell.org/libraryInfrastructure/proposal/
http://www.haskell.org/libraryInfrastructure/proposal/
http://www.haskell.org/hawiki/PreludeExts
http://sf.net/projects/haskell-libs/
http://sf.net/projects/haskell-libs/
http://www.ScannedInAvian.org/repos/hlibs/

Some current projects that are available there:

lambdabot an IRC bot (section 6.1.3)

hws-wp the hws webserver extended with plugins (section
6.1.4)

brainfuck a brainfuck interpreter

pdflib a binding to PDFLib Lite

takusen win32 Oracle binding (section 4.4.3)

4.2 General libraries

4.2.1 System.Time: a redesigned Time li-
brary

Report by: Simon Marlow

Almost a year ago there was much discussion about a re-
placement for the current Time library, because of certain
problems with the existing library:

• the lack of support for leap seconds and the consequent
inaccuracy of ClockTime

• the underspecified behaviour of TimeDiff /
diffClockTimes / addToClockTime

The latest proposal was posted to the libraries@haskell.org
mailing list in July 2003, and can be found in the archives
here: http://haskell.org/pipermail/libraries/
2003-July/001290.html

To get up to date on the discussion, be sure to read the
threads which lead up to this. The majority of the discussion
took place in June 2003: http://haskell.org/pipermail/
libraries/2003-June/thread.html

Currently, the discussion is stalled. The leap seconds is-
sue is something of a sticking point, and there are some im-
plementability question marks over other parts of the API.
Contribution to (any aspect of) the discussion is welcomed.

4.2.2 A redesigned IO library

Report by: Simon Marlow

Contributors: Ben Rudiak-Gould, Simon Marlow and
others

There has been an effort underway on the li-
braries@haskell.org list to design a replacement for the IO
library. The main aims are:

• To separate underlying IO objects (files, pipes, sockets
etc.), from a general notion of Streams, providing im-
proved

1. Type Safety: certain operations only make sense for
certain kinds of IO objects. For example hFileSize
only makes sense on files, not sockets. Also, input
streams would be separate from output streams.

2. Generality: Under this scheme, programmers would
be able to implement their own Streams (something
which cannot be done with Handles).

• To allow translations to be layered on top of Streams in
a general way. The most common type of translation is
a text encoding, which translates between the external
encoded form of text (say, UTF-8) and Haskell’s Uni-
code Char type. This addresses a serious deficiency in
Haskell’s current IO library, namely the lack of support
for specifying a character translation.

• More features: e.g. mapped file support.

See the libraries archives for the discussion, e.g.
http://haskell.org/pipermail/libraries/2003-July/
001298.html
http://haskell.org/pipermail/libraries/2003-July/
001299.html
http://haskell.org/pipermail/libraries/
2003-August/001313.html

Simon M. has been hacking a little on a prototype, but
doesn’t have anything significant working yet.

4.2.3 System.Process: a platform-
independent API for external process
control

Report by: Simon Marlow

A proposal for a System.Process library was posted to the
<libraries@haskell.org> list about a year ago:
http://haskell.org/pipermail/libraries/2003-May/
000958.html

HTML documentation is here:
http://www.haskell.org/~simonmar/System.Process.
html

Further progress has been made in that there is a partial
implementation of this library, currently restricted to GHC
running on Unix platforms. The code is here: http://www.
haskell.org/~simonmar/process/Process.hs

Once a Windows implementation is available, this library
will be imported into the hierarchical libraries.

20

http://haskell.org/pipermail/libraries/2003-July/001290.html
http://haskell.org/pipermail/libraries/2003-July/001290.html
http://haskell.org/pipermail/libraries/2003-June/thread.html
http://haskell.org/pipermail/libraries/2003-June/thread.html
http://haskell.org/pipermail/libraries/2003-July/001298.html
http://haskell.org/pipermail/libraries/2003-July/001298.html
http://haskell.org/pipermail/libraries/2003-July/001299.html
http://haskell.org/pipermail/libraries/2003-July/001299.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/pipermail/libraries/2003-May/000958.html
http://haskell.org/pipermail/libraries/2003-May/000958.html
http://www.haskell.org/~simonmar/System.Process.html
http://www.haskell.org/~simonmar/System.Process.html
http://www.haskell.org/~simonmar/process/Process.hs
http://www.haskell.org/~simonmar/process/Process.hs

4.2.4 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The current release is 1.1.2. New, since the last report,
are the additions of MD5 and modules to support ASN.1
and PKCS#8. In addition, the library now runs under Hugs
(courtesy of Ross Paterson) as well as GHC.

The library collects together existing Haskell cryptographic
functions and augments them so that they: a) have com-
mon type signatures and b) can be used with the standard
mode and padding algorithms (in the case of block mode ci-
phers). The library now supports: DES, Blowfish, Cipher
Block Chaining (CBC) mode, PKCS5 and nulls padding,
MD5, SHA-1, RSA, OAEP, ASN.1 and PKCS#8. The RSA
and OAEP modules are based on the work done by David
Sankel.

The library follows the hierarchical standards and has Had-
dock style documentation. There are demo / test programs
using published test vectors and instructions on how to use
RSA in Haskell and inter-work with openssl. In particu-
lar, you can generate key pairs using your favorite method
(openssl, for example) and then use them in Haskell. A big
improvement on previous versions is the ability to read the
private key into your Haskell program via PKCS#8 and use
it to decrypt something encrypted with your public key.

There is still plenty of existing code that should be in-
corporated such as RC4 (courtesy of Doug Hoyte) and AES.
Furthermore, you cannot use RSA to encrypt (easily) as there
is currently no support for X.509. Nor is there any support
for signing.

Further reading:

http://www.haskell.org/crypto/ReadMe.html

4.2.5 Yampa

Report by: John Peterson and Henrik Nilsson

Yampa is the culmination of the Yale Haskell Group’s ef-
forts to provide domain-specific embedded languages for the
programming of hybrid systems. Yampa differs from previ-
ous FRP based system in that it makes a strict distinction
between signals (time-varying values) and functions on sig-
nals. This greatly reduces the chance of introducing space
and time leaks into reactive, time-varying systems. Another
difference is that Yampa is structured using the arrow com-
binators. Among other benefits, this allows Yampa code to
be written employing the syntactic sugar for arrows.

We have released version of Yampa 0.4 that contains:

• The Yampa Base Library, containing generic func-
tions for the expression of signal functions operating
on continuous as well as discrete signals, and advanced
switching constructs for the interaction between the con-
tinuous and discrete worlds.

• The Yampa Robotics Library, containing entities tai-
lored for controlling mobile robots, both real and simu-
lated, in the style of Frob, our FRP-based robotics lan-
guage. The simulator is written using Yampa’s Base and
HGL, the Haskell Graphics Library, and performs physi-
cal modeling of mobile differential-drive robots equipped
with several kinds of sensors. A pre-configured version
of the simulator allows one to play RoboCup Soccer.

• A tutorial (from the 2002 Summer School on Advanced
Functional Programming, Oxford, UK).

• The Space Invaders game from the 2003 Haskell work-
shop.

This release adds a BSD style license to the system and
fixes a few minor bugs.

With the Base Library and HGL (or any other graphics
library), it is easy to write reactive animation programs in
the style of Fran. Thus there is no need for a special library
to support graphics and animation.

Thanks to Abraham Egnor for contributing cairo binding,
which uses Yampa for reactive animation. Download instruc-
tions are at http://www.cairographics.org/hscairo.

Further reading:

http://www.haskell.org/yampa

4.2.6 The revamped monad transformer li-
brary

Report by: Iavor Diatchki

Status: mostly stable

Monads are very common in Haskell programs and yet ev-
ery time one needs a monad, it has to be defined from scratch.
This is boring, error prone and unnecessary. Many people
have their own libraries of monads, and it would be nice to
have a common one that can be shared by everyone. Some
time ago, Andy Gill wrote the monad transformer library that
has been distributed with most Haskell implementations, but
he has moved on to other jobs, so the library was left on its
own. I wrote a similar library (before I knew of the exis-
tance of Andy’s library) and so i thought i should combine

21

http://www.haskell.org/crypto/ReadMe.html
http://www.cairographics.org/hscairo
http://www.haskell.org/yampa

the two. The “new” monadic library is not really new, it is
mostly reorganization and cleaning up of the old library. It
has been separated from the “base” library so that it can be
updated on its own. It is available from the Haskell CVS (fp-
tools/libraries/monads). It is mostly documented with had-
dock (section 5.5.3).

Besides reorganizing the transformers, the main changes in-
clude a new experimental transformer for non-determinism,
renaming of some functions, and some new functionality here
and there. There is also experimental support for resump-
tions, and continuations, but their interaction with the other
transformers is not quite clear at the moment, and the API
has not been finalized. Please try to use the library and com-
ment on how useful it is to you!

Further reading:

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
libraries/monads/

4.2.7 HBase

Report by: Ashley Yakeley

HBase is a large collection of library code, compiled
“-fno-implicit-prelude”, intended as an experimen-
tal/alternative reorganized interface to the existing standard
libraries making full use of GHC’s extensions. HBase devel-
opment is driven by HScheme (section 6.1.1) and my other
Haskell projects, and sometimes by whatever interests occur
to me. Right now it includes:

• a library of various classes of Functors and Monads,
• transformation, encoding and property functions for

Unicode,
• types and classes for parsing,
• functions for parsing XML and RDF,
• code for constructing SQL queries,

...and much else. I’m hoping some of the ideas might even-
tually make their way into standard libraries, or perhaps the
standard libraries of some future extended “Haskell 2”.

Very little work is currently being done on it, as the main
developer’s free time has been shortened by gainful employ-
ment. Further work may resume, at a reduced pace, once
left-over issues in the latest JVM-Bridge (section 5.1.3) have
been cleared up.

Further reading:

http://sourceforge.net/projects/hbase/

4.2.8 Pointless Haskell

Report by: Jorge Sousa Pinta

Pointless Haskell is a library for point-free programming
with recursion patterns defined as hylomorphisms. It is part
of the UMinho Haskell libraries that are being developed at
the University of Minho. The core of the library is described
in “Point-free Programming with Hylomorphisms” by Alcino
Cunha.

Pointless Haskell also allows the visualization of the inter-
mediate data structure of the hylomorphisms with GHood.
This feature together with the DrHylo tool allows us to easily
visualize recursion trees of Haskell functions, as described in
“Automatic Visualization of Recursion Trees: a Case Study
on Generic Programming” (Alcino Cunha, In volume 86.3 of
ENTCS: Selected papers of the 12th International Workshop
on Functional and (Constraint) Logic Programming. 2003).

The Pointless Haskell library is available from
http://wiki.di.uminho.pt/bin/view/Alcino/
PointlessHaskell.

4.3 Parsing and transforming

4.3.1 Parsec

Report by: Daan Leijen
Status: stable

Parsec is a practical parser combinator library for Haskell
that is well documented, has extensive libraries, and good er-
ror messages. It is currently part of the standard Haskell li-
braries (in Text.ParserCombinators.Parsec) and has been
stable for a while now. We plan to add a module that adds
combinators to parse according to the (full) Haskell layout
rule (available on request).

Further reading:

http://www.cs.uu.nl/~daan/parsec.html

4.3.2 UPC – Utrecht Parser Combinators

Report by: Doaitse Swierstra

(Doaitse Swierstra, Arthur Baars, Rui Guerra)
The current version of the parser combinators constructs

an online result, in the sense that parts of the result can be
accessed even when parsing has not yet finished. This is espe-
cially useful when parsing and processing large files of similar

22

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/libraries/monads/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/libraries/monads/
http://sourceforge.net/projects/hbase/
http://wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell
http://wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell
http://www.cs.uu.nl/~daan/parsec.html

information. Furthermore error messages are displayed while
parsing (using unsafePerformIO). The underlying mechanism
for achieving this is relatively costly, although parsing speed
is not much slower than that of parsers generated off line us-
ing Frown or Happy (section 5.2.2). We plan to construct a
companion module (based on an earlier approach) that con-
tains a more strict result, and which we expect to be run-
ning even faster. Furthermore the module structure may be
changed by making it possible for the user of the library to
tune the internals of the machine even more using classes. In
order to make the everyday use of the combinators not suffer
from these changes we have separated the interface and the
extensions from the basic implementation, so future changes
can relatively easily be made.

Furthermore three special modules were constructed, since
they contain far more complex combinators, that may prob-
ably not be used by most people. Two of the combinators
enable the construction of a parser that reorders the elements
it has recognized (merging or permutation parsing) and keep
track of this reordering by returning a function that can be
used to reconstruct the original order. Inspiration for this
came from the wish to be able to record the original input
in such a way that error messages can be easily added to
it. The third module can be used to construct parsers for
languages that follow the Haskell off side rule when parsing.
This turned out to be quite complicated since the precise
parsing rules have been defined in terms of parse errors, and
our combinators have a standard way of handling such errors;
as a consequence we had to afflict some brain-damage.

Further reading:

http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/

4.3.3 Strafunski

Report by: Ralf Lämmel

Status: active, maintained, new release in April 2004

Portability: Hugs, GHC, DrIFT
Strafunski is a Haskell-based bundle for generic program-

ming with functional strategies, that is, generic functions that
can traverse into terms of any type while mixing type-specific
and uniform behaviour. This style is particularly useful in the
implementation of program analyses and transformations.

Strafunski bundles the following components:

• the library StrategyLib for generic traversal and others;

• precompilation support for user datatypes based on
DrIFT (section 3.4);

• the library ATermLib for data exchange;

• the tool Sdf2Haskell for external parser integration.

The Strafunski-style of generic programming can be seen
as a lightweight variant of generic programming (section 3.4)
because no language extension is involved, but generic func-
tionality simply relies on a few overloaded combinators that
are derived per datatype.

Strafunski has now moved to sourceforge.net. A new ver-
sion (4.0) of the Strafunski’s StrategyLib was released. In
due the course, the distribution was simplified, and optional
support for a model based on “Scrap your boilerplate” has
been added.

There is a new white paper “Programmable rewriting
strategies in Haskell” (http://homepages.cwi.nl/~ralf/
wrs04/), which puts Strafunski into a broader perspective,
which lists several applications of Strafunski, and which an-
swers some frequently asked questions. Strafunski is also cov-
ered in an upcoming tutorial by Joost Visser and João Saraiva
“Strategic Programming Across Programming Paradigms” at
SBLP 2004, the 8th Brazilian Symposium on Programming
Languages.

Further reading:

http://www.cs.vu.nl/Strafunski/

4.3.4 Medina – Metrics for Haskell

Report by: Chris Ryder

The Medina library is a Haskell library for GHC that pro-
vides tools and abstractions with which to build software met-
rics for Haskell programs.

The library includes a parser and several abstract repre-
sentations of the parse trees and some visualization systems
including pretty printers, HTML generation and callgraph
browsing. The library has some integration with CVS to al-
low temporal operations such as measuring a metric value
over time. This is linked with some simple visualization
mechanisms to allow exploring such temporal data. These
visualization systems will be expanded in the near future.

We have carried out case studies to provide some validation
of metrics by looking at the change history of a program and
how various metric values evolve in relation to those changes.
In order to do this we implemented several metrics using the

23

http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://homepages.cwi.nl/~ralf/wrs04/
http://homepages.cwi.nl/~ralf/wrs04/
http://www.cs.vu.nl/Strafunski/

library, which has given some valuable ideas for improvements
to the library.

Following on from the case studies we have improved and
extended the visualization systems and implemented some of
the ideas from the case studies. Demos and screenshots are
available on the Medina webpage: http://www.cs.kent.ac.
uk/~cr24/medina

Currently there is no released version of the Medina library,
but I am in the process of writing up this work for my PhD
thesis. Once this task is completed I will prepare a release of
the library.

4.3.5 Template Greencard

Report by: Alastair Reid

Status: Experimental/unstable

Last release: 0.1 (15 Sept 2003)
Hierarchical libraries: No
Portability: GHC only (requires Template Haskell), Unix

Template Greencard is an experimental reimplementation
of Greencard (section 5.1.1) using Template Haskell. It is
now considered dead, however.

Its advantages are:

• It is very much smaller than Greencard (or any other ffi
tool we know of) which should make it easier to extend
and maintain than other tools.

• It is a library, not a preprocessor, which makes it more
flexible than using a preprocessor.

• Even the early version is quite powerful.

On the downside, Template Greencard isn’t as easy to use as
Greencard: the syntax is worse and error messages are worse.
We currently recommend that you continue using Greencard,
but, if you want to play with it a bit, feel free to look around.

Further reading:

http://www.reid-consulting-uk.ltd.uk/projects/tg.
html

4.4 Data handling

4.4.1 DData

Report by: Daan Leijen
Status: actively maintained, stable

DData is a library of efficient data structures and algo-
rithms for Haskell (Set, Bag, and Map). It is actively main-
tained and stable.

DData is currently under review for inclusion in the stan-
dard hierarchical module name space, and you are invited to
join the discussion on the Haskell libraries mailing list.

The current proposal is maintained by J.P. Bernardy and
can be found at: http://users.skynet.be/jyp/DData/doc
and http://users.skynet.be/jyp/DData/ddata.tar.gz

Further reading:

http://www.cs.uu.nl/~daan/ddata.html

4.4.2 HSQL

Report by: Krasimir Angelov

The HSQL is a simple library for database access from
Haskell. The HSQL library was completely rewritten in the
last few months. There are four major steps forward:

• The library now provides an abstract application pro-
gramming interface which allows us to write database
independent applications.

• In addition to ODBC, MySQL and PostgreSQL back-
ends now there is also a backend for SQLite. The SQLite
is a small and fast embedded database which is suitable
for cases when it is not required to have multiple clients
for a single database.

• Thanks to Björn Bringert the library was successfully
ported to Hugs.

• Thanks to Victor Blomqvist and Conny Andersson in the
last HSQL release there is RPM distribution for RedHat
and a binary installer for Windows.

URL: http://htoolkit.sourceforge.net/

4.4.3 Takusen

Report by: Alistair Bayley, Oleg Kiselyov

Takusen is a library for accessing DBMS’s. It is a low-
level library like HSQL, in the sense that it is used to issue
SQL statements. It currently only supports one ‘real’ DBMS
(Oracle), but is designed to easily support other DBMS’s. In
particular, there is a stub module which is used for testing
in the absence of an Oracle installation, and which can be

24

http://www.cs.kent.ac.uk/~cr24/medina
http://www.cs.kent.ac.uk/~cr24/medina
http://www.reid-consulting-uk.ltd.uk/projects/tg.html
http://www.reid-consulting-uk.ltd.uk/projects/tg.html
http://users.skynet.be/jyp/DData/doc
http://users.skynet.be/jyp/DData/ddata.tar.gz
http://www.cs.uu.nl/~daan/ddata.html
http://htoolkit.sourceforge.net/

easily extended for other DBMS’s. Takusen’s ‘unique-selling-
point’ is a design for processing query results using a left-fold
enumerator. For queries the user creates an iteratee function,
which is fed rows one-at-a-time from the result-set.

Takusen is under active development. Recently we have
modified the library to use monadic iteratee functions, which
allow the user to do IO while processing query results. Cur-
rently we are assessing the performance of the library with
large result sets.

Immediate plans are to fix deficiencies in the current imple-
mentation (this includes performance tuning, bind variables,
multiple connections, and os-authenticated logon), and in the
more distant future to add support for other DBMS’s.

Source code can be found in the Haskell-libs project
at SourceForge: http://cvs.sf.net/viewcvs.py/
haskell-libs/libs/takusen/

4.4.4 HaskellDB

Report by: Anders Höckersten

Status: active development

HaskellDB is a library for accessing databases through
Haskell in a type safe and declarative way. It completely
hides the underlying implementation and can interface with
several popular database engines through either HSQL or wx-
Haskell.

HaskellDB was originally developed by Daan Leijen. De-
velopment was restarted as part of a student project at
Chalmers University of Technology. This project is nearly
over, but several of us have expressed interest in continuing
development in our spare time. There is also a community of
developers using HaskellDB that constantly send us patches
and improvements.

The current version supports:

• Completely type safe queries on databases

• Support for MySQL, PostgreSQL, SQLite and ODBC
through HSQL

• Support for ODBC through wxHaskell

• Automatic conversion between Haskell types and SQL
types

• Support for bounded strings

Future possible developments include:

• Support for more backends (Oracle)

• Support for non-SQL backends

• Driver-specific code generation. This is needed for non-
SQL backends, and we have discovered that no SQL
databases implement the standard in quite the same way

• Dynamic loading of drivers

Further reading:

http://haskelldb.sourceforge.net

4.5 User interfaces

4.5.1 The Common GUI API effort

Report by: Axel Simon

The usefulness of the Haskell language depends crucially
on the provided libraries. In particular, efforts to write an
application with a graphical user interface has long been com-
plicated by the large number of mostly incomplete libraries
(or research prototypes). In spring 2003 people tried to focus
the development effort and came up with the idea of a Com-
mon GUI API (CGA for short) which should define an inter-
section of three major platform APIs (Win32, Gnome/Gtk
and Mac OS X) and that addresses the requirements of the
platform’s style guide (or human interface guidelines). At
the Haskell Workshop 2003 a quick poll revealed that 1/3
of the people thought that this major undertaking is worth-
while, 2/3 thought that a new binding to a readily available
cross-platform approach is adequate. Hence the CGA idea
was not pursued and wxHaskell, a binding to wxWidgets, is
recommended for new developments. Other libraries might
of course continue to exist, in particular if they fill a niche
for some applications.

4.5.2 wxHaskell

Report by: Daan Leijen

Status: beta, actively developed

wxHaskell is a portable GUI library for Haskell. The goal of
the project is to provide an industrial strength portable GUI
library, but without the burden of developing (and maintain-
ing) one ourselves.

wxHaskell is therefore built on top of wxWidgets – a com-
prehensive C++ library that is portable across all major GUI
platforms; including GTK, Windows, X11, and MacOS X.

25

http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/
http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/
http://haskelldb.sourceforge.net

Furthermore, it is a mature library (in development since
1992) that supports a wide range of widgets with native look-
and-feel, and it has a very active community (ranked among
the top 25 most active projects on sourceforge). Many other
languages have chosen wxWidgets to write complex graphical
user interfaces, including wxEiffel, wxPython, wxRuby, and
wxPerl.

Since most of the interface is automatically generated from
the wxEiffel binding, the latest release of wxHaskell already
supports about 85% of the wxWindows functionality – 2875
methods in 513 classes with 1347 constant definitions. wx-
Haskell has been built with GHC 6.x on Windows, MacOS
X and Unix systems with GTK, and binary distributions are
available for common platforms.

Since the last Communities & Activities Report, most work
has been directed to improved stability and a better build
system. There is also better integration with other pack-
ages: HaskellDB works with the wxHaskell ODBC binding
and HOpenGL can work with the OpenGL canvas. The wx-
Haskell website also shows some screenshots of larger sized
applications that are developed with wxHaskell. It is most
satisfying to see that even those larger applications are ported
without any real difficulties – Haskell is becoming a very
portable language indeed!

Current work is directed at improving documentation and
stability across platforms, and we hope to release the 1.0
version this summer.

Further reading:

You can read more about wxHaskell at http://wxhaskell.
sourceforge.net and on the wxHaskell mailing list at http:
//sourceforge.net/mail/?group_id=73133.

4.5.3 HToolkit

Report by: Krasimir Angelov

The HToolkit is a platform independent package for Graph-
ical User Interfaces. The package is split into two libraries
GIO and Port. The Port is a low-level Haskell 98+FFI com-
patible API, while GIO is a highlevel user friendly interface
to Port. The primary goal of HToolkit is to provide a na-
tive look and feel for each target platform. The currently
supported platforms are Windows and Linux/GNOME. The
package development was suspended as the Linux version was
dependent on GTK-2.4. The GTK-2.4 release was delayed
for a long time but now it is completed and I am ready to
continue the development of HToolkit.

URL: http://htoolkit.sourceforge.net/

4.5.4 gtk2hs - A binding to the Gtk GUI
library version 2.0 - 2.4.

Report by: Axel Simon

This project provides a high-quality binding to the Gtk
GUI library together with some Gnome extensions (at the
moment Glade and GConf). It predates wxHaskell (which
can use Gtk as a back-end) but might be of interest to people
focussing on the Gnome desktop or who are planning to write
large applications where automatic memory management is
a requirement (wxWidgets does not provide proper support
for garbage-collected languages). The binding is not auto-
matically generated which has the advantage that we notice
changes in the Gtk API when we build the library (as sup-
posed to building an application). The library is and will be
maintained, in particular we are planning to add more Gnome
widgets and add a Yaho/Ports like layer similar to that of wx-
Haskell. gtk2hs is known to run on Linux, FreeBSD, MacOS
X, Windows and Solaris.

4.5.5 HTk

Report by: Christoph Lüth and George Russell
Status: no changes, actively maintained

HTk is an encapsulation of the graphical user interface
toolkit and library Tcl/Tk for the functional programming
language Haskell. It allows the creation of high-quality
graphical user interfaces within Haskell in a typed, abstract,
portable and concurrent manner. HTk is known to run un-
der Linux, Solaris, FreeBSD, Windows (98, 2k, XP) and will
probably run under many other POSIX systems as well. It
works with GHC, version 6.0 and up.

Further reading:

http://www.informatik.uni-bremen.de/htk

4.5.6 HSX11

Report by: Alastair Reid
Status: Maintained, stable
Last release: 1.00 (6 June 2003) Portability: GHC,
Hugs, Linux, FreeBSD, Solaris, MacOS X

The Xlib library is a set of bindings to over 300 functions
in the standard Xlib C library.

Further reading:

http://www.reid-consulting-uk.ltd.uk/projects/
HSX11.html

26

http://wxhaskell.sourceforge.net
http://wxhaskell.sourceforge.net
http://sourceforge.net/mail/?group_id=73133
http://sourceforge.net/mail/?group_id=73133
http://htoolkit.sourceforge.net/
http://www.informatik.uni-bremen.de/htk
http://www.reid-consulting-uk.ltd.uk/projects/HSX11.html
http://www.reid-consulting-uk.ltd.uk/projects/HSX11.html

4.5.7 Fudgets

Report by: Thomas Hallgren

Fudgets is a GUI toolkit designed and implemented by
Magnus Carlsson and Thomas. Most of the work was done
in 1991-1995, and the library has been in minimal mainte-
nance mode since then. It compiles with recent versions of
GHC (e.g., GHC 6.2.1) on many Unix-like platforms (Linux,
SunOS, Mac OS X, etc).

For documentation and downloads, see: http://www.cs.
chalmers.se/Fudgets/

Recent snapshots can also be found at: http://www.cse.
ogi.edu/~hallgren/untested/

Two applications using the Fudgets:

• The proof assistant Alfa, http://www.cs.chalmers.
se/~hallgren/Alfa/

• The Programatica Haskell Browser, http://www.cse.
ogi.edu/~hallgren/Programatica/

4.6 Graphics

4.6.1 HOpenGL – A Haskell Binding for
OpenGL and GLUT

Report by: Sven Panne
Status: active, maintained

The goal of this project is to provide a binding for the
OpenGL rendering library which utilizes the special features
of Haskell, like strong typing, type classes, modules, etc., but
is still in the spirit of the official API specification. This
enables the easy use of the vast amount of existing litera-
ture and rendering techniques for OpenGL while retaining
the advantages of Haskell over lower-level languages like C.
Portability in spite of the diversity of Haskell systems and
OpenGL versions is another goal.

HOpenGL includes the simple GLUT UI, which is good to
get you started and for some small to medium-sized projects,
but HOpenGL doesn’t rival the GUI task force efforts in
any way. Smooth interoperation with GUIs like gtk+hs
or wxHaskell on the other hand is a goal, see e.g. http:
//wxhaskell.sourceforge.net/samples.html#opengl

Currently there are two major incarnations of HOpenGL,
differing in their distribution mechanisms and APIs: The old
one (latest version 1.05 from 09/09/03) is distributed as a
separate tar ball and needs GreenCard plus a few language
extensions. Apart from small bug fixes, there is no further

development for this binding. Active development of the new
incarnation happens in the fptools repository, so it is easy to
ship GHC, Hugs, and nhc98 with OpenGL/GLUT support.
The new binding features:

• Pure Haskell98 + FFI

• No GreenCard dependency anymore

• Full OpenGL 1.5 support (NURBS currently only partly
implemented)

• A few dozen extensions

• An improved API, centered around OpenGL’s notion of
state variables

• Extensive hyperlinked online documentation

HOpenGL is extensively tested on x86 Linux and Windows,
and reportedly runs on Solaris, FreeBSD, OpenBSD, and Mac
OS X.

The binding comes with a lot of examples from the Red
Book and other sources, and Sven Eric Panitz has written
a tutorial using the new API (http://www.tfh-berlin.de/
~panitz/hopengl/), so getting started should be rather easy.

Further reading:

http://www.haskell.org/HOpenGL/

4.6.2 FunWorlds – Functional Programming
and Virtual Worlds

Report by: Claus Reinke
Status: stalled

FunWorlds is an experiment to investigate language design
issues at the borderlines between concurrent systems, ani-
mated reactive 2&3d graphics, and functional programming.
The only progress over the last year (sic) has been the ba-
sic snapshot of the old system I promised in the May 2003
edition. It still is on the wanted list, but don’t hold your
breath.

Further reading:

http://www.cs.kent.ac.uk/~cr3/FunWorlds/

27

http://www.cs.chalmers.se/Fudgets/
http://www.cs.chalmers.se/Fudgets/
http://www.cse.ogi.edu/~hallgren/untested/
http://www.cse.ogi.edu/~hallgren/untested/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://wxhaskell.sourceforge.net/samples.html#opengl
http://wxhaskell.sourceforge.net/samples.html#opengl
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/
http://www.cs.kent.ac.uk/~cr3/FunWorlds/

4.6.3 PanTHeon

Report by: Sean Seefried

PanTHeon is re-implementation of Pan, a DSL embedded
in Haskell, for the generation of two dimensional images and
animations. (Pan was originally developed by Conal Elliott,
Oege de Moor and Sigbjorn Finne.)

However this implementation differs from the former in
that it is cross-platform and implemented in an entirely new
way through Template Haskell (section 3.5). It is built on top
of the Simple DirectMedia Layer (SDL) http://libsdl.org
and has been successfully built on Mac OS X and Linux so
far.

Instead of embedding a compiler as the original authors
did (mainly for reasons of efficiency), we have opted to use
the compile-time meta-programming facilities of Template
Haskell to perform domain specific optimizations. This has
resulted in an implementation that rivals the speed of the
original, while being implemented in far fewer lines of code.

What is its status?

It’s almost ready for release. A paper about it can be found at
http://www.cse.unsw.edu.au/~sseefried/papers.html

Can others get it?

Unfortunately, it is not quite ready for release yet, due to
problem with the current Template Haskell implementation
that will be fixed in the next iteration. There are also a few
features of the original library that require implementation.
It retains the interactive nature of the original, unlike other
re-implementations, such as Pancito, http://www.acooke.
org/jara/pancito/.

What are the immediate plans?

I plan to continue working on the interface to give it equiv-
alent functionality to the original. Once the new version of
Template Haskell comes out I will then fix the remaining
problem with it which are detailed in the paper I have writ-
ten on it.

4.6.4 Pancito

Report by: Andrew Cooke
Status: updated, not currently being developed further

A new version (2.2) of Pancito (a functional images toolkit
initially inspired by Pan) is available at http://www.acooke.

org/jara/pancito - it extends 2.1 with useful output options
(a progress meter and the possibility to preview a small area
of an image) and better structured code (points are now a
typeclass, allowing now kinds of coordinates to be added more
easily, for example).

Art generated with Pancito can be seen in the gallery (gen-
erated with Halipeto) at http://www.acooke.org/pancito

4.7 Web and XML programming

4.7.1 Halipeto

Report by: Andrew Cooke

Status: completed & released, not currently being developed
further

Halipeto generates web pages from templates (much like
JSP, Zope TAL etc). It is written in Haskell (with a ghc
extension) and is available from http://www.acooke.org/
jara/halipeto

Since Haskell functions are directly associated with ele-
ment attributes, the system is flexible and easy to extend
(providing you can program in Haskell). An example site
generated using Halipeto, containing some Pancito images
(section 4.6.4), is at http://www.acooke.org/pancito; the
code for that site is included in the Halipeto download as an
example.

Content management systems typically have four distin-
guishing features: server integration with dynamic page gen-
eration; a template engine for generating output in the cor-
rect format; a database for storing content; and a dynamic
web interface for managing the system. Halipeto only sup-
plies two of these - templates and a simple file-system based
database. Without further work it can only be used, there-
fore, to generate static web pages from the database (SQL
integration should be fairly simple as the IO Monad is al-
ready threaded through the system).

Thanks to HaXml for the XML support (Halipeto includes
the relevant files, HaXml does not need to be installed).

28

http://libsdl.org
http://www.cse.unsw.edu.au/~sseefried/papers.html
http://www.acooke.org/jara/pancito/
http://www.acooke.org/jara/pancito/
http://www.acooke.org/jara/pancito
http://www.acooke.org/jara/pancito
http://www.acooke.org/pancito
http://www.acooke.org/jara/halipeto
http://www.acooke.org/jara/halipeto
http://www.acooke.org/pancito

4.7.2 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public release is currently at version 1.11, hav-
ing recently re-established support for Hugs. Ongoing main-
tenance is to the CVS tree at haskell.org.

Further reading:

http://www.haskell.org/HaXml

4.7.3 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: fourth major release

The Haskell XML Toolbox is a collection of tools for pro-
cessing XML with Haskell. It is itself purely written in
Haskell 98. The core component of the Haskell XML Tool-
box is a validating XML-Parser that supports almost fully the
Extensible Markup Language (XML) 1.0 (Second Edition),

The Haskell XML Toolbox bases on the ideas of HaXml
and HXML, but introduces a more general approach for pro-
cessing XML with Haskell. The Haskell XML Toolbox uses
a generic data model for representing XML documents, in-
cluding the DTD subset and the document subset, in Haskell.
This data model makes it possible to use filter functions as a
uniform design of XML processing applications. The whole
XML parser including the validator parts was implemented
using this design. Libraries with filters and combinators are
provided for processing the generic data model.

Features:

• validating XML parser

• very liberal HTML parser

• XPath support

• full Unicode support

• support for XML namespaces

• uniform data model for DTDs and XML content

• native Haskell support of HTTP 1.1 and FILE protocol

• HTTP and access via other protocols via external pro-
gram curl

• tested with W3C XML validation suite

• example programs

Current Work:

• a set of example programs have been developed during
the last 6 month, to test the toolbox for usability and
completeness. This includes a program for generating a
Haskell module containing simple access functions and
filter for elements and attributes for processing a special
XML instance by analyzing a given DTD.

• a prototype of a XSLT implementation is finished, but
still needs some extensive testing and integration into
the toolbox.

• a project for supporting the Relax NG XML schema def-
inition for validation will start in summer 2004.

• in a second project, also starting in summer 2004, it’s
planned to write a users guide. In this guide the de-
velopment of a nontrivial example application will be
described, for demonstrating the programming technic
with filters and their combinations on real life problems.

Further reading:

The Haskell XML Toolbox Webpage (http://www.
fh-wedel.de/~si/HXmlToolbox/index.html) includes
downloads, online documentation and a master thesis
describing the design of the toolbox. The documentation
is a bit out of date. This is one reason for the users guide
project.

4.7.4 WASH/CGI – Web Authoring System
for Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell library)
for server-side Web scripting based on the purely functional
programming language Haskell. Its implementation is based
on the portable common gateway interface (CGI) supported
by virtually all Web servers. WASH/CGI offers a unique and
fully-typed approach to Web scripting. It offers the following
features

• complete interactive script in one program

• a monadic, type-safe interface to generating HTML out-
put

• type-safe compositional approach to specifying form el-
ements; callback-style programming interface for forms

29

http://www.haskell.org/HaXml
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html

• type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persistent
server-side

• high-level API for reading, writing, and sending email

New/completed Items are:

• much improved and documented preprocessor for trans-
lating markup in XML syntax into WASH/HTML

• package-ifycation of WASH (& much simpler installa-
tion)

• caching of documents (but turned off by default)

Current work includes

• database interface

• authentication interface

• user manual (still in the early stages)

Further reading:

The WASH Webpage (http://www.informatik.
uni-freiburg.de/~thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about the
implementation.

4.7.5 HAIFA

Report by: Simon Foster

HAIFA (The Haskell Application Interoperation Frame-
work Architecture) is an experimental interoperability frame-
work for the functional programming language Haskell.
When completed, it should enable users to construct inter-
operating client and server applications with the aim of dis-
tributed functional programming over various text-based pro-
tocols including for example SOAP and XMLRPC.

HAIFA achieves this with a common call structure, to
which calls from the various types of protocols are converted.
So for example, in a server environment, HAIFA would con-
vert any incoming SOAP Messages to a HAIFA Call. This
involves parsing the messages and mapping the types from
the XSD and SOAP type-spaces over to the Haskell type-
spaces.

Once a HAIFA Call has been built with Haskell type-
names, all the actual data can be unmarshalled (or de-
serialized), from text to actual typed-data. This data can
then be applied to a function or returned (depending on
whether HAIFA is working client or server side).

HAIFA serves out applications with HAC, the HAIFA Ap-
plication Container, which allows several applications work-
ing on different protocols to be exposed over a network. HAC
has a plugin system, which it uses to dynamically load and
unload applications and protocols. HAC communicates with
a front-end web-server (such as HWS-WP) for the purpose
of exposing the functions over the Internet via HTTP. The
eventual aim for HAC is the creation of a generic application
server, which can be used to serve out many different kinds
of applications including Haskell servlets.

4.7.6 Haskell XML-RPC

Report by: Björn Bringert

Haskell XML-RPC is a library for writing XML-RPC client
and server applications in Haskell. XML-RPC is a standard
for XML encoded remote procedure calls over HTTP. The
library is actively maintained and relatively stable.

Further reading:

http://www.bringert.net/haskell-xml-rpc/

30

http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.bringert.net/haskell-xml-rpc/

Chapter 5

Tools

5.1 Foreign Function Interfacing

5.1.1 GreenCard

Report by: Alastair Reid
Status: Maintained, stable
Last release: 3.01 (6 June 2003)
Portability: Hugs, GHC, NHC and C, C++

GreenCard is a foreign function interface preprocessor for
Haskell and has been used (amongst other things) for the
Win32 and X11 bindings used by Hugs and GHC.

Further reading:

http://haskell.org/greencard/

5.1.2 C–>Haskell

Report by: Manuel Chakravarty
Status: beta release

C–>Haskell is an interface generator that simplifies the
development of Haskell bindings to C libraries. It has been
ported to Mac OS X and been adapted to GHC’s development
version 6.3. The tool is currently at version 0.12.0 and has
been stress tested in the development of the Gtk+HS GUI
library. Source and binary packages as well as a reference
manual are available from
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

5.1.3 JVM Bridge

Report by: Ashley Yakeley

JVM-Bridge is a GHC package intended to allow full access
to the Java Virtual Machine from Haskell, as a simple way
of providing a wide range of imperative functionality. Its big
advantage over earlier attempts at this is that it includes a

straightforward way of creating Java classes at run-time that
have Haskell methods (using DefineClass and the Java Class
File Format). It also features reconciliation of thread models
without requiring GPH.

Current Status:

JVM-Bridge recently had a 0.3 release: it now works on Win-
dows and also allows the use of third-party Java libraries. A
0.3.1 release to fix Mac OS X build issues may be forthcom-
ing.

Further reading:

http://sourceforge.net/projects/jvm-bridge/

5.1.4 PHI – Python Haskell Interface

Report by: Brandon Moore
Status: pre-alpha

The Python-Haskell-Interface (PHI) is a pre-alpha binding
between Haskell and Python. The goal is to allow writing
mixed-language systems, with an eye to using Haskell compo-
nents with Python systems like Zope, and taking advantage
of existing Python libraries.

The binding currently supports (modulo segfaults) expos-
ing Haskell functions as a Python module and calling Python
code from Haskell. Haskell can be the main program, or
linked as a Python extension module.

The code currently covers manipulating and creating
Python objects, and wrapping Dynamics to be passed into
Python. Marshalling classes cover some primitive types, tu-
ples, and association lists.

I plan to add marshalling of exceptions across interlan-
guage calls and fix some segfaults before making an of-
ficial release. My darcs repository is accesible at http:
//page-208.caltech.edu/phi/.

31

http://haskell.org/greencard/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://sourceforge.net/projects/jvm-bridge/
http://page-208.caltech.edu/phi/
http://page-208.caltech.edu/phi/

5.1.5 HOC: A Haskell to Objective-C bind-
ing

Report by: André Pang

HOC is a Haskell to Objective-C binding. In a nutshell,
it enables you to use Objective-C objects and frameworks
from Haskell, and also enables you to write Objective-C ob-
jects in Haskell. You can write full-blown applications in
HOC and use all of the Foundation, AppKit and Cocoa
frameworks’ classes (including all of the AppKit’s GUI ob-
jects), combining Objective-C tools such as Mac OS X’s In-
terface Builder to build the GUI graphically while writing
controllers for the GUI in Haskell. You can even mix and
match custom objects written in Objective-C with objects
written in Haskell, depending on which language you find
more suitable for the task. HOC comes some sample GUI
programs: you can find screenshots of these HOC programs
at http://hoc.sourceforge.net/screenshots/.

The Haskell interfaces produced by HOC are strongly
typed (Objective-C classes are mapped to Haskell’s typed
system), can be automatically generated from Objective-C
header files, and are designed to integrate well with existing
Haskell code, taking advantage of features such as type classes
and partial evaluation to make its Haskell API as easy to use
and as ‘Haskell-like’ as possible. HOC’s primary platform
is Mac OS X, although it has been lightly tested with the
free GNUstep platform on Linux. HOC requires the Glasgow
Haskell Compiler (GHC) 6.2 or later.

Note: If you have heard of a Haskell to Objective-C bind-
ing named Mocha, HOC is effectively a working version of
Mocha, which was never completed due to time constraints.
A previous version of HOC (0.1) was mentioned briefly on
the glasgow-haskell-users mailing list on January 2003, but
is a very different beast to the current incarnation: HOC 0.1
was more of an experiment with Template Haskell than a
serious implementation. Wolfgang Thaller, the primary au-
thor of HOC, has collaborated greatly with André Pang, who
was the primary author of Mocha, to forge a new HOC that
we hope you will find achieves all the ambitious goals that
Mocha strived for, and more. Mocha is dead, long live HOC!

HOC’s webpages and source code distribution are currently
available. More information on HOC (including where you
can download it!) is available at: http://hoc.sourceforge.
net/

5.2 Scanning, Parsing, Analysis

5.2.1 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyzer generator for Haskell, similar to
the tool lex for C. Alex takes a specification of a lexical syntax
written in terms of regular expressions, and emits code in
Haskell to parse that syntax. A lexical analyzer generator is
often used in conjunction with a parser generator (such as
Happy) to build a complete parser.

Status: The latest version is 2.0, released on August 13,
2003. Alex is in maintenance mode at the moment, and a
few minor bugs reported since 2.0 have been fixed in CVS. A
minor release will probably be made at some point.

Further reading:

Alex homepage: http://www.haskell.org/alex/

5.2.2 Happy

Report by: Simon Marlow
Status: stable, maintained

There have been no new releases of Happy since June 2002.
Happy is still in constant use by GHC and other projects, and
remains in maintenance mode.

Further reading:

Happy’s web page is at http://www.haskell.org/happy/

5.2.3 HaLex

Report by: Jorge Sousa Pinta

HaLeX is a Haskell library to model, manipulate and an-
imate regular languages. This library introduces a number
of Haskell datatypes and the respective functions that ma-
nipulate them, providing a clear, efficient and concise way to
define, to understand and to manipulate regular languages in
Haskell. For example, it allows the graphical representation
of finite automata and its animation, and the definition of re-
active finite automata. This library is described in the paper
presented at FDPE’02.

32

http://hoc.sourceforge.net/screenshots/
http://hoc.sourceforge.net/
http://hoc.sourceforge.net/
http://www.haskell.org/alex/
http://www.haskell.org/happy/

5.2.4 LRC

Report by: Jorge Sousa Pinta

Lrc is a system for generating efficient incremental at-
tribute evaluators. Lrc can be used to generate language
based editors and other advanced interactive environments.
Lrc can generate purely functional evaluators, for instance in
Haskell. The functional evaluators can be deforested, sliced,
strict, lazy. Additionally, for easy reading, a colored LaTeX
rendering of the generated functional attribute evaluator can
be generated.

5.2.5 Sdf2Haskell

Report by: Jorge Sousa Pinta

Sdf2Haskell is a generator that takes an SDF grammar as
input and produces support for GLR parsing and customiz-
able pretty-printing. The SDF grammar specifies concrete
syntax in a purely declarative fashion. From this grammar,
Sdf2Haskell generates a set of Haskell datatypes that define
the corresponding abstract syntax. The Scannerless Gener-
alized LR parser (SGLR) and associated tools can be used to
produce abstract syntax trees which can be marshalled into
corresponding Haskell values.

Recently, the functionality of Sdf2Haskell has been ex-
tended with generation of pretty-print support. From the
SDF grammar, a set of Haskell functions is generated that de-
fines an pretty-printer that turns abstract syntax trees back
into concrete expressions. The pretty-printer is updateable
in the sense that its behavior can be modified per-type by
supplying appropriate functions.

Sdf2Haskell is distributed as part of the Strafunski bun-
dle for generic programming and language processing (sec-
tion 4.3.3). Sdf2Haskell is being maintained by Joost Visser
(Universidade do Minho, Portugal).

5.2.6 The Utrecht attribute grammar sys-
tem UAG

Report by: Doaitse Swierstra

(Arthur Baars, Doaitse Swierstra)
The Attribute Grammar system was initially developed by

Doaitse Swierstra in 1999. The current version is maintained
by Arthur Baars. The system reads a set of files containing
an attribute grammar, in which semantic functions are de-
scribed through Haskell expressions. Out of this description
catamorphisms and data type definitions are generated.

The system has been bootstrapped, and now provides ex-
tensive error messages in case the attribute grammar contains
errors. Only the type checking of the semantic functions is
postponed to the Haskell compiler that is processing the out-
put of the system. In a newer version we have added the
conventional data flow analyses, so we may point at circu-
larities, and can do experiments with generating more strict
evaluators, of which we hope they will run even faster. The
system is used in the course on Implementation of Program-
ming Languages.

Further reading:

http://www.cs.uu.nl/groups/ST/twiki/bin/view/
Center/AttributeGrammarSystem

5.2.7 DrHylo

Report by: Jorge Sousa Pinta

DrHylo is a tool for deriving hylomorphisms from Haskell
program code. Currently, DrHylo accepts a somewhat re-
stricted Haskell syntax. It is based on the algorithm first
presented in the paper Deriving Structural Hylomorphisms
From Recursive Definitions at ICFP’96 by Hu, Iwasaki, and
Takeichi. To run the programs produced by DrHylo, you
need the Pointless library.

DrHylo is available from http://wiki.di.uminho.pt/
bin/view/Alcino/DrHylo.

5.3 Transformations

5.3.1 The Programatica Project

Report by: Thomas Hallgren

One of the goals of the Programatica Project is to develop
tool support for high-assurance programming in Haskell.

The tools we have developed so far are implemented in
Haskell, and they have a lot in common with a Haskell com-
piler front-end. The code has the potential to be reusable
in various contexts outside the Programatica project. For
example, it has already been used in the Haskell refactoring
project at the University of Kent (section 5.3.3).

Further reading:

The Programatica Project, overview & papers: http:
//www.cse.ogi.edu/PacSoft/projects/programatica/

33

http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://wiki.di.uminho.pt/bin/view/Alcino/DrHylo
http://wiki.di.uminho.pt/bin/view/Alcino/DrHylo
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/

An Overview of the Programatica Toolset: http:
//www.cse.ogi.edu/~hallgren/Programatica/HCSS04/

Executable formal specification of the Haskell 98 Module
System: http://www.cse.ogi.edu/~diatchki/hsmod/

A Lexer for Haskell in Haskell: http:
//www.cse.ogi.edu/~hallgren/Talks/LHiH/

More information about the tools, source code, downloads,
etc: http://www.cse.ogi.edu/~hallgren/Programatica/

5.3.2 Ultra

Report by: Walter Guttmann
Status: currently sleeping, works but should be rewritten

Ultra is a GUI-based, semi-automatic program transfor-
mation system. The intended use is as an assistant to de-
rive correct and efficient programs from high-level descriptive
or operational specifications. The object language is an ex-
tended subset of Haskell, e.g., it does not support modules
or classes, but has several descriptive (non-operational) con-
structs such as “forall”, “exists”, “some”, and “that”. The
transformation calculus of Ultra has its roots in the Munich
CIP system. Transformation rules can be combined by tac-
tics.

What needs to be done? Well, Ultra is written in Gofer and
uses TkGofer for its GUI. This means that, before any further
development is going to happen, it will have to be ported to,
or even completely rewritten in, Haskell. We suspect that,
before that is going to happen, a “standard” GUI-library will
have to emerge. It would be nice, if the new version supported
complete Haskell as its object language. The semantics of
Haskell is, however, quite involved compared to that of the
λ-calculus, making this an ambitious project.

Further reading:

http://www.informatik.uni-ulm.de/pm/projekte/
ultra/

5.3.3 Hare – The Haskell Refactorer

Report by: Huiqing Li, Claus Reinke and Simon Thompson

Refactorings are source-to-source program transformations
which change program structure and organization, but not
program functionality. Documented in catalogues and sup-
ported by tools, refactoring provides the means to adapt and
improve the design of existing code, and has thus enabled the
trend towards modern agile software development processes.

Our project, Refactoring Functional Programs has as its
major goal to build a tool to support refactorings in Haskell.
The HaRe tool is now in its second major release. HaRe
supports full Haskell 98, and is integrated with Emacs (and
XEmacs) and Vim. The refactorings that HaRe supports,
including renaming, scope change, generalization and a num-
ber of others, are now module aware, so that a change will
be reflected in all the modules in a project, rather than just
in the module where the change is initiated. A snapshot of
HaRe is available from our web page.

We continue to develop the system, in dialogue with our
users. A workshop in February (details on the web page)
allowed us to show the latest features to a group of users and
at the same time gather valuable feedback on the existing
system. Our major goals for the next few months are to
implement data-oriented refactorings and to develop an API
which will allow users to write their own refactorings using
the utility functions that we have developed. We encourage
HaRe-related student projects at other universities and, to
avoid overlaps, have started a list of ideas and ongoing or
planned projects.

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.4 VooDooM

Report by: Jorge Sousa Pinta

VooDooM reads VDM-SL specifications and applies trans-
formation rules to the datatypes that are defined in them
to obtain a relational representation for these datatypes.
The relational representation can be exported as VDM-
SL datatypes (inserted back into the original specification)
and/or SQL table definitions (can be fed to a relational
DBMS). The first VooDooM prototype was developed in
a student project by Tiago Alves and Paulo Silva. Cur-
rently, the development of VooDooM is continued in the con-
text of the IKF-P project (Information Knowledge Fusion,
http://ikf.sidereus.pt/) and will include the generation
of XML and Haskell

VooDooM is available from http://wiki.di.uminho.pt/
bin/view/PURe/VooDooM.

34

http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~diatchki/hsmod/
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://www.informatik.uni-ulm.de/pm/projekte/ultra/
http://www.informatik.uni-ulm.de/pm/projekte/ultra/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/bin/view/PURe/VooDooM
http://wiki.di.uminho.pt/bin/view/PURe/VooDooM

5.4 Testing and Debugging

5.4.1 Tracing and Debugging

Report by: Olaf Chitil

There exist a number of tools with rather different ap-
proaches to tracing Haskell programs for the purpose of de-
bugging and program comprehension.

Hood and its variant GHood, for graphical display and
animation, enable the user to observe the values of selected
expressions in a program. Hood and GHood are easy to use,
because they are based on a small portable library. A variant
of Hood is built in to Hugs. Hood and GHood have remained
unchanged for over two years.

HsDebug is a gdb-like debugger, that is, it is used similar
to traditional debuggers for imperative languages. HsDebug
is based on optimistic evaluation and hence is currently only
available in a separate branch of GHC in CVS.

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: static but maintained

The Haskell tracing system Hat is based on the idea that
a specially compiled Haskell program generates a trace file
alongside its computation. This trace can be viewed with
several tools in various ways. The primary viewers at present
allow: observation of top-level functions (hat-observe); and
backwards exploration of a computation, starting from (part
of) a faulty output or an error message (hat-trail). In CVS,
we also have an algorithmic debugging viewer (hat-detect)
very similar to Buddha, and a forward-animator showing the
reduction sequence of expressions (hat-anim). We also have
prototypes of two tools for extracting diagnostic paths from
non-terminating computations. If the computation dives into
a black hole, black-hat can be used; for other forms of non-
productive non-termination hat-nonterm can be used. All
tools inter-operate and use a similar command syntax.

A tutorial explains how to generate traces, how to explore
them, and how they help to debug Haskell programs. Hat
can be used both with nhc98 and ghc, and can also be used
for Haskell 98 programs that use some language extensions
(FFI, MPTC, fundeps, hierarchical libs).

The most recent public release of Hat (2.02) is now a year
old, but since then numerous bugfixes have been applied and
several features added in CVS. We intend to release Hat 2.04
at some point in the medium-term future.

Further reading:

http://www.haskell.org/hat

5.4.3 buddha

Report by: Bernie Pope
Status: active, new release in prepration

Buddha is a declarative debugger for Haskell 98. It is based
on program transformation. Each module in the program
undergoes a transformation to produce a new module (as
Haskell source). The transformed modules are compiled and
linked with a library for the interface, and the resulting pro-
gram is executed. The transformation is crafted such that
execution of the transformed program constitutes evaluation
of the original (untransformed) program, plus construction of
a semantics for that evaluation. The semantics that it pro-
duces is a “computation tree” with nodes that correspond to
function applications and constants.

Currently buddha works with GHC version 5 and 6. No
changes to the compiler are needed. There are no plans to
port it to other Haskell implementations, though there are
no significant reasons why this could not be done.

Buddha is under active development, with version 1.1.1
having been released since the previous report. Version 1.2
is in preparation. Buddha is freely available as source and is
licensed under the GPL.

Version 1.2 will have many new features. The most sig-
nificant change is the underlying implementation. A totally
new program transformation has been developed which will
hopefully lead to a better and more efficient debugger.

Other features in 1.2:

• The command line now uses readline.

• ANSI colour is supported.

• The build system has been totally autoconfiscated and
automakeified. This means it should be easier to make
package distributions of the program (i.e. Debian).

• A Debian package will be provided.

• The C pre-processor is supported.

• Buddha can draw nice diagrams of the callgraph and
values that appear in the program using the dot graph
language.

• An observe command that can show you all the calls to
a given function/constant.

• Many other improvements to the interface.

35

http://www.haskell.org/hat

Hierarchical modules are still not supported. Version 1.2
will drop support for version 5 of GHC, unless there is a
major public outcry (which I seriously doubt).
www.cs.mu.oz.au/~bjpop/buddha

5.4.4 HUnit

Report by: Dean Herington

There have been no recent functional changes to HUnit.
However, Malcolm Wallace recently imported HUnit into the
fptools CVS repository, adjusted the module names to fit the
hierarchical scheme, and linked HUnit to the package build
system for nhc98. We intend that HUnit also appear with
GHC and Hugs before long.

Further reading:

http://hunit.sourceforge.net/

5.5 Development

5.5.1 Visual Studio support for Haskell

Report by: Simon Marlow
Status: in development
A project has been started to develop a Visual Studio plu-
gin to support Haskell, with the aim of providing all the
usual language-specific development environment features
(e.g. syntax coloring, context-sensitive help, indication of
parse errors while you type), and eventually providing some
more advanced features (type checking while you edit, in-
specting types of identifiers or subexpressions, refactoring,
debugging, GUI tools, etc.).

So far we have basic syntax coloring, dynamic indication
of parse errors and even type checking in the editor. Support
for projects is currently underway. We plan to work over the
summer on finishing the basic features and releasing a beta
version.

Help is welcome! You first need to register for the Microsoft
VSIP (Visual Studio Integration Program) to get access to
the VSIP SDK, which has tools, APIs and documentation
for extending Visual Studio. Registering for VSIP is free,
but you have to agree to a longish license agreement:
http://www.vsipdev.com/
If you’ve registered for VSIP and would like to contribute

to Visual Studio/Haskell, please drop me a note (Simon Mar-
low <simonmar@microsoft.com>).

5.5.2 Haskell support for the Eclipse IDE

Report by: Leif Frenzel
Status: working, though alpha
The Eclipse platform is an extremely extensible framework
for IDEs (implemented in Java), developed by an Open
Source Project. This project extends it with tools to sup-
port Haskell development.

The aim is to develop an IDE for Haskell that provides the
set of features and the user experience known from the Eclipse
Java IDE (the flagship of the Eclipse project), and integrates
a broad range of compilers, interpreters, debuggers, docu-
mentation generators and other Haskell development tools.
Long-term goals include a language model with support for
intentional programming, refactoring and structural search.

The project has just started (the initial contribution was
in March 2004). It follows the example and design principles
of the Eclipse project. Every help is very welcome, be it in
the form of code contributions (please contact me), docs or
tutorials, or just any feedback if you use the IDE. A project
site at sourceforge.net has just been created.

There is a working version 0.2 (considered ’alpha’) that
features a project model, a configurable source code editor
(with syntax coloring and Code Assist), compiler support for
ghc and launching from the IDE.

Further reading:

http://eclipse.org
http://leiffrenzel.de/eclipse/eclipsefp.html
http://eclipsefp.sourceforge.net

5.5.3 Haddock

Report by: Simon Marlow
Status: stable, maintained, ver. 0.6 released Nov 11, 2003
Haddock is relatively stable, and I intend to keep maintaining
it for the foreseeable future. I don’t have much time for
wholesale improvements, although contributions are of course
always welcome.

I’ve recently been experimenting with adding support for
“collapsible sections” to the HTML output. For example, the
instances of a type or class would be hidden by default, and
could be expanded by clicking a button. Provided this can
be made to work reliably across the browsers that Haddock
currently supports, it will be in the next release.

There is a TODO list of outstanding bugs and missing
features, which can be found here: http://cvs.haskell.
org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO

Haddock’s home page is here: http://www.haskell.org/
haddock/

36

www.cs.mu.oz.au/~bjpop/buddha
http://hunit.sourceforge.net/
http://www.vsipdev.com/
http://eclipse.org
http://leiffrenzel.de/eclipse/eclipsefp.html
http://eclipsefp.sourceforge.net
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/

Chapter 6

Applications

6.1 Non-commercial applications

6.1.1 HScheme

Report by: Ashley Yakeley

HScheme is a project to create a Scheme interpreter written
in Haskell. There’s a stand-alone interpreter program, or you
can attach the library to your program to provide “Scheme
services”. It’s very flexible and general with types, and you
can pick the “monad” and “location” types to provide such
things as a purely functional Scheme, or a continuation-
passing Scheme (that allows call-with-current-continuation)
etc.

Current status:

There’s an online interpreter that I keep up to date. There
are a couple of major issues that stand before R5RS compli-
ance, after which I’ll make a release. See http://hscheme.
sourceforge.net/issues.php.

Very little work is currently being done on it though, as
the developer’s free time has been shortened by gainful em-
ployment. Further work may resume, at a reduced pace, once
left-over issues in the latest JVM-Bridge (section 5.1.3) have
been cleared up.

Further reading:

http://hscheme.sourceforge.net/

6.1.2 Curryspondence

Report by: Shae Erisson

Curryspondence is a mailing list searching program using
HaskellDB (section 4.4.4) and WASH (section 4.7.4). At the
moment it takes input in the form of mailman mbox files to

populate a postgresql database, but it should work with any
supported HaskellDB backend. Demo here: http://shapr.
homelinux.net/cgi-bin/wash/SearchML darcs repo: http:
//shapr.homelinux.net/repos/curryspondence

6.1.3 lambdabot

Report by: Shae Erisson

lambdabot is an IRC robot with a simple plugin architec-
ture. Plugins include a lambda calculus interpreter, dictd
client, fortune cookie, and more. You can download the
new lambdabot 2.0 release from http://sf.net/projects/
haskell-libs/download

6.1.4 HWS-WP

Report by: Simon Foster

The Haskell Web-Server With Plugins (HWS-WP) is a sim-
ple HTTP server written in Haskell, originally implemented
by Simon Marlow and then updated by Martin Sjögren, who
implemented a simple plug-in system for handling requests.
After some work, HWS-WP has been resurrected (it was ini-
tially not working with GHC 6+) and now can be used to
serve out simple websites. It has also been used as a base on
which to demonstrate HAIFA’s Application Container.

HWS-WP still requires much work, notably it needs
strengthening and its implementation of HTTP needs bring-
ing up to compatibility with the RFCs. A better plug-
in system with multiple module support and dependency
tracking is also proposed. The current version of HWS-WP
can be obtained from http://sourceforge.net/projects/
haskell-libs/

37

http://hscheme.sourceforge.net/issues.php
http://hscheme.sourceforge.net/issues.php
http://hscheme.sourceforge.net/
http://shapr.homelinux.net/cgi-bin/wash/SearchML
http://shapr.homelinux.net/cgi-bin/wash/SearchML
http://shapr.homelinux.net/repos/curryspondence
http://shapr.homelinux.net/repos/curryspondence
http://sf.net/projects/haskell-libs/download
http://sf.net/projects/haskell-libs/download
http://sourceforge.net/projects/haskell-libs/
http://sourceforge.net/projects/haskell-libs/

6.1.5 Hircules, an irc client

Report by: Jens Petersen

Hircules is a gtk2-based IRC client built on gtk2hs and
code from lambdabot. The last release is still version 0.3,
though I have various bug fixes and improvements that I hope
to release soon. New features in 0.4 will include basic text
search and improved channel nicks handling.

Further reading:

http://haskell.org/hircules/

6.1.6 Darcs

Report by: David Roundy

Darcs is a distributed revision control system (i.e. CVS re-
placement), written in Haskell. In darcs, every copy of your
source code is a full repository, which allows for full operation
in a disconnected environment, and also allows anyone with
read access to a darcs repository to easily create their own
branch and modify it with the full power of darcs’ revision
control. Darcs is based on an underlying theory of patches,
which allows for safe reordering and merging of patches even
in complex scenarios. For all its power, darcs remains very
easy to use tool for every day use because it follows the prin-
ciple of keeping simple things simple.

Darcs is still in the process of being stabilized for a 1.0
release. Darcs has seen considerable improvement in the past
six months, including performance enhancements, bug fixes
and improvements in the user interface. Work on a graphical
interface for darcs using wxHaskell has been stalled, although
this interface continues to improve as wxHaskell matures.

Darcs is free software licensed under the GNU GPL.
http://www.abridgegame.org/darcs

6.1.7 Yarrow

Report by: Frank Rosemeier

From the Yarrow web pages:
“A proof-assistant is a computer program with which a

user can construct completely formal mathematical proofs in
some kind of logical system. In contrast to a theorem prover,
a proof-assistant cannot find proofs on its own.”

Yarrow is a proof-assistant for Pure Type Systems (PTSs)
with several extensions. A PTS is a particular kind of logical
system, defined in ‘Henk Barendregt: “Lambda Calculi with
Types.”, in D.M. Gabbai, S. Abramsky, and T.S.E. Maibaum

(editors): Handbook of Logic in Computer Science, volume
1, Oxford University Press, 1992.’ In Yarrow you can ex-
periment with various pure type systems, representing dif-
ferent logics and programming languages. A basic knowl-
edge of Pure Type Systems and the Curry-Howard-de Bruijn
isomorphism is required. (This isomorphism says how you
can interpret types as propositions.) Experience with similar
proof-assistants can be useful.”

Last year Frank Rosemeier has ported Yarrow
(written by Jan Zwanenburg in Haskell 1.3, see
http://www.cs.kun.nl/~janz/yarrow/) to Haskell 98.
The Haskell 98 source code has been published on his
homepage http://www.fernuni-hagen.de/MATHEMATIK/
ALGGEO/Mitarbeiter/Rosemeier/rosemeierengl.htm. As
this homepage will probably move this year the intention is
to offer Yarrow at http://www.haskell.org/yarrow/.

The Haskell 98 code will be smoothed by systematically
replacing monadic class method notation by do-notation.

Future plans:

• producing documentation with Haddock,

• implementing dependent record types,

• integrating algebraic data types.

6.1.8 HasLaTeX

Report by: Frank Rosemeier

Frank Rosemeier has begun to write some Haskell 98
code of a LaTeX translator (for LaTeX see http://www.
latex-project.org/). The system shall parse LaTex2e doc-
uments and convert them to other formats, e.g. into plain
ASCII-Text. The idea is to provide a Haskell library (called
HasLaTeX) for parsing and digesting LaTeX files (using Par-
sec and probably PPrint), which may be useful for other ap-
plications.

6.1.9 DoCon, the Algebraic Domain Con-
structor

Report by: Serge Mechveliani

DoCon is a program for symbolic computation in mathe-
matics, written in Haskell. It is a package of modules dis-
tributed freely, with the source program and manual.

DoCon joins the categorial approach to the mathemati-
cal computation expressed via the Haskell type classes, and

38

http://haskell.org/hircules/
http://www.abridgegame.org/darcs
http://www.cs.kun.nl/~janz/yarrow/
http://www.fernuni-hagen.de/MATHEMATIK/ALGGEO/Mitarbeiter/Rosemeier/rosemeierengl.htm
http://www.fernuni-hagen.de/MATHEMATIK/ALGGEO/Mitarbeiter/Rosemeier/rosemeierengl.htm
http://www.haskell.org/yarrow/
http://www.latex-project.org/
http://www.latex-project.org/

explicit processing of the domain description terms. It im-
plements a good piece of commutative algebra: linear alge-
bra, polynomial gcd, factorization, Groebner bases, and other
functions. They are programmed under the very generic as-
sumptions, like “over any Euclidean ring”, over any GCD-
ring, any field, and so on. DoCon also supports the construc-
tions on domains: Fraction, Polynomial, Residue ring, and
others. That is certain set of operations on a constructed
domain is built automatically.

DoCon is written in what we call Haskell-2-pre - certain
functional extension of Haskell-98. This extension includes
the multiparametric classes, overlapping instances, other mi-
nor features.

For 2004, (2-4 months) I am planning to release

• DoCon-2.08

• Prover: many-sorted term rewriting (TRW) system and
inductive prover for predicate calculus, mathematics and
programming – based on equational reasoning, TRW
(‘unfailing’ completion and such), and programmed in
Haskell

6.1.10 lhs2TEX

Report by: Andres Löh

This tool by Ralf Hinze and Andres Löh is a preprocessor
that transforms literate Haskell code into LATEX documents.
The output is highly customizable by means of formatting
directives that are interpreted by lhs2TEX. Other directives
allow the selective inclusion of program fragments, so that
multiple versions of a program and/or document can be pro-
duced from a common source. The input is parsed using
a liberal parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to Haskell
98.

The program has been around since 1997, but was signifi-
cantly enhanced recently with new features and a manual. It
has been used in several papers and documents and seems to
be sufficiently stable.

The current version is available at http://www.cs.uu.
nl/~andres/lhs2tex. The manual, which also serves
as a nice example of the capabilities of the tool, can
be accessed at http://www.cs.uu.nl/~andres/lhs2tex/
Guide2-1.10pre.pdf.

6.1.11 NetEdit

Report by: Daan Leijen

NetEdit is a graphical editor for Bayesian networks that is
developed by the Decision Support System group of Utrecht
University. It is written in Haskell and uses wxHaskell (sec-
tion 4.5.2 as its GUI library. For inference it uses the C++
library SMILE developed by the Decision Systems Labora-
tory of Pittsburgh University. Features (will) include test
selection, logic sampling, sensitivity analysis and qualita-
tive networks. The application runs on both Windows and
Linux. Screenshots can be found on the wxHaskell webpage:
http://wxhaskell.sourceforge.net

6.2 Commercial users

6.2.1 Reid Consulting Ltd

Report by: Alastair Reid

Status: still very active

Reid Consulting Ltd. offers Haskell consulting, contracting
and training. Involved in Haskell since its early development,
we have played a key role in turning Haskell into a language
that you can use to build successful products.

Services we provide:

• Supporting open-source compilers, tools and libraries

• Developing libraries

• Creating Haskell bindings to non-Haskell libraries

• Performance tuning

• Code reviews

• Training new staff

• Training in advanced Haskell techniques

Using our services will increase your rate of success, reduce
your development time and help you develop a better prod-
uct.

Further reading:

http://www.haskell-consulting.com/

6.2.2 Aetion Technologies LLC

Report by: Mark Carroll

39

http://www.cs.uu.nl/~andres/lhs2tex
http://www.cs.uu.nl/~andres/lhs2tex
http://www.cs.uu.nl/~andres/lhs2tex/Guide2-1.10pre.pdf
http://www.cs.uu.nl/~andres/lhs2tex/Guide2-1.10pre.pdf
http://wxhaskell.sourceforge.net
http://www.haskell-consulting.com/

Aetion Technologies LLC continues to use Haskell for
most of its in-house development. In past months we have
used Functional Reactive Programming for software that at-
tempted to interpret an incoming stream of data. Recently
we have been experimenting with Template Haskell using
GHC, and with concurrent & distributed computing. Ae-
tion’s principal source of revenue is from prototyping appli-
cations of our artificial intelligence techniques for the US De-
partment of Defense. We are also researching applications
for risk management in financial decision making. Aetion
is in the process of releasing to the open-source community
work that we have done in Haskell that was necessary for our
products but incidental to our core competitive advantages.

Further reading:

http://www.aetion.com/

6.3 Haskell in Education

6.3.1 Haskell in Education at Universidade
de Minho

Report by: Jorge Sousa Pinto

Haskell is heavily used in the undergraduate curricula at
Minho. Both Computer Science and Systems Engineering
students are taught two Programming courses with Haskell.
Both programmes of studies fit the “functional-first” ap-
proach; the first course is thus a classic introduction to pro-
gramming with Haskell, covering material up to inductive
datatypes and basic monadic input/output. It is taught to
200 freshmen every year. The second course, taught in the
second year (when students have already been exposed to
other programming paradigms), focuses on pointfree com-
binators, inductive recursion patterns, functors and monads;
rudiments of program calculation are also covered. A Haskell-
based course on grammars and parsing is taught in the third
year, where the HaLeX library is used to support the classes.

Additionally, in the Computer Science curriculum Haskell
is used in a number of other courses covering Logic, Lan-
guage Theory, and Semantics, both for illustrating concepts,
and for programming assignments. Minho’s 4th year course
on Formal Methods (a 20 year-old course in the VDM tra-
dition) is currently being restructured to integrate a system
modeling tool based on Haskell and VooDooM. Finally, in
the last academic year we ran an optional, project-oriented
course on Advanced Functional Programming. Material cov-
ered here focusses mostly on existing libraries and tools for

Haskell, such as YAMPA - functional reactive programming
with arrows, the WASH library, the MAG system, the Stra-
funski library, etc. This course benefitted from visits by a
number of well-known researchers in the field, including Ralf
Laemmel and Peter Thiemann.

6.3.2 Beseme Project

Report by: Rex Page

The Beseme Project seeks to provide ideas and materials
for covering the standard material of a one-semester course on
discrete mathematics for computer science and engineering
students.

A distinctive element of the Beseme approach is that dis-
crete mathematics concepts are illustrated with examples
from software development, rather than the usual examples
from number theory, graph theory, and the like. This gives
computing students an opportunity to see applications of the
theory in a context that interests and motivates them, with-
out sacrificing any of the usual mathematical concepts.

Statistics gathered over a four-semester period and an-
alyzed using standard methods based on Student’s t-
distribution suggest that the Beseme approach gives stu-
dents a leg up in a subsequent course on data structures that
has a heavy programming component. Specifically, students
with above-average, overall grade-point averages who took
the Beseme course earned higher marks than above-average
students who took a course with similar mathematical con-
tent, but illustrated with traditional examples.

According the the t-statistic model, there is only a 2%
likelihood that the difference (between the average grade in
the data structures course of the Beseme students and that of
the traditional students) can be explained by random effects,
and other analyses suggest that aspects such as quality of
instruction and intellectual abilities of the students also do
not explain the difference, leaving course content as a likely,
influential factor.

The analysis is discussed in greater detail in a paper that
appeared in ICFP 2003, entitled “Software Is Discrete Math-
ematics”. The paper, along with other reports on the Beseme
Project, is accessible through the Beseme website.

Course materials available on the website include lectures
notes (in both PowerPoint and PDF form, over 350 slides in
all), homework (about 100 problems and solutions), exami-
nations (about 200 questions and solutions), and a syllabus
and lesson plan.

About two-thirds of the material of the course centers
around mathematical logic. After the introduction of pred-
icates, all of the examples in the logic portion of the course

40

http://www.aetion.com/

involve reasoning about properties of software, most of which
is expressed in Haskell (a few are conventional looping func-
tions).

Software examples include sum, sequence concatenation,
logical operations on sequences, the Russian peasant algo-
rithm, insertion and lookup in AVL trees, and other compu-
tations. Most of the properties verified relate to aspects of
program correctness, but resource utilization properties are
also verified in some cases.

The remaining third of the course discusses other standard
topics in discrete mathematics, such as sets, functions, rela-
tions, trees, and counting.

The Beseme website provides access to a preview of the
material. Exams and solutions are protected by a login pro-
cedure (to increase the comfort level of instructors wishing
to use them in courses). To locate the website, just google
“Beseme”, if it isn’t at http://www.cs.ou.edu/~beseme/

41

http://www.cs.ou.edu/~beseme/

Chapter 7

Groups

7.1 Research Groups

7.1.1 Artificial Intelligence and Software
Technology at JWG-University Frank-
furt

Report by: David Sabel
Members:: Matthias Mann, David Sabel, Manfred
Schmidt-Schauß

DIAMOND

A current research topic within our DIAMOND project is un-
derstanding side effects and Input/Output in lazy functional
programming languages using non-deterministic constructs.

We introduced the FUNDIO calculus which proposes a
non-standard way to combine lazy functional languages with
I/O. FUNDIO is a lazy functional core language, where the
syntax of FUNDIO has case, letrec, constructors and an
IO-interface: its operational semantics is described by small-
step reductions. A contextual approximation and equivalence
depending on the Input/Output behavior of normal order re-
duction sequences have been defined and a context lemma
has been proved. This enables us to study a semantics and
semantic properties of the language. By using the technique
of complete reduction diagrams we have shown a considerable
set of program transformations to be correct. Several opti-
mizations of evaluation are given, including strictness opti-
mizations and an abstract machine, and shown to be correct
w.r.t. contextual equivalence. Thus this calculus has a po-
tential to integrate non-strict functional programming with
a non-deterministic approach to Input/Output and also to
provide a useful semantics for this combination.

We applied these results to Haskell by using the FUNDIO
semantics as semantics for the GHC core language. Based
on an extended set of correct program transformations for
FUNDIO, we investigated the local program transformations,

which are performed in GHC. The result is that most of the
transformations are correct w.r.t. FUNDIO, i.e. retain shar-
ing and do not force the execution of IO operations that are
not needed. A detailed description of our investigation is
available as a technical report from the DIAMOND project
page. By turning off the few transformations which are not
FUNDIO-correct and those that have not yet been investi-
gated (especially most of the global ones), we have achieved
a FUNDIO-compatible modification of GHC which is called
HasFuse.

HasFuse correctly compiles Haskell programs which make
use of ’unsafePerformIO’ in the common (safe) sense, since
the problematic optimizations that are mentioned in the doc-
umentation of the System.IO.Unsafe module (let floating
out, common subexpression elimination, inlining) are turned
off or performed more restrictively. But HasFuse also com-
piles Haskell programs which make use of ’unsafePerformIO’
in arbitrary contexts. Since the call-by-need semantics of
FUNDIO does not prescribe any sequence of the IO opera-
tions, the behavior of ’unsafePerformIO’ is no longer ’unsafe’.
I.e. the user does not have to undertake the proof obligation
that the timing of an IO operation wrapped by ’unsafePer-
fomIO’ does not matter in relation to all the other IO opera-
tions of the program. So ’unsafePerformIO’ may be combined
with monadic IO in Haskell, and since all the reductions and
transformations are correct w.r.t. to the FUNDIO-semantics,
the result is reliable in the sense that IO operations will not
astonishingly be duplicated.

Ongoing work is, beside others, devoted to the proof of
correctness of further program transformations.

Further reading:

Chair for Artificial Intelligence and Software Technology
http://www.ki.informatik.uni-frankfurt.de
DIAMOND http://www.ki.informatik.uni-frankfurt.
de/research/diamond

42

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond

7.1.2 Formal Methods at Bremen Univer-
sity

Report by: Christoph Lüth and Christian Maeder
Members: Christoph
Lüth, Klaus Lüttich, Christian Maeder, Achim Mahnke, Till
Mossakowski, George Russell, Lutz Schröder

The activities of our group centre on the UniForM work-
bench project and the Common Algebraic Specification Lan-
guage (CASL).

The UniForM workbench is a tool integration framework
mainly geared towards tools for formal methods. During the
MMiSS project, it has been extended to a repository provid-
ing configuration management, version control and change
management for semantically structured documents. The
UniForM workbench and MMiSS repository currently con-
tain over 100k lines of Haskell code.

We are further using Haskell to develop tools, like parsers
and static analyzers, for languages from the CASL family,
in particular CASL itself, HasCASL, and HetCASL, which
combines several specification languages such as CSP, CASL,
HasCASL, and Modal and Temporal Logic.

We use the Glasgow Haskell Compiler (GHC), exploiting
many of its extensions, in particular concurrency, multipa-
rameter type classes, hierarchical name spaces, functional
dependencies, existential and dynamic types, and Template
Haskell. Further tools actively used are DriFT, Haddock, the
combinator library Parsec, and Hatchet.

Further reading:

Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

UniForM workbench:
http://www.informatik.uni-bremen.de/uniform/wb

HTk Graphical User Interfaces for Haskell Programs:
http://www.informatik.uni-bremen.de/htk

MMiSS Multimedia instruction in safe systems:
http://www.mmiss.de

CASL specification language:
http://www.informatik.uni-bremen.de/cofi

Heterogeneous tool set:
http://www.informatik.uni-bremen.de/cofi/hets

7.1.3 Functional Programming at Brooklyn
College, City University of New York

Report by: Murray Gross

One prong of the Metis Project at Brooklyn College, City
University of New York, is research on and with Parallel
Haskell in a Mosix-cluster environment. At the present time,
with the assistance of the developers at Heriot Watt Uni-
versity (Edinburgh) and elsewhere, we have implemented a
PVM-free version of GUM for use under Mosix on i86 ma-
chine for release 5 of GHC, and we are currently porting this
release to Solaris for use in SMP environments under Solaris.
Some interesting preliminary results concerning performance
under Mosix are being examined, and we hope to be able to
present a technical report on the issues that have been raised
sometime later this fall.

Further reading:

http://www.sci.brooklyn.cuny.edu/~metis
Contact: Murray Gross,

<magross@its.brooklyn.cuny.edu>.

7.1.4 Functional Programming at Mac-
quarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group we
are working on a number of projects with a Haskell focus
(see also section 2.6.1). Work has progressed on a number of
the following projects:

• We are looking at using our port of Haskell (section 2.6.1)
for embedded DSLs to build handheld applications.

• Kate Krastev is investigating specialization of the nhc98
runtime with a view to code compaction.

• Phuong Tri is working on program proving for Haskell
using Isabelle.

• Qingsong Ye and a number of other students are looking
at designing embedded DSLs for specifying different as-
pects of handheld applications, including data synchro-
nization and user interface.

• We are also interested in using Haskell or similar lan-
guages as the basis for language processor specification,
so we are looking at topics such as parser combinators
and first-class attribute grammars.

Unfortunately, none of these projects is ready for a public
release at the moment.

43

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/uniform/wb
http://www.informatik.uni-bremen.de/htk
http://www.mmiss.de
http://www.informatik.uni-bremen.de/cofi
http://www.informatik.uni-bremen.de/cofi/hets
http://www.sci.brooklyn.cuny.edu/~metis

Further reading:

Our new website is slowly being populated with information
on all of our projects. http://www.comp.mq.edu.au/plrg/

In the meantime, please contact us via email to
<plrg@ics.mq.edu.au>.

7.1.5 Functional Programming at the Uni-
versity of Kent

Report by: Olaf Chitil

We are a group of about a dozen staff and students with
shared interests in functional programming. While our work
is not limited to Haskell, it provides a major focus and com-
mon language for teaching and research.

Our members pursue a variety of Haskell-related projects,
many of which are reported in other sections of this report.
Keith Hanna is continuing his work on visual interactive pro-
gramming with Vital (section 2.6.4) Axel Simon maintains
the Gtk2hs binding to the Gtk GUI library (section 4.5.4)
and has also been trying to coordinate the Haskell GUI ef-
forts (section 4.5.1). Chris Ryder has evaluated his Metrics
and Visualization library Medina through some case stud-
ies, and is working on improvements (section 4.3.4 Huiqing
Li, Simon Thompson and Claus Reinke have released further
snapshots of HaRe, the Haskell Refactorer (section 5.3.3 Olaf
Chitil continues improving the Haskell tracer Hat together
with the York group (section 5.4.2).

Further reading:

FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
Vital:
http://www.cs.kent.ac.uk/projects/vital/
Gtk2HS:
http://gtk2hs.sourceforge.net/
MEDINA:
http://www.cs.kent.ac.uk/~cr24/medina/
Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/
Hat:
http://www.haskell.org/hat/

7.1.6 Parallel and Distributed Functional
Languages Research Group at Heriot-
Watt University

Report by: Phil Trinder
Members:: Abyd Al Zain, Andre Rauber Du Bois, Robert
Pointon, Greg Michaelson, Phil Trinder, Jan Henry Nystrom,
Chunxu Liu, Graeme McHale, Xiao Yan Deng The Parallel
and Distributed Functional Languages (PDF) research group
is part of the Dependable Systems Group in Computer Sci-
ence at the School of Mathematics and Computer Science at
Heriot-Watt University.

The group investigates the design, implementation and
evaluation of high-level programming languages for high-
performance, distributed and mobile computation. The
group aims to produce notations with powerful yet high-
level coordination abstractions, supported by effective im-
plementations that enable the construction of large high-
performance, distributed and mobile systems. The notations
must have simple semantics and formalisms at an appropriate
level of abstraction to facilitate reasoning about the coordi-
nation in real distributed/mobile systems i.e. to transform,
demonstrate equivalence, or analyze the coordination proper-
ties. In summary, the challenge is to bridge the gap between
distributed/mobile theories, like the pi and ambient calculi,
and practice, like CORBA and the OGSA.

Languages

The group has designed, implemented, evaluated and used
several high performance/distributed functional languages,
and continues to do so. High performance languages in-
clude Glasgow parallel Haskell (section 3.2.2) and Parallel
ML with skeletons (PMLS). Distributed/mobile languages
include Glasgow distributed Haskell (section 3.2.3) Erlang
(http://www.erlang.org/), Hume (http://www-fp.dcs.
st-and.ac.uk/hume/) and Camelot.

Collaborations

Primary industrial collaborators include groups in Mi-
crosoft Research Labs (Cambridge), Motorola UK Research
labs (Basingstoke), Ericsson, Agilent Technologies (South
Queensferry).

Primary academic collaborators include groups in Com-
plutense Madrid, JAIST, LMU Munich, Phillips Universität
Marburg, and St Andrews.

Further reading:

http://www.macs.hw.ac.uk/~ceeatia/PDF/

44

http://www.comp.mq.edu.au/plrg/
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/vital/
http://gtk2hs.sourceforge.net/
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/
http://www.erlang.org/
http://www-fp.dcs.st-and.ac.uk/hume/
http://www-fp.dcs.st-and.ac.uk/hume/
http://www.macs.hw.ac.uk/~ceeatia/PDF/

7.1.7 Programming Languages & Systems
at UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New South
Wales is particularly interested in the intersection between
theory and practice in language research. Recent highlights
concerning Haskell include the following: a proposal for data
declarations in type classes to facilitate generic programming
for self-optimizing libraries, a plugin library for GHC, and a
portable re-implementation of the Pan animation tool using
Template Haskell.

Further details about PLS and the above mentioned activ-
ities can be found at
http://www.cse.unsw.edu.au/~pls/

7.1.8 Institute for Geoinformation at TU
Vienna

Report by: Andrew Frank

Haskell used for Geographic Information Science Re-
search

We have used Haskell and primarily Hugs for the past 5 years
as a language to formalize complex problems in Geographic
Information Science:

Specification of interfaces: interoperability between pro-
grams of different vendors requires the definition of inter-
faces. The industry group Open GIS Consortium (http:
//www.opengis.org) is part of the international standard-
ization process under ISO (ISO TC 211) and uses the con-
ventional methods (UML, English text). This leads regularly
to interpretation problems: what is meant with a specific
interface description? What is the correct implementation?
We have demonstrated that Haskell can be used to write the
specifications in an unambiguous way. Haskell is executable
and this produces the additional benefit that results for inter-
esting questions can be produced automatically (Frank and
Kuhn 1995; Frank and Kuhn 1998; Kuhn and Frank 1998).

Modeling cognitive spatial agents: the complex processes
of observation of environment, decision making and action
in space analyzed; we construct computational models in
Haskell. A first model of a very simple situation (finding
the way to the gate in an airport) was successful (Raubal,
Egenhofer et al. 1997; Raubal and Egenhofer 1998; Raubal
and Worboys 1999; Raubal 2000; Raubal 2000; Raubal and

Frank 2000; Raubal 2001; Raubal 2001). Another compu-
tation model analyzes the process of making maps based on
observation of an environment and then using the same maps
by another agent for wayfinding (Frank 2000). The formal
models allowed us to compare wayfinding in a real environ-
ment with wayfinding in the web (Hochmair 2000) (Hochmair
2000; Hochmair 2001; Hochmair and Frank 2001; Hochmair
and Raubal forthcoming). Ongoing work is concentrating on
users of public transportation: Ms. E. Pontikakis is inte-
grating wayfinding with the business process of ticket buying
etc.

Building computational models to understand real estate
ownership and the related process in a cadastre (propriety
registry). In one effort we built a computational model to
John Searle’s concept of ’socially constructed reality’ (Searle
1995; Smith and Searle 2001) and applied it to real estate
(Anderson, Birbeck et al. 2000; Bittner, Wolff et al. 2000;
Steffen Bittner 2002; Bittner to appear). In a second ef-
fort, the Austrian cadastral law was translated, paragraph
by paragraph, in Haskell to allow formal analysis of its con-
tent (Navratil 1998; Navratil 2002; Navratil and Frank 2003)

At the core of much of our work is the representation of
collections of facts; the ordinary relational data model (Codd
1970; Codd 1982) does not integrate well with current object-
oriented design paradigms and functional approaches. We
explore a data model based on relations, which links to cat-
egory theory (Bird and de Moor 1997). We have a running
system which allows flexible storage and retrieval of multi-
ple relations. This is reminiscent of work done in the early
80s (Shipman 1981), which did not succeed in the imperative
programming environment.

Geographic Information Systems are very complex, large
programs and therefore very difficult to analyze and to teach.
It seems possible to reconstruct the data processing part of
a GIS (not the user interface) in Haskell and identify the al-
gebras relevant. Haskell permits the integration of different
parts of mathematics (algebraic topology, projective geome-
try, linear algebra, etc.) in a uniform setting.

Further reading:

http://www.geoinfo.tuwien.ac.at/research/
researchtopics.htm

45

http://www.cse.unsw.edu.au/~pls/
http://www.opengis.org
http://www.opengis.org
http://www.geoinfo.tuwien.ac.at/research/researchtopics.htm
http://www.geoinfo.tuwien.ac.at/research/researchtopics.htm

7.1.9 Logic and Formal Methods group at
the Informatics Department of the
University of Minho, Braga, Portugal

Report by: Jorge Sousa Pinto

The Logic and Formal Methods group at the Informat-
ics Department of the University of Minho, Braga, Portugal.
http://www.di.uminho.pt/~glmf.

We are a group of about 12 staff members and various
PhD and MSc students. We have shared interest in formal
methods and their application in areas such as data and code
reverse and re-engineering, program understanding, and com-
munication protocols. Haskell is our common language for
teaching and research.

Haskell is used as first language in our graduate com-
puters science education (section 6.3.1). José Valença and
José Barros are the authors of the first (and only) Por-
tuguese book about Haskell, entitled ”Fundamentos da Com-
putação” (ISBN 972-674-318-4). Alcino Cunha has developed
the Pointless library for pointfree programming in Haskell
(section 4.2.8), as well as the DrHylo tool that transforms
functions using explicit recursion into hylomorphisms. Super-
vised by José Nuno Oliveira, students Tiago Alves and Paulo
Silva are developing the VooDooM tool (section 5.3.4), which
transforms VDM datatype specifications into SQL datamod-
els and students João Ferreira and José Proença will soon
start developing CPrelude.hs, a formal specification mod-
elling tool generating Haskell from VDM-SL and CAMILA.
João Saraiva is responsible for the implementation of the at-
tribute system LRC, which generates (circular) Haskell pro-
grams. He is also the author of the HaLex library and tool,
which supports lexical analysis with Haskell. Joost Visser
has developed Sdf2Haskell, which generates GLR parsing
and customizable pretty-printing support from SDF gram-
mars, and which is distributed as part of the Strafunski bun-
dle. Most tools and library modules develop by the group
are organized in a single infrastructure, to facilitate reuse,
which can be obtained as a single distribution under the name
UMinho Haskell Libraries and Tools.

The group has recently started the 3-year project called
PURe which aims to apply formal methods to Program Un-
derstanding and Reverse Engineering. Haskell is used as im-
plementation language, and various subprojects have been
initiated, including Generic Program Slicing.

7.1.10 Functional Programming at Utrecht
University

Report by: Arthur van Leeuwen

All UU Software

(http://www.cs.uu.nl/groups/ST/)
We are well on our way to make all our Haskell modules

mutually consistent and to make them available through a
CVS server at cvs.cs.uu.nl, in the directory uust. Cur-
rently included are our parser combinators, pretty printers,
attribute grammar system and a few utilities. Further soft-
ware will be added. Many of our Ph.D. students are currently
working on their Ph.D. theses though, so it may be some time
before it is all done.

Parser Combinators

(Doaitse Swierstra, Arthur Baars, Rui Guerra)
See the description of UPC in section 4.3.2.

Helium

(Arjan van IJzendoorn, Bastiaan Heeren, Daan Leijen)
See the description of Helium in section 2.6.2.

Improving Type Errors

(Bastiaan heeren, Jurriaan Hage, Doaitse Swierstra)
See the description of the constrained based inferences in sec-
tion 3.3.2.

The attribute grammar system AG

(Arthur Baars, Doaitse Swierstra) See the description of
UAG in section 5.2.6.

Utrecht Haskell Compiler

(Atze Dijkstra, Doaitse Swierstra) Status: active
development

The Utrecht Haskell Compiler is an attempt to build a
full, working Haskell compiler using the UUST tools. It is not
quite ready for consumption yet, but it has already generated
running code.
http://www.cs.uu.nl/groups/ST/Center/

UtrechtHaskellCompiler

46

http://www.di.uminho.pt/~glmf
http://www.cs.uu.nl/groups/ST/
http://www.cs.uu.nl/groups/ST/Center/UtrechtHaskellCompiler
http://www.cs.uu.nl/groups/ST/Center/UtrechtHaskellCompiler

Pretty Printing

(Pablo Azero, Doaitse Swierstra)
Our pretty printing combinators have been silently doing

their work over the years. Currently we are updating them, so
they can be generated by the new version of the AG system.
They too will have a more flexible interface allowing naming
of subformats by using a monadic top layer.
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/lib/

pprint/

Proxima

(Martijn Schrage, Johan Jeuring, Lambert Meertens, Doaitse
Swierstra)

In the proxima we are designing a layered system for build-
ing interactive editors. An interesting aspect of our approach
is that we have designed combinators for gluing the different
layers that take part in the online formatting. By our knowl-
edge this is the only place where combinators are used to
combine really large program structures. We are currently
in the state that we can produce small editors in a relatively
easy way.

For some screenshots of editors that have been written you
may take a look at the projects home page at: http://www.
cs.uu.nl/groups/ST/twiki/bin/view/Center/Proxima

Syntax Macros

(Arthur Baars, Doaitse Swierstra)
Status: actively developed

The syntax macros are now in a state that one gets a macro
mechanism for free when using our attribute grammar sys-
tem and parser combinators in constructing a front end of a
compiler. Necessary gluing code is automatically generated.
The syntax macros make it possible to extend the context
free grammar of a language on a per program basis. Ex-
amples of constructs that no longer have to be part of the
standard language, but could have been defined us- ing our
macro mechanism are the do-notation, arrow-notation and
the notation for list comprehensions. Currently we manage
even to give the user feedback in terms of his original pro-
gram, by allowing online redefinition of the attribute gram-
mar that constitutes the compiler. The latest developments
are in trying to incorporate automatic left-factorization into
the system, so that the user of the system can’t shoot himself
in the foot so easily anymore.

The current version is available at http://www.cs.uu.nl/
groups/ST/twiki/bin/view/Center/SyntaxMacros

First Class Attribute Grammars

(Arthur Baars, Doaitse Swierstra)
We are investigating how to make language definitions

more compositional, and how to capture recurring patterns
of analysis and data flow in compilers. Ideally we should
like to have so-called first class aspects. It is a matter of
research however how to integrate type checking and aspect
oriented programming. Attempts using extendible records
almost seem to do the job, but unfortunately incorrect use
leads to pages of error messages. We hope that by following
the techniques explained in http://www.cs.uu.nl/people/
arthurb/dynamic.html may help to solve the problem.

Generic Haskell

(Johan Jeuring, Andres Löh, Doaitse Swierstra)
See the description in section 3.4.

LiteMECH

(Ade Azurat, Wishnu Prasetya)
LiteMECH is a verification condition generator for a sim-

ple imperative programming language. It is implemented in
Haskell, using the UUAG system.

7.2 Other groups

7.2.1 Debian Users

Report by: Isaac Jones

There are many Debian users in the Haskell community,
and they have begun an initiative to form a more coherent
group. This involves serious packaging work, especially by
Ian Lynagh to bring new binary versions of GHC, NHC, and
other packages to various versions of Debian.

The group is working toward a solution for the longstand-
ing problems with binary distribution of Haskell packages,
with discussion taking place on the Haskell Wiki (http://
www.haskell.org/hawiki/DebianUsers). It is hoped that
the Library Infrastructure Project (section 4.1.1) will help
here.

In order to provide backports, bleeding edge versions
of Haskell tools, and a place for experimentation with
packaging ideas, Isaac Jones has started the “Haskell Exper-
imental” Debian archive (http://www.syntaxpolice.org/
haskell-experimental/haskell-experimental.html)
where a wide variety of packages can be found.

47

http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/lib/pprint/
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/lib/pprint/
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/Proxima
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/Proxima
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/SyntaxMacros
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/SyntaxMacros
http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.haskell.org/hawiki/DebianUsers
http://www.haskell.org/hawiki/DebianUsers
http://www.syntaxpolice.org/haskell-experimental/haskell-experimental.html
http://www.syntaxpolice.org/haskell-experimental/haskell-experimental.html

7.2.2 Fedora Haskell packages

Report by: Jens Petersen

In the last edition under “RPM Packaging of Haskell
projects” I ended by saying “Also I’m considering contribut-
ing some of the major packages like ghc to the Fedora Extras
project...”. When I turned to do this I discovered that Gerard
Milmeister (gemi@bluewin.ch) had already started submit-
ting several core Haskell rpm packages to fedora.us including
hugs98 (#842), ghc (#844) and nhc98 (#847). I was hoping
to help get them through QA quickly, but unfortunately I
got swamped with work, so they are unfortunately still wait-
ing in the queue. Getting packages accepted or contributing
is really not that hard if you have some experience in RPM
packaging and a little determination, and once those packages
are accepted it will help to spread Haskell acceptance further
and also build the foundation for adding Haskell libraries to
Fedora Extras (like gtk2hs (#1519)), so I would encourage
people to volunteer a little time to this very worthwhile effort.

Further reading:

project http://www.fedora.us/ bugzilla https:
//bugzilla.fedora.us/ submission process http:
//www.fedora.us/wiki/PackageSubmissionQAPolicy

48

http://www.fedora.us/
https://bugzilla.fedora.us/
https://bugzilla.fedora.us/
http://www.fedora.us/wiki/PackageSubmissionQAPolicy
http://www.fedora.us/wiki/PackageSubmissionQAPolicy

Chapter 8

Individuals

8.1 Oleg’s Mini tutorials and as-
sorted small projects

The page of various Haskell mini-tutorials, type system
hacks, and other well-commented mini-projects http://
pobox.com/~oleg/ftp/Haskell/ has received two additions:

• From enumerators to cursors: turning the left
fold inside out

The topic of that article (which is a literate Haskell98
code) is traversing collections, e.g., files, databases and
generating functions. The article introduces a non-
recursive left-fold and argues that it is an optimal traver-
sal interface in a language without first-class continua-
tions. The non-recursive left-fold can be instantiated
into either (i) a (recursive) left fold enumerator support-
ing a premature termination, or (ii) a stream/cursor,
which permits safe interleaving. Both instantiation pro-
cedures are generic, as evidenced by their polymorphic
types. The proposed traversal interface and its two in-
stances (as the enumerator and the cursor) have indeed
been implemented, in the TAKUSEN database access
library (see section 4.4.3).

• De-biforestation

Another article with accompanying complete Haskell98
code, which considers the problem of eliminating an in-
termediate data structure and a space leak in a situation
where one producer generates two mutually-dependent
data streams for two distinct consumers. Furthermore,
the rate of production is non-uniform. We derive a de-
forested version, which no longer needs to buffer any
produced items. When we run that version, the memory
retaining profile shows no space leaks. We also discuss
a “parallel” writing of several streams into two distinct
files. Our solution is safe and yet the I/O is effectively
interleaved.

8.2 Graham Klyne

Graham Klyne writes:
My primary interest is in RDF (http://www.w3.org/

RDF/) and Semantic Web (http://www.w3.org/2001/sw/)
technologies. Since the November HC&A report, I have
completed and packaged the first phase of an RDF infer-
ence scripting tool, details of which can be found at http://
www.ninebynine.org/RDFNotes/Swish/Intro.html. I in-
tend that further development is to be driven by specific
Semantic Web applications. Identified future work items in-
clude:

• a full RDF/XML parser based on the new RDF
syntax specification (http://www.w3.org/TR/
rdf-syntax-grammar/). To this end, I’d like to
see the HXml Toolbox fully supported in Hugs under
Windows.

• integrated XML query and stylesheet processing for
scraping RDF data from arbitrary XML documents.

• application to network device configuration and access
control

• application to trust modelling (cf. http://www.
ninebynine.org/iTrust/Intro.html)

• extension of RDF datatype-aware inference capabilities.

• fully or partially automated inference/proof discovery.

• integration with RDF storage systems implemented in
Java and/or C (e.g. Jena, http://www.hpl.hp.com/
semweb/)

• performance tuning.

49

http://pobox.com/~oleg/ftp/Haskell/
http://pobox.com/~oleg/ftp/Haskell/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.ninebynine.org/iTrust/Intro.html
http://www.ninebynine.org/iTrust/Intro.html
http://www.hpl.hp.com/semweb/
http://www.hpl.hp.com/semweb/

I have used Haskell to implement and check the re-
vised URI specification, with a view to replacing the cur-
rent Network.URI module when the specification is sta-
bilized. The current state of my software can be found
at http://www.ninebynine.org/Software/HaskellUtils/
Network/, and the specification can be found at http://
gbiv.com/protocols/uri/rev-2002/rfc2396bis.html.

Haskell is also used for some smaller utilities, including a
report generator compiler, which is being used in conjunction
with some Semantic Web tools written in Python to generate
IETF message header field registry documentation from RDF
source data (e.g. http://www.ietf.org/internet-drafts/
draft-klyne-hdrreg-mail-03.txt).

I’ve also published a page of notes about my experi-
ence of learning Haskell at http://www.ninebynine.org/
Software/Learning-Haskell-Notes.html.

Further info on http://www.ninebynine.org/ or http:
//www.ninebynine.net/.

8.3 Bioinformatics tools

Report by: Ketil Malde

I’m developing (what seems to become) a handful of tools
for solving problems that arise in bioinformatics. I currently
have a sequence clustering tool, xsact (currently in revision
1.4), which I believe is one of the more feature-rich tools of
its kind.

I am also about to release its sibling sequence assembly
tool, xtract. In addition, there are various smaller tools that
are or were useful to me, and that may or may not be, useful
to others.

Everything is, or will be shortly, available from my web
pages:
http://www.ii.uib.no/~ketil/bioinformatics

50

http://www.ninebynine.org/Software/HaskellUtils/Network/
http://www.ninebynine.org/Software/HaskellUtils/Network/
http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html
http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html
http://www.ietf.org/internet-drafts/draft-klyne-hdrreg-mail-03.txt
http://www.ietf.org/internet-drafts/draft-klyne-hdrreg-mail-03.txt
http://www.ninebynine.org/Software/Learning-Haskell-Notes.html
http://www.ninebynine.org/Software/Learning-Haskell-Notes.html
http://www.ninebynine.org/
http://www.ninebynine.net/
http://www.ninebynine.net/
http://www.ii.uib.no/~ketil/bioinformatics

	General
	haskell.org
	#haskell
	The Haskell HaWiki
	Haskell related events

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	hmake
	Haskell-Clean Compiler
	Domain-specific variations
	Haskell on handheld devices
	Helium
	Educational Domain Specific Languages
	Vital: Visual Interactive Programming
	hOp

	Language Extensions
	Foreign Function Interface
	Non-sequential Programming
	Concurrent Haskell
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell
	Eden

	Type System/Program Analysis
	Chameleon
	Constraint Based Type Inferencing at Utrecht

	Generic Programming
	Template Haskell
	Syntactic sugar
	Recursive do notation
	Arrow notation

	Libraries
	Packaging and Distribution
	Library Infrastructure Project
	PreludeExts
	Haskel User Submitted Libraries

	General libraries
	System.Time: a redesigned Time library
	A redesigned IO library
	System.Process: a platform-independent API for external process control
	The Haskell Cryptographic Library
	Yampa
	The revamped monad transformer library
	HBase
	Pointless Haskell

	Parsing and transforming
	Parsec
	UPC -- Utrecht Parser Combinators
	Strafunski
	Medina -- Metrics for Haskell
	Template Greencard

	Data handling
	DData
	HSQL
	Takusen
	HaskellDB

	User interfaces
	The Common GUI API effort
	wxHaskell
	HToolkit
	gtk2hs - A binding to the Gtk GUI library version 2.0 - 2.4.
	HTk
	HSX11
	Fudgets

	Graphics
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	FunWorlds -- Functional Programming and Virtual Worlds
	PanTHeon
	Pancito

	Web and XML programming
	Halipeto
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell
	HAIFA
	Haskell XML-RPC

	Tools
	Foreign Function Interfacing
	GreenCard
	C-->Haskell
	JVM Bridge
	PHI -- Python Haskell Interface
	HOC: A Haskell to Objective-C binding

	Scanning, Parsing, Analysis
	Alex version 2
	Happy
	HaLex
	LRC
	Sdf2Haskell
	The Utrecht attribute grammar system UAG
	DrHylo

	Transformations
	The Programatica Project
	Ultra
	Hare -- The Haskell Refactorer
	VooDooM

	Testing and Debugging
	Tracing and Debugging
	Hat
	buddha
	HUnit

	Development
	Visual Studio support for Haskell
	Haskell support for the Eclipse IDE
	Haddock

	Applications
	Non-commercial applications
	HScheme
	Curryspondence
	lambdabot
	HWS-WP
	Hircules, an irc client
	Darcs
	Yarrow
	HasLaTeX
	DoCon, the Algebraic Domain Constructor
	lhs2TeX
	NetEdit

	Commercial users
	Reid Consulting Ltd
	Aetion Technologies LLC

	Haskell in Education
	Haskell in Education at Universidade de Minho
	Beseme Project

	Groups
	Research Groups
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Parallel and Distributed Functional Languages Research Group at Heriot-Watt University
	Programming Languages & Systems at UNSW
	Institute for Geoinformation at TU Vienna
	Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga, Portugal
	Functional Programming at Utrecht University

	Other groups
	Debian Users
	Fedora Haskell packages

	Individuals
	Oleg's Mini tutorials and assorted small projects
	Graham Klyne
	Bioinformatics tools

