
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Eighth Edition – May 13, 2005

Andres Löh (ed.)
Perry Alexander Lloyd Allison Tiago Miguel Laureano Alves
Krasimir Angelov Alistair Bayley Jérémy Bobbio
Björn Bringert Niklas Broberg Paul Callaghan
Mark Carroll Manuel Chakravarty Olaf Chitil
Koen Claessen Catarina Coquand Duncan Coutts

Philippa Cowderoy Alain Crémieux Iavor Diatchki
Atze Dijkstra Shae Erisson Sander Evers

Markus Forsberg Simon Foster Leif Frenzel
André Furtado John Goerzen Murray Gross

Walter Gussmann Jurriaan Hage Sven Moritz Hallberg
Thomas Hallgren Keith Hanna Bastiaan Heeren

Anders Höckersten John Hughes Graham Hutton
Patrik Jansson Johan Jeuring Paul Johnson

Isaac Jones Oleg Kiselyov Graham Klyne
Daan Leijen Huiqing Li Andres Löh
Rita Loogen Salvador Lucas Christoph Lüth

Ketil Z. Malde Christian Maeder Simon Marlow
Conor McBride John Meacham Serge Mechveliani
Neil Mitchell William Garret Mitchener Andy Moran

Matthew Naylor Rickard Nilsson Jan Henry Nyström
Sven Panne Ross Paterson Jens Petersen

John Peterson Simon Peyton-Jones Jorge Sousa Pinto
Bernie Pope Claus Reinke Frank Rosemeier

David Roundy George Russell Chris Ryder
David Sabel Uwe Schmidt Martijn Schrage
Peter Simons Anthony Sloane Dominic Steinitz

Donald Bruce Stewart Martin Sulzmann Autrijus Tang
Henning Thielemann Peter Thiemann Simon Thompson

Phil Trinder Arjan van IJzendoorn Tuomo Valkonen
Eelco Visser Joost Visser Malcolm Wallace

Ashley Yakeley Jory van Zessen Bulat Ziganshin

http://www.haskell.org/communities/

Preface

You are reading the 8th edition of the Haskell Communities and Activities Report (HCAR).
These are interesting times to be a Haskell enthusiast.

Everyone seems to be talking about darcs (→ 6.3) and Pugs (→ 6.1) these days, and it is nice
to see Haskell being mentioned in places where it usually was not. But here is what I think
this new success really means: All the people who have spent their time experimenting with
Haskell, writing tools or improving libraries, have done their job right! They have successfully
lowered the barrier for newcomers. So thanks to all the contributors for their time and effort.
All the entries, old and new, show that a lot is going on in the Haskell community, and that
it is a lively and friendly place to be. The Haskell Cabal (→ 4.1.1), which is now finding its
way into all the major Haskell implementations, will hopefully make the contribution of Haskell
libraries and tools even easier from now on.

A special thank-you also goes to all the people who help spreading the Haskell word in new
ways: the Monad.Reader (→ 1.5) is a new Haskell on-line magazine that already produced some
very informative and well-written articles, the Haskell Sequence (→ 1.4) is a new site for news
and discussion. I also want to mention Walter Gussmann’s entry here (→ 7.2.2), who has a
success story to tell about teaching functional programming to children in high school.

Because the HCAR is quickly increasing in size, I have removed a couple of entries from
authors that have not reported back. If the projects are still active, I will be more than happy
to include them again in the next edition. I kept the typographical hints indicating change:
completely new entries have a blue (or gray, if viewed without color) background; entries with
a certain amount of change have a header with a blue background. I have also slightly adapted
the structure of the report. Feedback is, as always, welcome 〈hcar@haskell.org〉.

Please remember that the next report will appear in November 2005, so already mark the last
weeks of October, because the new entries will be due by then.

Editing the report has been an enjoyable experience, and I sincerely hope that you will enjoy
reading it even more.

Andres Löh, University of Utrecht, The Netherlands

2

mailto: hcar at haskell.org

Contents

1 General 7
1.1 haskell.org . 7
1.2 #haskell . 7
1.3 The Haskell HaWiki . 7
1.4 The Haskell Sequence . 7
1.5 The Monad.Reader . 8
1.6 Books and tutorials . 8
1.6.1 New textbook – Programming in Haskell . 8
1.6.2 Haskell Tutorial WikiBook . 8
1.6.3 hs-manpage-howto(7hs) . 8
1.7 Haskell related events . 8
1.7.1 Future events . 8

2 Implementations 10
2.1 The Glasgow Haskell Compiler . 10
2.2 Hugs . 11
2.3 nhc98 . 11
2.4 jhc . 11
2.5 Haskell to Clean Translation . 12
2.6 Helium . 12

3 Language 14
3.1 Variations of Haskell . 14
3.1.1 Haskell on handheld devices . 14
3.1.2 Vital: Visual Interactive Programming . 14
3.1.3 hOp . 14
3.1.4 Camila . 15
3.1.5 Haskell Server Pages (HSP) . 15
3.1.6 Haskell Regular Patterns (HaRP) . 15
3.2 Foreign Function Interface . 16
3.3 Non-sequential Programming . 16
3.3.1 GpH – Glasgow Parallel Haskell . 16
3.3.2 GdH – Glasgow Distributed Haskell & Mobile Haskell . 16
3.3.3 Eden . 17
3.3.4 HCPN – Haskell-Coloured Petri Nets . 17
3.4 Type System/Program Analysis . 18
3.4.1 Agda: An Interactive Proof Editor . 18
3.4.2 Epigram . 18
3.4.3 Chameleon . 19
3.4.4 Constraint Based Type Inferencing at Utrecht . 20
3.4.5 EHC, ‘Essential Haskell’ Compiler . 21
3.5 Generic Programming . 22

4 Libraries 24
4.1 Packaging and Distribution . 24
4.1.1 Hackage and Cabal . 24
4.1.2 Eternal Compatibility in Theory – a module versioning protocol 24
4.1.3 LicensedPreludeExts . 25
4.2 General libraries . 25
4.2.1 Process . 25
4.2.2 System.Console.Cmdline.Pesco – a command line parser 6= GNU getopt 25

3

4.2.3 TimeLib . 26
4.2.4 A redesigned IO library . 26
4.2.5 The Haskell Cryptographic Library . 26
4.2.6 Numeric prelude . 27
4.2.7 Haskore revision . 27
4.2.8 The revamped monad transformer library . 27
4.2.9 HBase . 28
4.2.10 Pointless Haskell . 28
4.2.11 hs-plugins . 28
4.2.12 MissingH . 28
4.2.13 MissingPy . 29
4.3 Parsing and transforming . 29
4.3.1 Parsec . 29
4.3.2 Haskell-Source with eXtensions (HSX, haskell-src-exts) . 29
4.3.3 Strafunski . 29
4.3.4 Medina – Metrics for Haskell . 30
4.4 Data handling . 30
4.4.1 DData . 30
4.4.2 A library for strongly typed heterogeneous collections . 30
4.4.3 HSQL . 31
4.4.4 Takusen . 31
4.4.5 HaskellDB . 31
4.4.6 ByteStream . 31
4.4.7 Compression-2005 . 32
4.5 User interfaces . 32
4.5.1 wxHaskell . 32
4.5.2 FunctionalForms . 32
4.5.3 Gtk2Hs – A GUI library for Haskell based on Gtk+ . 33
4.5.4 HToolkit . 33
4.5.5 HTk . 33
4.5.6 Fudgets . 34
4.6 Graphics . 34
4.6.1 HOpenGL – A Haskell Binding for OpenGL and GLUT . 34
4.6.2 FunWorlds – Functional Programming and Virtual Worlds . 34
4.7 Web and XML programming . 34
4.7.1 HaXml . 34
4.7.2 Haskell XML Toolbox . 35
4.7.3 WASH/CGI – Web Authoring System for Haskell . 35
4.7.4 HAIFA . 36
4.7.5 Haskell XML-RPC . 36

5 Tools 37
5.1 Foreign Function Interfacing . 37
5.1.1 C–>Haskell . 37
5.1.2 JVM Bridge . 37
5.2 Scanning, Parsing, Analysis . 37
5.2.1 Alex version 2 . 37
5.2.2 Happy . 37
5.2.3 HaLex . 38
5.2.4 LRC . 38
5.2.5 Sdf2Haskell . 38
5.2.6 SdfMetz . 38
5.2.7 HaGLR . 38
5.2.8 DrHylo . 39
5.3 Transformations . 39
5.3.1 The Programatica Project . 39
5.3.2 Term Rewriting Tools written in Haskell . 39
5.3.3 Hare – The Haskell Refactorer . 40

4

5.3.4 VooDooM . 40
5.3.5 LVM-OPT . 41
5.4 Testing and Debugging . 41
5.4.1 Tracing and Debugging . 41
5.4.2 Hat . 41
5.4.3 buddha . 41
5.4.4 QuickCheck . 42
5.5 Development . 42
5.5.1 hmake . 42
5.5.2 cpphs . 42
5.5.3 Visual Studio support for Haskell . 42
5.5.4 Haskell support for the Eclipse IDE . 43
5.5.5 haste . 43
5.5.6 Haddock . 43
5.5.7 BNF Converter . 44
5.5.8 Hoogle – Haskell API Search . 44

6 Applications 45
6.1 Pugs . 45
6.2 HScheme . 45
6.3 Darcs . 45
6.4 FreeArc . 46
6.5 HWSProxyGen . 46
6.6 Hircules, an irc client . 46
6.7 lambdabot . 46
6.8 Flippi . 47
6.9 Postmaster ESMTP Server . 47
6.10 riot . 47
6.11 yi . 47
6.12 Dazzle (formerly NetEdit) . 48
6.13 Yarrow . 48
6.14 DoCon, the Algebraic Domain Constructor . 48
6.15 lhs2TEX . 48
6.16 Audio signal processing . 49
6.17 Converting knowledge-bases with Haskell . 49

7 Users 50
7.1 Commercial users . 50
7.1.1 Galois Connections, Inc. 50
7.1.2 Aetion Technologies LLC . 50
7.2 Haskell in Education . 51
7.2.1 Haskell in Education at Universidade de Minho . 51
7.2.2 Functional programming at school . 51
7.3 Research Groups . 52
7.3.1 Artificial Intelligence and Software Technology at JWG-University Frankfurt 52
7.3.2 Formal Methods at Bremen University . 53
7.3.3 Functional Programming at Brooklyn College, City University of New York 53
7.3.4 Functional Programming at Macquarie University . 54
7.3.5 Functional Programming at the University of Kent . 54
7.3.6 Parallel and Distributed Functional Languages Research Group at Heriot-Watt University 54
7.3.7 Programming Languages & Systems at UNSW . 55
7.3.8 Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga,

Portugal . 55
7.3.9 The Computer Systems Design Laboratory at the University of Kansas 56
7.3.10 Cover: Combining Verification Methods . 56
7.4 User groups . 57
7.4.1 Debian Users . 57
7.4.2 Fedora Haskell . 57

5

7.4.3 OpenBSD Haskell . 57
7.4.4 Haskell in Gentoo Linux . 57
7.5 Individuals . 58
7.5.1 Oleg’s Mini tutorials and assorted small projects . 58
7.5.2 Graham Klyne . 58
7.5.3 Alain Crémieux . 58
7.5.4 Inductive Inference . 58
7.6 Bioinformatics tools . 59
7.6.1 Using Haskell to implement simulations of language acquisition, variation, and change 59

6

1 General

1.1 haskell.org

Report by: John Peterson

haskell.org belongs to the entire Haskell community –
we all have a stake in keeping it as useful and up-to-date
as possible. Anyone willing to help out at haskell.org
should contact John Peterson 〈peterson-john@cs.yale.
edu〉 to get access to this machine. There is plenty
of space and processing power for just about anything
that people would want to do there.

Thanks to Fritz Ruehr for making the cafepress store
on haskell.org a lot more exciting and to Jonathan Lin-
gard for adding some nice style sheets to our pages.

What can haskell.org do for you?

◦ advertise your work: whether you’re developing a
new application, a library, or have written some re-
ally good slides for your class you should make sure
haskell.org has a pointer to your work.

◦ hosting: if you don’t have a stable site to store your
work, just ask and you’ll own haskell.org/yourproject.

◦ mailing lists: we can set up a mailman-based list for
you if you need to email your user community.

◦ sell merchandise: give us some new art for the cafe-
press store. publicize your system with a t-shirt.

The biggest problem with haskell.org is that it is diffi-
cult to keep the information on the site current. At the
moment, we make small changes when asked but don’t
have time for any big projects. Perhaps the biggest
problem is that most parts (except the wiki) cannot be
updated interactively by the community. There’s no
easy way to add a new library or project or group or
class to haskell.org without bothering the maintainers.
the most successful sites are those in which the commu-
nity can easily keep the content fresh. We would like
to do something similar for haskell.org.

Just what can you do for haskell.org? Here are a few
ideas:

◦ make the site more interactive; allow people to add
new libraries, links, papers, or whatever without
bothering the maintainers; allow people to attach
comments to projects or libraries so others can ben-
efit from your experience; help tell everyone which
one of the graphics packages or GUIs or whatever is
really useful.

◦ develop a system where the pages for haskell.org live
in a cvs repository so that we can more easily share
out maintenance.

◦ add searching capability to haskell.org.

Some of these ideas would be good student projects.
Be lazy – get students to do your work for you.

Further reading

◦ http://www.haskell.org
◦ http://www.haskell.org/mailinglist.html

1.2 #haskell

Report by: Shae Erisson

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. Point your
IRC client to irc.freenode.net and join the #haskell
channel.

The #haskell.se channel is the same subject but
discussion happens in Swedish. This channel tends to
have a lot of members from Gothenburg.

There is also a #darcs channel – if you want real-
time discussion about darcs, drop by!

1.3 The Haskell HaWiki

Report by: Shae Erisson

The Haskell wikiwiki is a freely editable website de-
signed to allow unrestricted collaboration. The address
is http://www.haskell.org/hawiki/. Some highlights are:
◦ http://www.haskell.org/hawiki/CommonHaskellIdioms
◦ http://www.haskell.org/hawiki/FundamentalConcepts
Feel free to add your own content!

1.4 The Haskell Sequence

Report by: John Goerzen

The Haskell Sequence is a community-edited Haskell
news and discussion site. Its main feature is a slashdot-
like front page with stories and discussion about things
going on in the Haskell community, polls, questions,
or just observations. Submissions are voted on by the
community before being posted on the front page, sim-
ilar to Kuro5hin.
The Haskell Sequence also syndicates Haskell mailing
list posts, Haskell-related blogs, and other RSS feeds in
a single location. Free space for Haskell-related blogs,
which require no voting before being posted, is also
available to anyone.

7

mailto: peterson-john at cs.yale.edu
mailto: peterson-john at cs.yale.edu
http://www.haskell.org
http://www.haskell.org/mailinglist.html
http://www.haskell.org/hawiki/
http://www.haskell.org/hawiki/CommonHaskellIdioms
http://www.haskell.org/hawiki/FundamentalConcepts

Further reading

The Haskell Sequence is available at http://sequence.
complete.org.

1.5 The Monad.Reader

Report by: Shae Erisson

There are plenty of academic papers about Haskell,
and plenty of informative pages on the Haskell Wiki.
But there’s not much between the two extremes. The
Monad.Reader aims to fit in there; more formal than a
Wiki page, but less formal than a journal article.
Want to write about a tool or application that deserves
more attention? Have a cunning hack that makes cod-
ing more fun? Got that visionary idea people should
know about? Write an article for The Monad.Reader!

Further reading

See the TmrWiki for more information: http://www.
haskell.org/tmrwiki/FrontPage.

1.6 Books and tutorials

1.6.1 New textbook – Programming in Haskell

Report by: Graham Hutton

I am currently in the final-stages of producing an in-
troductory Haskell textbook. The book is a revised
and extended version of my Haskell course at the Uni-
versity of Nottingham, which has been developed and
class tested over many years. The first seven chap-
ters (97 pages) are available for preview on the web:
http://www.cs.nott.ac.uk/˜gmh/book.html

I’d be pleased to make the full current draft (162
pages) available to anyone that is teaching Haskell and
may be interested in using the book in their course;
please contact me for further details.

1.6.2 Haskell Tutorial WikiBook

Report by: Paul Johnson

I recently became aware of a placeholder page for a
Haskell Wiki textbook over at the WikiBooks project.
The URL is http://en.wikibooks.org/wiki/Programming:
Haskell.
Since this looks like a Good Thing to have I’ve made
a start. Of course there is no way that little old me
could write the entire thing, so I’d like to invite others
to contribute.
I’m aware of all the other Haskell Tutorials out there,
but they are limited by being single-person efforts with

no long term maintenance. This is not meant to den-
igrate the efforts of their authors: producing even a
simple tutorial is a lot of work. But Haskell lacks a
complete on-line tutorial that can take a programmer
from the basics up to advanced concepts like nested
monads and arrows. Once you get past the basics you
tend to have to depend on library reference pages and
the original academic papers to figure things out.
So what is needed is:
◦ Space for a team effort
◦ Space to evolve with the language and libraries
A Wikibook offers both of these.
Contributions are welcome. This includes edits to the
table of contents (which seems to have been written by
someone who doesn’t know Haskell) and improvements
to my existing text (which I’m happy to concede is not
exactly brilliant).

Further reading

http://en.wikibooks.org/wiki/Programming:Haskell

1.6.3 hs-manpage-howto(7hs)

Report by: Sven Moritz Hallberg
Status: active development

The hs-manpage-howto(7hs) is a manpage for docu-
menting Haskell modules with roff manpages. I an-
nounced it in the November issue and it has been ex-
panded with some small additions and clarifications
since then. Most notable are the guidelines for HIS-
TORY sections in the context of ECT (→ 4.1.2).

So as before, the hs-manpage-howto(7hs) is a rough
document far from complete, meant mainly as a re-
minder and guide for myself. But if you happen to
be writing a Haskell manpage yourself, you should still
find it useful.

And if you come up with a guideline not covered,
please let me know!

Further reading

http://www.scannedinavian.org/˜pesco/man/html7/
hs-manpage-howto.7hs.html

1.7 Haskell related events

1.7.1 Future events

You may want to participate in some of the following
Haskell-related events:

ICFP 2005 The 10th ACM SIGPLAN International
Conference on Functional Programming, this year in

8

http://sequence.complete.org
http://sequence.complete.org
http://www.haskell.org/tmrwiki/FrontPage
http://www.haskell.org/tmrwiki/FrontPage
http://www.cs.nott.ac.uk/~gmh/book.html
http://en.wikibooks.org/wiki/Programming:Haskell
http://en.wikibooks.org/wiki/Programming:Haskell
http://en.wikibooks.org/wiki/Programming:Haskell
http://www.scannedinavian.org/~pesco/man/html7/hs-manpage-howto.7hs.html
http://www.scannedinavian.org/~pesco/man/html7/hs-manpage-howto.7hs.html

Tallinn from September 26 to 28. See http://www.
brics.dk/˜danvy/icfp05/.

TFP 2005 The Trends of Functional Programming is
held this year for the sixth time – guess where – in
Tallinn, from September 23 to 24. See http://www.
tifp.org/tfp05/.

HW 2005 The Haskell Workshop, as always co-located
with ICFP, and therefore in Tallinn, on September
30. See http://www.cs.uu.nl/˜daan/hw2005/.

CUFP 2005 The will be another Commercial Users
of Functional Programming meeting co-located with
ICFP – more information will be available soon.

If you would like to see other relevant events men-
tioned in this section, please submit pointers for the
next edition of the HC&A Report.

9

http://www.brics.dk/~danvy/icfp05/
http://www.brics.dk/~danvy/icfp05/
http://www.tifp.org/tfp05/
http://www.tifp.org/tfp05/
http://www.cs.uu.nl/~daan/hw2005/

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones

Despite being “full”, GHC continues to develop at an
alarming rate. Here are some highlights from the last
few months.

◦ We finally released GHC 6.4, over a year after the last
major release, in March 2005. The long gap between
releases is partly because doing a full release is a lot
of work. But a bigger reason is that a lot is still
happening to GHC, and it can be hard to find a
moment when all the dust has settled at once.

◦ With major input from Tim Harris, we implemented
Software Transactional Memory in the autumn, a
new synchronisation and communication for Concur-
rent Haskell that completely replaces MVars. (MVars
are still available, but they become library.) We
think STM is a major leap forward, and are ea-
ger to hear your experiences when you try it out.
Anyone who uses Concurrent Haskell should give
it a whirl. Paper at http://research.microsoft.com/
˜simonpj/papers/stm.

◦ Much better support for mutually-recursive mod-
ules. Mutual recursion used to be handled by hand-
written, but completely unchecked,interface files.
Now you still need to write a loop-breaking mod-
ule interface by hand, but it’s regarded as a source
file, in Haskell syntax; it is fully typechecked; it is
understood by ghc --make; it is checked against its
parent source file when the latter is compiled; and
so on. All vastly superior. Further improvements
(e.g. ability to include instance declarations) are in
the works.

◦ Much improved support for Cabal (→ 4.1.1).

◦ A declaration type signature now binds lexically-
scoped type variables. For example

tail :: forall a. [a] -> [a]
tail (x:xs) = xs :: [a]

Here, the a bound by the forall scopes over the
body of tail. I fought against this for ages, but it’s
just so convenient. It only happens if you give an
explicit forall, though.

◦ Improvements in Template Haskell support; no-
tably the of an abstract type Name for the names
of TH variables, rather than String, and rami-
fications thereof (http://www.haskell.org/ghc/docs/
papers/th2.ps).

◦ Modest improvements to the implementation of Gen-
eralised Algebraic Data Types (GADTs). The big
shortcoming is that GADTs do not interact nicely
with type classes and functional dependencies yet.
That turned out to be a more complex task than
we’d anticipated.

◦ Rebindable syntax now works properly
for do-notation. The idea is that, with
-fno-implicit-prelude, do-notation type-checks
and desugars just as if you had written the program
with explicit (>>=) and (>>) etc, using whatever
(>>=) operator is in scope in this module. There’s
no longer a requirement that the type looks exactly
like that for the built-in (>>=) operator.

◦ Support for the amd64 (x86-64) platform is improv-
ing. The 6.4 release had basic registerised support
for this processor; we have now added a fully-working
native code generator and completed support for the
FFI. GHCi support should be forthcoming shortly.
We aim for this to be a fully-supported platform in
future GHC releases.

◦ John Goerzen is experimenting with converting the
CVS repository to darcs (→ 6.3). We hope to set up a
two-way sychronisation between the two repositories,
so that people working on GHC can use whichever
source control system they prefer (though we hope
the general trend will be in the direction of darcs, so
that eventually we can drop CVS support).

◦ We are working on adding an API to GHC, so that
you can use GHC itself as a Haskell library (by say-
ing “import GHC”). This will let you typecheck, com-
pile, and execute all of GHC-supported Haskell from
your own application. GHC’s own front-ends are im-
plemented on top of this API: GHCi, --make and
the command-line interface. The new Visual Studio
mode is also using this API to support interactive
type checking of source code as it is edited (amongst
many other things).

For the current version of the API, see http:
//cvs.haskell.org/cgi-bin/cvsweb.cgi/˜checkout˜/
fptools/ghc/compile r/main/GHC.hs?rev=1.22.

We plan to provide the GHC API via a package
(-package ghc) in the next major release of GHC
(6.6).

10

http://research.microsoft.com/~simonpj/papers/stm
http://research.microsoft.com/~simonpj/papers/stm
http://www.haskell.org/ghc/docs/papers/th2.ps
http://www.haskell.org/ghc/docs/papers/th2.ps
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/~checkout~/fptools/ghc/compile r/main/GHC.hs?rev=1.22
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/~checkout~/fptools/ghc/compile r/main/GHC.hs?rev=1.22
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/~checkout~/fptools/ghc/compile r/main/GHC.hs?rev=1.22

The Big New Thing over the next few months will
be multi-processor GHC. Now that multi-core proces-
sors are on the near horizon, and STM has given us
a nice way to coordinate them, we are building a
multi-processor GHC that uses multiple processors run-
ning Haskell on a single shared heap. That involves
fine-grain locking on thunks, but we have a way to
make that quite cheap. This is quite complementary
to the long-standing work on GUM, aimed at more
distributed-memory architectures with disjoint heaps.

On the type system front, we plan to extend GHC’s
higher-rank type system to incorporate impredica-
tive types too: http://research.microsoft.com/˜simonpj/
papers/boxy.

Thank you to everyone who completed the GHC sur-
vey. If you use GHC and have not completed the
survey, please do so – we are keen to get an un-
biased sample of our actual users, rather than one
skewed towards hard-core Haskell devotees. Here it
is: http://www.haskell.org/ghc/survey/start.cgi. We’ll
publish the results once we’ve digested them.

As ever, we are grateful to the many people who sub-
mit polite and well-characterised bug reports. We’re
even more grateful to folk actually help develop and
maintain GHC. The more widely-used GHC becomes,
the more we rely on you to help solve people’s prob-
lems, and to maintain and develop the code. We won’t
be around for ever, so the more people who are involved
the better. If you’d like to join in, please let us know.

2.2 Hugs

Report by: Ross Paterson
Status: stable, actively maintained, volunteers

welcome

An interim release of Hugs appeared in March 2005, on
the same day as releases of GHC and nhc98. This re-
lease was mainly targeted at Unix users (see below). It
featured Unicode support (contributed by Dmitry Gol-
ubovsky) and lots of up-to-date libraries. Additions
include the graphics library used in the “School of Ex-
pression” textbook.

A major new feature is support for the Cabal in-
frastructure (→ 4.1.1), which is now the recommended
way to install third-party packages with Hugs. Indeed
the Hugs build system uses Cabal to prepare all the
libraries included with Hugs (after a little bootstrap-
ping).

Sadly no-one is packaging Hugs for Windows. It will
probably build under MinGW or Cygwin with little
or no work, but no-one has tried it recently. The new
Cabal-based library build system holds out the promise
of independence from the Unix-like environments, but
Cabal itself needs more work under Windows. As ever,
volunteers are welcome.

2.3 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, standards-compliant
compiler for Haskell’98. It is in stable maintenance-
only mode – the current public release was recently
refreshed to version 1.18. Maintenance continues in
CVS at haskell.org.

Tony Sloane has recently added a literate version of
nhc98’s runtime system kernel to CVS. We hope this
will enable more people to understand the internals,
and more easily contribute to the compiler. Some in-
dividual projects of potential interest to many users
would be:
◦ overhaul the type inference subsystem, towards the

goal of implementing multi-parameter classes;
◦ add pattern-guards to the source language;
◦ remove any 32-bit platform assumptions;
◦ add concurrent threads using a co-operative sched-

uler;
◦ implement exceptions.

Further reading

http://haskell.org/nhc98

2.4 jhc

Report by: John Meacham
Status: unstable, actively maintained, volunteers

welcome

jhc is a Haskell compiler which aims to produce the
most efficient programs possible via whole program
analysis and other optimizations.
Some features of jhc are:

◦ Full support for Haskell 98, The FFI (→ 3.2) and
some extensions (modulo some bugs being worked
on and some libraries that need to be filled out).

◦ Produces 100% portable ISO C. The same C file can
compile on machines of different byte order or bit-
width without trouble.

◦ No pre-written runtime. other than 20 lines
of boilerplate all code is generated from the
Grin intermediate code and subject to all code
simplifying and dead code elimination transfor-
mations. As a result, jhc currently produces
the smallest binaries of any Haskell compiler.
(main = putStrLn "Hello, World!" compiles to
6,568 bytes vs 177,120 bytes for GHC 6.4)

11

http://research.microsoft.com/~simonpj/papers/boxy
http://research.microsoft.com/~simonpj/papers/boxy
http://www.haskell.org/ghc/survey/start.cgi
http://haskell.org/nhc98

◦ First Intermediate language based on Henk, Pure
Type Systems and the Lambda cube. This is sim-
ilar enough to GHCs core that many optimizations
may be implemented in the same way.

◦ Second Intermediate language is based on Boquist’s
graph reduction language. This allows all unknown
jumps to be compiled out leaving standard case
statements and function calls as the only form of flow
control. Combined with jhc’s use of region inference,
this means jhc can compile to most any standard im-
perative architecture/language/virtual machine di-
rectly without special support for a stack or tail-calls.

◦ Novel type class implementation not based on dictio-
nary passing with many attractive properties. This
implementation is possible due to the whole-program
analysis phase and the use of the lambda-cube rather
than System F as the base for the functional inter-
mediate language.

◦ Intermediate language and back-end suitable for di-
rectly compiling any language that can be embedded
in the full lambda cube.

◦ All indirect jumps are transformed away, jhc’s final
code is very similar to hand-written imperative code,
using only branches and static function calls. A sim-
ple basic-blocks analysis is enough to transform tail-
calls into loops.

◦ Full transparent support for mutually recursive mod-
ules.

Jhc’s ideas are mainly taken from promising research
papers that have shown strong theoretical results but
perhaps have not been extended to work in a full-scale
compiler.
Although jhc is still in its infancy and has several issues
to work through before it is ready for public consump-
tion, it is being quickly developed and volunteers are
welcome.
Discussion about jhc development currently occurs on
gale (gale.org) in the category pub.comp.jhc@ofb.net. A
simple web client can be used at yammer.net.

2.5 Haskell to Clean Translation

Report by: Matthew Naylor

The primary aim of the project is to develop a tool,
which we name Hacle, for translating Haskell programs
to Clean programs, thereby allowing the Clean com-
piler to compile Haskell programs. The question is, can
the Clean compiler, in combination with Hacle, produce
faster executables than existing Haskell compilers?

The answer, perhaps rather predictably, is some-
times yes. We have noticed that, in some cases, the

hybrid Hacle-then-Clean compilation system can pro-
duce executables which are up to a factor of four
times faster than the corresponding GHC-compiled
programs. However, we suspect that these cases are
in a minority. Nevertheless, to be of any significance at
all, we must also argue Hacle’s completeness.

Hacle can translate programs which conform to a
slightly restricted Haskell 98 standard. It can translate
itself, which is written in approximately fifteen thou-
sand lines of code and makes use of many of the fea-
tures provided by Haskell 98. This result positively
demonstrates reasonable completeness.

The project is effectively finished; this is not to say
that the tool cannot be improved, rather that we are
content with its current state. Only the unlikely event
of widespread use would motivate such improvements.
However, the following question is unanswered: why do
Clean and GHC sometimes outperform each other?

For more information including detailed technical
documentation, my dissertation, more results, Hacle’s
limitations, and a download link to Hacle, see the
project’s web page.

Further reading

http://www.cs.york.ac.uk/˜mfn/hacle

Grateful acknowledgements to Malcolm Wallace and
Olaf Chitil.

2.6 Helium

Report by: Bastiaan Heeren
Participants: Arjan van IJzendoorn, Bastiaan Heeren,

Daan Leijen
Status: stable

The purpose of the Helium project is to construct a
light-weight compiler for a subset of Haskell that is es-
pecially directed to beginning programmers (see “He-
lium, for learning Haskell”, Bastiaan Heeren, Daan Lei-
jen, Arjan van IJzendoorn, Haskell Workshop 2003).
We try to give useful feedback for often occurring mis-
takes. To reach this goal, Helium uses a sophisticated
type checker (→ 3.4.4) (see also “Scripting the type in-
ference process”, Bastiaan Heeren, Jurriaan Hage and
S. Doaitse Swierstra, ICFP 2003).

Helium has a simple graphical user interface that
provides online help. We plan to extend this inter-
face to a full fledged learning environment for Haskell.
The complete type checker and code generator has been
constructed with the attribute grammar (AG) system
developed at Utrecht University. One of the aspects of
the compiler is that can log errors to a central reposi-
tory, so we can track the kind of problems students are
having, and improve the error messages and hints.

12

http://www.cs.york.ac.uk/~mfn/hacle

There is now support for type classes, but this has
not been officially released yet. A new graphical inter-
preter is being developed using wxHaskell (→ 4.5.1),
which will replace the Java-based interpreter. The He-
lium compiler has been used successfully four times
during the functional programming course at Utrecht
University.

Further reading

http://www.cs.uu.nl/research/projects/helium/

13

http://www.cs.uu.nl/research/projects/helium/

3 Language

3.1 Variations of Haskell

3.1.1 Haskell on handheld devices

Report by: Anthony Sloane
Status: unreleased

Work on our port of nhc98 (→ 2.3) to Palm OS is con-
tinuing. We are focussing our current attention on re-
working the nhc98 runtime kernel by writing a literate
version to make it easier to understand and port. We
hope to use this work as the basis of a new Palm OS
port that is more reliable and maintainable than our
previous version.

3.1.2 Vital: Visual Interactive Programming

Report by: Keith Hanna
Status: active (latest release: April 2005)

Vital is a highly interactive, visual environment that
aims to present Haskell in a form suitable for use by en-
gineers, mathematicians, analysts and other end users
who often need a combination of the expressiveness and
robustness that Haskell provides together with the ease
of use of a ‘liveŠ graphical environment in which pro-
grams can be incrementally developed.

In Vital, Haskell modules are presented as ‘docu-
mentsŠ having a free-form layout and with expressions
and their values displayed together. These values can
be displayed either textually, or pictorially and can be
manipulated by an end user by point-and-click mouse
operations. The way that values of a given type are
displayed and the set of editing operations defined on
them (i.e., the ‘look and feelŠ of the type) are defined
using type classes. For example, an ADT represent-
ing directed graphs could be introduced, with its val-
ues displayed pictorially as actual directed graphs and
with the end user provided with a menu of operations
allowing edges to be added or removed, transitive clo-
sures to be computed, etc. (In fact, although an end
user appears to be operating directly on values, it is
actually the Haskell program itself that is updated by
the system, using a specialised form of reflection.)

The present implementation includes a collection of
interactive tutorial documents (including examples il-
lustrating approaches to exact real arithmetic, pictorial
manipulation of DNA and the genetic code, animated
diagrams of mechanisms, and the composition and syn-
thesis of MIDI music).

The Vital system can be run via the web: a single
mouse-click is all that is needed!

Further reading

Home page: http://www.cs.kent.ac.uk/projects/vital/

3.1.3 hOp

Report by: Jérémy Bobbio and Thomas Hallgren
Status: beta, active development

hOp is a micro-kernel based on the run-time system
(RTS) of the Glasgow Haskell Compiler. It is meant
to enable people to experiment with writing various
components of an operating system in Haskell. This
includes device drivers, data storage devices, commu-
nication protocols and tools required to make use of
these components.

The February 2004 release of hOp consisted of a
trimmed-down RTS that does not depend on features
usually provided by an operating system. It also con-
tains low-level support code for hardware initialization.
This release made most functions from the base hier-
archical library available (all but the System modules),
including support for threads, communication primi-
tives, and the foreign function interface (→ 3.2).

Building on the features of the initial release, we de-
signed and implemented an interrupt handling model.
Each interrupt handler is run in its own thread, and
sends events to device drivers through a communica-
tion channel. We tested our design by implementing
a simple PS/2 keyboard driver, and a “shell” that al-
lows running a“date”command, which accesses the real
time clock of the computer. A release of hOp contain-
ing these additional features was made in June 2004.

Iavor Diatchki, Thomas Hallgren, and Andrew Tol-
mach made some additions to hOp. The resulting
system is in an experimental state and is preliminary
called House. The additions include a PS/2 mouse
driver, using VBE 2.0 to setup a linear frame buffer
for graphics, a window system implemented in Haskell
(Gadgets, developed by Rob Noble and Colin Runci-
man at the University of York), new primitives for set-
ting up demand paged virtual memory and executing
arbitrary machine code in protected mode. The func-
tion that executes code in user mode returns when nor-
mal execution is interrupted for some reason (e.g., by
a hardware interrupt, a system call or a page fault),
allowing Haskell code can handle the situation in an
appropriate way, and then resume user mode execu-
tion, if that is appropriate.

14

http://www.cs.kent.ac.uk/projects/vital/

A recent addition to the system is a driver for
NE2000 compatible network cards (as emulated by
QEMU) and a simple protocol stack. We have used
this to add shell commands for downloading files via
TFTP, and then display them on the screen or execute
them as user mode binaries.

Further reading

Further information, source code, demos and screen-
shots are available here:
◦ http://www.macs.hw.ac.uk/˜sebc/hOp/
◦ http://www.cse.ogi.edu/˜hallgren/House/

3.1.4 Camila

Report by: Joost Visser

The Camila project explores how concepts from the
VDM specification language and the functional pro-
gramming language Haskell can be combined. On the
one hand, it includes experiments of expressing VDM’s
data types (e.g. maps, sets, sequences), data type
invariants, pre- and post-conditions, and such within
the Haskell language. On the other hand, it includes
the translation of VDM specifications into Haskell pro-
grams.
Currently, the project has produced first versions of
the Camila Library and the Camila Interpreter, both
distributed as part of the UMinho Haskell Libraries
and Tools (→ 7.3.8). The library resorts to Haskell’s
constructor class mechanism, and its support for mon-
ads and monad transformers to model VDM’s datatype
invariants, and pre- and post-conditions. It allows
switching between different modes of evaluation (e.g.
with or without property checking) by simply coercing
user defined functions and operations to different spe-
cific types. The interpreter is implemented with the
use of hs-plugins (→ 4.2.11).

Further reading

The web site of Camila (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/Camila) provides documentation. Both
library and tool are distributed as part of the UMinho
Haskell Libraries and Tools (→ 7.3.8).

3.1.5 Haskell Server Pages (HSP)

Report by: Niklas Broberg
Status: experimental, latest release: 0.2 (May -05)
Portability: currently posix-specific

Haskell Server Pages is an extension of Haskell for the
purpose of writing server-side dynamic webpages. It al-
lows programmers to use syntactic XML fragments in
Haskell code, and conversely allows embedded Haskell
expressions inside XML fragments. Apart from the

purely syntactic extensions, HSP also provides a pro-
gramming model with datatypes, classes and functions
that help with many common web programming tasks.
Examples include:
◦ Maintaining user state over transactions using ses-

sions
◦ Maintaining application state over transactions with

different users
◦ Accessing query string data and environment vari-

ables
HSP can also be seen as a framework that other li-
braries and systems for web programming could use as
a backend.
The HSP implementation comes in the form of a server
application intended to be used as a plugin to web
servers such as Apache. There is also a one-shot eval-
uator that could be used to run HSP in CGI mode,
however some functionality is lost then, in particular
application state. Both the server and the one-shot
evaluator rely heavily on hs-plugins (→ 4.2.11).
Currently we have no bindings to enable HSP as a plu-
gin to a webserver. The server can be run in stand-
alone mode, but can then only handle .hsp pages (i.e.,
no images or the like), or the mentioned one-shot eval-
uator can be used for CGI. The system is highly exper-
imental, and bugs are likely to be frequent. You have
been warned.

Further reading

◦ Webpage and darcs repo at:
http://www.cs.chalmers.se/˜d00nibro/hsp

◦ My master’s thesis details the programming model
and implementation of HSP:
http://www.cs.chalmers.se/˜d00nibro/hsp/thesis.pdf

3.1.6 Haskell Regular Patterns (HaRP)

Report by: Niklas Broberg
Status: stable, currently not actively developed,

latest release: 0.2 (April 05)
Portability: relies on pattern guards, so currently ghc

only

HaRP is a Haskell extension that extends the normal
pattern matching facility with the power of regular ex-
pressions. This expressive power is highly useful in a
wide range of areas, including text parsing and XML
processing. Regular expression patterns in HaRP work
over ordinary Haskell lists ([]) of arbitrary type. We
have implemented HaRP as a pre-processor to ordinary
Haskell.

Further reading

◦ Webpage and darcs repo at:
http://www.cs.chalmers.se/˜d00nibro/harp/

15

http://www.macs.hw.ac.uk/~sebc/hOp/
http://www.cse.ogi.edu/~hallgren/House/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://www.cs.chalmers.se/~d00nibro/hsp
http://www.cs.chalmers.se/~d00nibro/hsp/thesis.pdf
http://www.cs.chalmers.se/~d00nibro/harp/

3.2 Foreign Function Interface

Report by: Manuel Chakravarty
Status: Version 1.0

The specification of the Haskell 98 Foreign Function In-
terface 1.0 is now also available in HTML. To download
or browse online, please visit http://www.cse.unsw.edu.
au/˜chak/haskell/ffi/.

3.3 Non-sequential Programming

3.3.1 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Abyd Al Zain, Andre Rauber

du Bois, Kevin Hammond, Leonid
Timochouk, Yang Yang, Jost Berthold,

Murray Gross

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available.

System Evaluation and Enhancement

The first 3 items are linked by a British Council/DAAD
collaborative project between Heriot-Watt University,
St Andrews University, and Phillips Universität Mar-
burg.

◦ We are adapting GpH to run on computational
GRIDs. The current implementation performs well
on single clusters, and multiple clusters with a low-
latency interconnect. A distribution is available on
request from 〈ceeatia@macs.hw.ac.uk〉.

◦ We are designing a generic parallel runtime envi-
ronment encompassing both the Eden (→ 3.3.3) and
GpH runtime environments

◦ In separate work GpH is being used as a vehicle for
investigating scheduling on the GRID.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universität Mar-
burg.

GpH Applications

GpH is being used to parallelise the GAP mathematical
library in an EPSRC project (GR/R91298).

Implementations

The GUM implementation of GpH is available in two
development branches, and work on a port of GUM
to the latest GHC 6.xx branch has been started over
summer.

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines: bi-
nary snapshot (see installation instructions). The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

◦ The unstable branch (GUM-5.02, based on GHC-
5.02) is working and has been used on a Beowulf
cluster. It is available on request as a source bundle.

Our main hardware platform are Intel-based Beowulf
clusters. Work on ports to other architectures is also
moving on (and available on request). Specifically a
port to a Mosix cluster has been built in the Metis
project at Brooklyn College, with a first version avail-
able on request from Murray Gross.

Further reading

GpH Home Page: http://www.macs.hw.ac.uk/˜dsg/
gph/

3.3.2 GdH – Glasgow Distributed Haskell & Mobile
Haskell

Report by: Jan Henry Nyström
Participants: Phil Trinder, Hans-Wolfgang Loidl, Jan

Henry Nyström, Robert Pointon, Andre
Rauber du Bois

Implementation:

An alpha-release of the GdH implementation is avail-
able on request 〈gph@macs.hw.ac.uk〉. It shares sub-
stantial components of the GUM implementation of
GpH (→ 3.3.1). A beta release of mHaskell will be
available in December 2005.

GdH Applications and Evaluation

◦ An EPSRC project High Level Techniques for Dis-
tributed Telecommunications Software (http://www.
macs.hw.ac.uk/˜dsg/telecoms/, GR/R88137) is now
underway and is entering its first GdH phase. The
project evaluates GdH and Erlang in a telecommuni-
cations context, the work is a collaboration between
Heriot-Watt University and Motorola UK Research
Labs.

◦ There is a forthcoming Ph.D. thesis on the design,
implementation and use of GdH by Robert Pointon
(http://www.macs.hw.ac.uk/˜rpointon/).

16

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
mailto: ceeatia at macs.hw.ac.uk
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/gph/
mailto: gph at macs.hw.ac.uk
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~rpointon/

Further reading

◦ The GdH homepage:
http://www.macs.hw.ac.uk/˜dsg/gdh/

◦ The mHaskell homepage:
http://www.macs.hw.ac.uk/˜dubois/mhaskell

3.3.3 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps Universität Marburg, Germany and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Rafael Mart́ınez, Clara Segura

in Marburg: Rita Loogen, Jost Berthold, Claudia Ker-
ber, Steffen Priebe, Pablo Roldán Gómez

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement
parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator (#) :: Process a b -> a ->
b. Higher-level coordination is achieved by defining
skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelise a set of non-trivial benchmark pro-
grams.

Eden has been implemented by modifying the par-
allel runtime system GUM of GpH (see above). Dif-
ferences include stepping back from a global heap to a
set of local heaps to reduce system message traffic and
to avoid global garbage collection. The current (freely
available) implementation is based on GHC 5.02.3. A
source code version is available from the Eden web
page. Installation support will be provided if required.

Recent and Forthcoming Publications

survey and new standard reference Rita Loogen,
Yolanda Ortega-Mallén and Ricardo Peña: Parallel
Functional Programming in Eden, Journal of Func-
tional Programming 15(4), 2005, to appear.

semantics Mercedes Hidalgo-Herrero, Alberto
Verdejo, Yolanda Ortega-Mallén: Looking for Eden
through Maude and its strategies, submitted, 2005.

analyses Clara Segura, Ricardo Peña: Nondetermin-
ism analyses in a parallel-functional language, Journal
of Functional Programming 15(1), pp. 67–100. Jan-
uary 2005.

compilation Steffen Priebe: Preprocessing Eden with
Template Haskell, April 2005, submitted.

profiling Pablo Roldán Gómez, J. Berthold: Eden
Trace Viewer: A Tool to Visualize Parallel Functional
Program Executions, March 2005, submitted.

skeleton performance analysis Jost Berthold, Rita
Loogen: Improving Functional Topology Skeletons with
Dynamic Channels, March 2005, submitted.

Current Activities

◦ Yolanda and Mercedes are working on an implemen-
tation of Eden’s operational semantics in Maude.

◦ Jost is working on a more general implementation of
parallel Haskell dialects in a shared runtime system.

◦ Steffen continues his work on the polytypic skele-
ton library for Eden making use of the new meta-
programming facilities in GHC.

◦ Pablo is working on extensions of the Eden trace
viewer tool.

◦ Jost and Rita continue working on the skeleton li-
brary.

◦ Claudia and Rita investigate parallel functional
graph algorithms.

Further reading

http://www.mathematik.uni-marburg.de/˜eden

3.3.4 HCPN – Haskell-Coloured Petri Nets

Report by: Claus Reinke
Status: slow progress

Haskell-Coloured Petri Nets (HCPN) are an instance of
high-level Petri Nets, in which anonymous tokens are
replaced by Haskell data objects (and transitions can
operate on that data, in addition to moving it around).

This gives us a hybrid graphical/textual modelling
formalism for Haskell, especially suited for modelling
concurrent and distributed systems. So far, we have
a simple embedding of HCPN in Haskell, as well as

17

http://www.macs.hw.ac.uk/~dsg/gdh/
http://www.macs.hw.ac.uk/~dubois/mhaskell
http://www.mathematik.uni-marburg.de/~eden

a bare-bones graphical editor (HCPN NetEdit) and
simulator (HCPN NetSim) for HCPN, building on the
portable wxHaskell GUI library (→ 4.5.1). The tools al-
low to create and modify HCPN, save and load models,
or generate Haskell code for graphical or textual sim-
ulation of HCPN models. HCPN NetEdit and NetSim
are not quite ready for prime time yet, but functional;
as long as you promise not to look at the ugly code, you
can find occasionally updated snapshots at the project
home page, together with examples, screenshots, intro-
ductory papers and slides.

I have just returned to this project, working on sev-
eral items: first, the embedding of HCPN in Haskell
has changed slightly. Apart from making the gener-
ated transition code even simpler, the idea is to ab-
stract from the precise representation of places, in
order to prepare the necessary move towards hierar-
chical HCPN (the original embedding mapped places
directly to record fields, making composition of nets
somewhat difficult without extensible records). Sec-
ond, I am moving the drawing code from wxHaskell to
HOpenGL (→ 4.6.1) – if HOpenGL’s support is some-
what “basic” (you want higher-level abstractions on
top), wxHaskell’s drawing can only be described as
“primitive” (encouraging bad habits, unless you avoid
some of its features).

Due to all these ongoing rewrites, the current sources
are not in a releasable state, but until this settles down,
the old snapshots are still available from the project
web page. This is still a personal hobby project, so
further progress will depend on demand and funding.
In other words, please let me know if you are interested
in this!

Further reading

◦ Project home:
http://www.cs.kent.ac.uk/˜cr3/HCPN/

◦ Petri Nets home:
http://www.informatik.uni-hamburg.de/TGI/
PetriNets/

3.4 Type System/Program Analysis

3.4.1 Agda: An Interactive Proof Editor

Report by: Catarina Coquand
Status: active development

Agda is an interactive type-based editor for edit-
ing proofs and programs that has been developed at
Chalmers and Göteborg University. It builds on pre-
vious work at Chalmers such as ALF and Cayenne. It
implements a proof/type checker for a language that is
based on Martin-Löf Type Theory. We are experiment-
ing with how such a proof language could be extended
with data-types, modules and records. The syntax of
the language is rather close to Haskell. The language

can also be seen as a start for a dependently typed
programming language.

The program is written in Haskell and it consists of
roughly 15 000 lines of code. It is connected with one
graphical and one text-based interface. The graphi-
cal interface Alfa http://www.cs.chalmers.se/˜hallgren/
Alfa/ is written in Haskell using Fudgets. The is also a
“simple” emacs-interface which doesn’t know the syn-
tax of the language and communicates via a text-based
protocol with Agda. This interface comes with the dis-
tribution of Agda.

Agda is running with a stable version that is slightly
more than one year old. It is also possible to download
newer unstable versions. In this new version experi-
ments are done with hidden arguments as in Cayenne,
addition of over-loading with a class system and built-
in types such as characters, strings and integers.

We have recently started a collaboration with AIST
(Advanced Industrial Science and Technology Institute
in Japan) on development and applications of Agda.
In particular on writing better documentation and in-
tegration with other automatic proof tools.

Agda source code can be browsed at http://cvs.
coverproject.org/marcin/cgi/viewcvs/ and can be ac-
cessed by anonymous CVS from cvs.coverproject.org.

Short term goals are among many things:
◦ Write a better documentation of the code and the

system.
◦ Examples of classes and built-in types
◦ Building on the libraries
◦ Revision of the type-checking algorithm
◦ Connecting Agsy with the emacs-interface – Agsy

is an automatic proof search plugin for Alfa for the
moment.

Further reading

For more details about the project, read about
QuickCheck (→ 5.4.4) and Cover (→ 7.3.10) in this
report or consult the homepage at http://www.cs.
chalmers.se/˜catarina/agda/.

3.4.2 Epigram

Report by: Conor McBride

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive
editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-
ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in ‘The view from the left’ by Conor McBride
and James McKinna (JFP 14 (1)). Whilst at Durham,
Conor McBride developed the Epigram prototype in
Haskell, interfacing with the xemacs editor. Now,

18

http://www.cs.kent.ac.uk/~cr3/HCPN/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://cvs.coverproject.org/marcin/cgi/viewcvs/
http://cvs.coverproject.org/marcin/cgi/viewcvs/
http://www.cs.chalmers.se/~catarina/agda/
http://www.cs.chalmers.se/~catarina/agda/

thanks to Thorsten Altenkirch, Epigram has a team
of willing workers in Nottingham. A new implemen-
tation (also in Haskell) is in progress, incorporating a
compiler based on Edwin Brady’s doctoral research.

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program won’t crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.

Specifically, Epigram is designed to support pro-
gramming with inductive datatype families indexed
by data. Examples include matrices indexed by
their dimensions, expressions indexed by their types,
search trees indexed by their bounds. In many ways,
these datatype families are the progenitors of Haskell’s
GADTs, but indexing by data provides both a con-
ceptual simplification –the dimensions of a matrix are
numbers – and a new way to allow data to stand as
evidence for the properties of other data. It is no good
representing sorted lists if comparison does not produce
evidence of ordering. It is no good writing a type-safe
interpreter if one’s typechecking algorithm cannot pro-
duce well-typed terms.

Programming with evidence lies at the heart of Epi-
gram’s design. Epigram generalises constructor pattern
matching by allowing types resembling induction prin-
ciples to express as how the inspection of data may
affect both the flow of control at run time and the text
and type of the program in the editor. Epigram ex-
tracts patterns from induction principles and induction
principles from inductive datatype families.

Implementation

Whilst Epigram seeks to open new possibilities for the
future of strongly typed functional programming, its
implementation benefits considerably from the present
state of the art. On the language side, considerable use
is made of monad transformers, higher-kind polymor-
phism and type classes. Moreover, its denotational ap-
proach translates Epigram’s lambda-calculus directly
into Haskell’s. On the tool side, Haskell’s profiler (in
the capable hands of Paul Callaghan) has proved in-
valuable for detecting bottlenecks in the code.

Current Status

Epigram can be found on the web at http://sneezy.cs.
nott.ac.uk/epigram/ and its community of experimen-
tal users communicate via the mailing list 〈epigram@
durham.ac.uk〉. The current implementation is naive
in design and slow in practice, but it is adequate to

exhibit small examples of Epigram’s possibilities. The
new implementation, whose progress can be observed at
http://sneezy.cs.nott.ac.uk/epilogue/ will be much less
rudimentary.

3.4.3 Chameleon

Report by: Martin Sulzmann
Participants: Gregory J. Duck, Simon Peyton Jones,

Edmund Lam, Kenny Zhuo Ming Lu, Peter
J. Stuckey, Martin Sulzmann, Peter

Thiemann, Jeremy Wazny
Status: on-going

Latest developments:

Chameleon implementation

We are working on a completely new implementation
of the Chameleon compiler. Chameleon is a Haskell-
like language which supports almost all of Haskell 98,
as well as the following extensions (and more):
◦ Multi-parameter type classes, with functional depen-

dencies
◦ Type-level constraint programming (using CHR)
◦ Lexically scoped type annotations (see below)
◦ Generalized guarded recursive data types (see below)

The new implementation incorporates a significantly
faster constraint solver, and has been designed to be
easily extended. In particular, language extensions
which make use of the underlying solver can straight-
forwardly take advantage of the system’s advanced er-
ror reporting features. We are currently working on a
backend for the compiler, as well as the integration of
many commonly available Haskell libraries.

Type system extensions

More general algebraic data types: We formalize an
extension of Hindley/Milner with a user-programmable
constraint domain and a general form of algebraic data
types (GRDT) which unifies common forms such as ex-
istential types, the combination of type classes and ex-
istential types and the more recent extension of guarded
recursive data types. We also support advanced type
class extensions such as functional dependencies. Thus,
we can express novel variants which allow for a GRDT-
style behavior of type classes with existential types

Lexically scoped type annotations: We generalize
the two common forms of type-sharing (found in GHC)
and type-lambda annotations (found in ML) leading
to an expressive system of lexically scoped annotation.
We show that such an extension is highly useful in case
of advanced typing features such as polymorphic recur-
sion, type classes and guarded recursive data types.

19

http://sneezy.cs.nott.ac.uk/epigram/
http://sneezy.cs.nott.ac.uk/epigram/
mailto: epigram at durham.ac.uk
mailto: epigram at durham.ac.uk
http://sneezy.cs.nott.ac.uk/epilogue/

A fresh look at kind inference and kind checking:
We present an improved error reporting scheme for kind
inference and checking based on our earlier work on
type error reporting. We consider a monomorphic kind
system. Hence, polymorphic kinds resulting from kind
inference will be replaced by monomorphic kinds. This
is known as defaulting of inferred kinds. The stan-
dard approach is to default such polymorphic kinds to
* (the kind of types). The problem is that failure of
kind checking may be due to kind defaulting. Hence,
we introduce a novel kind validation system that first
performs kind checking to determine the most general
kind environment. Then, we test that the actual in-
ferred kinds agree with this kind environment. Our
approach represents a nice application of the principal
kinding property of monomorphic kind languages.

Language extensions

XHaskell – adding regular expression types and pat-
tern matching to Haskell: Our overall goal is to add
XDuce-style features to full Haskell.

In a first step we consider a type-driven translation
from XDuce to Haskell (standard Hindley/Milner frag-
ment) based on a structured representation of XDuce
values. XDuce type inference guides the insertion of
appropriate coercion functions such that the resulting
Haskell program is type correct and reflects the mean-
ing of the original XDuce program.

In an actual implementation, we plan to make use of
the regular expression library mentioned below.

Regular expression library

We introduce a novel implementation of subtyping
among regular expression types in terms of Haskell-
style type classes by making use of two type class ex-
tensions. We require overlapping and co-inductive in-
stances to encode a proof system to decide subtyping
among regular expressions. We assume that each reg-
ular expression type has some underlying structured
runtime representation. Hence, we not only check for
the containment problem among regular expressions,
but also automatically derive some appropriate casting
functions among the underlying structured values.

Further reading

http://www.comp.nus.edu.sg/˜sulzmann/chameleon/

3.4.4 Constraint Based Type Inferencing at Utrecht

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Jurriaan Hage,

Doaitse Swierstra

With the generation of understandable type error mes-
sages in mind we have devised a constraint based
type inference method in the form of the Top library.
This library is used in the Helium compiler (for learn-
ing Haskell) (→ 2.6) developed at Universiteit Utrecht.
Our philopsophy is that no single type inferencer works
best for everybody all the time. Hence, we want a type
inferencer adaptable to the programmer’s needs with-
out the need for him to delve into the compiler. Our
goal is to devise a library which helps compiler builders
add this kind of technology to their compiler.

The main outcome of our work is the Top library
which has the following characteristics:

◦ It uses constraints to build a constraint tree which
follows the shape of the abstract syntax tree.

◦ These constraints can be ordered in various ways into
a list of constraints

◦ Various solvers (specifically a fast greedy one, a
slower global one, and the chunky solver which com-
bines the two) exist to solve the resulting list of con-
straints.

◦ The library is easily extended with new constraints,
and the type graph implementation includes various
heuristics to find out what is the most likely source
of an inconsistency. Some of these heuristics are very
general, others are more tailored towards Haskell.
Some the heuristics are fixed, like a majority heuris-
tics which takes into account that there is ‘more’
evidence that a certain constraint is the root of an
inconsistency. In addition, there are also heuristics
specified from the outside. By means of a siblings
directive, a programmer may specify that his experi-
ences are that certain functions are often mixed up.
As a result, a compiler may give the hint that (++)
should be used instead of (:), because (++) happens
to fit in the context.

◦ It preserves type synonyms as much as possible,

◦ We have support for type class directives. It allows
programmers to for instance specify that certain in-
stances will never occur. The type inferencer can use
this information to give better error messages. Other
directives can be used to specify additional invariants
on type classes. For instance, that two type classes
do not share a common type (Fractional vs. Inte-
gral). A paper about this subject will find its way
into PADL 2005. Although we have implemented
this into Helium, the infrastructure applies as well
to other systems of qualified types.

◦ The various phases in type inferencing have now been
integrated by a slightly different, more general choice
of constraints.

An older version of the underlying machinery for the
type inferencer has been published in the Proceedings

20

http://www.comp.nus.edu.sg/~sulzmann/chameleon/

of the Workshop of Immediate Applications of Con-
straint Programming held in October 2003 in Kinsale,
Ireland.

The entire library is parameterized in the sense that
for a given compiler we can choose which information
we want to drag around.

The library has been used extensively in the Helium
compiler, so that Helium can be seen as a case study
in applying Top in a real compiler. In addition to the
above, Helium also

◦ has a logging facility for building collections of cor-
rect and incorrect Haskell programs (including time
line information),

◦ has a run-time parameters for experimenting with
various solvers and constraint orderings.

◦ gives precise error location information,

◦ supports specialized type rules, which are a means
to override the order in which certain expressions
are inferenced and how the type error messages are
formulated (see our paper presented at ICFP ’03).
These type rules are especially useful for making the
type error messages for domain specific extensions to
Haskell correspond more closely to the domain, in-
stead of the underlying Haskell language structures.
The specialized type rules are automatically checked
for soundness and completeness with respect to the
original type system.

Since the report of November 2004

◦ Bastiaan Heeren has finished his PhD thesis, which
has been accepted by the promotion committee.
It can be downloaded from http://www.cs.uu.nl/
people/bastiaan/phdthesis/.

◦ A paper was published in PADL 2005, discussing
type inference directives for Haskell 98 type classes.

◦ A student is working on analyzing the loggings of
Helium to obtain information about how students
program, how ‘effective’ our hints are, and so on.

◦ A CD with the clean logged programs for two func-
tional programming courses is available. If you have
a need for such a CD, contact us, and we can discuss
this.

◦ A second student is working on improving the hint
facility for Helium, which generalizes the siblings and
permutation facility.

◦ Other current work involves generating type infer-
encers.

Further reading

◦ Project website:
http://www.cs.uu.nl/wiki/Top/WebHome

3.4.5 EHC, ‘Essential Haskell’ Compiler

Report by: Atze Dijkstra
Participants: Atze Dijkstra, Doaitse Swierstra
Status: active development

The purpose of the EHC project is to provide a descrip-
tion a Haskell compiler which is as understandable as
possible so it can be used for education as well as re-
search.

For its description an Attribute Grammer system is
used as well as other formalisms allowing compact no-
tation like parser combinators.

The EHC project also tackles other issues:

◦ In order to avoid overwhelming the innocent reader,
the description of the compiler is organised as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus.

◦ Each step corresponds to an actual, that is, an exe-
cutable compiler. Each of these compilers is a com-
piler in its own right so experimenting can be done in
isolation of additional complexity introduced in later
steps.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Currently EHC already incorporates more advanced
features like higher-ranked polymorphism, partial type
signatures, class system, explicit passing of implicit pa-
rameters (i.e. class instances), extensible records, kind
polymorphism.

Part of these features has been described at the AFP
2004 summerschool (lecture notes yet to appear, hand-
outs are available).

The compiler is used for small student projects as
well as larger experiments such as the incorporation of
an Attribute Grammar system.

Our plans for the near future are to complete the
description of all steps.

We also hope to provide a Haskell frontend dealing
with all Haskell syntactic sugar omitted from EHC.

Further reading

◦ Homepage:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

◦ AFP handouts:
http://www.cs.uu.nl/research/techreps/
UU-CS-2004-037.html

◦ Attribute grammar system:
http://www.cs.uu.nl/groups/ST/twiki/bin/view/
Center/AttributeGrammarSystem

21

http://www.cs.uu.nl/people/bastiaan/phdthesis/
http://www.cs.uu.nl/people/bastiaan/phdthesis/
http://www.cs.uu.nl/wiki/Top/WebHome
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://www.cs.uu.nl/research/techreps/UU-CS-2004-037.html
http://www.cs.uu.nl/research/techreps/UU-CS-2004-037.html
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem

◦ Parser combinators:
http://www.cs.uu.nl/groups/ST/Software/UU
Parsing/

3.5 Generic Programming

Report by: Johan Jeuring

Software development often consists of designing a (set
of mutually recursive) datatype(s), to which function-
ality is added. Some functionality is datatype specific,
other functionality is defined on almost all datatypes,
and only depends on the type structure of the datatype.

Examples of generic (or polytypic) functionality de-
fined on almost all datatypes are the functions that
can be derived in Haskell using the deriving construct,
storing a value in a database, editing a value, compar-
ing two values for equality, pretty-printing a value, etc.
Another kind of generic function is a function that tra-
verses its argument, and only performs an action at a
small part of its argument. A function that works on
many datatypes is called a generic function.

There are at least two approaches to generic pro-
gramming: use a preprocessor to generate instances of
generic functions on some given datatypes, or extend
a programming language with the possibility to define
generic functions.

Preprocessors

DrIFT is a preprocessor which generates instances of
generic functions. It is used in Strafunski (→ 4.3.3)
to generate a framework for generic programming on
terms. New releases appear regularly, the latest is 2.1.1
from April 2005.

Languages

Light-weight generic programming There are a num-
ber of approaches to light-weight generic programming.
The latest contributions are from the ‘Scrap your boil-
erplate’ approach.

Generic functions for data type traversals can (al-
most) be written in Haskell itself, as shown by
Ralf Lämmel and Simon Peyton Jones in the ‘Scrap
your boilerplate’ (SYB) approach (http://www.cs.vu.
nl/boilerplate/). The SYB approach to generic pro-
gramming in Haskell has been further elaborated in
the recently published (in ICFP ’04) paper “Scrap
more boilerplate: reflection, zips, and generalised casts”
and an unpublished paper “Scrap your boilerplate with
class: extensible generic functions”. The former paper
shows how to fill some of the gaps (such as generic zips)
which previously were difficult to solve in this approach.
The latter paper shows how you can turn ‘closed’ def-
initions of generic functions (not extensible when new

data types are defined) into ‘open’, extensible, defini-
tions.

Until now, there have been applications for which
Hinze and Peyton Jones’s “Derivable type classes”
would work, but SYB-style generic programming would
not. The latest SYB paper shows how SYB-style pro-
gramming can handle this class of applications too,
so Simon is planning to remove derivable type classes
from GHC (Section 7.11 of the GHC 6.4 user manual).
Please let him know if that would be a problematic for
you.

In “Generic proofs for combinator-based generic pro-
grams” (TFP 2004), Fermin Reig shows how to write
generic proofs for generic programs that use the SYB
library. The idea is that generic functions implemented
using type classes can also be expressed in Generic
Haskell, and this allows us to write more concise proofs.

Generic Haskell Andres Löh successfully defended his
PhD thesis “Exploring Generic Haskell” on Septem-
ber 2, 2004. The thesis describes Dependency-style
Generic Haskell, and introduces, amongst others, a
new type system for Generic Haskell that at the same
time simplifies the syntax and provides greater expres-
sive power. Electronic copies are available at http:
//www.cs.uu.nl/˜andres/ExploringGH.pdf.

The Coral release of the Generic Haskell compiler
(January 2005) implements Dependency-Style Generic
Haskell.

Generic Haskell is used in “Generic validation in an
XPath-Haskell data binding” by Rui Guerra, Johan
Jeuring, and Doaitse Swierstra, Plan-X 2005, to im-
plement a typed Haskell-XPath data binding. Further-
more, Stefan Holdermans, Johan Jeuring and Andres
Löh show how to add ‘views’ to Generic Haskell in
“Generic views on data types” (http://www.cs.uu.nl/
research/techreps/UU-CS-2005-012.html).

Current Hot Topics

Generic Haskell: inferring types of generic functions;
finding transformations between data types. Other:
the relation between generic programming and depen-
dently typed programming; the relation between co-
herence and generic programming; better partial eval-
uation of generic functions; methods for constructing
generic programs.

Major Goals

Major Goals: Efficient generic traversal based on type-
information for premature termination (see the Stra-
funski project (→ 4.3.3)). Exploring the differences in
expressive power between the lightweight approaches
and the language extension(s).

Further reading

◦ http://repetae.net/john/computer/haskell/DrIFT/

22

http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://www.cs.vu.nl/boilerplate/
http://www.cs.vu.nl/boilerplate/
http://www.cs.uu.nl/~andres/ExploringGH.pdf
http://www.cs.uu.nl/~andres/ExploringGH.pdf
http://www.cs.uu.nl/research/techreps/UU-CS-2005-012.html
http://www.cs.uu.nl/research/techreps/UU-CS-2005-012.html
http://repetae.net/john/computer/haskell/DrIFT/

◦ http://www.cs.chalmers.se/˜patrikj/poly/
◦ http://www.generic-haskell.org/
◦ http://www.cs.vu.nl/Strafunski/
◦ http://www.cs.vu.nl/boilerplate/

There is a mailing list for Generic Haskell:
〈generic-haskell@generic-haskell.org〉. See the homepage
for how to join.

23

http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/
mailto: generic-haskell at generic-haskell.org

4 Libraries

4.1 Packaging and Distribution

4.1.1 Hackage and Cabal

Report by: Isaac Jones

Background

The Haskell Cabal is a Common Architecture for Build-
ing Applications and Libraries. It is an API distributed
with GHC, NHC98, and Hugs which allows a developer
to easily group together a set of modules into a package.

HackageDB (Haskell Package Database) is an online
database of packages which can be interactively queried
by client-side software such as the prototype cabal-get.
From HackageDB, an end-user can download and in-
stall packages which conform to the Cabal interface.

The Haskell Implementations come with a good set
of standard libraries included, but this set is constantly
growing and is maintained centrally. This model does
not scale up well, and as Haskell grows in acceptance,
the quality and quantity of available libraries is becom-
ing a major issue.

It can be very difficult for an end user to manage a
wide variety of dependencies between various libraries,
tools, and Haskell implementations, and to build all the
necessary software at the correct version numbers on
their platform: previously, there was no generic build
system to abstract away differences between Haskell
Implementations and operating systems.

HackageDB and The Haskell Cabal seek to provide
some relief to this situation by building tools to assist
developers, end users, and operating system distribu-
tors.

Such tools include a common build system, a pack-
aging system which is understood by all of the Haskell
Implementations, an API for querying the packaging
system, and miscellaneous utilities, both for program-
mers and end users, for managing Haskell software.

Status

We have made a 1.0 release of the first phase, Cabal, the
common build system. Cabal is now distributed with
GHC 6.4, Hugs March 2005, and nhc98 1.18. Layered
tools have been implemented, including cabal2rpm and
dh_haskell, for building Redhat and Debian packages
out of Cabal packages. All of the fptools tree has been
converted to using Cabal, as well as many other tools
released over the last few months.

HackageDB, authored by Lemmih, is in a prototype
phase. Users can upload tarred-and-gzipped packages

to the database, and HackageDB will unpack them and
make them available for clients via the XML-RPC (→
4.7.5) interface. The prototype client, cabal-get, can
download and install a package and its dependencies.

Further reading

◦ http://www.haskell.org/cabal
◦ http://www.haskell.org/cabal/proposal/

4.1.2 Eternal Compatibility in Theory – a module
versioning protocol

Report by: Sven Moritz Hallberg

I’ve recently spent some thought on module version-
ing, i.e. how to avoid module breakage when exter-
nal dependencies change their interface in newer ver-
sions. I think I’ve come up with a nice and simple
solution which has been published in an article for The
Monad.Reader (→ 1.5). Here’s the short intro:
As a program module evolves, functions and other ele-
ments are added to, removed from, and changed in its
interface. It is clear that programs importing the mod-
ule (it’s dependants) will not be compatible with all
versions. At least, each program is compatible with one
version, the one the author originally used, and usually
a few ones before and after that. But if a program is
not continuously updated, with time, chances rise dra-
matically that one of it’s dependencies as installed on a
given host system will be incompatible. Alas, the pro-
gram cannot be used. This effect comprises a major
source of bit rot. To avoid such a situation, I suggest,
in short, to append version numbers to module names,
retaining the original name as a short-hand for “latest
version”.
For the complete description, please see the article
linked to below. It describes the scheme which I
have dubbed “ECT” in detail, as a protocol to be
followed by the module implementor. For what it’s
worth, I have already adapted my own module Sys-
tem.Console.Cmdline.Pesco (→ 4.2.2) to use it.
If you are a module author, please have a look, tell
me what you think, and consider adopting the ECT
scheme yourself.

Further reading

http://www.haskell.org/tmrwiki/
EternalCompatibilityInTheory

24

http://www.haskell.org/cabal
http://www.haskell.org/cabal/proposal/
http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory
http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory

4.1.3 LicensedPreludeExts

Report by: Shae Erisson

The PreludeExts wiki page started with an oft-pasted
email on the #haskell IRC channel, where at least
once a week someone asked for a permutations func-
tion. That sparked a discussion of what code is miss-
ing from the Prelude, once the wiki page was started,
submissions poured in, resulting in a useful and inter-
esting collection of functions. Last year’s PreludeExts
has become this year’s BSD LicensedPreludeExts since
John Goerzen wanted to have explicit licensing for in-
clusion into debian packages. If you contributed code
to PreludeExts and haven’t yet moved it to Licensed-
PreludeExts, please do so!

http://www.haskell.org/hawiki/LicensedPreludeExts

4.2 General libraries

4.2.1 Process

Report by: Bulat Ziganshin
Status: beta, actively developed

Process is a fun library for easing decomposition algo-
rithms to several processes, which transmit intermedi-
ate data via Unix-like pipes. You can write, for exam-
ple:

runP $ producer |> transformer1
|> transformer2
|> printer

where each “sub-process” in transporter is just a func-
tion started with forkIO/forkOS with one additional
parameter-pipe. This pipe can be “read” with the
readP function to get data from previous process in
transporter, and “written”with writeP to send data to
next process. A pipe can be made one-element (MVar)
with the |> operator, or multi-element (Chan) with
|>>>. Also supported are “back pipe” which can be
used to return to previous process acknowledgements
or, for example, borrowed buffers. Processes or entire
transporters can also be run asynchronously and then
communicated via a returned pipe:

pipe <- runAsyncP $
transformer1 |> transformer2

Moreover, processes/transporters can be run against
four functions, which will be used for all it’s piping
operations. That opens a whole range of possibilities
to create more complex process-control structures.

This lead to situation when Process, while more a syn-
tactic sugar for well-known forkOS/MVar/Chan ingre-
dients, than a “real” library, has become a very use-
ful tool for assembling complex algorithms from sim-
ple pieces, which somehow transform data. This is like
the situation of Unix popularity because it provides the
same instruments for assembling together separate sim-
ple programs, but in this case you don’t transmit plain
byte streams, but typed data.

Further reading

◦ Download page: http://freearc.narod.ru

4.2.2 System.Console.Cmdline.Pesco – a command
line parser 6= GNU getopt

Report by: Sven Moritz Hallberg
Status: active development

My command line parsing module first reported in
the November issue has just been updated to ver-
sion 2. This is mainly a restructuring release. I’ve
changed the module name from Pesco.Cmdline to Sys-
tem.Console.Cmdline.Pesco, to better fit into the over-
all hierarchical module namespace. Also the release
now comes as a nice Cabal package (→ 4.1.1).

The code itself has been adapted it to use the ECT
versioning scheme (→ 4.1.2) and has seen the addition
of a minor but very convenient feature. In particular,
the standard off-the-mill command line tool can now
be written in a form like the following.

import System.Console.Cmdline.Pesco_2

-- command line option specifications
opts = [flag ["bar"] "behave like Bar(1)"

{-...-}
]

-- names for mandatory non-option arguments
args = ["file1", "file2"]

main = do Args parm nonopts
<- stdargs "Foo" "1.0"

"Do the foo-foo dance."
opts args

let [file1,file2] = nonopts
if (parm "bar")

then putStrLn "--bar given"
else return ()

{-...-}

The above program will then accept usage of the form

./Foo [options] file1 file2

where options can be --bar etc. Most importantly,
it will automatically support the standard --help and

25

http://www.haskell.org/hawiki/LicensedPreludeExts
http://freearc.narod.ru

--version flags and check if the required number of
non-option arguments is present.

The module is available as a Cabal package named
pesco-cmdline. It, and all associated documentation
can be found on the website below, under the heading
“System.Console.Cmdline.Pesco”.

As of yet, the module still does not support explicitly
reporting errors, it always calls error. Also, it is still
not possible to ignore unrecognized command line ar-
guments (for chaining command line parsers) or errors
in general. These points will be addressed in the next
major revision.

Further reading

http://www.scannedinavian.org/˜pesco/

4.2.3 TimeLib

Report by: Ashley Yakeley
Status: active development

TimeLib is my informal name for an effort to redesign
the current library for handling Time (System.Time),
picking up from Simon Marlow’s earlier effort. A long
discussion on the libraries list in January and February
hashed out some of the essential ideas to be represented
and some of the design fundamentals, and I have now
started implementation.
There’s a darcs repository if you want to follow along
at home, but currently much of the code is fairly ten-
tative and tends to change rapidly as I try to seek a
balance between expressive functionality and intelligi-
ble simplicity. When the code becomes more stable I
will seek comment from the community.

Further reading

http://semantic.org/TimeLib/

4.2.4 A redesigned IO library

Report by: Simon Marlow

Some time ago on the libraries mailing list there was a
discussion about a replacement for Haskell’s IO library.
The main aims are:

◦ To separate underlying IO objects (files, pipes, sock-
ets etc.), from a general notion of Streams, providing
improved

1. Type Safety: certain operations only make
sense for certain kinds of IO objects. For ex-
ample hFileSize only makes sense on files, not
sockets. Also, input streams would be separate
from output streams.

2. Generality: Under this scheme, programmers
would be able to implement their own Streams
(something which cannot be done with Han-
dles).

◦ To allow translations to be layered on top of Streams
in a general way. The most common type of trans-
lation is a text encoding, which translates between
the external encoded form of text (say, UTF-8) and
Haskell’s Unicode Char type. This addresses a seri-
ous deficiency in Haskell’s current IO library, namely
the lack of support for specifying a character trans-
lation.

◦ More features: e.g. mapped file support.

See the libraries archives for the discussion, e.g.
◦ http://haskell.org/pipermail/libraries/2003-July/

001298.html
◦ http://haskell.org/pipermail/libraries/2003-July/

001299.html
◦ http://haskell.org/pipermail/libraries/2003-August/

001313.html
Since the previous report some progress has been

made on a prototype, which is available here: http:
//haskell.org/˜simonmar/new-io.tar.gz.

The prototype currently supports only basic I/O us-
ing files, but has some support for internationalization.
I (Simon M.) am not actively working on this at the
moment, so anyone that would like to pick this up is
entirely welcome.

4.2.5 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The current release is 2.0.1. New, since the last re-
port, is a complete re-write of the ASN.1 handling
modules, the ability to handle keys stored X.509 cer-
tificates, the inclusion of Codec.Binary.Base64, lots of
tests using HUnit and QuickCheck (→ 5.4.4) and the
use of a darcs (→ 6.3) repository all packaged using
Cabal (→ 4.1.1).

The library now supports: DES, Blowfish, AES, Ci-
pher Block Chaining (CBC) mode, PKCS5 and nulls
padding, MD5, SHA-1, Base64, RSA, OAEP, ASN.1,
PKCS#8 and X.509.

The library follows the hierarchical standards and
has Haddock (→ 5.5.6) style documentation. There are
demo / test programs using published test vectors and
instructions on how to use RSA in Haskell and inter-
work with openssl. In particular, you can generate key
pairs using your favorite method (openssl, for exam-
ple) and then use them in Haskell. Not only can you
now read a private key into your Haskell program via
PKCS#8 and use it to decrypt something encrypted
with your public key but you can also read a public

26

http://www.scannedinavian.org/~pesco/
http://semantic.org/TimeLib/
http://haskell.org/pipermail/libraries/2003-July/001298.html
http://haskell.org/pipermail/libraries/2003-July/001298.html
http://haskell.org/pipermail/libraries/2003-July/001299.html
http://haskell.org/pipermail/libraries/2003-July/001299.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/~simonmar/new-io.tar.gz
http://haskell.org/~simonmar/new-io.tar.gz

key into your Haskell program via X.509 and use it
to encrypt something for decryption using your private
key.

There is still plenty of existing code that should be
incorporated such as RC4 (courtesy of Doug Hoyte).
With the new ASN.1 handling it should be straightfor-
ward to add a PKCS#12 module. The next piece of
work is likely to be support for digital signatures.

All contributions are welcome.

Further reading

http://www.haskell.org/crypto

4.2.6 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Henning Thielemann
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck (→ 5.4.4)
properties, superfluous superclasses like Show are re-
moved, semantic and representation-specific operations
are separated, the hierarchy of type classes is more
fine grained, and identifiers are adapted to mathemat-
ical terms. Both new types (like power series and
values with physical units) and type classes (like the
VectorSpace multi type class) are introduced. Using
the revised system requires hiding some of the stan-
dard functions provided by Prelude, which is fortu-
nately supported by GHC.

Future plans

Collect more Haskell code related to mathematics,
e.g. for linear algebra. Study of alternative numeric
type class proposals and common computer algebra
systems. Ideally each data type resides in a separate
module, which will probably lead to mutual recursive
dependencies.

Further reading

http://cvs.haskell.org/darcs/numericprelude/

4.2.7 Haskore revision

Report by: Henning Thielemann
Status: experimental, active development

Haskore is a set of Haskell modules by Paul Hudak
that allow music composition within Haskell, i.e. with-
out the need of a custom music programming language.
In general this project aims at improving consistency

throughout the package, revising design decisions, fix-
ing bugs, and eventually extending Haskore. In par-
ticular some improvements are: The Music structure
is based on a more general temporal media data struc-
ture as proposed by Paul Hudak. The core Music data
structure is hidden by functions that work on it. The
support for infinite Music objects is improved. You
can feed CSound with infinite music data through a
pipe and you can feed an audio file player like Sox with
an audio stream entirely rendered in Haskell (see Au-
dio Signal Processing project (→ 6.16)) The test suite
is now based on QuickCheck (→ 5.4.4) and HUnit. The
AutoTrack project is adapted and included now.

Future plans

Introduce a more general notion of instruments which
allows for more parameters that are specific to cer-
tain instruments. Allow modulation of music similar to
the controllers in the MIDI system. Connect to other
Haskore related projects. Adapt to the Cabal (→ 4.1.1)
system.

Further reading

◦ http://www.haskell.org/hawiki/Haskore
◦ http://cvs.haskell.org/darcs/haskore/

4.2.8 The revamped monad transformer library

Report by: Iavor Diatchki
Status: mostly stable

Monads are very common in Haskell programs and yet
every time one needs a monad, it has to be defined
from scratch. This is boring, error prone and unnec-
essary. Many people have their own libraries of mon-
ads, and it would be nice to have a common one that
can be shared by everyone. Some time ago, Andy Gill
wrote the monad transformer library that has been dis-
tributed with most Haskell implementations, but he has
moved on to other jobs, so the library was left on its
own. I wrote a similar library (before I knew of the
existence of Andy’s library) and so i thought i should
combine the two. The “new” monadic library is not re-
ally new, it is mostly reorganization and cleaning up of
the old library. It has been separated from the “base”
library so that it can be updated on its own.

The monad transformer library now has its first of-
ficial release. I have put it on my web page: http:
//www.cse.ogi.edu/˜diatchki/monadLib

It is in many ways similar to what’s distributed with
GHC/Hugs/etc, but I think also simplified and bet-
ter organized. The library interface is documented
with haddock (→ 5.5.6). The monads/transformers
currently in the library are:
◦ ReaderT (environment)
◦ WriterT (output)

27

http://www.haskell.org/crypto
http://cvs.haskell.org/darcs/numericprelude/
http://www.haskell.org/hawiki/Haskore
http://cvs.haskell.org/darcs/haskore/
http://www.cse.ogi.edu/~diatchki/monadLib
http://www.cse.ogi.edu/~diatchki/monadLib

◦ StateT
◦ ExceptT
◦ BackT
◦ ContT
In this version I decided to implement some of the
transformers (backtracking,exceptions) in continuation
passing style, thinking that they may work better that
way. I haven’t done any formal testing on that though.
The Haskell extensions the library uses are:
◦ Multiparameter classes (important).
◦ Rank-2 polymorphism (for the CPS implementa-

tions, could be removed).
◦ Functional dependencies (could be removed, but is

likely to require more type annotations).
For any questions, comments, or bug reports please
send me a mail.

Further reading

http://www.cse.ogi.edu/˜diatchki/monadLib

4.2.9 HBase

Report by: Ashley Yakeley
Status: stalled

HBase is a large collection of library code, compiled
“-fno-implicit-prelude”, intended as an experimen-
tal/alternative reorganized interface to the existing
standard libraries making full use of GHC’s extensions.
HBase development is driven by HScheme (→ 6.2) and
my other Haskell projects, and sometimes by whatever
interests occur to me. Right now it includes:
◦ a library of various classes of Functors and Monads,
◦ transformation, encoding and property functions for

Unicode,
◦ types and classes for parsing,
◦ functions for parsing XML and RDF,
◦ code for constructing SQL queries,
. . . and much else. I’m hoping some of the ideas might
eventually make their way into standard libraries, or
perhaps the standard libraries of some future extended
“Haskell 2”.

Very little work is currently being done on it.

Further reading

http://sourceforge.net/projects/hbase/

4.2.10 Pointless Haskell

Report by: Jorge Sousa Pinto

Pointless Haskell is a library for point-free program-
ming with recursion patterns defined as hylomor-
phisms. It is part of the UMinho Haskell libraries that
are being developed at the University of Minho (→

7.3.8). The core of the library is described in“Point-free
Programming with Hylomorphisms” by Alcino Cunha.

Pointless Haskell also allows the visualization of the
intermediate data structure of the hylomorphisms with
GHood. This feature together with the DrHylo (→
5.2.8) tool allows us to easily visualize recursion trees
of Haskell functions, as described in “Automatic Vi-
sualization of Recursion Trees: a Case Study on
Generic Programming” (Alcino Cunha, In volume 86.3
of ENTCS: Selected papers of the 12th International
Workshop on Functional and (Constraint) Logic Pro-
gramming. 2003).

Further reading

The Pointless Haskell library is available from http://
wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell.

4.2.11 hs-plugins

Report by: Don Stewart
Status: active development

hs-plugins is a library for dynamic loading and run-
time compilation of Haskell modules, for Haskell and
foreign language applications. It can be used to im-
plement standard application plugins, hot swapping of
modules in running applications, runtime evaluation of
Haskell, and enables the use of Haskell as an application
extension language. Version 0.9.8 has been released.

Further reading

Source and documentation can be found at http://
www.cse.unsw.edu.au/˜dons/hs-plugins.

4.2.12 MissingH

Report by: John Goerzen
Status: active development

MissingH is a library designed to provide the little
“missing” features that people often need and end up
implementing on their own. Its focus is on list, string,
and IO features, but extends into other areas as well.
The library is 100% pure Haskell code and has no
dependencies on anything other than the standard li-
braries distributed with current versions of GHC and
Hugs.

In addition to the smaller utility functions, recent
versions of MissingH have added a complete FTP client
and server system, a virtualized I/O infrastructure sim-
ilar to Python’s file-like objects, a virtualized filesys-
tem infrastructure, a MIME type guesser, a configu-
ration file parser, GZip decompression support in pure

28

http://www.cse.ogi.edu/~diatchki/monadLib
http://sourceforge.net/projects/hbase/
http://wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell
http://wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell
http://www.cse.unsw.edu.au/~dons/hs-plugins
http://www.cse.unsw.edu.au/~dons/hs-plugins

Haskell, a DBM-style database virtualization layer, and
a modular logging infrastructure, complete with sup-
port for Syslog.

Future plans for MissingH include adding more net-
work client and server libraries, support for a general-
ized URL downloading scheme that will work across all
these client libraries, and enhancing the logging system.

This library is licensed under the GNU GPL.

Further reading

http://quux.org/devel/missingh

4.2.13 MissingPy

Report by: John Goerzen
Status: active development

MissingPy is really two libraries in one. At its lowest
level, MissingPy is a library designed to make it easy to
call into Python from Haskell. It provides full support
for interpreting arbitrary Python code, interfacing with
a good part of the Python/C API, and handling Python
objects. It also provides tools for converting between
Python objects and their Haskell equivalents. Memory
management is handled for you, and Python exceptions
get mapped to Haskell Dynamic exceptions.
At a higher level, MissingPy contains Haskell inter-
faces to some Python modules. These interfaces in-
clude support for the Python GZip and BZip2 modules
(provided using the HVIO abstraction from MissingH),
and support for Python DBM libraries (provided using
AnyDBM from MissingH (→ 4.2.12)). These high-level
interfaces look and feel just like any pure Haskell inter-
face.
Future plans for MissingPy include an expansion of the
higher-level interface to include such things as Python
regexp libraries, SSL support, and LDAP support.
This library is licensed under the GNU GPL.

Further reading

http://quux.org/devel/missingpy

4.3 Parsing and transforming

4.3.1 Parsec

Report by: Daan Leijen
Status: stable

Parsec is a practical parser combinator library for
Haskell that is well documented, has extensive li-
braries, and good error messages. It is cur-
rently part of the standard Haskell libraries (in
Text.ParserCombinators.Parsec) and has been sta-
ble for years now. We plan to add a module that adds

combinators to parse according to the (full) Haskell lay-
out rule (available on request).

Further reading

http://www.cs.uu.nl/˜daan/parsec.html

4.3.2 Haskell-Source with eXtensions (HSX,
haskell-src-exts)

Report by: Niklas Broberg
Status: beta, maintained, latest release: 0.2 (April

05)

HSX aims to be a replacement of the libraries in Lan-
guage.Haskell of the standard haskell-src package. The
contribution is that HSX supports a good deal of the
various syntactic extensions available, such as
◦ Multi-parameter type classes with functional depen-

dencies
◦ Empty data declarations
◦ GADTs
◦ Implicit parameters (ghc and hugs style)
◦ Template Haskell (broken for 6.4, needs redoing)
Apart from these standard extensions, it also handles
regular patterns as per the HaRP (→ 3.1.6) extension
as well as HSP-style embedded XML syntax (→ 3.1.5).

Further reading

◦ Webpage and darcs repo at:
http://www.cs.chalmers.se/˜d00nibro/
haskell-src-exts/

4.3.3 Strafunski

Report by: Joost Visser
Status: active, maintained, new release in October

2004
Portability: Hugs, GHC, DrIFT

Strafunski is a Haskell-based bundle for generic pro-
gramming with functional strategies, that is, generic
functions that can traverse into terms of any type while
mixing type-specific and uniform behaviour. This style
is particularly useful in the implementation of program
analyses and transformations.

Strafunski bundles the following components:
◦ the library StrategyLib for generic traversal and oth-

ers;
◦ precompilation support for user datatypes based on

DrIFT (→ 3.5);
◦ the library ATermLib for data exchange;
◦ the tool Sdf2Haskell (→ 5.2.5) for external parser and

pretty-print integration.
The Strafunski-style of generic programming can

be seen as a lightweight variant of generic program-
ming (→ 3.5) because no language extension is in-

29

http://quux.org/devel/missingh
http://quux.org/devel/missingpy
http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.chalmers.se/~d00nibro/haskell-src-exts/
http://www.cs.chalmers.se/~d00nibro/haskell-src-exts/

volved, but generic functionality simply relies on a few
overloaded combinators that are derived per datatype.
By default, Strafunski relies on DrIFT to derive the ap-
propriate class instances, but a simple switch is offered
to rely on the “Scrap your boilerplate” (→ 3.5) model
as available in the Data.Generics library.

The Sdf2Haskell component of Strafunski has re-
cently been extended to offer not only parsing support
via the external “sglr” parser, but also:

◦ parsing support via HaGLR (→ 5.2.7), an experimen-
tal 100% Haskell implementation of Generalized LR
parsing

◦ pretty-printing support, based on the
pretty-print combinators as available in the
Text.PrettyPrint.HughesPJ library. The generated
pretty-printers are functional strategies that offer
uniform behaviour which can be customized with
type-specific behaviour.

Strafunski is used in the HaRe project (→ 5.3.3) and in
the UMinho Haskell Libraries and Tools (→ 7.3.8) to
provide analysis and transformation functionality for
languages such as Java, VDM, SQL, spreadsheets, and
Haskell itself.

Further reading

http://www.cs.vu.nl/Strafunski/

4.3.4 Medina – Metrics for Haskell

Report by: Chris Ryder

The Medina library is a Haskell library for GHC that
provides tools and abstractions with which to build
software metrics for Haskell programs.

The library includes a parser and several abstract
representations of the parse trees and some visualiza-
tion systems including pretty printers, HTML genera-
tion and callgraph browsing. The library has some inte-
gration with CVS to allow temporal operations such as
measuring a metric value over time. This is linked with
some simple visualization mechanisms to allow explor-
ing such temporal data. These visualization systems
will be expanded in the near future.

We have carried out case studies to provide some
validation of metrics by looking at the change history
of a program and how various metric values evolve in
relation to those changes. In order to do this we im-
plemented several metrics using the library, which has
given some valuable ideas for improvements to the li-
brary.

Following on from the case studies we have im-
proved and extended the visualization systems and im-
plemented some of the ideas from the case studies. De-
mos and screenshots are available on the Medina web-
page: http://www.cs.kent.ac.uk/˜cr24/medina.

Currently there is no released version of the Medina
library, but my PhD thesis has been submitted so I am
now in the process of preparing a release. This should
be available real-soon-now.

4.4 Data handling

4.4.1 DData

Report by: Daan Leijen
Status: stable

DData is a library of efficient data structures and algo-
rithms for Haskell (Set, Bag, and Map). It is actively
maintained and stable.

DData is currently included in the standard hierar-
chical module name space and ships with GHC, NHC,
and Hugs. This will be the last entry in the communi-
ties report.

Further reading

http://www.cs.uu.nl/˜daan/ddata.html

4.4.2 A library for strongly typed heterogeneous
collections

Report by: Oleg Kiselyov
Developers: Oleg Kiselyov, Ralf Lämmel,

Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for strongly typed heterogeneous collections in-
cluding extensible records. HList is analogous of the
standard list library, providing a host of various con-
struction, look-up, filtering, and iteration primitives.
In contrast to the regular list, elements of HList do
not have to have the same type. HList lets the user
formulate statically checkable constraints: for exam-
ple, no two elements of a collection may have the same
type (so the elements can be unambiguously indexed
by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable labels. We have also used HList for type-safe
database access in Haskell. The HList library relies on
common extensions of Haskell 98.

We added two general HList (to be more precise,
HRecord) functions inspired by OOHaskell: HLeftU-
nion and Narrow. The latter narrows a record to a
different record type. We included two new examples:
Joy, with the typed stack, in Haskell; lists of heteroge-
nous “objects” implementing the same interface, with-
out the use of existentials. We also made a few slight
changes to make the library work with GHC 6.4.

30

http://www.cs.vu.nl/Strafunski/
http://www.cs.kent.ac.uk/~cr24/medina
http://www.cs.uu.nl/~daan/ddata.html

Further reading

http://homepages.cwi.nl/˜ralf/HList/

4.4.3 HSQL

Report by: Krasimir Angelov
Status: stable

The HSQL is a simple library for database access from
Haskell. It is relatively small and complete. bug fixes
are always welcome and If someone is wishing to add a
new backend I will be glad to help him.

Further reading

http://htoolkit.sourceforge.net/

4.4.4 Takusen

Report by: Alistair Bayley, Oleg Kiselyov, Alain
Crémieux

Status: active development

Takusen is a library for accessing DBMS’s. It is a low-
level library like HSQL (→ 4.4.3), in the sense that it
is used to issue SQL statements. Takusen’s ‘unique-
selling-point’ is a design for processing query results
using a left-fold enumerator. For queries the user cre-
ates an iteratee function, which is fed rows one-at-a-
time from the result-set. We also support processing
query results using a cursor interface, if you require
finer-grained control.

Since the last report we’ve added support for bind
variables. The plan to redesign the interface to use just
the IO monad didn’t work out well, so we’ve abandoned
that for now and have retained the existing monad-
transformer-based design. Oleg has done some im-
pressive refactoring/simplification work, which has bet-
ter separated the enumerator (front-end) library from
the various implementations (back-ends). The result is
that it’s much easier to implement new back-ends, and
the existing back-ends are much simpler.

Alain Cremieux is attempting a BerkeleyDB back-
end (our first non-SQL one), Alistair has started on
an MS Sql Server back-end, and Oleg plans to do a
PostgreSql one.

Further reading

http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/

4.4.5 HaskellDB

Report by: Anders Höckersten
Status: active development and maintenance
Portability: GHC, Hugs, multiple platforms

HaskellDB is a library for accessing databases through
Haskell in a type safe and declarative way. It
completely hides the underlying implementation and
can interface with several popular database engines
through either HSQL (→ 4.4.3) or wxHaskell (→ 4.5.1).
HaskellDB was originally developed by Daan Lei-
jen. Development was restarted as part of a student
project at Chalmers University of Technology. This
project is now over, but several of the original project
members are still actively developing and maintain-
ing HaskellDB. We do welcome new developers and
patches, as all of us are full-time students.
The current version supports:
◦ Completely type safe queries on databases
◦ Support for MySQL, PostgreSQL, SQLite and

ODBC through HSQL
◦ Support for ODBC through wxHaskell
◦ Automatic conversion between Haskell types and

SQL types
◦ Support for bounded strings
◦ Dynamic loading of drivers via hs-plugins (→ 4.2.11)
Future possible developments include:
◦ Support for more backends (Oracle)
◦ Support for non-SQL backends
◦ Driver-specific code generation. This is needed for

non-SQL backends, and we have discovered that no
SQL databases implement the standard in quite the
same way

Further reading

http://haskelldb.sourceforge.net

4.4.6 ByteStream

Report by: Bulat Ziganshin
Status: beta, actively developed

ByteStream is like the NHC Binary library – it pro-
vides marshalling of Haskell objects to byte streams
and restoring them back. Features:

◦ light-fast speed, but only x86 processors compatible
(uses unaligned memory access)

◦ using callbacks to read and write data (in large
chunks) to a byte stream, so it can go on-the-fly to
memory, file or, for example, to another PC

◦ using variable-length format for Integers and list
lengths (1–9 bytes, dependent on value)

Example of very basic usage:

31

http://homepages.cwi.nl/~ralf/HList/
http://htoolkit.sourceforge.net/
http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/
http://haskelldb.sourceforge.net

ByteStream.writeFile "test" [1..1000::Integer]

(restored::[Integer]) <- ByteStream.readFile "test"

Further reading

◦ Download page: http://freearc.narod.ru

4.4.7 Compression-2005

Report by: Bulat Ziganshin
Status: stable, actively developed

Features of the Compression-2005 Library:

◦ easy and uniform access to most competitive com-
pression algorithms as of April’05: LZMA, PPMd
and GRZip

◦ all input/output performed via user-supplied func-
tions (callbacks), so you can compress data in mem-
ory, files, pipes, sockets and anything else

◦ all parameters of compression algorithm are
defined with a single string, for example
"lzma:8mb:fast:hc4:fb32".

So, the entire compression program can be written as
a one-liner:

compress "ppmd:10:48mb" (hGetBuf stdin)

(\buf size ->

hPutBuf stdout buf size >> return size)

with decompressor program:

decompress "ppmd:10:48mb" (hGetBuf stdin)

(\buf size ->

hPutBuf stdout buf size >> return size)

You can replace "ppmd:10:48mb" with "lzma:16mb" or
"grzip" to get another two compressors – all three will
compress faster and better than bzip2.
Of course, the primary purpose of this library is to give
you a possibility to use state-of-the-art compression as
an integral part of your Haskell programs.

Further reading

◦ Download page: http://freearc.narod.ru

4.5 User interfaces

4.5.1 wxHaskell

Report by: Daan Leijen
Status: beta, actively developed

wxHaskell is a portable GUI library for Haskell. The
goal of the project is to provide an industrial strength

portable GUI library, but without the burden of devel-
oping (and maintaining) one ourselves.

wxHaskell is therefore build on top of wxWidgets – a
comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with native look-and-feel, and it has a very ac-
tive community (ranked among the top 25 most active
projects on sourceforge). Many other languages have
chosen wxWidgets to write complex graphical user in-
terfaces, including wxEiffel, wxPython, wxRuby, and
wxPerl.

Since most of the interface is automatically gener-
ated from the wxEiffel binding, the latest release of wx-
Haskell already supports about 90% of the wxWindows
functionality – about 3000 methods in 500 classes with
1300 constant definitions. wxHaskell has been built
with GHC 6.x on Windows, MacOS X and Unix sys-
tems with GTK, and binary distributions are available
for common platforms.

Since the last community report, most work has been
directed into improved stability and a better build sys-
tem. There is also better integration with other pack-
ages: HaskellDB (→ 4.4.5) works with the wxHaskell
ODBC binding and HOpenGL (→ 4.6.1) can work with
the OpenGL canvas. The wxHaskell website also shows
some screenshots of larger sized applications that are
developed with wxHaskell. It is most satisfying to see
that even those larger applications are ported with-
out any real difficulties – Haskell is becoming a very
portable language indeed!

Current work is directed at improving documenta-
tion and stability across platforms, and we hope to re-
lease the 1.0 version in October 2005, hopefully with
SOEgraphics support.

Further reading

You can read more about wxHaskell at http://
wxhaskell.sourceforge.net and on the wxHaskell mailing
list at http://sourceforge.net/mail/?group id=73133.
See also “wxHaskell: a portable and concise GUI li-
brary”, Daan Leijen, Haskell workshop 2004.

4.5.2 FunctionalForms

Report by: Sander Evers

FunctionalForms is a combinator library/domain spe-
cific language built on top of wxHaskell (→ 4.5.1) which
enables a concise and declarative programming style
for forms: dialogs which only show and edit a set of
values (used in many applications as Options or Set-
tings dialogs). Control and layout definition are com-
bined into one expression, there’s no IO monad pro-

32

http://freearc.narod.ru
http://freearc.narod.ru
http://wxhaskell.sourceforge.net
http://wxhaskell.sourceforge.net
http://sourceforge.net/mail/?group_id=73133

gramming, and values are passed to and from the con-
trols almost automatically. Still, the type of the edited
values and the layout structure can be managed inde-
pendently, thanks to a programming technique called
compositional functional references. As a new addition,
a disjoint union type can be edited using a structure
of radio buttons. Currently, FunctionalForms is in a
proof-of-concept status, and not very actively devel-
oped further.

Further reading

http://www.sandr.dds.nl/FunctionalForms

4.5.3 Gtk2Hs – A GUI library for Haskell based on
Gtk+

Report by: Duncan Coutts
Maintainer: Axel Simon and Duncan Coutts

This project provides a high-quality binding to Gtk+
which is a multi-platform toolkit for creating graph-
ical user interfaces. GUIs written using Gtk2Hs fol-
low the native look on Windows (since Gtk+ 2.6) and
of course on Linux, Solaris and FreeBSD. Gtk+ and
Gtk2Hs also supports MacOS X though it currently
uses the X server and does not follow the native Ma-
cOS X theme.

Gtk2Hs also provides bindings to some Gnome ex-
tensions (at the moment Glade, GConf, a source code
editor widget and a widget that embeds the Mozilla
rendering engine). It also has automatic memory man-
agement (wxWidgets does not provide proper support
for garbage-collected languages).

The Gtk2Hs library is actively maintained and de-
veloped. We are working towards a 1.0 release and are
planning to support the new Cairo 2D graphics API.

We expect to release version 0.9.8 within the next
few weeks. It will have GHC 6.4 compatibility, more
extensive haddock (→ 5.5.6) reference documentation,
90% coverage of the Gtk+ API up to the latest version
2.6 and various minor bug fixes and API cleanups. It
will also support a properties API in the same style as
that of wxHaskell (→ 4.5.1)/Yampa.

Other changes since the last HCAR include a new
website including many new screenshots. There is an
introductory article by Kenneth Hoste in the first issue
of The Monad.Reader (→ 1.5).

The current release of Gtk2Hs, version 0.9.7, is
known to run on Linux, FreeBSD, MacOS X and So-
laris. There was also a special 0.9.7.1 release specifically
for Windows.

Packages are currently available for Windows, Fedora
Core (→ 7.4.2), Gentoo (→ 7.4.4), Debian (→ 7.4.1),
FreeBSD and ArchLinux.

Further reading

◦ http://haskell.org/gtk2hs/
◦ http://www.haskell.org/hawiki/TheMonadReader

2fIssueOne

4.5.4 HToolkit

Report by: Krasimir Angelov

The HToolkit is a platform independent package for
Graphical User Interfaces. The package is split into
two libraries GIO and Port. The Port is a low-level
Haskell 98+FFI (→ 3.2) compatible API, while GIO is
a highlevel user friendly interface to Port. The primary
goal of HToolkit is to provide a native look and feel for
each target platform.

The currently supported platforms are Windows and
Linux/GNOME.

There are some new things. There is a better sup-
port for menus and toolbars under both Windows and
Linux. There is also new API which allows to create
action based menu items and toolbar buttons. The“ac-
tion” here is something like GtkAction widget but it is
at Haskell level and it is available for both Windows
and Linux. There isn’t a new release yet.

Further reading

http://htoolkit.sourceforge.net/

4.5.5 HTk

Report by: Christoph Lüth and George Russell
Status: stable, actively maintained

HTk is an encapsulation of the graphical user interface
toolkit and library Tcl/Tk for the functional program-
ming language Haskell. It allows the creation of high-
quality graphical user interfaces within Haskell in a
typed, abstract, portable and concurrent manner. HTk
is known to run under Linux, Solaris, FreeBSD, Win-
dows (98, 2k, XP) and will probably run under many
other POSIX systems as well. It works with GHC, ver-
sion 6.0 and up to 6.4.

HTk is stable and actively maintained, but will not
be developed further.

Further reading

http://www.informatik.uni-bremen.de/htk

33

http://www.sandr.dds.nl/FunctionalForms
http://haskell.org/gtk2hs/
http://www.haskell.org/hawiki/TheMonadReader_2fIssueOne
http://www.haskell.org/hawiki/TheMonadReader_2fIssueOne
http://htoolkit.sourceforge.net/
http://www.informatik.uni-bremen.de/htk

4.5.6 Fudgets

Report by: Thomas Hallgren

Fudgets is a GUI toolkit designed and implemented by
Magnus Carlsson and Thomas. Most of the work was
done in 1991–1995, and the library has been in minimal
maintenance mode since then. It compiles with recent
versions of GHC (e.g., GHC 6.2.1) on many Unix-like
platforms (Linux, SunOS, Mac OS X, etc).

For documentation and downloads, see: http://www.
cs.chalmers.se/Fudgets/.

Recent snapshots can also be found at: http://www.
cse.ogi.edu/˜hallgren/untested/.

Two applications using the Fudgets:
◦ The proof assistant Alfa, http://www.cs.chalmers.se/

˜hallgren/Alfa/
◦ The Programatica Haskell Browser, http://www.cse.

ogi.edu/˜hallgren/Programatica/

4.6 Graphics

4.6.1 HOpenGL – A Haskell Binding for OpenGL
and GLUT

Report by: Sven Panne
Status: stable, actively maintained

The goal of this project is to provide a binding for
the OpenGL rendering library which utilizes the spe-
cial features of Haskell, like strong typing, type classes,
modules, etc., but is still in the spirit of the official
API specification. This enables the easy use of the vast
amount of existing literature and rendering techniques
for OpenGL while retaining the advantages of Haskell
over lower-level languages like C. Portability in spite of
the diversity of Haskell systems and OpenGL versions
is another goal.

HOpenGL includes the simple GLUT UI, which is
good to get you started and for some small to medium-
sized projects, but HOpenGL doesn’t rival the GUI
task force efforts in any way. Smooth interopera-
tion with GUIs like gtk+hs or wxHaskell (→ 4.5.1)
on the other hand is a goal, see e.g. http://wxhaskell.
sourceforge.net/samples.html#opengl

Currently there are two major incarnations of
HOpenGL, differing in their distribution mechanisms
and APIs: The old one (latest version 1.05 from
09/09/03) is distributed as a separate tar ball and needs
GreenCard plus a few language extensions. Apart from
small bug fixes, there is no further development for this
binding. Active development of the new incarnation
happens in the fptools repository, so it is easy to ship
GHC, Hugs, and nhc98 with OpenGL/GLUT support.
The new binding features:
◦ Pure Haskell 98 + FFI (→ 3.2)
◦ No GreenCard dependency anymore

◦ Full OpenGL 1.5 support (NURBS currently only
partly implemented), OpenGL 2.0 features planned

◦ A few dozen extensions
◦ An improved API, centered around OpenGL’s notion

of state variables
◦ Extensive hyperlinked online documentation
◦ Supports freeglut-only features, too
HOpenGL is extensively tested on x86 Linux and
Windows, and reportedly runs on Solaris, FreeBSD,
OpenBSD (→ 7.4.3), and Mac OS X.

The binding comes with a lot of examples from the
Red Book and other sources, and Sven Eric Panitz
has written a tutorial using the new API (http://
www.tfh-berlin.de/˜panitz/hopengl/), so getting started
should be rather easy.

Further reading

http://www.haskell.org/HOpenGL/

4.6.2 FunWorlds – Functional Programming and
Virtual Worlds

Report by: Claus Reinke
Status: minimal update

FunWorlds is a currently mostly dormant experiment
to investigate language design issues at the borderlines
between concurrent systems, animated reactive 2&3d
graphics, and functional programming. It built on the
start that functional reactive programming and espe-
cially Conal Elliott’s Fran made in that direction, but
aimed for a simpler design and operational semantics,
and thus more predictable performance.

In the yearly update to make the old snapshot build
with the latest ghc (→ 2.1) (6.4 and the included
HOpenGL/GLUT packages (→ 4.6.1)), lines and sim-
ple surfaces have been added to the scene graph primi-
tives, together with a few simple examples demonstrat-
ing their use (animated parameterised surfaces, ani-
mated turtle graphics). This was in response to several
recent enquiries about updates and further examples.

Further reading

◦ Project home:
http://www.cs.kent.ac.uk/˜cr3/funworlds/

4.7 Web and XML programming

4.7.1 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

34

http://www.cs.chalmers.se/Fudgets/
http://www.cs.chalmers.se/Fudgets/
http://www.cse.ogi.edu/~hallgren/untested/
http://www.cse.ogi.edu/~hallgren/untested/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://wxhaskell.sourceforge.net/samples.html#opengl
http://wxhaskell.sourceforge.net/samples.html#opengl
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/
http://www.cs.kent.ac.uk/~cr3/funworlds/

HaXml provides many facilities for using XML from
Haskell. The public release is currently at version 1.12,
soon to be refreshed to 1.13, mainly for compatibility
with ghc-6.4, and to introduce support for building via
Cabal (→ 4.1.1). Graham Klyne (→ 7.5.2) has a sepa-
rate branch of 1.12, supporting namespaces, Unicode,
and much more. We still hope eventually to merge
those contributions back into the main HaXml tree.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.ninebynine.org/Software/HaskellUtils/

4.7.2 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: active development (current release: 5.01)

Description

The Haskell XML Toolbox is a collection of tools for
processing XML with Haskell. It is itself purely written
in Haskell 98. The core component of the Haskell XML
Toolbox is a validating XML-Parser that supports al-
most fully the Extensible Markup Language (XML) 1.0
(Second Edition),

The Haskell XML Toolbox bases on the ideas of
HaXml (→ 4.7.1) and HXML, but introduces a more
general approach for processing XML with Haskell.
The Haskell XML Toolbox uses a generic data model
for representing XML documents, including the DTD
subset and the document subset, in Haskell. This data
model makes it possible to use filter functions as a
uniform design of XML processing applications. The
whole XML parser including the validator parts was
implemented using this design. Libraries with filters
and combinators are provided for processing the generic
data model.

Features

◦ validating XML parser
◦ very liberal HTML parser
◦ XPath support
◦ full Unicode support
◦ support for XML namespaces
◦ uniform data model for DTDs and XML content
◦ flexible arrow interface with type classes for XML

filter
◦ hierarchical library support
◦ package support for ghc
◦ compatible with ghc-6.4
◦ native Haskell support of HTTP 1.1 and FILE pro-

tocol
◦ HTTP and access via other protocols via external

program curl

◦ tested with W3C XML validation suite
◦ example programs

Current Work

◦ a project for supporting the Relax NG XML schema
definition for validation ă is currently running and
will be finished in September 2005.

◦ currently a master student works on a project devel-
oping a“HXT cookbook” for learning the application
of the toolbox by example. In this user guide the de-
velopment of a nontrivial example application in the
context of RDF will be described. The programming
technics with filters and their combinations and the
arrow interface will be described on a real life prob-
lem.

Further reading

The Haskell XML Toolbox Webpage (http:
//www.fh-wedel.de/˜si/HXmlToolbox/index.html)
includes downloads, online documentation and a
master thesis describing the design of the toolbox.
The documentation is a bit out of date. This is one
reason for the users guide project.

4.7.3 WASH/CGI – Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely
functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features
◦ complete interactive server-side script in one pro-

gram
◦ a monadic, type-safe interface to generating XHTML

output
◦ type-safe compositional approach to specifying form

elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

◦ documented preprocessor for translating markup in
syntax close to XHTML syntax into WASH/HTML

Completed Items are:
◦ package-ifycation of WASH (& much simpler instal-

lation)
◦ caching of documents (but turned off by default)

35

http://haskell.org/HaXml
http://www.ninebynine.org/Software/HaskellUtils/
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html

Current work includes
◦ WASH server pages with a modified version of Si-

mon Marlow’s hws web server; the current prototype
supports dynamic compilation and loading of WASH
source (via Don Stewart’s hs-plugins (→ 4.2.11)) as
well as the implementation of a session as a continu-
ally running server thread

◦ database interface
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/˜thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

4.7.4 HAIFA

Report by: Simon Foster

My work on GXS since the last HCAR has primarily
been to move away from the type-safe cast method of
building generic functions, toward the new extensible
type-class based SYB3 library [1]. GXS is now fully
extensible, and allows full customization of data-type
encoders, as well as the addition of hooks, which allows
additional meta-data to be encoded into the tree.

To facilitate the use of W3C XML Schema for map-
ping Haskell data-types we’ve also been extending the
content-model of GXS, to be suitably expressive. We’ve
utilized Ralf Lämmel’s HList library to build repre-
sentations of type-based Union and Sequences, to al-
low a natural representation of data-types encoded by
Schema. With the use of a newly implemented set of
data-types for representing XML Schema, it is now pos-
sible to map Schema complex-types to Haskell data-
types, with full serialization, although this highly beta
at the moment.

All of this has been moving toward the use of Haskell
for orchestrating composite web-services. One of our
aims is to allow Haskell code to be evaluated via a Web-
Service, with inputs and outputs to a function abstrac-
tion encoded as XML, and typed by XML Schema. We
have successfully been able to build the service to per-
form this task, and will shortly be releasing the code
under the GPL. As well as this, we have started putting
together the actual orchestration engine, which uses a
process calculus to provide operational semantics for
the workflow. This too will hopefully be released soon.

No further work has been done on HWS-WP, mainly
because we are now using a much simpler HTTP server
as our shell, which is part of HAIFA. Our SOAP im-
plementation is also usable server-side [2].

Further reading

For more information please see the HAIFA project
page at http://savannah.nongnu.org/projects/haifa or
the HAIFA Wiki at http://www.repton-world.org.uk/
mediawiki/index.php/HAIFA Wiki.
[1] Scrap your boilerplate with class: extensible generic

functions, Ralf Lämmel and Simon Peyton Jones
(2005) - submitted to ICFP 2005.

[2] Implementing Web-Services with the HAIFA
Framework. Simon Foster (2005). In Monad.Reader
issue 1.

4.7.5 Haskell XML-RPC

Report by: Björn Bringert
Status: maintained

Haskell XML-RPC is a library for writing XML-RPC
client and server applications in Haskell. XML-RPC
is a standard for XML encoded remote procedure calls
over HTTP. The library is actively maintained and rel-
atively stable.

Further reading

http://www.bringert.net/haskell-xml-rpc/

36

http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://savannah.nongnu.org/projects/haifa
http://www.repton-world.org.uk/mediawiki/index.php/HAIFA_Wiki
http://www.repton-world.org.uk/mediawiki/index.php/HAIFA_Wiki
http://www.bringert.net/haskell-xml-rpc/

5 Tools

5.1 Foreign Function Interfacing

5.1.1 C–>Haskell

Report by: Manuel Chakravarty
Status: active

C–>Haskell is an interface generator that simplifies the
development of Haskell bindings to C libraries. Devel-
opment in the past year has concentrated on stabilis-
ing the current feature set. Source and binary pack-
ages as well as a reference manual are available from
http://www.cse.unsw.edu.au/˜chak/haskell/c2hs/.

5.1.2 JVM Bridge

Report by: Ashley Yakeley
Status: stalled

JVM-Bridge is a GHC package intended to allow full
access to the Java Virtual Machine from Haskell, as
a simple way of providing a wide range of imperative
functionality. Its big advantage over earlier attempts at
this is that it includes a straightforward way of creat-
ing Java classes at run-time that have Haskell methods
(using DefineClass and the Java Class File Format). It
also features reconciliation of thread models without
requiring GPH.

Current Status

JVM-Bridge is at version 0.3: it works on Windows
and also allows the use of third-party Java libraries.
A 0.3.1 release to fix Mac OS X build issues may be
forthcoming.

Further reading

http://sourceforge.net/projects/jvm-bridge/

5.2 Scanning, Parsing, Analysis

5.2.1 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a

parser generator (such as Happy) to build a complete
parser.

Status: No change since the last report. The latest
version is 2.0, released on August 13, 2003. Alex is
in maintenance mode at the moment, and a few mi-
nor bugs reported since 2.0 have been fixed in CVS. A
minor release will probably be made at some point.

Further reading

Alex homepage: http://www.haskell.org/alex/

5.2.2 Happy

Report by: Paul Callaghan and Simon Marlow
Status: stable, maintained

Paul’s Generalized LR (GLR) extension for Happy has
now been released as part of Happy-1.15. This re-
lease also includes some new directives and some fixes,
plus Ashley Yakeley has modified the monad mode of
standard (LALR) parsers to carry additional class con-
straints. To fit in with this last change, parsers which
don’t have a monad specified will now be generated to
use an identity monad.

Based on an algorithm by Tomita, GLR can parse
ambiguous grammars and produce a directed acyclic
graph representing all possible parses. It is based on
undergraduate project work by Ben Medlock, but has
been significantly extended and improved since then.
You can also attach semantic information to rules in
two modes:
◦ to give detailed, application-specific labelling for the

nodes in the DAG;
◦ to compute lists of overall semantic results, one per

valid parse.
The latter mode can also perform monadic computa-
tions. We have used the GLR facility in several ap-
plications, including analysis of DNA sequences and
determination of correct rhythmic structures for po-
etry. Other possible applications include natural lan-
guage and pattern analysis. Paul has converted the
GHC Haskell grammar to a GLR parser, but is still
experimenting with the result. Recently, the Chalmers
BNFC tool (→ 5.5.7) has been updated to work with
the GLR mode of Happy.

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension

37

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://sourceforge.net/projects/jvm-bridge/
http://www.haskell.org/alex/
http://www.haskell.org/happy/
http://www.haskell.org/happy/

can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

5.2.3 HaLex

Report by: Jorge Sousa Pinto

HaLeX is a Haskell library to model, manipulate and
animate regular languages. This library introduces a
number of Haskell datatypes and the respective func-
tions that manipulate them, providing a clear, efficient
and concise way to define, to understand and to ma-
nipulate regular languages in Haskell. For example, it
allows the graphical representation of finite automata
and its animation, and the definition of reactive finite
automata. This library is described in the paper pre-
sented at FDPE’02.

5.2.4 LRC

Report by: Joost Visser

Lrc is a system for generating efficient incremental at-
tribute evaluators. Lrc can be used to generate lan-
guage based editors and other advanced interactive en-
vironments. Lrc can generate purely functional eval-
uators, for instance in Haskell. The functional evalu-
ators can be deforested, sliced, strict, lazy. Addition-
ally, for easy reading, a colored LATEX rendering of the
generated functional attribute evaluator can be gener-
ated. Recently, a front-end has been added to Lrc for
XQuery.

5.2.5 Sdf2Haskell

Report by: Joost Visser

Sdf2Haskell is a generator that takes an SDF gram-
mar as input and produces support for GLR parsing
and customizable pretty-printing. The SDF grammar
specifies concrete syntax in a purely declarative fash-
ion. From this grammar, Sdf2Haskell generates a set
of Haskell datatypes that define the corresponding ab-
stract syntax. The Scannerless Generalized LR parser
(SGLR) and associated tools can be used to produce
abstract syntax trees which can be marshalled into cor-
responding Haskell values.

Recently, the functionality of Sdf2Haskell has been
extended with generation of pretty-print support.
From the SDF grammar, a set of Haskell functions is
generated that defines an pretty-printer that turns ab-
stract syntax trees back into concrete expressions. The
pretty-printer is updateable in the sense that its behav-
ior can be modified per-type by supplying appropriate
functions.

Further reading

Sdf2Haskell is distributed as part of the Strafunski
bundle for generic programming and language process-
ing (→ 4.3.3). Sdf2Haskell has recently been used in
the development of a parser and pretty-printer for the
complete ISO standard VDM specification language (in
the context of VooDooM (→ 5.3.4)).

5.2.6 SdfMetz

Report by: Tiago Miguel Laureano Alves
Status: stable, maintained

SdfMetz supports grammar engineering by calculating
grammar metrics and other analyses. It reads SDF
grammar specification files and calculates size, com-
plexity, structural, and ambiguity metrics. Output is
a textual report or in Comma Separated Value format.
The additional analyses implemented are visualization,
showing the non-singleton levels of the grammar, or
printing the grammar graph in DOT format. The def-
inition of all except the ambiguity metrics were taken
from the paper “A metrics suite for grammar based-
software”by James F. Power and Brian A. Malloy. The
ambiguity metrics were defined by the tool author ex-
ploiting specific aspects of SDF grammars.
A web-based interface is planned and more metrics will
be add. The tool was developed in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) to develop a grammar for ISO VDM-
SL.

Further reading

The web site of SdfMetz (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/SdfMetz) includes tables of metric val-
ues for a series of SDF grammar as computed by
SdfMetz. The tool is distributed as part of the UMinho
Haskell Libraries and Tools (→ 7.3.8).

5.2.7 HaGLR

Report by: Jorge Sousa Pinto and Joost Visser

HaGLR is an implementation of Generalized LR pars-
ing in Haskell. Apart from parsing with the GLR al-
gorithm, it supports parsing with the LR algorithm,
visualization of deterministic and non-deterministic
finite automata, and export of ASTs in XML or
ATerm format. As input, HaGLR accepts either plain
context-free grammars, or SDF syntax definitions. The
SDF front-end is implemented as an extension of the
Sdf2Haskell generator (→ 5.2.5). HaGLR’s function-
ality can also be accessed as library functions, avail-
able under the Language.ContextFree subdivision of
the UMinho Haskell Libraries (→ 7.3.8). HaGLR was
implemented by João Fernandes and João Saraiva.

38

http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz

Further reading

HaGLR is available from http://wiki.di.uminho.pt/
twiki/bin/view/PURe/HaGLR.

5.2.8 DrHylo

Report by: Jorge Sousa Pinto

DrHylo is a tool for deriving hylomorphisms from
Haskell program code. Currently, DrHylo accepts a
somewhat restricted Haskell syntax. It is based on
the algorithm first presented in the paper Deriving
Structural Hylomorphisms From Recursive Definitions
at ICFP’96 by Hu, Iwasaki, and Takeichi. To run the
programs produced by DrHylo, you need the Pointless
library.

Further reading

DrHylo is available from http://wiki.di.uminho.pt/bin/
view/Alcino/DrHylo.

5.3 Transformations

5.3.1 The Programatica Project

Report by: Thomas Hallgren

One of the goals of the Programatica Project is to de-
velop tool support for high-assurance programming in
Haskell.

The tools we have developed so far are implemented
in Haskell, and they have a lot in common with a
Haskell compiler front-end. The code has the potential
to be reusable in various contexts outside the Progra-
matica project. For example, it has already been used
in the Haskell refactoring project at the University of
Kent (→ 5.3.3).

We also have a Haskell source code browser, which
displays syntax-highlighted source code where the user
can click on any identifier to display its type or jump
to its definition.

Further reading

◦ The Programatica Project, overview & papers:
http://www.cse.ogi.edu/PacSoft/projects/
programatica/

◦ An Overview of the Programatica Toolset:
http://www.cse.ogi.edu/˜hallgren/Programatica/
HCSS04/

◦ Executable formal specification of the Haskell 98
Module System:
http://www.cse.ogi.edu/˜diatchki/hsmod/

◦ A Lexer for Haskell in Haskell:
http://www.cse.ogi.edu/˜hallgren/Talks/LHiH/

◦ More information about the tools, source code,
downloads, etc:
http://www.cse.ogi.edu/˜hallgren/Programatica/

5.3.2 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude / OBJ lan-
guages with special emphasis on the use of simple pro-
grammable strategies for controlling program execu-
tion and new commands enabling powerful execution
modes.

The tools have been developed at the Technical Uni-
versity of Valencia (UPV) as part of a number of re-
search projects. The following people is (or has been)
involved in the development of these tools: Beatriz
Alarcón, Maŕıa Alpuente, Demis Ballis (Università di
Udine), Santiago Escobar, Moreno Falaschi (Università
di Siena), Javier Garćıa-Vivó, Salvador Lucas, Pascal
Sotin (Université du Rennes).

Status

The previous work lead to the following tools:

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched on February 2002).
http://www.dsic.upv.es/˜slucas/csr/termination/
muterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched on December 2002).
http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched on January 2003).
http://www.dsic.upv.es/users/elp/ondemandOBJ

http://www.dsic.upv.es/users/elp/GVerdi

◦ GVerdi: A Rule-based System for Web site Verifica-
tion (first version launched on January 2005).

All these tools have been written in Haskell (mainly de-
veloped using Hugs and GHC) and use popular Haskell
libraries like hxml-0.2, Parsec (→ 4.3.1), RegexpLib98,
wxHaskell (→ 4.5.1).

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client / server applications (e.g., compil-
ers or complementary tools).

39

http://wiki.di.uminho.pt/twiki/bin/view/PURe/HaGLR
http://wiki.di.uminho.pt/twiki/bin/view/PURe/HaGLR
http://wiki.di.uminho.pt/bin/view/Alcino/DrHylo
http://wiki.di.uminho.pt/bin/view/Alcino/DrHylo
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~diatchki/hsmod/
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi

References

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1-16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting remote termination tools M. Alpuente
and S. Lucas 7th International Workshop on Termi-
nation, WST’04, pages 6–9, Technical Report AIB-
2004-07, RWTH Aachen, 2004.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200-209, Springer-
Verlag, Berlin, 2004.

◦ A Rule-based System for Web site Verification.
Demis Ballis and Javier Garćıa-Vivó. 1st In-
ternational Workshop on Automated Specification
and Verification of Web Sites, WWV’05, Valencia
(SPAIN). Electronic Notes in Theoretical Computer
Science, to appear, 2005.

5.3.3 Hare – The Haskell Refactorer

Report by: Huiqing Li, Claus Reinke and
Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs has as
its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its third major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data- oriented refactorings which to-
gether transform a concrete data type and associated

uses of pattern matching into an abstract type and calls
to assorted functions. The latest release supports the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.

In order to allow users to extend HaRe themselves,
the latest releases of HaRe include an API for users
to define their own program transformations, together
with Haddock (→ 5.5.6) documentation. Please let us
know if you are using the transformations.

Our immediate aims are to support more data-
oriented refactorings and to support duplicate code
elimination and function slicing. We are actively
exploring how to make it easier to use HaRe
with GHC and its libraries. We very much wel-
come user feedback, currently especially on the new
API and our recent “styles of monadification” sur-
vey, available from http://www.cs.kent.ac.uk/projects/
refactor-fp/Monadification.html.

A snapshot of HaRe is available from our web page,
as are recent presentations from the group (including
LDTA 05), and an overview of recent work from staff,
students and interns.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.4 VooDooM

Report by: Joost Visser
Maintainer: Tiago Alves, Paulo Silva

VooDooM reads VDM-SL specifications and applies
transformation rules to the datatypes that are de-
fined in them to obtain a relational representation for
these datatypes. The relational representation can be
exported as VDM-SL datatypes (inserted back into
the original specification) and/or SQL table defini-
tions (can be fed to a relational DBMS). The first
VooDooM prototype was developed in a student project
by Tiago Alves and Paulo Silva. Currently, the devel-
opment of VooDooM is continued as an open source
project (http://voodoom.sourceforge.net/) in the con-
text of the IKF-P project (Information Knowledge Fu-
sion, http://ikf.sidereus.pt/) and will include the gener-
ation of XML and Haskell.

Further reading

VooDooM is available from http://voodoom.
sourceforge.net/. The implementation of VooDooM
makes ample use of strategic programming, using
Strafunski (→ 4.3.3), and is described in Strategic
Term Rewriting and Its Application to a VDM-SL to
SQL Conversion (Alves et al., Formal Methods 2005).

40

http://www.cs.kent.ac.uk/projects/refactor-fp/Monadification.html
http://www.cs.kent.ac.uk/projects/refactor-fp/Monadification.html
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://voodoom.sourceforge.net/
http://ikf.sidereus.pt/
http://voodoom.sourceforge.net/
http://voodoom.sourceforge.net/

5.3.5 LVM-OPT

Report by: Eelco Visser and Jory van Zessen

Optimization of functional programs through strate-
gic program transformation is still one of the projects
we are pursuing in the Stratego/XT group, even if it
is at a slow pace. After a year of silence, Jory van
Zessen has taken over the stick from Alan van Dam and
the HsOpt (see November 2003 edition of the HC&A
Report) project has become the lvm-opt project; the
target of optimization is LVM code produced by the
Helium compiler. The goal remains to create a (full-
blown) simplifier/optimizer for a lazy functional lan-
guage based on rewrite rules controlled by strategies.

5.4 Testing and Debugging

5.4.1 Tracing and Debugging

Report by: Olaf Chitil

There exist a number of tools with rather different ap-
proaches to tracing Haskell programs for the purpose
of debugging and program comprehension. There has
been little new development in the area within the last
year.

Hood and its variant GHood, for graphical display
and animation, enable the user to observe the values of
selected expressions in a program. Hood and GHood
are easy to use, because they are based on a small
portable library. A variant of Hood is built in to Hugs.

HsDebug is a gdb-like debugger that is only available
from a separate branch of GHC in CVS. The Concur-
rent Haskell Debugger CHD was extended to support
an automatic search for deadlocks.

Further reading

CHD: http://www.informatik.uni-kiel.de/˜fhu/chd/

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: several recent additions; stable release

forthcoming

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can
be viewed with several tools in various ways: Hat-
observe provides observation of functions. Hat-trail en-
ables backwards exploration of a computation, starting
from (part of) a faulty output or an error message.
Hat-detect is an algorithmic debugger very similar to

Buddha (→ 5.4.3). Hat-explore provides a user inter-
face similar to traditional source-based debuggers, but
allows free navigation through the trace and incorpo-
rates algorithmic debugging and program slicing. Hat-
cover highlights the parts of the source program that
have been executed during the computation. Hat-anim
is a forward-animator showing the reduction sequence
of expressions. We also have prototypes of two tools
for extracting diagnostic paths from non-terminating
computations. If the computation dives into a black
hole, black-hat can be used; for other forms of non-
productive non-termination hat-nonterm can be used.
All tools inter-operate and use a similar command syn-
tax.

A tutorial explains how to generate traces, how to
explore them, and how they help to debug Haskell pro-
grams. Hat can be used both with nhc98 and ghc, and
can also be used for Haskell 98 programs that use some
language extensions (FFI (→ 3.2), MPTC, fundeps, hi-
erarchical libs).

We expect to release a new public version 2.04 of
Hat within a few days. This will contain numerous
bugfixes, several new features and the new prototype
viewing tools mentioned above. In particular, it will
work more smoothly with ghc-6.4.

Further reading

http://www.haskell.org/hat

5.4.3 buddha

Report by: Bernie Pope
Status: active

Buddha is a declarative debugger for Haskell 98. It is
based on program transformation. Each module in the
program undergoes a transformation to produce a new
module (as Haskell source). The transformed modules
are compiled and linked with a library for the interface,
and the resulting program is executed. The transforma-
tion is crafted such that execution of the transformed
program constitutes evaluation of the original (untrans-
formed) program, plus construction of a semantics for
that evaluation. The semantics that it produces is a
“computation tree”with nodes that correspond to func-
tion applications and constants.

Since the last report buddha has not had an official
release. The next release will be delayed further while
I write my thesis.

Buddha is freely available as source and is licensed
under the GPL. There is also a Debian package, as well
as ports to Free-BSD, Darwin and Gentoo.

A paper about buddha appears in the proceedings
of the Advanced Functional Programming Summer
School, which was held in Tartu, August 2004.

41

http://www.informatik.uni-kiel.de/~fhu/chd/
http://www.haskell.org/hat

Further reading

http://www.cs.mu.oz.au/˜bjpop/buddha

5.4.4 QuickCheck

Report by: Koen Claessen and John Hughes
Status: active development

QuickCheck is a tool for specifying and testing formal
properties of Haskell programs. There have been sev-
eral inofficial draft versions of QuickCheck around.

Right now we are in the process of packaging up a
new, official version of QuickCheck, integrating support
for:
◦ automatic finding of small counter examples
◦ monadic properties
◦ exception handling and time-outs
◦ stating properties that are expected to fail
◦ a callback hook for displaying failing test cases
◦ generating test reports

And lots lots more! We plan to distribute the new
QuickCheck using the new Haskell Cabal (→ 4.1.1).

An accompanying tutorial, explaining typical prob-
lems and programming idioms that solve them is also
in the make.

5.5 Development

5.5.1 hmake

Report by: Malcolm Wallace
Status: stable, maintained

Hmake is an intelligent module-compilation manage-
ment tool for Haskell programs. It interoperates with
any compiler – ghc, hbc, or nhc98 – except jhc (which
does not compile modules separately anyway). The
public release has recently been refreshed to version
3.10. Occasional maintenance and bugfixes continue to
the CVS tree at haskell.org.

Further reading

http://haskell.org/hmake

5.5.2 cpphs

Report by: Malcolm Wallace
Status: active development

Cpphs is a robust Haskell replacement for the C pre-
processor. It has a couple of benefits over the tradi-
tional cpp – you can run it in Hugs when no C compiler
is available (e.g. on Windows); and it understands the

lexical syntax of Haskell, so you don’t get tripped up
by C-comments, line-continuation characters, primed
identifiers, and so on. (There is also a pure text mode
which assumes neither Haskell nor C syntax, for even
greater flexibility.) Current release is now 0.9, and is
pretty stable.

Further reading

http://haskell.org/cpphs

5.5.3 Visual Studio support for Haskell

Report by: Simon Marlow and Krasimir Angelov
Status: in development

The Visual Studio project is making great progress,
thanks to Krasimir Angelov who is working on Vi-
sual Studio during his internship at Microsoft Research
Cambridge.

We plan to make a first release of the Visual Stu-
dio extension in about two months’ time. Our current
testing version has many improvements over earlier ver-
sions:

◦ The editor the usual features: syntax colouring and
detection of errors on the fly, and jumping to the
declaration for a function or type.

It also includes pop-up information on all identifiers
in the source module: the type of a function name,
or definition of a type constructor or class, for ex-
ample. This even works in a multi-module program,
and includes all of the GHC extensions, thanks to
our use of the GHC API underneath.

Krasimir has also implemented a program browser,
which lists all the functions, types and classes for
each module in the project, from which you can
quickly jump to the source code for any entity.
Again, because we’re using the GHC API under-
neath, the information is updated interactively as
you edit the program without requiring a separate
compilation step.

◦ Support for multi-module programs and libraries
(”projects” in VS terminology) is now more mature,
and is based entirely on Cabal (→ 4.1.1). A Cabal
package can be loaded into VS, and VS projects are
saved as fully-fledged Cabal projects, which can be
built on a machine that doesn’t have Visual Studio
installed. Cabal is used as the underlying build sys-
tem in VS.

◦ The installer bundle contains Visual Studio plu-
gin together with GHC, Alex (→ 5.2.1), Happy (→
5.2.2) and Haddock (→ 5.5.6) so with Visual Haskell
you will have complete development environment for
Haskell.

42

http://www.cs.mu.oz.au/~bjpop/buddha
http://haskell.org/hmake
http://haskell.org/cpphs

◦ The GHC libraries documentation and user manual
are integrated in the combined Visual Studio help
collection.

Help is welcome! You first need to register for the
Microsoft VSIP (Visual Studio Integration Program)
to get access to the VSIP SDK, which has tools, APIs
and documentation for extending Visual Studio. Reg-
istering for VSIP is free, but you have to agree to a
longish license agreement: http://www.vsipdev.com/.

If you’ve registered for VSIP and would like to con-
tribute to Visual Studio/Haskell, please drop me a note
(Simon Marlow 〈simonmar@microsoft.com〉).

5.5.4 Haskell support for the Eclipse IDE

Report by: Leif Frenzel
Status: working, though alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs, developed by an Open Source Project.
This project extends it with tools to support Haskell
development.

The aim is to develop an IDE for Haskell that pro-
vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of compilers, in-
terpreters, debuggers, documentation generators and
other Haskell development tools. Long-term goals in-
clude a language model with support for language-
aware IDE features, like refactoring and structural
search.

The current version is 0.7 (considered ’alpha’). It
features a project model, a configurable source code ed-
itor (with syntax coloring and Code Assist), compiler
support for GHC, interpreter support for GHCi and
HUGS, documentation generation with Haddock (→
5.5.6), and launching from the IDE. In the time be-
tween the last HC&A report and now some experimen-
tation with the more language-aware features of Eclipse
IDEs took place. There is now an experimental refac-
toring support (Rename Module) and a basic imple-
mentation of a Content Outliner.

Every help is very welcome, be it in the form of code
contributions, docs or tutorials, or just any feedback
if you use the IDE. If you want to participate, please
subscribe to the development mailing list (see below).

Further reading

◦ http://eclipse.org
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop
◦ Project homepage: http://eclipsefp.sf.net

5.5.5 haste

Report by: Rickard Nilsson
Status: active development

Haste – Haskell TurboEdit – is an integrated develop-
ment environment for Haskell, written in Haskell. It is
built on the wxHaskell GUI library (→ 4.5.1), and cur-
rently runs on Linux and Windows. It features project
management, syntax highlighting of Haskell code, code
completion functionality, and integration with GHC
and GHCi.
Haste was started as a school project by a group
of undergraduate students at the CS department of
Chalmers, Gothenburg. The intention is that develop-
ment will continue – and hopefully attract more con-
tributors – after it has finished as a school project,
which will happen by end of May 2005.
An early alpha release of Haste was announced on April
10, 2005. In addition to building instructions for Linux,
there exist a Windows installer and a Gentoo Linux
package for Haste.

Further reading

http://haste.dyndns.org:8080

5.5.6 Haddock

Report by: Simon Marlow
Status: stable, maintained

The latest release is version 0.6, released November 11
2003.

Since then, various updates have been incorporated
into the source tree, and I plan to release version 0.7
before too long.

The main improvements are:

◦ Overhaul of the way Haddock decides where to point
hyperlinks for imported entities. Previously, the hy-
perlink would point to the documentation for the
entity in the module it was imported from. This
turned out not to work well in some cases, so we
switched to a more global approach: Haddock now
determines a single ”home location” for each entity,
and every hyperlink for that entity will always point
to the home location. The home location is currently
defined as the “lowest” module in the module de-
pendency graph, that is not hidden. This definition
seems to work reasonably well: check out the hyper-
links in the documentation for the GHC 6.4 libraries,
for example.

◦ Sections of documentation can be collapsed and ex-
panded with the usual +/− buttons. This is partic-
ularly useful for instances, which often take up a lot

43

http://www.vsipdev.com/
mailto: simonmar at microsoft.com
http://eclipse.org
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://eclipsefp.sf.net
http://haste.dyndns.org:8080

of space. The module hierarchy on the contents page
now has +/− buttons for collapsing subtrees.

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here:
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
haddock/TODO

◦ Haddock’s home page is here:
http://www.haskell.org/haddock/

5.5.7 BNF Converter

Report by: Markus Forsberg
Status: active

BNF Converter is a multi-lingual compiler tool. BNFC
takes as its input a grammar written in LBNF (La-
belled BNF) notation, and generates a compiler front-
end (an abstract syntax, a lexer, and a parser).
Furthermore, it generates a case skeleton usable as
the starting point of back-end construction, a pretty
printer, a test bench, and a LATEX document usable as
language specification.
The program components can be generated in Haskell,
Java 1.4 and 1.5, C and C++ and their standard parser
and lexer tools. It also supports XML generation.
BNFC itself was written in Haskell.
Source code and Documentation can be downloaded at
the BNFC homepage.
BNF Converter is a package in Debian Linux (→ 7.4.1).

Further reading

http://www.cs.chalmers.se/˜markus/BNFC

5.5.8 Hoogle – Haskell API Search

Report by: Neil Mitchell
Status: beta, in progress

Hoogle is a Haskell API search engine. It searches the
functions in the standard libraries both by name and
by type signature. When searching by name the search
just finds functions which contain that name as a sub-
string. However, when searching by types it attempts
to find any functions that might be appropriate, using
unification. When a function is found, the API docu-
mentation given at Zvon (http://www.zvon.org/other/
haskell/Outputglobal/) is displayed.
Hoogle is still very much in its early stages. While it
supports some types of type isomorphisms, it often gets
it wrong. It has basic support for finding functions with
more general types, and those with missing or reordered
arguments. Enhancements planned include removal of
bugs, support for type classes, a downloadable console

based version and the addition of more libraries. Of
course, this tool is written in Haskell.

Further reading

http://www.cs.york.ac.uk/˜ndm/hoogle/

44

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://www.haskell.org/haddock/
http://www.cs.chalmers.se/~markus/BNFC
http://www.zvon.org/other/haskell/Outputglobal/
http://www.zvon.org/other/haskell/Outputglobal/
http://www.cs.york.ac.uk/~ndm/hoogle/

6 Applications

6.1 Pugs

Report by: Autrijus Tang
Status: active development

Started on February 1st 2005, Pugs is an implementa-
tion of the Perl 6 language, including a full-fledged in-
terpreter, and compiler backends targetting both GHC
and the Parrot virtual machine. It also supports in-
line Haskell code in Perl 6 modules, as well as dynamic
Haskell evaluation through the hs-plugins (→ 4.2.11)
package.
As of this writing, we are on the 6.2.x release series,
working toward Perl 6’s object-oriented model. Re-
cently we have also switched to base on GHC 6.4,
taking full advantage of GADTs, STM, and improved
Template Haskell features.
The Pugs team has over 60 committers from both
Haskell and Perl worlds. Join us on irc.freenode.net
#perl6 to participate in the development!

Further reading

◦ Pugs homepage
http://pugscode.org/

◦ Daily-updated development journal
http://use.perl.org/˜autrijus/journal/

6.2 HScheme

Report by: Ashley Yakeley
Status: stalled

HScheme is a project to create a Scheme interpreter
written in Haskell. There’s a stand-alone interpreter
program, or you can attach the library to your pro-
gram to provide “Scheme services”. It’s very flexible
and general with types, and you can pick the “monad”
and “location” types to provide such things as a purely
functional Scheme, or a continuation-passing Scheme
(that allows call-with-current-continuation) etc.

Current status

There’s an online interpreter that I keep up to date.
There are a couple of major issues that stand before
R5RS compliance, after which I’ll make a release. See
http://hscheme.sourceforge.net/issues.php.

Very little work is currently being done on it.

Further reading

http://hscheme.sourceforge.net/

6.3 Darcs

Report by: David Roundy
Status: active development

Darcs is a distributed revision control system (i.e., CVS
replacement), written in Haskell. In darcs, every copy
of your source code is a full repository, which allows for
full operation in a disconnected environment, and also
allows anyone with read access to a darcs repository
to easily create their own branch and modify it with
the full power of darcs’ revision control. Darcs is based
on an underlying theory of patches, which allows for
safe reordering and merging of patches even in complex
scenarios. For all its power, darcs remains very easy
to use tool for every day use because it follows the
principle of keeping simple things simple.

Darcs version 1.0.3rc1 was released on April 25, 2005.
The latest release has a number of interface enhance-
ments contributed by several developers, along with the
usual bugfixes. We’ve recently had a bit of a reorgani-
zation of responsibilities, with Tomasz Zielonka taking
over maintainership of the stable branch of darcs, with
Ian Lynagh taking over maintainership of the unstable
branch.

Recently we have been working to make darcs scale
efficiently to large repositories, which is an interesting
challenge, making sure we have just the right amount
of laziness. There’s also ongoing work to make darcs
interoperate with git, and as always there are interface
improvements in the works. David Roundy has been
focusing on a new simple and more efficient framework
for handling conflicts.

As always, it’s a good time to join darcs development
if you’re looking for a place to apply your haskell exper-
tise. We’ve got a whole list of wishlist features waiting
for developers!

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

45

http://pugscode.org/
http://use.perl.org/~autrijus/journal/
http://hscheme.sourceforge.net/issues.php
http://hscheme.sourceforge.net/
http://darcs.net

6.4 FreeArc

Report by: Bulat Ziganshin
Status: beta, actively developed

FreeArc is an archiver program (like Info-ZIP). This
class of programs is traditionally written in C/C++
(so-called “system programming”), so I was interested
– how can Haskell compete with C++ in this field? By
dividing the program in two parts – a computation-
intensive compression library, written in C++, and all
other code – working with lists of files, working with
archive structure, interfacing with user – written in
Haskell, I have got the resulting program competitive
with archivers written in C++ (RAR, 7-zip, UHARC),
while cutting development time by several times, and
especially the number of errors made during develop-
ment. Also, during development I have written sev-
eral general-purpose Haskell libraries, which you can
find in this Report (Compression Library (→ 4.4.7),
ByteStream (→ 4.4.6), Process (→ 4.2.1)). You can
download the program sources if you are interesting
in replacing C++ with Haskell or developing general
utilities with Haskell, and want to learn programming
techniques suitable for this case.
The program sources are extensively commented . . . in
Russian.

Further reading

◦ Download page: http://freearc.narod.ru

6.5 HWSProxyGen

Report by: André Furtado

HWSProxyGen is a web services proxy generator
for the Haskell functional language, implemented in
Haskell and C#. The final purpose is to show that
Haskell and functional languages in general can be used
as a viable way to the implementation of distributed
components and applications, interacting with services
implemented in different languages and/or platforms.
The first beta version of HWSProxyGen (0.1) was re-
leased in March/2005. It is restricted to generating
proxies only to web services created with Visual Studio
.NET. Other web services can work with HWSProxy-
Gen, but this is not assured by this first version, since
they can contain unsupported XML elements in their
description.
HWSProxyGen is free. Its binaries and source
code are available at http://www.cin.ufpe.br/˜haskell/
hwsproxygen. The project was created by the Informat-
ics Centre of Federal University of Pernambuco. Exten-
sions and enhancements are welcome.
The immediate plans are to write an English paper for

HWSProxyGen, in order to deeply reach the Haskell
community. Future versions are still not planned yet.

Further reading

◦ Web Services Developer Center
http://msdn.microsoft.com/webservices/

◦ Microsoft.NET
http://www.microsoft.com/net

◦ World Wide Web Consortium
http://www.w3.org/

◦ The Haskell.NET Project
http://www.cin.ufpe.br/˜haskell/haskelldotnet

◦ Haskell HTTP Module (by Gray W. & Bringert
B.) (→ 4.7.5)
http://www.bringert.net/haskell-xml-rpc/http.html

6.6 Hircules, an irc client

Report by: Jens Petersen

Hircules is a gtk2-based IRC client built on gtk2hs (→
4.5.3) and code from lambdabot (→ 6.7). The last re-
lease is still version 0.3, though I have various bug fixes
and improvements that I should release soon, includ-
ing basic text search and improved channel nicks han-
dling. I would like to find time to work on adding
auto-reconnection and support for multiple-servers to
make it more useful. There should probably also be a
menubar. Contributions are most welcome.

Further reading

http://haskell.org/hircules/

6.7 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell
evaluator, lambda calculus interpreter, pointfree pro-
gramming, dictd client, fortune cookies, Google search,
online help and more. You can download lambdabot
from the darcs repo here:

The source repository is available:

darcs get

http://www.cse.unsw.edu.au/˜dons/lambdabot

46

http://freearc.narod.ru
http://www.cin.ufpe.br/~haskell/hwsproxygen
http://www.cin.ufpe.br/~haskell/hwsproxygen
http://msdn.microsoft.com/webservices/
http://www.microsoft.com/net
http://www.w3.org/
http://www.cin.ufpe.br/~haskell/haskelldotnet
http://www.bringert.net/haskell-xml-rpc/http.html
http://haskell.org/hircules/
http://www.cse.unsw.edu.au/~dons/lambdabot

6.8 Flippi

Report by: Philippa Cowderoy

Flippi is a lightweight (and currently somewhat un-
derfeatured) wiki clone written in Haskell and re-
leased under the BSD license. The current release is
v0.03, which added support for scripting and a Re-
centChanges script. The main planned feature for the
next release is a template facility, with various interface
alterations in the default setup being likely. Also in the
pipeline is a refactoring of the parser to make adding
new pieces of markup syntax easier, and metadata sup-
port and revision histories with reversion are planned
by v0.1.

A goal in development so far, and one which the au-
thor would like to maintain, is to keep the code easy to
understand and modify – to this end, the configuration
is currently all done by source modification. This isn’t
necessarily as bad as it sounds – if the Flippi CGI is run
via runhugs or similar, there’s no perceivable difference
to somebody configuring Flippi bar the level of power
available. However, so far Flippi has only been tested
under GHC 6.2 and is dependant on a recent version of
the hierarchical libraries.

Further reading

◦ http://www.flippac.org/projects/flippi/
◦ http://www.scannedinavian.org/cgi-bin/flippi/flippi

6.9 Postmaster ESMTP Server

Report by: Peter Simons

Postmaster is an Internet mail transport agent (MTA)
written and configured in Haskell. At the time of this
writing, it handles incoming ESMTP network connec-
tions and delivers accepted messages to the user’s mail-
box by piping it into an arbitrary local mailer (e.g.
Procmail).

As is to be expected from an MTA written in Haskell,
it is configurable beyond anything you’ll ever need. The
server itself comes as a monadic combinator library; so
you can plug together or modify the components as you
please. A pretty sophisticated standard configuration
on which to build is part of the distribution.

Postmaster is still very young; there remains a lot to
be done before it can really compete with Sendmail or
Postfix. Most notably, it lacks any form of queue man-
agement right now. Nonetheless, for leaf sites, which
don’t need to do extensive mail relaying, it is a reliable
and powerful solution already.

Further details are available at: http://postmaster.
cryp.to/

It is worth noting that Postmaster includes several
generally useful libraries which are not tied to the
ESMTP server:

BlockIO implements a monad for fast, non-blocking
I/O with static Ptr Word8 buffers.

HsDNS implements an asynchronous DNS resolver an
top of the GNU adns library.

HsEMail Parsec (→ 4.3.1) parsers for most of RFC
2821 and 2822.

Child provides spawn, par, and timeout for more flex-
ible handling of child computations started with
forkIO.

Syslog FFI (→ 3.2) bindings to the syslog(3) system
API.

hOpenSSL (very incomplete) FFI bindings to the
OpenSSL library. At the moment provides mostly
access to the libcrypto part.

6.10 riot

Report by: Tuomo Valkonen

Riot is a tool for keeping (textual) information organ-
ised. Some people call such programs ‘outliners’. It is
a todo list and note manager, and a manager for what-
ever information one might collect. Riot has a curses-
based interface resembling those of slrn and mutt and
all text editing is done with your favourite external ed-
itor: Riot is just a nice-to-use browser and entry or-
ganiser for collections of text.

The latest version of Riot was released on 2005-05-
06 and includes support for configuration files through
hs-plugins (→ 4.2.11) and other minor improvements.

Further reading

The Riot homepage is at http://iki.fi/tuomov/riot/.

6.11 yi

Report by: Don Stewart
Status: active development

yi is a project to write a Haskell-extensible editor. yi
is structured around an basic editor core, such that
most components of the editor can be overridden by the
user, using configuration files written in Haskell. Ver-
sion 0.1.0 has been released, and provides vim, vi and
nano emulation, through an ncurses interface. Work

47

http://www.flippac.org/projects/flippi/
http://www.scannedinavian.org/cgi-bin/flippi/flippi
http://postmaster.cryp.to/
http://postmaster.cryp.to/
http://iki.fi/tuomov/riot/

is now underway to provide configurable syntax high-
lighting, and emacs emulation.

The source repository is available:

darcs gethttp://www.cse.unsw.edu.au/˜dons/yi

6.12 Dazzle (formerly NetEdit)

Report by: Martijn Schrage and Arjan van IJzendoorn

Dazzle is a graphical editor for Bayesian networks that
is developed by the Decision Support System group of
Utrecht University. It is written in Haskell and uses
wxHaskell (→ 4.5.1) as its GUI library. For inference it
uses the C++ library SMILE, developed by the De-
cision Systems Laboratory of Pittsburgh University.
Dazzle’s features include browsing cases, test selection,
logic sampling and sensitivity analysis. The application
runs on both Windows and Linux.

Further reading

http://www.cs.uu.nl/dazzle/

6.13 Yarrow

Report by: Frank Rosemeier
Status: stable

From the Yarrow web pages:
“A proof-assistant is a computer program with which

a user can construct completely formal mathematical
proofs in some kind of logical system. In contrast to a
theorem prover, a proof-assistant cannot find proofs on
its own.

“Yarrow is a proof-assistant for Pure Type Systems
(PTSs) with several extensions. A PTS is a particular
kind of logical system, defined in

Henk P. Barendregt: Lambda Calculi with Types;
in D.M. Gabbai, S. Abramsky, and T.S.E.
Maibaum (editors): Handbook of Logic in Com-
puter Science, volume 1, Oxford University Press,
1992.

“In Yarrow you can experiment with various pure
type systems, representing different logics and pro-
gramming languages. A basic knowledge of Pure Type
Systems and the Curry-Howard-de Bruijn isomorphism
is required. (This isomorphism says how you can inter-
pret types as propositions.) Experience with similar
proof-assistants can be useful.”

In 2003 Frank Rosemeier has ported Yarrow (writ-
ten by Jan Zwanenburg using Haskell 1.3, see http:
//www.cs.kun.nl/˜janz/yarrow/) to Haskell 98. Now the
Haskell 98 source code is available from his web page
using the address

http://www.rosemeier.info/rosemeier.yarrow.en.
html.

The new Yarrow homepage located at

http://www.haskell.org/yarrow/.

Soon it will contain a copy of the homepage for the
Haskell 1.3 version as well as the Haskell 98 adaption.

6.14 DoCon, the Algebraic Domain
Constructor

Report by: Serge Mechveliani

DoCon is a program for symbolic computation in math-
ematics, written in Haskell (using extensions such as
multiparametric classes, overlapping instances, and
other minor features). It is a package of modules dis-
tributed freely, with the source program and manual.

◦ DoCon, the Algebraic Domain Constructor, version
2.08 has been released in 2005. It is available on the
public sites.

◦ Hopefully, somewhere around April 2005 will appear
the first public release of the program Dumatel-1.02,
a prover based on term rewriting and equational rea-
soning (written in Haskell).

Further reading

http://haskell.org/docon/

6.15 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

48

http://www.cse.unsw.edu.au/~dons/yi
http://www.cs.uu.nl/dazzle/
http://www.cs.kun.nl/~janz/yarrow/
http://www.cs.kun.nl/~janz/yarrow/
http://www.rosemeier.info/rosemeier.yarrow.en.html
http://www.rosemeier.info/rosemeier.yarrow.en.html
http://www.haskell.org/yarrow/
http://haskell.org/docon/

The program is stable and can take on large docu-
ments: it handles my complete Ph.D. thesis without
any problems, and I see that Graham Hutton makes
use of lhs2TEX in his new book (→ 1.6.1).

There has not been a release for quite some time, but
I still hope to make one soon. Development continues
in the Subversion repository.

Further reading

◦ http://www.cs.uu.nl/˜andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/

trunk/

6.16 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project audio signals are processed using pure
Haskell code. This includes a simple signal synthesis
backend for Haskore, filter networks, signal processing
supported by physical units.

Future plans

Connect with the HaskellDSP library. Hope on faster
code generated by some Haskell compilers. :-) Proba-
bly connect to some software synthesizer which is more
efficient, but nearly as flexible as code entirely written
in Haskell. Explore whether Monads and Arrows can
be used for a more convenient structuring and notation
of signal algorithms.

Further reading

◦ http://dafx04.na.infn.it/WebProc/Proc/P 201.pdf
◦ http://cvs.haskell.org/darcs/synthesizer/

6.17 Converting knowledge-bases with
Haskell

Report by: Sven Moritz Hallberg

In November, I reported my writing a tool for research
work which converts knowledge bases from a commer-
cial tool (EngCon) to the LISP-based description lan-
guage of our in-house tool (Konwerk).

The project, which was funded by the EU, is near-
ing its end and the converter tool has been updated
with all major features we wanted, consisting of nearly
4000 lines of Haskell code. It will most likely graciously
disappear into the eternal mist of time now. :)

In retrospect, Haskell provided a formidable vehicle
for throwing up this program.

49

http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://cvs.haskell.org/darcs/synthesizer/

7 Users

7.1 Commercial users

7.1.1 Galois Connections, Inc.

Report by: Andy Moran

Galois (aka Galois Connections, Inc.) is an employee-
owned software development company based in Beaver-
ton, Oregon, U.S.A. Galois began life in late 1999 with
the stated purpose of using functional languages to
solve industrial problems.

Galois develops software under contract, and every
project (bar two) that we have ever done has used
Haskell; the two exceptions used SML-NJ and OCaml,
respectively. We’ve delivered tools, written in Haskell,
to clients in industry and the U.S. government that are
being used heavily. Some diverse examples: Cryptol,
a domain-specific language for cryptography (with an
interpreter and a compiler, with multiple targets); a
GUI debugger for a specialized microprocessor; a spe-
cialized, high assurance web server and file store for
use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.

So, why do we use Haskell? There are benefits to
moving to Java or C# from C++ or C, such as cleaner
type systems, cleaner semantics, and better memory
management support. But languages like Haskell give
you a lot more besides: they’re much higher level, so
you get more productivity, you can express more com-
plex algorithms, you can program and debug at the
“design” level, and you get a lot more help from the
type system. These arguments have been made time
and again though, and they’re also pretty subjective.

For Galois, it’s also a big bonus that Haskell is close
to its mathematical roots, because our clients care
about “high assurance” software. High assurance soft-
ware development is about giving solid (formal or semi-
formal) evidence that your product does what it should
do. The more functionality provided, the more difficult
this gets. The standard approach has been to cut out
functionality to make high assurance development pos-
sible. But our clients want high assurance tools and
products with very complex functionality. Without
Haskell (or some similar language), we wouldn’t even
be able to attempt to build such tools and products.

At Galois, we’re happily able to solve real world
problems for real clients without having to give up on
using the tools and languages we worked on when we
were in the Academic world. In fact, we credit most of
our success with the fact that we can apply language

design and semantics techniques to our clients’ prob-
lems. Functional languages are an integral part that
approach, and a big part of the unique value that our
clients have come to known us for.

The good news is that our business is working quite
well. As of Spring 2005, Galois is 17 engineers strong,
with a support staff of 8. We’ve been profitable and
experienced solid growth each of the last three years.

This year, we’re stepping up our community involve-
ment: cvs.haskell.org is about to move to a new, much
beefier machine that will be funded and maintained by
Galois. We’ll also be supporting various community ef-
forts on that machine, such as the Hackage database
and The Haskell Sequence.

We’re also trying to drum up support for an industry-
based consortium of companies and individuals that use
and rely upon Haskell. The stated purpose of the as yet
unformed consortium would be to ensure the long-term
viability of Haskell, to provide some back-up to the Si-
mons, and to stimulate the development of industrial-
grade tools for Haskell development. If you’re read-
ing this and are interested in getting involved, e-mail
〈moran at galois.com〉.

Further reading

http://www.galois.com/.

7.1.2 Aetion Technologies LLC

Report by: Mark Carroll

Aetion Technologies LLC is a small business located
in central Ohio, USA, developing commercial uses of
generic artificial intelligence software. Much our our
codebase and development is done in Haskell using
GHC. We often test the feasibility of new applications,
and Haskell seems excellent for rapidly producing pro-
totypes that work well. Principal areas of business are
model-based inference and decision making for the mil-
itary and for finance. Code we write that is not part of
our core software, but instead rather more generic, we
will tend to release under an open source license. Over
this year we are recruiting more programmers, and we
tend to require applicants to send Haskell code samples
before interviewing them seriously.

Further reading

http://www.aetion.com/

50

mailto: moran at galois.com
http://www.galois.com/
http://www.aetion.com/

7.2 Haskell in Education

7.2.1 Haskell in Education at Universidade de
Minho

Report by: Jorge Sousa Pinto

Haskell is heavily used in the undergraduate curricula
at Minho. Both Computer Science and Systems Engi-
neering students are taught two Programming courses
with Haskell. Both programmes of studies fit the
“functional-first” approach; the first course is thus a
classic introduction to programming with Haskell, cov-
ering material up to inductive datatypes and basic
monadic input/output. It is taught to 200 freshmen
every year. The second course, taught in the second
year (when students have already been exposed to other
programming paradigms), focuses on pointfree combi-
nators, inductive recursion patterns, functors and mon-
ads; rudiments of program calculation are also covered.
A Haskell-based course on grammars and parsing is
taught in the third year, where the HaLeX library is
used to support the classes.

Additionally, in the Computer Science curriculum
Haskell is used in a number of other courses covering
Logic, Language Theory, and Semantics, both for il-
lustrating concepts, and for programming assignments.
Minho’s 4th year course on Formal Methods (a 20 year-
old course in the VDM tradition) is currently being re-
structured to integrate a system modeling tool based
on Haskell and VooDooM. Finally, in the last two aca-
demic years we ran an optional, project-oriented course
on Advanced Functional Programming. Material cov-
ered here focusses mostly on existing libraries and tools
for Haskell, such as YAMPA – functional reactive pro-
gramming with arrows, the WASH library, the MAG
system, the Strafunski library, etc. This course bene-
fitted from visits by a number of well-known researchers
in the field, including Ralf Lämmel, Peter Thiemann,
and Simon Thompson.

7.2.2 Functional programming at school

Report by: Walter Gussmann
Status: stable, maintained

A lot of computer science courses at universities are
based on functional programming languages combined
with an imperative language. There are many reasons
for this: the programming-style is very clear and there
are a lot of modern concepts – polymorphism, pattern
matching, guards, algebraic data types. There’s only
little syntax to learn, Finally, the programming code is
reduced to a minimum.

Conditions at school

I started teaching functional programming languages
at school about 8 years ago in different courses with
pupils at age of 16–19 years. Normally they already
know an imperative language like Pascal. A good point
to perform a paradigm shift to functional programming
is recursion.

Beginners’ course

In courses for beginners (2002/2003 – 18 pupils) you
can use the functional qualities of Haskell: functions
for logical gates, number conversions (bin2hex . . .),
function concatenation, simple list functions etc. can
be build without writing much programming code.

Medium level courses

Last time when I teached pupils who had a one-year-
experience of Pascal programming (2003/2004 – 12
pupils). I found that learning recursive data structures
(queue, stack, list, tree) with Haskell were ideal for
classes. They got a much deeper impression about the
principles than in languages like Pascal or Java.

Advanced courses

Especially in high level courses the use of Haskell paid
off. With 5 hours a week for 2 years these courses
lead to the German “Abitur”, ending with a 4-hour
examination (2003–2005 – 11 pupils). I started the
course with an introduction to Haskell and used Haskell
until the end. We talked about recursion and recur-
sive data structures with detailed examples like the
Huffman-Tree (implemented for compressing text files).
We also built op-trees to evaluate arithmetic terms and
multi-trees to simulate virtual file systems. A highlight
was the implementation of a module “turtle” based on
Haskell’s graphics library, with which the pupils cre-
ated fractal pictures.
The last half year of the course (cryptology and theoret-
ical computer science) was dominated by Haskell. We
implemented a simple RSA-algorithm (with very weak
keys) for encoding and decoding of textfiles and some
finite deterministic automata. At the end we were able
to implement a parser and interpreter for a Pascal-like
very simple programming language (not yet published).

Haskell in tests

Haskell was a component of every test, including the
German Abitur. These problems seemed to be eas-
ier to solve for the pupils, and in tasks with optional
languages about 80% chose Haskell. When asked to ex-
plain their choice, most of them said that with Haskell
they could concentrate on the root of the matter and
simplify the problem through a suitable generalization.

51

What is coming in the future?

So there’s no question about that: Functional lan-
guages are suitable for school. I’m sure that over the
years there will be more and more teaching materials,
and other teachers will also be convinced of Haskell.
For some years I try to persuade other teachers to intro-
duce functional languages through regular workshops,
courses and teaching materials.
Today I’m convinced that pupils can understand basic
concepts of computer science more easily if they know
functional languages like Haskell. The clarity of the
language and the modern concept lead to an incredible
increase of learned material. My pupils choose Haskell
as their favorite of Pascal, C, Java, Haskell and PHP.
Meanwhile the new framework for computer science (in
Berlin) includes the obligatory introduction of a declar-
ative language (functional or logical) for advanced
courses.

Further reading

http://www.pns-berlin.de/haskell/

7.3 Research Groups

7.3.1 Artificial Intelligence and Software
Technology at JWG-University Frankfurt

Report by: David Sabel
Members: Matthias Mann, David Sabel,

Manfred Schmidt-Schauß

DIAMOND

A current research topic within our DIAMOND project
is understanding side effects and Input/Output in
lazy functional programming languages using non-
deterministic constructs.

We introduced the FUNDIO calculus which proposes
a non-standard way to combine lazy functional lan-
guages with I/O. FUNDIO is a lazy functional core lan-
guage, where the syntax of FUNDIO has case, letrec,
constructors and an IO-interface: its operational se-
mantics is described by small-step reductions. A con-
textual approximation and equivalence depending on
the Input/Output behavior of normal order reduction
sequences have been defined and a context lemma has
been proved. This enables us to study a semantics and
semantic properties of the language. By using the tech-
nique of complete sets of reduction diagrams we have
shown a considerable set of program transformations
to be correct. Several optimizations of evaluation are
given, including strictness optimizations and an ab-
stract machine, and shown to be correct w.r.t. con-
textual equivalence. Thus this calculus has a potential

to integrate non-strict functional programming with a
non-deterministic approach to Input/Output and also
to provide a useful semantics for this combination.

We applied these results to Haskell by using the
FUNDIO calculus as semantics for the GHC core lan-
guage. Based on an extended set of correct program
transformations for FUNDIO, we investigated the lo-
cal program transformations, which are performed in
GHC. The result is that most of the transformations
are correct w.r.t. FUNDIO, i.e. retain sharing and do
not force the execution of IO operations that are not
needed. A detailed description of our investigation is
available as a technical report from the DIAMOND
project page. By turning off the few transformations
which are not FUNDIO-correct and those that have not
yet been investigated, we have achieved a FUNDIO-
compatible modification of GHC which is called Has-
Fuse.

HasFuse correctly compiles Haskell programs which
make use of unsafePerformIO in the common
(safe) sense, since the problematic optimizations
that are mentioned in the documentation of the
System.IO.Unsafe module (let floating out, com-
mon subexpression elimination, inlining) are turned
off or performed more restrictively. But HasFuse
also compiles Haskell programs which make use of
unsafePerformIO in arbitrary contexts. Since the
call-by-need semantics of FUNDIO does not prescribe
any sequence of the IO operations, the behavior of
unsafePerformIO is no longer ‘unsafe’. I.e. the user
does not have to undertake the proof obligation that the
timing of an IO operation wrapped by unsafePerfomIO
does not matter in relation to all the other IO opera-
tions of the program. So unsafePerformIO may be
combined with monadic IO in Haskell, and since all the
reductions and transformations are correct w.r.t. to the
FUNDIO-semantics, the result is reliable in the sense
that IO operations will not astonishingly be duplicated.

Ongoing work is devoted to develop applications us-
ing direct IO calls, i.e., using unsafePerformIO in arbi-
trary contexts. Another topic is the proof of correctness
of further program transformations.

Non-deterministic Call-by-need Lambda Calculi

Important topics are to investigate static analyses
based on the operational semantics, to obtain more
inference rules for equality in call-by-need lambda-
calculi, e.g. a definition of behavioural equivalence.
Matthias Mann has established a proof of its soundness
w.r.t. contextual equivalence for a non-deterministic
call-by-need lambda calculus. Further research is
aimed towards extensions of this calculus to support
work on strictness analysis using abstract reduction.

52

http://www.pns-berlin.de/haskell/

Strictness Analysis using Abstract Reduction

The algorithm has been implemented at least twice:
Once by Nöcker in C for Concurrent Clean and on the
other hand by Schütz in Haskell in 1994.

In 2004 we proved correctness of the algorithm by us-
ing a non-deterministic call-by-need lambda-calculus.
A technical report covering the latter is available from
our website. The proof of correctness of strictness anal-
ysis using abstract reduction uses a conjecture that the
defined behavioural equivalence is included in the con-
textual equivalence.

A current result is a reformulation of the proof that
uses a deterministic call-by-need lambda calculus and
that does not depend on the above mentioned conjec-
ture.

Implementations Using Haskell

As a final year project, Christopher Stamm imple-
mented an ‘Interpreter for Reduction Systems’ (IfRS)
in Haskell. IfRS is an interpreter for higher order
rewrite systems that are based on structural opera-
tional semantics. Additionally, it is possible to define
reduction contexts and to use contexts and domains
(term sets that are definined similiar to contexts with-
out holes) in the rewrite rules. Also, IfRS is able to
test whether the reduction rules satisfy the conditions
of the GDSOS-rule format. The GDSOS-rule format
ensures that bisimulation is a congruence.

Current research topics of our group also encompass
second order unification, higher order unification and
context unification. It is an open problem whether
(general) context unification is decidable. Jörn Gers-
dorf has implemented a non-deterministic decision al-
gorithm for context matching in Haskell which benefits
from lazy evaluation at several places.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology
http://www.ki.informatik.uni-frankfurt.de

◦ DIAMOND – Direct-Call I/O Approach modelled
using Non-Determinism
http://www.ki.informatik.uni-frankfurt.de/research/
diamond

◦ HasFuse – Haskell with FUNDIO-based side effects
http://www.ki.informatik.uni-frankfurt.de/research/
diamond/hasfuse

◦ IfRS – Interpreter for Reduction Systems
http://www.informatik.uni-frankfurt.de/˜stamm

7.3.2 Formal Methods at Bremen University

Report by: Christoph Lüth and Christian Maeder
Members: Christoph Lüth, Klaus Lüttich, Christian

Maeder, Achim Mahnke, Till Mossakowski,
Lutz Schröder

The activities of our group centre on formal meth-
ods and the Common Algebraic Specification Language
(CASL).

The MMiSS project has developed a repository pro-
viding configuration management, version control and
change management for semantically structured docu-
ments. It holds teaching material for over 20 courses in
the domain of safe and secure system development. The
implementation comprises over 100k lines of Haskell
code.

We are further using Haskell to develop the Hetero-
geneous tool set (Hets), which consists of parsers, static
analyzers and proof tools for languages from the CASL
family, such as CASL itself, HasCASL, CoCASL, CSP-
CASL and ModalCASL, and additionally Haskell. Has-
CASL is a language for specification and development
of functional programs; Hets also contains a translation
from an executable HasCASL subset to Haskell.

We use the Glasgow Haskell Compiler (GHC 6.4),
exploiting many of its extensions, in particular concur-
rency, multiparameter type classes, hierarchical name
spaces, functional dependencies, existential and dy-
namic types, and Template Haskell. Further tools ac-
tively used are DriFT (→ 3.5), Haddock (→ 5.5.6), the
combinator library Parsec (→ 4.3.1), HaXml (→ 4.7.1)
and Programatica (→ 5.3.1).

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal methods/

◦ MMiSS Multimedia instruction in safe systems:
http://www.mmiss.de

◦ CASL specification language:
http://www.informatik.uni-bremen.de/cofi

◦ Heterogeneous tool set:
http://www.informatik.uni-bremen.de/cofi/hets

7.3.3 Functional Programming at Brooklyn College,
City University of New York

Report by: Murray Gross

One prong of the Metis Project at Brooklyn College,
City University of New York, is research on and with
Parallel Haskell in a Mosix-cluster environment.

We continue our work on debugging GUM in our ver-
sion of Parallel Haskell. We have recently completed

53

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
http://www.informatik.uni-frankfurt.de/~stamm
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.mmiss.de
http://www.informatik.uni-bremen.de/cofi
http://www.informatik.uni-bremen.de/cofi/hets

reimplementation of a serial version of a quantum sim-
ulator, and we are going to parallelize it for research
on quantum algorithms.

Further reading

http://www.sci.brooklyn.cuny.edu/˜metis

Contact

Murray Gross 〈magross@its.brooklyn.cuny.edu〉.

7.3.4 Functional Programming at
Macquarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group
we are working on a number of projects with a Haskell
focus. Since the last report, work has progressed on
the following projects:

◦ A literate version of the nhc98 runtime is being pro-
duced to form the basis of porting efforts (→ 3.1.1)
and DSL experiments.

◦ Qingsong Ye has finished his Masters project that
developed an embedded DSL for mobile device syn-
chronisation. A paper on this work will appear later
this year at the Fourth International Conference on
Mobile Business.

◦ Yun-Hsian Wu has submitted a project that inves-
tigated the use of embedded DSLs to produce GUIs
for handheld devices.

◦ Matt Roberts is looking at the use of commercial
GPU hardware to run functional programs.

Further reading

Contact us via email to 〈plrg@ics.mq.edu.au〉 or find de-
tails on our many of our projects at http://www.comp.
mq.edu.au/plrg/.

7.3.5 Functional Programming at the University of
Kent

Report by: Olaf Chitil

We are a group of about a dozen staff and students with
shared interests in functional programming. While our
work is not limited to Haskell, it provides a major focus
and common language for teaching and research.

Our members pursue a variety of Haskell-related
projects, many of which are reported in other sec-
tions of this report. Keith Hanna is continuously ex-
tending the visual interactive programming environ-
ment Vital (→ 3.1.2) and Mark Callanan is working
on type-sensitive editing operation in this context.
Axel Simon maintains the gtk2hs binding to the Gtk+
GUI library (→ 4.5.3) in cooperation with Duncan
Coutts, Oxford University. Chris Ryder is improving
his Metrics and Visualization library Medina (→ 4.3.4).
Huiqing Li, Simon Thompson and Claus Reinke have
released further snapshots of HaRe, the Haskell Refac-
torer (→ 5.3.3). Yong Luo recently joined the group
to work with Olaf on theoretical foundations of tracing
and together with Thomas Davie and the York func-
tional programming group the Haskell tracer Hat is ex-
tended and improved further (→ 5.4.2).

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

◦ Gtk2HS:
http://gtk2hs.sourceforge.net/

◦ MEDINA:
http://www.cs.kent.ac.uk/˜cr24/medina/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat:
http://www.haskell.org/hat/

7.3.6 Parallel and Distributed Functional Languages
Research Group at Heriot-Watt University

Report by: Phil Trinder
Members: Abyd Al Zain, Andre Rauber Du Bois,

Gudmund Grov, Robert Pointon, Greg
Michaelson, Phil Trinder, Jan Henry

Nyström, Chunxu Liu, Graeme McHale, Xiao
Yan Deng

The Parallel and Distributed Functional Languages
(PDF) research group is part of the Dependable Sys-
tems Group in Computer Science at the School of
Mathematics and Computer Science at Heriot-Watt
University.

The group investigates the design, implementation
and evaluation of high-level programming languages
for high-performance, distributed and mobile computa-
tion. The group aims to produce notations with power-
ful yet high-level coordination abstractions, supported
by effective implementations that enable the construc-
tion of large high-performance, distributed and mobile
systems. The notations must have simple semantics
and formalisms at an appropriate level of abstraction to

54

http://www.sci.brooklyn.cuny.edu/~metis
mailto: magross at its.brooklyn.cuny.edu
mailto: plrg at ics.mq.edu.au
http://www.comp.mq.edu.au/plrg/
http://www.comp.mq.edu.au/plrg/
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/vital/
http://gtk2hs.sourceforge.net/
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/

facilitate reasoning about the coordination in real dis-
tributed/mobile systems i.e. to transform, demonstrate
equivalence, or analyze the coordination properties. In
summary, the challenge is to bridge the gap between
distributed/mobile theories, like the pi and ambient
calculi, and practice, like CORBA and the OGSA.

Languages

The group has designed, implemented, evaluated and
used several high performance/distributed functional
languages, and continues to do so. High perfor-
mance languages include Glasgow parallel Haskell (→
3.3.1) and Parallel ML with skeletons (PMLS).
Distributed/mobile languages include Glasgow dis-
tributed Haskell (→ 3.3.2), Erlang (http://www.erlang.
org/), Hume (http://www-fp.dcs.st-and.ac.uk/hume/),
JoCaml and Camelot.

Collaborations

Primary industrial collaborators include groups in Mi-
crosoft Research Labs (Cambridge), Motorola UK Re-
search labs (Basingstoke), Ericsson, Agilent Technolo-
gies (South Queensferry).

Primary academic collaborators include groups in
Complutense Madrid, JAIST, LMU Munich, Phillips
Universität Marburg, and St Andrews.

Further reading

http://www.macs.hw.ac.uk/˜ceeatia/PDF/

7.3.7 Programming Languages & Systems at
UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New South
Wales has produced the C–>Haskell (→ 5.1.1) interface
generator and more recently the hs-plugins (→ 4.2.11)
library for dynamically loaded type-safe plugins. As
a testbed for further research in dynamic code load-
ing and type checking, we are developing a highly
customisable editor in Haskell, called Yi (→ 6.11).
We also recently released PanTHeon, a portable re-
implementation of Conal Elliott’s Pan animation tool
based on meta-programming in Template Haskell.

In cooperation with Microsoft Research, Cambridge,
we recently proposed associated types for Haskell type
classes. Associated types are a form of type-indexed
data types realised as data declarations in classes,
which facilitate some forms of generic programming.
We are currently in the process of implementing this
extension in the Glasgow Haskell Compiler.

Further details on PLS and the above mentioned ac-
tivities can be found at http://www.cse.unsw.edu.au/
˜pls/.

7.3.8 Logic and Formal Methods group at the
Informatics Department of the University of
Minho, Braga, Portugal

Report by: Jorge Sousa Pinto

We are a group of about 12 staff members and vari-
ous PhD and MSc students. We have shared interest
in formal methods and their application in areas such
as data and code reverse and re-engineering, program
understanding, and communication protocols. Haskell
is our common language for teaching and research.

Haskell is used as first language in our graduate com-
puters science education (→ 7.2.1). José Valença and
José Barros are the authors of the first (and only)
Portuguese book about Haskell, entitled “Fundamen-
tos da Computação” (ISBN 972-674-318-4). Alcino
Cunha has developed the Pointless library for point-
free programming in Haskell (→ 4.2.10), as well as
the DrHylo tool (→ 5.2.8) that transforms functions
using explicit recursion into hylomorphisms. Super-
vised by José Nuno Oliveira, students Tiago Alves
and Paulo Silva are developing the VooDooM tool (→
5.3.4), which transforms VDM datatype specifications
into SQL datamodels and students João Ferreira and
José Proença will soon start developing CPrelude.hs, a
formal specification modelling tool generating Haskell
from VDM-SL and CAMILA. João Saraiva is respon-
sible for the implementation of the attribute sys-
tem LRC (→ 5.2.4), which generates (circular) Haskell
programs. He is also the author of the HaLex li-
brary and tool, which supports lexical analysis with
Haskell. Joost Visser has developed Sdf2Haskell (→
5.2.5), which generates GLR parsing and customiz-
able pretty-printing support from SDF grammars, and
which is distributed as part of the Strafunski bundle.
Most tools and library modules developed by the group
are organized in a single infrastructure, to facilitate
reuse, which can be obtained as a single distribution
under the name UMinho Haskell Libraries and Tools.

The group is involved in the 3-year project called
PURe which aims to apply formal methods to Program
Understanding and Reverse Engineering. Haskell is
used as implementation language, and various subpro-
jects have been initiated, including Generic Program
Slicing.

Further reading

LMF group home page (http://www.di.uminho.pt/
˜glmf) and PURe project home page (http://www.di.
uminho.pt/pure). Version 1.0 of the UMinho Haskell

55

http://www.erlang.org/
http://www.erlang.org/
http://www-fp.dcs.st-and.ac.uk/hume/
http://www.macs.hw.ac.uk/~ceeatia/PDF/
http://www.cse.unsw.edu.au/~pls/
http://www.cse.unsw.edu.au/~pls/
http://www.di.uminho.pt/~glmf
http://www.di.uminho.pt/~glmf
http://www.di.uminho.pt/pure
http://www.di.uminho.pt/pure

Libraries and Tools has been released on April 5, 2005,
and is available from http://wiki.di.uminho.pt/wiki/bin/
view/PURe/PUReSoftware.

7.3.9 The Computer Systems Design Laboratory at
the University of Kansas

Report by: Perry Alexander

The Computer Systems Design Laboratory at the Uni-
versity of Kansas is using Haskell in several distinct
projects.

We are continuing work, previously reported in the
Communities and Activities report, developing tools
for the Rosetta specification language. This work uses
Haskell as the primary platform for a toolset facili-
tating the analysis of heterogeneous models written in
Rosetta. We use a composable interpreter framework
to provide basic language interpretation and a collec-
tion of static and dynamic analysis tools.

A related project utilizes Haskell in the development
of a generalized proof assistant, Prufrock. This pro-
vides a framework for integrating new languages into
the proof environment. The language representation is
separated from the logical inference rules, using generic
programming techniques. Proof tactics (written in
Haskell), interaction, and specific prover implementa-
tion, including such features as global state and logging
are separated using Haskell’s type class system. This
results in a set of (largely) independent modules that
can be combined to produce a specialized first-order
theorem prover for a given language and a given system
of inference. A technical report, including the entire
Prufrock source, is available at the Prufrock website.

Another project explores the implementation of func-
tional languages, via graph reduction, on FPGA hard-
ware. This system combines a compiler and simulator,
written exclusively in Haskell, with a VHDL implemen-
tation of the abstract machine. A graph reduction ma-
chine is being synthesized in FPGA from VHDL source
to directly execute compiled Haskell.

Finally, we are Haskell to development a formalism
to represent dance. Currently, choreographers commu-
nicate only by performance. The dance language aims
to provide a mechanism for to allow choreographers a
means to communicate the structure of a routine tex-
tually. Additionally, the dance language has an asso-
ciated typechecker, used by choreographers to detect
errors in the transcription of routines.

Further reading

◦ Computer Systems Design Lab:
http://www.ittc.ku.edu/research/view lab.phtml?
lab=CSDL

◦ Systems Level Design Group:
http://www.ittc.ku.edu/Projects/SLDG/

◦ Rosetta Specification Language:
http://www.sldl.org

◦ Prufrock:
http://www.ittc.ku.edu/˜wardj/prufrock/

◦ Dance Language:
http://www.ittc.ku.edu/˜jenis/

7.3.10 Cover: Combining Verification Methods

Report by: Patrik Jansson
Participants: John Hughes, Thierry Coquand, Peter

Dybjer, Mary Sheeran, Marcin Benke,
Koen Claessen, Patrik Jansson, Andreas

Abel, Gregóıre Hamon, Ulf Norell, Fredrik
Lindström, Nils Anders Danielsson

Cover is a Haskell-centered research project at
Chalmers funded by the Swedish Foundation for Strate-
gic Research. The goal is to develop methods for im-
proving software quality. The approach is to integrate a
variety of verification methods into a framework which
permits a smooth progression from hacking code to
fully formal proofs of correctness.

More concretely we work on these components:
◦ QuickCheck – automated random testing (→ 5.4.4)
◦ Agda – a dependently typed language and its proof

engine (implemented in Haskell) (→ 3.4.1)
◦ Cover Translator – translation from Haskell to

– Agda – for interactive proof
– First order logic – for automated proof

Our best results so far include:

◦ Development of QuickCheck (automatic shrinking,
monadic testing, etc.)

◦ Development of Agda (built-in types, a class system,
”implicit arguments”, etc). Development of method-
ology for reasoning about general recursive programs.

◦ Cover Translator. Translates Haskell (via GHC
Core) into a first order formulas understood by auto-
matic theorem provers such as Gandalf and Vampire.
Ongoing work on case studies.

◦ A first prototype - an extension of Alfa (an advanced
GUI for the prover Agda) with tools for testing and
automatic proof construction.

◦ Agsy – automatic proof search plugin for Agda.

◦ Collaboration with AIST (Advanced Industrial Sci-
ence and Technology Institute in Japan) on develop-
ment and applications of Agda.

The Cover source code can be browsed at http:
//cvs.coverproject.org/marcin/cgi/viewcvs/ and can be
accessed by anonymous CVS from cvs.coverproject.org.

Short term goals:

56

http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware
http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware
http://www.ittc.ku.edu/research/view_lab.phtml?lab=CSDL
http://www.ittc.ku.edu/research/view_lab.phtml?lab=CSDL
http://www.ittc.ku.edu/Projects/SLDG/
http://www.sldl.org
http://www.ittc.ku.edu/~wardj/prufrock/
http://www.ittc.ku.edu/~jenis/
http://cvs.coverproject.org/marcin/cgi/viewcvs/
http://cvs.coverproject.org/marcin/cgi/viewcvs/

◦ Complete the chain of tools (QuickCheck, Agda,
Cover Translator) so that we can take actual Haskell
code, test, translate for the theorem provers, and
prove properties.

◦ Identify larger scale case studies that ought to be
tractable for our methods.

Further reading

For more details about the project, read about
QuickCheck (→ 5.4.4) and Agda (→ 3.4.1) in this re-
port or consult the homepage at http://coverproject.
org.

7.4 User groups

7.4.1 Debian Users

Report by: Isaac Jones

The Debian Haskell community continues to grow, with
both new users and developers appearing. Together
with work on Cabal and libraries (→ 4.1.1) we are work-
ing towards providing a much improved Haskell devel-
opment environment, and the number of applications
in Debian written in Haskell is also continuing to grow.
A summary of the current state can be found on the
Haskell Wiki (→ 1.3): http://www.haskell.org/hawiki/
DebianUsers.

For developers, we have a prototype policy for
packaging tools for Debian: http://urchin.earth.li/˜ian/
haskell-policy/haskell-policy.html/.
dh_haskell is a tool by John Goerzen to help in

building Debian packages out of Cabal packages. It is
in the haskell-devscripts package.

For users and developers, we have also started
a mailing list: http://urchin.earth.li/mailman/listinfo/
debian-haskell.

In order to provide backports, bleeding edge
versions of Haskell tools, and a place for ex-
perimentation with packaging ideas, Isaac Jones
and Ian Lynagh have started the “Haskell Unsafe”
Debian archive (http://haskell-unsafe.alioth.debian.org/
haskell-unsafe.html) where a wide variety of packages
can be found. This was recently moved to a Debian
server.

7.4.2 Fedora Haskell

Report by: Jens Petersen

Fedora Haskell provides package repositories of selected
Haskell projects for Fedora Core. At the time of writing

there are packages for c2hs-0.13.4, darcs-1.0.2, DrIFT-
2.1.1, ghc-6.4, greencard-3.01, gtk2hs-0.9.7, haddock-
0.6, happy-1.15, hircules-0.3, hs-plugins-0.9.8, hugs98-
Mar2005, wxhaskell-0.9 for i386 and x86 64. There is
a mailing list 〈fedora-haskell@haskell.org〉 for announce-
ments and questions. Contributions are most welcome.
I am still hoping to get ghc added to Fedora Extras
soon.

Further reading

http://haskell.org/fedora/

7.4.3 OpenBSD Haskell

Report by: Don Stewart

Haskell support on OpenBSD is quite stable. A page
documenting the current status of Haskell on OpenBSD
is at http://www.cse.unsw.edu.au/˜dons/openbsd.

GHC is available for i386 and amd64. nhc98 is avail-
able for i386, sparc and powerpc. Hugs is available
for the alpha, amd64, hppa, i386, powerpc, sparc and
sparc64. A number of other Haskell tools and libraries
are also available, including alex, happy, haddock and
darcs.

7.4.4 Haskell in Gentoo Linux

Report by: Andres Löh

A lot has been happening behind the scenes in the Gen-
too/Haskell world. Two new developers, Luis Araujo
and Duncan Coutts, have recently joined the Haskell
team.

We just have unmasked ghc-6.4 a few days ago. Some
libraries are still lacking support, but we hope that this
will change in the next few months. The eclass that
supports the registration of ghc packages has been im-
proved and updated for ghc-6.4; it seems to be working
fine.

We internally use a darcs (→ 6.3) overlay to exchange
and test new ebuilds, where we are currently preparing
an eclass to make ebuild-writing for Cabalized pack-
ages (→ 4.1.1) a triviality.

We have the following long-term goals:

◦ improve support for non-x86 platforms,

◦ improve support for nhc98 and Hugs (and potentially
jhc (→ 2.4) in the future),

◦ add more libraries and tools.

New ebuilds, comments and suggestions, and bug re-
ports can be filed at bugs.gentoo.org. Make sure that
you mention “Haskell” in the subject of the report. Or
visit us on IRC (#gentoo-haskell on freenode).

57

http://coverproject.org
http://coverproject.org
http://www.haskell.org/hawiki/DebianUsers
http://www.haskell.org/hawiki/DebianUsers
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/mailman/listinfo/debian-haskell
http://urchin.earth.li/mailman/listinfo/debian-haskell
http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
mailto: fedora-haskell at haskell.org
http://haskell.org/fedora/
http://www.cse.unsw.edu.au/~dons/openbsd
bugs.gentoo.org

7.5 Individuals

7.5.1 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The page about type system hacks (http://pobox.com/
˜oleg/ftp/Haskell/types.html) – a part of the collection
of various Haskell mini-tutorials and assorted small
projects (http://pobox.com/˜oleg/ftp/Haskell/) – has
received two additions:

Genuine keyword arguments

We show the Haskell implementation of keyword argu-
ments, which goes well beyond records (e.g., in permit-
ting the re-use of labels). Keyword arguments indeed
look just like regular, positional arguments. However,
keyword arguments may appear in any order. Further-
more, one may associate defaults with some keywords;
the corresponding arguments may then be omitted. It
is a type error to omit a required keyword argument.
The latter property is in stark contrast with the conven-
tional way of emulating keyword arguments via records.
Also in marked contrast with records, keyword labels
may be reused throughout the code with no restriction;
the same label may be associated with arguments of
different types in different functions. Labels of Haskell
records may not be re-used. Our solution is essentially
equivalent to keyword arguments of DSSSL Scheme or
labels of OCaml.

How to write an instance for not-a-function

There are occasions when one wishes to write a class
instance for un-function: For example, an instance of
a class class Vspace a v | v -> a that applies only
when the second type argument is not of a functional
type. Overlapping instances per se do not help be-
cause a more general instance nominally applies when-
ever a more specialized instance does, which will con-
tradict the functional dependency. Our solution is a
class IsFunction v f where the second parameter is
uniquely determined by the first. To be precise, the sec-
ond parameter is inferred to be of the type HTrue if and
only if the first parameter is an arrow type, x -> y for
some x and y. The second parameter of IsFunction
is inferred to be of the type HFalse in any other case.
The solution can be easily generalized to implement
negation of any other structural type constraint (tuple,
list, Maybe, etc).

7.5.2 Graham Klyne

Report by: Graham Klyne

My primary interest is in RDF http://www.w3.org/
RDF/ and Semantic Web http://www.w3.org/2001/sw/
technologies. Since my submission for the November
2004 HC&A Report, I’ve been working at the Image
Bioinformatics Research Group at Oxford University
(http://www.bioimage.org/), and my plans to develop
Swish, XML, RDF and description logic reasoning tools
have somewhat taken a back seat (but have not been
abandoned).

I have been using Haskell internally to process bioin-
formatics data, cross-referencing experimental result
data with information in external databases of genetic
information. It’s all pretty trivial stuff so far, but I
have hopes of demonstrating that functional languages
can be a viable alternative to Excel spreadsheets for
handling experimental data.

7.5.3 Alain Crémieux

Report by: Alain Crémieux

I am working on a port to Haskell of a compiler for the
Tiger toy language. The reference for the Tiger lan-
guage is the book from Andrew Appel “Modern com-
piler implementation in ML”. The corresponding code
in ML is available on the Web, written by Yu Liao.

So the first step is a port of this code, but with the
use of Haskell’s tools Alex and Happy, up to the genera-
tion of machine code for a RISC processor. Then there
will be 2 new outputs for the compiler, one directed at
C– (a Tiger compiler generating C– is available, written
in O’CAML by Paul Govereau), and the other towards
LLVM, a virtual machine system (some examples of a
Tiger compiler link to LLVM, written by Chris Lattner,
are also available).

The roadmap is to add an intelligent editor for Tiger,
in the style of Helium, and some kind of source level
debugger, by reusing available components. All this
should lead to a practical example of the complete im-
plementation of a language, which is a domain in which
Haskell is especially good. Any help & suggestions wel-
come, of course.

7.5.4 Inductive Inference

Report by: Lloyd Allison

Inductive Inference, i.e. the learning of general hy-
potheses from given data.

I am continuing to use Haskell to examine what
are the products (e.g. Mixture-models (unsupervised

58

http://pobox.com/~oleg/ftp/Haskell/types.html
http://pobox.com/~oleg/ftp/Haskell/types.html
http://pobox.com/~oleg/ftp/Haskell/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.bioimage.org/

classification, clustering), classification- (decision-)
trees (supervised classification), Bayesian/causal net-
works/models, etc.) of machine-learning from a pro-
gramming point of view, that is how do they behave,
what can be done to each one, and how can two or more
be combined? The primary aim is the getting of under-
standing, and that could one day be embodied in a use-
ful Haskell library or prelude for artificial-intelligence /
data-mining / inductive-inference / machine-learning /
statistical-inference.

A JFP paper (see below) appeared in January 2005,
describing an early version of the software. Currently
there are types and classes for models (various proba-
bility distributions), function models (including regres-
sions), time-series (including Markov models), mixture
models, and classification trees. Recent case-studies
include
◦ mixtures of time-series,
◦ Bayesian networks,
◦ time-series models and “the” sequence-alignment al-

gorithm.
(A spring-clean of the code is overdue.)

Prototype code is available (GPL) at the URL below.

Future plans

Try to find a good name for this kind of programming:
‘function’ is to ‘functional programming’ as ‘statistical
model’ is to what? The best name suggested so far is
‘inductive programming’.

I am currently developing the time-series models fur-
ther, and must also look at Template-Haskell or some-
thing similar for dealing with csv-files in a nice way.

Further reading

◦ L. Allison. Models for machine learning and data
mining in functional programming. J. Functional
Programming, 15(1), pages 15–32, January 2005.
doi:10.1017/S0956796804005301

◦ Other reading is listed at the URL:
http://www.csse.monash.edu.au/˜lloyd/tildeFP/II/

7.6 Bioinformatics tools

Report by: Ketil Malde

As part of my Ph.D work, I developed a handful of
(GPL-licensed) tools for solving problems that arise in
bioinformatics. I currently have a sequence clustering
tool, xsact (currently in revision 1.5b), which I believe
is one of the more feature-rich tools of its kind. There
is also a sequence assembly tool (xtract). In addition,
there are various smaller tools that are or were useful
to me, and that may or may not be, useful to others.

I’m currently in the process of redesign-
ing/reimplementing the algorithms, hopefully leading
to a more integrated, flexible and efficient toolset.

Further reading

http://www.ii.uib.no/˜ketil/bioinformatics

7.6.1 Using Haskell to implement simulations of
language acquisition, variation, and change

Report by: W. Garrett Mitchener
Status: experimental, active development

I’m a mathematician, with expertise in dynamical sys-
tems and probability. I’m using math to model lan-
guage acquisition, variation, and change. My current
project is about testing various hypotheses put forth by
the linguistics community concerning the word order
of English. Old and Middle English had significantly
different syntax than Modern English, and the devel-
opment of English syntax is perhaps the best studied
case of language change in the world. My overall plan
is to build simulations of various stages of English and
test them against manuscript data, such as the Penn-
sylvania Parsed Corpus of Middle English.
Currently, I’m using a Haskell program to simulate a
population of individual agents learning simplified lan-
guages based on Middle English and Old French. Math-
ematically, the simulation is a Markov chain with a
huge number of states. Future simulations will proba-
bly include sophisticated linguistic computations (pars-
ing and sentence generation) for which Haskell seems
to be particularly well-suited. I hope to eventually use
the parallel features of GHC to run larger simulations
on a PVM grid.
I use GHC and Hugs on Fedora Linux. Oddly enough,
the fastest machine in the department for running these
computations is my laptop. It’s a Pentium M at 1.7
GHz with 2 MB of cache, and for this program, it con-
sistently out-performs my desktop, which is a Pentium
4 at 3 GHz with 1 MB of cache. I suspect the cache
size makes the biggest difference, but I haven’t done
enough experiments to say for sure.

Further reading

http://www.math.duke.edu/˜wgm

59

http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://www.ii.uib.no/~ketil/bioinformatics
http://www.math.duke.edu/~wgm

	General
	haskell.org
	#haskell
	The Haskell HaWiki
	The Haskell Sequence
	The Monad.Reader
	Books and tutorials
	New textbook -- Programming in Haskell
	Haskell Tutorial WikiBook
	hs-manpage-howto(7hs)

	Haskell related events
	Future events

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	jhc
	Haskell to Clean Translation
	Helium

	Language
	Variations of Haskell
	Haskell on handheld devices
	Vital: Visual Interactive Programming
	hOp
	Camila
	Haskell Server Pages (HSP)
	Haskell Regular Patterns (HaRP)

	Foreign Function Interface
	Non-sequential Programming
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell & Mobile Haskell
	Eden
	HCPN -- Haskell-Coloured Petri Nets

	Type System/Program Analysis
	Agda: An Interactive Proof Editor
	Epigram
	Chameleon
	Constraint Based Type Inferencing at Utrecht
	EHC, `Essential Haskell' Compiler

	Generic Programming

	Libraries
	Packaging and Distribution
	Hackage and Cabal
	Eternal Compatibility in Theory -- a module versioning protocol
	LicensedPreludeExts

	General libraries
	Process
	System.Console.Cmdline.Pesco -- a command line parser = GNU getopt
	TimeLib
	A redesigned IO library
	The Haskell Cryptographic Library
	Numeric prelude
	Haskore revision
	The revamped monad transformer library
	HBase
	Pointless Haskell
	hs-plugins
	MissingH
	MissingPy

	Parsing and transforming
	Parsec
	Haskell-Source with eXtensions (HSX, haskell-src-exts)
	Strafunski
	Medina -- Metrics for Haskell

	Data handling
	DData
	A library for strongly typed heterogeneous collections
	HSQL
	Takusen
	HaskellDB
	ByteStream
	Compression-2005

	User interfaces
	wxHaskell
	FunctionalForms
	Gtk2Hs -- A GUI library for Haskell based on Gtk+
	HToolkit
	HTk
	Fudgets

	Graphics
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	FunWorlds -- Functional Programming and Virtual Worlds

	Web and XML programming
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell
	HAIFA
	Haskell XML-RPC

	Tools
	Foreign Function Interfacing
	C-->Haskell
	JVM Bridge

	Scanning, Parsing, Analysis
	Alex version 2
	Happy
	HaLex
	LRC
	Sdf2Haskell
	SdfMetz
	HaGLR
	DrHylo

	Transformations
	The Programatica Project
	Term Rewriting Tools written in Haskell
	Hare -- The Haskell Refactorer
	VooDooM
	LVM-OPT

	Testing and Debugging
	Tracing and Debugging
	Hat
	buddha
	QuickCheck

	Development
	hmake
	cpphs
	Visual Studio support for Haskell
	Haskell support for the Eclipse IDE
	haste
	Haddock
	BNF Converter
	Hoogle -- Haskell API Search

	Applications
	Pugs
	HScheme
	Darcs
	FreeArc
	HWSProxyGen
	Hircules, an irc client
	lambdabot
	Flippi
	Postmaster ESMTP Server
	riot
	yi
	Dazzle (formerly NetEdit)
	Yarrow
	DoCon, the Algebraic Domain Constructor
	lhs2TeX
	Audio signal processing
	Converting knowledge-bases with Haskell

	Users
	Commercial users
	Galois Connections, Inc.
	Aetion Technologies LLC

	Haskell in Education
	Haskell in Education at Universidade de Minho
	Functional programming at school

	Research Groups
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Parallel and Distributed Functional Languages Research Group at Heriot-Watt University
	Programming Languages & Systems at UNSW
	Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga, Portugal
	The Computer Systems Design Laboratory at the University of Kansas
	Cover: Combining Verification Methods

	User groups
	Debian Users
	Fedora Haskell
	OpenBSD Haskell
	Haskell in Gentoo Linux

	Individuals
	Oleg's Mini tutorials and assorted small projects
	Graham Klyne
	Alain Crémieux
	Inductive Inference

	Bioinformatics tools
	Using Haskell to implement simulations of language acquisition, variation, and change

