
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Twelfth Edition – May 30, 2007

Andres Löh (ed.)
Lloyd Allison Tiago Miguel Laureano Alves Krasimir Angelov
Carlos Areces Alistair Bayley Jean-Philippe Bernardy

Clifford Beshers Chris Brown Bjorn Buckwalter
Andrew Butterfield Manuel Chakravarty Olaf Chitil

Duncan Coutts Jácome Cunha Atze Dĳkstra
Frederik Eaton Martin Erwig Jeroen Fokker

Richard A. Frost Clemens Fruhwirth Andy Gill
Dimitry Golubovsky Daniel Gorin Martin Grabmüller

Murray Gross Walter Gussmann Kevin Hammond
Christopher Lane Hinson Guillaume Hoffmann Paul Hudak

Liyang Hu Graham Hutton S. Alexander Jacobson
Wolfgang Jeltsch Antti-Juhani Kaĳanaho Jeremy O’Donoghue

Oleg Kiselyov Dirk Kleeblatt Lennart Kolmodin
Slawomir Kolodynski Eric Kow Huiqing Li

Andres Löh Rita Loogen Salvador Lucas
Ian Lynagh Ketil Malde Christian Maeder

Simon Marlow Conor McBride Arie Middelkoop
Neil Mitchell William Garret Mitchener Andy Adams-Moran
Dino Morelli Yann Morvan Diego Navarro

Rishiyur Nikhil Stefan O’Rear Sven Panne
Ross Paterson Simon Peyton-Jones Claus Reinke

Colin Runciman Alberto Ruiz David Sabel
Uwe Schmidt Alexandra Silva Ganesh Sittampalam

Anthony Sloane Dominic Steinitz Donald Bruce Stewart
Jennifer Streb Glenn Strong Martin Sulzmann

Doaitse Swierstra Wouter Swierstra Hans van Thiel
Henning Thielemann Peter Thiemann Simon Thompson

Phil Trinder Miguel Vilaca Joost Visser
Edsko de Vries Malcolm Wallace Mark Wassell
Stefan Wehr Ashley Yakeley Bulat Ziganshin

http://www.haskell.org/communities/

Preface

You are reading the twelfth edition of the Haskell Communities and Activities Report – as
always, containing entries from enthusiastic Haskellers all over the world.

This edition has 138 entries, 33 of them are completely new (and therefore highlighted with
a blue background), and 54 have had updates since the previous edition (and have a header
with a blue background). All entries that have not been updated for a year or longer have been
removed to make sure that your are reading information that is as up-to-date as possible.

I want to use the opportunity to thank all the contributors. This report has 90 authors, but
the number of total contributors to all the projects reported on is much, much greater. I find it
wonderful that the Haskell communities continue to be so diverse and open at the same time.

As always, I want to encourage you to watch out for projects that are missing from this report,
and to make their authors aware of the report so that they can contribute to the November
edition (deadline probably around the end of October).

Feedback is very welcome at 〈hcar@haskell.org〉. Pleasant reading!

Andres Löh, University of Bonn, Germany

2

mailto: hcar at haskell.org

Contents

1 General 7
1.1 HaskellWiki and haskell.org . 7
1.2 #haskell . 7
1.3 Planet Haskell . 7
1.4 Haskell Weekly News . 8
1.5 The Monad.Reader . 8
1.6 Books and tutorials . 8
1.6.1 New textbook – Programming in Haskell . 8
1.6.2 Haskell Wikibook (was: Haskell Tutorial Wikibook) . 9
1.6.3 Haskell Tutorials in Portuguese . 9
1.7 A Survey on the Use of Haskell in Natural-Language Processing . 9

2 Implementations 10
2.1 The Glasgow Haskell Compiler . 10
2.2 Hugs . 12
2.3 nhc98 . 12
2.4 yhc . 13

3 Language 14
3.1 Variations of Haskell . 14
3.1.1 Liskell . 14
3.1.2 Haskell on handheld devices . 14
3.1.3 Camila . 14
3.2 Non-sequential Programming . 15
3.2.1 GpH – Glasgow Parallel Haskell . 15
3.2.2 Eden . 16
3.3 Type System/Program Analysis . 16
3.3.1 Epigram . 16
3.3.2 Chameleon project . 17
3.3.3 XHaskell project . 18
3.3.4 ADOM: Agent Domain of Monads . 18
3.3.5 EHC, ‘Essential Haskell’ Compiler . 18
3.3.6 Uniqueness Typing . 19
3.3.7 Uniqueness Typing in EHC . 19
3.3.8 Object-Oriented Haskell . 20
3.4 IO . 20
3.4.1 Formal Aspects of Pure Functional I/O . 20

4 Libraries 21
4.1 Packaging and Distribution . 21
4.1.1 Core . 21
4.2 General libraries . 21
4.2.1 Test.IOSpec . 21
4.2.2 PFP – Probabilistic Functional Programming Library for Haskell 21
4.2.3 GSLHaskell . 22
4.2.4 An Index Aware Linear Algebra Library . 22
4.2.5 Haskell Rules: Embedding Rule Systems in Haskell . 22
4.3 Parsing and transforming . 22
4.3.1 InterpreterLib . 22
4.3.2 hscolour . 23
4.3.3 Utrecht Parsing Library and Attribute Grammar System . 23
4.3.4 Left-Recursive Parser Combinators . 23

3

4.3.5 RecLib – A Recursion and Traversal Library for Haskell . 24
4.4 System . 24
4.4.1 Harpy . 24
4.4.2 hs-plugins . 24
4.4.3 The libpcap Binding . 25
4.4.4 Streams . 25
4.4.5 System.FilePath . 25
4.4.6 hinotify . 25
4.5 Databases and data storage . 26
4.5.1 CoddFish . 26
4.5.2 Takusen . 26
4.6 Data types and data structures . 27
4.6.1 Standard Collection Libraries . 27
4.6.2 Data.ByteString . 27
4.6.3 Data.List.Stream . 27
4.6.4 dimensional . 27
4.6.5 Numeric prelude . 28
4.6.6 HList – a library for typed heterogeneous collections . 28
4.6.7 ArrayRef . 29
4.7 Data processing . 29
4.7.1 AltBinary . 29
4.7.2 binary . 30
4.7.3 binarydefer . 30
4.7.4 Compression-2006 (was: Compression-2005) . 30
4.7.5 The Haskell Cryptographic Library . 31
4.7.6 The Haskell ASN.1 Library . 31
4.7.7 2LT: Two-Level Transformation . 31
4.8 User interfaces . 32
4.8.1 Grapefruit – A declarative GUI library . 32
4.8.2 wxHaskell . 32
4.8.3 Gtk2Hs . 33
4.8.4 hscurses . 33
4.8.5 VTY . 33
4.9 (Multi-)Media . 34
4.9.1 HOpenGL – A Haskell Binding for OpenGL and GLUT . 34
4.9.2 HOpenAL – A Haskell Binding for OpenAL and ALUT . 34
4.9.3 Haskore revision . 34
4.10 Web and XML programming . 35
4.10.1 HAppS – Haskell Application Server . 35
4.10.2 Pass.Net . 36
4.10.3 Converter of Yhc Core to Javascript (ycr2js) . 36
4.10.4 tagsoup . 37
4.10.5 HaXml . 37
4.10.6 Haskell XML Toolbox . 37
4.10.7 WASH/CGI – Web Authoring System for Haskell . 38

5 Tools 39
5.1 Foreign Function Interfacing . 39
5.1.1 C→Haskell . 39
5.2 Scanning, Parsing, Analysis . 39
5.2.1 Alex version 2 . 39
5.2.2 Happy . 39
5.2.3 SdfMetz . 39
5.2.4 XsdMetz: metrics for XML Schema . 40
5.3 Transformations . 40
5.3.1 derive . 40
5.3.2 Term Rewriting Tools written in Haskell . 40
5.3.3 HaRe – The Haskell Refactorer . 41

4

5.3.4 VooDooM . 42
5.4 Testing and Debugging . 42
5.4.1 Haskell Program Coverage . 42
5.4.2 Hat . 43
5.4.3 SmallCheck: another lightweight testing library in Haskell . 43
5.5 Development . 44
5.5.1 hmake . 44
5.5.2 Haskell Modes for Vim . 44
5.5.3 Ruler . 44
5.5.4 cpphs . 45
5.5.5 Visual Haskell . 45
5.5.6 Haddock . 45
5.5.7 Hoogle – Haskell API Search . 45
5.5.8 SearchPath . 46

6 Applications 47
6.1 xmonad . 47
6.2 GenI . 47
6.3 Roguestar . 47
6.4 mmisar . 47
6.5 Inference Services for Hybrid Logics . 48
6.5.1 HyLoRes . 48
6.5.2 HTab . 48
6.5.3 HGen . 48
6.6 Raskell . 48
6.7 photoname . 49
6.8 HJS – Haskell Javascript Interpreter . 49
6.9 FreeArc . 49
6.10 Darcs . 50
6.11 lambdabot . 50
6.12 yi . 50
6.13 INblobs – Interaction Nets interpreter . 51
6.14 lhs2TEX . 51
6.15 Emping . 51
6.16 Audio signal processing . 51
6.17 hmp3 . 52
6.18 Testing Handel-C Semantics Using QuickCheck . 52
6.19 easyVision . 52
6.20 View selection for image-based rendering . 53

7 Users 54
7.1 Commercial users . 54
7.1.1 Credit Suisse Global Modelling and Analytics Group . 54
7.1.2 Bluespec tools for design of complex chips . 54
7.1.3 Galois, Inc. 55
7.1.4 Linspire . 56
7.2 Haskell in Education . 56
7.2.1 Functional programming at school . 56
7.3 Research Groups . 57
7.3.1 Foundations and Methods Group at Trinity College Dublin . 57
7.3.2 Foundations of Programming Group at the University of Nottingham 57
7.3.3 Artificial Intelligence and Software Technology at JWG-University Frankfurt 59
7.3.4 Formal Methods at Bremen University and DFKI Lab Bremen . 60
7.3.5 Functional Programming at Macquarie University . 60
7.3.6 Functional Programming at the University of Kent . 60
7.3.7 Programming Languages & Systems at UNSW . 61
7.3.8 Haskell in Romania . 61
7.3.9 SCIence project . 62

5

7.4 User groups . 62
7.4.1 OpenBSD Haskell . 62
7.4.2 Haskell in Gentoo Linux . 62
7.5 Individuals . 62
7.5.1 Oleg’s Mini tutorials and assorted small projects . 62
7.5.2 Inductive Programming . 63
7.5.3 Bioinformatics tools . 64
7.5.4 Using Haskell to implement simulations of language acquisition, variation, and change 64

6

1 General

1.1 HaskellWiki and haskell.org

Report by: Ashley Yakeley

HaskellWiki is a MediaWiki installation running on
haskell.org, including the haskell.org “front page”. Any-
one can create an account and edit and create pages.
Examples of content include:

◦ Documentation of the language and libraries

◦ Explanation of common idioms

◦ Suggestions and proposals for improvement of the
language and libraries

◦ Description of Haskell-related projects

◦ News and notices of upcoming events

We encourage people to create pages to describe and
advertise their own Haskell projects, as well as add to
and improve the existing content. All content is sub-
mitted and available under a “simple permissive” li-
cense (except for a few legacy pages).

In addition to HaskellWiki, the haskell.org website
hosts some ordinary HTTP directories. The machine
also hosts mailing lists. There is plenty of space and
processing power for just about anything that peo-
ple would want to do there: if you have an idea for
which HaskellWiki is insufficient, contact the maintain-
ers, John Peterson and Olaf Chitil, to get access to this
machine.

Further reading

◦ http://haskell.org/
◦ http://haskell.org/haskellwiki/Mailing_Lists

1.2 #haskell

Report by: Don Stewart

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. The chan-
nel has grown dramatically in users over the last 6
months, and now #haskell averages over 300 concur-
rent users (with a high water mark of 340 users), and
is one of the biggest channels on freenode. The irc
channel is home to hpaste and lambdabot, two useful
Haskell bots. Point your IRC client to irc.freenode.net
and join the #haskell conversation!

For non-English conversations about Haskell there is
now:

◦ #haskell.de – German speakers
◦ #haskell.dut – Dutch speakers
◦ #haskell.es – Spanish speakers
◦ #haskell.fi – Finnish speakers
◦ #haskell.fr – French speakers
◦ #haskell.hr – Croatian speakers
◦ #haskell.it – Italian speakers
◦ #haskell.jp – Japenese speakers
◦ #haskell.no – Norwegian speakers
◦ #haskell_ru – Russian speakers
◦ #haskell.se – Swedish speakers

Related Haskell channels are now emerging, includ-
ing:
◦ #haskell-overflow – Overflow conversations
◦ #haskell-blah – Haskell people talking about any-

thing except Haskell itself
◦ #gentoo-haskell – Gentoo/Linux specific Haskell

conversations (→ 7.4.2)
◦ #darcs – Darcs revision control channel (written in

Haskell) (→ 6.10)
◦ #ghc – GHC developer discussion (→ 2.1)
◦ #happs – HAppS Haskell Application Server chan-

nel (→ 4.10.1)
◦ #xmonad – Xmonad a tiling window manager written

in Haskell (→ 6.1)

Further reading

More details at the #haskell home page: http://
haskell.org/haskellwiki/IRC_channel

1.3 Planet Haskell

Report by: Antti-Juhani Kaĳanaho
Status: active

Planet Haskell is an aggregator of Haskell people’s
blogs and other Haskell-related news sites. As of mid-
October content from 29 blogs and other sites is being
republished in a common format.

A common misunderstanding about Planet Haskell
is that it republishes only Haskell content. That is not
its mission. A Planet shows what is happening in the
community, what people are thinking about or doing.
Thus Planets tend to contain a fair bit of “off-topic”
material. Think of it as a feature, not a bug.

A blog is eligible to Planet if it is being written by
somebody who is active in the Haskell community, or by
a Haskell celebrity; also eligible are blogs that discuss
Haskell-related matters frequently, and blogs that are
dedicated to a Haskell topic (such as a software project
written in Haskell). Note that at least one of these
conditions must apply, and virtually no blog satisfies

7

http://haskell.org/
http://haskell.org/haskellwiki/Mailing_Lists
http://haskell.org/haskellwiki/IRC_channel
http://haskell.org/haskellwiki/IRC_channel

them all. However, blogs will not be added to Planet
without the blog author’s consent.

To get a blog added, email Antti-Juhani Kaĳanaho
〈antti-juhani@kaĳanaho.fi〉 and provide evidence that
the blog author consents to this (easiest is to get the
author send the email, but any credible method suf-
fices).

Planet is hosted by Galois Connections, Inc. (→
7.1.3) as a service to the community. The Planet main-
tainer is not affiliated with them.

Further reading

http://planet.haskell.org/

1.4 Haskell Weekly News

Report by: Don Stewart

The Haskell Weekly News (HWN) is a weekly newslet-
ter covering developments in Haskell. Content includes
announcements of new projects, jobs, discussions from
the various Haskell communities, notable project com-
mit messages, Haskell in the blogspace, and more.

It is published in html form on The Haskell Se-
quence, via mail on the Haskell mailing list, on Planet
Haskell (→ 1.3), and via RSS. Headlines are published
on haskell.org (→ 1.1).

Further reading

◦ Archives, and more information can be found at:
http://www.haskell.org/haskellwiki/Haskell_Weekly_
News

1.5 The Monad.Reader

Report by: Wouter Swierstra

There are plenty of academic papers about Haskell and
plenty of informative pages on the Haskell Wiki. Unfor-
tunately, there’s not much between the two extremes.
That’s where The Monad.Reader tries to fit in: more
formal than a Wiki page, but more casual than a jour-
nal article.

There are plenty of interesting ideas that maybe
don’t warrant an academic publication – but that
doesn’t mean these ideas aren’t worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if its all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining
a neat idea about ‘warm fuzzy things’ to the rest of us
can still be plain fun.

The Monad.Reader is also a great place to write
about a tool or application that deserves more atten-
tion. Most programmers don’t enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.

I do try to publish a new issue quarterly, but I’m
completely reliant on your submissions. So please con-
sider contributing to the functional programming com-
munity by writing something for The Monad.Reader!

Further reading

All the recent issues and the information you need to
start writing an article are available from: http://www.
haskell.org/haskellwiki/The_Monad.Reader.

1.6 Books and tutorials

1.6.1 New textbook – Programming in Haskell

Report by: Graham Hutton

Haskell is one of the leading languages for teaching
functional programming, enabling students to write
simpler and cleaner code, and to learn how to structure
and reason about programs. This introduction is ideal
for beginners: it requires no previous programming ex-
perience and all concepts are explained from first prin-
ciples via carefully chosen examples. Each chapter in-
cludes exercises that range from the straightforward to
extended projects, plus suggestions for further reading
on more advanced topics. The presentation is clear
and simple, and benefits from having been refined and
class-tested over several years.
Features:

◦ Powerpoint slides for each chapter freely available for
instructors and students from the book’s website;

◦ Solutions to exercises and examination questions
(with solutions) available to instructors;

◦ All the code in the book is fully compliant with the
latest release of Haskell, and can be downloaded from
the web;

◦ Can be used with courses, or as a stand-along text
for self-learning.

Publication details:

◦ Published by Cambridge University Press, January
2007. Paperback: ISBN 0521692695; Hardback:
ISBN: 0521871727.

Further information:

◦ http://www.cs.nott.ac.uk/~gmh/book.html

8

mailto: antti-juhani at kaijanaho.fi
http://planet.haskell.org/
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/The_Monad.Reader
http://www.haskell.org/haskellwiki/The_Monad.Reader
http://www.cs.nott.ac.uk/~gmh/book.html

1.6.2 Haskell Wikibook (was: Haskell Tutorial
Wikibook)

Report by: Eric Kow
Participants: Apfelmus
Status: active development

The Haskell wikibook is an attempt to build a commu-
nity textbook that is at once free (in cost and remixa-
bility), comprehensive and cohesive.

Since the last report, we have added some original
content, giving a friendly introduction to advanced top-
ics: Category Theory, Denotational Semantics, The
Curry-Howard isomorphism and Zippers. Thanks to
David House and Apfelmus for their hard work and
to the Haskell community for your helpful comments!
(Of course, one of our greatest dreams is a module by
one of the very founders of the Haskell programming
language.)

The wikibook is starting to be recognised as a useful
resource for beginners in Haskell, and has been receiv-
ing some positive comments from the blogosphere. The
wikibook has even selected for inclusion into the list of
“featured books” on the English wikibooks project. It
will now be prominently displayed on the wikibooks
front page in rotation with other featured books.

Our community has been starting to grow, in the
meantime. For example, the Polish and Russian
Haskell wikibooks have been rather active in the last
six months. Want to see a Haskell wikibook in your
language? Be bold and get started! While you’re at
it, you might even consider participating in our new
mailing list, 〈wikibook@haskell.org〉.

Further reading

http://en.wikibooks.org/wiki/Haskell

1.6.3 Haskell Tutorials in Portuguese

Report by: Diego Navarro (syntaxfree on #haskell)
Status: published online, open to suggestions,

translation to english pending

Two weights, two measures

“Two weights, two measures” is a Haskell tutorial fo-
cusing on the construction of a very simple DSEL
for a fictional prison system exploiting the struc-
ture of the Either type (with a few proposed ex-
tensions). Its target audience is beginning program-
mers. The tutorial aims to explore the first steps of
how closures/combinators/higher-order functions can
be used to define domain specific languages for sim-
ple algebraic structures. It’s currently available only in
portuguese, but it should be translated at some point.

The full text can be found at the URL below.

An introduction to Haskell with autophagic snakes

“An introduction to Haskell with autophagic snakes”
is a Haskell tutorial focusing on the exploration of co-
recursive sequences using infinite lists in Haskell. Its
target audience is beginning programmers. The tuto-
rial aims to exempllify lazy evaluation and simple com-
binators to abstract repetitive structures in the core-
cursive definitions of sequences. It’s currently available
only in portuguese, but it should be translated at some
point.

The full text can be found at the URL below.

Further reading

◦ http://www.navarro.mus.br/diego/blog/2006/09/13/
tutorial-dois-pesos-duas-medidas/

◦ http://www.navarro.mus.br/diego/blog/2005/10/20/
uma-introducao-ao-haskell-usando-cobras-autofagicas/

1.7 A Survey on the Use of Haskell in
Natural-Language Processing

Report by: Richard A. Frost

The survey "Realization of Natural-Language Inter-
faces Using Lazy Functional Programming" is sched-
uled to be published in ACM Computing Surveys in
December 2006. If I have missed any relevant publi-
cations, please contact me at rfrost@cogeco.ca. It may
be possible to add references before the survey goes to
print. If not, I shall put new references on a web page
which I am creating to keep the survey up-to-date with
future work.

Further reading

A draft of the survey is available at:
http://cs.uwindsor.ca/~richard/PUBLICATIONS/

NLI_LFP_SURVEY_DRAFT.pdf

9

mailto: wikibook at haskell.org
http://en.wikibooks.org/wiki/Haskell
http://www.navarro.mus.br/diego/blog/2006/09/13/tutorial-dois-pesos-duas-medidas/
http://www.navarro.mus.br/diego/blog/2006/09/13/tutorial-dois-pesos-duas-medidas/
http://www.navarro.mus.br/diego/blog/2005/10/20/uma-introducao-ao-haskell-usando-cobras-autofagicas/
http://www.navarro.mus.br/diego/blog/2005/10/20/uma-introducao-ao-haskell-usando-cobras-autofagicas/
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones, Simon Marlow, Ian
Lynagh

GHC continues to thrive. One indicator of how widely
GHC is used is the number of bug reports we get. Here
is a graph showing how the number of bug reports filed
has varied with time:

You could interpret these figures as saying that GHC
is getting steadily more unreliable! But we don’t think
so . . . we believe that it’s mostly a result of more people
using GHC, for more applications, on more platforms.

As well as more bug reports, we are getting more
help from the community, too. Some people regu-
larly commit patches, and we get a steady trickle of
patches emailed in from folk who (mostly) do not have
commit rights, but who have built GHC, debugged
a problem, sent us the patch. Our thanks go out
to Aaron Tomb, Alec Berryman, Alexey Rodriguez,
Andrew Pimlott, Andy Gill, Bas van Dĳk, Bernie
Pope, Bjorn Bringert, Brian Alliet, Brian Smith, Chris
Rodrigues, Claus Reinke, David Himmelstrup, David
Waern, Judah Jacobson, Isaac Jones, Lennart Augusts-
son, Lennart Kolmodin, Manuel M T Chakravarty,
Pepe Iborra, Ravi Nanavati, Samuel Bronson, Sigbjorn
Finne, Spencer Janssen, Sven Panne, Tim Chevalier,
Tim Harris, Tyson Whitehead, Wolfgang Thaller, and
anyone else who has contributed but we have acciden-
tally omitted.

As a result of this heavy usage, it has taken us nearly
six months to stabilise GHC 6.6.1, fixing over 100 re-
ported bugs or infelicities in the already-fairly-solid
GHC 6.6.

The HEAD (which will become GHC 6.8) embodies
nine months of development work since we forked the

tree for GHC 6.6. We are now aiming to get a stable
set of features implemented in the HEAD, with a view
to forking off the GHC 6.8 branch in the early summer.
As our last HCAR report indicated, there will be lots of
new stuff in GHC 6.8. The rest of this entry describes
the features that are likely to end up in 6.8.

You can find binary snapshots at the download page
http://www.haskell.org/ghc/dist/current/dist/ or build
from sources available via the darcs repository (http:
//darcs.haskell.org/ghc/).

Simon Peyton Jones, Simon Marlow, Ian Lynagh

Type system and front end

◦ We have completely replaced GHC’s intermedi-
ate language with System FC(X), an extension of
System F with explicit equality witnesses. This
enables GHC to support GADTs and associated
types, with two new simple but powerful mecha-
nisms. The paper is “System F with Type Equality
Coercions” (http://research.microsoft.com/~simonpj/
papers/ext-f/) Much of the conversion work was done
by Kevin Donnelly, while he was on an internship at
Microsoft.

◦ Manuel Chakravarty has implemented “data-type
families” (aka indexed data types), a modest
generalisation of the “associated data types” of
our POPL’05 paper “Associated types with class”
(http://research.microsoft.com/~simonpj/papers/
assoc-types/)

This part is done. Now we are working on “type-
synonym families” (aka type functions or associated
type synonyms (ICFP’05) (http://research.microsoft.
com/~simonpj/papers/assoc-types), which are consid-
erably trickier that data type families, at least so
far as type inference is concerned. Tom Schrĳvers
is in Cambridge for three months to help us use
ides from Constraint Handling Rules to solve the
inference problem. Type synonym families will al-
most completely fill the spot occupied by the always-
troublesome functional dependencies, so we are quite
excited about this.

Details are at http://haskell.org/haskellwiki/GHC/
Indexed_types.

◦ Simon PJ finally implemented “implication con-
straints”, which are the key to fixing the inter-
action between GADTs and type classes. GHC’s
users have been very polite about this collec-
tion of bugs, but they are now finally fixed.
Implication constraints are described by Martin

10

http://www.haskell.org/ghc/dist/current/dist/
http://darcs.haskell.org/ghc/
http://darcs.haskell.org/ghc/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/assoc-types/
http://research.microsoft.com/~simonpj/papers/assoc-types/
http://research.microsoft.com/~simonpj/papers/assoc-types
http://research.microsoft.com/~simonpj/papers/assoc-types
http://haskell.org/haskellwiki/GHC/Indexed_types
http://haskell.org/haskellwiki/GHC/Indexed_types

Sulzmann in “A framework for Extended Alge-
braic Data Types” (http://www.comp.nus.edu.sg/
~sulzmann/publications/tr-eadt.ps.gz).

◦ Björn Bringert (a GHC Hackathon graduate) imple-
mented “standalone deriving”, which allows you to
write a ‘deriving’ declaration anywhere, rather than
only where the data type is declared. Details of the
syntax have not yet quite settled. See also http:
//haskell.org/haskellwiki/GHC/StandAloneDeriving.

◦ Lennart Augustsson implemented overloaded string
literals. So now just as a numeric literal has type
forall a. Num a => a, so a string literal has
type forall a. IsString a => a, The docu-
mentation is here: http://www.haskell.org/ghc/
dist/current/docs/users_guide/other-type-extensions.
html#overloaded-strings.

A less successful feature of the last year has been
the story on impredicative instantiation (see the pa-
per “Boxy types: type inference for higher-rank
types and impredicativity” (http://research.microsoft.
com/~simonpj/papers/boxy). The feature is imple-
mented, but the implementation is significantly more
complicated than we expected; and it delivers fewer
benefits than we hoped. For example, the system de-
scribed in the paper does not type-check (runST $ foo)
and everyone complains. So Simon PJ added an even
more ad-hoc extension that does left-to-right instanti-
ation.

The power-to-weight ratio is not good. We’re still
hoping that Dimitrios Vytiniotis and Stephanie Weirich
will come out with a simpler system, even if it’s a bit
less powerful. So don’t get too used to impredicative
instantiation as it now stands; it might change!

Optimisations

◦ Simon PJ rewrote the Simplifier (again). It isn’t
clear whether it was that alone, or whether some-
thing else happened too, but performance has im-
proved quite significantly; on the order of 12%.

◦ Roman Leshchinskiy, Don Stewart, and Duncan
Coutts did some beautiful work on “fusion”; see their
paper “Rewriting Haskell strings” (http://www.cse.
unsw.edu.au/~dons/papers/CSL06.html). This fusion
work is already being heavily used in the parallel ar-
ray library (see below), and they are also working
on replacing foldr/build fusion with stream fusion in
the main base library (→ 4.6.2) (→ 4.6.3).

Their work highlighted the importance of the Spec-
Constr transformation, which Simon PJ imple-
mented several years ago. Of course, they sug-
gested many enhancements, many of which Simon PJ
duly implemented; see the new paper “Constructor
specialisation for Haskell programs” (http://research.
microsoft.com/~simonpj/papers/spec-constr/).

◦ Alexey Rodriguez visited us for three months from
Utrecht, and implemented a new back-end optimi-
sation called “dynamic pointer tagging”. We have
wanted to do this for ages, but it needed a skilled and
insightful hacker to make it all happen, and Alexey
is just that. This optimisation alone buys us another
15% performance for compiled programs: see the
paper “Dynamic pointer tagging” (http://research.
microsoft.com/~simonpj/papers/ptr-tag/index.htm).

Concurrency

◦ Gabriele Keller, Manuel Chakravarty, and Ro-
man Leshchinskiy, at the University of New South
Wales, are collaborating with us on support for
“nested data-parallel computation” in GHC. We
presented a paper “Data parallel Haskell: a sta-
tus report” (http://research.microsoft.com/~simonpj/
papers/ndp) at the Declarative Aspects of Multi-
core Programing workshop in January 2007, and
made a first release of the library in March. It’s
a pretty ambitious project, and we have quite a way
to go. You can peek at the current status on the
project home page: http://haskell.org/haskellwiki/
GHC/Data_Parallel_Haskell.

◦ Tim Harris added support for ”invariants” to GHC’s
Software Transactional Memory (STM) implemen-
tation. Paper is “Transactional memory with data
invariants” (http://research.microsoft.com/~simonpj/
papers/stm/).

◦ At the moment GHC’s “garbage collector” is single-
threaded, even when GHC is running on a mul-
tiprocessor. Roshan James spent the summer at
Microsoft on an internship, implementing a multi-
threaded GC (http://hackage.haskell.org/trac/ghc/
wiki/MotivationForParallelization). It works! But
alas, doing GC with two processors runs no faster
than with one! (We do plan to investigate this fur-
ther and find the source of the bottleneck.)

Peng Li, from the University of Pennsylvania, spent
an exciting three months at Cambridge, working on a
whole new architecture for concurrency in GHC. (If
you don’t know Peng you should read his wonder-
ful paper “Combining Events And Threads For Scal-
able Network Services” (http://www.seas.upenn.edu/
~lipeng/homepage/papers/lz07pldi.pdf) on implement-
ing a network protocol stack in Haskell.) At the mo-
ment GHC’s has threads, scheduling, forkIO, MVars,
transactional memory, and more besides, all “baked
into” the run-time system and implemented in C. If you
want to change this implementation you have to either
be Simon Marlow, or else very brave indeed. With
Peng (and help from Andrew Tolmach, Olin Shivers,
Norman Ramsey) we designed a new, much lower-level
set of primitives, that should allow us to implement

11

http://www.comp.nus.edu.sg/~sulzmann/publications/tr-eadt.ps.gz
http://www.comp.nus.edu.sg/~sulzmann/publications/tr-eadt.ps.gz
http://haskell.org/haskellwiki/GHC/StandAloneDeriving
http://haskell.org/haskellwiki/GHC/StandAloneDeriving
http://www.haskell.org/ghc/dist/current/docs/users_guide/other-type-extensions.html#overloaded-strings
http://www.haskell.org/ghc/dist/current/docs/users_guide/other-type-extensions.html#overloaded-strings
http://www.haskell.org/ghc/dist/current/docs/users_guide/other-type-extensions.html#overloaded-strings
http://research.microsoft.com/~simonpj/papers/boxy
http://research.microsoft.com/~simonpj/papers/boxy
http://www.cse.unsw.edu.au/~dons/papers/CSL06.html
http://www.cse.unsw.edu.au/~dons/papers/CSL06.html
http://research.microsoft.com/~simonpj/papers/spec-constr/
http://research.microsoft.com/~simonpj/papers/spec-constr/
http://research.microsoft.com/~simonpj/papers/ptr-tag/index.htm
http://research.microsoft.com/~simonpj/papers/ptr-tag/index.htm
http://research.microsoft.com/~simonpj/papers/ndp
http://research.microsoft.com/~simonpj/papers/ndp
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://research.microsoft.com/~simonpj/papers/stm/
http://research.microsoft.com/~simonpj/papers/stm/
http://hackage.haskell.org/trac/ghc/wiki/MotivationForParallelization
http://hackage.haskell.org/trac/ghc/wiki/MotivationForParallelization
http://www.seas.upenn.edu/~lipeng/homepage/papers/lz07pldi.pdf
http://www.seas.upenn.edu/~lipeng/homepage/papers/lz07pldi.pdf

all of the above “in Haskell”. If you want a different
scheduler, just code it up in Haskell, and plug it in.

Peng has a prototype running, but it has to jump
the “Marlow barrier” of being virtually as fast as the
existing C runtime; so far we have not committed to
including this in GHC, and it certainly won’t be in
GHC 6.8. No paper yet, but look out for a Haskell
Workshop 2007 submission.

Programming environment

There have been some big developments in the pro-
gramming environment:

◦ Andy Gill implemented the Haskell Program Cover-
age (http://haskell.org/haskellwiki/GHC/HPC) option
(-fhpc) for GHC, which is solid enough to be used
to test coverage in GHC itself. (It turns out that the
GHC testsuite gives remarkably good coverage over
GHC already.)

◦ Pepe Iborra, Bernie Pope, and Simon Marlow have
leveraged the same “tick” points used in the Haskell
Program Coverage work to implement a breakpoint
debugger in GHCi http://hackage.haskell.org/trac/
ghc/wiki/NewGhciDebugger. Unlike HAT, which
transforms the whole program into a new program
that generates its own (massive) trace, this is a
cheap-and-cheerful debugger. It simply lets you set
breakpoints and look around to see what is in the
heap, more in the manner of a conventional debug-
ger. No need to recompile your program: it “just
works”.

◦ Aaron Tomb and Tim Chevalier are working on res-
urrecting External Core, whose implementation was
not only bit-rotted, but also poorly designed (by Si-
mon PJ). By GHC 6.8 we hope to be able to spit out
External Core for any program, perhaps transform
it in some external program, and read it in again,
surviving the round trip unscathed.

◦ It is now possible to compile to object code instead
of bytecode inside GHCi, simply by setting a flag
(-fobject-code).

◦ The GHC API has seen some cleanup, and it should
now be both more complete and slightly easier to
use. There is still plenty of work to do here, though.

◦ David Waern has been working on integrating Had-
dock and GHC during his Google Summer of Code
project last year. The parts of this project that
involved modifying GHC are done and integrated
into the GHC tree. The new version of Haddock
based on GHC is usable but still experimental;
the darcs repository is http://darcs.haskell.org/SoC/
haddock.ghc.

Libraries

◦ The set of “corelibs” has been further stream-
lined, with parsec, regex-base, regex-compat,
regex-posix and stm moved to extralibs in the
HEAD. This disentangles releases of these packages
from the GHC release process, and also means that
development builds of GHC are quicker as they don’t
need to build those libraries.

◦ We plan to extract parts of the base package into sep-
arate smaller packages; see http://www.haskell.org/
pipermail/libraries/2007-April/007342.html on the li-
braries mailing list.

2.2 Hugs

Report by: Ross Paterson
Status: stable, actively maintained,

volunteers welcome

The September 2006 release of Hugs fixes a few bugs
found in the previous release, and updates the libraries
to approximately match those of GHC 6.6, which was
about to release at the time. The Windows build is
now largely automated, thanks to Neil Mitchell, so it
is easier to produce more frequent releases.

As with the previous release, the source distribution
is available in two forms: a huge omnibus bundle con-
taining the Hugs programs and lots of useful libraries,
or a minimal bundle, with most of the libraries hived off
as separate Cabal packages. We hope that more library
packages will be released independently, so that Hugs
will become less reliant on development snapshots.

Obsolete non-hierarchical libraries will be removed
in the next major release.

As ever, volunteers are welcome.

2.3 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, compiler for Haskell’98.
Despite rumours to the contrary, nhc98 is still very
much alive and working, although it does not see much
new development these days. The current public re-
lease is version 1.18, with a new release expected soon
for compatibility with ghc-6.6 and the re-arranged hi-
erarchical libraries. We recently moved over to a darcs
repo for maintenance.

The Yhc (→ 2.4) fork of nhc98 is also making good
progress.

Further reading

◦ http://haskell.org/nhc98
◦ darcs get http://darcs.haskell.org/nhc98

12

http://haskell.org/haskellwiki/GHC/HPC
http://hackage.haskell.org/trac/ghc/wiki/NewGhciDebugger
http://hackage.haskell.org/trac/ghc/wiki/NewGhciDebugger
http://darcs.haskell.org/SoC/haddock.ghc
http://darcs.haskell.org/SoC/haddock.ghc
http://www.haskell.org/pipermail/libraries/2007-April/007342.html
http://www.haskell.org/pipermail/libraries/2007-April/007342.html
http://haskell.org/nhc98
http://darcs.haskell.org/nhc98

2.4 yhc

Report by: Neil Mitchell

The York Haskell Compiler (yhc) is a fork of the
nhc98 (→ 2.3) compiler, with goals such as increased
portability, platform independent bytecode, integrated
Hat support and generally being a cleaner code base
to work with. Yhc now compiles and runs almost all
Haskell 98 programs, has basic FFI support – the main
thing missing is haskell.org base libraries, which is be-
ing worked on.

Since that last HCAR we have focused on integrat-
ing the standard haskell.org libraries (we have gained
Data.Map and others) – but still have some way to
go. We have also enhanced our Yhc.Core library, gain-
ing many new users, and have produced an article
for The Monad.Reader (→ 1.5) on the applications of
Yhc.Core.

Further reading

◦ Homepage:
http://www.haskell.org/haskellwiki/Yhc

◦ Darcs repository:
http://darcs.haskell.org/yhc

13

http://www.haskell.org/haskellwiki/Yhc
http://darcs.haskell.org/yhc

3 Language

3.1 Variations of Haskell

3.1.1 Liskell

Report by: Clemens Fruhwirth
Status: experimental

When Haskell consists of Haskell semantics plus Haskell
syntax, then Liskell consists of Haskell semantics plus
Lisp syntax. Liskell is Haskell on the inside but looks
like Lisp on the outside, as in its source code it uses the
typical Lisp syntax forms, namely symbol expressions,
that are distinguished by their fully parenthesized pre-
fix notation form. Liskell captures the most Haskell
syntax forms in this prefix notation form, for instance:
if x then y else z becomes (if x y z), while a + b
becomes (+ a b).

Except for aesthetics, there is another argument for
Lisp syntax: meta-programming becomes easy. Liskell
features a different meta-programming facility than the
one found in Haskell with Template Haskell. Before
turning the stream of lexed tokens into an abstract
Haskell syntax tree, Liskell adds an intermediate pro-
cessing data structure: the parse tree. The parse tree is
essentially is a string tree capturing the nesting of lists
with their enclosed symbols stored as the string leaves.
The programmer can implement arbitrary code expan-
sion and transformation strategies before the parse tree
is seen by the compilation stage.

After the meta-programming stage, Liskell turns the
parse tree into a Haskell syntax tree before it sent to
the compilation stage. Thereafter the compiler treats it
as regular Haskell code and produces a Haskell calling
convention compatible output. You can use Haskell
libraries from Liskell code and vice versa.

Liskell is implemented as an extension to GHC
and its darcs branch is freely available from the
project’s website. The Liskell Prelude features a set
of these parse tree transformations that enables tra-
ditional Lisp-styled meta-programming as with def-
macro and backquoting. The project’s website demon-
strates meta-programming application such as proof-of-
concept versions of embedding Prolog inference, a min-
imalistic Scheme compiler and type-inference in meta-
programming.

The future development roadmap includes stabiliza-
tion of its design, improving the user experience for
daily programming – especially error reporting – and
improving interaction with Emacs.

Further reading

http://liskell.org

3.1.2 Haskell on handheld devices

Report by: Anthony Sloane
Participants: Michael Olney
Status: unreleased

The project at Macquarie University (→ 7.3.5) to run
Haskell on handheld devices based on Palm OS has a
running implementation for small tests but, like most
ports of languages to Palm OS, we are dealing with
memory allocation issues. Also, other higher priority
projects have now intervened so this project is going
into the background for a while.

3.1.3 Camila

Report by: Jácome Cunha and Joost Visser

The Camila project explores how concepts from the
VDM++ specification language and the functional pro-
gramming language Haskell can be combined. On one
hand, it includes experiments of expressing VDM’s
data types (e.g. maps, sets, sequences), data type
invariants, pre- and post-conditions, and such within
the Haskell language. On the other hand, it includes
the translation of VDM specifications into Haskell pro-
grams. Moreover, the use of the OOHaskell library (→
4.6.6) allows the definition of classes and objects and
enables important features such as inheritance. In
the near future, support for parallelism and automatic
translation of VDM++ specifications into Haskell will
be added to the libraries.

Camila goes beyond VDM++ and has support for
modelling software components. The work done until
now in this field is concerned with rendering and pro-
totyping (coalgebraic models of) software components
in Camila. To encourage the use of this technology
we have developed a tool to generate components from
Camila specifications. The advantage of component
based development is that it makes possible to con-
struct complex software from simple pre-existing build-
ing blocks. So we have also animated an algebra of
components to compose them in several ways. Finally
a way to animate components was also implemented.

Two implementation strategies were devised: one
in terms of a direct encoding in “plain” Haskell, an-
other resorting to type-level programming techniques,
the latter offered interesting particularities.

14

http://liskell.org

Further reading

The web site of Camila (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/Camila) provides documentation. Both
library and tool are distributed as part of the UMinho
Haskell Libraries and Tools.

3.2 Non-sequential Programming

3.2.1 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Abyd Al Zain, Greg

Michaelson, Kevin Hammond, Yang Yang,
Jost Berthold, Murray Gross

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

System Evaluation and Enhancement

◦ A major revision of the parallel runtime environment
for GHC 6.5 is currently under development. Sup-
port for the parallel language Eden (→ 3.2.2) exists
and is currently being tested. Support for the par-
allel language GpH is currently being added to this
version of the runtime environment.

◦ We have developed an adaptive runtime environ-
ment (GRID-GUM) for GpH on computational
grids. GRID-GUM incorporates new load man-
agement mechanisms that cheaply and effectively
combine static and dynamic information to adapt
to the heterogeneous and high-latency environment
of a multi-cluster computational grid. We have
made comparative measures of GRID-GUM’s per-
formance on high/low latency grids and heteroge-
neous/homogeneous grids using clusters located in
Edinburgh, Munich and Galashiels. Results are pub-
lished in:

Al Zain A. Implementing High-Level Parallelism on
Computational Grids, PhD Thesis, Heriot-Watt Uni-
versity, 2006.

Al Zain A. Trinder P.W. Loidl H.W. Michaelson G.J.
Managing Heterogeneity in a Grid Parallel Haskell,
Journal of Scalable Computing: Practice and Expe-
rience 7(3), (September 2006).

◦ SMP-GHC, an implementation of GpH for multi-core
machines has been developed by Tim Harris, Simon
Marlow and Simon Peyton Jones.

◦ At St Andrews GpH is being used as a vehicle for
investigating scheduling on the GRID.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universitat Mar-
burg.

GpH Applications

◦ GpH is being used to parallelise the GAP mathemat-
ical library in an EPSRC project (GR/R91298).

◦ As part of the SCIEnce EU FP6 I3 project
(026133) (→ 7.3.9) that started in April 2006 we
will use GpH and Java to provide access to Grid
services from Computer Algebra(CA) systems, in-
cluding GAP and Maple. We will both produce
Grid-parallel implementations of common CA library
functions, and also wrap CA systems as Grid ser-
vices.

Implementations

The GUM implementation of GpH is available in three
development branches.

◦ The focus of the development has switched to the
version based on GHC 6.5, and we plan to make an
early prototype available from the GpH web site later
this year.

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06. ’item A current unstable
branch (GUM-5.02, based on GHC-5.02) is available
on request.

Our main hardware platform are Intel-based Beowulf
clusters. Work on ports to other architectures is also
moving on (and available on request):

◦ A port to a Mosix cluster has been built in the
Metis project at Brooklyn College, with a first ver-
sion available on request from Murray Gross.

Further reading

◦ GpH Home Page:
http://www.macs.hw.ac.uk/~dsg/gph/

◦ Stable branch binary snapshot:
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.
06-snap-i386-unknown-linux.tar

◦ Stable branch installation instructions:
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM

Contact

〈gph@macs.hw.ac.uk〉, 〈mgross@dorsai.org〉

15

http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: mgross at dorsai.org

3.2.2 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps Universität Marburg, Germany and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Fernando Rubio, Clara Segura,
Alberto Verdejo

in Marburg: Rita Loogen, Jost Berthold, Steffen
Priebe, Mischa Dieterle

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement
parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in parallel.
Process instantiation is expressed by the predefined in-
fix operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining skele-
tons, ranging from a simple parallel map to sophisti-
cated replicated-worker schemes. They have been used
to parallelise a set of non-trivial benchmark programs.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén and Ri-
cardo Peña: Parallel Functional Programming in
Eden, Journal of Functional Programming 15(3), 2005,
pages 431–475.

Implementation

A major revision of the parallel Eden runtime envi-
ronment for GHC 6.7 is available on request. Support
for Glasgow parallel Haskell (GpH) is currently being
added to this version of the runtime environment. It is
planned for the future to maintain a common parallel
runtime environment for Eden, GpH and other parallel
Haskells.

Recent and Forthcoming Publications

◦ Steffen Priebe: Structured Generic Programming
in Eden, Department of Mathematics and Com-
puter Science Philipps-Universitaet Marburg, Febru-
ary 2007.

◦ Jost Berthold and Rita Loogen: Visualising Par-
allel Functional Program Runs - Case Studies with
the Eden Trace Viewer, Parallel Computing (ParCo)
2007, September 2007.

◦ Jost Berthold, Mischa Dieterle, Rita Loogen, Stef-
fen Priebe: Hierarchical Master-Worker Skeletons,
Symposium on Trends in Functional Programming
(TFP), New York, April 2007.

◦ Jost Berthold, Abyd Al-Zain, and Hans-Wolfgang
Loidl: Adaptive High-Level Scheduling in a Generic
Parallel Runtime Environment, Symposium on
Trends in Functional Programming (TFP), New
York, April 2007.

◦ Jost Berthold, Rita Loogen: Parallel Coordination
Made Explicit in a Functional Setting. In Zoltón
Horáth and Viktória Zsók, editors, 18th Intl. Sympo-
sium on the Implementation of Functional Languages
(IFL 2006), LNCS 4449, pp 73–90, Springer 2007.
Awarded best paper of IFL 2006 (Peter Landin-Prize
2006).

◦ Mercedes Hidalgo-Herrero, Yolanda Ortega-Mallén,
Fernando Rubio: Comparing Alternative Evaluation
Strategies for Stream-based Parallel Functional Lan-
guages. In Zoltón Horáth and Viktória Zsók, edi-
tors, 18th Intl. Symposium on the Implementation
of Functional Languages (IFL 2006), LNCS 4449,
Springer 2007.

◦ Mercedes Hidalgo-Herrero, Alberto Verdejo, Yolanda
Ortega-Mallén: Using Maude and its strategies for
defining a framework for analyzing Eden semantics,
WRS 06 (6th International Workshop on Reduction
Strategies in Rewriting and Programming), Aachen
2006, Electronic Notes in Theoretical Computer Sci-
ence, to appear.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.3 Type System/Program Analysis

3.3.1 Epigram

Report by: Conor McBride and Wouter Swierstra

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive

16

http://www.mathematik.uni-marburg.de/~eden

editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-
ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in ‘The view from the left’ by Conor McBride
and James McKinna (JFP 14 (1)).

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program won’t crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.

Specifically, Epigram is designed to support pro-
gramming with inductive datatype families indexed
by data. Examples include matrices indexed by
their dimensions, expressions indexed by their types,
search trees indexed by their bounds. In many ways,
these datatype families are the progenitors of Haskell’s
GADTs, but indexing by data provides both a con-
ceptual simplification – the dimensions of a matrix are
numbers – and a new way to allow data to stand as
evidence for the properties of other data. It is no good
representing sorted lists if comparison does not produce
evidence of ordering. It is no good writing a type-safe
interpreter if one’s typechecking algorithm cannot pro-
duce well-typed terms.

Programming with evidence lies at the heart of Epi-
gram’s design. Epigram generalises constructor pattern
matching by allowing types resembling induction prin-
ciples to express as how the inspection of data may
affect both the flow of control at run time and the text
and type of the program in the editor. Epigram ex-
tracts patterns from induction principles and induction
principles from inductive datatype families.

Current Status

Whilst at Durham, Conor McBride developed the Epi-
gram prototype in Haskell, interfacing with the xemacs
editor. Nowadays, a team of willing workers at the Uni-
versity of Nottingham are developing a new version of
Epigram, incorporating both significant improvements
over the previous version and experimental features
subject to active research.

The Epigram system is also being used success-
fully by Thorsten Altenkirch, and more recently Conor
McBride, in an undergraduate course on Computer
Aided Formal Reasoning for two years http://www.
e-pig.org/darcs/g5bcfr/. Several final year students
have successfully completed projects that involved both
new applications of and useful contributions to Epi-
gram.

Peter Morris is working on how to build the datatype
system of Epigram from a universe of containers. This
technology would enable datatype generic program-
ming from the ground up. Central to these ideas is
the concept of indexed container that has been devel-
oped recently. There are ongoing efforts to elaborate
the ideas in Edwin Brady’s PhD thesis about efficiently
compiling dependently typed programming languages.

We have started writing a stand-alone editor for Epi-
gram using Gtk2Hs (→ 4.8.3). Thanks to a most help-
ful visit from Duncan Coutts and Axel Simon, two lead-
ing Gtk2Hs developers, we now have the beginnings of
a structure editor for Epigram 2. For the moment, we
are also looking into a cheap terminal front-end.

There has also been steady progress on Epigram 2
itself. Most of the recent progress has been on the type
theoretic basis underpinning Epigram. A new represen-
tation of the core syntax has been designed to facilitate
bidirectional type checking. The semantics of individ-
ual terms are glued to their syntactical representation.
We have started implementing observational equality,
combining the benefits of both intensional and exten-
sional notions of equality. The lion’s share of the core
theory has already been implemented, but there is still
plenty of work to do.

Whilst Epigram seeks to open new possibilities
for the future of strongly typed functional program-
ming, its implementation benefits considerably from
the present state of the art. Our implementation makes
considerable use of applicative functors, higher-kind
polymorphism and type classes. Moreover, its denota-
tional approach translates Epigram’s lambda-calculus
directly into Haskell’s. On a more practical note, we
have recently shifted to the darcs version control sys-
tem and cabal framework.

Epigram source code and related research papers
can be found on the web at http://www.e-pig.org and
its community of experimental users communicate via
the mailing list 〈epigram@durham.ac.uk〉. The current
implementation is naive in design and slow in prac-
tice, but it is adequate to exhibit small examples of
Epigram’s possibilities. The new implementation will
be much less rudimentary. At the moment, there
is direct low-level interface to the state of the proof
state called Ecce. Its documentation, together with
other Epigram 2 design documents, can be found at
http://www.e-pig.org/epilogue/.

3.3.2 Chameleon project

Report by: Martin Sulzmann

Chameleon is a Haskell style language which integrates
sophisticated reasoning capabilities into a program-
ming language via its CHR programmable type system.
Thus, we can program novel type system applications

17

http://www.e-pig.org/darcs/g5bcfr/
http://www.e-pig.org/darcs/g5bcfr/
http://www.e-pig.org
mailto: epigram at durham.ac.uk
http://www.e-pig.org/epilogue/

in terms of CHRs which previously required special-
purpose systems.

Chameleon including examples and documenta-
tion is available via http://taichi.ddns.comp.nus.edu.sg/
taichiwiki/ChameleonHomePage

Latest developments

The latest developments mostly concern the transfer of
ideas/methods found in Chameleon to other systems.
For example, implication constraints as pioneered in
Chameleon have found their way into GHC 6.6. We
also plan to integrate some of Chameleon’s type infer-
ence capabilities into Tim Sheard’s Omega.

3.3.3 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu and

Martin Sulzmann

XHaskell is an extension of Haskell with XDuce
style regular expression types and regular expres-
sion pattern matching. We have much improved
the implementation which can found under the
XHaskell home-page: http://taichi.ddns.comp.nus.edu.
sg/taichiwiki/XhaskellHomePage

Latest developments

We are currently working on the integration of type
classes. A new version is planned for June 2007.

3.3.4 ADOM: Agent Domain of Monads

Report by: Martin Sulzmann
Participants: Edmund S. L. Lam and Martin Sulzmann

ADOM is an agent-oriented extension of Haskell with
a unique approach to the implementation of cognitive
Belief-Desire-Intention (BDI) agents. In ADOM, agent
reasoning operations are viewed as monadic computa-
tions. Agent reasoning operations can be stratified:
Low-level reasoning operations involve the agents be-
liefs and actions whereas high-level reasoning opera-
tions involve the agents goals and plans. Monads al-
low us to compose various levels of reasoning together,
while maintaining clear and distinct separation be-
tween the different levels. ADOM can be used directly
as an agent-oriented domain specific language, or used
to build more higher level BDI agent abstractions on
top of it (eg. AgentSpeak, 3APL). ADOM also intro-
duces the use of Constraint Handling Rules (CHR), em-
bedded with Haskell, to directly model the agent’s be-
lief of its dynamically changing domain (world) and it’s

actions which invoke change to it’s domain. The key
advantage of our approach are:

◦ CHRs provides a clear and concise representation
and implementation of dynamically changing agent
beliefs and actions.

◦ Stratifying the various levels of agent cognitive rea-
soning by monads, maintains a distinct separation
between different reasoning computations and their
responsibilities. We can also preserve certain desir-
able properties possessed by each level of computa-
tions. For example, CHR notion of observable con-
fluence.

◦ Monadic computations can be composed to form
more complex computations, hence ADOM can be
easily extended with more complex functionalities.
For example, we can build higher level monadic com-
putations that implements other BDI frameworks,
like agentspeak or 3APL.

Further reading

More information on ADOM can be found
here http://taichi.ddns.comp.nus.edu.sg/taichiwiki/
ADOMHomePage

Latest developments

We are working on a much improved version which is
scheduled for June 2007.

3.3.5 EHC, ‘Essential Haskell’ Compiler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Jeroen Fokker, Arie

Middelkoop, Doaitse Swierstra
Status: active development

The purpose of the EHC project is to provide a descrip-
tion of a Haskell compiler which is as understandable
as possible so it can be used for education as well as
research.

For its description an Attribute Grammar system
(AG) (→ 4.3.3) is used as well as other formalisms al-
lowing compact notation like parser combinators. For
the description of type rules, and the generation of an
AG implementation for those type rules, we use the
Ruler system (→ 5.5.3) (included in the EHC project).

The EHC project also tackles other issues:

◦ In order to avoid overwhelming the innocent reader,
the description of the compiler is organised as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus.

18

http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ChameleonHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ChameleonHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ADOMHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ADOMHomePage

◦ Each step corresponds to an actual, that is, an exe-
cutable compiler. Each of these compilers is a com-
piler in its own right so experimenting can be done in
isolation of additional complexity introduced in later
steps.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Currently EHC already incorporates more advanced
features like higher-ranked polymorphism, partial type
signatures, class system, explicit passing of implicit pa-
rameters (i.e. class instances), extensible records, kind
polymorphism.

Part of the description of the series of EH compilers
is available as a PhD thesis, which incorporates previ-
ously published material on the EHC project.

The compiler is used for small student projects as
well as larger experiments such as the incorporation of
an Attribute Grammar system.

Current activities

We are currently working on the following:

◦ A Haskell98 frontend, supporting most of Haskell98,
done by Atze Dĳkstra.

◦ A GRIN (Graph Reduction Intermediate Notation,
see below) like backend, which allows experimenting
with global program optimization. This is done by
Jeroen Fokker.

◦ Arie Middelkoop will continue with the development
of the Ruler system (→ 5.5.3).

Further reading

◦ Homepage:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

◦ Attribute grammar system:
http://www.cs.uu.nl/wiki/HUT/
AttributeGrammarSystem

◦ Parser combinators:
http://www.cs.uu.nl/wiki/HUT/ParserCombinators

◦ GRIN:
Urban Boquist, Code Optimisation Techniques for
Lazy Functional Languages, PhD Thesis, Chalmers
University of Technology 1999
http://www.cs.chalmers.se/~boquist/phd/index.html

3.3.6 Uniqueness Typing

Report by: Edsko de Vries
Participants: Rinus Plasmeĳer, David M Abrahamson
Status: ongoing

An important feature of pure functional programming
languages is referential transparency. A consequence

of referential transparency is that functions cannot be
allowed to modify their arguments, unless it can be
guaranteed that they have the sole reference to that
argument. This is the basis of uniqueness typing.

We have been developing a uniqueness type system
based on that of the language Clean but with vari-
ous improvements: no subtyping is required, and the
type language does not include constraints (types in
Clean often involve implications between uniqueness
attribute). This makes the type system sufficiently sim-
ilar to standard Hindley/Milner type systems that (1)
standard inference algorithms can be applied, and (2)
that modern extensions such as arbitrary rank types
and generalized algebraic data types (GADTs) can eas-
ily be incorporated.

Although our type system is developed in the con-
text of the language Clean, it is also relevant to Haskell
because the core uniqueness type system we propose is
very similar to the Haskell’s core type system. More-
over, we are currently working on defining syntactic
conventions, which programmers can use to write type
annotations, and compilers can use to report types,
without mentioning uniqueness at all.

Further reading

◦ Edsko de Vries, Rinus Plasmeĳer and David Abra-
hamson, “Equality-Based Uniqueness Typing”. Pre-
sented at TFP 2007, submitted for post-proceedings.

◦ Edsko de Vries, Rinus Plasmeĳer and David Abra-
hamson, “Uniqueness Typing Redefined”, in Z.
Horváth, V. Zsók, and Andrew Butterfield (Eds.):
IFL 2006, LNCS 4449 (to appear).

3.3.7 Uniqueness Typing in EHC

Report by: Arie Middelkoop
Participants: Arie Middelkoop, Jurriaan Hage
Status: Prototype finished

Uniqueness typing is a type system feature of the func-
tional programming language Clean to identify unique
values. The space these values occupy can be recycled
directly after their only use, thus enabling a form of
static garbage collection that greatly improves the effi-
ciency of functional programs. Our goal is to take this
idea, and use it to produce more efficient Haskell code.

This project consists of two parts: an analysis to de-
termine which values are unique (front-end), and a code
specializer that uses the analysis results to optimize
memory management (back-end). We did focus on the
front-end part and implemented a prototype using the
Essential Haskell (→ 3.3.5) project as a research vehi-
cle. Code generation is ongoing work of the Essential
Haskell project, and we intent to integrate the results
of the uniqueness analysis in a later phase.

Our uniqueness analyzer works as follows. Each type

19

http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.chalmers.se/~boquist/phd/index.html

constructor of a well-typed program is annotated with a
fresh identifier called the uniqueness annotation. From
the structure of the AST, we generate a bunch of con-
straints between these annotations. Solving the con-
straints gives a local reference count (taking the current
slice of the program into account) and global reference
count (taking the whole program into account) of each
annotation. The global reference count is constructed
from the local reference counts and serves as an ap-
proximation of an upper bound to the actual usage of
a value. (Sub)values that end up with an upper bound
are considered unique, others are shared.

Further reading

◦ Master’s thesis:
http://abaris.zoo.cs.uu.nl:8080/wiki/pub/Top/
Publications/uniqueness.pdf

◦ Sources:
https://svn.cs.uu.nl:12443/repos/EHC/branches/
uniqueness/EHC/

◦ EH project page:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

3.3.8 Object-Oriented Haskell

Report by: Glenn Strong
Status: ongoing

A set of type and other extensions to a Haskell-derived
language to support the general notion of Object-
Oriented programming. An interpreter is under con-
struction to provide a programming environment. No
public release is currently available as the system is not
yet usable.

3.4 IO

3.4.1 Formal Aspects of Pure Functional I/O

Report by: Andrew Butterfield
Participants: Andrew Butterfield, Glenn Strong,

Malcolm Dowse
Status: ongoing

We are particularly interested in formal models of the
external effects of I/O in pure lazy functional lan-
guages. The emphasis is on reasoning about how pro-
grams affect their environment, rather than the issue
of which programs have identical I/O behaviour.

Further reading

BS01 Andrew Butterfield and Glenn Strong, “Prov-
ing correctness of programs with I/O — a paradigm
comparison”, in Thomas Arts and Markus Mohnen,
editors, Proceedings of the 13th International Work-
shop, IFL2001, LNCS 2312, pages 72–87, 2001.

BDS02 Malcolm Dowse, Glenn Strong, and Andrew
Butterfield, “Proving make correct — I/O proofs in
Haskell and Clean”, in Ricardo Peña and Thomas
Arts, editors, Proceedings of IFL 2002, LNCS 2670,
pages 68–83, 2002

BDE04 Malcolm Dowse, Andrew Butterfield, and
Marko van Eekelen, “Reasoning about determinis-
tic concurrent functional i/o”, in Clemens Grelck,
Frank Huch, and Phil Trinder, editors, IFL’04 - Re-
vised Papers, LNCS 3474, 2005.

BD06 Malcolm Dowse, Andrew Butterfield, “Mod-
elling Deterministic Concurrent I/O”, in Julia
Lawall, editor, ICFP 2006, Portland, September 18–
20, 2006.

20

http://abaris.zoo.cs.uu.nl:8080/wiki/pub/Top/Publications/uniqueness.pdf
http://abaris.zoo.cs.uu.nl:8080/wiki/pub/Top/Publications/uniqueness.pdf
https://svn.cs.uu.nl:12443/repos/EHC/branches/uniqueness/EHC/
https://svn.cs.uu.nl:12443/repos/EHC/branches/uniqueness/EHC/
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

4 Libraries

4.1 Packaging and Distribution

4.1.1 Core

Report by: Bulat Ziganshin
Status: experimental

Thanks to Cabal, we can now easily upgrade any in-
stalled library to a new version. There is only one ex-
ception: the Base library is closely tied to compiler
internals, so you cannot use the Base library shipped
with GHC 6.4 in GHC 6.6 and vice versa.

The Core library is a project of dividing the Base li-
brary into two parts – a small compiler-specific one (the
Core library proper) and the rest – a new, compiler-
independent Base library that uses only services pro-
vided by the Core lib.

Then, any version of the Base library can be used
with any version of the Core library, i.e. with any com-
piler. Moreover, it means that the Base library will be-
come available for the new compilers, like yhc (→ 2.4)
and jhc – this will require adding to the Core lib only a
small amount of code implementing low-level compiler-
specific functionality.

The Core library consists of directories GhcCore,
HugsCore . . . implementing compiler-specific function-
ality and Core directory providing common interface
to this functionality, so that external libs should im-
port only Core.* modules in order to be compiler-
independent.

In practice, the implementation of the Core lib be-
came a refactoring of the GHC.* modules by splitting
them into GHC-specific and compiler-independent
parts. Adding implementations of compiler-specific
parts for other compilers will allow us to compile the
refactored Base library with any compiler, including old
versions of GHC. At this moment, the following mod-
ules were succesfully refactored: GHC.Arr, GHC.Base,
GHC.Enum, GHC.Float, GHC.List, GHC.Num,
GHC.Real, GHC.Show, GHC.ST, GHC.STRef; the
next step is to refactor IO functionality.

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/Core

◦ Download:
http://www.haskell.org/library/Core.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.2 General libraries

4.2.1 Test.IOSpec

Report by: Wouter Swierstra
Status: active development

The Test.IOSpec library provides a pure specification
of several functions in the IO monad. This may be of
interest to anyone who wants to debug, reason about,
analyse, or test impure code.

The Test.IOSpec library is essentially a drop-in re-
placement for several other modules, most notably
Data.IORef and Control.Concurrent. Once you’re sat-
isfied that your functions are reasonably well-behaved
with respect to the pure specification, you can drop the
Test.IOSpec import in favour of the “real” IO modules.

There’s still quite some work to be done. First
and foremost, I’d like to make it easier to combine
different modules. Furthermore, I’d also like to add
new modules providing specifications of other parts
of the IO monad: Control.Concurrent.STM and Con-
trol.Exception are two prime candidates.

If you use Test.IOSpec for anything useful at all, I’d
love to hear from you.

Further reading

http://www.cs.nott.ac.uk/~wss/repos/IOSpec/

4.2.2 PFP – Probabilistic Functional Programming
Library for Haskell

Report by: Martin Erwig
Participants: Steve Kollmansberger
Status: mostly stable

The PFP library is a collection of modules for Haskell
that facilitates probabilistic functional programming,
that is, programming with stochastic values. The prob-
abilistic functional programming approach is based on
a data type for representing distributions. A distri-
bution represent the outcome of a probabilistic event
as a collection of all possible values, tagged with their
likelihood.

A nice aspect of this system is that simulations can
be specified independently from their method of execu-
tion. That is, we can either fully simulate or randomize
any simulation without altering the code which defines
it.

21

http://haskell.org/haskellwiki/Library/Core
http://www.haskell.org/library/Core.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://www.cs.nott.ac.uk/~wss/repos/IOSpec/

The library was developed as part of a simulation
project with biologists and genome researchers. We
originally had planned to apply the library to more
examples in this area, however, the student working in
this area has left, so this project is currently in limbo.

No changes since the last report. For the next ver-
sion, some refactorings are planned. Several variations
of this library seem to have evolved. Somebody is also
working on a documentation. Maybe all the different
threads should be brought together on one web page?

Further reading

http://eecs.oregonstate.edu/~erwig/pfp/

4.2.3 GSLHaskell

Report by: Alberto Ruiz
Status: active development

GSLHaskell is a simple library for linear algebra and
numerical computation, internally implemented using
GSL, BLAS and LAPACK. The goal is to achieve the
functionality and performance of GNU-Octave and sim-
ilar systems. Recent dev elopments include important
bugfixes and the interface to additional LAPACK func-
tions. A brief manual is available at the URL below.

This library is used in the easyVision project (→
6.19).

Further reading

http://dis.um.es/~alberto/GSLHaskell

4.2.4 An Index Aware Linear Algebra Library

Report by: Frederik Eaton
Status: unstable; actively maintained

The index aware linear algebra library is a Haskell in-
terface to a set of common vector and matrix oper-
ations. The interface exposes index types to the type
system so that operand conformability can be statically
guaranteed. For instance, an attempt to add or multi-
ply two incompatibly sized matrices is a static error.

The library should still be considered alpha quality.
A backend for sparse vector types is near completion,
which allows low-overhead “views” of tensors as arbi-
trarily nested vectors. For instance, a matrix, which we
represent as a tuple-indexed vector, could also be seen
as a (rank 1) vector of (rank 1) vectors. These different
views usually produce different behaviours under com-
mon vector operations, thus increasing the expressive
power of the interface.

Further reading

◦ Original announcement:
http://article.gmane.org/gmane.comp.lang.haskell.
general/13561

◦ Library:
http://ofb.net/~frederik/stla/

4.2.5 Haskell Rules: Embedding Rule Systems in
Haskell

Report by: Martin Erwig
Participants: Steve Kollmansberger
Status: mostly stable

Haskell Rules is a domain-specific embedded language
that allows semantic rules to be expressed as Haskell
functions. This DSEL provides logical variables, unifi-
cation, substitution, non-determinism, and backtrack-
ing. It also allows Haskell functions to be lifted to
operate on logical variables. These functions are au-
tomatically delayed so that the substitutions can be
applied. The rule DSEL allows various kinds of logi-
cal embedding, for example, including logical variables
within a data structure or wrapping a data structure
with a logical wrapper.

No changes since last report. No plans for future
versions.

Further reading

http://eecs.oregonstate.edu/~erwig/HaskellRules/

4.3 Parsing and transforming

4.3.1 InterpreterLib

Report by: Jennifer Streb
Participants: Garrin Kimmell, Nicolas Frisby, Mark

Snyder, Philip Weaver, Jennifer Streb,
Perry Alexander

Maintainer: Garrin Kimmell, Nicolas Frisby
Status: beta, actively developed

The InterpreterLib library is a collection of modules
for constructing composable, monadic interpreters in
Haskell. The library provides a collection of functions
and type classes that implement semantic algebras in
the style of Hutton and Duponcheel. Datatypes for re-
lated language constructs are defined as non-recursive
functors and composed using a higher-order sum func-
tor. The full AST for a language is the least fixed
point of the sum of its constructs’ functors. To de-
note a term in the language, a sum algebra combinator
composes algebras for each construct functor into a se-
mantic algebra suitable for the full language and the
catamorphism introduces recursion. Another piece of
InterpreterLib is a novel suite of algebra combinators

22

http://eecs.oregonstate.edu/~erwig/pfp/
http://dis.um.es/~alberto/GSLHaskell
http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://ofb.net/~frederik/stla/
http://eecs.oregonstate.edu/~erwig/HaskellRules/

conducive to monadic encapsulation and semantic re-
use. The Algebra Compiler, an ancillary preprocessor
derived from polytypic programming principles, gener-
ates functorial boilerplate Haskell code from minimal
specifications of language constructs. As a whole, the
InterpreterLib library enables rapid prototyping and
simplified maintenance of language processors.

InterpreterLib is available for download at the link
provided below. Version 1.0 of InterpreterLib was re-
leased in April 2007.

Further reading

http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

〈nfrisby@ittc.ku.edu〉

4.3.2 hscolour

Report by: Malcolm Wallace
Status: stable, maintained

HsColour is a small command-line tool (and Haskell
library) that syntax-colorises Haskell source code for
multiple output formats. It consists of a token lexer,
classification engine, and multiple separate pretty-
printers for the different formats. Current supported
output formats are ANSI terminal codes, HTML (with
or without CSS), and LaTeX. In all cases, the colours
and highlight styles (bold, underline, etc) are config-
urable. It can additionally place HTML anchors in
front of declarations, to be used as the target of links
you generate in Haddock documentation.

HsColour is widely used to make source code in blog
entries look more pretty, to generate library documen-
tation on the web, and to improve the readability of
ghc’s intermediate-code debugging output.

Further reading

◦ http://www.cs.york.ac.uk/fp/darcs/hscolour

4.3.3 Utrecht Parsing Library and Attribute
Grammar System

Report by: Doaitse Swierstra and Jeroen Fokker
Status: Released as cabal packages

The Utrecht attribute grammar system has been ex-
tended:

◦ the attribute flow analysis has been completely im-
plemented by Joost Verhoog, and it is now possible

to generate visit-function based evaluators, which are
much faster and use less space. We assume that such
functions are strict in all their arguments, and gen-
erate the appropriate ‘seq‘ calls to make the GHC
aware of this. As a result also case’s are generated
instead on let’s wherever possible.

Since the last report several improvements were
made: better error reporting of cyclic dependencies,
and a large speed improvements in the overall flow
analysis have been made. The first versions of the
EHC now compile without circularities, nor direct
nor induced by fixing the attribute evaluation orders

◦ we are adding better support for higher order at-
tribute grammars and forwarding rules

◦ Tthe error correcting strategies of the parser com-
binators are now being used as a base for providing
automatic feedback in systems for training strategies
(Johan Jeuring, Arthur van Leeuwen)

◦ a start has been made with providing Haddock in-
formation with the code of the parser combinators

◦ we plan to enhance the parser combinators with
a second basic parsing engine, in order to support
monadic uses of the combinators while keeping the
error correcting capabilities

The software is again available through the Haskell
Utrecht Tools page. (http://www.cs.uu.nl/wiki/HUT/
WebHome).

4.3.4 Left-Recursive Parser Combinators

Report by: Richard A. Frost
Participants: Rahmatullah Hafiz, Paul Callaghan
Status: Pre-release

Existing parser combinators cannot accommodate left-
recursive grammars. In some applications, this short-
coming requires grammars to be rewritten to non-left-
recursive form which may hinder definition of the as-
sociated semantic functions. In applications that in-
volve ambiguous pattern-matching, such as NLP, the
rewriting to non-left-recursive form may result in loss
of parses.

In our project, we have developed combinators which
accommodate ambiguity and left-recursion (both direct
and indirect) in polynomial time, and which gener-
ate polynomial-sized representations of the exponen-
tial number of parse trees corresponding to highly-
ambiguous input. The compact representations are
similar to those generated by Tomita’s algorithm.

Polynomial complexity for ambiguous grammars is
achieved through memoization of fully-backtracking
combinators. Systematic memoization is implemented
using monads. Direct left-recursion is accommodated
by storing additional data in the memotable which is

23

http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: nfrisby at ittc.ku.edu
http://www.cs.york.ac.uk/fp/darcs/hscolour
http://www.cs.uu.nl/wiki/HUT/WebHome
http://www.cs.uu.nl/wiki/HUT/WebHome

used to curtail recursive descent when no parse is pos-
sible. Indirect left recursion is accommodated by use of
the context in which results are created and the context
in which they are subsequently considered for re-use.

We have implemented our approach in Haskell, and
are in the process of optimizing the code and preparing
it for release in December of 2006.

Further reading

A technical report with definitions, proofs of termi-
nation and complexity, and reference to publications,
is available at: http://cs.uwindsor.ca/~richard/GPC/
TECH_REPORT_06_022.pdf

4.3.5 RecLib – A Recursion and Traversal Library
for Haskell

Report by: Martin Erwig
Participants: Deling Ren
Status: mostly stable

The Recursion Library for Haskell provides a rich set
of generic traversal strategies to facilitate the flexible
specification of generic term traversals. The underly-
ing mechanism is the Scrap Your Boilerplate (SYB)
approach. Most of the strategies that are used to im-
plement recursion operators are taken from Stratego.

The library is divided into two layers. The high-level
layer defines a universal traverse function that can be
parameterized by five aspects of a traversal.

The low-level layer provides a set of primitives that
can be used for defining more traversal strategies not
covered in the library. Two fixpoint strategies innter-
most and outermost are defined to demonstrate the
usage of the primitives. The design and implementa-
tion of the library is explained in a paper listed on the
project web page.

No changes since last report. No plans for future
versions.

Further reading

http://eecs.oregonstate.edu/~erwig/reclib/

4.4 System

4.4.1 Harpy

Report by: Martin Grabmüller and Dirk Kleeblatt
Status: experimental

Harpy is a library for run-time code generation of IA-32
machine code. It provides not only a low level interface
to code generation operations, but also a convenient do-
main specific language for machine code fragments, a

collection of code generation combinators and a disas-
sembler. We use it in two independent (unpublished)
projects: On the one hand, we are implementing a just-
in-time compiler for functional programs, on the other
hand, we use it to implement an efficient type checker
for a dependently typed language. It might be useful
in other domains, where specialised code generated at
run-time can improve performance.

Harpy’s implementation makes use of the foreign
function interface, but only contains functions written
in Haskell. Moreover, it has some uses of other interest-
ing Haskell extensions as for example multi-parameter
type classes to provide an in-line assembly language,
and Template Haskell to generate stub functions to call
run-time generated code. The disassembler uses Parsec
to parse the instruction stream.

We intend to implement supporting operations for
garbage collectors cooperating with run-time generated
code.

We made an initial public release, and are now look-
ing forward to ideas from the community to show some
further uses of run-time code generation in Haskell.

Further reading

http://uebb.cs.tu-berlin.de/harpy/

4.4.2 hs-plugins

Report by: Don Stewart
Status: maintained

hs-plugins is a library for dynamic loading and run-
time compilation of Haskell modules, for Haskell and
foreign language applications. It can be used to im-
plement application plugins, hot swapping of modules
in running applications, runtime evaluation of Haskell,
and enables the use of Haskell as an application exten-
sion language.

hs-plugins has been ported to GHC 6.6.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hs-plugins/

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

24

http://cs.uwindsor.ca/~richard/GPC/TECH_REPORT_06_022.pdf
http://cs.uwindsor.ca/~richard/GPC/TECH_REPORT_06_022.pdf
http://eecs.oregonstate.edu/~erwig/reclib/
http://uebb.cs.tu-berlin.de/harpy/
http://www.cse.unsw.edu.au/~dons/hs-plugins/
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

4.4.3 The libpcap Binding

Report by: Dominic Steinitz
Participants: Greg Wright, Dominic Steinitz, Nicholas

Burlett

Nicholas Burlett has now created a cabalized version
and made it available on hackage. However, beware
that this doesn’t use autoconf to check your system
supports sa_len and it doesn’t check which version of
libpcap is installed. It will probably work but may not.
If it doesn’t then try this:

darcs get

http://www.haskell.org/networktools/src/pcap

◦ Install libpcap. I used 0.9.4.
◦ autoheader
◦ autoconf
◦ ./configure
◦ hsc2hs Pcap.hsc
◦ ghc -o test test.hs --make -lpcap -fglasgow-exts

All contributions are welcome especially if you know
how to get cabal to run autoconf and check for versions
of non-Haskell libraries.

4.4.4 Streams

Report by: Bulat Ziganshin
Status: beta, actively developed

Streams is the new I/O library developed to extend ex-
isting Haskell’s Handle-based I/O features. It includes:
◦ Hugs (→ 2.2) and GHC (→ 2.1) compatibility
◦ Lightning speed (up to 100 times faster than Handle-

based I/O)
◦ UTF-8 and other Char encodings for text I/O
◦ Various stream types (files, memory-mapped files,

memory and string buffers, pipes)
◦ Binary I/O and serialization facilities (see AltBinary

lib (→ 4.7.1))
◦ Support for streams working in IO, ST and other

monads
The main idea of the library is its clear class-based

design that allows to split all functionality into a set
of small maintainable modules, each of which supports
one type of streams (file, memory buffer . . .) or one
feature (locking, buffering, Char encoding . . .). The
interface of each such module is fully defined by some
type class (Stream, MemoryStream, TextStream), so
the library can be easily extended by third party mod-
ules that implement additional stream types (network
sockets, array buffers . . .) and features (overlapped
I/O . . .).

The new version 0.2 adds support for memory-
mapped files, files >4GB on Windows, ByteString I/O,
full backward compatibility with the NewBinary li-
brary (both byte-aligned and bit-aligned modes), more
orthogonal serialization API, serialization from/to
memory buffer, and even better speed. Sorry, it was
never documented

The upcoming version 0.3 will provide automatic
buffer deallocation using ForeignPtrs, serialization
from/to ByteStrings, full backward compatibility with
Handle-base I/O and, hopefully, full documentation for
all its features.

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/Streams

◦ Download:
http://www.haskell.org/library/Streams.tar.gz http://
www.haskell.org/library/StreamsBeta.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.4.5 System.FilePath

Report by: Neil Mitchell

System.FilePath is a library for manipulating
FilePath’s in Haskell programs. This library is
Posix (Linux) and Windows capable – just import
System.FilePath and it will pick the right one. It is
written in Haskell 98 + Hierarchical Modules. There
are features to manipulate the extension, filename,
directory structure etc. of a FilePath.

This library has now been incorporated into the set
of standard libraries distributed with all Haskell com-
pilers. From GHC 6.6.1 onwards, the filepath library
is always available. Version 1.0 of this library has been
released, and no further changes are envisaged.

Further reading

http://www-users.cs.york.ac.uk/~ndm/filepath/

4.4.6 hinotify

Report by: Lennart Kolmodin
Status: alive

hinotify is a simple Haskell wrapper for the Linux ker-
nel’s inotify mechanism. inotify allows applications to
watch file changes since Linux kernel 2.6.13. You can
for example use it to do a proper locking procedure on
a set of files, or keep your application up do date on a
directory of files in a fast and clean way.

25

http://www.haskell.org/networktools/src/pcap
http://haskell.org/haskellwiki/Library/Streams
http://www.haskell.org/library/Streams.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://www-users.cs.york.ac.uk/~ndm/filepath/

hinotify is still a very young library and might still be
a bit rough around the edges. Next updates will include
non-threading support and perhaps a little reworked
API.

Further reading

◦ Development version:
darcs get
http://www.haskell.org/~kolmodin/code/hinotify/

◦ Latest released version:
http://www.haskell.org/~kolmodin/code/hinotify/
download/

◦ Documentation:
http://www.haskell.org/~kolmodin/code/hinotify/
docs/api

◦ inotify:
http://www.kernel.org/pub/linux/kernel/people/rml/
inotify/

4.5 Databases and data storage

4.5.1 CoddFish

Report by: Alexandra Silva and Joost Visser

The CoddFish library provides a strongly typed model
of relational databases and operations on them, which
allows for static checking of errors and integrity at com-
pile time. Apart from the standard relational database
operations, it allows the definition of functional depen-
dencies and, therefore, provides normal form verifica-
tion and database transformation operations.

The library makes essential use of the HList li-
brary (→ 4.6.6), which provides arbitrary-length tu-
ples (or heterogeneous lists), and makes extensive use
of type-level programming with multi-parameter type
classes.

CoddFish lends itself as a sandbox for the design
of typed languages for modeling, programming, and
transforming relational databases.

Currently, a reimplementation of CoddFish based
on GADTs is underway.

Further reading

◦ Project URL:

http://wiki.di.uminho.pt/wiki/bin/view/PURe/
CoddFish

◦ Paper: Alexandra Silva and Joost Visser, Strong
Types for Relational Databases (Functional Pearl),
in Proceedings of Haskell Workshop 2006

4.5.2 Takusen

Report by: Alistair Bayley and Oleg Kiselyov
Status: active development

Takusen is a library for accessing DBMS’s. Like
HSQL, we support arbitrary SQL statements (currently
strings, extensible to anything that can be converted to
a string).

Takusen’s ‘unique-selling-point’ is safety and effi-
ciency. We statically ensure all acquired database re-
sources such as cursors, connection and statement han-
dles are released, exactly once, at predictable times.
Takusen can avoid loading the whole result set in mem-
ory and so can handle queries returning millions of
rows, in constant space. Takusen also supports au-
tomatic marshalling and unmarshalling of results and
query parameters. These benefits come from the design
of query result processing around a left-fold enumera-
tor.

Currently we fully support Oracle, Sqlite, and Post-
greSQL.

Since the last report we have:

◦ added support for re-usable connections, which
should help applications that want to implement a
connection pool

◦ improved the installation process, and added a
README file

◦ replaced the buggy UTF8 module with a correct,
tested module

◦ support for Oracle output bind variables and cursor
result-sets

◦ various bug-fixes, including: Postgres execDML fail-
ures, Postgres bound statement failures, Sqlite ex-
ecDML rowcount incorrect.

Future plans

◦ ODBC interface. Work has started on this.
◦ MS SQL Server interface, via COM.

Further reading

◦ darcs get http://darcs.haskell.org/takusen/
◦ browse docs:

http://darcs.haskell.org/takusen/doc/html
(see Database.Enumerator for Usage instructions
and examples)

26

http://www.haskell.org/~kolmodin/code/hinotify/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/CoddFish
http://wiki.di.uminho.pt/wiki/bin/view/PURe/CoddFish
http://darcs.haskell.org/takusen/
http://darcs.haskell.org/takusen/doc/html

4.6 Data types and data structures

4.6.1 Standard Collection Libraries

Report by: Jean-Philippe Bernardy
Status: beta, maintained

Haskell implementations come with modules to handle
Maps, Sets, and other common data structures. We
call these modules the Standard Collection Libraries.
The goal of this project is to improve on those.

Beside incremental improvement of the current code
(stress testing, ironing bugs out, small improvements
of API, . . .), a package has been created to gather
collection-related code that would not fit in the base
package yet. This includes changes that are either po-
tentially de-stabilizing, controversial or otherwise ex-
perimental.

This new package features notably:

◦ New data structures, including AVL-tree based Maps
and Sets (thanks to Adrian Hey);

◦ A class-based framework for collection data-types,
equipped with polymorphic testsuite and bench-
marks.

The collection package is ready for experimental
use by the Haskell community. An important dif-
ference with other collection frameworks is that this
one is intended as an evolution rather that a revolu-
tion. It should be easy to migrate code from using
Data.Map/Set to the new framework.

Future plans include:
◦ Add more trie-based data structures;
◦ Port the class framework to associated types.

Further reading

http://hackage.haskell.org/trac/ghc/wiki/
CollectionLibraries

4.6.2 Data.ByteString

Report by: Don Stewart
Status: active development

Data.ByteString provides packed strings (byte arrays
held by a ForeignPtr), along with a list interface to
these strings. It lets you do extremely fast IO in
Haskell; in some cases, even faster than typical C im-
plementations, and much faster than [Char]. It uses a
flexible “foreign pointer” representation, allowing the
transparent use of Haskell or C code to manipulate the
strings.

Data.ByteString is written in Haskell98 plus the for-
eign function interface and cpp. It has been tested

successfully with GHC 6.4 and 6.6, Hugs 2005–2006,
and the head version of nhc98.

Work on Data.ByteString continues. In particular,
a new fusion mechanism, stream fusion, has been de-
veloped, which should further improve performance
of ByteStrings. This work is described in the recent
“Stream Fusion: From Lists to Streams to Nothing at
All” paper. Data.ByteString has recently been ported
to nhc98.

Further reading

◦ Source and documentation can be found at
http://www.cse.unsw.edu.au/~dons/fps.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/fps

4.6.3 Data.List.Stream

Report by: Don Stewart
Status: active development

Data.List.Stream provides the standard Haskell list
data type and api, with an improved fusion sys-
tem, as described in the papers “Stream Fusion” and
“Rewriting Haskell Strings”. Code written to use
the Data.List.Stream library should run faster (or at
worst, as fast) as existing list code. A precise, cor-
rect reimplementation is a major goal of this project,
and Data.List.Stream comes bundled with around 1000
QuickCheck properties, testing against the Haskell98
specification, and the standard library.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/streams.html

4.6.4 dimensional

Report by: Bjorn Buckwalter
Status: active, unstable

Dimensional is a library providing data types for per-
forming arithmetic with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage.

Dimensional is currently in a pre-1.0 state and is be-
ing actively developed. The most recent release can
be downloaded from the project web site (follow url
below). Immediate plans include adding more units,
tightening exports and getting the library in shape for

27

http://hackage.haskell.org/trac/ghc/wiki/CollectionLibraries
http://hackage.haskell.org/trac/ghc/wiki/CollectionLibraries
http://www.cse.unsw.edu.au/~dons/fps.html
http://www.cse.unsw.edu.au/~dons/code/fps
http://www.cse.unsw.edu.au/~dons/streams.html

a 1.0 release (patches are welcome). The library name
and module hierarchy are likely to change before the
1.0 release. For more details see the “Issues” section of
the project web site.

Further reading

http://code.google.com/p/dimensional/

4.6.5 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Henning Thielemann,

Mikael Johansson
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck properties,
superfluous super-classes like Show are removed, se-
mantic and representation-specific operations are sepa-
rated, the hierarchy of type classes is more fine grained,
and identifiers are adapted to mathematical terms.

There are both certain new type classes representing
algebraic structures and new types of mathematical ob-
jects.

Currently supported algebraic structures are
◦ group (additive),
◦ ring,
◦ principal ideal domain,
◦ field,
◦ algebraic closures,
◦ transcendental closures,
◦ module and vector space,
◦ normed space,
◦ lattice,
◦ differential algebra,
◦ monoid.

There is also a collection of mathematical object
types, which is useful both for applications and test-
ing the class hierarchy. The types are
◦ complex number, quaternion,
◦ residue class,
◦ fraction,
◦ partial fraction,
◦ numbers equipped with physical units (dynamic

checks only),
◦ fixed point arithmetic with respect to arbitrary bases

and numbers of fraction digits,
◦ infinite precision number in an arbitrary positional

system as lazy lists of digits supporting also numbers
with terminating representations,

◦ polynomial, power series, Laurent series
◦ root set of a polynomial,
◦ matrix (basics only),

◦ algebra, e.g. multi-variate polynomial (basics only),
◦ permutation group.
Due to Haskell’s flexible type system, you can combine
all these types, e.g. fractions of polynomials, residue
classes of polynomials, complex numbers with physical
units, power series with real numbers as coefficients.

Using the revised system requires hiding some of
the standard functions provided by Prelude, which is
fortunately supported by GHC (→ 2.1). The library
has basic Cabal support and a growing test-suite of
QuickCheck tests for the implemented mathematical
objects.

Future plans

Collect more Haskell code related to mathematics,
e.g. for linear algebra. Study of alternative numeric
type class proposals and common computer algebra
systems. Ideally each data type resides in a separate
module. However this leads to mutual recursive depen-
dencies, which cannot be resolved if type classes are
mutually recursive. We start to resolve this by fixing
the types of some parameters of type class methods.
E.g. power exponents become simply Integer instead
of Integral, which has also the advantage of reduced
type defaulting.

A still unsolved problem arises for residue classes,
matrix computations, infinite precision numbers, fixed
point numbers and others. It should be possible to
assert statically that the arguments of a function are
residue classes with respect to the same divisor, or that
they are vectors of the same size. Possible ways out are
encoding values in types or local type class instances.
The latter one is still neither proposed nor implemented
in any Haskell compiler. The modules are implemented
in a way to keep all options open. That is, for each
number type there is one module implementing the
necessary operations which expect the context as a pa-
rameter. Then there are several modules which provide
different interfaces through type class instances to these
operations.

Further reading

http://darcs.haskell.org/numericprelude/

4.6.6 HList – a library for typed heterogeneous
collections

Report by: Oleg Kiselyov
Developers: Oleg Kiselyov, Ralf Lämmel,

Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous of the standard list library, providing a host

28

http://code.google.com/p/dimensional/
http://darcs.haskell.org/numericprelude/

of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable, and compiled-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field val-
ues, where the type of each field is annotated with its
phantom label. We and now others (Alexandra Silva,
Joost Visser: PURe.CoddFish project (→ 4.5.1)) have
also used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell http:
//darcs.haskell.org/OOHaskell. The HList library relies
on common extensions of Haskell 98.

The HList repository is available via Darcs (→ 6.10):
http://darcs.haskell.org/HList

Einar Karttunen has made adjustments to HList for
GHC 6.6 and Cabalized it.

Further reading

◦ HList:
http://homepages.cwi.nl/~ralf/HList/

◦ OOHaskell:
http://homepages.cwi.nl/~ralf/OOHaskell/

4.6.7 ArrayRef

Report by: Bulat Ziganshin
Status: beta

This is a Hugs (→ 2.2) and GHC (→ 2.1) compatible
library for “improved arrays and references” featuring:

◦ Unboxed references in the IO and ST monads, that
supports all simple datatypes and an IORef/STRef-
like interface. This replaces the widely used “fast
unboxed variables” modules.

◦ A monad-independent interface to boxed and un-
boxed references that allows to implement algorithms
executable both in the IO and ST monads

◦ Syntactic sugar for references, mutable arrays and
hash tables (=:, +=, -=, .=, val, ref, uref)

◦ Refactored implementation of Data.Array.* modules.
Changes include support for dynamic (resizable) ar-
rays and polymorphic unboxed arrays

(http://www.haskell.org/pipermail/haskell-cafe/
2004-July/006400.html),

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/ArrayRef

◦ Download:
http://www.haskell.org/library/ArrayRef.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.7 Data processing

4.7.1 AltBinary

Report by: Bulat Ziganshin
Status: beta, actively developed

AltBinary is a part of the Streams library (→ 4.4.4).
AltBinary implements binary I/O and serialization fa-
cilities. It features:
◦ Hugs and GHC compatibility
◦ Lightning speed (3-20 times faster than GHC Bi-

nary)
◦ Classical get/put Binary class interface
◦ Full backward compatibility with NewBinary lib
◦ Byte-aligned and bit-aligned, low-endian and big-

endian serialization
◦ Serialization of all widely used types (integral,

enums, float, arrays, maps . . .)
◦ UTF8 encoding for strings/chars
◦ Ability to use TH to derive Binary instance for any

type
◦ Over 50 custom serialization routines (put-

Word32LE, putMArrayWith . . .)
◦ Ability to serialize data to any Stream what im-

plements vPutByte/vGetByte operations, including
support for monads other than IO

◦ In particular, data can be serialized to/from String,
ByteString, file, memory-mapped file, memory
buffer, another process

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/AltBinary

◦ Download:
http://www.haskell.org/library/Streams.tar.gz http://
www.haskell.org/library/StreamsBeta.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

29

http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/HList
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://www.haskell.org/pipermail/haskell-cafe/2004-July/006400.html
http://www.haskell.org/pipermail/haskell-cafe/2004-July/006400.html
http://haskell.org/haskellwiki/Library/ArrayRef
http://www.haskell.org/library/ArrayRef.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://haskell.org/haskellwiki/Library/AltBinary
http://www.haskell.org/library/Streams.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
mailto: Bulat.Ziganshin at gmail.com

4.7.2 binary

Report by: Lennart Kolmodin
Participants: Duncan Coutts, Don Stewart, Binary

Strike Team
Status: active

The Binary Strike Team is pleased to announce the
release of a new, pure, efficient binary serialisation li-
brary.

The ’binary’ package provides efficient serialisa-
tion of Haskell values to and from lazy ByteStrings.
ByteStrings constructed this way may then be written
to disk, written to the network, or further processed
(e.g. stored in memory directly, or compressed in mem-
ory with zlib or bzlib).

The binary library has been heavily tuned for per-
formance, particularly for writing speed. Throughput
of up to 160M/s has been achieved in practice, and
in general speed is on par or better than NewBinary,
with the advantage of a pure interface. Efforts are un-
derway to improve performance still further. Plans are
also taking shape for a parser combinator library on top
of binary, for bit parsing and foreign structure parsing
(e.g. network protocols).

Data.Derive (→ 5.3.1) has support for automatically
generating Binary instances, allowing to read and write
your data structures with little fuzz.

Binary was developed by a team of 8 during the
Haskell Hackathon, and since then has in total 15 peo-
ple contributed code and many more given feedback
and cheerleading on #haskell.

The underlying code is currently being rewritten to
give even better performance – both reading and writ-
ing – still exposing the same API.

The package is is available through Hackage.

Further reading

◦ Homepage
http://www.cse.unsw.edu.au/~dons/binary.html

◦ Hackage
http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/binary

◦ Development version
darcs get –partial
http://darcs.haskell.org/binary

4.7.3 binarydefer

Report by: Neil Mitchell

The Binary Defer library provides a framework for do-
ing binary serialisation, with support for deferred load-
ing. Deferred loading is for when a large data structure
exists, but typically only a small fraction of this data
structure will be required. By using deferred loading,

some of the data structure can be read quickly, and the
rest can be read on demand, in a pure manner.

This library is at the heart of Hoogle 4 (→ 5.5.7),
but has already found uses outside that application,
including to do offline sorts etc.

Further reading

◦ Homepage:
http://www-users.cs.york.ac.uk/~ndm/binarydefer

4.7.4 Compression-2006 (was: Compression-2005)

Report by: Bulat Ziganshin
Status: stable

Features of the Compression-2006 Library:

◦ easy and uniform access to most competitive com-
pression algorithms as of November’06: LZMA,
PPMd and GRZip

◦ all input/output performed via user-supplied func-
tions (callbacks), so you can compress data in mem-
ory, files, pipes, sockets and anything else

◦ all parameters of compression algorithm are
defined with a single string, for example
"lzma:8mb:fast:hc4:fb32".

So, the entire compression program can be written
as a one-liner:
compressWithHeader

"ppmd:10:48mb" (hGetBuf stdin) (hPutBuf stdout)

with decompressor program:
decompressWithHeader

(hGetBuf stdin) (hPutBuf stdout)

You can replace "ppmd:10:48mb" with "lzma:16mb" or
"grzip" to get another two compressors – all three will
compress faster and better than bzip2.

Of course, the primary purpose of this library is to
give you a possibility to use state-of-the-art compres-
sion as an integral part of your Haskell programs.

Compared to the previous version, I have upgraded
the LZMA part of the library to use the LZMA 4.43
library that significantly improved the speed and com-
pression ratio over old versions.

Further reading

◦ Documentation:
http://haskell.org/haskellwiki/Library/Compression

◦ Download:
http://www.haskell.org/library/CompressionLibrary.
tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

30

http://www.cse.unsw.edu.au/~dons/binary.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/binary
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/binary
http://darcs.haskell.org/binary
http://www-users.cs.york.ac.uk/~ndm/binarydefer
http://haskell.org/haskellwiki/Library/Compression
http://www.haskell.org/library/CompressionLibrary.tar.gz
http://www.haskell.org/library/CompressionLibrary.tar.gz
mailto: Bulat.Ziganshin at gmail.com

4.7.5 The Haskell Cryptographic Library

Report by: Dominic Steinitz

Following the Haskell hackathon http://haskell.org/
haskellwiki/Hac_2007, there is now a new release of the
library, 4.0.3, which contains only the cryptographic
functions and not the functions to handle ASN.1,
X.509, PKCS#8 and PKCS#1.5.

This means no dependency on NewBinary which had
been requested by several people.

Very limited details of an embryonic version of the
ASN.1 library (4.7.6) are available from http://haskell.
org/asn1.

The interface to SHA-1 is still different from MD5
and the whole library needs a rethink. Unfortunately,
I don’t have the time to undertake much work on it
at the moment and it is not clear when I will have
more time. I’m therefore looking for someone to help
keeping the repository up-to-date with contributions,
re-structuring the library and managing releases.

I have restructured SHA-1 to be more Haskell-like
and it’s now obvious how it mirrors the specification.
However, this has led to rather poor performance and
it’s not obvious (to me at least) what can be done with-
out sacrificing clarity.

This release contains:
◦ DES
◦ Blowfish
◦ AES
◦ Cipher Block Chaining (CBC)
◦ PKCS#5 and nulls padding
◦ SHA-1
◦ MD5
◦ RSA
◦ OAEP-based encryption (Bellare-Rogaway)

Further reading

http://www.haskell.org/crypto http://hackage.haskell.
org/trac/crypto.

4.7.6 The Haskell ASN.1 Library

Report by: Dominic Steinitz

Following the Haskell hackathon http://haskell.org/
haskellwiki/Hac_2007, there is now a release of the
ASN.1 library, 0.0.1, which contains functions to han-
dle ASN.1, X.509, PKCS#8 and PKCS#1.5.

This still has a dependency on NewBinary.
The current version handles the Basic Encoding

Rules (BER) only. I am currently thinking about how
to make it handle the Packed Encoding Rules. This
will require handling subtype constraints which are cur-
rently not supported (they are ignored in BER).

This release supports:

◦ X.509 identity certificates
◦ X.509 attribute certificates
◦ PKCS#8 private keys
◦ PKCS#1 version 1.5

Further reading

http://haskell.org/asn1.

4.7.7 2LT: Two-Level Transformation

Report by: Joost Visser
Participants: Pablo Berdaguer, Alcino Cunha, José

Nuno Oliveira, Hugo Pacheco
Status: active

A two-level data transformation consists of a type-level
transformation of a data format coupled with value-
level transformations of data instances corresponding
to that format. Examples of two-level data transfor-
mations include XML schema evolution coupled with
document migration, and data mappings used for in-
teroperability and persistence.

In the 2LT project, support for two-level transforma-
tions is being developed using Haskell, relying in par-
ticular on generalized abstract data types (GADTs).
Currently, the 2LT package offers:

◦ A library of two-level transformation combinators.
These combinators are used to compose transforma-
tion systems which, when applied to an input type,
produce an output type, together with the conver-
sion functions that mediate between input and out
types.

◦ Front-ends for XML and SQL. These front-ends sup-
port (i) reading a schema, (ii) applying a two-level
transformation system to produce a new schema,
(iii) convert a document/database corresponding to
the input schema to a document/database corre-
sponding to the output schema, and vice versa. Ref-
erential constraints and primary key information are
propagated through the schema transformation.

◦ A combinator library for transformation of point-
free and structure-shy functions. These combinators
are used to compose transformation systems for op-
timization of conversion functions, and for migration
of queries through two-level transformations. Inde-
pendent of two-level transformation, the combinators
can be used to specializes structure-shy programs
(such as XPath queries and strategic functions) to
structure-sensitive point-free from, and vice versa.

The various sets of transformation combinators are
reminiscent of the combinators of Strafunski and the
Scrap-your-Boilerplate approach to generic functional
programming.

31

http://haskell.org/haskellwiki/Hac_2007
http://haskell.org/haskellwiki/Hac_2007
http://haskell.org/asn1
http://haskell.org/asn1
http://www.haskell.org/crypto
http://hackage.haskell.org/trac/crypto
http://hackage.haskell.org/trac/crypto
http://haskell.org/haskellwiki/Hac_2007
http://haskell.org/haskellwiki/Hac_2007
http://haskell.org/asn1

A release of 2LT is available as part of the UMinho
Haskell Libraries, and as stand-alone release. The re-
lease includes worked out examples of schema evolution
and hierarchical-relational mappings.

Efforts are underway to add further front-ends to
2LT, e.g. for XPath and VDM-SL, and to extend the
SQL front-end.

Further reading

Project URL: http://wiki.di.uminho.pt/wiki/bin/view/
PURe/2LT

◦ Alcino Cunha, José Nuno Oliveira, Joost Visser.
Type-safe Two-level Data Transformation. Formal
Methods 2006.

◦ Alcino Cunha, Joost Visser. Strongly Typed Rewrit-
ing For Coupled Software Transformation. RULE
2006.

◦ Pablo Berdaguer, Alcino Cunha, Hugo Pacheco,
Joost Visser. Coupled Schema Transformation and
Data Conversion For XML and SQL. PADL 2007.

◦ Alcino Cunha and Joost Visser. Transformation of
Structure-Shy Programs, Applied to XPath Queries
and Strategic Functions, Draft, 2006.

4.8 User interfaces

4.8.1 Grapefruit – A declarative GUI library

Report by: Wolfgang Jeltsch
Participants: Wolfgang Jeltsch, Matthias Reisner,

Daniel Skoraszewsky
Status: provisional

Grapefruit is a library for creating graphical user in-
terfaces in a declarative way. It is currently based on
Gtk2Hs (→ 4.8.3) but implementations on top of other
GUI libraries are planned for the future.

Grapefruit makes it possible to implement graphical
user interfaces by describing them as systems of in-
terconnected components. Components can be visible
components like widgets and windows but also invisi-
ble components which provide certain control function-
ality. Component systems can be build from compo-
nents by using methods from the Arrow and ArrowLoop
classes.

Components communicate via signals and event
streams. A signal denotes a time-dependent value, and
an event stream denotes a sequence of events occurring
at discrete points in time. Several functions allow the
construction of signals and event streams in a purely
functional manner.

With Grapefruit, user interface descriptions always
cover the complete lifetime of the respective inter-
face. No explicit event handler registrations and no
explicit recalculations of values are necessary. This is
in line with the declarative nature of Haskell because
it stresses how the user interface operates instead of
how this operation is achieved. Internally though, sig-
nals and event streams are implemented efficiently us-
ing the event dispatching and handling mechanism of
the underlying GUI toolkit.

The roots of Grapefruit lie in systems like FranTk
and wxFruit. Grapefruit tries to combine concepts of
these systems with new ideas to become a system which
maintains a reasonable balance between ease of use and
efficiency.

As of May 2007, Grapefruit is in an early stage. The
basic concepts are implemented but the implementa-
tion is still subject to notable change. Features planned
for the next months cover support for dynamic user in-
terfaces and animations as well as better handling of
simultaneous event occurrences.

Grapefruit’s source code and documentation can be
accessed via its wiki page (see below).

Further reading

http://haskell.org/haskellwiki/Grapefruit

4.8.2 wxHaskell

Report by: Jeremy O’Donoghue

A new team is adding support for the latest tools to wx-
Haskell, a mature and full-featured Haskell GUI bind-
ing.

Project members: Eric Kow, Mads Lindstroem, She-
larcy, Tim Docker, Frank Berthold.

wxHaskell is a stable and highly featured Haskell
binding to the wxWidgets cross-platform GUI toolkit,
originally developed by Daan Leĳen and others.

The main benefits of using wxHaskell in a Haskell
GUI project include:

◦ Many widgets have high-level Haskell bindings which
bridge much of the impedence mismatch between
Haskell code and typical (imperative) GUI code.

◦ Support for most of the (extensive) GUI functionality
of wxWidgets

◦ Native look and feel on all supported platforms (Win-
dows, OS X, Unix/Linux) due to the use of native
widgets wherever possible.

◦ Straightforward to deploy, as only a small set of li-
braries needs to be distributed with the application
(e.g. just two DLLs on Windows).

32

http://wiki.di.uminho.pt/wiki/bin/view/PURe/2LT
http://wiki.di.uminho.pt/wiki/bin/view/PURe/2LT
http://haskell.org/haskellwiki/Grapefruit

While it is (in our opinion) a superb piece of software,
wxHaskell has recently suffered from a lack of mainte-
nance. It did not compile against recent versions of
GHC or wxWidgets and lacked Unicode support.

The new team is doing its best to rectify this. We
have so far implemented: support for a couple of addi-
tional widgets; preliminary Unicode support; support
for recent versions of wxWidgets (up to 2.6.3) and very
preliminary support for GHC 6.6.

With the help and support of Daan and Simon Mar-
low, we are now able to host wxHaskell development
via Darcs patches at http://darcs.haskell.org/wxhaskell,
and to administer the wxHaskell website and mailing
lists (at Sourceforge).

The latest updates are as yet only available at
darcs.haskell.org, although we plan occasional updates
of Sourceforge CVS for those who prefer it, and will
provide binaries when we are confident that we have
achieved a good level of stability on all platforms.

Immediate plans are to Cabalize the build process, to
improve Unicode support and to increase the number
and complexity of sample programs.

Further reading

http://wxhaskell.sourceforge.net

4.8.3 Gtk2Hs

Report by: Duncan Coutts
Maintainer: Axel Simon and Duncan Coutts
Status: beta, actively developed

Gtk2Hs is a GUI Library for Haskell based on Gtk+.
Gtk+ is an extensive and mature multi-platform toolkit
for creating graphical user interfaces.

GUIs written using Gtk2Hs use themes to resemble
the native look on Windows and, of course, various
desktops on Linux, Solaris and FreeBSD. Gtk+ and
Gtk2Hs also support MacOS X (it currently uses the
X11 server but a native port is in progress).
Gtk2Hs features:
◦ automatic memory management (unlike some other

C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ high quality vector graphics using Cairo
◦ extensive reference documentation
◦ an implementation of the “Haskell School of Expres-

sion” graphics API
◦ support for the Glade visual GUI builder
◦ bindings to some Gnome extensions: GConf, a source

code editor widget and a widget that embeds the
Mozilla/Firefox rendering engine

◦ an easy-to-use installer for Windows
◦ packages for Fedora, Gentoo (→ 7.4.2), Debian and

FreeBSD

The Gtk2Hs library is actively maintained and devel-
oped. We had a major new release back in February.
We expect to do another minor release shortly which
will contain various bug fixes and minor additions. This
will include drag and drop support, c2hs fixes and sup-
port for Postscript and PDF output from the Cairo
vector graphics library.
In the medium term we hope to support the new fea-
tures in Gtk+ 2.10, to improve the signals API. In the
longer term we hope to modularise Gtk2Hs and enable
it to be built and distributed with Cabal and Hackage.
We are always keen to get more people involved with
Gtk2Hs. There are plenty of potential coding projects
and we are looking for help with writing tutorials. We
are interested in feedback from people using Gtk2Hs
and especially in interesting applications that we can
show off on the website.

Further reading

◦ News, downloads and documentation:
http://haskell.org/gtk2hs/

◦ Development version:
darcs get http://haskell.org/gtk2hs/darcs/gtk2hs/

4.8.4 hscurses

Report by: Stefan Wehr
Status: stable/beta

hscurses is a Haskell binding to the ncurses library, a
library of functions that manage an application’s dis-
play on character-cell terminals. hscurses also provides
some basic widgets implemented on top of the ncurses
binding, such as a text input widget and a table widget.

The binding was originally written by John Meacham
http://repetae.net/john/. Tuomo Valkonen http://
modeemi.fi/~tuomov/ and Don Stewart http://www.
cse.unsw.edu.au/~dons improved it and I finally added
some basic widgets and packed it up as a standalone
library.

The binding itself is stable; however, the widget li-
brary is still beta. Volunteers are welcome to improve
and extend the widget library. The build system now
uses Cabal.

Further reading

http://www.informatik.uni-freiburg.de/~wehr/haskell/

4.8.5 VTY

Report by: Stefan O’Rear

VTY (Virtualized tTY) is a terminal control library,
similar to Stefan Wehr’s hscurses (→ 4.8.4). However
vty is designed to have a much easier to use API; all
communication is accomplished using 5 functions (most

33

http://darcs.haskell.org/wxhaskell
http://wxhaskell.sourceforge.net
http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/darcs/gtk2hs/
http://repetae.net/john/
http://modeemi.fi/~tuomov/
http://modeemi.fi/~tuomov/
http://www.cse.unsw.edu.au/~dons
http://www.cse.unsw.edu.au/~dons
http://www.informatik.uni-freiburg.de/~wehr/haskell/

using only 2), with a simple data type. Code which
describes screen images is pure and declarative. Vty
supports all generally useful features of the Linux ter-
minal emulator except for palette setting. It is used
successfully by Shellac, Yi (→ 6.12), and the author’s
unpublished HsLife program.

Current disadvantages are poor support for non-
Linux terminals, poor performance, and a lack of in-
terested hacking/maintainership.

Further reading

◦ Source repository:
darcs get http://members.cox.net/stefanor/vty

4.9 (Multi-)Media

4.9.1 HOpenGL – A Haskell Binding for OpenGL
and GLUT

Report by: Sven Panne
Status: stable, actively maintained

The goal of this project is to provide a binding for
the OpenGL rendering library which utilizes the spe-
cial features of Haskell, like strong typing, type classes,
modules, etc., but is still in the spirit of the official
API specification. This enables the easy use of the vast
amount of existing literature and rendering techniques
for OpenGL while retaining the advantages of Haskell
over lower-level languages like C. Portability in spite of
the diversity of Haskell systems and OpenGL versions
is another goal.

HOpenGL includes the simple GLUT UI, which is
good to get you started and for some small to medium-
sized projects, but HOpenGL doesn’t rival the GUI
task force efforts in any way. Smooth interopera-
tion with GUIs like gtk+hs or wxHaskell (→ 4.8.2)
on the other hand is a goal, see e.g. http://wxhaskell.
sourceforge.net/samples.html#opengl

The feature highlights of HOpenGL are:
◦ Pure Haskell 98 + FFI, so it works on all Haskell

platforms (GHC, Hugs, . . .)
◦ No dependencies on external tools like GreenCard
◦ Almost complete OpenGL 2.1 support, including

buffer objects and shaders
◦ A few dozen extensions
◦ A clean API, centered around OpenGL’s notion of

state variables
◦ Extensive hyperlinked online documentation
◦ Supports freeglut-only features, too
HOpenGL is available as two separate Cabal packages
(OpenGL and GLUT) and is extensively tested on x86
Linux and Windows. The packages reportedly work on
Solaris, FreeBSD, OpenBSD (→ 7.4.1), and Mac OS X,
too.

The binding comes with all examples from the
Red Book and other sources, and Sven Eric Panitz
has written a tutorial using the new API (http://
www.tfh-berlin.de/~panitz/hopengl/), so getting started
should be rather easy.

Further reading

http://www.haskell.org/HOpenGL/

4.9.2 HOpenAL – A Haskell Binding for OpenAL
and ALUT

Report by: Sven Panne
Status: stable, actively maintained

The goal of this project is to provide a binding for
OpenAL, a cross-platform 3D audio API, appropriate
for use with gaming applications and many other types
of audio applications. OpenAL itself is modeled after
the highly successful OpenGL API, and the Haskell
bindings for those libraries share “the same spirit”, too.

Just like OpenGL is accompanied by GLUT, HOpe-
nAL includes a binding for ALUT, the OpenAL Utility
Toolkit, which makes managing of OpenAL contexts,
loading sounds in various formats and creating wave-
forms very easy.

HOpenAL is available as two separate Cabal pack-
ages (OpenAL and ALUT). They cover the latest spec-
ification releases, i.e. OpenAL 1.1 (EFX extensions are
under development) and ALUT 1.1.0, and they work on
every platform supporting OpenAL and ALUT (Linux,
Windows, Mac OS X, BSDs, . . .). They are tested
with GHC and Hugs and will probably work with other
Haskell systems, too, because they use only H98 + FFI.

Further reading

http://www.openal.org/

4.9.3 Haskore revision

Report by: Henning Thielemann and Paul Hudak
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e. without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design deci-
sions, and fixing bugs. Specific improvements include:

1. Basic Cabal support.

2. The Music data type has been generalized in the
style of Hudak’s “polymorphic temporal media.”

3. The Music data type has been made abstract by
providing functions that operate on it.

34

http://members.cox.net/stefanor/vty
http://wxhaskell.sourceforge.net/samples.html#opengl
http://wxhaskell.sourceforge.net/samples.html#opengl
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/
http://www.openal.org/

4. The notion of instruments is now very general.
There are simple predefined instances of the Music
data type, where instruments are identified by
Strings or General MIDI instruments, but any other
custom type is possible, including types with instru-
ment specific parameters.

5. Support for CSound orchestra files has been im-
proved and extended, thus allowing instrument de-
sign in a signal-processing manner using Haskell, in-
cluding feedback and signal processors with multiple
outputs.

6. Initial support for the real-time software synthesizer
SuperCollider through the Haskell interface.

7. The AutoTrack project has been adapted and in-
cluded.

8. Support for infinite Music objects is improved.
CSound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed
with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (→ 6.16).)

9. The test suite is based on QuickCheck and HUnit.

Future plans

◦ Split into a core package and add-ons, as soon as
Cabal supports that.

◦ Generate note sheets, say via Lilypond.
◦ Allow modulation of instruments similar to the con-

trollers in the MIDI system.
◦ Microtonal music (see: Magnus Jonsson: Haskore

microtonal support http://www.haskell.org/
pipermail/haskell-cafe/2006-September/018144.
html).

◦ Connect to other Haskore related projects.

Further reading

◦ http://www.haskell.org/haskellwiki/Haskore
◦ http://darcs.haskell.org/haskore/

4.10 Web and XML programming

4.10.1 HAppS – Haskell Application Server

Report by: S. Alexander Jacobson

HAppS is a framework for developing Internet ser-
vices quickly, deploying them easily, scaling them mas-
sively, and managing them ziplessly. Web, persistence,
mail, DNS and database servers are all built-in so you
can focus on app development rather than integrating
and babysitting lots of different servers/services (the
Haskell type system keeps everything consistent).

◦ HTTP Application Serving

Performs better than Apache/PHP in our informal
benchmarks (thanks to Data.ByteString), handles
large (video) files and lazy (javascript) streaming,
supports HTTP-Auth, and more. It’s part of your
app so you don’t need to deal with separate configu-
ration and management of an HTTP server. Note: If
you really need Apache on port 80 for some reason,
it’s easy to configure it to proxy to your HAppS app
running on another port.

◦ SMTP Sending (Relaying) with built in DNS re-
solver

Integrating outbound SMTP directly into your app
means that you can stop worrying about configura-
tion and uptime of separate mail and DNS servers.
If your HAppS app is running, mail is being sent. If
it is rebooted, nothing is lost. If mail is temporarily
undeliverable, it does exponential backoff and tries
again later.

◦ SMTP Receiving (no more .procmail complexity)

Stop worrying about whether a separate mail server
is up and stop dealing with .procmail or other user
level inbound mail configuration hackery. HAppS
can operate as an inbound SMTP server, converting
inbound envelopes into just another event for your
application to process. And, if you need a separate
mail server on port 25, it should be much easier to
configure it to SMTP relay mail to your HAppS app
handling SMTP on a different port (you still avoid
extra .procmail complexity/annoyance).

◦ Apps as Simple State Transformers

HAppS keeps your application development very
simple. You represent state with the Haskell data
structure you find most natural for that purpose.
Your app then is just a set of state transformer func-
tions (in the MACID Monad) that take an event and
state as input and that evaluate to a new state, a
response, and a (possibly null) set of sideeffects.

◦ XML/XSLT to Separate Application Logic and
Presentation

HAppS lets you focus on application logic and lets
you defer presentation entirely to XSLT, JSON,
Flapjax, etc. HAppS converts automatically from
inbound protocol level event types e.g. url-encoded
HTTP requests to inbound application level event
types e.g. ChangePassword. Similarly, it converts
automatically from outbound application events like
PasswordChanged and outbound protcol events like
HTTP responses or SMTP messages. It even knows
to apply XSLT server side for XML outbound SMTP
messages and browsers that don’t support XSLT
client side. Currently, you still have to write in-
stances for FromMessage and ToElement, but we
hope to make that automatic soon.

35

http://www.haskell.org/pipermail/haskell-cafe/2006-September/018144.html
http://www.haskell.org/pipermail/haskell-cafe/2006-September/018144.html
http://www.haskell.org/pipermail/haskell-cafe/2006-September/018144.html
http://www.haskell.org/haskellwiki/Haskore
http://darcs.haskell.org/haskore/

◦ ACID Persistence, Concurrency. At-least-Once
side-effects.

With HAppS you need don’t to spend time mar-
shalling data into and out of external RDBMSs to get
ACID semantics (concurrent-access) for your data.
HAppS treats all events as atomic and puts them in a
total order so you never need to worry about concur-
rency (isolation). HAppS achieves durability by state
checkpointing and write-ahead logging events. End-
users can never be confused by a server reboot be-
cause HAppS won’t execute responses or side effects
until their driving events have been logged. HAppS
also tracks which side-effects have completed. If
the server is rebooted before a side-effect completes,
HAppS will retry on recovery. (This sophisticated
side-effect functionality may be unique to HAppS)

◦ (Experimental) Relational Table and Index in
Haskell

Do relational operations (type) safely on in-memory
Haskell Data.Set(s) rather than dealing with an
external SQL relational database. Define cus-
tom indices for your Haskell datatypes (e.g. geo-
graphic/geometric types). Use in combination with
MACID for a robust relational DBMS customized for
your application.

◦ Coming Soon: No need for server architecture
(thanks to Amazon)

We are almost done with changes to the back end of
HAppS so that apps will be able to run unchanged on
Amazon’s S3 (http://aws.amazon.com/s3) and EC2
(http://aws.amazon.com/ec2). The result will be
massive scalability and superior reliability without
you having to lift a finger or walk into a data center.

Example applications written on top of HAppS include
a wiki that’s included in the tutorial and pass.net (→
4.10.2), an authentication webapp that improves upon
the idea of confirmation emails.

HAppS version 0.8.4 was released on October 12th,
2006.

The October 12th release includes examples demon-
strating new features such as user login, blocking IO,
extended session support, and more.

The latest stable release can always be found on http:
//HAppS.org/.

The latest development version can be acquired with:
darcs get –partial http://happs.org/HAppS

Further reading

◦ Website
http://happs.org/

◦ Discussion Group
http://groups.google.com/group/HAppS/

◦ pass.net
http://pass.net

4.10.2 Pass.Net

Report by: S. Alexander Jacobson

Pass.Net provides web sites with a simple shared web
API to manage user logins, confirmation emails, forgot-
ten passwords, etc. Most application frameworks don’t
have complete libraries to cover all of this functionality.

Outsourcing this to Pass.net means less complexity
in your application and less worrying about mail deliv-
ery, mail server integration, etc.

It also means your users don’t need to confirm their
email for *yet another* website if they’ve confirmed
their email address on any other site that uses Pass.Net.

Pass.Net is currently beta. We expect it to be fully
live and reliable by the end of the year. Pass.Net is
written in Haskell using HAppS (→ 4.10.1) and pro-
vides an easy to use Haskell library for HAppS user.
Clients in python, php, and java coming soon.

The source code for all of Pass.net is available at
http://pass.net/s/repo.

4.10.3 Converter of Yhc Core to Javascript (ycr2js)

Report by: Dimitry Golubovsky
Status: experimental

Converter of Yhc Core to Javascript (further referred to
as ycr2js) is a sub-project of the York Haskell Compiler
(further referred to as Yhc) Project. It is aimed to
create a tool to convert an arbitrary Haskell program
into Javascript which in turn may be executed in a Web
browser.

Conversion from Haskell to Javascript is achieved in
two steps: a Haskell source is translated into Yhc Core
by Yhc, and then the Core is translated to Javascript
by ycr2js. Additional tools are provided to embed gen-
erated Javascript onto a Web page.

This allows to develop Internet applications entirely
in Haskell (solutions for the server side have been
around for a while, such as HAppS (→ 4.10.1) and
HWS). A close analog to ycr2js is “HSP Client Side”,
which provides a domain-specific language (named
HJScript) to define Javascript constructs to be exe-
cuted at the client side, but not the ability to execute
arbitrary Haskell code in a Web browser.

Further reading

◦ Yhc Core:
http://haskell.org/haskellwiki/Yhc/API/Core

◦ The Wiki page http://haskell.org/haskellwiki/Yhc/
Javascript contains some examples of Haskell pro-
grams translated into Javascript.

36

http://aws.amazon.com/s3
http://aws.amazon.com/ec2
http://HAppS.org/
http://HAppS.org/
http://happs.org/HAppS
http://happs.org/
http://groups.google.com/group/HAppS/
http://pass.net
http://pass.net/s/repo
http://haskell.org/haskellwiki/Yhc/API/Core
http://haskell.org/haskellwiki/Yhc/Javascript
http://haskell.org/haskellwiki/Yhc/Javascript

4.10.4 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.

The library provides a basic data type for a list of
unstructured tags, a parser to convert HTML into this
tag type, and useful functions and combinators for find-
ing and extracting information. The library has seen
real use in an application to give Hackage listings, and
is used in the next version of Hoogle (→ 5.5.7).

Further reading

◦ Homepage:
http://www-users.cs.york.ac.uk/~ndm/tagsoup

4.10.5 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public stable release is 1.13.2, with sup-
port for building via Cabal for ghc-6.6.x.

The development version (currently at 1.18, also
available through a darcs repository) includes a much-
requested lazy parser, and a SAX-like streaming parser.
Only some minor work still remains, to tidy things up
before the development version is tagged and released
as stable.

We recently split off the new lazy parser combinators
used by HaXml into a separate library package called
polyparse.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.cs.york.ac.uk/fp/HaXml-devel
◦ darcs get http://darcs.haskell.org/packages/HaXml
◦ http://www.cs.york.ac.uk/fp/polyparse

4.10.6 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: sixth major release (current release: 7.1)

Description

The Haskell XML Toolbox is a collection of tools for
processing XML with Haskell. It is itself purely writ-
ten in Haskell 98. The core component of the Haskell
XML Toolbox is a validating XML-Parser that sup-
ports almost fully the Extensible Markup Language
(XML) 1.0 (Second Edition), There is a validator based
on DTDs and a new more powerful validator for Relax
NG schemas.

The Haskell XML Toolbox bases on the ideas of
HaXml (→ 4.10.5) and HXML, but introduces a more
general approach for processing XML with Haskell.
Since release 5.1 there is a new arrow interface simi-
lar to the approach taken by HXML. This interface is
more flexible than the old filter approach. It is also
safer, type checking of combinators becomes possible
with the arrow interface.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Flexible arrow interface with type classes for XML

filter
◦ Package support for ghc
◦ Native Haskell support of HTTP 1.1 and FILE pro-

tocol
◦ HTTP and access via other protocols via external

program curl
◦ Tested with W3C XML validation suite
◦ Example programs for filter and arrow interface
◦ Relax NG schema validator based on the arrows in-

terface
◦ A HXT Cookbook for using the toolbox and the ar-

row interface
◦ Basic XSLT support
◦ darcs repository with current development version

(7.2) under http://darcs.fh-wedel.de/hxt

Current Work

A master thesis has been finished developing an XSLT
system. The result is a rather complete implementation
of an XSLT transformer system. Only minor features
are missing. The implementation consists of about only
2000 lines of Haskell code. The XSLT module is in-
cluded since the HXT 7.0 release.

A second master student’s project, the development
of a web server called Janus, has been finished in Oc-
tober of 2006. The title is A Dynamic Webserver with
Servlet Functionality in Haskell Representing all Inter-
nal Data by Means of XML. HXT with the arrows in-
terface has been used for processing all internal data of
this web server. The Janus server is highly configurable

37

http://www-users.cs.york.ac.uk/~ndm/tagsoup
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-devel
http://darcs.haskell.org/packages/HaXml
http://www.cs.york.ac.uk/fp/polyparse
http://darcs.fh-wedel.de/hxt

and can be used not only as HTTP server, but for vari-
ous other server like tasks. The results of this work will
be available via a darcs repository in June 2007. Cur-
rent activity consists of testing, example applications,
demos and documentation.

A new project, an application for HXT and Janus
will start in summer 2007: Two master students will
construct an index and search engine for specialized
search tasks. This system will be highly configurable,
such that tasks like searching within a web site, search
of articles within a book store or search within a news-
paper archive becomes possible. Distribution of the
index and search engines within a network architecture
will be an additional aspect of this project.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML process-
ing using arrows and RDF documents, and master
thesises describing the design of the toolbox, the
DTD validator, the arrow based Relax NG val-
idator and the XSLT system. A getting started
tutorial about HXT is avaliable in the Haskell Wiki
(http://www.haskell.org/haskellwiki/HXT).

4.10.7 WASH/CGI – Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely
functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features
◦ complete interactive server-side script in one pro-

gram
◦ a monadic, type-safe interface to generating XHTML

output
◦ type-safe compositional approach to specifying form

elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

◦ documented preprocessor for translating markup in
syntax close to XHTML syntax into WASH/HTML

Completed Items are:
◦ fully cabalized
◦ WASH server pages with a modified version of Si-

mon Marlow’s hws web server; the current prototype

supports dynamic compilation and loading of WASH
source (via Don Stewart’s hs-plugins (→ 4.4.2)) as
well as the implementation of a session as a continu-
ally running server thread

◦ Transactional interface to server-side variables and to
databases. The interface is inspired by the work on
STM (software transactional memory), but modified
to be useful in the context of web applications. The
interface relies on John Goerzens hdbc package and
its PostgreSQL driver.

Current work includes
◦ improvement of the database interface
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/~thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

38

http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

5 Tools

5.1 Foreign Function Interfacing

5.1.1 C→Haskell

Report by: Manuel Chakravarty
Status: active

C→Haskell is an interface generator that simplifies the
development of Haskell bindings to C libraries. It reads
C header files to automate many tedious aspects of in-
terface generation and to minimise the opportunity for
introducing errors when translating C declarations to
Haskell.

Duncan Coutts has been busy implementing a new
C parser that is very closely aligned to gcc’s grammar
and has been tested on a large pool of open source
code. We are planning a new release including the
new parser and many bug fixes soon; in the meantime,
all of the new code is available from the darcs reposi-
tory. More information is at http://www.cse.unsw.edu.
au/~chak/haskell/c2hs/.

5.2 Scanning, Parsing, Analysis

5.2.1 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a
parser generator (such as Happy) to build a complete
parser.

The latest release is version 2.1.0.

Changes in version 2.1.0:

◦ Alex is now in a Darcs repository (→ 6.10), here:
http://cvs.haskell.org/darcs/alex.

◦ Happy has a new build system, based on Cabal. If
you have GHC 6.4.2 or later (or Cabal 1.1.4 or later),
then you should be able to build and install Alex
on any platform. On Windows, Perl is required in
addition to GHC for building, but that is all.

◦ There was a slight change in the error semantics, to
enable more informative error messages.

Further reading

http://www.haskell.org/alex/

5.2.2 Happy

Report by: Simon Marlow
Status: stable, maintained

Happy is a tool for generating Haskell parser code from
a BNF specification, similar to the tool Yacc for C.
Happy also includes the ability to generate a GLR
parser (arbitrary LR for ambiguous grammars).

The latest release is 1.16, released 8 January 2007.
There have been no changes to the darcs sources since
1.16, but I have some pending changes to fix one annoy-
ing bug (Happy crashes instead of emitting error mes-
sages), and I have some changes that speed up Happy
by 10% or so.

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

5.2.3 SdfMetz

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser
Status: stable, maintained

SdfMetz supports grammar engineering by calculating
grammar metrics and other analyses. Currently it sup-
ports four different grammar formalisms (SDF, DMS,
Antlr and Bison) from which it calculates size, com-
plexity, structural, and ambiguity metrics. Output is
a textual report or in Comma Separated Value format.
The additional analyses implemented are visualization,
showing the non-singleton levels of the grammar, or
printing the grammar graph in DOT format. The
definition of all except the ambiguity and the NPath
metrics were taken from the paper A metrics suite for
grammar based-software by James F. Power and Brian
A. Malloy. The ambiguity metrics were defined by the
tool author exploiting specific aspects of SDF gram-
mars and the NPath metric definition was taken from
the paper NPATH: a measure of execution path com-
plexity and its applications.

39

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://cvs.haskell.org/darcs/alex
http://www.haskell.org/alex/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/

Future plans

A web-based interface is planned and more metrics will
be added. As longer term project, it is expected to fuse
the SdfMetz and XsdMetz in a single tool.
The tool was initially developed in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) to develop a grammar for ISO VDM-
SL.

Further reading

The web site of SdfMetz (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/SdfMetz) includes tables of metric val-
ues for a series of SDF grammar as computed by
SdfMetz. The tool is distributed as part of the UMinho
Haskell Libraries and Tools.

5.2.4 XsdMetz: metrics for XML Schema

Report by: Joost Visser
Status: maintained

The XsdMetz tool computes structure metrics and us-
age metrics for XML document schemas written in the
XML Schema format. The computed structure metrics
include tree impurity, coupling, cohesion, fan in and
out, instability, height, width, and (normalized) count
of strong componenents (see: Joost Visser, Structure
Metrics for XML Schema). The computed usage met-
rics include XSD-agnostic and XSD-aware counts (see:
Ralf Lämmel, Stan Kitsis, and Dave Remy, Analysis of
XML Schema Usage). The graphs constructed by Xs-
dMetz for the computation of structure metrics can be
exported to the dot format of GraphViz.

XsdMetz is available as part of the UMinho Haskell
Libraries and Tools. A stand-alone release is in prepa-
ration.

Further reading

http://wiki.di.uminho.pt/wiki/bin/view/PURe/
XsdMetz

5.3 Transformations

5.3.1 derive

Report by: Neil Mitchell and Stefan O’Rear
Participants: Neil Mitchell, Stefan O’Rear, Twan van

Laarhoven, Spencer Janssen, Andrea
Vezzosi

The instance derivation mechanism in Haskell is use-
ful, but it has too little power for many uses. User
defined classes cannot be derived automatically even
when there is an obvious algorithm to do it. Previous

attempts, such as DrIFT, are restricted in output form
and closed in the supported classes.

Data.Derive is designed to rectify both of these is-
sues. By design, implementing derivation for a new
class is extremely simple: add a single module to the
GHC search path. Data.Derive uses an Abstract Syn-
tax Tree for output, allowing us to operate both as a
preprocessor a la DrIFT and Template Haskell based
build integration.

The Derive tool has also attracted new features not
present in DrIFT. Twan van Laarhoven has imple-
mented deriving support for Functor, as proposed for
Haskell’. Neil Mitchell has done some work on guessing
inductive instances, allowing users to specify an exam-
ple of the instance, and then automatically inferring
the rules to derive it.

Further reading

◦ Homepage:
http://www-users.cs.york.ac.uk/~ndm/derive

5.3.2 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude / OBJ lan-
guages with special emphasis on the use of simple pro-
grammable strategies for controlling program execu-
tion and new commands enabling powerful execution
modes.

The tools have been developed at the Technical Uni-
versity of Valencia (UPV) as part of a number of re-
search projects. The following people is (or has been)
involved in the development of these tools: Beatriz
Alarcón, María Alpuente, Demis Ballis (Università di
Udine), Santiago Escobar, Moreno Falaschi (Univer-
sità di Siena), Javier García-Vivó, Raúl Gutiérrez, José
Iborra, Salvador Lucas, Rafael Navarro, Pascal Sotin
(Université du Rennes).

Status

The previous work lead to the following tools:

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched on February 2002).

http://www.dsic.upv.es/~slucas/csr/termination/
muterm

40

http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/XsdMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/XsdMetz
http://www-users.cs.york.ac.uk/~ndm/derive
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/~slucas/csr/termination/muterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched on December 2002).

http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched on January 2003).

http://www.dsic.upv.es/users/elp/ondemandOBJ

http://www.dsic.upv.es/users/elp/GVerdi

◦ GVerdi: A Rule-based System for Web site Verifica-
tion (first version launched on January 2005).

All these tools have been written in Haskell (mainly
developed using Hugs and GHC) and use popular
Haskell libraries like hxml-0.2, Parsec, RegexpLib98,
wxHaskell (→ 4.8.2).

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client / server applications (e.g., compil-
ers or complementary tools).

References

◦ Building .NET GUIs for Haskell applications. B.
Alarcón and S. Lucas. 6th International Conference
on .NET Technologies, pages 57–66, 2006.

◦ Proving Termination of Context-Sensitive Rewrit-
ing With MU-TERM B. Alarcón, R. Gutiérrez, J.
Iborra, and S. Lucas. Electronic Notes in Theoreti-
cal Computer Science, to appear, 2007.

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1–16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting Remote Tools: Do it by yourSELF! M.
Alpuente and S. Lucas. ERCIM News 61:48–49,
April 2005.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200–209, Springer-
Verlag, Berlin, 2004.

◦ A Rule-based System for Web site Verification.
Demis Ballis and Javier García-Vivó. 1st In-
ternational Workshop on Automated Specification
and Verification of Web Sites, WWV’05, Valencia
(SPAIN). Electronic Notes in Theoretical Computer
Science, 157(2):11–17, 2006.

5.3.3 HaRe – The Haskell Refactorer

Report by: Huiqing Li, Chris Brown, Claus Reinke and
Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs has as
its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its fourth major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately. The version
about to be released (at the time of writing) works
with GHC 6.6.1, but not GHC 6.4; the earlier releases
work with 6.4.*.

In order to allow users to extend HaRe themselves,
HaRe includes an API for users to define their own
program transformations, together with Haddock (→
5.5.6) documentation. Please let us know if you are
using the API.

There have been some recent developments for
adding program slicing techniques to HaRe. These
techniques include a refactoring to split functions re-
turning tuples into separate definitions, and to also
put them back together again. There have also been
some new refactorings added which work on data types:
adding a constructor to a data type and converting a
data type into a newtype. The immediate aim for the
development of HaRe is to support a number of type-
based refactorings.

A snapshot of HaRe is available from our webpage,
as are recent presentations from the group (including
LDTA 05, TFP05, SCAM06), and an overview of recent

41

http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi

work from staff, students and interns. Among this is an
evaluation of what is required to port the HaRe system
to the GHC API (→ 2.1), and a comparative study of
refactoring Haskell and Erlang programs.

The final report for the project appears there too,
together with an updated refactoring catalogue and the
latest snapshot of the system. Huiqing’s PhD thesis
on refactoring Haskell programs is now available online
from our project webpage.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.4 VooDooM

Report by: Tiago Miguel Laureano Alves
Maintainer: Tiago Alves, Paulo Silva
Status: stable, maintained

VooDooM supports understanding and re-engineering
of VDM-SL specifications.

Understanding is accomplished through the extrac-
tion and derivation of different kinds of graphs such
as type dependency, function dependency and strongly
connected components graphs. These graphs can be
subject of both visualization (by exporting into DOT
format) and metrication (generating CSV or text re-
port).

Re-engineering is supported through the applica-
tion of transformation rules to the datatypes to ob-
tain an equivalent relational representation. The re-
lational representation can be exported as VDM-SL
datatypes (inserted back into th e original specifica-
tion) and/or SQL table definitions (can be fed to a
relational DBMS).

The first VooDooM prototype, supporting re-
engineering, was developed in a student project by
Tiago Alves and Paulo Silva. The prototype was fur-
ther enhanced and continued as an open source project
(http://voodoom.sourceforge.net/) in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) by Tiago Alves and finally in the con-
text of a MSc thesis project.

Currently, a reimplementation of the re-engineering
functionality of VooDooM is being undertaken, based
on so-called two-level transformations, as supported by
the 2LT project (→ 4.7.7).

As future work the implementation is expected of
both XML and Haskell generation.

Further reading

VooDooM is available from http://voodoom.
sourceforge.net/. The implementation of VooDooM
makes ample use of strategic programming, using Stra-
funski, and is described in Strategic Term Rewriting
and Its Application to a VDM-SL to SQL Conversion

(Alves et al., Formal Methods 2005) and in the
MSc thesis VooDooM: Support for understanding and
re-engineering of VDM-SL specifications.

5.4 Testing and Debugging

5.4.1 Haskell Program Coverage

Report by: Andy Gill
Status: released, maintained, in active development

Hpc is a tool-kit to record and display Haskell Pro-
gram Coverage. Hpc includes tools that instrument
Haskell programs to record program coverage, run in-
strumented programs, and display the coverage infor-
mation obtained.

Hpc provides coverage information of two kinds:
source coverage and boolean-control coverage. Source
coverage is the extent to which every part of the
program was used, measured at three different lev-
els: declarations (both top-level and local), alternatives
(among several equations or case branches) and expres-
sions (at every level). Boolean coverage is the extent to
which each of the values True and False is obtained in
every syntactic boolean context (ie. guard, condition,
qualifier).

Hpc displays both kinds of information in two dif-
ferent ways: textual reports with summary statistics
(hpc-report) and sources with colour mark-up (hpc-
markup). For boolean coverage, there are four possible
outcomes for each guard, condition or qualifier: both
True and False values occur; only True; only False;
never evaluated. In hpc-markup output, highlighting
with a yellow background indicates a part of the pro-
gram that was never evaluated; a green background
indicates an always-True expression and a red back-
ground indicates an always-False one.

Hpc provides a Haskell-to-Haskell translator as a
means for building instrumented binaries for gather-
ing coverage information, and an Hpc option already
checked into GHC 6.7 will make gathering coverage
over GHC specific Haskell code possible in GHC 6.8.

The file formats use by Hpc are simple and well
documented. The intent is that other tools can be
quickly built that process coverage information in cre-
ative ways.

Since the last HCAR report, there have been two
significant developments in Hpc camp.

◦ An Ajax based tracer has been developed that uses
the Hpc ticks to highlight actual control flow in-
side a Haskell program using a browser view of
Haskell source code. Unsurprisingly lazy functional
code jumps around in a semi-understandable man-
ner. The tracer turns out to be useful for finding
errors like head of [], because the tracer can run till

42

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://voodoom.sourceforge.net/
http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://voodoom.sourceforge.net/
http://voodoom.sourceforge.net/

the exception is raised, then replay the control flow
backwards, showing what code fragment causes the
bad call to head.

◦ Hpc now has a small DSL for specifying code frag-
ments that should be ignored when computing and
displaying coverage. This DSL can be used to help
classify things like code that is genuinely expected to
never be called, for example if the code can only be
reached when a higher-level precondition has been
violated. The DSL can also be used to tag test code
to be ignored when considering system level cover-
age. Another use case is capturing the ignoring of
idioms that are expected to contain non-executed
code. This DSL is provided as a processor for the
open Hpc file formats, and works with the other Hpc
tools.

GHC has been sucessfully bootstrapping using Hpc,
and Hpc has already be deployed internally in Galois in
a number of places. In the future expect to see tighter
integration between Haskell testing tools and Hpc as
obtaining coverage results for test runs becomes stan-
dard practice in Haskell development.

Further reading

http://www.haskell.org/haskellwiki/Haskell_Program_
Coverage

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: maintenance

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can be
viewed in various ways with several tools: hat-observe,
hat-trail, hat-detect, hat-delta, hat-explore, hat-cover,
hat-anim, black-hat, hat-nonterm . . . Some views are
similar to classical debuggers for imperative languages,
some are specific to lazy functional language features
or particular types of bugs. All tools inter-operate and
use a similar command syntax.

Hat can be used both with nhc98 (→ 2.3) and ghc (→
2.1). Hat was built for tracing Haskell 98 programs,
but it also supports some language extensions (FFI,
MPTC, fundeps, hierarchical libs). A tutorial explains
how to generate traces, how to explore them, and how
they help to debug Haskell programs.

During the last half year only small bug fixes were
committed to the darcs (→ 6.10) repository. But as
part of the Google Summer of Code, Kenn Knowles
has been funded to update Hat to work well with the
large number of Haskell libraries used by almost all real
coding projects these days. Hopefully this will resur-
rect Hat to a state where it can be used once again by

ordinary people on a regular basis to help them under-
stand the behaviour of their code.

Several other updates are also planned for the near
future, including new and improved trace-browsers.

Further reading

◦ A Theory of Tracing Pure Functional Programs
http://www.cs.kent.ac.uk/people/staff/oc/
traceTheory.html

◦ http://www.haskell.org/hat
◦ darcs get http://darcs.haskell.org/hat
◦ Google Summer of Code project

http://code.google.com/soc/haskell/appinfo.html?
csaid=637BFC2B6B13D512

5.4.3 SmallCheck: another lightweight testing
library in Haskell

Report by: Colin Runciman

SmallCheck is similar to QuickCheck (Claessen and
Hughes 2000–) but instead of testing for a sample of
randomly generated values, SmallCheck tests proper-
ties for all the finitely many values up to some depth,
progressively increasing the depth used. As well as
guaranteeing minimal counter-examples, the different
approach to test-data generation makes it easier to de-
fine generators for user-defined types, allows the use of
existential quantifiers and enables more information to
be displayed about functional values.

The SmallCheck prototype was written in Sum-
mer 2006 during a visit to Galois Connections (→
7.1.3). Feedback from users has prompted improve-
ments, and the most recent version is 0.2 (November
2006). Compared with version 0.1 there is a wider
choice of test-drivers and more pre-defined test-data
generators. SmallCheck 0.2 is freely available, with il-
lustrative examples, from http://www.cs.york.ac.uk/fp/
smallcheck0.2.tar.

43

http://www.haskell.org/haskellwiki/Haskell_Program_Coverage
http://www.haskell.org/haskellwiki/Haskell_Program_Coverage
http://www.cs.kent.ac.uk/people/staff/oc/traceTheory.html
http://www.cs.kent.ac.uk/people/staff/oc/traceTheory.html
http://www.haskell.org/hat
http://darcs.haskell.org/hat
http://code.google.com/soc/haskell/appinfo.html?csaid=637BFC2B6B13D512
http://code.google.com/soc/haskell/appinfo.html?csaid=637BFC2B6B13D512
http://www.cs.york.ac.uk/fp/smallcheck0.2.tar
http://www.cs.york.ac.uk/fp/smallcheck0.2.tar

5.5 Development

5.5.1 hmake

Report by: Malcolm Wallace
Status: stable, maintained

Hmake is an intelligent module-compilation manage-
ment tool for Haskell programs. It interoperates with
ghc (→ 2.1), hbc, and nhc98 (→ 2.3), allowing multi-
ple installed versions of compilers to be easily selected
from.

A recent public version: 3.13, contains bugfixes for
building with ghc-6.6. Maintenance continues at darcs.
haskell.org.

Further reading

http://haskell.org/hmake/

5.5.2 Haskell Modes for Vim

Report by: Claus Reinke
Participants: All Haskell & Vim users
Status: ongoing

While there is no single best Haskell mode for Vim,
there are certainly numerous Vimmers out there with
their own personalized Haskell mode settings for Vim,
and there are certainly numerous Haskellers out there
looking for the kind of IDE functionality that some
Vimmers have at their fingertips already.

Since surprisingly many Haskellers are not quite
aware of Vim’s IDE functions, I have created a lit-
tle introductory (and incomplete) tour of screenshots
(for more information, see Vim’s excellent built-in
:help, or browse the help files online at http://vimdoc.
sourceforge.net/htmldoc/usr_toc.html). I have also re-
placed my own old Hugs-based Vim scripts, which have
been online for years, with my current, GHC- and
Haddock-based scripts. The tour gives an overview of
what functionality they provide.

1. There is a section at haskell.org listing several peo-
ple’s Vim files:

http://www.haskell.org/haskellwiki/Libraries_and_
tools/Program_development#Vim

2. My own Vim scripts and plugins are available here
(just updated):

http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/
haskell/Vim/

3. A short tour of some Vim support for Haskell editing
(screenshots):

http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/
haskell/Vim/vim.html

I hope that (1) might encourage more Haskell Vim-
mers to link to their own tricks and tips (perhaps there
should be a top-level ’Haskell modes for Vim’ section at
haskell.org, similar to the ’Haskell mode for Emacs’ sec-
tion that is already there), (2) might be useful to some
of you, and (3) might help to motivate some of you to
give Vim a try. It is really not as if Vim (or Emacs, for
that matter) didn’t have more IDE functionality than
most of us ever use, it is more that there is so much of it
to learn and to fine-tune to your personal preferences.

5.5.3 Ruler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Arie Middelkoop, Doaitse

Swierstra
Status: active development

The purpose of the Ruler system is to describe type
rules in such a way that a partial Attribute Gram-
mar implementation, and a pretty printed LATEX can
be generated from a description of type rules. The sys-
tem (currently) is part of the EHC (Essential Haskell
compiler) project (→ 3.3.5) and described in a tech-
nical paper, which is also included in the PhD thesis
describing the EHC project. The system is used to de-
scribe the type rules of EHC. The main objectives of
the system are:

◦ To keep the implementation and LATEX rendering of
type rules consistent.

◦ To allow an incremental specification (necessary for
the stepwise description employed by EHC).

Using the Ruler language (of the Ruler system) one
can specify the structure of judgements, called judge-
ment schemes. These schemes are used to ‘type check’
judgements used in type rules and generate the imple-
mentation for type rules. A minimal example, where
the details required for generation of an implementa-
tion are omitted, is the following:

scheme expr =
holes [| e: Expr, gam: Gam, ty: Ty |]
judgespec gam :- e : ty

ruleset expr scheme expr =
rule app =

judge A : expr = gam :- a : ty.a
judge F : expr = gam :- f : (ty.a -> ty)
-
judge R : expr = gam :- (f a) : ty

This example introduces a judgement scheme for the
specification of type rules for expressions, and a type
rule for applications (as usually defined in λ-calculus).

44

http://haskell.org/hmake/
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/haskell/Vim/
http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/haskell/Vim/
http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/haskell/Vim/vim.html
http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/haskell/Vim/vim.html

Current activities

Arie Middelkoop continues with the development of the
Ruler system as part of his Microsoft Research Schol-
arship PhD grant. He will investigate the specification
of type rules in a partitioned (stepwise an aspectwise)
fashion, and the incorporation of solving strategies for
typing rules.

Further reading

◦ Homepage (Ruler is part of EHC):
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
From here the mentioned documentation can be
downloaded.

5.5.4 cpphs

Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust drop-in Haskell replacement for the
C pre-processor. It has a couple of benefits over the
traditional cpp – you can run it in Hugs when no C
compiler is available (e.g. on Windows); and it under-
stands the lexical syntax of Haskell, so you don’t get
tripped up by C-comments, line-continuation charac-
ters, primed identifiers, and so on. (There is also a
pure text mode which assumes neither Haskell nor C
syntax, for even greater flexibility.)

Cpphs can also unliterate .lhs files during prepro-
cessing, and you can install it as a library to call from
your own code, in addition to the stand-alone utility.

Current release is 1.4, containing some minor bug-
fixes, especially to macro expansions in cpp condition-
als.

Further reading

http://haskell.org/cpphs

5.5.5 Visual Haskell

Report by: Simon Marlow and Krasimir Angelov
Status: in development

Visual Haskell is a plugin for Microsoft’s Visual Studio
development environment to support development of
Haskell code. It is tightly integrated with GHC, which
provides support for intelligent editing features, and
Cabal, which provides support for building and pack-
aging multi-module programs and libraries.

Version 0.2 of Visual Haskell was released in Decem-
ber 2006. It includes support for Visual Studio 2005,
and comes with GHC 6.6.

The sources are in a darcs (→ 6.10) repository
here: http://darcs.haskell.org/vshaskell/, and are pro-
vided with a BSD-license. Why not take a look and
see what lengths you have to go to in order to write
Haskell code that plugs into Visual Studio!

Help is (still) welcome! Please drop us a
note: 〈simonmar@microsoft.com〉 and 〈kr.angelov@
gmail.com〉.

5.5.6 Haddock

Report by: Simon Marlow
Status: stable, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates doc-
umentation by parsing the Haskell source code di-
rectly, and including documentation supplied by the
programmer in the form of specially-formatted com-
ments in the source code itself. Haddock has direct
support in Cabal, and is used to generate the docu-
mentation for the hierarchical libraries that come with
GHC, Hugs, and nhc98 (http://www.haskell.org/ghc/
docs/latest/html/libraries).

The latest release is verison 0.8, released October 10
2006.

Work continues on a new version of Haddock based
on the GHC API; this will become version 2.0.
Changes since the 0.8 release:

◦ Thanks to Neil Mitchell, the index page generated
by Haddock now has a search box, and the list is
dynamically updated as you type.

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here:
http://darcs.haskell.org/haddock/TODO

◦ Haddock’s home page is here:
http://www.haskell.org/haddock/

5.5.7 Hoogle – Haskell API Search

Report by: Neil Mitchell
Status: v3.0

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online.

45

http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://haskell.org/cpphs
http://darcs.haskell.org/vshaskell/
mailto: simonmar at microsoft.com
mailto: kr.angelov at gmail.com
mailto: kr.angelov at gmail.com
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://darcs.haskell.org/haddock/TODO
http://www.haskell.org/haddock/

Hoogle is still under active development, since the
last HCAR substantial progress has been made towards
version 4 – speeding up searches and offering many fea-
tures requested by the users. Some libraries required
for Hoogle 4 have been developed and released, includ-
ing tagsoup (→ 4.10.4) and binarydefer (→ 4.7.3).

Hoogle is available as a web interface, a command
line tool and a lambdabot (→ 6.11) plugin.

Further reading

http://haskell.org/hoogle

5.5.8 SearchPath

Report by: S. Alexander Jacobson

Searchpath gives you automatic import chasing across
the Internet for Haskell modules. Think of it as an
internet wide version of the -i command line option
for GHC. Rather than just specifying local file paths,
you can specify locations out on the Internet for your
compiler to find your modules. You don’t need to worry
about manually installing package after package, you
only need a list of locations of packages (or parts of
packages) you want to use, and let searchpath take care
of the rest.

Detailed tutorial and more at http://www.haskell.
org/haskellwiki/SearchPath. Also see the website at
http://www.searchpath.org/.

46

http://haskell.org/hoogle
http://www.haskell.org/haskellwiki/SearchPath
http://www.haskell.org/haskellwiki/SearchPath
http://www.searchpath.org/

6 Applications

6.1 xmonad

Report by: Don Stewart
Status: active development

Xmonad is a minimalist tiling window manager for X,
written in Haskell. Windows are managed using au-
tomatic layout algorithms, which can be dynamically
reconfigured. At any time windows are arranged so as
to maximise the use of screen real estate. All features
of the window manager are accessible purely from the
keyboard: a mouse is entirely optional. Xmonad is con-
figured in Haskell, and custom layout algorithms may
be implemented by the user in config files. A princi-
ple of Xmonad is predictability: the user should know
in advance precisely the window arrangement that will
result from any action.

By default xmonad provides three layout algorithms:
tall, wide and fullscreen. In tall or wide mode, windows
are tiled and arranged to prevent overlap and maximise
screen use. Sets of windows are grouped together on
virtual screens, and each screen retains its own lay-
out, which may be reconfigured dynamically. Multiple
physical monitors are supported via Xinerama, allow-
ing simultaneous display of a number of screens.

Further reading

◦ Home page:
http://xmonad.org/

◦ Darcs source:
darcs get http://darcs.haskell.org/~sjanssen/xmonad

◦ IRC channel:
#xmonad @ irc.freenode.org

◦ Mailing list:
〈xmonad@haskell.org〉

6.2 GenI

Report by: Eric Kow
Status: active development

GenI is a surface realiser for Tree Adjoining Grammars.
Surface realisation can be seen as the last stage in a nat-
ural language generation pipeline. GenI in particular
takes an FB-LTAG grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated to the input semantics by the
grammar. It features a surface realisation library, sev-
eral optimisations, batch generation mode and a graph-
ical debugger written in wxHaskell. It was developed
within the TALARIS project and is free software li-

censed under the GNU GPL.

Further reading

◦ http://trac.loria.fr/~geni
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en

6.3 Roguestar

Report by: Christopher Lane Hinson
Status: early development

Roguestar is a science fiction role playing game. In
gameplay, it belongs to the roguelike family of games.
It sports an OpenGL interface. Roguestar is licensed
under the GNU GPL.

Roguestar is in the early stages of development. It
is not yet “fun.”

I am currently refactoring the roguestar graphics and
animation library, which will be available under a per-
missive license. The next goal is to implement combat
and a simple AI.

Further reading

http://roguestar.downstairspeople.org

6.4 mmisar

Report by: Slawomir Kolodynski
Status: under development

mmisar is a tool supporting translation of formalized
mathematics from the Metamath’s set.mm to the Isar
formal proof language so that it can be verified by Is-
abelle/ZF. I created it for my IsarMathLib project (a li-
brary of formalized mathematics for Isabelle/ZF). As of
release 1.4.0 IsarMathLib contains about 1000 facts and
500 proofs translated from Metamath to Isabelle/ZF
with mmisar. The tool is included in the distribution
of the IsarMathLib project and licensed under GPL. It
is under active development as I am using it to learn
Haskell. In the next release I am planning to rewrite
the parser for Metamath ZF formulas to base it on Par-
sec.

Further reading

◦ http://savannah.nongnu.org/projects/isarmathlib
◦ http://us.metamath.org/
◦ http://www.cl.cam.ac.uk/research/hvg/Isabelle/

47

http://xmonad.org/
http://darcs.haskell.org/~sjanssen/xmonad
mailto: xmonad at haskell.org
http://trac.loria.fr/~geni
http://hal.inria.fr/inria-00088787/en
http://roguestar.downstairspeople.org
http://savannah.nongnu.org/projects/isarmathlib
http://us.metamath.org/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

6.5 Inference Services for Hybrid Logics

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

“Hybrid Logic” is a loose term covering a number of
logical systems living somewhere between modal and
classical logic. For more information on this languages,
see http://hylo.loria.fr

The Talaris group at Loria, Nancy, France (http:
//talaris.loria.fr) and the GLyC group at the Computer
Science Department of the University of Buenos Aires,
Argentina (http://www.glyc.dc.uba.ar/) are developing
a suite of tools for automated reasoning for hybrid log-
ics. Most of them are (successfully) written in Haskell.
A brief description of some of these tools follows.

6.5.1 HyLoRes

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

Status: active development
Current release: 2.1

HyLoRes is an automated theorem prover for hybrid
logics based on a resolution calculus. It is sound and
complete for a very expressive (but undecidable) hy-
brid logic, and it implements termination strategies for
certain important decidable fragments. The project
started in 2002, and has been evolving since then. It is
currently being extended to handle even more expres-
sive logics (including, in particular, temporal logics).
In the near future, we will investigate algorithms for
model generation.

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Gorin, D. Ordered Resolution with
Selection for H(@). In Proceedings of LPAR 2004,
pp. 125–141, Springer, Montevideo, Uruguay, 2005.

◦ Areces, C. and Heguiabehere, J. HyLoRes: A Hybrid
Logic Prover Based on Direct Resolution. In Pro-
ceedings of Advances in Modal Logic 2002, Toulouse,
France, 2002.

◦ Site:
http://www.loria.fr/~areces/HyLoRes/

◦ Source:
http://trac.loria.fr/projects/hylores

6.5.2 HTab

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

Status: active delopment
Current release: 1.0

HTab is an automated theorem prover for hybrid logics
based on a tableau calculus. The goal is to implement
a terminating tableau algorithm for the basic hybrid
logic and for the basic logic extended with the universal
modality. It is currently in early developments. It will
be tunable with various optimisations.

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

◦ Guillaume Hoffmann. Terminating tableau algo-
rithms for hybrid logic. Master Thesis.

◦ Source:
http://trac.loria.fr/projects/htab

6.5.3 HGen

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

Status: active development
Current release: 1.0

HGen is a random CNF (conjunctive normal form)
generator of formulas for different hybrid logics. It is
highly parametrized to obtain tests of different com-
plexity for the different languages. It has been exten-
sively used in the development of HyLoRes (→ 6.5.1)
and HTab (→ 6.5.2).

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Heguiabehere, J. hGen: A Random
CNF Formula Generator for Hybrid Languages. In
Methods for Modalities 3 (M4M-3), Nancy, France,
September 2003.

◦ Source:
http://trac.loria.fr/projects/hgen

6.6 Raskell

Report by: Jennifer Streb
Participants: Garrin Kimmell, Nicolas Frisby, Mark

Snyder, Philip Weaver, Jennifer Streb,
Perry Alexander

Status: beta, actively maintained

Raskell is a Haskell-based analysis and interpreta-
tion environment for specifications written using the

48

http://hylo.loria.fr
http://talaris.loria.fr
http://talaris.loria.fr
http://www.glyc.dc.uba.ar/
http://www.loria.fr/~areces/HyLoRes/
http://trac.loria.fr/projects/hylores
http://trac.loria.fr/projects/htab
http://trac.loria.fr/projects/hgen

system-level design language, Rosetta. The goal of
Rosetta is to compose heterogeneous specifications into
a single semantic environment. Rosetta provides mod-
eling support for different design domains employing se-
mantics and syntax appropriate for each. Therefore, in-
dividual specifications are written using semantics and
vocabulary appropriate for their domains. Information
is then composed across these domains by defining in-
teractions between them.

The heart of Raskell is a collection of composable in-
terpreters that support type checking, evaluation and
abstract interpretation of Rosetta specifications. Alge-
bra combinators allow semantic algebras for the same
constructs, but for different semantics, to be easily
combined. This facilitates further reuse of semantic
definitions. Comonads are used to structure a denota-
tion of temporal Rosetta specifications. We are also in-
vestigating the use of comonads to capture other mod-
els of computation as supported by Rosetta domains.
Using abstract interpretation we can transform speci-
fications between semantic domains without sacrificing
soundness. This allows for analysis of interactions be-
tween two specifications written in different semantic
domains. Raskell also includes a Parsec-based Rosetta
parser that generates both recursive and non-recursive
AST structures.

The Raskell environment is available for download
at the links below. It is continually being updated, so
we recommend checking back frequently for updates.
To build the Rosetta parser and type checker you must
also install InterpreterLib and algc (a preprocessor for
functorial boilerplate), both available at the third link
listed below.

Further reading

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-rosetta.htm#raskell

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-raskell.htm

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

〈alex@ittc.ku.edu〉

6.7 photoname

Report by: Dino Morelli
Status: stable, maintained

photoname is a command-line utility for renam-
ing/moving photo image files. The new folder location
and naming are determined by the EXIF photo shoot
date and the usually-camera-assigned serial number, of-
ten appearing in the filename.

Further reading

◦ Project page:
http://ui3.info/d/proj/photoname.html

◦ Source repository:
darcs get http://ui3.info/darcs/photoname

6.8 HJS – Haskell Javascript Interpreter

Report by: Mark Wassell
Status: in development

HJS is a Javascript interpreter and is based on the
grammar and behaviour as specified in ECMA-262,
3rd Edition, with additions and modifications from
JavaScript 1.5. Current status is that all of the lan-
guage can be parsed and work is underway to complete
the core behaviour and the built-in objects and their
methods. Possible options for future directions include
a pretty printer and providing multiple hosting envi-
ronments – DOM, WScript and Gtk2Hs are examples.

Further reading

http://www.haskell.org/haskellwiki/Libraries_and_
tools/HJS

6.9 FreeArc

Report by: Bulat Ziganshin
Status: beta

FreeArc is an archiver (like Info-Zip) written in Haskell
that uses C compression libraries via the interface pro-
vided by the Compression-2006 library (→ 4.7.4).

At this moment, it’s the best practical compressor
in the world, several times faster and reaching better
compression than WinRAR, 7-zip, WinRK, UHARC
and any other program I know. Aside this, FreeArc
provides a lot of features, including solid archives with
fast updates, tunable compression level/algorithms, au-
tomatic selection of compression algorithm depending
on file type, tunable sorting and grouping of files, SFX
module and FAR MultiArc sub-plugin.

FreeArc sources have a lot of comments . . . in Rus-
sian. If you know this language, these sources are an
invaluable place for learning Haskell. Moreover, the
program includes several modules that you may reuse
in your program on BSD3 license:

◦ Win32Files.hs – implements I/O on Windows for files
> 4GB and files with Unicode names

◦ Files.hs – provides an OS-independent interface to
the features of Win32Files

◦ ByteStream.hs – binary serialization library

49

http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: alex at ittc.ku.edu
http://ui3.info/d/proj/photoname.html
http://ui3.info/darcs/photoname
http://www.haskell.org/haskellwiki/Libraries_and_tools/HJS
http://www.haskell.org/haskellwiki/Libraries_and_tools/HJS

◦ UTF8Z.hs – UTF8-packed strings (like ByteString,
but with a more memory-efficient representation)

◦ Process.hs – allows to construct data-processing al-
gorithms from individual processes by joining them
together very much like ordinary programs are joined
by Unix shell

Further reading

◦ Download:
http://www.haskell.org/bz

Contact

〈Bulat.Ziganshin@gmail.com〉

6.10 Darcs

Report by: Eric Kow
Participants: David Roundy
Status: active development

Darcs is a distributed revision control system written
in Haskell. In darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a darcs repository to easily create their
own branch and modify it with the full power of darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, darcs remains very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

David Roundy and a handful of interested users have
been working on a new version of the theory of patches
with better defined and more well-behaved conflict res-
olution. The two most actively pursued approaches so
far are conflictors and tree-based conflicts. Recently,
David has been working on a new “hashed inventory”
format, a basic building block for an eventual solu-
tion to conflicts problem. It has been working well
enough now that we are starting to consider switching
our repository over in the near future. Also, devel-
oper Jason Dagit has been accepted to work on the
conflicts problem as part of a Google Summer of Code
project. Meanwhile, the darcs community in general
are working on day-to-day issues such as an improved
interactions with external programs.

A new release (1.0.9) will be coming out shortly,
with GHC 6.6 support, several bug fixes and user in-
terface improvements. Patches great and small would
be heartily welcome!

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.11 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell
evaluator, lambda calculus interpreter, unlambda in-
terpreter, pointfree programming, dictd client, fortune
cookies, Google search, online help and more.

New features since the last release include: multi-
server mode, configuration scripts, stability improve-
ments, extended defaulting, ghc 6.6 support, and com-
pressed binary checkpointing.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/lambdabot.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/lambdabot

6.12 yi

Report by: Don Stewart
Status: active development

yi is a project to write a Haskell-extensible editor. yi is
structured around an basic editor core, such that most
components of the editor can be overridden by the user,
using configuration files written in Haskell.

Yi activity has increased dramatically in the past
few months, as Jean-Philippe Bernardy has taken over
active development. In particular, Yi is now based
on top of the GHC-api (→ 2.1) library, enabling more
interactive and dynamic configuration and extension.
Significant architectural changes have occurred, includ-
ing: Vty frontend (→ 4.8.5) replaces Curses frontend;
linewrap support; GTK frontend (→ 4.8.3); dynamic
Haskell evaluation (like elisp!); new commands may be
dynamically defined; Syntax highlighting in GTK fron-
tend.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/yi.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/yi/

50

http://www.haskell.org/bz
mailto: Bulat.Ziganshin at gmail.com
http://darcs.net
http://www.cse.unsw.edu.au/~dons/lambdabot.html
http://www.cse.unsw.edu.au/~dons/lambdabot
http://www.cse.unsw.edu.au/~dons/yi.html
http://www.cse.unsw.edu.au/~dons/code/yi/

6.13 INblobs – Interaction Nets interpreter

Report by: Miguel Vilaca
Participants: Miguel Vilaca and Daniel Mendes
Status: active, maintained
Portability: Windows, Linux and Mac OS X

(depends on wxHaskell(→ 4.8.2))

INblobs is an editor and interpreter for Interaction Nets
– a graph-rewriting formalism introduced by Lafont,
inspired by Proof-nets for Multiplicative Linear Logic.

INblobs is built on top of the front-end Blobs from
Arjan van Ĳzendoorn, Martĳn Schrage and Malcolm
Wallace.

The tool is being developed using the repository sys-
tem Darcs (→ 6.10).

New features

◦ Mac OS X portability
◦ new reduction strategy
◦ templates for explicit memory management
◦ some bug fixes

Further reading

◦ Homepage:
http://haskell.di.uminho.pt/jmvilaca/INblobs/

◦ Blobs:
http://www.cs.york.ac.uk/fp/darcs/Blobs

6.14 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

The program is stable and can take on large docu-
ments.

The current release is version 1.12 (January 2007),
which is compatible with GHC 6.6 and has (experimen-
tal) support for Cabal. Development continues slowly
in the Subversion repository.

I would like to present some examples of lhs2TEX
formatting capabilities on the homepage, and also to
extend the lhs2TEX library of formatting directives. If

you have written a document that demonstrates nicely
what lhs2TEX can do, or if you have designed clever for-
matting instructions to trick lhs2TEX into doing things
previously deemed impossible, please contact me.

Further reading

◦ http://www.cs.uu.nl/~andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/

lhs2TeX/trunk/

6.15 Emping

Report by: Hans van Thiel

I’d like to announce the availability of Emping, a utility
that reads a table of nominal data, in a csv format that
can be generated from Open Office Calc, derives all
shortest rules for a selected attribute, and writes them
to a .csv file that can be read by OO Calc. See http://
j-van-thiel.speedlinq.nl/emp/empug.html for more and a
download.

The connection with Haskell is only that it’s written
in it.

6.16 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project audio signals are processed using pure
Haskell code. The highlights are

◦ a simple signal synthesis backend for Haskore (→
4.9.3),

◦ experimental structures for filter networks,

◦ basic audio signal processing including some hard-
coded frequency filters,

◦ advanced framework for signal processing supported
by physical units, that is, the plain data can be
stored in a very simple number format, even fixed
point numbers, but the sampling parameters rate
and amplitude can be complex types, like numbers
with physical units,

◦ framework for inference of sample rate and ampli-
tude, that is, sampling rate and amplitude can be
omitted in most parts of a signal processing expres-
sion, they are inferred automatically, just as types
are inferred in Haskell’s type system. Although the
inference of signal parameters needs some prepro-
cessing, the framework preserves the functional style
of programming. This approach is based on an ex-
plicitly maintained dictionary of signal parameters,

51

http://haskell.di.uminho.pt/jmvilaca/INblobs/
http://www.cs.york.ac.uk/fp/darcs/Blobs
http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
http://j-van-thiel.speedlinq.nl/emp/empug.html
http://j-van-thiel.speedlinq.nl/emp/empug.html

which must be computed completely before any sig-
nal processing takes place. This forces all signal pa-
rameters to share the same type and prohibits in-
finitely many signal processors to be involved.

The library comes with basic Cabal support and re-
quires the Numeric Prelude framework (→ 4.6.5) of re-
vised numeric type classes.

Future plans

◦ We try hard to get rid of the explicit dictionary in
the sample parameter inference framework. We have
some success on solving this problem, but sharing
of signal data between signal processes is still the
major problem. In a recent approach we simulate
logic programming by a big lazy cycle of function
applications (a tied knot, a fixed point).

◦ Design a common API to the Haskell synthesizer
code, CSound support included in Haskore (→ 4.9.3),
and the SuperCollider interface.

◦ Connect with the HaskellDSP library http://
haskelldsp.sourceforge.net/.

◦ Hope on faster code generated by Haskell compilers.
:-) We have run certain tests using the FastPacked-
String and the Binary libraries, which are still not
satisfying.

Further reading

◦ http://darcs.haskell.org/synthesizer/
◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

6.17 hmp3

Report by: Don Stewart
Status: stable, maintained

hmp3 is a curses-based mp3 player frontend to mpg321
and mpg123. It is written in Haskell. It is designed to
be simple, fast and robust. It’s very stable.

hmp3 will now take advantage, transparently, of mul-
tiple cores, to run its separate threads, if compiled with
the GHC 6.6 SMP runtime system. It has been updated
to support the latest ByteString api (→ 4.6.2).

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hmp3.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hmp3/

6.18 Testing Handel-C Semantics Using
QuickCheck

Report by: Andrew Butterfield
Participants: Andrew Butterfield, Brian Corcoran
Status: ongoing

The Handel-C Semantics Tool is a Haskell application
that allows experimentation with formal semantic mod-
els of the hardware compiler language Handel-C, mar-
keted by Celoxica Ltd. It has been used to evaluate
to differing degrees three models: operational, denota-
tional and hardware-oriented. It uses QuickCheck as a
means for testing various key properties such as equiv-
alence of the operational and denotational semantics,
and the validity of certain algebraic laws for the lan-
guage.

It is not yet publicly available – it is unsure what
general interest there would be in this tool

We plan to revisit some of the tests, and then do the
formal proofs!

Further reading

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/
Handel_2dC_20Semantics_20Page

6.19 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of libraries for
elementary computer vision and image processing appl
ications. We take advantage of Haskell’s expressive
power without any performance loss, since all heavy nu-
merical c omputations are done by optimized libraries:
HOpenGL for 3D graphics and user interface, GSL-
Haskell (→ 4.2.3) for matrix computations, and an ex-
perimental binding to Intel’s IPP for fast image pro-
cessing. We use MPlayer for real time image grabbing
and video decoding.

The system exploits higher order functions to create
very useful abstractions. For example, we use “camera
combinators” to define “virtual cameras” which per-
form any desired image processing on the infinite im-
age sequences generated by other cameras. We can also
define elaborate pattern recognition machines by com-
position of any desired chain of feature extractors and
simple classifiers.

This is a very preliminary version, but some appli-
cations are already working. The URL below shows a
few screenshots.

Further reading

http://alberrto.googlepages.com/easyvision

52

http://haskelldsp.sourceforge.net/
http://haskelldsp.sourceforge.net/
http://darcs.haskell.org/synthesizer/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://www.cse.unsw.edu.au/~dons/hmp3.html
http://www.cse.unsw.edu.au/~dons/code/hmp3/
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/Handel_2dC_20Semantics_20Page
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/Handel_2dC_20Semantics_20Page
http://alberrto.googlepages.com/easyvision

6.20 View selection for image-based
rendering

Report by: Yann Morvan
Status: Part of a submitted Ph.D.

The initiative was part of a computer graphics research
project aimed at proposing a perceptual view selection
method for image-based rendering. Our approach was
limited to applying functional programming to develop
a complex graphics application, including a state of the
art image-based renderer. We used Haskell with GHC
and its OpenGL (→ 4.9.1) binding, adding a few wrap-
pers for graphics hardware programming. Development
proved agreeable, with almost no need for debugging.
We had hoped to leverage lazy evaluation within the
implementation of the view selection algorithm, but
this didn’t materialize. The project has been completed
and there are presently no plans to dig further into the
functional programming aspect of it, but it is a possi-
bility. Source code is available on demand, as well as
the Ph.D. manuscript, though it focuses very little on
the functional aspect.

Further reading

https://www.cs.tcd.ie/~morvany/

53

https://www.cs.tcd.ie/~morvany/

7 Users

7.1 Commercial users

7.1.1 Credit Suisse Global Modelling and Analytics
Group

Report by: Ganesh Sittampalam

GMAG, the quantitative modelling group at Credit Su-
isse, has been using Haskell for various projects since
the beginning of 2006, with the twin aims of improving
the productivity of modellers and making it easier for
other people within the bank to use GMAG models.

Many of GMAG’s models use Excel combined with
C addin code to carry out complex numerical computa-
tions and to manipulate data structures. This combina-
tion allows modellers to combine the flexibility of Excel
with the performance of compiled code, but there are
significant drawbacks: Excel does not support higher-
order functions and has a rather limited and idiosyn-
cratic type system. It is also extremely difficult to use
make reusable components out of spreadsheets or sub-
ject them to meaningful version control.

Because Excel is (in the main) a side-effect free en-
vironment, functional programming is in many ways a
natural fit, and we have been using Haskell in various
ways to replace or augment the spreadsheet environ-
ment.

So far, we have:
◦ Added higher-order functions to Excel, implemented

via (Haskell) addin code.
◦ Built tools to transform spreadsheets into directly

executable code.
◦ Written a “lint” tool to check for common errors in

spreadsheets.
Current projects include:

◦ Further work on tools for checking, manipulating and
transforming spreadsheets.

◦ A domain-specific language embedded in Haskell for
implementing reusable components that can be com-
piled into various target forms.
The addition of higher-order functions to Excel has

proved very popular, for example giving modellers the
ability to duplicate calculations without having to re-
peat them over a large area of the spreadsheet (which
is inflexible and causes maintenance headaches.)

An increasing number of modellers are being exposed
directly to Haskell by using our DSL, and they seem to
be picking it up fairly quickly. The reusable nature of
components makes it easier to quickly build complete
models that can be distributed to end-users.

We are hiring: please see http://tinyurl.com/2lqoq9.

Further reading

◦ CUFP 2006 talk about Credit Suisse:
http://cufp.galois.com/slides/2006/HowardMansell.
pdf

7.1.2 Bluespec tools for design of complex chips

Report by: Rishiyur Nikhil
Status: Commercial product

Bluespec, Inc. provides tools for chip design (ASICs
and FPGAs) inspired by Haskell and Term Rewrit-
ing Systems. Bluespec also uses Haskell to implement
many of its tools (over 85K lines of Haskell). Bluespec’s
products include synthesis, simulation and other tools
for two languages:

◦ Bluespec SystemVerilog (BSV)

◦ ESE (ESL Synthesis Extensions to SystemC)

Both languages are based on a common semantic
model: hardware behavior is expressed using Rewrite
Rules, and inter-module communication is expressed
using Rule-based Interface Methods (which allow rules
to be composed from fragments that span module
boundaries). Because rules are atomic, they elimi-
nate a majority of the “timing errors” and “race con-
ditions” that plague current hardware design using ex-
isting RTL languages like Verilog or VHDL. Rules also
enable powerful reasoning about the functional correct-
ness of systems. In other words, the concurrency model
provided by rules is much more powerful and abstract
than the low-level concurrency models provided by Ver-
ilog, VHDL and SystemC.

BSV incorporates Haskell-style polymorphism and
overloading (typeclasses) into SystemVerilog’s type sys-
tem. BSV also treats modules, interfaces, rules, func-
tions, etc. as first-class objects, permitting very power-
ful static elaboration (including recursion).

Bluespec tools synthesize source code into clocked
synchronous hardware descriptions (in Verilog RTL)
that can be simulated or further synthesized to netlists
using industry-standard tools. This automates the gen-
eration of control logic to manage complex concurrent
state update, a major source of errors in current design
methodology where this logic must be manually coded
by the designer.

Bluespec participates in standards committees like
IEEE P1800 (SystemVerilog) and IEEE P1666 (Sys-
temC), where it tries to encourage adoption of the
declarative programming ideas in BSV and ESE. One

54

http://tinyurl.com/2lqoq9
http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://cufp.galois.com/slides/2006/HowardMansell.pdf

success has been the adoption of Bluespec’s propos-
als for “tagged unions (algebraic types) and pattern
matching” in the current IEEE SystemVerilog stan-
dard.

Status Bluespec SystemVerilog and its tools have
been available since 2004, and Bluespec ESE since
2006. The tools are now in use by several major semi-
conductor companies (see Bluespec website or contact
Bluespec for details) and several universities (including
MIT, CMU, UT Austin, Virginia Tech, Indian Institute
of Science, and U.Tokyo).

Availability Bluespec SystemVerilog and ESE tools
are commercial tools sold by Bluespec, Inc. A free
version of ESE, the SystemC-based product, that sup-
ports basic TRS rule simulation (i.e., without clock-
scheduling, and without synthesis), is available with
registration from the company website, complete with
documentation, examples and training material. Blue-
spec, Inc. also makes all its tools easily available to
academic institutions for teaching and research.

Some historical notes and acknowledgements The
technology for synthesizing from Term Rewriting Sys-
tems to competitive RTL was originally developed by
James Hoe and Prof. Arvind at MIT in the late 1990s.
At Sandburst Corp., during 2000–2003, Lennart Au-
gustsson was the principal designer of “Bluespec Clas-
sic”, the first “industrial strength” variant of the lan-
guage, with Rishiyur Nikhil, Joe Stoy, Mieszko Lis and
Jacob Schwartz contributing to language and tool de-
velopment and use. The latter four continued work on
BSV and ESE at Bluespec, Inc. from 2003 with ad-
ditional contributions from Ravi Nanavati, Ed Czeck,
Don Baltus, Jeff Newbern, Elliot Mednick and several
summer interns.

Further reading

◦ Company website:
http://www.bluespec.com

◦ Publications:
http://www.bluespec.com/technology/research.htm
Bringing Declarative Programming into a Commer-
cial Tool for Developing Integrated Circuits, Rishiyur
Nikhil, Commercial Users of Functional Program-
ming (CUFP), September 2006, slides of presenta-
tion at http://www.galois.com/cufp/
MIT courseware, “Complex Digital Systems”:
http://csg.csail.mit.edu/6.375 and
http://ocw.mit.edu/OcwWeb/
Electrical-Engineering-and-Computer-Science/
6-884Spring-2005/CourseHome/index.htm
CMU courseware, “Hardware Systems Engineering”:
http://www.ece.cmu.edu/~ece744

7.1.3 Galois, Inc.

Report by: Andy Adams-Moran

Galois is hiring! We need 5 new FP and/or
product developers by September! Non-U.S.
citizens welcome; we just need to be able to get
you a work visa quickly. See http://www.galois.
com/join.php for descriptions of the open posi-
tions, or just send your resume to 〈jobs at galois.
com〉.

Galois (now officially known as Galois, Inc.) is an
employee-owned software development company based
in Beaverton, Oregon, U.S.A. Galois started in late
1999 with the stated purpose of using functional lan-
guages to solve industrial problems. These days, we
emphasize the needs of our clients and their problem
domains over the techniques, and the slogan of the
Commercial Users of Functional Programming Work-
shop (see http://cufp.galois.com/) exemplifies our ap-
proach: Functional programming as a means not an
end.

Galois develops software under contract, and every
project (bar three) that we have ever done has used
Haskell. The exceptions used ACL2, Poly-ML, SML-
NJ and OCaml, respectively, so functional program-
ming languages and formal methods are clearly our
“secret sauce”. We deliver applications and tools to
clients in industry and the U.S. government. Some di-
verse examples: Cryptol, a domain-specific language
for cryptography (with an interpreter and a compiler,
with multiple targets); a GUI debugger for a special-
ized microprocessor; a specialized, high assurance web
server, file store, and wiki for use in secure environ-
ments, and numerous smaller research projects that fo-
cus on taking cutting-edge ideas from the programming
language and formal methods community and applying
them to real world problems.

Galois continues to grow from strength to strength.
As of Spring 2007, Galois is 23 engineers strong, with
a support staff of 8. We’ve been profitable and experi-
enced solid growth each of the last three years, and the
future looks good too.

Last year, we had a couple of firsts:

◦ Our first sabbatical visitor: Colin Runciman visited
Galois for just under four months during the sum-
mer. It was a fruitful visit for all concerned. Working
with various Galois engineers (mainly Mark Tullsen
and Andy Gill), Colin’s visit saw the development of
hpc (the Haskell Program Coverage tool) (→ 5.4.1),
SmallCheck (a QuickCheck variant that tests all pos-
sible values down to a given depth) (→ 5.4.3), and
an initial version of a line debugger for Haskell (stay
tuned!) all stem from Colin’s time at Galois.

◦ Our first intern: Matthieu Boesflug spent a few sum-
mer months with us last year working mainly on the

55

http://www.bluespec.com
http://www.bluespec.com/technology/research.htm
http://www.galois.com/cufp/
http://csg.csail.mit.edu/6.375
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://www.ece.cmu.edu/~ece744
http://www.galois.com/join.php
http://www.galois.com/join.php
mailto: jobs at galois.com
mailto: jobs at galois.com
http://cufp.galois.com/

multi-level wiki project with Isaac Jones, Sigbjørn
Finne, and Dylan McNamee.

This year, we’re continuing our sabbatical and in-
ternship programs. Graham Hutton will be visiting for
6 weeks towards the end of the summer, and we’re look-
ing forward to working with Graham. Perhaps we’ll see
a coherent and powerful theory for concurrency and ex-
ceptions emerge; who knows?

As for interns, this summer we’ve got two: Darin
Morrison and Rebekah Leslie, undergraduate and post-
graduate students at Portland State University, respec-
tively. Darin and Rebekah will be working on two of
our more foundational projects (one building the case
for using Haskell as a deployed high assurance devel-
opment language, and the other exploring how to ex-
ploit virtualization for security, in a high assurance
manner). We’re full up for interns this year, but we
hope to be able to offer more internships next year.
If you’re interested in interning at Galois, write us at
〈jobs at galois.com〉, with “Internships 2008” in the Sub-
ject: line.

We’ve also been heavily involved in the effort to de-
fine a solid set of extensions to Haskell 98, aka the
Haskell’ project. Things are coming to head there, and
we look forward to making the most of the result.

Content is slowly but surely being built for the Func-
tional Programming Consortium web site, thanks to
some of the speakers from last year’s well-attended
and well-received Commerical Users of Functional Pro-
gramming workshop. If you’re interested in getting in-
volved with the Consortium in any way, contact Andy
Adams-Moran (〈adams-moran at galois.com〉).

Lastly, we’re stepping up our community involve-
ment, so you should see a few more Galwegians at con-
ferences and hopefully some open source releases too.

Further reading

http://www.galois.com/.

7.1.4 Linspire

Report by: Clifford Beshers

The OS team at Linspire, Inc. uses Haskell as our pre-
ferred language for system tools. We have used O’Caml
extensively as well, but are steadily migrating this code
to Haskell.

Our largest project to date is our Debian package
builder (aka autobuilder) in Haskell. The autobuilder
is responsible for compiling all packages, which entails
fetching source code from multiple source code con-
trol systems, building and caching clean chroot envi-
ronments with the correct build dependencies, sorting
the target package by build dependency to ensure they
are built in the correct order, and so forth.

We are extending this system to be a package/OS
release management system, where changes to packages
can be grouped into sets and applied to an existing
distribution (set of source and binary packages). The
autobuilder is responsible for ensuring that all packages
are rebuilt correctly for any source level change.

These tools are currently in use internally. We plan
to make them publicly available as part of our Freespire
2.0 release, scheduled for mid-2007.

7.2 Haskell in Education

7.2.1 Functional programming at school

Report by: Walter Gussmann

A lot of computer science courses at universities are
based on functional programming languages combined
with an imperative language. There are many reasons
for this: the programming-style is very clear and there
are a lot of modern concepts – polymorphism, pattern
matching, guards, algebraic data types. There’s only
little syntax to learn, Finally, the programming code is
reduced to a minimum.

Conditions at school

I started teaching functional programming languages
at school about 8 years ago in different courses with
pupils at age of 16–19 years. Normally they already
know an imperative language like Pascal. A good point
to perform a paradigm shift to functional programming
is recursion.

During the last years I found that learning recursive
data structures (queue, stack, list, tree) with Haskell
were ideal for classes. They got a much deeper impres-
sion about the principles than in imperative or object
oriented languages like Pascal or Java.

Especially in high level courses the use of Haskell
paid off. The last course about cryptology and theo-
retical computer science was dominated by Haskell. We
implemented a simple RSA-algorithm (with very weak
keys) for encoding and decoding of textfiles and some
finite deterministic automata. At the end we were able
to implement a parser and interpreter for a Pascal-like
very simple programming language (not yet published).

Haskell in tests

Haskell was a component of every test, including the
German Abitur. These problems seemed to be eas-
ier to solve for the pupils, and in tasks with optional
languages about 80% chose Haskell. When asked to ex-
plain their choice, most of them said that with Haskell
they could concentrate on the root of the matter and
simplify the problem through a suitable generalization.

56

mailto: jobs at galois.com
mailto: adams-moran at galois.com
http://www.galois.com/

Teamwork with Haskell

Last summer I started with a new advanced class.
All pupils already visited a one-year-beginners course
but they come from 5 different schools and so they
have learned five different imperative languages: Pas-
cal, Modula, Python, Java and Delphi. They already
knew something about computer science but they were
fixed on their first language.

So it was easy for me to start at a very easy level
of functional programming. This time I’ve been con-
centrating on recursion and developing some projects
based on teamwork. First we discussed the electoral
system in Germany (Hare-Niemeyer and d’Hondt).
Then we implemented a simple version of this system
by composing several functions. After designing the
structure of each function (with its signature) we im-
plemented them in groups. And we are proud of the
result: the main function resolved the problem imme-
diately.

After this positive experience we now do some more
complex works, like building the book-index, described
in “Haskell: The Craft of Functional Programming” by
S. Thompson. Another project draws some lines in a
text-window. The line-algorithm is based on a pure
recursion.

This kind of teamwork really motivated the pupils. I
was impressed about the very short time it took a group
of beginners to do such complex programs. We have
do some teamwork with Java - but all the projects was
much more difficult for the pupils than with Haskell.

Further reading

http://www.pns-berlin.de/haskell/

7.3 Research Groups

7.3.1 Foundations and Methods Group at Trinity
College Dublin

Report by: Andrew Butterfield
Participants: Andrew Butterfield, Glenn Strong, Hugh

Gibbons, Yann Morvan

The Foundations and Methods Group focusses on for-
mal methods, category theory and functional program-
ming as the obvious implementation method. A sub-
group focusses on the use, semantics and development
of functional languages covering such areas as:

◦ Formal aspects of Functional I/O (→ 3.4.1)

◦ Using Testing to Debug Formal Models (→ 6.18)

◦ Supporting OO-Design technique for functional pro-
grammers (→ 3.3.8)

◦ Using functional programs as invariants in impera-
tive programming

Members of other research groups at TCD have also
used Haskell, such as the work done on Image render-
ing using GHC/OpenGL, in the Interaction, Simulation
and Graphics Lab (→ 6.20).

Further reading

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/
FunctionalProgramming

7.3.2 Foundations of Programming Group at the
University of Nottingham

Report by: Liyang Hu et al.

The Nottingham FoP group is perhaps unique in the
UK in bringing functional programming, type theory
and category theory together to tackle fundamental is-
sues in program construction. With a total of 28 peo-
ple, we have a spectrum of interests:

Automated Reasoning Matthew Walton is explor-
ing ways of exploiting automated reasoning techniques
for dependently-typed programming languages such as
Epigram, with a view to extend its verification capabil-
ities. Current work is focused on implementating de-
cision procedures as Epigram functions, and allowing
the programmer to easily invoke said procedures.

Containers Nottingham is the home of the EPSRC
grant on containers which is a new model of datatypes.
We are currently developing the theory and applica-
tions of containers.

Datatype-Generic Design Patterns Ondrej Rypacek
together with Roland Backhouse and Henrik Nilsson
are working on formal reasoning about object-oriented
designs with emphasis on algebraic and datatype-
generic methods. Our goal is a sound programming
model expressive enough to capture object-oriented de-
sign patterns.

Dependently-Typed Haskell Supported by a Micro-
soft Research studentship, Robert Reitmeier is work-
ing on integrating dependent types in Haskell under
the supervision of Thorsten Altenkirch, with advice
from Simon Peyton Jones. We are designing an alter-
native dependently-typed intermediate language, influ-
enced by our experiences with Epigram.

Epigram Epigram (→ 3.3.1) is a dependently-typed
functional programming language in its second reincar-
nation, implemented in Haskell. Conor McBride heads
development with Thorsten Altenkirch, James Chap-
man, Peter Morris, Wouter Swierstra and Matthew
Walton working on both practical and theoretical as-
pects of the language.

57

http://www.pns-berlin.de/haskell/
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~oxr/
http://cs.nott.ac.uk/~rcb/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~rxr/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~ctm/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~mxw/

Quantum Programming Thorsten Altenkirch,
Jonathan Grattage and Alex Green are working on
a Haskell-like quantum meta-language (QML), with
quantum control as well as data structures. Guided by
its categorical semantics, QML presents a constructive
semantics of irreversible quantum computations. A
Haskell implementation compiles QML into quantum
circuits, giving it an operational semantics. A denota-
tional semantics is given in terms of superoperators.
We are investigating quantum IO for Haskell.

Reasoning Catherine Hope, Liyang HU and Graham
Hutton are working on formal reasoning for program
correctness and efficiency, where abstract machines
play a central rôle.

Exceptions and interrupts are traditionally viewed as
being difficult from a semantic perspective. We relate
a minimal high-level and low-level semantics contain-
ing exceptions via a provably correct compiler, giving
greater confidence in our understanding.

Reasoning about intensional properties is compli-
cated by non-explicit evaluation order and higher-order
functions, but these are eliminated at the abstract ma-
chine level. From an evaluator, we can calculate a ma-
chine, instrument this with cost information, and back-
wards derive a high-level function giving space and time
usage.

Atomicity deserves particular attention given recent
developments in software transactional memory. We
are devising a low-level semantics featuring commits
and aborts, along with a framework to relate this to a
high-level stop-the-world view.

Short Cut Fusion Short Cut Fusion is used to im-
prove the efficiency of modular programs. Neil Ghani
with Tarmo Uustalu, Patricia Johann and Varmo
Vene have been developing its theoretical foundations,
with much success in both understanding and appli-
cation of the technique to previously out-of-reach data
types. Excitingly, Short Cut Fusion is derived from the
principles of initial algebra semantics which underpin
Haskell’s treatment of datatypes.

Stream Processing Infinite streams support a natu-
ral topology. One can represent continuous (with re-
spect to this topology) stream processing functions by
datatypes in which induction is nested within coinduc-
tion. Peter Hancock, Neil Ghani and Dirk Pattinson
have extended this from streams to final coalgebras for
a wide class of container functors.

Yampa Yampa is an implementation of functional
reactive programming, maintained by Henrik Nilsson.
Some interesting discussions may be found on the
yampa-users mailing list.

Teaching Haskell plays an important role in the un-
dergraduate programme in Nottingham, via modules
in Functional Programming, Advanced Functional Pro-
gramming, Mathematics for Computer Science, Prin-
ciples of Programming Languages, Compilers, and
Computer-Aided Formal Verification, among others.

Programming in Haskell Graham Hutton has re-
cently completed an introductory Haskell textbook (→
1.6.1), to be published by Cambridge University Press
before the end of 2006.

Future Events In Feburary, Nottingham will host the
second Fun in the Afternoon: a termly seminar on func-
tional programming and related topics. The aim is to
have a few friendly and informal talks, as an antidote
to the mid-term blues.

The Midlands Graduate School in the Foundations
of Computer Science (Easter 2007) will next take place
in Nottingham.

FP Lunch Every Friday, Nottingham’s functional
programmers gather for lunch with helpings of infor-
mal, impromptu-style whiteboard talks. Lecturers,
PhD students and visitors are invited to discuss recent
developments, problems or projects of relevance. We
blog summaries of recent talks.

In the afternoon the FoP group hold an hour-long
seminar. We’re always keen on speakers in any related
areas: do get in touch with Neil Ghani 〈nxg@cs.nott.ac.
uk〉 if you would like to visit our group. See you there!

Further reading

◦ Foundations of Programming Group:
http://cs.nott.ac.uk/Research/fop/

◦ Functional Programming at Nottingham:
http://sneezy.cs.nott.ac.uk/fp/

◦ Epigram:
http://e-pig.org/

◦ Quantum Programming:
http://sneezy.cs.nott.ac.uk/qml/

◦ Yampa:
http://haskell.org/yampa/

◦ Fun in the Afternoon:
http://sneezy.cs.nott.ac.uk/fun/

◦ Midlands Graduate School 2007:
http://cs.nott.ac.uk/MGS/

◦ FP Lunch:
http://sneezy.cs.nott.ac.uk/fplunch/

58

http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jjg/
http://cs.nott.ac.uk/~asg/
http://cs.nott.ac.uk/~cvh/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~pgh/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~nhn/
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://cs.nott.ac.uk/~nxg/G51FUN05/fun.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g51mcs/
http://cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/~nhn/G52CMP/
http://e-pig.org/darcs/g5bcfr/
http://cs.nott.ac.uk/~gmh/
http://sneezy.cs.nott.ac.uk/fun/
http://cs.nott.ac.uk/MGS/
http://cs.nott.ac.uk/MGS/
http://sneezy.cs.nott.ac.uk/fplunch/
http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~nxg/
mailto: nxg at cs.nott.ac.uk
mailto: nxg at cs.nott.ac.uk
http://cs.nott.ac.uk/Research/fop/
http://sneezy.cs.nott.ac.uk/fp/
http://e-pig.org/
http://sneezy.cs.nott.ac.uk/qml/
http://haskell.org/yampa/
http://sneezy.cs.nott.ac.uk/fun/
http://cs.nott.ac.uk/MGS/
http://sneezy.cs.nott.ac.uk/fplunch/

7.3.3 Artificial Intelligence and Software
Technology at JWG-University Frankfurt

Report by: David Sabel
Members: David Sabel, Manfred Schmidt-Schauß

Equivalence of Call-by-Name and Call-by-Need

Haskell has a call-by-name semantics, but all efficient
implementations of Haskell use call-by-need evaluation
avoiding multiple evaluation of the same expression.
We showed equivalence of call-by-name and call-by-
need for a tiny deterministic letrec-calculus and also the
correctness of an unrestricted copy-reduction in both
calculi. Recently we proved that our method scales up
to extended letrec-calculi with constructors as well as
letrec-calculi with a parallel or operator.

Semantics for Haskell extended with direct-call I/O

We introduced the FUNDIO calculus which proposes a
non-standard way to combine lazy functional languages
with I/O using non-deterministic constructs. We de-
fined a contextual equivalence depending on the In-
put/Output behavior of reduction sequences and we
proved correctness of a considerable set of program
transformations. In particular we have shown correct-
ness of several optimizations of evaluation, including
strictness optimizations.

We applied these results to Haskell by using the
FUNDIO calculus as semantics for the GHC core lan-
guage. After turning off few transformations which are
not FUNDIO-correct and those that have not yet been
investigated, we have achieved a FUNDIO-compatible
modification of GHC which is called HasFuse.

HasFuse correctly compiles Haskell programs which
make use of unsafePerformIO in the common (safe)
sense, since problematic optimizations are turned
off or performed more restrictively. But HasFuse
also compiles Haskell programs which make use of
unsafePerformIO in arbitrary contexts. Since the
call-by-need semantics of FUNDIO does not prescribe
any sequence of the I/O operations, the behavior
of unsafePerformIO is no longer ‘unsafe’. I.e. the
user does not have to undertake the proof obliga-
tion that the timing of an I/O operation wrapped
by unsafePerformIO does not matter in relation to
all the other I/O operations of the program. So
unsafePerformIO may be combined with monadic I/O
in Haskell, and the result is reliable in the sense that
I/O operations will not astonishingly be duplicated.

Hermine Reichau compared implementations of a
natural language interpreter based on the semantics of
Montague in Haskell using GHC and HasFuse together
with their underlying call-by-name and call-by-need se-
mantics in the presence of erratic non-determinism. A

result is that Montague’s natural language semantics
is more consistent with call-by-value and call-by-need
semantics than with call-by-name semantics.

Semantics and Transformations for Functional
Hardware Descriptions

We are currently investigating hardware descriptions in
a functional language, i.e. Haskell-Programs extended
by a parallel-or (por), where the non-deterministic op-
erator por is implemented using Concurrent Haskell.
As semantic model we use a call-by-need lambda cal-
culus extended with letrec, case, const ructors and in
particular with por. Ongoing research is devoted to
prove correctness of circuit transformations, also in-
cluding latches and combinational cycles, on the level
of the high-level language descriptions where we use
contextual equivalence as equational theory.

Mutual Similarity

In order to achieve more inference rules for equality
in call-by-need lambda-calculi Matthias Mann has es-
tablished a soundness (w.r.t. contextual equivalence)
proof for mutual similarity in a non-deterministic call-
by-need lambda calculus. Moreover, we have shown
that Mann’s approach scales up well to more expres-
sive call-by-need non-deterministic lambda calculi, i.e.
similarity can be used as a co-induction-based proof
tool for establishing contextual preorder in a large class
of untyped higher-order call-by-need calculi, in par-
ticular calculi with constructors, case, let, and non-
deterministic choice. The focus of current research are
extensions of these calculi with potential applications
in Haskell.

Locally Bottom-Avoiding Choice

We investigated an extended call-by-need lambda-
calculus with a non-deterministic amb-operator to-
gether with a fair small-step reduction semantics. The
appropriate program equivalence is contextual equiva-
lence based on may- and must-termination. We proved
that several program transformations preserve contex-
tual equivalence, which permits useful program trans-
formation, in particular partial evaluation using deter-
ministic reductions. With the developed proof tools it
appears promising to prove correctness of further pro-
gram transformations. Future research should investi-
gate also more involved inductive proof rules like Bird’s
take-lemma. A further challenge is to obtain a seman-
tics preserving compiler for Haskell extended with amb.

Strictness Analysis using Abstract Reduction

The algorithm for strictness analysis using abstract re-
duction has been implemented at least twice: Once by
Nöcker in C for Concurrent Clean and on the other
hand by Schütz in Haskell in 1994. In 2005 we proved

59

correctness of the algorithm by using a call-by-need
lambda-calculus as a semantic basis.

Most implementations of strictness analysis use set
constants like > (all expressions) or ⊥ (expressions that
have no weak head normal form). We have shown
that the subset relationship problem of coinductively
defined set constants is in DEXPTIME.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology
http://www.ki.informatik.uni-frankfurt.de

◦ References to all mentioned research topics are col-
lected on the following webpage
http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

7.3.4 Formal Methods at Bremen University and
DFKI Lab Bremen

Report by: Christian Maeder
Members: Mihai Codescu, Dominik Lücke, Christoph

Lüth, Klaus Lüttich, Christian Maeder,
Achim Mahnke, Till Mossakowski, Lutz

Schröder

The activities of our group centre on formal meth-
ods and the Common Algebraic Specification Language
(CASL).

We are using Haskell to develop the Heterogeneous
tool set (Hets), which consists of parsers, static ana-
lyzers and proof tools for languages from the CASL
family, such as CASL itself, HasCASL, CoCASL, CSP-
CASL and ModalCASL, and additionally OMDoc and
Haskell. HasCASL is a language for specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle HOL and HOLCF.

We use the Glasgow Haskell Compiler (GHC 6.6),
exploiting many of its extensions, in particular concur-
rency, multiparameter type classes, hierarchical name
spaces, functional dependencies, existential and dy-
namic types, and Template Haskell. Further tools ac-
tively used are DriFT, Haddock (→ 5.5.6), the combi-
nator library Parsec, HaXml (→ 4.10.5), Programatica,
Shellac, HXT and haifa-lite.

Another project using Haskell is the Proof General
Kit, which designs and implements a component-based
framework for interactive theorem proving. The central
middleware of the toolkit is implemented in Haskell.
The project is the sucessor of the highly successful
Emacs-based Proof General interface. It is a cooper-
ation of David Aspinall from the University of Edin-
burgh and Christoph Lüth from Bremen.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ Heterogeneous tool set:
http://www.dfki.de/sks/hets

◦ Proof General Kit
http://proofgeneral.inf.ed.ac.uk/Kit

7.3.5 Functional Programming at
Macquarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group
we are working on a number of projects with a Haskell
focus. Since the last report, work has progressed on
the following projects:

◦ Our alpha version of a port of the yhc (→ 2.4) run-
time to Palm OS handhelds is working but going into
a hiatus (→ 3.1.2).

◦ Kate Stefanov’s PhD thesis on off-the-shelf compres-
sion technology for bytecode-based programs was
passed. The main results relevant to Haskell folk are
good compression ratios for nhc (→ 2.3) bytecode us-
ing a very simple extension of the LZW algorithm.

◦ Matt Robert’s work on the implementation of Jay’s
pattern calculus continues, with a focus on formal se-
mantics and comparison with related pattern-based
calculi.

◦ We are beginning work on a language processor gen-
eration project that will likely use Haskell-based
DSLs as the specification notations.

Further reading

Contact us via email to 〈plrg@ics.mq.edu.au〉 or find de-
tails on many of our projects at http://www.comp.mq.
edu.au/plrg/.

7.3.6 Functional Programming at the University of
Kent

Report by: Olaf Chitil

We are a group of about a dozen staff and students with
shared interests in functional programming. While our
work is not limited to Haskell, it provides a major focus
and common language for teaching and research.

60

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://proofgeneral.inf.ed.ac.uk/Kit
mailto: plrg at ics.mq.edu.au
http://www.comp.mq.edu.au/plrg/
http://www.comp.mq.edu.au/plrg/

Our members pursue a variety of Haskell-related
projects, many of which are reported in other sec-
tions of this report. Chris Brown continues extend-
ing HaRe, the Haskell Refactorer (→ 5.3.3). Nik Sul-
tana is working with Simon on formal verification of
Haskell refactorings. Thomas Davie, Yong Luo and
Olaf Chitil are working together with the York func-
tional programming group on developing the Haskell
tracer Hat (→ 5.4.2) further. They are looking in par-
ticular at extensions and improvements of algorithmic
debugging. Axel Simon maintains the gtk2hs binding
to the Gtk+ GUI library (→ 4.8.3) in cooperation with
Duncan Coutts, Oxford University. Keith Hanna is
continuing work on Vital, a document-centered pro-
gramming environment for Haskell, and on Pivotal, a
GHC-based implementation of a similar environment.
Claus Reinke has released his rudimentary Haskell
mode for Vim (→ 5.5.2), including Haddock browsing
and insert-mode completion of library identifiers. He is
currently working on embedding small-step operational
semantics in Haskell, used as executable specifications
of language design experiments.

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat:
http://www.haskell.org/hat/

◦ Gtk2HS:
http://www.haskell.org/gtk2hs

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

◦ Pivotal:
http://www.cs.kent.ac.uk/projects/pivotal/

◦ Vim Haskell mode:
http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/
haskell/Vim/

7.3.7 Programming Languages & Systems at
UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New
South Wales, Sydney, has produced a couple of Haskell
tools and libraries, including the new high-performance
packed string library Data.ByteString (→ 4.6.2),
the hs-plugins (→ 4.4.2) library for dynamically
loaded type-safe plugins, the interface generator
C→Haskell (→ 5.1.1), and the dynamic editor Yi (→
6.12). Moreover, we are contributing to widely used
Haskell software, such as GHC (→ 2.1), xmonad (→
6.1), and lambdabot (→ 6.11).

In cooperation with GHC HQ at Microsoft Research,
Cambridge, we introduced the idea of type classes with
associated types, and with GHC HQ and Martin Sulz-
mann, from the National University of Singapore, we
proposed GHC’s new intermediate language System
FC . Associated data types (aka data type families) and
System FC are fully implemented in GHC’s develop-
ment version and we are currently implementing associ-
ated type synonyms; see http://haskell.org/haskellwiki/
GHC/Indexed_types for details. All of this is planned
to be included in the 6.8 release of GHC.

Together with GHC HQ, we are busy with finally
bringing nested data parallelism to GHC, with a fo-
cus to utilise multi-core CPUs. Parts of our im-
plementation are already ready for experimentation,
but are currently only suitable for the adventurous.
See http://haskell.org/haskellwiki/GHC/Data_Parallel_
Haskell for details.

Further details on PLS and the above mentioned ac-
tivities can be found at http://www.cse.unsw.edu.au/
~pls/.

7.3.8 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
group. Academic year: 2006–2007.

The Ro/Haskell page was initiated during the au-
tumn of 2006 by Dan Popa (Univ. Bacau,RO) as a
supplementary source of information for his students
of the Formal Languages Course. Haskell is used in
Bacau (State Univ.) to teach language(s) implementa-
tion.

January 31,2007. A manual of Haskell in Romanian
was published by Dan Popa (editor: Editura EduSoft,
Bacau). The readers are guided step by step from
the first function in Haskell to an expression evaluator,
modular monadic parsing and some words concerning
monadic semantic implementation.

February,2007: An other book concerning Haskell
was published by M.Gontineac (editor: Editura
Alexandru Myller, Iasi). A part of the book is focused
on Standard Prelude, carefully compiled and explained,
other one on the imperative programming in Haskell
using the I/O monad. The mathematic foundation of
functional languages are presented in the first chapter.

Both books are presented on the Ro/Haskell web-
page: http://www.haskell.org/haskellwiki/Ro/Haskell.

Actually the site of the Ro/Haskell group is visited
by students from three faculties, which belongs to two
(state) universities, from Bacau and Iasi. It was ac-
cessed more than 1000–1250 times and the number is
growing.

The University from Cluj is also involved in teaching
and research Haskell. Please contact them for details.

Books are donated to libraries in Bacau and Iasi, and
presented on editor’s website: www.edusoft.ro. (Id=81)

61

http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/
http://www.haskell.org/gtk2hs
http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/
http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/haskell/Vim/
http://www.cs.kent.ac.uk/people/staff/cr3/toolbox/haskell/Vim/
http://haskell.org/haskellwiki/GHC/Indexed_types
http://haskell.org/haskellwiki/GHC/Indexed_types
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.cse.unsw.edu.au/~pls/
http://www.cse.unsw.edu.au/~pls/
http://www.haskell.org/haskellwiki/Ro/Haskell
www.edusoft.ro

Papers were presented in International Conferences
like ICMI 45.

7.3.9 SCIence project

Report by: Kevin Hammond

SCIEnce (http://www.symbolic-computation.org/) is a
3.2M euros, 5-year project that brings together major
developers of symbolic computing systems, including
Maple, GAP, MuPAD and Kant with the world-leading
Centre for Research in Symbolic Computation at RISC-
Linz, Austria.

It makes essential use of functional programming
technology in the form of the GRID-GUM functional
programming system for the Grid, which is built on
the Glasgow Haskell Compiler. The objective is not
the technically infeasible goal of rewriting all these
(and more) complex systems in Haskell. Rather, we
use GRID-GUM to link components built from each of
the symbolic systems to form a coherent heterogeneous
whole. In this way, we hope to achieve what is cur-
rently a pious dream for conventional Grid technology,
and obtain a significant user base both for GRID-GUM
and for Haskell. We are, of course, taking full advan-
tage of Haskell’s abilities to compose and link software
components at a very high level of abstraction.

A fuller paper has appeared in the draft proceed-
ings of the 2007 Symposium on Trends in Functional
Programming (TFP 2007), New York, April 2007. A
revised version is currently being prepared for submis-
sion to the post-symposium proceedings.

7.4 User groups

7.4.1 OpenBSD Haskell

Report by: Don Stewart

Haskell support on OpenBSD continues. A page docu-
menting the current status of Haskell on OpenBSD is
at http://www.cse.unsw.edu.au/~dons/openbsd.

GHC (→ 2.1) is available for i386 and amd64.
nhc98 (→ 2.3) is available for i386 and sparc. Hugs (→
2.2) is available for the alpha, amd64, hppa, i386,
powerpc, sparc and sparc64. A number of other
Haskell tools and libraries are also available, includ-
ing alex (→ 5.2.1), happy (→ 5.2.2), haddock (→ 5.5.6)
and darcs (→ 6.10).

Support for the GHC head branch continues.

7.4.2 Haskell in Gentoo Linux

Report by: Andres Löh

Unfortunately, Haskell’s lazy nature tends to infect the
members of the Gentoo Haskell team on a regular basis,
so that we haven’t made as much progress during the
past six months as we would have liked.

While ghc-6.6 has found its way into the main
portage tree, it is still hardmasked. One of the rea-
sons is lack of testing, another is that Duncan Coutts
is working on a simplified bootstrapping scheme that
will get rid of the “virtual” ghc package that we have
been using in the past (but that also has been a source
of many troubles).

You can access and test the latest versions of the
ebuilds we are working on via our darcs (→ 6.10) over-
lay, which is now also available via the Gentoo overlay
manager “layman”. Please report problems with the
overlay on IRC (#gentoo-haskell on freenode), where
we coordinate development.

New ebuilds, comments and suggestions are always
welcome. If you file bug reports at bugs.gentoo.org,
please make sure that you mention “Haskell” in the
subject of the report.

7.5 Individuals

7.5.1 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini-tutorials and
assorted small projects (http://pobox.com/~oleg/ftp/
Haskell/) – has received four additions:

Type improvement constraint, local functional
dependencies, and a type-level typecase

The type improvement constraint TypeCast tau1
tau2, introduced and implemented in the HList pa-
per, holds if the type tau1 is equal to tau2 – or
can be equal if some type variables in these types
are suitably instantiated. Unlike a similar constraint
TypeEq tau1 tau2 HTrue, TypeCast does instantiate
type variables in tau1 and tau2.

The type improvement constraint can express lo-
cal, per instance rather than class-wide, functional
dependencies. The TypeCast constraint is especially
useful for type-level type introspection: type-level
type-case. The web page http://okmĳ.org/ftp/Haskell/
typecast.html shows many applications, for example:

◦ How to write an instance for not-a-function

◦ Deepest functor: fmap over arbitrarily nested collec-
tions

◦ Deep monadic join

◦ Monadic sequence for HLists

62

http://www.symbolic-computation.org/
http://www.cse.unsw.edu.au/~dons/openbsd
bugs.gentoo.org
http://pobox.com/~oleg/ftp/Haskell/
http://pobox.com/~oleg/ftp/Haskell/
http://okmij.org/ftp/Haskell/typecast.html
http://okmij.org/ftp/Haskell/typecast.html

◦ Function types as instances of Num and embedding of
Forth-like languages into Haskell

◦ Resolving overloading ambiguity and controlling the
order of instance selection

◦ Solving the show . read problem with local func-
tional dependencies and syntactic hints

HSXML: representing XML-like documents as
typed S-expressions/code

HSXML is a library for writing and transforming typed
semi-structured data in Haskell – in the form of hetero-
geneous, arbitrarily nested, typed S-expressions, which
conform to SXML syntax as data and also represent
executable Haskell code. HSXML supports the exten-
sible set of ‘tags’ and statically enforced content model
restrictions. A particular application is writing web
pages in Haskell. We obtain HTML, XHTML or other
output formats by running the Haskell web page in an
appropriate rendering monad.

Literally following the S-expression syntax without
resorting to the universal type has not been attained
in Haskell before. Here is a sample HSXML:

[p "Haskell is a general purpose,"
[[em [[strong "purely"]] "functional"]]
"programming language"]

one may observe the absence of any commas and other
list delimiters. Each element such as ‘p’ and ‘em’ has
a distinct type and may have an arbitrary number of
subelements and strings, as permitted by its content
model. HSXML extensively relies on local functional
dependencies (see above).

The benefit of representing XML-like documents as a
typed data structure/Haskell code is static rejection of
bad documents – not only those with undeclared tags
but also those where elements appear in wrong contexts
(e.g., a ‘p’ element appearing within H1).

The web page http://okmĳ.org/ftp/Scheme/xml.
html#typed-SXML gives further motivation and de-
scription. It points to an example of authoring web
pages in HSXML and a complex example of context-
sensitive HSXLT transformations: producing struc-
turally distinct HTML and XML/RSS from the same
master file.

A poly-variadic function of a non-regular type

We describe the implementation of the overloaded func-
tion of the type (Int →)n([]ne) → e → ([]ne), which re-
places an element in a multi-dimensional list. The func-
tion is overloaded to handle lists of any dimensions, and
so has the variable number of index arguments specify-
ing the location of the element to replace. The number
of index arguments, of the type Int, must match the
dimensionality of the list.

The gist of the solution, implemented by Chung-
chieh Shan, is the case analysis of the type of function’s
continuation. Or: bottom-up deterministic parsing of
the type of the continuation. This puzzle demonstrates
the benefits of bringing the tools from quite a different
area of computer science – parsing and grammars – to
seemingly unrelated type class programming. Types
and parsing are, of course, deeply related: cf. type log-
ical grammars.
http://okmĳ.org/ftp/Haskell/types.html#polyvartype-fn

Implicit parameters are not dynamically scoped

Implicit parameters of Haskell are often regarded as
similar to dynamically scoped variables, such as ‘spe-
cial’ variables of Common Lisp, current-input-port of
Scheme, |stdin|, and exception handlers in many lan-
guages. We demonstrate on a simple example that im-
plicit parameters lack truly dynamic scope.
http://okmĳ.org/ftp/Computation/dynamic-binding.
html#implicit-parameter-neq-dynvar

Haskell implementation of true dynamically bound
variables, via delimited continuation (monad):
http://okmĳ.org/ftp/Computation/dynamic-binding.
html#DDBinding

7.5.2 Inductive Programming

Report by: Lloyd Allison

Inductive Programming (IP): The learning of general
hypotheses from given data.

I am continuing to use Haskell to examine
what are the products (e.g. Mixture-models (un-
supervised classification, clustering), segmentation,
classification- (decision-) trees (supervised classifica-
tion), Bayesian/causal networks/models, time-series
models, etc.) of machine learning from a programming
point of view. The question is how do these things be-
have, what can be done to each one, and how can two
or more be combined? The primary aim is the getting
of understanding, and that could be embodied in a use-
ful Haskell library or prelude for artificial-intelligence
/ data-mining / inductive-inference / machine-learning
/ statistical-inference.

One of the applications to the analysis of ecological
transects (see below) has now been published.

A student project by James Bardsley (see below)
used Template-Haskell to automate the definition of
data-handling routines, types, and some type-class in-
stance declarations, as required to analyse a given
multi-variate data-set.

A case-study defines a learner for the structure and
the parameters of Bayesian networks over mixed vari-
ables (data attributes): discrete, continuous, and even
structured variables; the learner was applied to a

63

http://okmij.org/ftp/Scheme/xml.html#typed-SXML
http://okmij.org/ftp/Scheme/xml.html#typed-SXML
http://okmij.org/ftp/Haskell/types.html#polyvartype-fn
http://okmij.org/ftp/Computation/dynamic-binding.html#implicit-parameter-neq-dynvar
http://okmij.org/ftp/Computation/dynamic-binding.html#implicit-parameter-neq-dynvar
http://okmij.org/ftp/Computation/dynamic-binding.html#DDBinding
http://okmij.org/ftp/Computation/dynamic-binding.html#DDBinding

Search and Rescue data-set on missing people. This
data-set has many missing values which gives great
scope for bad puns.

Other case-studies include mixtures of time-series,
Bayesian networks, and time-series models and “the”
sequence-alignment dynamic-programming algorithm.
Currently there are types and classes for models (vari-
ous probability distributions), function-models (regres-
sions), time-series (e.g. Markov models), mixture mod-
els, and classification trees (plus regression trees and
model trees). A spring-clean of the code is long over-
due.

Prototype code is available (GPL) at the URL below.

Future plans

Planned are more applications to real data-sets, and
comparisons against other learners. A big rewrite will
happen, one day.

Further reading

◦ M. B. Dale, L. Allison, P. E. R. Dale. Segmenta-
tion and Clustering as Complementary Sources of
Information. Acta Oecologica, 31(2), pages 193–202,
March–April 2007.
http://dx.doi.org/10.1016/j.actao.2006.09.002

◦ J. Bardsley. Generalising Data Description for Ma-
chine Learning, 2006.
http://www.csse.monash.edu.au/hons/projects/2006/
James.Bardsley

◦ L. Allison. A Programming Paradigm for Machine
Learning with a Case Study of Bayesian Networks.
ACSC, pages 103–111, January 2006.
http://crpit.com/confpapers/CRPITV48Allison.pdf

◦ Other reading is listed at the URL:
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

7.5.3 Bioinformatics tools

Report by: Ketil Malde

The bioinformatics stuff is developing at erratic rates,
and I’m working to collect useful functions and data
structures in a separate library. Currently, there is sup-
port for Fasta and TwoBit sequence formats, BLAST
output. There library also contains my experiemnts in
sequence aligment algorithms, and some functionality
for calculating entropy, indexing based on word hashes,
etc.

The library abstracts useful functionality for a hand-
ful of applications, including an EST clustering pro-
gram xsact, a repeat detector/masker RBR, a tool for
calculating cluster similarity with a bunch of metrics
clusc, and Real Soon Nowtm a sequencing simulator
supporting very general error models.

Everything is GPL and available as darcs repos (→
6.10), at http://www.ii.uib.no/~ketil/bioinformatics/
repos.

Further reading

http://www.ii.uib.no/~ketil/bioinformatics

7.5.4 Using Haskell to implement simulations of
language acquisition, variation, and change

Report by: W. Garrett Mitchener
Status: experimental, active development

I’m a mathematician, with expertise in dynamical sys-
tems and probability. I’m using math to model lan-
guage acquisition, variation, and change. My current
project is about testing various hypotheses put forth by
the linguistics community concerning the word order
of English. Old and Middle English had significantly
different syntax than Modern English, and the devel-
opment of English syntax is perhaps the best studied
case of language change in the world. My overall plan
is to build simulations of various stages of English and
test them against manuscript data, such as the Penn-
sylvania Parsed Corpus of Middle English (PPCME).

One of my projects is a Haskell program to simulate
a population of individual agents learning simplified
languages based on Middle English and Old French.
Mathematically, the simulation is a Markov chain with
a huge number of states.

I’m also experimenting with GSLHS. I’m using it to
study a linear reward-penalty learning algorithm and a
new algorithm based on a differential equation.

I use GHC and Hugs on Fedora Linux.
I’m also working on an interpreted language called

Crouton. It’s based very loosely on Haskell’s syntax
and lazy evaluation, but without the type system and
with much more powerful pattern matching. It will
allow me to scan files from the PPCME and other cor-
pora in lisp-like formats, find particular constructions,
and transform them. Patterns can be as complex as
context free grammars, and apply to whole structures
as well as strings. I expect it to be a big help in the
data collection part of my language modeling.

Further reading

◦ http://www.cofc.edu/~mitchenerg
◦ http://www.crouton.org

64

http://dx.doi.org/10.1016/j.actao.2006.09.002
http://www.csse.monash.edu.au/hons/projects/2006/James.Bardsley
http://www.csse.monash.edu.au/hons/projects/2006/James.Bardsley
http://crpit.com/confpapers/CRPITV48Allison.pdf
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://www.ii.uib.no/~ketil/bioinformatics/repos
http://www.ii.uib.no/~ketil/bioinformatics/repos
http://www.ii.uib.no/~ketil/bioinformatics
http://www.cofc.edu/~mitchenerg
http://www.crouton.org

	General
	HaskellWiki and haskell.org
	#haskell
	Planet Haskell
	Haskell Weekly News
	The Monad.Reader
	Books and tutorials
	New textbook -- Programming in Haskell
	Haskell Wikibook (was: Haskell Tutorial Wikibook)
	Haskell Tutorials in Portuguese

	A Survey on the Use of Haskell in Natural-Language Processing

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	yhc

	Language
	Variations of Haskell
	Liskell
	Haskell on handheld devices
	Camila

	Non-sequential Programming
	GpH -- Glasgow Parallel Haskell
	Eden

	Type System/Program Analysis
	Epigram
	Chameleon project
	XHaskell project
	ADOM: Agent Domain of Monads
	EHC, `Essential Haskell' Compiler
	Uniqueness Typing
	Uniqueness Typing in EHC
	Object-Oriented Haskell

	IO
	Formal Aspects of Pure Functional I/O

	Libraries
	Packaging and Distribution
	Core

	General libraries
	Test.IOSpec
	PFP -- Probabilistic Functional Programming Library for Haskell
	GSLHaskell
	An Index Aware Linear Algebra Library
	Haskell Rules: Embedding Rule Systems in Haskell

	Parsing and transforming
	InterpreterLib
	hscolour
	Utrecht Parsing Library and Attribute Grammar System
	Left-Recursive Parser Combinators
	RecLib -- A Recursion and Traversal Library for Haskell

	System
	Harpy
	hs-plugins
	The libpcap Binding
	Streams
	System.FilePath
	hinotify

	Databases and data storage
	CoddFish
	Takusen

	Data types and data structures
	Standard Collection Libraries
	Data.ByteString
	Data.List.Stream
	dimensional
	Numeric prelude
	HList -- a library for typed heterogeneous collections
	ArrayRef

	Data processing
	AltBinary
	binary
	binarydefer
	Compression-2006 (was: Compression-2005)
	The Haskell Cryptographic Library
	The Haskell ASN.1 Library
	2LT: Two-Level Transformation

	User interfaces
	Grapefruit -- A declarative GUI library
	wxHaskell
	Gtk2Hs
	hscurses
	VTY

	(Multi-)Media
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	HOpenAL -- A Haskell Binding for OpenAL and ALUT
	Haskore revision

	Web and XML programming
	HAppS -- Haskell Application Server
	Pass.Net
	Converter of Yhc Core to Javascript (ycr2js)
	tagsoup
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell

	Tools
	Foreign Function Interfacing
	CHaskell

	Scanning, Parsing, Analysis
	Alex version 2
	Happy
	SdfMetz
	XsdMetz: metrics for XML Schema

	Transformations
	derive
	Term Rewriting Tools written in Haskell
	HaRe -- The Haskell Refactorer
	VooDooM

	Testing and Debugging
	Haskell Program Coverage
	Hat
	SmallCheck: another lightweight testing library in Haskell

	Development
	hmake
	Haskell Modes for Vim
	Ruler
	cpphs
	Visual Haskell
	Haddock
	Hoogle -- Haskell API Search
	SearchPath

	Applications
	xmonad
	GenI
	Roguestar
	mmisar
	Inference Services for Hybrid Logics
	HyLoRes
	HTab
	HGen

	Raskell
	photoname
	HJS -- Haskell Javascript Interpreter
	FreeArc
	Darcs
	lambdabot
	yi
	INblobs -- Interaction Nets interpreter
	lhs2TeX
	Emping
	Audio signal processing
	hmp3
	Testing Handel-C Semantics Using QuickCheck
	easyVision
	View selection for image-based rendering

	Users
	Commercial users
	Credit Suisse Global Modelling and Analytics Group
	Bluespec tools for design of complex chips
	Galois, Inc.
	Linspire

	Haskell in Education
	Functional programming at school

	Research Groups
	Foundations and Methods Group at Trinity College Dublin
	Foundations of Programming Group at the University of Nottingham
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University and DFKI Lab Bremen
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Programming Languages & Systems at UNSW
	Haskell in Romania
	SCIence project

	User groups
	OpenBSD Haskell
	Haskell in Gentoo Linux

	Individuals
	Oleg's Mini tutorials and assorted small projects
	Inductive Programming
	Bioinformatics tools
	Using Haskell to implement simulations of language acquisition, variation, and change

