
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Fourteenth Edition — May, 2008

Andres Löh, Janis Voigtländer (eds.)

Andy Adams-Moran alpheccar Lloyd Allison
Tiago Miguel Laureano Alves Apfelmus Carlos Areces

Sengan Baring-Gould Alistair Bayley Jean-Philippe Bernardy
Clifford Beshers Joachim Breitner Niklas Broberg
Chris Brown Bjorn Buckwalter Denis Bueno

Andrew Butterfield Olaf Chitil Jan Christiansen
Sterling Clover Duncan Coutts Nils Anders Danielsson
Jason Dagit Robert Dockins Keith Fahlgren

Henrique Ferreiro García Sebastian Fischer Simon Frankau
Leif Frenzel Richard A. Frost George Giorgidze
Daniel Gorin Murray Gross Jurriaan Hage

Bastiaan Heeren Wolfgang Jeltsch Kevin Hammond
Christopher Lane Hinson Graham Hutton Wolfram Kahl
Antti-Juhani Kaĳanaho Oleg Kiselyov Dirk Kleeblatt

Edward Kmett Lennart Kolmodin Slawomir Kolodynski
Eric Kow Andres Löh Rita Loogen

Salvador Lucas Ian Lynagh Ketil Malde
Conor McBride Neil Mitchell Christian Maeder
Blažević Mario Simon Marlow Steffen Mazanek
Arie Middelkoop Matthew Naylor Jürgen Nicklisch-Franken
Rishiyur Nikhil Bryan O’Sullivan Simon Peyton Jones
Claus Reinke Alberto Ruiz Colin Runciman
David Sabel Matthew Sackman Uwe Schmidt
Paulo Silva Axel Simon Ben Sinclair

Ganesh Sittampalam Jim Snow Dominic Steinitz
Don Stewart Jon Strait Jennifer Streb

Martin Sulzmann Wouter Swierstra Hans van Thiel
Henning Thielemann Peter Thiemann Phil Trinder

Andrea Vezzosi Miguel Vilaca Janis Voigtländer
Edsko de Vries David Waern Malcolm Wallace

Eelis van der Weegen Ashley Yakeley Brent Yorgey
Bulat Ziganshin

http://www.haskell.org/communities/

Preface

This is the 14th edition of the Haskell Communities and Activities Report. There has been
a transition in editorship which went very smoothly, also thanks to the many responsive con-
tributors who where as helpful to the new editor as they have been to Andres during the last
years.
As usual, entries that are completely new (or have been revived after having disappeared

temporarily) are formatted using a blue background. Updated entries have a header with a
blue background. In most cases of entries that have not been changed for a year or longer,
these have been dropped.
The report has been somewhat restructured, so if you do not find your favourite entry at once:

please check the table of contents again; maybe the entry is just elsewhere than where you last
saw it. If for some entry you think a different place in the report would be more appropriate,
please give sign for next time. Also, to simplify organisation, only one author is now assigned
to every entry. Where previously several authors were given, the entry has been assigned to the
one sending it in, and any further given authors have been added as participants. Of course,
authorship can be reassigned with the next edition.
By now, the report has reached a considerable size. This does not only have to do with

the pleasantly high number of entries contained, but also with the fact that many of them are
growing “through accumulation”. To counter this a bit, and encourage focusing on describing
the most recent activities, the next edition of HCAR will have a (liberal) length limit on entries,
except for a few projects of central importance (the compilers, Cabal and Hackage, . . .). More
details around November — watch the mailing lists for announcements.
But now enjoy the report and see what other Haskellers have been up to lately. Any kind of

feedback is of course very welcome 〈hcar@haskell.org〉.

Andres Löh, Universiteit Utrecht, The Netherlands
Janis Voigtländer, Technische Universität Dresden, Germany

2

mailto: hcar at haskell.org

Contents

1 General 7
1.1 HaskellWiki and haskell.org . 7
1.2 #haskell . 7
1.3 The Monad.Reader . 7
1.4 Haskell Weekly News . 8
1.5 Planet Haskell . 8
1.6 Books and tutorials . 8
1.6.1 Programming in Haskell . 8
1.6.2 Real World Haskell . 8
1.6.3 Haskell Wikibook . 9
1.6.4 Gtk2Hs tutorial . 9
1.6.5 Oleg’s Mini tutorials and assorted small projects . 10

2 Implementations 11
2.1 The Glasgow Haskell Compiler . 11
2.2 nhc98 . 12
2.3 yhc . 12
2.4 The Helium compiler . 12
2.5 The Reduceron . 12
2.6 Platforms . 13
2.6.1 Haskell in Gentoo Linux . 13
2.6.2 OpenBSD Haskell . 13

3 Language 14
3.1 Extensions of Haskell . 14
3.1.1 Haskell Server Pages (HSP) . 14
3.1.2 GpH — Glasgow Parallel Haskell . 14
3.1.3 Eden . 15
3.1.4 XHaskell project . 16
3.1.5 HaskellActorJoin (previously: HaskellJoin) . 16
3.2 Related Languages . 16
3.2.1 Curry . 16
3.2.2 Agda . 17
3.2.3 Epigram . 17
3.3 Type System / Program Analysis . 19
3.3.1 Uniqueness Typing . 19
3.3.2 Free Theorems for Haskell . 19

4 Tools 20
4.1 Scanning, Parsing, Transformations . 20
4.1.1 Alex version 2 . 20
4.1.2 Happy . 20
4.1.3 UUAG . 20
4.2 Documentation . 20
4.2.1 Haddock . 20
4.2.2 lhs2TEX . 21
4.3 Testing and Debugging . 21
4.3.1 SmallCheck . 21
4.3.2 Lazy SmallCheck . 21
4.3.3 EasyCheck . 22
4.3.4 CyCoTest . 22
4.3.5 Hat . 22

3

4.4 Development . 23
4.4.1 Hoogle — Haskell API Search . 23
4.4.2 Leksah, Haskell IDE . 23
4.4.3 EclipseFP — Haskell support for the Eclipse IDE . 23
4.4.4 yi . 24
4.4.5 HaRe — The Haskell Refactorer . 24
4.4.6 Haskell Mode Plugins for Vim . 24
4.4.7 :def and .ghci (previously: dot.ghci) . 25
4.4.8 DarcsWatch . 25
4.4.9 cpphs . 26

5 Libraries 27
5.1 Cabal and Hackage . 27
5.2 Auxiliary Libraries . 28
5.2.1 libmpd . 28
5.2.2 gravatar . 28
5.2.3 mersenne-random . 28
5.2.4 cmath . 28
5.2.5 hmatrix (previously: GSLHaskell) . 28
5.2.6 HPDF . 28
5.2.7 The Neon Library . 29
5.2.8 uniplate . 29
5.3 Processing Haskell . 29
5.3.1 hint . 29
5.3.2 hs-plugins . 29
5.3.3 hscolour . 29
5.4 Parsing and Transforming . 30
5.4.1 pcre-light . 30
5.4.2 HStringTemplate . 30
5.4.3 CoreErlang . 30
5.4.4 parse-dimacs: A DIMACS CNF Parser . 30
5.4.5 Graph Parser Combinators in Curry . 30
5.4.6 The X-SAIGA Project . 31
5.4.7 InterpreterLib . 31
5.5 Data types and data structures . 32
5.5.1 Data.ByteString . 32
5.5.2 dlist . 32
5.5.3 dimensional . 32
5.5.4 Numeric prelude . 32
5.5.5 HList — a library for typed heterogeneous collections . 33
5.5.6 stream-fusion . 33
5.5.7 Edison . 34
5.6 Data processing . 34
5.6.1 bytestring-mmap . 34
5.6.2 binary . 34
5.6.3 The Haskell Cryptographic Library . 35
5.6.4 The Haskell ASN.1 Library . 35
5.6.5 2LT: Two-Level Transformation . 35
5.7 Types for Safety and Reasoning . 36
5.7.1 Takusen . 36
5.7.2 Session Types for Haskell . 37
5.7.3 Category Extras — Comonad Transformers and Bird-Meertens combinators 37
5.7.4 IOSpec . 37
5.8 User interfaces . 38
5.8.1 Gtk2Hs . 38
5.8.2 Grapefruit — A declarative GUI and graphics library . 38
5.8.3 Shellac . 39
5.9 (Multi-)Media . 39

4

5.9.1 diagrams . 39
5.9.2 YampaSynth (previously: Programming of Modular Synthesisers) 39
5.9.3 Haskore revision . 40
5.10 Web and XML programming . 41
5.10.1 hvac . 41
5.10.2 Haskell XML Toolbox . 41
5.10.3 HaXml . 42
5.10.4 tagsoup . 42
5.10.5 WASH/CGI — Web Authoring System for Haskell . 42
5.11 System . 42
5.11.1 hinotify . 42
5.11.2 hspread . 43
5.11.3 Harpy . 43

6 Applications and Projects 44
6.1 For the Masses . 44
6.1.1 Darcs . 44
6.1.2 xmonad . 44
6.2 Education . 44
6.2.1 Exercise Assistants . 44
6.2.2 Holmes, plagiarism detection for Haskell . 45
6.2.3 Geordi IRC C++ eval bot . 45
6.2.4 Lambda Shell . 45
6.2.5 INblobs – Interaction Nets interpreter . 46
6.3 Data Access and Visualisation . 46
6.3.1 Holumbus Search Engine Framework . 46
6.3.2 Top Writer . 46
6.3.3 tiddlyisar . 47
6.3.4 Emping . 47
6.3.5 SdfMetz . 47
6.4 Audio and Graphics . 48
6.4.1 Audio signal processing . 48
6.4.2 hmp3 . 49
6.4.3 Glome . 49
6.4.4 easyVision . 49
6.5 Proof Assistants and Reasoning . 49
6.5.1 Galculator . 49
6.5.2 funsat: DPLL-style Satisfiability Solver . 49
6.5.3 sat-micro-hs: SAT-Micro in Haskell . 50
6.5.4 Saoithín: a 2nd-order proof assistant . 50
6.5.5 Term Rewriting Tools written in Haskell . 50
6.5.6 Inference Services for Hybrid Logics . 51
6.5.7 HyLoRes . 51
6.5.8 HTab . 51
6.5.9 HGen . 52
6.6 Modelling and Analysis . 52
6.6.1 Coconut . 52
6.6.2 Streaming Component Combinators . 52
6.6.3 Raskell . 53
6.6.4 VooDooM . 53
6.7 Specialised Domains . 54
6.7.1 A Survey on the Use of Haskell in Natural-Language Processing . 54
6.7.2 GenI . 54
6.7.3 Bioinformatics tools . 54
6.7.4 Inductive Programming . 54
6.8 Others . 55
6.8.1 lambdabot . 55
6.8.2 FreeArc . 55

5

6.8.3 Roguestar . 55

7 Commercial Users 57
7.1 Well-Typed LLP . 57
7.2 SeeReason Partners, LLC . 57
7.3 Ansemond LLC . 57
7.4 Credit Suisse Global Modelling and Analytics Group . 57
7.5 Barclays Capital Quantitative Analytics Group . 58
7.6 Bluespec tools for design of complex chips . 58
7.7 Galois, Inc. 59

8 Research and User Groups 61
8.1 Functional Programming Lab at the University of Nottingham . 61
8.2 Artificial Intelligence and Software Technology at JWG-University Frankfurt 62
8.3 Functional Programming at the University of Kent . 63
8.4 Foundations and Methods Group at Trinity College Dublin . 64
8.5 Formal Methods at DFKI Lab Bremen and University of Bremen 64
8.6 Functional Programming at Brooklyn College, City University of New York 65
8.7 SCIence project . 65
8.8 Bay Area Functional Programmers . 65

6

1 General

1.1 HaskellWiki and haskell.org

Report by: Ashley Yakeley
Participants: John Peterson, Olaf Chitil

HaskellWiki is a MediaWiki installation running on
haskell.org, including the haskell.org “front page”. Any-
one can create an account and edit and create pages.
Examples of content include:

◦ Documentation of the language and libraries

◦ Explanation of common idioms

◦ Suggestions and proposals for improvement of the
language and libraries

◦ Description of Haskell-related projects

◦ News and notices of upcoming events

We encourage people to create pages to describe and
advertise their own Haskell projects, as well as add to
and improve the existing content. All content is sub-
mitted and available under a “simple permissive” li-
cense (except for a few legacy pages).
In addition to HaskellWiki, the haskell.org website

hosts some ordinary HTTP directories. The machine
also hosts mailing lists. There is plenty of space and
processing power for just about anything that peo-
ple would want to do there: if you have an idea for
which HaskellWiki is insufficient, contact the maintain-
ers, John Peterson and Olaf Chitil, to get access to this
machine.

Further reading

◦ http://haskell.org/
◦ http://haskell.org/haskellwiki/Mailing_Lists

1.2 #haskell

Report by: Don Stewart

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. The chan-
nel has continued to grow in the last six months, now
averaging around 420 users, with a record 479 users
(up from 436 six months ago). It is one of the largest
channels on freenode. The irc channel is home to
hpaste and lambdabot (→ 6.8.1), two useful Haskell
bots. Point your IRC client to irc.freenode.net and join
the #haskell conversation!
For non-English conversations about Haskell there

are now:

◦ #haskell.de – German speakers
◦ #haskell.dut – Dutch speakers
◦ #haskell.es – Spanish speakers
◦ #haskell.fi – Finnish speakers
◦ #haskell.fr – French speakers
◦ #haskell.hr – Croatian speakers
◦ #haskell.it – Italian speakers
◦ #haskell.jp – Japanese speakers
◦ #haskell.no – Norwegian speakers
◦ #haskell_ru – Russian speakers
◦ #haskell.se – Swedish speakers
Related Haskell channels are now emerging, includ-

ing:
◦ #haskell-overflow – Overflow conversations
◦ #haskell-blah – Haskell people talking about any-

thing except Haskell itself
◦ #gentoo-haskell – Gentoo/Linux specific Haskell

conversations (→ 2.6.1)
◦ #haskell-books – Authors organising the collabo-

rative writing of the Haskell Wikibook (→ 1.6.3)
◦ #darcs – Darcs revision control channel (→ 6.1.1)
◦ #ghc – GHC developer discussion (→ 2.1)
◦ #happs – HAppS Haskell Application Server channel
◦ #xmonad – XMonad, a tiling window manager (→

6.1.2)

Further reading

http://haskell.org/haskellwiki/IRC_channel

1.3 The Monad.Reader

Report by: Wouter Swierstra

There are plenty of academic papers about Haskell and
plenty of informative pages on the HaskellWiki (→ 1.1).
Unfortunately, there is not much between the two ex-
tremes. That is where The Monad.Reader tries to fit
in: more formal than a Wiki page, but more casual
than a journal article.
There are plenty of interesting ideas that maybe do

not warrant an academic publication — but that does
not mean these ideas are not worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if it has all been done before in the Journal
of Impossibly Complicated Theoretical Stuff, explain-
ing a neat idea about “warm fuzzy things” to the rest
of us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;

7

http://haskell.org/
http://haskell.org/haskellwiki/Mailing_Lists
http://haskell.org/haskellwiki/IRC_channel

writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR, I have moved a lot of old arti-

cles from the old MoinMoin wiki to the new MediaWiki
wiki. Unfortunately, I do not have the time to refor-
mat all the old articles. If you fancy a go at tidying an
article or two, I would really appreciate your help!
I am always interested in new submissions, whether

you are an established researcher or fledgling Haskell
programmer. Check out the Monad.Reader homepage
for all the information you need to start writing your
article.

Further reading

http://www.haskell.org/haskellwiki/The_Monad.Reader

1.4 Haskell Weekly News

Report by: Don Stewart

The Haskell Weekly News (HWN) is an irregular
newsletter covering developments in Haskell. Content
includes announcements of new projects, jobs, discus-
sions from the various Haskell communities, notable
project commit messages, Haskell in the blogspace, and
more. The Haskell Weekly News also publishes latest
releases uploaded to Hackage.
It is published in html form on The Haskell Se-

quence, via mail on the Haskell mailing list, on Planet
Haskell (→ 1.5), and via RSS. Headlines are published
on haskell.org (→ 1.1).

Further reading

http://www.haskell.org/haskellwiki/Haskell_Weekly_
News

1.5 Planet Haskell

Report by: Antti-Juhani Kaĳanaho

Planet Haskell is an aggregator of Haskell people’s blogs
and other Haskell-related news sites. As of April 2008
content from 92 blogs and other sites is being repub-
lished in a common format.
A common misunderstanding about Planet Haskell

is that it republishes only Haskell content. That is not
its mission. A Planet shows what is happening in the
community, what people are thinking about or doing.
Thus Planets tend to contain a fair bit of “off-topic”
material. Think of it as a feature, not a bug.
For information on how to get added to Planet,

please read http://planet.haskell.org/policy.html.

Further reading

http://planet.haskell.org/

1.6 Books and tutorials

1.6.1 Programming in Haskell

Report by: Graham Hutton

Haskell is one of the leading languages for teaching
functional programming, enabling students to write
simpler and cleaner code, and to learn how to structure
and reason about programs. This introduction is ideal
for beginners: it requires no previous programming ex-
perience and all concepts are explained from first prin-
ciples via carefully chosen examples. Each chapter in-
cludes exercises that range from the straightforward to
extended projects, plus suggestions for further reading
on more advanced topics. The presentation is clear
and simple, and benefits from having been refined and
class-tested over several years.
Features include: freely accessible powerpoint slides

for each chapter; solutions to exercises, and examina-
tion questions (with solutions) available to instructors;
downloadable code that is fully compliant with the lat-
est Haskell release.
Publication details:
◦ Published by Cambridge University Press, 2007.

Paperback: ISBN 0521692695; Hardback: ISBN:
0521871727; eBook: ISBN 051129218X.

In-depth review:
◦ Duncan Coutts, The Monad.Reader (→ 1.3),
http://www.haskell.org/sitewiki/images/0/03/
TMR-Issue7.pdf

Further reading

http://www.cs.nott.ac.uk/~gmh/book.html

1.6.2 Real World Haskell

Report by: Bryan O’Sullivan
Participants: John Goerzen, Don Stewart
Status: active development

We are working on a book, “Real World Haskell”, about
the practical application of Haskell to everyday pro-
gramming problems. The book will be published in
the second half of 2008 by O’Reilly.
Our intended audience is programmers with no back-

ground in functional languages. We explore a diverse
set of topics, among which are the following.

◦ Basics of Haskell and functional programming

◦ Developing software using standard tools like GHC
and the Cabal packaging system

◦ Code coverage, quality assurance, and performance
analysis

◦ Putting theory to work: working with and creating
monoids, normal and applicative functors, monads,
and monad transformers

8

http://www.haskell.org/haskellwiki/The_Monad.Reader
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://planet.haskell.org/policy.html
http://planet.haskell.org/
http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.cs.nott.ac.uk/~gmh/book.html

◦ Applied topics: databases, filesystems, GUI pro-
gramming, web and other network clients, web
servers

◦ Concurrent, parallel, and transactional programming

◦ Error handling in pure and impure code

◦ Interfacing to C libraries

◦ Many case studies and runnable code examples

At the time of writing (late April, 2008) we have
first drafts of about 75 per cent of the book written.
We expect it to come to about 30 chapters in total.
We are excited to be publishing the book under a

Creative Commons License. As we write chapters, we
publish them online for people to read and comment
on, and we incorporate feedback from our readers when
we rewrite drafts of chapters. The level of community
interest has been remarkable: so far, we have received
over 4,000 comments on the chapters we have made
available.

Further reading

◦ Book site: http://book.realworldhaskell.org/
◦ Blog with progress and publication updates: http:
//www.realworldhaskell.org/blog/

1.6.3 Haskell Wikibook

Report by: Apfelmus
Participants: Eric Kow, David House, Joeri van Eekelen,

and other contributors
Status: active development

The goal of the Haskell wikibook project is to build a
community textbook about Haskell that is at once free
(as in freedom and in beer), gentle, and comprehensive.
We think that the many marvellous ideas of lazy func-
tional programming can and thus should be accessible
to everyone in a central place.
Since the last report, the wikibook has been advanc-

ing rather slowly. The rewrite of the Monad chapters
is still in progress and material about lazy evaluation is
still being written. Of course, additional authors and
contributors that help writing new contents or simply
spot mistakes and ask those questions we had never
thought of are more than welcome!

Further reading

◦ http://en.wikibooks.org/wiki/Haskell
◦ Mailing list: 〈wikibook@haskell.org〉

1.6.4 Gtk2Hs tutorial

Report by: Hans van Thiel

Most of the original GTK+2.0 tutorial by Tony Gail
and Ian Main has been adapted to Gtk2Hs (→ 5.8.1),
which is the Haskell binding to the GTK GUI library.
The Gtk2Hs tutorial also builds on “Programming

with gtkmm” by Murray Cumming et al. and the Inti
(Integrated Foundation Classes) tutorial by the Inti
team.
The Gtk2Hs tutorial assumes intermediate level

Haskell programming skills, but no prior GUI program-
ming experience.
It has been translated into Spanish, by Laszlo

Keuschnig, and both versions are available on Haskell
darcs.
See: http://darcs.haskell.org/gtk2hs/docs/tutorial/

Tutorial_Port/
1. Introduction
2. Getting Started
3. Packing

3.1 Packing Widgets
3.2 Packing Demonstration Program
3.3 Packing Using Tables

4. Miscellaneous Widgets
4.1 The Button Widget
4.2 Adjustments, Scale, and Range
4.3 Labels
4.4 Arrows and Tooltips
4.5 Dialogs, Stock Items, and Progress Bars
4.6 Text Entries and Status Bars
4.7 Spin Buttons

5. Aggregated Widgets
5.1 Calendar
5.2 File Selection
5.3 Font and Colour Selection
5.4 Notebook

6. Supporting Widgets
6.1 Scrolled Windows
6.2 EventBoxes and ButtonBoxes
6.3 The Layout Container
6.4 Paned Windows and Aspect Frames

7. Action Based Widgets
7.1 Menus and Toolbars
7.2 Popup Menus, Radio Actions,

and Toggle Actions
Appendix: Drawing with Cairo: Getting Started

The Glade tutorial, an introduction to visual Gtk2Hs
programming, has been updated to Glade 3 by Alex
Tarkovsky. It is available on: http://haskell.org/
gtk2hs/docs/tutorial/glade/ This tutorial has also been
translated into Spanish, by Laszlo Keuschnig, but it
is currently only available on: http://home.telfort.nl/
sp969709/glade/es-index.html

9

http://book.realworldhaskell.org/
http://www.realworldhaskell.org/blog/
http://www.realworldhaskell.org/blog/
http://en.wikibooks.org/wiki/Haskell
mailto: wikibook at haskell.org
http://darcs.haskell.org/gtk2hs/docs/tutorial/Tutorial_Port/
http://darcs.haskell.org/gtk2hs/docs/tutorial/Tutorial_Port/
http://haskell.org/gtk2hs/docs/tutorial/glade/
http://haskell.org/gtk2hs/docs/tutorial/glade/
http://home.telfort.nl/sp969709/glade/es-index.html
http://home.telfort.nl/sp969709/glade/es-index.html

1.6.5 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received three additions:

Binary type arithmetic

With Chung-chieh Shan we introduce a type-level
Haskell library for arbitrary precision binary arith-
metic over natural kinds. The numerals are specified
in the familiar big-endian bit notation. The library
supports addition/subtraction, predecessor/successor,
multiplication/division, exp2, all comparisons, GCD,
and the maximum. At the core of the library are
multi-mode ternary relations Add and Mul where any
two arguments determine the third. Such relations
are especially suitable for specifying static arithmetic
constraints on computations. The type-level numer-
als have no run-time representation; correspondingly,
all arithmetic operations are done at compile time and
have no effect on run-time.
Two applications of the library for safe system pro-

gramming are described in the next item.
http://okmĳ.org/ftp/Haskell/types.html#binary-arithm

Typed memory areas and time-parameterised
monads, for safe embedded and systems
programming

We argue that Haskell as supported by GHC today
can be used for safe system programming, statically
assuring safe handling of raw memory pointers, device
registers, and other low-level resources. Safety is as-
sured by the type system and has no run-time over-
head. We demonstrate two extensive examples: (i) one
built around raw pointers, to track and arbitrate the
size, alignment, write permission, and other properties
of memory areas in the presence of indexing, casting,
and iteration; (ii) the other built around a device regis-
ter, to enforce protocol and timing requirements while
reading from the register.
We also demonstrate custom kinds and predicates;

type-level numbers, functions, and records; and mixed
type- and term-level programming.
http://okmĳ.org/ftp/Haskell/types.html#ls-resources

Polymorphic variants: solving the expression
problem

There have been several proposals for Haskell exten-
sions to support open polymorphic variants, i.e., ex-
tensible recursive open sum datatypes similar to poly-
morphic variants of OCaml. We demonstrate that

Haskell as it is — the HList library (→ 5.5.5) — already
supports polymorphic variants, with automatic variant
subtyping. HList thus solves the familiar (in OO, at
least) “expression problem” — the ability to add new
alternatives to a datatype and extend old processing
functions to deal with the extended variant, maximally
reusing old code without changing it.
Our polymorphic variants are literally open co-

products: dual of, literally negated extensible polymor-
phic records of HList. Our encoding of sums is the
straightforward Curry-Howard image of the DeMorgan
law of the negation of disjunction.
Our implementation of polymorphic variants in

terms of HList records uses no type classes, no type-
level programming or any other type hacking. In fact,
there are no type annotations, type declarations or any
other mentioning of types, except in the comments.
The code is included in the HList library.
http://okmĳ.org/ftp/Haskell/generics.html#
PolyVariant

10

http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Haskell/types.html#binary-arithm
http://okmij.org/ftp/Haskell/types.html#ls-resources
http://okmij.org/ftp/Haskell/generics.html#PolyVariant
http://okmij.org/ftp/Haskell/generics.html#PolyVariant

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: Tim Chevalier, Aaron Tomb, Roman

Leshchinskiy, Gabrielle Keller, Max
Bolingbroke, John Dias, Thomas Schilling,

and many others

The last six months have been a time of consolidation
for GHC. We have done many of the things described
in the last HCAR, but there are few new headline items
to report, so this status report is briefer than usual.

Highlights of the last six months

◦ Several simple language extensions are now solidly in
the HEAD.
– Record syntax: wild-card patterns, punning,

and field disambiguation
– View patterns
– Generalised list comprehensions
– Quasi-quoting

◦ Type-indexed families. We learned a lot by writ-
ing a paper about the question of type infer-
ence in the presence of type families (and existen-
tials, and GADTs): http://research.microsoft.com/
~simonpj/papers/assoc-types. The implementation
has not quite caught up with the paper and is still
incomplete in many ways, but it is a focus of active
work and already usable. If you are interested in type
families, now would be a good time to grab a devel-
opment snapshot of GHC, write some programs or
port your favourite program using functional depen-
dencies, and then, let us know what does and what
does not work for you.

◦ Parallel garbage collection. Much implemen-
tation work, and a paper for ISMM 2008:
http://research.microsoft.com/~simonpj/papers/
parallel-gc/index.htm.

◦ Impredicative polymorphism. We are not happy
with GHC’s current implementation of impredicative
polymorphism, which is rather complicated and ad
hoc. Dimitrios (with Simon and Stephanie) wrote
a paper about a new and better approach: http:
//research.microsoft.com/~simonpj/papers/boxy. At
the same time, Daan Leĳen has been working on
his closely-related design: http://research.microsoft.
com/users/daan/pubs.html. Daan’s design has a
much simpler implementation, in exchange for an

(arguably) less-predictable specification. Which of
these two should we implement? Let us know!

◦ External Core. Tim Chevalier has updated the Ex-
ternal Core format to incorporate type equality co-
ercions and other recent GHC changes, as well as
extending the stand-alone External Core tools (a
parser, typechecker, and interpreter that can be built
separately from GHC) to handle this new format. As
of now, it is only possible to use GHC’s front-end to
pipe External Core into other back-end tools — GHC
still cannot read in External Core that was produced
by other tools (or itself). But this is an improvement
over the bit-rotted state into which External Core
had fallen. Aaron Tomb contributed much to this
effort as well.

Nested data parallelism

We have been working hard on Data Parallel Haskell,
especially Roman Leshchinskiy and Gabriele Keller. It
has turned out be be hard to get the entire transforma-
tion and optimisation stack to work smoothly, and we
have not made progress announcements because we do
not want to yell about it until it Actually Works. But
it is the biggest single GHC focus: Roman works on it
full time.
Large parts of the major pieces are in place. GHC

contains a shiny new vectoriser that turns scalar into
data-parallel functions. Moreover, the sequential and
parallel array libraries targeted by the vectoriser have
been steadily growing. We managed to successfully run
small applications, such as an n-body simulator based
on the Barnes-Hut algorithm, but the vectoriser and
library are still awkward to use and need to be more
robust before being useful to a wider audience. We also
need to improve performance.
We expect to release a working version of Data Par-

allel Haskell as part of GHC 6.10 (see below).

Other current activities

◦ Max Bolingbroke resurrected the static argument
transformation. It does not matter for most pro-
grams, but has a big effect on a few.

◦ Work on the back end has been stalled, but John
Dias started a 6-month internship in April, so expect
progress on this front.

◦ Thomas Schilling is doing a Google Summer of Code
project to improve the GHC API.

11

http://research.microsoft.com/~simonpj/papers/assoc-types
http://research.microsoft.com/~simonpj/papers/assoc-types
http://research.microsoft.com/~simonpj/papers/parallel-gc/index.htm
http://research.microsoft.com/~simonpj/papers/parallel-gc/index.htm
http://research.microsoft.com/~simonpj/papers/boxy
http://research.microsoft.com/~simonpj/papers/boxy
http://research.microsoft.com/users/daan/pubs.html
http://research.microsoft.com/users/daan/pubs.html

◦ Max Bolingbroke is doing a Google Summer of Code
project to make it easy to build a plug-in for GHC;
for example, a new optimisation or analysis pass.

Release plans

We plan to release GHC 6.8.3 at the end of May 2008,
with many bug-fixes but no new features.
We plan to release GHC 6.10 around the time of

ICFP, with significant new features. The up-to-date list
of new stuff is kept at http://hackage.haskell.org/trac/
ghc/wiki/Status/Releases, but here’s a quick summary:
◦ Simple language extensions (mentioned above)
◦ Type-indexed families
◦ Data Parallel Haskell
◦ Parallel garbage collection
◦ Extensible exceptions
◦ External Core
◦ Shared libraries
◦ Improved back end
◦ Further library reorganisation

2.2 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, compiler for Haskell’98.
nhc98 is still very much alive and working, although it
does not see much new development these days. The
last public release (1.20) was in November 2007, for
compatibility with ghc-6.8.x. Continuing maintenance
ensures that common library packages build in their
most recent versions.

Further reading

◦ http://haskell.org/nhc98
◦ darcs get http://darcs.haskell.org/nhc98

2.3 yhc

Report by: Neil Mitchell
Participants: Dimitry Golubovsky

The York Haskell Compiler (yhc) is a fork of the
nhc98 compiler (→ 2.2), with goals such as increased
portability, platform independent bytecode, integrated
Hat (→ 4.3.5) support, and generally being a cleaner
code base to work with. Yhc now compiles and runs
almost all Haskell 98 programs, has basic FFI support
— the main thing missing is haskell.org base libraries,
which is being worked on.
Since the last HCAR there have been a number of

projects making use of the Yhc.Core library. Of par-
ticular interest is the Javascript backend, which has
reached its first milestone. An experimental Yhc web

service has been launched, to allow people to experi-
ment with the Javascript backend.

Further reading

◦ Homepage: http://www.haskell.org/haskellwiki/Yhc
◦ Darcs repository: http://darcs.haskell.org/yhc
◦ Yhc Javascript Web Service http://www.haskell.org/

haskellwiki/Yhc_web_service

2.4 The Helium compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Arie Middelkoop

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back. The latest versions of the Helium compiler are
available for download from the new website located
at http://www.cs.uu.nl/wiki/Helium. This website also
explains in detail what Helium is about, what it offers,
and what we plan to do in the near and far future.
We are still working on making version 1.7 available,

mainly a matter of updating the documentation and
testing the system. Internally little has changed, but
the interface to the system has been standardised, and
the functionality of the interpreters has been improved
and made consistent. We have made new options avail-
able (such as those that govern where programs are
logged to). The use of Helium from the interpreters is
now governed by a configuration file, which makes the
use of Helium from the interpreters quite transparent
for the programmer. It is also possible to use differ-
ent versions of Helium side by side (motivated by the
development of Neon (→ 5.2.7)).

2.5 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman, Neil Mitchell
Status: Experimental

The Reduceron is a prototype of a special-purpose
graph reduction machine, built using an FPGA. It can
access up to eight graph nodes in parallel on each of
its stack, heap, and combinator memories. The goal
so far has been to optimise function unfolding. Eight
combinator nodes can be instantiated with eight stack
elements and placed on the heap, all in a single cycle.
The Reduceron is a simple machine, containing just

four instructions and a garbage collector, and executes
core Haskell almost directly. The translator to byte-
code and the FPGA machine are both implemented in
Haskell, the latter using Lava.

12

http://hackage.haskell.org/trac/ghc/wiki/Status/Releases
http://hackage.haskell.org/trac/ghc/wiki/Status/Releases
http://haskell.org/nhc98
http://darcs.haskell.org/nhc98
http://www.haskell.org/haskellwiki/Yhc
http://darcs.haskell.org/yhc
http://www.haskell.org/haskellwiki/Yhc_web_service
http://www.haskell.org/haskellwiki/Yhc_web_service
http://www.cs.uu.nl/wiki/Helium

See the URL below for details and results. Since the
last HCAR, I have written a thesis chapter about it,
with all the gory details unveiled! Further experiments
are planned.

Further reading

http://www.cs.york.ac.uk/~mfn/reduceron2/

2.6 Platforms

2.6.1 Haskell in Gentoo Linux

Report by: Lennart Kolmodin

GHC version 6.8.2 has been in Gentoo since late last
year, and is about to go stable. All of the 60+ Haskell
libraries and tools work with it, too. There are also
GHC binaries available for alpha, amd64, hppa, ia64,
sparc, and x86.
Browse the packages in portage at http://packages.

gentoo.org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.
There is also a Haskell overlay providing another 200

packages. Thanks to the recent progress of Cabal and
Hackage (→ 5.1), we have written a tool called “hack-
port” (initiated by Henning Günther) to generate Gen-
too packages that rarely need much tweaking.
The overlay is available at http://haskell.org/

haskellwiki/Gentoo. Using Darcs (→ 6.1.1), it is easy to
keep updated and send patches. It is also available via
the Gentoo overlay manager “layman”. If you choose to
use the overlay, then problems should be reported on
IRC (#gentoo-haskell on freenode), where we coor-
dinate development, or via email 〈haskell@gentoo.org〉.
Lately a few of our developers have shifted focus, and

only a few developers remain. If you would like to help,
which would include working on the Gentoo Haskell
framework, hacking on hackport, writing ebuilds, and
supporting users, please contact us on IRC or email as
noted above.

2.6.2 OpenBSD Haskell

Report by: Don Stewart
Participants: Matthias Kilian

Haskell support on OpenBSD is now taken over by
Matthias Kilian, who has updated GHC and related
tools for this platform. OpenBSD support for the GHC
head branch continues.

Further reading

http://ports.openbsd.nu/lang/ghc/

13

http://www.cs.york.ac.uk/~mfn/reduceron2/
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
http://ports.openbsd.nu/lang/ghc/

3 Language

3.1 Extensions of Haskell

3.1.1 Haskell Server Pages (HSP)

Report by: Niklas Broberg
Status: active development

Haskell Server Pages (HSP) is an extension of Haskell
targeted at writing dynamic web pages. Key features
and selling points include:

◦ Use literal XML syntax in your Haskell code for cre-
ating values of appropriate datatypes. (Note though
that writing literal XML is quite optional, if you, like
me, do not really enjoy that language.)

◦ Guarantees that XML output is well-formed (and an
HTML output mode if that is what you need).

◦ A model that gives easy access to necessary environ-
ment variables.

◦ Simple programming model that is easy to use even
for non-experienced Haskell programmers, in partic-
ular with a very simple transition from static XML
pages to dynamic HSP pages.

◦ Easy integration with a DSL called HJScript that
makes it easy to write client-side (JavaScript) scripts.

◦ An extension of HAppS that can serve HSP pages on
the fly, making deployment of pages really simple.

After a few years in hiatus, we have recently picked
up development of HSP again and intend to continue
developing and supporting it. The latest full release
of HSP was in March 2008, and introduced the easy
integration between server-side and client-side code. A
lot of work has gone into the development version since
then, and a new release will probably take place before
this HCAR report is published.
HSP is and will be continuously released onto Hack-

age. It consists of a series of interdependent pack-
ages with package hsp as the main top-level start-
ing point, and package happs-hsp for integration with
HAppS. The best way to keep up with development
is to grab the darcs repositories, all located under
http://code.haskell.org/HSP.

Further reading

http://haskell.org/haskellwiki/HSP

3.1.2 GpH — Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Abyd Al Zain, Mustafa Aswad, Jost

Berthold, Murray Gross, Kevin Hammond,
Vladimir Janjic, Hans-Wolfgang Loidl,

Greg Michaelson

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

System Evaluation and Enhancement

◦ A major revision of the parallel runtime environ-
ment for GHC 6.8 is currently under development.
The GpH and Eden (→ 3.1.3) parallel Haskells share
much of the implementation technology and both are
being used for parallel language research and in the
SCIEnce project (see below).

◦ We are exploring the use of GpH on multicore archi-
tectures.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Philipps-Universität Mar-
burg.

GpH Applications

◦ As part of the SCIEnce EU FP6 I3 project (026133)
(→ 8.7) (April 2006 - April 2011) we use GpH and
Eden as middleware to provide access to compu-
tational grids from Computer Algebra (CA) sys-
tems, including GAP, Maple MuPad, and KANT.
We have designed, implemented, and are evaluat-
ing the SymGrid-Par interface that facilitates the
orchestration of computational algebra components
into high-performance parallel applications.
In recent work we have demonstrated that SymGrid-
Par is capable of exploiting a variety of modern par-
allel/multicore architectures without any change to
the underlying CA components; and that SymGrid-
Par is capable of orchestrating heterogeneous com-
putations across a high-performance computational
Grid.

Implementations

The GUM implementation of GpH is available in two
main development branches.

14

http://code.haskell.org/HSP
http://haskell.org/haskellwiki/HSP
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.mathematik.uni-marburg.de/~eden/
http://www.symbolic-computation.org/
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml

◦ The focus of the development has switched to ver-
sions tracking GHC releases, currently GHC 6.8, and
the development version is available upon request to
the GpH mailing list (see the GpH web site).

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

We are exploring new, prescient scheduling mecha-
nisms for GpH.
Our main hardware platforms are Intel-based Be-

owulf clusters and multicores. Work on ports to other
architectures is also moving on (and available on re-
quest):

◦ A port to a Mosix cluster has been built in the Metis
project (→ 8.6) at Brooklyn College, with a first ver-
sion available on request from Murray Gross.

Further reading

◦ GpH homepage: http://www.macs.hw.ac.uk/~dsg/
gph/

◦ Stable branch binary snapshot: ftp://ftp.macs.hw.ac.
uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar

◦ Stable branch installation instructions: ftp://ftp.
macs.hw.ac.uk/pub/gph/README.GUM

Contact

〈gph@macs.hw.ac.uk〉, 〈mgross@dorsai.org〉

3.1.3 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps-Universität Marburg, Germany, and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Fernando Rubio, Alberto de la
Encina, Lidia Sánchez-Gil

in Marburg: Rita Loogen, Jost Berthold, Mischa Di-
eterle, Oleg Lobachev

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement
parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator (#) :: Process a b -> a ->
b. Higher-level coordination is achieved by defining
skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelise a set of non-trivial benchmark pro-
grams.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Implementation

A major revision of the parallel Eden runtime environ-
ment for GHC 6.8.1 is available on request. Support
for Glasgow parallel Haskell (→ 3.1.2) is currently be-
ing added to this version of the runtime environment.
It is planned for the future to maintain a common par-
allel runtime environment for Eden, GpH, and other
parallel Haskells.

Recent and Forthcoming Publications

◦ Jost Berthold: Implicit and Explicit Parallel Func-
tional Programming: Concepts and Implementation,
Dissertation (PhD thesis), Fachbereich Mathematik
und Informatik, Philipps-Universität Marburg, April
2008.

◦ Alberto de la Encina: Formalizando el proceso de
depuración en programación funcional paralela y
perezosa, Tesis Doctoral (PhD thesis), Facultad de
Ciencias Matemáticas, Universidad Complutense de
Madrid, March 2008, in Spanish.

◦ Mischa Dieterle, Jost Berthold, and Rita Loogen:
Functional Implementation of a Distributed Work
Pool Skeleton, submitted.

◦ Oleg Lobachev and Rita Loogen: Towards an Im-
plementation of a Computer Algebra System in a
Functional Language, 9th International Conference
on Artificial Intelligence and Symbolic Computation
(AISC), Birmingham, July 2008, Springer LNAI, to
appear.

◦ Abdallah Al Zain, Phil Trinder, Jost Berthold, Rita
Loogen, Kevin Hammond, and Hans-Wolfgang Loidl:
Parallel Functional Middleware for Computational
Algebra Systems, Draft Proceedings of the Sympo-
sium on Trends In Functional Programming (TFP),
Radboud Universiteit Nĳmegen, May 2008.

15

http://www.macs.hw.ac.uk/~dsg/gph/
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: mgross at dorsai.org

◦ Mercedes Hidalgo-Herrero and Yolanda Ortega-
Mallén: Calculational Reasoning for Parallel Func-
tional Programming, Draft Proceedings of the Sym-
posium on Trends In Functional Programming
(TFP), Radboud Universiteit Nĳmegen, May 2008.

◦ Oleg Lobachev, Jost Berthold, Mischa Dieterle, and
Rita Loogen: Parallel FFT Using Divide and Con-
quer Skeletons, Draft Proceedings of the Symposium
on Trends In Functional Programming (TFP), Rad-
boud Universiteit Nĳmegen, May 2008.

◦ Jost Berthold, Mischa Dieterle, Rita Loogen, and
Steffen Priebe: Hierarchical Master-Worker Skele-
tons, Practical Aspects of Declarative Languages
(PADL) 08, LNCS 4902, Springer 2008.

◦ Jost Berthold, Abyd Al-Zain, and Hans-Wolfgang
Loidl: Adaptive High-Level Scheduling in a Generic
Parallel Runtime Environment, Practical Aspects
of Declarative Languages (PADL) 08, LNCS 4902,
Springer 2008.

◦ Jost Berthold and Rita Loogen: Visualising Paral-
lel Functional Program Runs - Case Studies with the
Eden Trace Viewer, Parallel Computing: Architec-
tures, Algorithms and Applications, Proceedings of
the International Conference ParCo 2007, IOS Press
2007.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.1.4 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu

XHaskell is an extension of Haskell which combines
parametric polymorphism, algebraic data types, and
type classes with XDuce style regular expression types,
subtyping, and regular expression pattern matching.
The latest version can be downloaded via http://code.
google.com/p/xhaskell/

Latest developments

We have fully implemented the system, which can be
used in combination with the Glasgow Haskell Com-
piler. We have taken care to provide meaningful type
error messages in case the static checking of programs
fails. Our system also allows to defer some static checks
until run-time.
We make use of GHC-as-a-library so that the

XHaskell programmer can easily integrate her pro-
grams into existing applications and take advantage of
the many libraries available in GHC. We also provide a
convenient interface to the HaXML (→ 5.10.3) parser.
Kenny’s thesis will be available shortly, describing in

detail the formal underpinnings behind XHaskell.

3.1.5 HaskellActorJoin (previously: HaskellJoin)

Report by: Martin Sulzmann

In this project, we extend Haskell with Erlang-style
actors and Join-calculus style concurrency primitives.
The HaskellJoin extension is described in an IFL’07
paper. See for details: http://taichi.ddns.comp.nus.edu.
sg/taichiwiki/HaskellJoinRules.
The HaskellActor extension is described in a forth-

coming COORDINATION’08 paper. The implementa-
tion can be downloaded via http://code.google.com/p/
haskellactor/

Latest developments

We are currently working on revising the HaskellJoin
implementation.

3.2 Related Languages

3.2.1 Curry

Report by: Jan Christiansen
Participants: Bernd Braßel, Michael Hanus, Wolfgang

Lux, Sebastian Fischer, and others
Status: active development

Curry is a functional logic programming language with
Haskell syntax. In addition to the standard features of
functional programming like higher-order functions and
lazy evaluation, Curry supports features known from
logic programming. This includes programming with
non-determinism, free variables, constraints, declara-
tive concurrency, and the search for solutions. Al-
though Haskell and Curry share the same syntax, there
is one main difference with respect to how function dec-
larations are interpreted. In Haskell the order in which
different rules are given in the source program has an
effect on their meaning. In Curry, in contrast, the rules
are interpreted as equations, and overlapping rules in-
duce a non-deterministic choice and a search over the
resulting alternatives. Furthermore, Curry allows to
call functions with free variables as arguments so that
they are bound to those values that are demanded for
evaluation, thus providing for function inversion.
There are three major implementations of Curry.

While the original implementation PAKCS (Portland
Aachen Kiel Curry System) compiles to Prolog, MCC
(Münster Curry Compiler) generates native code via a
standard C compiler. The Kiel Curry System (KiCS)
compiles Curry to Haskell aiming to provide nearly
as good performance for the purely functional part as
modern compilers for Haskell do. From these imple-
mentations only MCC will provide type classes in the
near future. Type classes are not part of the current

16

http://www.mathematik.uni-marburg.de/~eden
http://code.google.com/p/xhaskell/
http://code.google.com/p/xhaskell/
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/HaskellJoinRules
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/HaskellJoinRules
http://code.google.com/p/haskellactor/
http://code.google.com/p/haskellactor/

definition of Curry, though there is no conceptual con-
flict with the logic extensions.
There have been research activities in the area of

functional logic programming languages for more than
a decade. Nevertheless, there are still a lot of inter-
esting research topics regarding more efficient compila-
tion techniques and even semantic questions in the area
of language extensions like encapsulation and function
patterns. Besides activities regarding the language it-
self, there is also an active development of tools con-
cerning Curry (e.g., the documentation tool Curry-
Doc, the analysis environment CurryBrowser, the ob-
servation debuggers COOSy and iCODE, the debugger
B.I.O. (http://www-ps.informatik.uni-kiel.de/currywiki/
tools/oracle_debugger), EasyCheck (→ 4.3.3), and Cy-
CoTest (→ 4.3.4)). Because Curry has a functional sub-
set, these tools can canonically be transferred to the
functional world.

Further reading

◦ http://www.informatik.uni-kiel.de/~curry
◦ http://www.informatik.uni-kiel.de/~pakcs
◦ http://danae.uni-muenster.de/~lux/curry
◦ http://www.informatik.uni-kiel.de/prog/mitarbeiter/

bernd-brassel/projects
◦ http://www.informatik.uni-kiel.de/~curry/wiki

3.2.2 Agda

Report by: Nils Anders Danielsson
Status: Actively developed by a number of people

Do you crave for highly expressive types, but do not
want to resort to type-class hackery? Then Agda might
provide a view of what the future has in store for you.
Agda is a dependently typed functional program-

ming language (developed using Haskell). The lan-
guage has inductive families, i.e., GADTs which can be
indexed by values and not just types. Other goodies
include parameterised modules, mixfix operators, and
an interactive Emacs interface (the type checker can
assist you in the development of your code).
A lot of work remains in order for Agda to become

a full-fledged programming language (effects, good li-
braries, mature compilers, documentation, etc.), but
already in its current state it can provide lots of fun as
a platform for experiments in dependently typed pro-
gramming.
New since last time:

◦ A simple foreign function interface, which allows use
of Haskell functions in Agda code.

◦ The libraries are steadily increasing in size.

Further reading

The Agda Wiki: http://www.cs.chalmers.se/~ulfn/
Agda/

3.2.3 Epigram

Report by: Conor McBride

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive
editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-
ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in “The view from the left” by Conor McBride
and James McKinna (JFP 14 (1)).
A new version, Epigram 2, based on Observational

Type Theory (see “Observational Equality, Now!” by
Thorsten Altenkirch, Conor McBride, and Wouter
Swierstra) is in preparation.

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program will not crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.
Specifically, Epigram is designed to support pro-

gramming with inductive datatype families indexed
by data. Examples include matrices indexed by
their dimensions, expressions indexed by their types,
search trees indexed by their bounds. In many ways,
these datatype families are the progenitors of Haskell’s
GADTs, but indexing by data provides both a concep-
tual simplification — the dimensions of a matrix are
numbers — and a new way to allow data to stand as
evidence for the properties of other data. It is no good
representing sorted lists if comparison does not produce
evidence of ordering. It is no good writing a type-safe
interpreter if one’s typechecking algorithm cannot pro-
duce well-typed terms.
Programming with evidence lies at the heart of Epi-

gram’s design. Epigram generalises constructor pattern
matching by allowing types resembling induction prin-
ciples to express as how the inspection of data may
affect both the flow of control at run time and the text
and type of the program in the editor. Epigram ex-
tracts patterns from induction principles and induction
principles from inductive datatype families.

History

James McKinna and Conor McBride designed Epigram
in 2001, whilst based at Durham, working with Zhao-

17

http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://www.informatik.uni-kiel.de/~curry
http://www.informatik.uni-kiel.de/~pakcs
http://danae.uni-muenster.de/~lux/curry
http://www.informatik.uni-kiel.de/prog/mitarbeiter/bernd-brassel/projects
http://www.informatik.uni-kiel.de/prog/mitarbeiter/bernd-brassel/projects
http://www.informatik.uni-kiel.de/~curry/wiki
http://www.cs.chalmers.se/~ulfn/Agda/
http://www.cs.chalmers.se/~ulfn/Agda/

hui Luo and Paul Callaghan. McBride’s prototype im-
plementation of the language, “Epigram 1” emerged
in 2004: it is implemented in Haskell, interfacing with
the xemacs editor. This implementation effort involved
inventing a number of new programming techniques
which have found their way into the Haskell community
at large: central components of Control.Applicative
and Data.Traversable started life in the source code
for Epigram.
Following the Durham diaspora, James McKinna

and Edwin Brady went to St. Andrews, where they
continued their work on phase analysis and efficient
compilation of dependently typed programs. More re-
cently, with Kevin Hammond, they have been study-
ing applications of dependent types to resource-aware
computation in general, and network protocols in par-
ticular.
Meanwhile, Conor McBride went to Nottingham to

work with Thorsten Altenkirch. They set about re-
designing Epigram’s underlying type theory, radically
changing its treatment of logical propositions in gen-
eral, and equality in particular, making significant
progress on problems which have beset dependent type
theories for decades.
The Nottingham duo grew into a strong team of en-

thusiastic researchers. Peter Morris successfully com-
pleted a PhD on generic programming in Epigram and
is now a research assistant: his work has led to the re-
design of Epigram’s datatype language. Nicolas Oury
joined from Paris as a postdoctoral research fellow, and
is now deeply involved in all aspects of design and
implementation. PhD students James Chapman and
Wouter Swierstra are working on Epigram-related top-
ics, studying formalised metatheory and effectful pro-
gramming, respectively. Meanwhile, Nottingham re-
search on containers, involving Neil Ghani, Peter Han-
cock, and Rawle Prince, together with the Epigram
team, continues to inform design choices as the lan-
guage evolves.
Epigram 1 was used successfully by Thorsten Al-

tenkirch, Conor McBride, and Peter Hancock in an
undergraduate course on Computer Aided Formal Rea-
soning http://www.e-pig.org/darcs/g5bcfr/. It has also
been used in a number of graduate-level courses.
James McKinna is now at Radboud University, Ni-

jmegen; Edwin Brady is still at St. Andrews; Thorsten
Altenkirch, Peter Morris, Nicolas Oury, James Chap-
man, and Wouter Swierstra are still in Nottingham;
Conor McBride has left academia. All are still con-
tributing to the Epigram project.

Current Status

Epigram 2 is based on a radical redesign of our under-
lying type theory. The main novelties are

◦ a bidirectional approach to typechecking, separating
syntactically the terms whose types are inferred from

those for which types are pushed in — with stronger
guarantees of prior type information, we can reduce
clutter in terms and support greater overloading;

◦ explicit separation of propositions and sets, ensuring
that proofs never influence control-flow and can be
erased at run-time;

◦ a type-directed approach to propositional equality,
comparing functions extensionally, records compo-
nentwise, data by construction, and proofs trivially
— we shall soon support equality for codata by
bisimulation and for quotients by whatever you want;

◦ three closed universes of data structures, finite enu-
merations, record types, and inductive datatypes,
each with its datatype of type descriptions —
this supports generic programming over all of Epi-
gram 2’s data structures and removes the need for
any means of “making new stuff” other than defini-
tion.

Nicolas Oury, Peter Morris, and Conor McBride
have implemented this theory, together with a system
supporting interactive construction (and destruction)
within it. This the engine which will drive Epigram 2:
we plan to equip it with human-accessible controls and
release it for the benefit of the curious, shortly. With
this in place, we shall reconstruct the Epigram source
language and its elaboration mechanism: constructs in
source become constructions in the core.
There is still a great deal of work to do. We need

to incorporate the work from Edwin Brady and James
McKinna on type erasure and efficient compilation; we
need to bring out and exploit the container structure of
data; we need to support programming with effects (in-
cluding non-termination); we need a declarative proof
language, as well as a functional programming lan-
guage.
The Epigram project relies on Haskell, its libraries,

and tools such as Alex (→ 4.1.1), Happy (→ 4.1.2),
bnfc, Cabal (→ 5.1), and Darcs (→ 6.1.1). We have re-
cently developed tools for assembling the modules cor-
responding to each component of the Epigram system
from files corresponding to each feature of the Epigram
language: this may prove useful to others, so we hope to
clean them up and release them. Meanwhile, as Haskell
itself edges ever closer to dependent types, the Epigram
project has ever more to contribute, in exploration of
the design space, in the development of implementation
technique, and in experimentation with the pragmatics
of programming with such power and precision.
Epigram source code and related research papers

can be found on the web at http://www.e-pig.org and
its community of experimental users communicates via
the mailing list 〈epigram@durham.ac.uk〉. The current,
rapidly evolving state of Epigram 2 can be found at
http://www.e-pig.org/epilogue/.

18

http://www.e-pig.org/darcs/g5bcfr/
http://www.e-pig.org
mailto: epigram at durham.ac.uk
http://www.e-pig.org/epilogue/

3.3 Type System / Program Analysis

3.3.1 Uniqueness Typing

Report by: Edsko de Vries
Participants: Rinus Plasmeĳer, David M Abrahamson
Status: ongoing

An important feature of pure functional programming
languages is referential transparency. A consequence
of referential transparency is that functions cannot be
allowed to modify their arguments, unless it can be
guaranteed that they have the sole reference to that
argument. This is the basis of uniqueness typing.
We have been developing a uniqueness type system

based on that of the language Clean but with vari-
ous improvements: no subtyping is required, the type
language does not include inequality constraints (types
in Clean often involve implications between uniqueness
attributes), and types and uniqueness attributes are
both considered types (albeit of different kinds). This
makes the type system sufficiently similar to standard
Hindley/Milner type systems that (1) standard infer-
ence algorithms can be applied, and (2) modern ex-
tensions such as arbitrary rank types and generalised
algebraic data types (GADTs) can easily be incorpo-
rated.
Although our type system is developed in the context

of the language Clean, it is also relevant to Haskell
because the core uniqueness type system we propose is
very similar to Haskell’s core type system.

Further reading

◦ Edsko de Vries, Rinus Plasmeĳer, and David Abra-
hamson, “Uniqueness Typing Simplified”, in Pro-
ceedings of IFL 2007 (to appear in the LNCS series).

◦ Edsko de Vries, Rinus Plasmeĳer, and David Abra-
hamson, “Uniqueness Typing Redefined”, in Z.
Horváth, V. Zsók, and Andrew Butterfield (Eds.):
IFL 2006, LNCS 4449.

3.3.2 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Sascha Böhme, Florian Stenger

Free theorems are statements about program behaviour
derived from (polymorphic) types. Their origin is the
polymorphic lambda-calculus, but they have also been
applied to programs in more realistic languages like
Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs
to be refined and extended. We aim to provide such
new theoretical foundations, as well as to apply the

theoretical results to practical problems. Recent pa-
pers concerning program transformations are “Seman-
tics and Pragmatics of New Shortcut Fusion Rules”
(FLOPS’08) and “Asymptotic Improvement of Com-
putations over Free Monads” (MPC’08).
Also on the practical side, we maintain a library

and tools for generating free theorems from Haskell
types, originally implemented by Sascha Böhme. Both
the library and a shell-based tool are now available
from Hackage (as free-theorems-0.2 and ftshell-0.2, re-
spectively). There is also a web-based tool at http:
//linux.tcs.inf.tu-dresden.de/~voigt/ft. General features
include:

◦ three different language subsets to choose from

◦ equational as well as inequational free theorems

◦ relational free theorems as well as specialisations
down to function level

◦ support for algebraic data types, type synonyms and
renamings, type classes

While the web-based tool is restricted to algebraic data
types, type synonyms, and type classes from Haskell
standard libraries, the shell-based tool also enables the
user to declare their own algebraic data types and so on,
and then to derive free theorems from types involving
those. A distinct new feature of the web-based tool is
to export the generated theorems in PDF format.

Further reading

http://wwwtcs.inf.tu-dresden.de/~voigt/project/

19

http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://wwwtcs.inf.tu-dresden.de/~voigt/project/

4 Tools

4.1 Scanning, Parsing, Transformations

4.1.1 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a
parser generator, such as Happy (→ 4.1.2), to build a
complete parser.
The latest release is version 2.2, released November

2007. Alex is in maintenance mode, we do not antici-
pate any major changes in the near future.
Changes in version 2.2:

◦ ByteString wrappers: use Alex to lex ByteStrings
(→ 5.5.1) directly.

Further reading

http://www.haskell.org/alex/

4.1.2 Happy

Report by: Simon Marlow
Status: stable, maintained

Happy is a tool for generating Haskell parser code from
a BNF specification, similar to the tool Yacc for C.
Happy also includes the ability to generate a GLR
parser (arbitrary LR for ambiguous grammars).
The latest release is 1.17, released 22 October 2007.
Changes in version 1.17:

◦ Works with GHC 6.8.x, and requires Cabal 1.2.

◦ Fix serious mistake in error handling (the “parE”
bug)

◦ Some performance improvements to Happy itself

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

4.1.3 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell which makes
it easy to write catamorphisms (that is, functions that
do to any datatype what foldr does to lists). You can
define tree walks using the intuitive concepts of inher-
ited and synthesised attributes, while keeping the full
expressive power of Haskell. The generated tree walks
are efficient in both space and time.
New features are support for polymorphic abstract

syntax and higher-order attributes. With polymorphic
abstract syntax, the type of certain terminals can be
parameterised. Higher-order attributes are useful to
incorporate computed values as subtrees in the AST.
The system is in use by a variety of large and small

projects, such as the Haskell compiler EHC, the editor
Proxima for structured documents, the Helium com-
piler (→ 2.4), the Generic Haskell compiler, and UUAG
itself. The current version is 0.9.6 (April 2008), is ex-
tensively tested, and is available on Hackage.
We are currently improving the documentation, and

plan to introduce an alternative syntax that is closer
to the Haskell syntax.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/uuagc-0.9.6

4.2 Documentation

4.2.1 Haddock

Report by: David Waern
Status: experimental, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates docu-
mentation by parsing the Haskell source code directly
and including documentation supplied by the program-
mer in the form of specially-formatted comments in
the source code itself. Haddock has direct support
in Cabal (→ 5.1), and is used to generate the docu-
mentation for the hierarchical libraries that come with
GHC, Hugs, and nhc98 (http://www.haskell.org/ghc/
docs/latest/html/libraries).

20

http://www.haskell.org/alex/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/uuagc-0.9.6
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/uuagc-0.9.6
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries

The latest release is version 2.1.0, released May 1
2008.
Changes since the 0.9 release:

◦ As a result of a Google Summer of Code project,
Haddock now uses the GHC API (→ 2.1) as its front
end. This means that Haddock can process any
GHC-compatible Haskell code.

Changes since the 0.8 release:

◦ Thanks to Neil Mitchell, the index page generated
by Haddock now has a search box, and the list is
dynamically updated as you type.

Future plans

Currently, Haddock ignores comments on some lan-
guage constructs like GADTs and Associated Type syn-
onyms. Of course, the plan is to support comments for
these constructs in the future. Haddock is also slightly
more picky on where to put comments compared to the
0.x series. We want to fix this as well. Both of these
plans require changes to the GHC parser. We want
to investigate to what degree it is possible to decouple
comment parsing from GHC and move it into Haddock,
to not be bound by GHC releases.

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here: http://code.
haskell.org/haddock/TODO

◦ Haddock’s homepage is here: http://www.haskell.
org/haddock/

4.2.2 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customisable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.
The program is stable and can take on large docu-

ments.
Since the last report, version 1.13 has been released.

It is compatible with GHC 6.8 and Cabal 1.2, but
not yet with development versions of Cabal. Mainte-
nance will continue in the future, releases will appear as

needed. No major development is planned at the mo-
ment, although I have some vague ideas for substantial
improvement.

Further reading

◦ http://www.cs.uu.nl/~andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/

lhs2TeX/trunk/

4.3 Testing and Debugging

4.3.1 SmallCheck

Report by: Colin Runciman
Status: Version 0.3 May 2008

SmallCheck is a one-module lightweight testing library.
It adapts QuickCheck’s ideas of type-based generators
for test data and a class of testable properties. But in-
stead of testing a sample of randomly generated values,
it tests properties for all the finitely many values up to
some depth, progressively increasing the depth used.
Among other advantages, generators for user-defined
types can follow a simple pattern and are automati-
cally derivable.
The two significant developments in Version 0.3 are

(1) new variants of existential quantifiers requiring
uniqueness — two witnesses are reported when unique-
ness fails, and (2) a new method for generating func-
tions with functional arguments — avoiding previous
over-generation in some cases. There are other more
minor improvements.
SmallCheck is freely available for downloading from

http://www.cs.york.ac.uk/fp/smallcheck0.3.tar.
For the first-order universally quantified subset of

SmallCheck properties, the pruning principles imple-
mented in Lazy SmallCheck (→ 4.3.2) often allow
deeper testing at the same computational cost. A likely
next development is a fuller combination of techniques
from these two testing libraries.

4.3.2 Lazy SmallCheck

Report by: Matthew Naylor
Participants: Fredrik Lindblad, Colin Runciman
Status: experimental

Lazy SmallCheck is a library for testing program prop-
erties. Unlike QuickCheck and SmallCheck (→ 4.3.1),
it generates partially-defined inputs that are progres-
sively refined as demanded by the property under test.
The key observation is that if a property evaluates to
True or False for a partially-defined input then it would
also do so for all refinements of that input. By not gen-
erating such refinements, Lazy SmallCheck may test

21

http://code.haskell.org/haddock/TODO
http://code.haskell.org/haddock/TODO
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
http://www.cs.york.ac.uk/fp/smallcheck0.3.tar

the same input-space as SmallCheck using significantly
fewer tests.
A talk about Lazy SmallCheck was given at Fun

in the Afternoon York, and the slides are available,
along with an initial implementation, at the URL be-
low. Since the last HCAR, we have made a simpler
implementation, now supporting Fredrik’s parallel con-
junction operator. The problem with a sequential con-
junction is that, when applied to a partially-defined
input, it will crash (i.e., demand more input than is
given) if the first conjunct crashes, even if the second
conjunct is falsified. A parallel conjunction, in con-
trast, is falsified if any conjunct is falsified, even if the
other conjucts crash. This increases pruning opportu-
nities, and “when used, one is not obliged to tweak the
order of conjuncts in the property” (Fredrik Lindblad,
TFP 2007).
Support for existential quantifiers and function gen-

eration a la SmallCheck is under consideration. A new
release will hopefully be made sometime during the
year.

Further reading

http://www.cs.york.ac.uk/~mfn/lazysmallcheck/

4.3.3 EasyCheck

Report by: Jan Christiansen
Participants: Sebastian Fischer
Status: experimental

EasyCheck is an automatic test tool like QuickCheck or
SmallCheck (→ 4.3.1). It is implemented in the func-
tional logic programming language Curry (→ 3.2.1).
Although simple test cases can be generated from noth-
ing but type information in all mentioned test tools,
users have the possibility to define custom test-case
generators — and make frequent use of this possibility.
Nondeterminism — the main extension of functional-
logic programming over Haskell — is an elegant con-
cept to describe such generators. Therefore it is eas-
ier to define custom test-case generators in EasyCheck
than in other test tools. If no custom generator is pro-
vided, test cases are generated by a free variable which
non-deterministically yields all values of a type. More-
over, in EasyCheck, the enumeration strategy is inde-
pendent of the definition of test-case generators. Un-
like QuickCheck’s strategy, it is complete, i.e., every
specified value is eventually enumerated if enough test
cases are processed, and no value is enumerated twice.
SmallCheck also uses a complete strategy (breadth-first
search) which EasyCheck improves w.r.t. the size of the
generated test data. EasyCheck is distributed with the
Kiel Curry System (KiCS).

Further reading

http://www-ps.informatik.uni-kiel.de/currywiki/tools/
easycheck

4.3.4 CyCoTest

Report by: Sebastian Fischer
Participants: Herbert Kuchen
Status: experimental

The Curry Coverage Tester CyCoTest (pronounced like
psycho test) aims at testing declarative programs to the
bone. Unlike black-box test tools like QuickCheck, it
does not generate test cases from type information or
additional specifications. It rather uses the demand
of the program under test to narrow test cases lazily.
Narrowing is a generalisation of reduction that allows
to compute with partial information. Evaluating a pro-
gram with narrowing and initially uninstantiated input
binds the input as much as demanded by the computa-
tion and non-deterministically computes a correspond-
ing result for each binding. The generated pairs of in-
and output form a set of test cases that reflects the
demand of the tested program.
The generated set of test cases can either be checked

by hand or using properties, i.e., functions with a
Boolean result. Using properties is convenient, but
sometimes it is hard to come up with a complete for-
mal specification of the tested program. Hence, errors
might remain undetected if an incomplete property is
used to evaluate the test cases. In order to lower the
burden of manual checking, we employ control- and
data-flow coverage information to minimise the set of
generated test cases. Test cases that do not cause new
code coverage are considered redundant and need not
be shown to the user. Although this bears the risk of
eliminating test cases that expose a bug, experiments
indicate that the employed coverage criteria suffice to
expose bugs in practice.
CyCoTest is implemented in and for the functional

logic programming language Curry (→ 3.2.1), which
provides narrowing for free. A Haskell implementa-
tion would be possible using ideas from the Kiel Curry
System (KiCS), which translates Curry programs into
Haskell programs.

Further reading

http://www-ps.informatik.uni-kiel.de/currywiki/tools/
cycotest

4.3.5 Hat

Report by: Olaf Chitil
Participants: Malcolm Wallace
Status: maintenance

22

http://www.cs.york.ac.uk/~mfn/lazysmallcheck/
http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck
http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck
http://www-ps.informatik.uni-kiel.de/currywiki/tools/cycotest
http://www-ps.informatik.uni-kiel.de/currywiki/tools/cycotest

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can
be viewed in various ways with several tools. Some
views are similar to classical debuggers for imperative
languages, some are specific to lazy functional language
features or particular types of bugs. All tools inter-
operate and use a similar command syntax.
Hat can be used both with nhc98 (→ 2.2) and

GHC (→ 2.1). Hat was built for tracing Haskell 98 pro-
grams, but it also supports some language extensions
(FFI, MPTC, fundeps, hierarchical libs). A tutorial
explains how to generate traces, how to explore them,
and how they help to debug Haskell programs.
During the last half year only small bug fixes were

committed to the Darcs repository, but several other
updates are also planned for the near future, including
new and improved trace-browsers. A recent student
project completed a Java-GUI viewer for traces, based
on the idea of timelines and search. We hope this can
be added to the repository soon.

Further reading

◦ http://www.haskell.org/hat
◦ darcs get http://darcs.haskell.org/hat
◦ Tracing and Debugging Functional Programs: http:
//www.cs.kent.ac.uk/~oc/tracing.html

4.4 Development

4.4.1 Hoogle — Haskell API Search

Report by: Neil Mitchell
Status: v3.0

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name,
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online. Hoogle is available as a web interface,
a command line tool, and a lambdabot (→ 6.8.1) plu-
gin.
The development of Hoogle has been slow lately, due

to the author writing a PhD thesis. However, this sum-
mer Hoogle will become a full-time project with fund-
ing from the Google Summer of Code. Expect to see
Hoogle v4.0 before the summer is over.

Further reading

http://haskell.org/hoogle

4.4.2 Leksah, Haskell IDE

Report by: Jürgen Nicklisch-Franken
Status: in development

Leksah is a Haskell IDE written in Haskell based on
Gtk+ and gtk2hs (→ 5.8.1). Leksah is a practical
tool to support the Haskell development process. It
is platform independent and should run on any plat-
form where GTK+, gtk2hs, and GHC can be installed.
(It is currently being tested on Windows and Linux but
it should work on the Mac. It only works with GHC.)
There are compelling reasons for a Haskell IDE writ-

ten in Haskell. First and most importantly, Haskell is
different from mainstream imperative and object ori-
ented languages and a dedicated IDE may exploit this
specialness. Second the integration with an existing
tool written in a different language has to solve the
problem of integration of different programming lan-
guages/paradigms.
Currently Leksah offers features like jumping to def-

inition for a name, integration of Cabal (→ 5.1) for
building, Haskell source editor with “source candy”,
configurable keymaps, . . . This list will (hopefully) ex-
pand quickly.
The development of Leksah started in June 2007

and the first alpha version was released February 2008.
Contributions of all kind are welcome.

Further reading

http://leksah.org/

4.4.3 EclipseFP — Haskell support for the Eclipse
IDE

Report by: Leif Frenzel
Status: alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs, developed by an Open Source Project.
Our project extends it with tools to support Haskell
development.
The aim is to develop an IDE for Haskell that pro-

vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of Haskell de-
velopment tools. Long-term goals include support
for language-aware IDE features, like refactoring and
structural search.
Over the past year, a new subproject called Cohatoe

has developed a framework that allows us to implement
Eclipse Plugins partly in Haskell. We are currently re-
implementing and extending EclipseFP functionality in
Haskell, using libraries such as Cabal (→ 5.1) and the
GHC API (→ 2.1). The goal is to release a new version,
EclipseFP 2, this summer.

23

http://www.haskell.org/hat
http://darcs.haskell.org/hat
http://www.cs.kent.ac.uk/~oc/tracing.html
http://www.cs.kent.ac.uk/~oc/tracing.html
http://haskell.org/hoogle
http://leksah.org/

Further reading

◦ http://eclipsefp.sf.net
◦ http://leiffrenzel.de/eclipse/wiki/
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop

4.4.4 yi

Report by: Jean-Philippe Bernardy
Participants: Don Stewart
Status: active development

Yi is a project to write a Haskell-extensible editor. Yi is
structured around a purely functional editor core, such
that most components of the editor can be overridden
by the user, using configuration files written in Haskell.
Yi has been converted to the Cabal build system,

which makes it easier to build and experiment with.
Yi features:
◦ Keybindings for emacs and vim, written as extensible
parsers;

◦ Vty and Gtk2Hs frontends;
◦ Syntax highlighting for Haskell and other languages;
◦ XMonad-style static configuration;
◦ Support of Linux, MacOS, and Windows platforms.
We are currently working on the following fronts:
◦ Integration with Cabal and GHC API;
◦ Syntax-aware support of Haskell;
◦ Pango, cocoa frontends

Further reading

◦ Documentation can be found at: http://haskell.org/
haskellwiki/Yi

◦ The source repository is available:
darcs get http://code.haskell.org/yi/

4.4.5 HaRe — The Haskell Refactorer

Report by: Chris Brown
Participants: Huiqing Li, Claus Reinke, Simon

Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its fourth major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation, and a number of others,

are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately. An informal
release of HaRe 0.4 that was recently released works
with GHC 6.6.1 and GHC 6.8.2, but not GHC 6.4; ear-
lier releases work with 6.4.*.
In order to allow users to extend HaRe themselves,

HaRe includes an API for users to define their own
program transformations, together with Haddock (→
4.2.1) documentation. Please let us know if you are
using the API.
There have been some recent developments for

adding program slicing techniques to HaRe. These
techniques include a refactoring to split functions re-
turning tuples into separate definitions, and to also
put them back together again. A number of new data-
type based and structural refactorings have been added
to HaRe. Some of these refactorings make use of the
GHC type checker to make the refactorings type-aware.
These new refactorings include: adding and removing
a constructor; adding and removing a field; and intro-
duction of pattern matches and case analysis. Struc-
tural refactorings include: Conversion between let and
where, and folding and unfolding of as-patterns.
A snapshot of HaRe is available from our webpage,

as are recent presentations from the group (including
LDTA 05, TFP05, SCAM06), and an overview of recent
work from staff, students, and interns. Among this is
an evaluation of what is required to port the HaRe
system to the GHC API (→ 2.1), and a comparative
study of refactoring Haskell and Erlang programs.
The final report for the project appears there, too,

together with an updated refactoring catalogue and the
latest snapshot of the system. Huiqing’s PhD thesis
on refactoring Haskell programs is now available online
from our project webpage.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

4.4.6 Haskell Mode Plugins for Vim

Report by: Claus Reinke
Participants: Haskell & Vim users
Status: maintenance mode

My Haskell mode plugins for Vim seem to have become
quite popular. They collect several scripts that offer
functionality based on GHCi, on Haddock-generated
documentation (→ 4.2.1), and on Vim’s own config-
urable program editing support. This includes several

24

http://eclipsefp.sf.net
http://leiffrenzel.de/eclipse/wiki/
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://haskell.org/haskellwiki/Yi
http://haskell.org/haskellwiki/Yi
http://code.haskell.org/yi/
http://www.cs.kent.ac.uk/projects/refactor-fp/

insert mode completions (based on identifiers available
via currently imported modules, on identifiers appear-
ing in the central Haddock indices, on tag files, or
on words appearing in current and imported sources),
quickfix mode (call compiler, list errors, jump to er-
ror locations), inferred type tooltips, various editing
helpers (insert import statement, type declaration or
module qualifier for id under cursor, expand implicit
into explicit import statement, add option and lan-
guage pragmas, . . .), and direct access to the Haddocks
for the id under cursor.
A very incomplete screenshot tour of Vim’s IDE

functions, as instantiated for Haskell, provides an
overview of what is available (for more general infor-
mation, see Vim’s excellent built-in :help, or browse
the help files online at http://vimdoc.sourceforge.net/
htmldoc/usr_toc.html; for more and current details of
Haskell mode features, see the haskellmode.txt help
file at the project site).
Both alternative and complementary Haskell-related

plugins for Vim exist — please add links to your own
tricks and tips at haskell.org (syntax-colouring works
out of the box, other scripts deal with indentation,
. . .). I hope these plugins might be useful to some
of you (please let me know if anything does not work
as advertised!), and might even motivate some of you
to give Vim a try. It is really not as if Vim (or Emacs,
for that matter) did not have more IDE functionality
than most of us ever use, it is more that there is so
much of it to learn and to fine-tune to your personal
preferences.
The haskellmode plugins for Vim are currently in

maintenance mode, with infrequent updates and bug
fixes, and the occasional new feature (CamelCase-based
abbreviations for insert-mode completion the most re-
cent example).

Further reading

◦ Haskell Mode Plugins for Vim: http://www.cs.kent.
ac.uk/~cr3/toolbox/haskell/Vim/

◦ A short tour of some Vim support for Haskell edit-
ing (screenshots): http://www.cs.kent.ac.uk/~cr3/
toolbox/haskell/Vim/vim.html

◦ haskell.org section listing these and other Vim
files: http://www.haskell.org/haskellwiki/Libraries_
and_tools/Program_development#Vim

4.4.7 :def and .ghci (previously: dot.ghci)

Report by: Claus Reinke
Status: old, but underappreciated

No matter how fast GHCi keeps improving, users still
keep suggesting new commands for it, and with the
increasing amounts of information available in GHCi,
it can sometimes be difficult to find the interesting bits,

either in the documentation, or indeed in command
outputs. The usual approach is to add feature requests
to the ticket tracker and hope that someone will get
round to implementing them, or to get the GHC sources
and start contributing code.
Quite often, however, users ask for GHCi features

that they could (relatively) easily define themselves,
using some of the less well known features of GHCi.
In an email to the haskell-cafe last September,

I gave one demonstration of this approach in the
form of a mini-tutorial, starting with simple things
like platform-independent :pwd/:ls, then laying the
groundwork for more complex commands by defining
:redir <var> <cmd>, a command that redirects the
output of <cmd>, binding it to variable <var>. Based
on :redir, we can then define :grep <pat> <cmd>, to
filter the output of <cmd> for a pattern <pat> (think of
finding the help entries related to breakpoints, or the
variants of fold appearing in :browse Prelude). Tak-
ing some examples from the GHCi ticket tracker and
from Hugs’ commands, there is also :find <id> (open
the source for the definition of <id>), :b (:browse first
module listed in :show modules), and :le <mod> (load
module <mod>, edit location of first error, if any).
The commands are self-documenting, can be listed

and removed as a group, and should give a good start-
ing point for your own experiments with GHCi’s :def.
Since the email, which targeted GHC 6.6 and later, a
version for GHC 6.4.1 was added for those who needed
to work with an old installation (the commands in
that version differ slightly, to account for 6.4.1’s lim-
itations). Please let me know if you find this useful,
and remember to share your own GHCi tricks and tips!
You can find (and contribute!) other suggestions for

.ghci files on this Haskell wiki page: http://haskell.
org/haskellwiki/GHC/GHCi.

Further reading

◦ http://www.haskell.org/pipermail/haskell-cafe/
2007-September/032260.html

◦ http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/
#dot.ghci

4.4.8 DarcsWatch

Report by: Joachim Breitner
Status: working, in early development

DarcsWatch is a tool to track the state of Darcs (→
6.1.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied. Some notable features are:

◦ Reads both darcs1 and darcs2.0 (hashed) format
repositories.

25

http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/vim.html
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/vim.html
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://haskell.org/haskellwiki/GHC/GHCi
http://haskell.org/haskellwiki/GHC/GHCi
http://www.haskell.org/pipermail/haskell-cafe/2007-September/032260.html
http://www.haskell.org/pipermail/haskell-cafe/2007-September/032260.html
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/#dot.ghci
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/#dot.ghci

◦ Displays patch summaries per user and per reposi-
tory.

◦ Patch diff can be reviewed directly.

◦ Download link for each patch, to apply without
searching for the mail.

◦ Knows about inverse and amend-recorded patches
and uses them to consider patches obsolete.

◦ Patches can by marked obsolete or rejected by email
commands.

◦ Can be subscribed to a project mailing list, or be
used as a CC recipient for darcs bundles.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

4.4.9 cpphs

Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust drop-in Haskell replacement for the
C pre-processor. It has a couple of benefits over the
traditional cpp — you can run it in Hugs when no C
compiler is available (e.g., on Windows); and it under-
stands the lexical syntax of Haskell, so you do not get
tripped up by C-comments, line-continuation charac-
ters, primed identifiers, and so on. (There is also a
pure text mode which assumes neither Haskell nor C
syntax, for even greater flexibility.)
Cpphs can also unliterate .lhs files during prepro-

cessing, and you can install it as a library to call from
your own code, in addition to the stand-alone utility.
Current release is 1.4: there have been no changes

in the last six months, indicating (one hopes) that it is
now relatively bug-free.

Further reading

http://haskell.org/cpphs

26

http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://haskell.org/cpphs

5 Libraries

5.1 Cabal and Hackage

Report by: Duncan Coutts

Background

The Haskell Cabal is a Common Architecture for Build-
ing Applications and Libraries. It is an API distributed
with GHC (→ 2.1), nhc98 (→ 2.2), and Hugs which al-
lows a developer to easily build and distribute pack-
ages.
Hackage (Haskell Package Database) is an online

database of packages which can be interactively queried
via the website and client-side software such as cabal-
install. From Hackage, an end-user can download and
install Cabal packages.

Recent progress

We are preparing for a release of Cabal-1.4 and the
cabal-install tool. It is expected that all packages that
worked with Cabal-1.2 will work with Cabal-1.4. The
Cabal-1.4 release will include a large number of incre-
mental improvements and bug fixes. The major feature
for the cabal-install release is that it can serve as the
primary command line front end to the Cabal/Hackage
system. There will be no need to use the runhaskell
Setup.hs interface any more.
The last year has seen Hackage take off. It has grown

from a handful of packages to nearly 600 (with over
1200 releases). The Hackage website has seen a num-
ber of improvements including reporting which versions
of ghc each package builds with, who uploaded each
package, and proper support for Unicode in package
meta-data.
Hackage also now applies somewhat stricter rules

about package uploads. Uploading the same version
of a package more than once is no longer allowed be-
cause we expect package content to be stable. It also
checks for some common problems in package descrip-
tions and will warn or reject as appropriate. You can
run the same checks locally using cabal check.

Google Summer of Code projects

We are very lucky to have got two Google Summer of
Code projects related to Cabal and Hackage. Andrea
Vezzosi is doing a project to build a “make-like” de-
pendency framework for the Cabal library. This will
enable Cabal to do proper dependency based rebuilds
and support pre-processors like c2hs correctly. It also

leads the way towards not depending on ghc –make for
building Haskell code and to do parallel builds.
Neil Mitchell is working on Hoogle 4 (→ 4.4.1), which

we aim to use as the primary search interface on the
Hackage website. The aim is to be able to search the
content of every package; not just the API but also the
documentation and package meta-data.

Looking forward

There is huge potential for Hackage to help us man-
age and improve the community’s package collection.
We are nearing the point where cabal-install will be
able to report build results to the Hackage server. This
should provide us with a huge amount of data on which
packages work in which environments and configura-
tions. More generally there is the opportunity to collect
all sorts of useful information on the quality of pack-
ages. Hopefully we can evolve Hackage and associated
clients into the kind of infrastructure we need to assem-
ble collections of packages into high quality “batteries
included”-style Haskell platform releases.
To help us in the next round of development work

it would be enormously helpful to know from our users
what their most pressing problems are with Cabal and
Hackage. You probably have a favourite Cabal bug or
limitation. Take a look at our bug tracker. Make sure
the problem is reported there and properly described.
Comment on the ticket to tell us how much of a problem
the bug is for you. Add yourself to the ticket’s cc list so
we can discuss requirements and keep you informed on
progress. For feature requests it is very helpful if there
is a description of how you would expect to interact
with the new feature.

People

We would like to thank the large number of people who
contributed to the last round of development work. I
hope that attests to the fact that it is not too hard
to get involved. Thanks also to the people who have
followed development and reported bugs and feature
requests.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.

org/
◦ Bug tracker: http://hackage.haskell.org/trac/

hackage/

27

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/

5.2 Auxiliary Libraries

5.2.1 libmpd

Report by: Ben Sinclair
Participants: Joachim Fasting
Status: active

libmpd is a binding to the MPD music playing dae-
mon’s network protocol. While its interface has mostly
stabilised and is ready to use, there is still some experi-
mentation going on and we are seeking feedback on the
API’s design.
The latest release is 0.3.0, which has support for

UTF-8 encoded data, a number of QuickCheck and unit
tests, and fixes some oddities in the interface. We plan
to look into speeding up the network IO soon.

Further reading

The development web page is at http://turing.une.
edu.au/~bsinclai/code/libmpd-haskell/ and MPD can be
found at http://www.musicpd.org/.

5.2.2 gravatar

Report by: Don Stewart
Status: active development

Gravatars (http://gravatar.com) are globally unique im-
ages associated with an email address, widely used in
social networking sites. This library lets you find the
URL of a gravatar image associated with an email ad-
dress.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
gravatar/

5.2.3 mersenne-random

Report by: Don Stewart
Status: active development

The Mersenne twister is a pseudorandom number gen-
erator developed by Makoto Matsumoto and Takuji
Nishimura that is based on a matrix linear recurrence
over a finite binary field. It provides for fast generation
of very high quality pseudorandom numbers.
This library uses SFMT, the SIMD-oriented Fast

Mersenne Twister, a variant of Mersenne Twister that
is much faster than the original. It is designed to be
fast when it runs on 128-bit SIMD. It can be compiled
with either SSE2 OR PowerPC AltiVec support, to take
advantage of these instructions.
By default the period of the function is 219937 − 1,

however, you can compile in other defaults. Note that

this algorithm on its own is not cryptographically se-
cure.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
mersenne-random/

5.2.4 cmath

Report by: Don Stewart
Status: active development

cmath is a complete, efficient binding to the standard
C math.h library, for Haskell.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
cmath/

5.2.5 hmatrix (previously: GSLHaskell)

Report by: Alberto Ruiz
Status: stable, maintained

hmatrix is a simple library for linear algebra and nu-
merical computations, internally implemented using
GSL, BLAS, and LAPACK. It is available from Hack-
age.
Most linear algebra functions mentioned in GNU-

Octave’s Quick Reference are available both for real
and complex matrices: eig, svd, chol, qr, hess, schur,
inv, pinv, expm, norm, and det. There are also func-
tions for numeric integration and differentiation, non-
linear minimisation, polynomial root finding, and more
than 200 GSL special functions. A brief manual is avail-
able at the URL below.
Recent developments include support for 64bit ma-

chines, improved testing, and support for Intel’s MKL
implementation of BLAS and LAPACK.

Further reading

http://alberrto.googlepages.com/gslhaskell

5.2.6 HPDF

Report by: alpheccar
Status: Continuous development

HPDF is an Haskell library allowing to generate PDF
documents. HPDF is supporting several features of the
PDF standard like outlines, multi-pages, annotations,
actions, image embedding, shapes, patterns, text.

28

http://turing.une.edu.au/~bsinclai/code/libmpd-haskell/
http://turing.une.edu.au/~bsinclai/code/libmpd-haskell/
http://www.musicpd.org/
http://gravatar.com
http://code.haskell.org/~dons/code/gravatar/
http://code.haskell.org/~dons/code/gravatar/
http://code.haskell.org/~dons/code/mersenne-random/
http://code.haskell.org/~dons/code/mersenne-random/
http://code.haskell.org/~dons/code/cmath/
http://code.haskell.org/~dons/code/cmath/
http://alberrto.googlepages.com/gslhaskell

In addition to the standard PDF features, HPDF
is providing some typesetting features built on top of
the PDF core. With HPDF, it is possible to define
complex styles for sentences and paragraphs. HPDF is
implementing an optimum-fit line breaking algorithm
a bit like the TeX one and HPDF is using the standard
Liang hyphenation algorithm.
HPDF is at version 1.3. It is progressing continu-

ously. HPDF is available on Hackage.
There are several missing features: the only sup-

ported fonts are the standard PDF ones. A next ver-
sion should support TrueType and different character
encodings. For support of Asian languages, I will ask
for help in the Haskell community.
I also plan to define an API easing the definition of

complex layouts (slides, books). Currently the layout
has to be coded by hand, but it is already possible to
build complex things.
The documentation is a bit weak and will have to be

improved.

Further reading

http://www.alpheccar.org

5.2.7 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van Keeken im-
plemented a library to data mine logged Helium (→ 2.4)
programs to investigate aspects of how students pro-
gram Haskell, how they learn to program, and how
good Helium is in generating understandable feedback
and hints. The software can be downloaded from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Neon, which also
gives some examples of output generated by the sys-
tem. The downloads only contain a small sample of
loggings, but it will allow programmers to play with it.

5.2.8 uniplate

Report by: Neil Mitchell

Uniplate is a boilerplate removal library, with similar
goals to the original Scrap Your Boilerplate work. It re-
quires fewer language extensions, and allows more suc-
cinct traversals with higher performance than SYB. A
paper including many examples was presented at the
Haskell Workshop 2007.
If you are writing a compiler, or any program that

operates over values with many constructors and nested
types, you should be using a boilerplate removal library.
This library provides a gentle introduction to the field,
and can be used practically to achieve substantial sav-
ings in code size and maintainability.

Further reading

http://www-users.cs.york.ac.uk/~ndm/uniplate

5.3 Processing Haskell

5.3.1 hint

Report by: Daniel Gorin
Status: active
Current release: 0.2

This library defines a Haskell Interpreter monad. It al-
lows to load Haskell modules, browse them, type-check
and evaluate strings with Haskell expressions, and even
coerce them into values. The operations are thread-safe
and type-safe (even the coercion of expressions to val-
ues).
It may be useful for those who need GHCi-like func-

tionality in their programs but do not want to mess
with the GHC-API innards. Additionally, unlike the
latter, hint provides an API that is consistent across
GHC versions.
Works with GHC 6.6.x and 6.8.x.

Further reading

The latest stable version can be downloaded from Hack-
age.

5.3.2 hs-plugins

Report by: Don Stewart
Status: maintained

hs-plugins is a library for dynamic loading and run-
time compilation of Haskell modules, for Haskell and
foreign language applications. It can be used to im-
plement application plugins, hot swapping of modules
in running applications, runtime evaluation of Haskell,
and enables the use of Haskell as an application exten-
sion language.
hs-plugins has been ported to GHC 6.8, and version

1.2 has been released.

Further reading

◦ Source and documentation can be found at: http:
//www.cse.unsw.edu.au/~dons/hs-plugins/

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

5.3.3 hscolour

Report by: Malcolm Wallace
Status: stable, maintained

HsColour is a small command-line tool (and Haskell
library) that syntax-colourises Haskell source code for
multiple output formats. It consists of a token lexer,
classification engine, and multiple separate pretty-
printers for the different formats. Current supported
output formats are ANSI terminal codes, HTML (with

29

http://www.alpheccar.org
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www-users.cs.york.ac.uk/~ndm/uniplate
http://www.cse.unsw.edu.au/~dons/hs-plugins/
http://www.cse.unsw.edu.au/~dons/hs-plugins/
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

or without CSS), LaTeX, and IRC chat codes. In all
cases, the colours and highlight styles (bold, underline,
etc.) are configurable. It can additionally place HTML
anchors in front of declarations, to be used as the target
of links you generate in Haddock (→ 4.2.1) documen-
tation.
HsColour is widely used to make source code in blog

entries look more pretty, to generate library documen-
tation on the web, and to improve the readability of
GHC’s intermediate-code debugging output. The cur-
rent version is 1.9, adding the mIRC backend, and a
few bugfixes.

Further reading

http://www.cs.york.ac.uk/fp/darcs/hscolour

5.4 Parsing and Transforming

5.4.1 pcre-light

Report by: Don Stewart
Status: active development

A small, efficient, and portable regex library for Perl 5
compatible regular expressions. The PCRE library is
a set of functions that implement regular expression
pattern matching using the same syntax and semantics
as Perl 5.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
pcre-light/

5.4.2 HStringTemplate

Report by: Sterling Clover

HStringTemplate is a port of the StringTemplate li-
brary to Haskell. StringTemplate is a templating sys-
tem that enforces strict model-view separation via a
Turing-incomplete grammar that nonetheless provides
powerful recursive constructs. The library provides
template grouping and inheritance, as well as escap-
ing. It is especially suited for rapid and iterative devel-
opment of web applications. HStringTemplate is cur-
rently at release 0.3.1 and is available via Hackage.

Further reading

◦ http://www.cs.usfca.edu/~parrt/papers/mvc.
templates.pdf

◦ HStringTemplate:
http://fmapfixreturn.wordpress.com

◦ StringTemplate: ttp://www.stringtemplate.org/

5.4.3 CoreErlang

Report by: Henrique Ferreiro García
Status: Parses and pretty-prints almost all of Core

Erlang

CoreErlang is a Haskell library which consists of a
parser and a pretty-printer for the intermediate lan-
guage used by Erlang. The parser uses the Parsec li-
brary, and the pretty-printer was modelled after the
corresponding module of the haskell-src package. It
also exposes a Syntax module which will be used to
implement several Core-to-Core optimisations.
It is not finished yet, but it parses almost all of Core

Erlang and the pretty-printer works quite well.
In a very short period of time it will be published on

Hackage.

5.4.4 parse-dimacs: A DIMACS CNF Parser

Report by: Denis Bueno
Status: Version 1.1

Parse-dimacs is a Parsec parser for a common file
format — DIMACS — describing conjunctive normal
form (CNF) formulae. CNF formulae are typically used
as input to satisfiability solvers.
The parser is available from Hackage:

http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/parse-dimacs
The next release will concentrate on optimisation,

specifically for large CNF formulae. The interface is
simple and should be stable.

5.4.5 Graph Parser Combinators in Curry

Report by: Steffen Mazanek
Status: research prototype

A graph language can be described with a graph gram-
mar in a manner similar to a string grammar known
from the theory of formal languages. In the last HCAR
report we have introduced the Haskell library graph
parser combinators. Therewith, several graph parsers
can be implemented quite conveniently.
Unfortunately, it is quite complicated to realize a

straightforward and reasonably efficient translation of
so-called hyperedge replacement grammars (a context-
free graph grammar formalism) to graph parsers. Prob-
lems are mainly caused by heavy non-determinism.
Therefore, we have reimplemented our library in
Curry (→ 3.2.1), a functional-logic programming lan-
guage.
The Curry implementation provides two main ben-

efits: Grammars can be translated to quite efficient
parsers in a schematic way. Furthermore, parsers can
be used as generators and for graph completion at the
same time.

30

http://www.cs.york.ac.uk/fp/darcs/hscolour
http://code.haskell.org/~dons/code/pcre-light/
http://code.haskell.org/~dons/code/pcre-light/
http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
http://fmapfixreturn.wordpress.com
ttp://www.stringtemplate.org/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parse-dimacs
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parse-dimacs

We exploit these nice properties in the domain of
diagram editors. Here, graph grammars are used to
define the syntax of visual languages, and graph com-
pletion appears to be very beneficial for the realiza-
tion of powerful content assist. We have connected
our framework to the diagram editor generator DiaGen
(http://www.unibw.de/inf2/DiaGen).
Our application provides a strong motivation for

further research into multi-paradigm declarative lan-
guages.

Further reading

http://www.unibw.de/steffen.mazanek/forschung/
grappa

5.4.6 The X-SAIGA Project

Report by: Richard A. Frost
Participants: Rahmatullah Hafiz, Paul Callaghan
Status: code available

The goal of the X-SAIGA project is to create algo-
rithms and implementations which enable language
processors (recognisers, parsers, interpreters, transla-
tors, etc.) to be constructed as modular and efficient
embedded eXecutable SpecificAtIons of GrAmmars.
To achieve modularity, we have chosen to base our

algorithms on top-down parsing. To accommodate am-
biguity, we implement inclusive choice through back-
tracking search. To achieve polynomial complexity,
we use memoisation. We have developed an algorithm
which accommodates direct left-recursion using curtail-
ment of search. Indirect left recursion is also accommo-
dated using curtailment together with a test to deter-
mine whether previously computed and memoised re-
sults may be reused depending on the context in which
they were created and the context in which they are
being considered for reuse.
The algorithm is described more fully in Frost, R.,

Hafiz, R., and Callaghan, P. (2007) Modular and Effi-
cient Top-Down Parsing for Ambiguous Left-Recursive
Grammars. Proceedings of the 10th International
Workshop on Parsing Technologies (IWPT), ACL-
SIGPARSE. Pages: 109 – 120, June 2007, Prague.
(http://cs.uwindsor.ca/~hafiz/iwpt-07.pdf)
We have implemented our algorithms, at various

stages of their development, in Miranda (up to 2006)
and in Haskell (from 2006 onwards). A description
of a Haskell implementation of our 2007 algorithm
can be found in Frost, R., Hafiz, R., and Callaghan,
P. (2008) Parser Combinators for Ambiguous Left-
Recursive Grammars. Proceedings of the 10th Inter-
national Symposium on Practical Aspects of Declara-
tive Languages (PADL), Paul Hudak, David Scott War-
ren (Eds.): Practical Aspects of Declarative Languages,
10th International Symposium, PADL 2008, San Fran-
cisco, CA, USA, January 7–8, 2008. Springer 2008,

LNCS 4902, 167–181. (http://cs.uwindsor.ca/~hafiz/
PADL_PAPER_FINAL.pdf)
The X-SAIGA website contains more information,

links to other publications, proofs of termination and
complexity, and Haskell code of the development ver-
sion. (http://cs.uwindsor.ca/~hafiz/proHome.html)
We are currently extending our algorithm and imple-

mentation to accommodate executable specifications of
fully-general attribute grammars.
One of our long-term goals is to use the X-SAIGA

software to construct natural-language applications as
executable specifications of attribute grammars and de-
ploy them on the Public-Domain SpeechWeb, which is
a related project of ours that is also funded by the
Natural Science and Engineering Research Council of
Canada (NSERC). More information on the Speech-
Web project, including details of how to access our pro-
totype Public-Domain SpeechWeb by voice, and how to
build and deploy your own speech applications, can be
found at http://www.myspeechweb.org.

5.4.7 InterpreterLib

Report by: Jennifer Streb
Participants: Garrin Kimmell, Nicolas Frisby, Mark

Snyder, Philip Weaver, Perry Alexander
Maintainer: Garrin Kimmell, Nicolas Frisby
Status: beta, actively developed

The InterpreterLib library is a collection of modules
for constructing composable, monadic interpreters in
Haskell. The library provides a collection of functions
and type classes that implement semantic algebras in
the style of Hutton and Duponcheel. Datatypes for re-
lated language constructs are defined as non-recursive
functors and composed using a higher-order sum func-
tor. The full AST for a language is the least fixed
point of the sum of its constructs’ functors. To de-
note a term in the language, a sum algebra combinator
composes algebras for each construct functor into a se-
mantic algebra suitable for the full language, and the
catamorphism introduces recursion. Another piece of
InterpreterLib is a novel suite of algebra combinators
conducive to monadic encapsulation and semantic re-
use. The Algebra Compiler, an ancillary preprocessor
derived from polytypic programming principles, gener-
ates functorial boilerplate Haskell code from minimal
specifications of language constructs. As a whole, the
InterpreterLib library enables rapid prototyping and
simplified maintenance of language processors.
InterpreterLib is available for download at the link

provided below. Version 1.0 of InterpreterLib was re-
leased in April 2007.

Further reading

http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

31

http://www.unibw.de/inf2/DiaGen
http://www.unibw.de/steffen.mazanek/forschung/grappa
http://www.unibw.de/steffen.mazanek/forschung/grappa
http://cs.uwindsor.ca/~hafiz/iwpt-07.pdf
http://cs.uwindsor.ca/~hafiz/PADL_PAPER_FINAL.pdf
http://cs.uwindsor.ca/~hafiz/PADL_PAPER_FINAL.pdf
http://cs.uwindsor.ca/~hafiz/proHome.html
http://www.myspeechweb.org
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm

Contact

〈nfrisby@ittc.ku.edu〉

5.5 Data types and data structures

5.5.1 Data.ByteString

Report by: Don Stewart
Status: active development

Data.ByteString provides packed strings (byte arrays
held by a ForeignPtr), along with a list interface to
these strings. It lets you do extremely fast IO in
Haskell; in some cases, even faster than typical C im-
plementations, and much faster than [Char]. It uses
a flexible “foreign pointer” representation, allowing the
transparent use of Haskell or C code to manipulate the
strings.
Data.ByteString is written in Haskell98 plus the for-

eign function interface and cpp. It has been tested
successfully with GHC 6.4, 6.6, 6.8, Hugs 2005–2006,
and the head version of nhc98.
Bytestring 0.9.1.0 has been released, with full cover-

age data, an improved testsuite, and some key perfor-
mance improvements.

Further reading

◦ Source and documentation can be found at http://
www.cse.unsw.edu.au/~dons/fps.html

◦ The source repository is available:
darcs get http://darcs.haskell.org/bytestring

5.5.2 dlist

Report by: Don Stewart
Status: active development

Differences lists: a list-like type supporting O(1) ap-
pend. This is particularly useful for efficient logging
and pretty printing, (e.g., with the Writer monad),
where list append quickly becomes too expensive.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/dlist/

5.5.3 dimensional

Report by: Björn Buckwalter
Status: active, mostly stable

Dimensional is a library providing data types for per-
forming arithmetics with physical quantities and units.

Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage.
The core of dimensional is stable with additional

units being added on an as-needed basis. In addition
to the si system of units, dimensional has experimen-
tal support for user-defined dimensions and a proof-of-
concept implementation of the cgs system of units. I
am also experimenting with forward automatic differ-
entiation and rudimentary linear algebra.
The current release is compatible with ghc 6.6.x and

above and can be downloaded from Hackage or the
project web site. The primary documentation is the
literate Haskell source code, but the wiki on the project
web site has a few usage examples to help with getting
started.
The Darcs repo has moved to http://code.haskell.org/

dimensional.

Further reading

http://dimensional.googlecode.com

5.5.4 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Mikael Johansson
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck properties,
superfluous super-classes like Show are removed, se-
mantic and representation-specific operations are sepa-
rated, the hierarchy of type classes is more fine grained,
and identifiers are adapted to mathematical terms.
There are both certain new type classes representing

algebraic structures and new types of mathematical ob-
jects. Currently supported algebraic structures are
◦ group (additive),
◦ ring,
◦ principal ideal domain,
◦ field,
◦ algebraic closures,
◦ transcendental closures,
◦ module and vector space,
◦ normed space,
◦ lattice,
◦ differential algebra,
◦ monoid.
There is also a collection of mathematical object

types, which is useful both for applications and test-
ing the class hierarchy. The types are
◦ lazy Peano number,

32

mailto: nfrisby at ittc.ku.edu
http://www.cse.unsw.edu.au/~dons/fps.html
http://www.cse.unsw.edu.au/~dons/fps.html
http://darcs.haskell.org/bytestring
http://code.haskell.org/~dons/code/dlist/
http://code.haskell.org/dimensional
http://code.haskell.org/dimensional
http://dimensional.googlecode.com

◦ complex number, quaternion,
◦ residue class,
◦ fraction,
◦ partial fraction,
◦ numbers equipped with physical units in two vari-

ants:

1. dynamically checked units,

2. statically checked dimension terms (E.g.,
speed can be expressed by type argument
Mul Length (Recip Time). This is overly re-
strictive but does not require type extensions.)

◦ fixed point arithmetic with respect to arbitrary bases
and numbers of fraction digits,

◦ infinite precision number in an arbitrary positional
system as lazy lists of digits supporting also numbers
with terminating representations,

◦ polynomial, power series, Laurent series
◦ root set of a polynomial,
◦ matrix (basics only),
◦ algebra, e.g., multi-variate polynomial (basics only),
◦ permutation group.
Due to Haskell’s flexible type system, you can combine
all these types, e.g., fractions of polynomials, residue
classes of polynomials, complex numbers with physical
units, power series with real numbers as coefficients.
Using the revised system requires hiding some of the

standard functions provided by Prelude, which is fortu-
nately supported by GHC. The library has basic Cabal
support and a growing test-suite of QuickCheck tests
for the implemented mathematical objects.
Each data type now resides in a separate module.

Cyclic dependencies could be eliminated by fixing some
types in class methods. E.g., power exponents became
simply Integer instead of Integral, which has also the
advantage of reduced type defaulting.

Future plans

Collect more Haskell code related to mathematics, e.g.,
for linear algebra. Study of alternative numeric type
class proposals and common computer algebra systems.
A still unsolved problem arises for residue classes,

matrix computations, infinite precision numbers, fixed
point numbers, and others. It should be possible to
assert statically that the arguments of a function are
residue classes with respect to the same divisor, or that
they are vectors of the same size. Possible ways out are
encoding values in types or local type class instances.
The latter one is still neither proposed nor implemented
in any Haskell compiler. The modules are implemented
in a way to keep all options open. That is, for each
number type there is one module implementing the
necessary operations which expect the context as a pa-
rameter. Then there are several modules which provide
different interfaces through type class instances to these
operations.

Further reading

http://darcs.haskell.org/numericprelude/

5.5.5 HList — a library for typed heterogeneous
collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants (→ 1.6.5).
HList is analogous to the standard list library, pro-
viding a host of various construction, look-up, filter-
ing, and iteration primitives. In contrast to the reg-
ular lists, elements of heterogeneous lists do not have
to have the same type. HList lets the user formulate
statically checkable constraints: for example, no two
elements of a collection may have the same type (so
the elements can be unambiguously indexed by their
type).
An immediate application of HLists is the imple-

mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We, and now others (Alexandra
Silva, Joost Visser: PURe.CoddFish project), have also
used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell (http:
//darcs.haskell.org/OOHaskell). The HList library relies
on common extensions of Haskell 98.
The HList repository is available via Darcs: http:

//darcs.haskell.org/HList
The main change since the last report was the ad-

dition of a large set of patches by Gwern Branwen
〈gwern0@gmail.com〉, to arrange the library within the
Data.HList hierarchy, to update the code for GHC 6.8.2
(using the LANGUAGE pragma, eliminating causes of
GHC warnings), to build the library with the latest ver-
sion of Cabal. He also uploaded the library to Hackage.
Many thanks to Gwern Branwen.

Further reading

◦ HList: http://homepages.cwi.nl/~ralf/HList/
◦ OOHaskell:

http://homepages.cwi.nl/~ralf/OOHaskell/

5.5.6 stream-fusion

Report by: Don Stewart
Status: active development

Data.List.Stream provides the standard Haskell list
data type and api, with an improved fusion sys-

33

http://darcs.haskell.org/numericprelude/
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/HList
http://darcs.haskell.org/HList
mailto: gwern0 at gmail.com
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/

tem, as described in the papers “Stream Fusion” and
“Rewriting Haskell Strings”. Code written to use
the Data.List.Stream library should run faster (or at
worst, as fast) as existing list code. A precise, cor-
rect reimplementation is a major goal of this project,
and Data.List.Stream comes bundled with around 1000
QuickCheck properties, testing against the Haskell98
specification, and the standard library.
The latest version of the stream-fusion package is

now available from Hackage.

Further reading

Source and documentation can be found at: http://
www.cse.unsw.edu.au/~dons/streams.html

5.5.7 Edison

Report by: Robert Dockins
Status: stable, maintained

Edison is a library of purely function data structures
for Haskell originally written by Chris Okasaki. Con-
ceptually, it consists of two things:

1. A set of type classes defining the following data
structure abstractions: “sequences”, “collections”,
and “associative collections”

2. Multiple concrete implementations of each of the ab-
stractions.

In theory, either component may be used indepen-
dently of the other.
I took over maintenance of Edison in order to up-

date Edison to use the most current Haskell tools. The
following major changes have been made since version
1.1, which was released in 1999.

◦ Typeclasses updated to use fundeps (by Andrew Bro-
mage)

◦ Implementation of ternary search tries (by Andrew
Bromage)

◦ Modules renamed to use the hierarchical module ex-
tension

◦ Documentation haddockised

◦ Source moved to a Darcs repository

◦ Build system cabalised

◦ Unit tests integrated into a single driver program
which exercises all the concrete implementations
shipped with Edison

◦ Multiple additions to the APIs (mostly the associ-
ated collection API)

Edison is currently in maintain-only mode. I do not
have the time required to enhance Edison in the ways I
would like. If you are interested in working on Edison,
do not hesitate to contact me.
The biggest thing that Edison needs is a benchmark-

ing suite. Although Edison currently has an extensive
unit test suite for testing correctness, and many of the
data structures have proven time bounds, I have no way
to evaluate or compare the quantitative performance
of data structure implementations in a principled way.
Unfortunately, benchmarking data structures in a non-
strict language is difficult to do well. If you have an
interest or experience in this area, your help would be
very much appreciated.

Further reading

http://www.cs.princeton.edu/~rdockins/edison/home/

5.6 Data processing

5.6.1 bytestring-mmap

Report by: Don Stewart
Status: active development

This library provides a wrapper to mmap(2), allowing
files or devices to be lazily loaded into memory as strict
or lazy ByteStrings (→ 5.5.1), using the virtual memory
subsystem to do on-demand loading.

Further reading

◦ Source and documentation can be found on Hackage.
◦ The source repository is available:
darcs get http://code.haskell.org/~dons/code/
bytestring-mmap/

5.6.2 binary

Report by: Lennart Kolmodin
Participants: Duncan Coutts, Don Stewart, Binary

Strike Team
Status: active

The Binary Strike Team is pleased to announce yet
another release of a new, pure, efficient binary seriali-
sation library.
The “binary” package provides efficient serialisa-

tion of Haskell values to and from lazy ByteStrings.
ByteStrings constructed this way may then be written
to disk, written to the network, or further processed
(e.g., stored in memory directly, or compressed in mem-
ory with zlib or bzlib).
The binary library has been heavily tuned for per-

formance, particularly for writing speed. Throughput
of up to 160M/s has been achieved in practice, and
in general speed is on par or better than NewBinary,

34

http://www.cse.unsw.edu.au/~dons/streams.html
http://www.cse.unsw.edu.au/~dons/streams.html
http://www.cs.princeton.edu/~rdockins/edison/home/
http://code.haskell.org/~dons/code/bytestring-mmap/
http://code.haskell.org/~dons/code/bytestring-mmap/

with the advantage of a pure interface. Efforts are un-
derway to improve performance still further. Plans are
also taking shape for a parser combinator library on top
of binary, for bit parsing and foreign structure parsing
(e.g., network protocols).
Data.Derive has support for automatically generat-

ing Binary instances, allowing to read and write your
data structures with little fuzz.
Binary was developed by a team of 8 during the

Haskell Hackathon in Oxford 2007, and since then
about 15 people have contributed code and many more
given feedback and cheerleading on #haskell (→ 1.2).
The package is cabalised and available through Hack-

age.

Further reading

◦ Homepage: http://code.haskell.org/binary/
◦ Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/binary

◦ Development version:
darcs get –partial http://code.haskell.org/binary

5.6.3 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The latest version is 4.1.0. Contributions since the
last update include: TEA, BubbleBabble, HMAC, and
more flavours of SHA.
The interface to SHA-1 is still different from MD5,

and the whole library still needs a rethink. Unfortu-
nately, I still do not have the time to undertake much
work on it at the moment and it is not clear when
I will have more time. I am still therefore looking for
someone to help keeping the repository up-to-date with
contributions, re-structuring the library, and managing
releases.
This release contains:
◦ DES
◦ Blowfish
◦ AES
◦ TEA
◦ BubbleBabble
◦ Cipher Block Chaining (CBC)
◦ PKCS#5 and nulls padding
◦ SHA-1, SHA-2, SHA-224, SHA-256, SHA-384, SHA-

512
◦ HMAC
◦ MD5
◦ RSA
◦ OAEP-based encryption (Bellare-Rogaway)
◦ Hex utilities
◦ Support for Word128, Word192 and Word256, and

beyond

Further reading

◦ http://www.haskell.org/crypto
◦ http://hackage.haskell.org/trac/crypto.

5.6.4 The Haskell ASN.1 Library

Report by: Dominic Steinitz

The current release remains 0.0.11, which contains
functions to handle ASN.1, X.509, PKCS#8, and
PKCS#1.5.
This still has a dependency on NewBinary but we

now have a way of removing this to use ByteStrings (→
5.5.1), although the work remains to be done.
The current version handles the Basic Encoding

Rules (BER). In addition, even more work (over 400
Darcs patches) has been undertaken on handling the
Packed Encoding Rules (PER) using a GADT to rep-
resent the Abstract Syntax Tree (we will probably move
the BER to use the same AST at some point). Inter-
estingly, this has resulted in us finding a small bug in
the ASN.1 specification which we have reported to the
ITU. You can download the current working version
and try the unit and QuickCheck property tests for
PER. These are not yet built by Cabal.
This release supports:
◦ X.509 identity certificates
◦ X.509 attribute certificates
◦ PKCS#8 private keys
◦ PKCS#1 version 1.5

Further reading

http://haskell.org/asn1.

5.6.5 2LT: Two-Level Transformation

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser, Pablo Berdaguer, Alcino

Cunha, José Nuno Oliveira, Hugo Pacheco
Status: active

A two-level data transformation consists of a type-level
transformation of a data format coupled with value-
level transformations of data instances corresponding
to that format. Examples of two-level data transfor-
mations include XML schema evolution coupled with
document migration, and data mappings used for in-
teroperability and persistence.
In the 2LT project, support for two-level transforma-

tions is being developed using Haskell, relying in par-
ticular on generalised abstract data types (GADTs).
Currently, the 2LT package offers:

◦ A library of two-level transformation combinators.
These combinators are used to compose transforma-
tion systems which, when applied to an input type,

35

http://code.haskell.org/binary/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/binary
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/binary
http://code.haskell.org/binary
http://www.haskell.org/crypto
http://hackage.haskell.org/trac/crypto
http://haskell.org/asn1

produce an output type together with the conver-
sion functions that mediate between input and out-
put types.

◦ Front-ends for VDM-SL, XML, and SQL. These
front-ends support (i) reading a schema, (ii) apply-
ing a two-level transformation system to produce a
new schema, (iii) converting a document/database
corresponding to the input schema to a docu-
ment/database corresponding to the output schema,
and vice versa.

◦ A combinator library for transformation of point-
free and structure-shy functions. These combinators
are used to compose transformation systems for op-
timisation of conversion functions, and for migration
of queries through two-level transformations. Inde-
pendently of two-level transformation, the combina-
tors can be used to specialise structure-shy programs
(such as XPath queries and strategic functions) to
structure-sensitive point-free form, and vice versa.

◦ Support for schema constraints using point-free ex-
pressions. Constraints present in the initial schema
are preserved during the transformation process and
new constraints are added in specific transformations
to ensure semantic preservation. Constraints can be
simplified using the already existent library for trans-
formation of point-free functions.

The various sets of transformation combinators are
reminiscent of the combinators of Strafunski and the
Scrap-your-Boilerplate approach to generic functional
programming.
A release of 2LT is available from the project URL.
Recently, the 2LT project has been migrated to

Google Code. New functionality is planned, such as
elaboration of the front-ends and the creation of a web
interface.

Further reading

◦ Project URL: http://2lt.googlecode.com
◦ Alcino Cunha, José Nuno Oliveira, Joost Visser.
Type-safe Two-level Data Transformation. Formal
Methods 2006.

◦ Alcino Cunha, Joost Visser. Strongly Typed Rewrit-
ing For Coupled Software Transformation. RULE
2006.

◦ Pablo Berdaguer, Alcino Cunha, Hugo Pacheco,
Joost Visser. Coupled Schema Transformation and
Data Conversion For XML and SQL. PADL 2007.

◦ Alcino Cunha and Joost Visser. Transformation of
Structure-Shy Programs, Applied to XPath Queries
and Strategic Functions. PEPM 2007.

◦ Tiago L. Alves, Paulo Silva and Joost Visser.
Constraint-aware Schema Transformation. Draft,
2007.

5.7 Types for Safety and Reasoning

5.7.1 Takusen

Report by: Alistair Bayley
Participants: Oleg Kiselyov
Status: active development

Takusen is a library for accessing DBMS’s. Like
HSQL, we support arbitrary SQL statements (currently
strings, extensible to anything that can be converted to
a string).
Takusen’s “unique selling-point” is safety and effi-

ciency. We statically ensure that all acquired database
resources such as cursors, connection, and statement
handles are released, exactly once, at predictable times.
Takusen can avoid loading the whole result set in mem-
ory and so can handle queries returning millions of
rows, in constant space. Takusen also supports au-
tomatic marshaling and unmarshaling of results and
query parameters. These benefits come from the design
of query result processing around a left-fold enumera-
tor.
Currently we fully support Oracle, Sqlite, and Post-

greSQL, and ODBC support exists but is not fully
tested.
Since the last report we have:

◦ made bug fixes and enhancements to the ODBC
backend

◦ improved the installation process so that we can
build Haddock docs with Cabal

◦ added an inquire function (and EnvInquiry class),
which lets us call arbitrary DBMS functions. This
provides a general interface to invoke arbitrary back-
end interrogation functions without compromising
the framework guarantees. This is demonstrated by
LastInsertRowid in the Sqlite backend.

◦ re-exported a bunch of types from
Database.InternalEnumerator, which should help
people wanting to write type sigs for database
functions.

Future plans

◦ complete ODBC interface.
◦ Large object support.
◦ MS SQL Server and Sybase interfaces, via FreeTDS.

Further reading

◦ darcs get http://darcs.haskell.org/takusen/
◦ browse docs: http://darcs.haskell.org/takusen/doc/

html (see Database.Enumerator for Usage instruc-
tions and examples)

36

http://2lt.googlecode.com
http://darcs.haskell.org/takusen/
http://darcs.haskell.org/takusen/doc/html
http://darcs.haskell.org/takusen/doc/html

5.7.2 Session Types for Haskell

Report by: Matthew Sackman
Status: beta; active development

Session Types provide a way to express communication
protocols. They specify, for a bi-directional channel,
who says what, in what order, and to whom. Looping
and branching structures are supported. Thus a session
type adds a type to a communication channel, ensuring
that use of the channel is safe (i.e., when one party
speaks, the others listen, and that the type of the value
sent is the type of the value expected to be received).
Thus, Session Types offer temporal information which
is absent from all other concurrency techniques.
The focus of the library is on the communication

between threads. However, work is progressing on sup-
porting fully distributed operation. The library sup-
ports forking new processes with channels; creating
new channels between existing processes; the commu-
nication of process IDs; the communication of chan-
nels (higher-order channels or delegation); subtyping
of Pids; and some initial work on real distributed op-
eration over Handles.
Current development is rapid and is focusing on

building up a strong suite of examples and networked
operation. Recent features have added support for
higher-order channels and a new DSL for specifying
Session Types (which supports lexical scoping and is
composable).
If you are doing any multi-threaded development in

Haskell and find the properties and simplicity of mes-
sage passing concurrency attractive, then I strongly en-
courage you to take a look at Session Types.

Further reading

◦ Project homepage: http://wellquite.org/sessions/
◦ Tutorial:
http://wellquite.org/sessions/tutorial_1.html

5.7.3 Category Extras — Comonad Transformers
and Bird-Meertens combinators

Report by: Edward Kmett
Status: experimental

Haskell has derived a lot of benefits from the tools it
has borrowed from category theory, such as functors,
monads, and arrows. However, there are a lot more
tools out there. For instance, comonads have been
barely touched by Haskell programmers. This library
attempts to collect many of the more interesting bits
of category theory and constructive algorithmics in one
place and generalise or dualize previous results where
possible.
The library includes:

◦ A set of comonad transformers in the spirit of the
monad transformer library, including the categori-

cal duals of the Reader, State, and Writer monads
and monad transformers: the Product, Context, and
Supply comonads and comonad transformers, respec-
tively.

◦ An expanded set of “Bananas, Lenses, and Barbed
Wire” for constructive algorithmics, including new
generalised hylomorphisms and combinators for
building up the distributive laws needed to use them

◦ Left and right Kan extensions

◦ Generalisations of standard library functions such as
zip and unzip

◦ Free monads and cofree comonads with free monad
coproducts and cofree comonad coproducts

◦ Ideal monads and their previously unpublished dual,
coideal comonads, with ideal monad coproducts and
cofree comonad products

◦ Higher-order functors, adjunctions, monads, and
comonads that work over functors and map natural
transformations

◦ Indexed (co)monads, including the well-known im-
plementations for indexed state and delimited con-
tinuations

◦ Hyperfunctions

◦ Multiple functor composition operators to support
(co)monad/(co)pointed functor composition and ad-
junction based (co)monads without ambiguity

Future plans

◦ Zippered comonadic automata

◦ A suite of (bi)functor type-level combinators inspired
by similar term-level combinators such as On, Ap,
and Join to help see the connections between differ-
ent (co)monads and to simplify the taking of type-
level derivatives.

◦ A “cofib” example suite to demonstrate program-
ming with comonads.

◦ Better documentation

Further reading

http://comonad.com/haskell/category-extras/

5.7.4 IOSpec

Report by: Wouter Swierstra
Status: active development

37

http://wellquite.org/sessions/
http://wellquite.org/sessions/tutorial_1.html
http://comonad.com/haskell/category-extras/

The IOSpec library provides a pure specification of sev-
eral functions in the IO monad. This may be of interest
to anyone who wants to debug, reason about, analyse,
or test impure code.
The IOSpec library is essentially a drop-in replace-

ment for several other modules, such as Data.IORef
and Control.Concurrent. Once you are satisfied that
your functions are reasonably well-behaved with re-
spect to the pure specification, you can drop the IOSpec
import in favour of the “real” IO modules. The ideas
underlying the previous version are described by a re-
cent Haskell Workshop paper.
The latest version, however, supports several exciting

new features. Besides providing a pure specification of
STM, it allows you to build your own pure IO monad
à la carte — allowing you to be explicit about which
effects your program is using.
In the next major release, I would like to incorporate

efficiency improvements suggested by Janis Voigtländer
and allow the extraction of an IO computation from its
pure counterpart.
If you use IOSpec for anything useful at all, I would

love to hear from you.

Further reading

http://www.cs.nott.ac.uk/~wss/repos/IOSpec/

5.8 User interfaces

5.8.1 Gtk2Hs

Report by: Axel Simon
Participants: Duncan Coutts
Status: beta, actively developed

Gtk2Hs is a GUI Library for Haskell based on Gtk+.
Gtk+ is an extensive and mature multi-platform toolkit
for creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows and, of course, various
desktops on Linux, Solaris, and FreeBSD. Gtk+ and
Gtk2Hs also support Mac OS X (it currently uses the
X11 server, but a native port is in progress — see be-
low).
Gtk2Hs features:
◦ automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ high quality vector graphics using Cairo
◦ extensive reference documentation
◦ an implementation of the “Haskell School of Expres-

sion” graphics API
◦ support for the Glade visual GUI builder
◦ bindings to some Gnome extensions: GConf, a source

code editor widget, and a widget that embeds the
Mozilla/Firefox rendering engine

◦ an easy-to-use installer for Windows
◦ packages for Fedora, Gentoo (→ 2.6.1), Debian, and
FreeBSD

The Gtk2Hs library is in a usable state and many parts
of the API can be considered stable. We received very
positive feedback on tutorials which were contributed
by various people (→ 1.6.4). In fact, although the main-
tainers of Gtk2Hs manage to improve the library itself,
we would greatly benefit from more outside help, for in-
stance, somebody who can create releases and fix (con-
figuration) bugs. The reason that we have not released
in the last six months is simply lack of time (and ac-
cess to platforms), even though the list and tree widgets
have been complete since January. We furthermore im-
plemented more functions in Pango, the font rendering
engine. More frequent releases are needed to get these
improvements to people who rely on binary installers.
Our further development goals are as follows: In the
medium term we hope to support the new features
in Gtk+ 2.12 and to improve the signals API. In the
longer term we hope to modularise Gtk2Hs and enable
it to be built and distributed with Cabal and Hackage.
A promising recent development is that Gtk+’s native
(non-X11) backend for Mac OS X has got to the point
where Gtk2Hs can be built against it and most of the
demo programs work. It would be great if we could
find somebody who can create a Mac OS installer that
bundles Gtk2Hs with the native Aqua port of Gtk.

Further reading

◦ News, downloads, and documentation:
http://haskell.org/gtk2hs/

◦ Development version:
darcs get http://haskell.org/gtk2hs/darcs/gtk2hs/

5.8.2 Grapefruit — A declarative GUI and graphics
library

Report by: Wolfgang Jeltsch
Participants: Matthias Reisner
Status: provisional

Grapefruit is a library for creating graphical user inter-
faces and animated graphics in a declarative way.
Fundamental to Grapefruit is the notion of signal. A

signal denotes either a time-varying value (the contin-
uous case) or a sequence of values assigned to discrete
points in time (the discrete case). Signals can be con-
structed in a purely functional manner.
User interfaces are described as systems of intercon-

nected components which communicate via signals. To
build such systems, the methods from the Arrow and
ArrowLoop classes are used. For describing animated
graphics, a special signal type exists.
Grapefruit also provides list signals. A list signal

is a list-valued signal which can be updated incremen-
tally and thus efficiently. In addition, a list signal as-
sociates an identity with each element, so that moving

38

http://www.cs.nott.ac.uk/~wss/repos/IOSpec/
http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/darcs/gtk2hs/

an element within the list can be distinguished from
removing the element and adding it again. List signals
can be used to describe dynamic user interfaces, i.e.,
user interfaces with a changing set of components and
changing order of components.
Grapefruit descriptions of user interfaces and anima-

tions always cover their complete lifetime. No explicit
event handler registrations and no explicit recalcula-
tions of values are necessary. This is in line with the
declarative nature of Haskell because it stresses the be-
haviour of GUIs and animations instead of how this
behaviour is achieved. Internally, though, Grapefruit
is implemented efficiently using a common event dis-
patching and handling mechanism.
Grapefruit is currently based on Gtk2Hs (→ 5.8.1)

and HOpenGL, but implementations on top of other
GUI and graphics libraries are possible. The aim is to
provide alternative implementations based on different
GUI toolkits, so that a single application is able to
integrate itself into multiple desktop environments.

Further reading

http://haskell.org/haskellwiki/Grapefruit

5.8.3 Shellac

Report by: Robert Dockins
Status: beta, maintained

Shellac is a framework for building read-eval-print style
shells. Shells are created by declaratively defining a set
of shell commands and an evaluation function. Shellac
supports multiple shell backends, including a “basic”
backend, which uses only Haskell IO primitives, and a
fully featured “readline” backend based on the Haskell
readline bindings found in the standard libraries.
This library attempts to allow users to write shells

in a declarative way and still enjoy the advanced fea-
tures that may be available from a powerful line editing
package like readline.
Shellac is available from Hackage, as is the related

Shellac-readline package.
Shellac has been successfully used by several inde-

pendent projects, and the API is now fairly stable. I
will likely be releasing an officially “stable” version in
the not-too-distant future. I anticipate few changes
from the current version.

Further reading

http://www.cs.princeton.edu/~rdockins/shellac/home

5.9 (Multi-)Media

5.9.1 diagrams

Report by: Brent Yorgey
Status: active development

The diagrams library provides an embedded domain-
specific language for creating simple pictures and dia-
grams, built on top of the Cairo rendering engine. Val-
ues of type Diagram are built up in a compositional
style from various primitives and combinators, and can
be rendered to a physical medium, such as a file in
PNG, PS, PDF, or SVG format.
For example, consider the following diagram to illus-

trate the 24 permutations of four objects:

The diagrams library was used to create this dia-
gram with very little effort (about ten lines of Haskell,
including the code to actually generate permutations).
The source code for this diagram, as well as other ex-
amples and further resources, can be found at http:
/code.haskell.org/diagrams/.
The library is still in its infancy and is under active

development. New contributors and testers are wel-
come! In particular, this is an ideal project for anyone
relatively new to Haskell who is seeking to contribute
to a project as a way of becoming more comfortable
with the language.

Further reading

◦ http://code.haskell.org/diagrams/
◦ http://byorgey.wordpress.com/2008/04/30/

new-haskell-diagrams-library/

5.9.2 YampaSynth (previously: Programming of
Modular Synthesisers)

Report by: George Giorgidze
Status: Experimental

YampaSynth is a purely functional framework for
programming modular synthesisers in Haskell using
Yampa, a domain specific language embedded in
Haskell for programming hybrid systems. A synthe-
siser, be it a hardware instrument or a pure software
implementation, as here, is said to be modular if it pro-
vides sound-generating and sound-shaping components
that can be interconnected in arbitrary ways.
Basic sound-generating and sound-shaping modules

have been implemented, e.g., oscillator, amplifier,

39

http://haskell.org/haskellwiki/Grapefruit
http://www.cs.princeton.edu/~rdockins/shellac/home
http:/code.haskell.org/diagrams/
http:/code.haskell.org/diagrams/
http://code.haskell.org/diagrams/
http://byorgey.wordpress.com/2008/04/30/new-haskell-diagrams-library/
http://byorgey.wordpress.com/2008/04/30/new-haskell-diagrams-library/

mixer, envelope generator, filter, etc. These modules
are used to develop example applications:

◦ yampasynth-wav is an application which synthe-
sises MIDI music and writes the result into a WAVE
audio file.

◦ yampasynth-openal is an application which syn-
thesises MIDI music and sends audio data in real-
time to a sound card. We use a Haskell binding of
the OpenAL library as an interface to audio hard-
ware.

◦ yampasynth-gtk is an application with a simple
graphical user interface that allows you to play mu-
sic with various instruments in real-time using the
keyboard of your computer. We use a Haskell bind-
ing of the GTK library for GUI programming, and a
Haskell binding of the OpenAL library as an inter-
face to audio hardware.

The source code, together with example applications,
has been cabalised and is available under the BSD3
license.

Future plans

We would like to see a richer collection of sound-
generating and sound-shaping modules in the frame-
work, and complete implementation of MIDI, Sound-
Font, and related standards. However, one might find
some other interesting continuation of the work. We
are open for suggestions and would be happy if some-
one wishes to collaborate.

Further reading

◦ Related papers, slides, demos, and talks are available
from my homepage

◦ YampaSynth Cabal package on Hackage
◦ HCodecs is a supporting library which provides func-

tions to read, write, and manipulate MIDI, WAVE,
and SoundFont2 multimedia files. It is written en-
tirely in Haskell.

5.9.3 Haskore revision

Report by: Henning Thielemann
Participants: Paul Hudak
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e., without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design de-
cisions, and fixing bugs. Specific improvements include:

1. Basic Cabal support.

2. The Music data type has been generalised in the
style of Hudak’s “polymorphic temporal media.”

3. The Music data type has been made abstract by
providing functions that operate on it.

4. The notion of instruments is now very general.
There are simple predefined instances of the Music
data type, where instruments are identified by
Strings or General MIDI instruments, but any other
custom type is possible, including types with instru-
ment specific parameters.

5. Support for CSound orchestra files has been im-
proved and extended, thus allowing instrument de-
sign in a signal-processing manner using Haskell, in-
cluding feedback and signal processors with multiple
outputs.

6. Support for the software synthesiser SuperCollider
both in real-time and non-real-time mode through
the Haskell interface by Rohan Drape.

7. Support for conversion between MIDI and Haskore
representation of Music. The MIDI file management
has been moved to a separate package http://darcs.
haskell.org/midi/. Also, a package for real-time input
and output of MIDI events through ALSA is now
available: http://darcs.haskell.org/alsa-midi/.

8. A package for lists of events with time information
has been factored out, as well as a package for non-
negative numbers, which occur as time differences in
event lists.

9. The AutoTrack project has been adapted and in-
cluded.

10. Support for infinite Music objects is improved.
CSound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed
with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (→ 6.4.1).)

11. The test suite is based on QuickCheck and HUnit.

Future plans

◦ Allow modulation of instruments similar to the
controllers in the MIDI system. We are cur-
rently overhauling the design, such that effects on
the music level and effects on the back-end level
(MIDI, CSound, SuperCollider, Haskell-Synthesizer)
are cleanly separated.

◦ Split into a core package and add-ons, as soon as
Cabal supports that.

◦ Generate note sheets, say, via Lilypond.
◦ Connect to other Haskore related projects.
◦ Microtonal music.

40

http://cs.nott.ac.uk/~ggg/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/YampaSynth
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/HCodecs
http://darcs.haskell.org/midi/
http://darcs.haskell.org/midi/
http://darcs.haskell.org/alsa-midi/

Further reading

◦ http://www.haskell.org/haskellwiki/Haskore
◦ http://darcs.haskell.org/haskore/

5.10 Web and XML programming

5.10.1 hvac

Report by: Sterling Clover

HVAC (Http View and Controller) is a lightweight web
application framework based on FastCGI and STM,
with an emphasis on concise declarative code and con-
current atomic and transactional logic. The unique fea-
ture of hvac is that each request is processed within a
single logical transaction that bridges STM, database,
and filesystem access. Programs written using hvac are
therefore terse and easy to reason about, and should be
able to be written largely with applicative combinators
alone. Also provided are simply deployed caching com-
binators with static guarantees as to their properties,
as well as a sophisticated library of controller com-
binators for RESTful programming and a system for
typed, composable validation. Future work includes a
strong test suite to verify hvac’s atomic properties and
a strongly statically typed database DSL. An official
first release is forthcoming shortly.

Further reading

◦ http://community.haskell.org/~sclv/hvac/html_docs/
~hvac/

◦ http://fmapfixreturn.wordpress.com

5.10.2 Haskell XML Toolbox

Report by: Uwe Schmidt
Participants: Christian Uhlig
Status: seventh major release (current release:

8.0.0)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a validator
based on DTDs and a new more powerful one for Relax
NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml (→ 5.10.3) and HXML, but introduces a more
general approach for processing XML with Haskell.
The processing model is based on arrows. The arrow
interface is more flexible than the filter approach taken

in the earlier HXT versions and in HaXml. It is also
safer; type checking of combinators becomes possible
with the arrow approach.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based on

Tagsoup (→ 5.10.4)
◦ Easy de-/serialisation between native Haskell data

and XML by pickler and pickler combinators
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ Native Haskell support of HTTP 1.1 and FILE pro-

tocol
◦ HTTP and access via other protocols via external

program curl
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ An HXT Cookbook for using the toolbox and the

arrow interface
◦ Basic XSLT support
◦ Darcs repository with current development version

(8.0.1) under http://darcs.fh-wedel.de/hxt

Current Work

In a master student’s project done by Christian Uh-
lig, the development of a web server called Janus has
been finished. The title is A Dynamic Webserver with
Servlet Functionality in Haskell Representing all Inter-
nal Data by Means of XML. HXT has been used for
processing all internal data of this web server. The
Janus server is highly configurable and can be used not
only as HTTP server, but for various other server-like
tasks. This server is used and will be further developed
and extended within another project called Holum-
bus (→ 6.3.1), a framework for developing specialised
search engines. The Janus system is available via
http://darcs.fh-wedel.de/janus. Current activity con-
sists of testing, example applications, demos, and doc-
umentation. An application of Janus and Holumbus
is the Hayoo! search engine (http://holumbus.fh-wedel.
de/hayoo/).

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML process-
ing using arrows and RDF documents, and master
theses describing the design of the toolbox, the
DTD validator, the arrow based Relax NG val-
idator, and the XSLT system. A getting started

41

http://www.haskell.org/haskellwiki/Haskore
http://darcs.haskell.org/haskore/
http://community.haskell.org/~sclv/hvac/html_docs/~hvac/
http://community.haskell.org/~sclv/hvac/html_docs/~hvac/
http://fmapfixreturn.wordpress.com
http://darcs.fh-wedel.de/hxt
http://darcs.fh-wedel.de/janus
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html

tutorial about HXT is available in the Haskell Wiki
(http://www.haskell.org/haskellwiki/HXT).

5.10.3 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public stable release is 1.13.3, with sup-
port for building via Cabal for ghc-6.8.x.
The development version (currently at 1.19, also

available through a Darcs repository) includes a much-
requested lazy parser and a SAX-like streaming parser.
Some minor work still remains to tidy things up be-
fore the development version is tagged and released as
stable.
The lazy parser combinators used by HaXml now live

in a separate library package called polyparse.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.cs.york.ac.uk/fp/HaXml-devel
◦ darcs get http://darcs.haskell.org/packages/HaXml
◦ http://www.cs.york.ac.uk/fp/polyparse

5.10.4 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.
The library provides a basic data type for a list of un-

structured tags, a parser to convert HTML into this tag
type, and useful functions and combinators for finding
and extracting information. The library has seen real
use in an application to give Hackage (→ 5.1) listings,
and is used in the next version of Hoogle (→ 4.4.1).
Work continues on the API of tagsoup, and the im-

plementation. Lots of people have made use of tagsoup
in their applications, generating lots of valuable feed-
back. A new version of tagsoup is imminent.

Further reading

http://www-users.cs.york.ac.uk/~ndm/tagsoup

5.10.5 WASH/CGI — Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely

functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features:
◦ complete interactive server-side script in one pro-

gram
◦ a monadic, type-safe interface to generating XHTML

output
◦ type-safe compositional approach to specifying form

elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

◦ documented preprocessor for translating markup in
syntax close to XHTML syntax into WASH/HTML

Completed items are:
◦ fully cabalised
◦ WASH server pages with a modified version of Si-

mon Marlow’s hws web server; the current prototype
supports dynamic compilation and loading of WASH
source (via Don Stewart’s hs-plugins (→ 5.3.2)) as
well as the implementation of a session as a continu-
ally running server thread

◦ Transactional interface to server-side variables and to
databases. The interface is inspired by the work on
STM (software transactional memory), but modified
to be useful in the context of web applications. The
interface relies on John Goerzens hdbc package and
its PostgreSQL driver.

Current work includes:
◦ improvement of the database interface
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/~thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

5.11 System

5.11.1 hinotify

Report by: Lennart Kolmodin
Status: alive

“hinotify” is a simple Haskell wrapper for the Linux
kernel’s inotify mechanism. inotify allows applications
to watch file changes, since Linux kernel 2.6.13. You
can for example use it to do a proper locking procedure

42

http://www.haskell.org/haskellwiki/HXT
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-devel
http://darcs.haskell.org/packages/HaXml
http://www.cs.york.ac.uk/fp/polyparse
http://www-users.cs.york.ac.uk/~ndm/tagsoup
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

on a set of files, or keep your application up do date on
a directory of files in a fast and clean way.
As file and directory notification is available for many

operating systems, upcoming work will include to try
to find a common API that could be shared for all
platforms. Most recent work has been to see what is
possible to do under Microsoft Windows, and finding
a suitable API for both platforms. This has been a
joint work with Niklas Broberg. We are still looking
for contributors to *BSD and Mac OS X. If you are
interested, contact us.

Further reading

◦ Development version:
darcs get
http://www.haskell.org/~kolmodin/code/hinotify/

◦ Latest released version: http://www.haskell.org/
~kolmodin/code/hinotify/download/

◦ Documentation: http://www.haskell.org/~kolmodin/
code/hinotify/docs/api

◦ inotify: http://www.kernel.org/pub/linux/kernel/
people/rml/inotify/

5.11.2 hspread

Report by: Andrea Vezzosi
Participants: Jeff Muller
Status: active

hspread is a client library for the Spread toolkit. It
is fully implemented in Haskell using the binary pack-
age (→ 5.6.2) for fast parsing of network packets. Its
aim is to make it easier to implement correct dis-
tributed applications by taking advantage of the guar-
antees granted by Spread, such as reliable and total
ordered messages, and it supports the most recent ver-
sion of the protocol.
There is interest in further developing a higher level

framework for Haskell distributed programming by ex-
tending the protocol if necessary.

Further reading

◦ Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/hspread

◦ Development version:
darcs get http://happs.org/repo/hspread

◦ Spread homepage: http://www.spread.org

5.11.3 Harpy

Report by: Dirk Kleeblatt
Participants: Martin Grabmüller
Status: experimental

Harpy is a library for run-time code generation of IA-32
machine code. It provides not only a low level interface
to code generation operations, but also a convenient do-
main specific language for machine code fragments, a

collection of code generation combinators, and a disas-
sembler. We use it in two independent (unpublished)
projects: On the one hand, we are implementing a just-
in-time compiler for functional programs, on the other
hand, we use it to implement an efficient type checker
for a dependently typed language. It might be useful
in other domains where specialised code generated at
run-time can improve performance.
Harpy’s implementation makes use of the foreign

function interface, but only contains functions written
in Haskell. Moreover, it has some uses of other interest-
ing Haskell extensions, as for example multi-parameter
type classes to provide an in-line assembly language,
and Template Haskell to generate stub functions to call
run-time generated code. The disassembler uses Parsec
to parse the instruction stream.
We intend to implement supporting operations for

garbage collectors cooperating with run-time generated
code.
A second release is forthcoming, featuring improve-

ments in the memory management, better floating
point instruction support, and named labels that are
shown in the disassembler output.

Further reading

http://uebb.cs.tu-berlin.de/harpy/

43

http://www.haskell.org/~kolmodin/code/hinotify/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hspread
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hspread
http://happs.org/repo/hspread
http://www.spread.org
http://uebb.cs.tu-berlin.de/harpy/

6 Applications and Projects

6.1 For the Masses

6.1.1 Darcs

Report by: Jason Dagit
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
The year 2008 has seen some major milestones

reached in the development of Darcs: years of devel-
opment of Darcs-2 culminated in a recent release of
Darcs 2.0.0. Darcs 2.0.0.0 introduces a number of new
features and bug fixes big and small. The most notable
changes include fixing the “conflict bug”, supporting a
new repository format with refined semantics, adding
hashed repositories for increased speed and robustness,
and a global cache for faster downloading of patches. In
the 1.x branch of Darcs, since the last HCAR, support
for GHC 6.8.x was added.
Darcs has also seen a revamp of its infrastructure.

User visible changes include a consolidation of the sta-
ble and unstable development branches, and separation
of functions for the two mailing lists. Future work for
Darcs will centre around building interesting new fea-
tures using the new repository format, continued op-
timising and code restructuring, improving testing of
Darcs and adding buildbots, and completing transition
to “type witnesses” to ensure provably correct patch
manipulation.
Patches great and small are heartily welcomed!
Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.1.2 xmonad

Report by: Don Stewart
Status: active development

xmonad is a tiling window manager for X. Windows are
arranged automatically to tile the screen without gaps
or overlap, maximising screen use. Window manager
features are accessible from the keyboard: a mouse is
optional. xmonad is written, configured, and extensi-
ble in Haskell. Custom layout algorithms, key bindings,
and other extensions may be written by the user in con-
fig files. Layouts are applied dynamically, and different
layouts may be used on each workspace. Xinerama is
fully supported, allowing windows to be tiled on several
physical screens.
The new release 0.7 of xmonad added full support for

the GNOME and KDE desktops, and adoption contin-
ues to grow, with binary packages of xmonad available
for all major distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:
darcs get http://code.haskell.org/xmonad

◦ IRC channel: #xmonad @ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

6.2 Education

6.2.1 Exercise Assistants

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder,

Harrie Passier, Sylvia Stuurman
Status: experimental, active development

At the Open Universiteit Nederland we are building
a collection of tools that support students in solving
exercises incrementally by checking intermediate steps.
All our tools are completely written in Haskell. The
distinguishing feature of our tools is the detailed feed-
back that they provide, on several levels. For exam-
ple, we have an online exercise assistant that helps
to rewrite logical expressions into disjunctive normal
form. Students get instant feedback when solving an
exercise, and can ask for a hint at any point in the
derivation. Other areas covered by our tools are solving
linear equations, reducing matrices to echelon normal
form, and basic operations on fractions.
The simplest kind of error to deal with are the syn-

tactical errors, for which we use an error correcting
parser combinator library. For each exercise domain,
we have formulated a set of rewrite rules, as well as a
number of unsound (or buggy) rules to catch common
mistakes. With these rules we can check all interme-
diate steps submitted by the user. We also defined

44

http://darcs.net
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org

strategies for solving the exercises. A strategy dictates
in which order the rules have to be applied to reach
the solution, and such a strategy takes the form of a
context-free grammar. Strategies are a powerful means
to report helpful and informative feedback.
We are offering our tools and our strategies as ser-

vices to other e-learning tools and environments, such
as MathDox and LeActiveMath. For the near future,
we have scheduled sessions with students from our uni-
versity to validate our approach, and to collect informa-
tion about the usability of our tools. We plan to use
generic programming techniques to support exercises
from many more, different domains.
An online prototype version for rewriting logical ex-

pressions is available and can be accessed from our
project page.

Further reading

◦ http://ideas.cs.uu.nl/trac
◦ Strategies for exercises. Bastiaan Heeren, Johan

Jeuring, Arthur van Leeuwen, and Alex Gerdes.
Technical report UU-CS-2008-001, Utrecht Univer-
sity, 2008. To appear in: International Conference on
Mathematical Knowledge Management (MKM’08).

6.2.2 Holmes, plagiarism detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer

Years ago, Jurriaan Hage developed Marble to detect
plagiarism among Java programs. Marble was written
in Perl, takes just 660 lines of code and comments, and
does the job well. The techniques used there, however,
do not work well for Haskell, which is why a master
thesis project was started, starring Brian Vermeer as
the master student, to see if we can come up with a
working system to discover plagiarism among Haskell
programs. We are fortunate to have a large group of
students each year that try their hand at our functional
programming course (120-130 per year), and we have
all the loggings of Helium that we hope can help us tell
whether the system finds enough plagiarism cases. The
basic idea is to implement as many metrics as possible,
and to see, empirically, which combination of metrics
scores well enough for our purposes. The implementa-
tion will be made in Haskell. One of the things that
we are particularly keen about, is to make sure that for
assignments in which students are given a large part of
the solution and they only need to fill in the missing
parts, we still obtain good results.

6.2.3 Geordi IRC C++ eval bot

Report by: Eelis van der Weegen
Status: mature

Geordi is an IRC bot that compiles and (optionally)
runs C++ code snippets. It has proved to be a very

useful tool when teaching and discussing C++ on IRC.
It is written in Haskell, and, being deployed on C++
channels at most of the big IRC networks, has the
sneaky side-effect of getting some C++’ers interested
in Haskell ;-).
Snapshots and Darcs repository can be found at the

homepage.

Further reading

http://www.eelis.net/geordi/

6.2.4 Lambda Shell

Report by: Robert Dockins
Status: beta, maintained

The Lambda Shell is a feature-rich shell environment
and command-line tool for evaluating terms of the pure,
untyped lambda calculus. The Lambda Shell builds
on the shell creation framework Shellac (→ 5.8.3), and
showcases most of Shellac’s features.
Features of the Lambda Shell include:

◦ Evaluate lambda terms directly from the shell
prompt using normal or applicative order. In nor-
mal order, one can evaluate to normal form, head
normal form, or weak head normal form.

◦ Define aliases for lambda terms using a top level,
non-recursive “let” construct.

◦ Show traces of term evaluation, or dump the trace
to a file.

◦ Count the number of reductions when evaluating
terms.

◦ Test two lambda terms for beta-equivalence (that is;
if two terms, when evaluated to normal form, are
alpha equivalent).

◦ Programs can be entered from the command line (us-
ing the -e option) or piped into stdin (using the -s
option).

◦ Perform continuation passing style (CPS) transforms
on terms before evaluation using the double-bracket
syntax, e.g., “[[five]]”.

The Lambda Shell was written as a showcase and
textbook example for how to use the Shellac shell-
creation library. However, it can also be used to gain
a better understanding of the pure lambda calculus.

Further reading

◦ http://www.cs.princeton.edu/~rdockins/lambda/
home

◦ http://www.cs.princeton.edu/~rdockins/shellac/home

45

http://ideas.cs.uu.nl/trac
http://www.eelis.net/geordi/
http://www.cs.princeton.edu/~rdockins/lambda/home
http://www.cs.princeton.edu/~rdockins/lambda/home
http://www.cs.princeton.edu/~rdockins/shellac/home

6.2.5 INblobs – Interaction Nets interpreter

Report by: Miguel Vilaca
Participants: Daniel Mendes
Status: active, maintained
Portability: portable (depends on wxHaskell)

INblobs is an editor and interpreter for Interaction Nets
— a graph-rewriting formalism introduced by Lafont,
inspired by Proof-nets for Multiplicative Linear Logic.
INblobs is built on top of the front-end Blobs from

Arjan van Ĳzendoorn, Martĳn Schrage, and Malcolm
Wallace.
The tool is being developed using the repository sys-

tem Darcs.

New features

◦ easier implementation of new reduction strategies
◦ automatic transformation of lambda terms into in-

teraction nets
◦ generation of textual descriptions allowing the use of

INblobs as an editor/frontend for textual IN compil-
ers

◦ allow creation of properties’ checks
◦ Valid IN System check
◦ minor changes for better usability

Current Work

A new plugin that will allow INblobs to compile a tex-
tual functional program into Interaction Nets is being
developed.

Further reading

◦ Homepage:
http://haskell.di.uminho.pt/jmvilaca/INblobs/

◦ Blobs: http://www.cs.york.ac.uk/fp/darcs/Blobs

6.3 Data Access and Visualisation

6.3.1 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Hübel, Sebastian Schlatt, Stefan

Schmidt
Status: first beta release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomisable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.

An instance of the Holumbus framework is the
Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/). The web interface for Hayoo! is
implemented with the Janus web server, written in
Haskell and based on HXT (→ 5.10.2).

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customisable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customisable result ranking
◦ Index structure designed for distributed search
◦ Darcs repository with current development version

under http://darcs.fh-wedel.de/holumbus

Current Work

Currently the indexer module will further be developed
and extended, such that the configuration about the
relevant information especially in web pages to be in-
dexed becomes simple and easy. During this activity,
new use cases of the framework will be implemented.
In another Master Thesis the distributed query eval-

uation in a network of machines is tackled. Here we
will try to adopt ideas from the Google map–reduce
approach for Holumbus. The aim is to develop a gen-
erally applicable map–reduce like framework and take
the Holumbus search and index manipulation as a se-
rious test case.

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Darcs web interface, cur-
rent status, requirements, and documentation. Timo
Hübel’s Master Thesis describing the Holumbus in-
dex structure and the search engine is available
at http://holumbus.fh-wedel.de/branches/develop/doc/
thesis-searching.pdf.

6.3.2 Top Writer

Report by: Jon Strait
Status: experimental, active development

Top Writer is a web application for technical writers to
easily edit and assemble topic-oriented user guides and
other high level references works. Application users
edit within a structured framework, using meaning-
ful application elements to chunk and contain content.
Users can extend the application with their own ele-
ments and rules, if needed. Delivery of content is meant
to be multi-format, with each format having separate
templating rules.
The server portion of the application is coded in

46

http://haskell.di.uminho.pt/jmvilaca/INblobs/
http://www.cs.york.ac.uk/fp/darcs/Blobs
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
http://darcs.fh-wedel.de/holumbus
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf

Haskell using the HAppS framework, and the client web
browser portion uses the JQuery Javascript toolkit.

Future plans

Currently, the focus for delivering output is on gener-
ated HTML, but plans are also to generate PDF and
any other format that is reasonable.

Further reading

http://www.moonloop.net/topwriter

6.3.3 tiddlyisar

Report by: Slawomir Kolodynski
Status: under development

tiddlyisar is a tool for generating TiddlyWiki render-
ings of IsarMathLib source. IsarMathLib is a library
of mathematical proofs formally verified by the Is-
abelle/ZF theorem proving environment. The tiddly-
wiki tool parses IsarMathLib source and generates Tid-
dlyWiki markup text. The generated view features
jsMath based mathematical symbols, cross referenced
theorems, and structured proofs expanded on request.
The rendering can be viewed on the Tiddly Formal
Math site. tiddlyisar will be included in the next release
of the IsarMathLib distribution under GPLv3 license.

Further reading

◦ http://savannah.nongnu.org/projects/isarmathlib
◦ http://www.cl.cam.ac.uk/research/hvg/Isabelle/
◦ http://formalmath.tiddlyspot.com

6.3.4 Emping

Report by: Hans van Thiel

Emping 0.5 has been released. Emping is a (prototype
of) a tool for the analysis of multi-variate nominal data.
For example, in a table of 8000 mushrooms and 20 at-
tributes, constructed from a field guide, the tool finds
which attribute-values determine whether a mushroom
is edible or poisonous. But Emping finds not only single
factors, but also pairs, triples, and all other combina-
tions which distinguish between the consequent values.
Such reduced rules are generalisations of rows in the
original table, so r1 could stand for originals a,b,c and
r2 for a,b. In that case r2 implies r1 or, conversely,
r1 entails r2. The reductions are partially ordered.
Emping also finds all such dependencies, including the
equivalences where different reductions stand for the
same original rules. New in Emping 0.5 is that, thanks
to the functional graph library which comes with GHC,
these dependencies are now expressed in a Graphviz

format and can be shown with a Graphviz reader. Also
new is the sort by length of the reduced rules, and of
the reduced rules in each equivalence class. This makes
the results much more readable. Starting in 0.4, it is
now also possible to have blank fields, but this feature
has only been summarily tested. The Gtk2Hs based
GUI (→ 5.8.1), first introduced in version 0.4, has been
improved in Emping 0.5. Data tables, as well as output
tables of reduced rules and graph legends, all use the
default CSV format of the Open Office Calc spread-
sheet.

Further reading

See http://home.telfort.nl/sp969709/emp/empug.html
for more, including two white papers and downloads.

6.3.5 SdfMetz

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser
Status: stable, maintained

SdfMetz supports grammar engineering by calculating
grammar metrics and other analyses. Currently it sup-
ports four different grammar formalisms (SDF, DMS,
Antlr, and Bison) from which it calculates size, com-
plexity, structural, and ambiguity metrics. Output is
a textual report or in Comma Separated Value format.
The additional analyses implemented are visualisation,
showing the non-singleton levels of the grammar, or
printing the grammar graph in DOT format. The
definition of all except the ambiguity and the NPath
metrics were taken from the paper A metrics suite for
grammar based-software by James F. Power and Brian
A. Malloy. The ambiguity metrics were defined by the
tool author exploiting specific aspects of SDF gram-
mars, and the NPath metric definition was taken from
the paper NPATH: a measure of execution path com-
plexity and its applications.

Future plans

Efforts are underway to develop functionalities to com-
pute quality profiles based on histograms. Further-
more, more metrics will be added, and a web-interface
is planned.
The tool was initially developed in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) to develop a grammar for ISO VDM-
SL.

Further reading

The web site of SdfMetz (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/SdfMetz) includes tables of metric val-
ues for a series of SDF grammar as computed by
SdfMetz. The tool is distributed as part of the UMinho
Haskell Libraries and Tools.

47

http://www.moonloop.net/topwriter
http://savannah.nongnu.org/projects/isarmathlib
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://formalmath.tiddlyspot.com
http://home.telfort.nl/sp969709/emp/empug.html
http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz

6.4 Audio and Graphics

6.4.1 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project, audio signals are processed using pure
Haskell code. The highlights are:

◦ a basic signal synthesis backend for Haskore (→
5.9.3),

◦ experimental structures for filter networks,

◦ basic audio signal processing, including some hard-
coded frequency filters,

◦ advanced framework for signal processing supported
by physical units, that is, the plain data can be
stored in a very simple number format, even fixed
point numbers, but the sampling parameters rate
and amplitude can be complex types, like numbers
with physical units,

◦ frameworks for inference of sample rate and ampli-
tude, that is, sampling rate and amplitude can be
omitted in most parts of a signal processing expres-
sion. They are inferred automatically, just as types
are inferred in Haskell’s type system. Although the
inference of signal parameters needs some prepro-
cessing, the frameworks preserve the functional style
of programming and do not need Arrows and accord-
ing notation.
We have checked three approaches, where the last
one is the most promising.
– Explicitly maintain a dictionary of signal pa-

rameters in a Reader-Writer-State monad,
which must be computed completely before any
signal processing takes place. This forces all
signal parameters to share the same type and
prohibits infinitely many signal processors to be
involved (e.g., concatenation of infinitely many
short noises).

– Simulation of logic programming by lazy cy-
cles of function applications (i.e., tied knots,
fixed points). The main problems are quadrati-
cal computation complexity and a cumbersome
and error-prone application. Namely, for each
input you have to handle a parameter output,
and vice versa for propagation of parameters
through the network. You need combinators
(infix operators) for combining these functions,
but you will easily run into cases where you
must plug manually, which is a nightmare.

– Unify only the sample rate. Use a Reader func-
tor/monad. Amplitude is propagated from in-
puts to outputs only. This is a bit conservative,

but is simple and comprehensive and fulfils our
needs so far.

◦ We checked several low-level implementations in or-
der to achieve reasonable speed. The standard list
data structure is very convenient for programming
but much too slow for signal processing. We try to
get rid of it in several ways:

– A fusion framework based on mapAccumL and
unfoldr like functions. Since in current GHC
versions the optimisation rules do not fire reli-
ably (e.g., rules are not specialised if a function
gets specialised to a monomorphic type) we end
up with intermediate list structures too often.

– A chunky list based on the StorableVector is
much faster if higher order functions like map
and unfoldr are inlined. However, this data
structure is not elementwise lazy (a problem
for feedback), and can store only values of
Storable type (e.g., functions are excluded).

– A data structure analogous to the Stream
framework, where a list is represented by a
StateT s Maybe a which generates signal val-
ues by calling the generator function. In this
approach fusion happens by inlining, and lists
or other data structures can be used for sharing
and feedback including sharing.

A combination of the last two approaches seems to
be a good choice so far. However, maintaining all
code versions for comparison purposes led to much
code duplication in the meantime.

The library comes with basic Cabal support and re-
quires the Numeric Prelude framework (→ 5.5.4) of re-
vised numeric type classes.

Future plans

◦ Design a common API to the Haskell synthesiser
code, CSound support included in Haskore (→ 5.9.3),
and the SuperCollider interface.

◦ Connect with the HaskellDSP library http://
haskelldsp.sourceforge.net/. (As a beginning we have
prepared and uploaded it to Hackage.)

◦ Hope on faster code generated by Haskell compil-
ers. :-) In simple setups GHC generated code can
compete with C, but in more complex ones the per-
formance is not satisfying.

Further reading

◦ http://darcs.haskell.org/synthesizer/
◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

48

http://haskelldsp.sourceforge.net/
http://haskelldsp.sourceforge.net/
http://darcs.haskell.org/synthesizer/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

6.4.2 hmp3

Report by: Don Stewart
Status: stable, maintained

hmp3 is a curses-based mp3 player frontend to mpg321
and mpg123. It is written in Haskell. It is designed
to be simple, fast, and robust. It is very stable. hmp3
has been updated to version 1.5.1, and is available from
Hackage.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hmp3.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hmp3/

6.4.3 Glome

Report by: Jim Snow
Status: experimental

Glome is a rendering engine for 3-D graphics, based
on ray tracing. It was originally written in OCaml,
but has since been ported (except for a few features)
to Haskell, and most future development is likely to
happen in Haskell.
It supports shadows and reflections, and base prim-

itives include triangles, disks, boxes, cylinders, cones,
spheres, boxes, and planes. More complex primitives
can be made by grouping primitives, taking the boolean
difference or intersection of primitives, or by making
transformed instances.
Input and output capabilities are limited. Input is

accepted as NFF-format files, or scenes may also be
hard-coded in Haskell. Output is via an OpenGL win-
dow.
Rendering speed is reasonably fast, but a little too

slow for interactive graphics. Glome uses a Bound-
ing Interval Hierarchy internally to reduce the number
of ray-intersection tests, so that, in general, rendering
time increases logarithmically with scene complexity
rather than linearly.

Further reading

http://syn.cs.pdx.edu/~jsnow/glome/

6.4.4 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of libraries for
fast prototyping of simple computer vision and im-
age processing applications. We take advantage of
Haskell’s expressive power without any performance

loss, since most of the computationally expensive com-
putations are done by optimised libraries: HOpenGL,
hmatrix (→ 5.2.5), Intel’s IPP and MPlayer.
The interface to most image processing functions is

now purely functional, based on a first approach to
automatic generation of IPP wrappers. Other recent
developments include new experimental modules for
Kalman filtering and geometric algebra, and more il-
lustrative examples.

Further reading

http://alberrto.googlepages.com/easyvision

6.5 Proof Assistants and Reasoning

6.5.1 Galculator

Report by: Paulo Silva
Status: unstable, work in progress

The Galculator is a prototype of a proof assistant based
on the algebra of Galois connections. When combined
with the pointfree transform and tactics such as the
indirect equality principle, Galois connections offer a
very powerful, generic device to tackle the complexity
of proofs.
The prototype of Galculator is being developed un-

der an ongoing PhD project. It is still experimental
and things tend to change quickly, but we are close to
release the first usable version.
The source code is available from a public SVN reposi-

tory accessible from the project homepage. After reach-
ing its first version it will also be available from Hack-
age.
Currently, we are working on the automatic deriva-

tion of the so-called “free-theorems” of polymorphic
functions (→ 3.3.2) and their application to proofs.
Moreover, more complex constructions of Galois con-
nections are also being studied. Finally, we plan to in-
tegrate the Galculator with a theorem prover, namely
Coq.

Further reading

http://www.di.uminho.pt/research/galculator

6.5.2 funsat: DPLL-style Satisfiability Solver

Report by: Denis Bueno
Status: First release imminent, repository available

funsat (mnemonic: functional SAT solver) is a mod-
ern satisfiability solver in Haskell, intended to be com-
petitive with state-of-the-art solvers (which are mostly
written in C/C++). The strategy is to draw on many
ideas from the literature and implement them in a way
that is functional, testable, and difficult to accomplish

49

http://www.cse.unsw.edu.au/~dons/hmp3.html
http://www.cse.unsw.edu.au/~dons/code/hmp3/
http://syn.cs.pdx.edu/~jsnow/glome/
http://alberrto.googlepages.com/easyvision
http://www.di.uminho.pt/research/galculator

concisely in a lower-level language. Currently the em-
phasis is on techniques for solving structured, rather
than randomised, instances.
Funsat can solve many structured instances from

satlib (http://www.cs.ubc.ca/~hoos/SATLIB/benchm.
html) including PARITY (16 series), BF, blocksworld,
and logistics. Many are solved in a few seconds.
The code in its current state is available as a git

repository:

$ git clone http://churn.ath.cx/funsat

The immediate priority is an initial release, which
should happen shortly after the end of May.

6.5.3 sat-micro-hs: SAT-Micro in Haskell

Report by: Denis Bueno
Status: Version 0.1.1

Sat-micro-hs is a Haskell port of the OCaml satisfiabil-
ity (SAT) solver described in “SAT-Micro: petit mais
costaud!” (“SAT-Micro: small but strong!”, see be-
low). The paper describes a minimal solver with the
flavour of a modern SAT solver, without the robustness
necessary for solving hard SAT instances. This port is
intended for those interested in SAT generally, as well
as any interested in the paper specifically, but who do
not read French.
The code is available from Hackage at

http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/sat-micro-hs.

Further reading

Sylvain Conchon, Johannes Kanig, and Stéphane Les-
cuyer. “SAT-Micro: petit mais costaud!” In Dix-
neuvièmes Journées Francophones des Langages Appli-
catifs, Étretat, France, 2008. INRIA. Available online
at http://www.lri.fr/~conchon/publis/conchon-jfla08.ps.

6.5.4 Saoithín: a 2nd-order proof assistant

Report by: Andrew Butterfield
Status: ongoing

Saoithín (pronounced “Swee-heen”) is a GUI-based
2nd-order predicate logic proof assistant. The motiva-
tion for its development is the author’s need for support
in doing proofs within the so-called “Unifying Theo-
ries of Programming” paradigm (UTP). This requires
support for 2nd-order logic, equational reasoning, and
meets a desire to avoid re-encoding the theorems into
some different logical form. It also provides proof tran-
scripts whose style makes it easier to check their cor-
rectness.
Saothín is implemented in GHC 6.4 and wxHaskell

0.9.4, and has been tested on a range of Windows plat-
forms (98/XP/Vista), and should work in principle on

Linux/Mac OS X. A first public release of the software
in some form is anticipated in early 2008.

Further reading

https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin

6.5.5 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude/OBJ lan-
guages with special emphasis on the use of simple pro-
grammable strategies for controlling program execu-
tion and new commands enabling powerful execution
modes.
The tools have been developed at the Technical Uni-

versity of Valencia (UPV) as part of a number of re-
search projects. The following people are (or have
been) involved in the development of these tools: Beat-
riz Alarcón, María Alpuente, Demis Ballis (Università
di Udine), Santiago Escobar, Moreno Falaschi (Univer-
sità di Siena), Javier García-Vivó, Raúl Gutiérrez, José
Iborra, Salvador Lucas, Rafael Navarro, Eloy Romero,
Pascal Sotin (Université du Rennes).

Status

The previous work led to the following tools:

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched in February 2002).
http://zenon.dsic.upv.es/muterm
Standalone versions of the tool are available for dif-
ferent platforms (Linux, Mac OS X, Windows). A
web-based interface (developed in HAppS) is also
available:
http://zenon.dsic.upv.es/webmuterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched in December 2002).
http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched in January 2003).
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi

◦ GVerdi: A Rule-based System for Web site Verifica-
tion (first version launched in January 2005).

All these tools have been written in Haskell (mainly de-
veloped using Hugs and GHC) and use popular Haskell
libraries like HAppS, hxml-0.2, Parsec, RegexpLib98,
wxHaskell.

50

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://churn.ath.cx/funsat
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/sat-micro-hs
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/sat-micro-hs
http://www.lri.fr/~conchon/publis/conchon-jfla08.ps
https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin
http://zenon.dsic.upv.es/muterm
http://zenon.dsic.upv.es/webmuterm
http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client/server applications (e.g., compilers
or complementary tools).

References

◦ Building .NET GUIs for Haskell applications. B.
Alarcón and S. Lucas. 6th International Conference
on .NET Technologies, pages 57–66, 2006.

◦ Proving Termination of Context-Sensitive Rewrit-
ing With MU-TERM B. Alarcón, R. Gutiérrez, J.
Iborra, and S. Lucas. Electronic Notes in Theoreti-
cal Computer Science, 118:105-115, 2007.

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1–16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting Remote Tools: Do it by yourSELF! M.
Alpuente and S. Lucas. ERCIM News 61:48–49,
April 2005.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200–209, Springer-
Verlag, Berlin, 2004.

◦ A Rule-based System for Web site Verification.
Demis Ballis and Javier García-Vivó. 1st In-
ternational Workshop on Automated Specification
and Verification of Web Sites, WWV’05, Valencia
(SPAIN). Electronic Notes in Theoretical Computer
Science, 157(2):11–17, 2006.

6.5.6 Inference Services for Hybrid Logics

Report by: Carlos Areces
Participants: Daniel Gorin, Guillaume Hoffmann

“Hybrid Logic” is a loose term covering a number of log-
ical systems living somewhere between modal and clas-
sical logic. For more information on these languages,
see http://hylo.loria.fr
The Talaris group at Loria, Nancy, France (http:

//talaris.loria.fr) and the GLyC group at the Com-
puter Science Department of the University of Buenos
Aires, Argentina (http://www.glyc.dc.uba.ar/) are de-
veloping a suite of tools for automated reasoning for
hybrid logics, available at http://hylo.loria.fr/intohylo/.
Most of them are (successfully) written in Haskell. See

HyLoRes (→ 6.5.7), HTab (→ 6.5.8), and HGen (→
6.5.9).

6.5.7 HyLoRes

Report by: Carlos Areces
Participants: Daniel Gorin, Guillaume Hoffmann
Status: active development
Current release: 2.4

HyLoRes is an automated theorem prover for hybrid
logics (→ 6.5.6) based on a resolution calculus. It is
sound and complete for a very expressive (but unde-
cidable) hybrid logic, and it implements termination
strategies for certain important decidable fragments.
The project started in 2002, and has been evolving
since then. It is currently being extended to handle
even more expressive logics (including, in particular,
temporal logics). In the near future, we will investi-
gate algorithms for model generation.
The source code is available. It is distributed under

the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Gorin, D. Ordered Resolution with
Selection for H(@). In Proceedings of LPAR 2004,
pp. 125–141, Springer, Montevideo, Uruguay, 2005.

◦ Areces, C. and Heguiabehere, J. HyLoRes: A Hybrid
Logic Prover Based on Direct Resolution. In Pro-
ceedings of Advances in Modal Logic 2002, Toulouse,
France, 2002.

◦ Site and source: http://hylo.loria.fr/intohylo/hylores.
php

6.5.8 HTab

Report by: Carlos Areces
Participants: Daniel Gorin, Guillaume Hoffmann
Status: active development
Current release: 1.2.2

HTab is an automated theorem prover for hybrid log-
ics (→ 6.5.6) based on a tableau calculus. The goal is
to implement a terminating tableau algorithm for the
basic hybrid logic and for the basic logic extended with
the universal modality. It is currently in early develop-
ment. It will be tunable with various optimisations.
The source code is available. It is distributed under

the terms of the Gnu GPL.

Further reading

◦ Hoffmann, G. and Areces, C. HTab: a terminat-
ing tableaux system for hybrid logic. In Methods for
Modalities 5, Cachan, France, 2007.

◦ Site and source: http://hylo.loria.fr/intohylo/htab.
php

51

http://hylo.loria.fr
http://talaris.loria.fr
http://talaris.loria.fr
http://www.glyc.dc.uba.ar/
http://hylo.loria.fr/intohylo/
http://hylo.loria.fr/intohylo/hylores.php
http://hylo.loria.fr/intohylo/hylores.php
http://hylo.loria.fr/intohylo/htab.php
http://hylo.loria.fr/intohylo/htab.php

6.5.9 HGen

Report by: Carlos Areces
Participants: Daniel Gorin, Guillaume Hoffmann
Status: active development
Current release: 1.1

HGen is a random CNF (conjunctive normal form)
generator of formulas for different hybrid logics. It is
highly parametrised to obtain tests of different com-
plexity for the different languages. It has been exten-
sively used in the development of HyLoRes (→ 6.5.7)
and HTab (→ 6.5.8).
The source code is available. It is distributed under

the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Heguiabehere, J. hGen: A Random
CNF Formula Generator for Hybrid Languages. In
Methods for Modalities 3 (M4M-3), Nancy, France,
September 2003.

◦ Site and source: http://hylo.loria.fr/intohylo/hgen.
php

6.6 Modelling and Analysis

6.6.1 Coconut

Report by: Wolfram Kahl
Participants: Christopher K. Anand
Status: on-going development

Coconut (COde CONstructing User Tool) is a special-
purpose compiler project aiming to provide a coherent
tool bench for the development of high-performance,
high-assurance scientific computation, and to cover the
full range of development activity from mathematical
modelling to verification.
Development of the integrated tool bench is in
(GHC-)Haskell, and currently proceeding from the bot-
tom up. As code generation target, we are for now
focusing on support for the Cell BE, and in particu-
lar the special-purpose SPU compute engines of which
there are eight on a single Cell BE chip.
A type-indexed embedded DSL for declarative as-

sembly language includes complex SIMD-isation pat-
terns which are easier to encapsulate in the DSL and
apply across 30 functions than they would be to im-
plement even for a single function in C. To support
rapid prototyping, Coconut includes instruction seman-
tics sufficient to simulate SIMD instruction execution
within Haskell. This significantly reduces the time
spent on developing new patterns and exploring edge
cases for mixed fixed/floating point computations by
debugging and unit testing right in GHCi.
The central internal representation are “code

graphs”, which are used to represent both data-flow
graphs and control flow graphs, with separate levels of

nesting for non-concurrent and concurrent control flow.
For scheduling simple loop bodies programmed in the
DSL, we use our Explicitly Staged Software Pipelining
(ExSSP) algorithm on the data-flow code graph repre-
sentation.
Our implementation of single-precision special func-
tions (sin, sinh, asin, . . ., sqrt, cbrt, exp, log, lgamma,
. . .) for the SPU is distributed as MASS in the Cell BE
SDK 3.0 in both generated C (for inlining) and long
vector functions scheduled by Coconut. In comparison
with a state-of-the-art hand-tuned C implementation
of these library functions using in-line assembly in the
form of intrinsic functions and scheduled by the com-
piler spu-xlc, the Coconut-generated and -scheduled
implementations are roughly four times faster; in many
cases we know that our implementations are optimal.
We are currently making good progress on novel con-
trol flow patterns and scheduling algorithms to support
them, a virtual machine model for multicore architec-
tures, and verification strategies for SIMD-isation and
multicore synchronisation, in an effort to bring the level
of usability we have achieved with the DSL for SIMD-
isation also to multicore parallelism.

Further reading

http://coconut.mcmaster.ca/

6.6.2 Streaming Component Combinators

Report by: Blažević Mario
Status: experimental, actively developed

Streaming Component Combinators are an experiment
at modelling dataflow architecture by using compos-
able streaming components. All components are cate-
gorised into a small set of component types. A number
of components can be composed into a compound com-
ponent using a component combinator. For example,
two transducer components can be composed together
using a pipe operator into another transducer; one split-
ter and two transducers can be composed using an if
combinator into a single compound transducer. Com-
ponents are implemented as coroutines, and the data
flow among them is synchronous.
There are two ways to use SCC: as an embedded

language in Haskell, or as a set of commands in a
command-line shell. The latter provides its own parser
and a rudimentary type checker, but otherwise relies
on the former to do the real work.
The original work was done in the OmniMark pro-

gramming language. Haskell was the language of
choice for the second implementation because its strong
typing automatically makes the embedded language
strongly typed, and because its purity forces the im-
plementation to expose the underlying semantics.
The currently planned future work includes extend-

ing the set of primitive components and component

52

http://hylo.loria.fr/intohylo/hgen.php
http://hylo.loria.fr/intohylo/hgen.php
http://coconut.mcmaster.ca/

combinators, and improving the type-checking and
scripting abilities of the shell interface.
The latest stable version of SCC is available from

Hackage.

Further reading

◦ Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/scc-0.1

◦ Conference paper: Mario Blažević, Stream-
ing component combinators, Extreme Markup
Languages, 2006. http://www.idealliance.org/
papers/extreme/proceedings/html/2006/Blazevic01/
EML2006Blazevic01.html

◦ OmniMark implementation:
http://developers.omnimark.com/etcetera/
streaming-component-combinators.tar.gz

6.6.3 Raskell

Report by: Jennifer Streb
Participants: Garrin Kimmell, Nicolas Frisby, Mark

Snyder, Philip Weaver, Perry Alexander
Status: beta, actively maintained

Raskell is a Haskell-based analysis and interpreta-
tion environment for specifications written using the
system-level design language Rosetta. The goal of
Rosetta is to compose heterogeneous specifications into
a single semantic environment. Rosetta provides mod-
elling support for different design domains employing
semantics and syntax appropriate for each. Therefore,
individual specifications are written using semantics
and vocabulary appropriate for their domains. Infor-
mation is then composed across these domains by defin-
ing interactions between them.
The heart of Raskell is a collection of composable in-

terpreters that support type checking, evaluation, and
abstract interpretation of Rosetta specifications. Alge-
bra combinators allow semantic algebras for the same
constructs, but for different semantics, to be easily
combined. This facilitates further reuse of semantic
definitions. Comonads are used to structure a denota-
tion of temporal Rosetta specifications. We are also in-
vestigating the use of comonads to capture other mod-
els of computation as supported by Rosetta domains.
Using abstract interpretation, we can transform speci-
fications between semantic domains without sacrificing
soundness. This allows for analysis of interactions be-
tween two specifications written in different semantic
domains. Raskell also includes a Parsec-based Rosetta
parser that generates both recursive and non-recursive
AST structures.
The Raskell environment is available for download at

the links below. It is continually being updated, so we
recommend checking back frequently for updates. To
build the Rosetta parser and type checker, you must
also install InterpreterLib (→ 5.4.7) and algc (a pre-

processor for functorial boilerplate), both available at
the third link listed below.

Further reading

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-rosetta.htm#raskell

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-raskell.htm

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

〈alex@ittc.ku.edu〉

6.6.4 VooDooM

Report by: Tiago Miguel Laureano Alves
Participants: Paulo Silva
Status: stable, maintained

VooDooM supports understanding and re-engineering
of VDM-SL specifications.
Understanding is accomplished through the extrac-

tion and derivation of different kinds of graphs such as
type dependency, function dependency, and strongly
connected components graphs. These graphs can be
subject of both visualisation (by exporting into DOT
format) and metrication (generating CSV or text re-
port).
Re-engineering is supported through the applica-

tion of transformation rules to the datatypes to ob-
tain an equivalent relational representation. The re-
lational representation can be exported as VDM-SL
datatypes (inserted back into the original specification)
and/or SQL table definitions (can be fed to a relational
DBMS).
The first VooDooM prototype, supporting re-

engineering, was developed in a student project by
Tiago Alves and Paulo Silva. The prototype was fur-
ther enhanced and continued as an open source project
(http://voodoom.sourceforge.net/) in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) by Tiago Alves and finally in the con-
text of a MSc thesis project.

Future plans

It is planned that the re-engineering functionality of
VooDooM will be replaced by the one that is being
developed for the 2LT project (→ 5.6.5), which will add
XML and Haskell generation.

Further reading

VooDooM is available from http://voodoom.
sourceforge.net/. The implementation of VooDooM
makes ample use of strategic programming, using Stra-
funski, and is described in Strategic Term Rewriting

53

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/scc-0.1
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/scc-0.1
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: alex at ittc.ku.edu
http://voodoom.sourceforge.net/
http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://voodoom.sourceforge.net/
http://voodoom.sourceforge.net/

and Its Application to a VDM-SL to SQL Conversion
(Alves et al., Formal Methods 2005) and in the
MSc thesis VooDooM: Support for understanding and
re-engineering of VDM-SL specifications.

6.7 Specialised Domains

6.7.1 A Survey on the Use of Haskell in
Natural-Language Processing

Report by: Richard A. Frost

The survey “Realization of Natural-Language Inter-
faces Using Lazy Functional Programming” was pub-
lished in ACM Computing Surveys, Volume 38, Issue
4, Article 11, in December 2006. It was in the Top
10 downloads from ACM Magazines and Surveys for
February and March of 2007. The survey is now be-
ing used at a few universities as required reading for
courses on computational linguistics.
The survey currently contains 168 references to rel-

evant publications. The survey will be updated as
more information becomes available. Please send infor-
mation on recent publications in this area to 〈rfrost@
cogeco.ca〉

Further reading

A draft of the survey is available at:
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_
LFP_SURVEY_DRAFT.pdf

6.7.2 GenI

Report by: Eric Kow

GenI is a surface realiser for Tree Adjoining Grammars.
Surface realisation can be seen as the last stage in a nat-
ural language generation pipeline. GenI in particular
takes an FB-LTAG grammar and an input semantics
(a conjunction of first order terms), and produces the
set of sentences associated to the input semantics by
the grammar. It features a surface realisation library,
several optimisations, batch generation mode, and a
graphical debugger written in wxHaskell. It was devel-
oped within the TALARIS project and is free software
licensed under the GNU GPL.
GenI has recently been updated to compile on GHC

6.8.2. It is also available on Hackage, and can be in-
stalled via cabal-install. We also now have a mailing list
at http://websympa.loria.fr/wwsympa/info/geni-users.

Further reading

◦ http://trac.loria.fr/~geni
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en

6.7.3 Bioinformatics tools

Report by: Ketil Malde

The Haskell bioinformatics library supports working
with nucleotide and protein sequences and associated
data. File format support includes sequences in Fasta
(with associated quality information), TwoBit, and
PHD formats, BLAST XML output, and ACE align-
ment files.
The standard alignment algorithms (and some non-

standard ones) are provided, as well as sequence index-
ing, complexity calculation, protein translation, etc.
The library is considered in development (meaning

things will be added, some functionality may not be as
complete or well documented as one would wish, and so
on), but central parts should be fairly well documented
and come with a QuickCheck test and benchmarking
suite.
The library abstracts functionality that is used in a

handful of applications, including:

◦ xsact — an EST clustering program

◦ RBR — a repeat detector/masker

◦ clusc — a tool for calculating cluster similarity with
a bunch of metrics

◦ dephd — a sequence quality assessment tool

◦ xml2x — a BLAST postprocessor and GO annotator

Everything is GPLed and available as Darcs repos,
at http://malde.org/~ketil/biohaskell/.

6.7.4 Inductive Programming

Report by: Lloyd Allison

Inductive Programming (IP): The learning of general
hypotheses from given data.
The project is (i) to use Haskell to examine what

are the products of artificial-intelligence (AI)/data
mining/machine-learning from a programming point of
view, and (ii) to do data analysis with them.
IP 1.2 now contains estimators, from given weighted

and unweighted data, to the Poisson and Geometric
distributions over non-negative integer variables, and
Student’s t-Distribution over continuous variables. The
new (and the earlier) distributions may be used as com-
ponents to the learners (estimators) of structured mod-
els such as unsupervised classifications (mixture mod-
els), classification- (decision-, regression-) trees and
other function-models (regressions), mixed Bayesian
networks, and segmentation models. IP’s modules have
also been slightly reorganised.

54

mailto: rfrost at cogeco.ca
mailto: rfrost at cogeco.ca
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf
http://websympa.loria.fr/wwsympa/info/geni-users
http://trac.loria.fr/~geni
http://hal.inria.fr/inria-00088787/en
http://malde.org/~ketil/biohaskell/

A small prototype module of numerical/scientific
functions, in Haskell, has been added to IP 1.2, to sup-
port the implementation of Student’s t-Distribution in
the first instance.
Prototype code is available (GPL) at the URL below.

Future plans

Planned are continuing extensions, applications to real
data-sets, and comparisons against other learners.

Further reading

◦ http://www.allisons.org/ll/FP/IP/
◦ http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

6.8 Others

6.8.1 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell
evaluator, lambda calculus interpreter, unlambda in-
terpreter, pointfree programming, dictd client, fortune
cookies, Google search, online help, and more.
lambdabot 4.0 has been released, and is available

from Hackage. Cale Gibbard has also kindly taken over
maintainance of the bot.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/lambdabot.html

◦ The source repository is available:
darcs get http://code.haskell.org/lambdabot

6.8.2 FreeArc

Report by: Bulat Ziganshin
Status: beta

At this moment, FreeArc is the best practi-
cal archiver in the world, providing the max-
imum speed/compression ratio (http://www.
maximumcompression.com/data/summary_mf2.php).
Besides this, FreeArc provides a lot of features, in-

cluding solid archives with fast updates, tunable com-
pression algorithms, support for external compressors,
automatic selection of compression algorithm depend-
ing on file type, data encryption and recovery, Win32
and Linux versions, tunable sorting and grouping of
files, and FAR/Total Commander MultiArc support.
Such an ambitious goal was accomplished by bringing

together Haskell and C++: speed-critical parts (com-
pression, encryption) are written in C++, while ev-
erything else benefits from fast development and high

reliability opportunities provided by Haskell. I should
also note that compared to other archivers (tradition-
ally written in C++) FreeArc provides smarter algo-
rithms of archive management, which is again due to
the high level of the Haskell programming paradigm.
Program sources are open, so you can borrow there:

◦ compression libraries which include 11 compres-
sion algorithms with easy Haskell interface (http:
//haskell.org/haskellwiki/Library/Compression)

◦ encryption code which provides AES, Blowfish,
Twofish, and Serpent encryption algorithms with all
the bells and whistles (PRNG, PBKDF, SHA512)
required for really secure encryption of data streams

Moreover, the program includes a few more modules
that you may reuse in your program on BSD3 license:

◦ Win32Files.hs — implements I/O on Windows for
files > 4GB and files with Unicode names

◦ Files.hs — provides an OS-independent interface to
the features of Win32Files

◦ Charsets.hs — encode/decode data in OEM, ANSI,
UTF-8/16/32 encodings

◦ ByteStream.hs — binary serialisation library

◦ UTF8Z.hs — UTF8-packed strings (like ByteString,
but with a more memory-efficient representation)

◦ Process.hs — allows to construct data-processing al-
gorithms from individual processes by joining them
together very much like ordinary programs are joined
by Unix shell

The program is extensively commented in Russian,
so for Russian-speaking Haskellers it may be an invalu-
able source for learning “practical Haskell”.

Further reading

Download: http://freearc.sourceforge.net

Contact

〈Bulat.Ziganshin@gmail.com〉

6.8.3 Roguestar

Report by: Christopher Lane Hinson
Status: early development

Roguestar is a science fiction themed roguelike (turn-
based, chessboard-tiled, role playing) game written in
Haskell. Roguestar uses OpenGL for graphics.
Roguestar 0.2 was announced on May 9 2008, and

featured a simple combat system.

55

http://www.allisons.org/ll/FP/IP/
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://www.cse.unsw.edu.au/~dons/lambdabot.html
http://code.haskell.org/lambdabot
http://www.maximumcompression.com/data/summary_mf2.php
http://www.maximumcompression.com/data/summary_mf2.php
http://haskell.org/haskellwiki/Library/Compression
http://haskell.org/haskellwiki/Library/Compression
http://freearc.sourceforge.net
mailto: Bulat.Ziganshin at gmail.com

RSAGL, the RogueStar Animation and Graphics Li-
brary, includes a domain-specific monad for 3D mod-
elling of arbitrary parametric surfaces, as well as an
animation monad and arrow, which is more or less like
YAMPA as a stack of arrow transformers. RSAGL was
specifically designed for roguestar, but every effort has
been made (including the license) to make it accessible
to other projects that might benefit from it.
Roguestar is licensed under the Affero General Pub-

lic License. RSAGL is licensed under a permissive li-
cense.

Further reading

http://roguestar.downstairspeople.org

56

http://roguestar.downstairspeople.org

7 Commercial Users

7.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Björn Bringert, Duncan Coutts

Well-Typed is a company which provides consulting
services to users of Haskell. The company was incor-
porated in March 2008, with Björn Bringert, Duncan
Coutts, and Ian Lynagh making up the founding part-
ners.
We offer a broad range of services, from initial project

design and training to development, maintenance, and
performance tuning, and everything in between.
For more information, please take a look at our web-

site, or drop us an e-mail at 〈info@well-typed.com〉.

Further reading

◦ Website: http://www.well-typed.com/
◦ Blog: http://blog.well-typed.com/

7.2 SeeReason Partners, LLC

Report by: Clifford Beshers
Participants: David Fox, Jeremy Shaw

Clifford Beshers, David Fox, and Jeremy Shaw have
formed SeeReason Partners, LLC. Our plan is to de-
liver services over the internet, using Haskell to build
our applications whenever possible. We are looking at
a variety of niche domains, including teaching primary
mathematics skills and art appraisal, seeking to cre-
ate sites that support social networking, learning, and
digital asset management.
Often such projects employ large teams of develop-

ers and artists to hand-craft a look and feel. We want
to exploit functional programming to generate content,
or at least distribute the labour, more efficiently. We
are exploring both AJAX technologies and Macrome-
dia Flash. We are working on a Haskell to Flash com-
piler, as well as libraries to construct applications with
Adobe’s Flex UI toolkit.
Formerly core members of the operating systems

group at Linspire, Inc., we continue to maintain the
tools for managing a Debian Linux distribution that
we developed there. Source code for these tools can
be found at our public source code repository http:
//src.seereason.org/. We plan to use these tools to pro-
vide current archives of Haskell related packages.
We can be reached at 〈(cliff,david,jeremy)@seereason.

com〉 and on #haskell (→ 1.2) respectively as thetall-
guy, dsfox, and stepcut.

7.3 Ansemond LLC

Report by: Sengan Baring-Gould

Find It! Keep It! is a Mac Web Browser that lets
you keep the pages you visit in a database. A list
of these pages is shown in the “database view”. This
view is rendered by the browser from generated HTML
and is dynamically updated by Javascript DOM oper-
ations: tens of thousands of elements cannot efficiently
be placed on the screen using DOM operations only,
while rerendering a half a megabyte of HTML each
time a user interface element changes is unresponsive.
A glitch free user experience requires keeping these two
separate mechanisms synchronised, which proved diffi-
cult.

A new Haskell implementation generates abstract
DOM operations which are then either rendered to
HTML or are converted to Javascript DOM operations
to be run within the browser. While this process is not
complex (difficult algorithm) it is complicated (hard
for the programmer to keep everything in mind). The
additional modularity afforded by laziness proved in-
valuable, enabling all the different pieces to be coded
much more independently and clearly than was possi-
ble in the original Python version. This same engine
could be used on a web server and would work with
any web browser. The Haskell version is scheduled to
ship in version 1.1 of Find It! Keep It!
Ansemond LLC is at http://www.ansemond.com.

7.4 Credit Suisse Global Modelling and
Analytics Group

Report by: Ganesh Sittampalam

GMAG, the quantitative modelling group at Credit Su-
isse, has been using Haskell for various projects since

57

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/
http://src.seereason.org/
http://src.seereason.org/
mailto: (cliff,david,jeremy) at seereason.com
mailto: (cliff,david,jeremy) at seereason.com
http://www.ansemond.com

the beginning of 2006, with the twin aims of improving
the productivity of modellers and making it easier for
other people within the bank to use GMAG models.
Many of GMAG’s models use Excel combined with

C++ addin code to carry out complex numerical com-
putations and to manipulate data structures. This
combination allows modellers to combine the flexibility
of Excel with the performance of compiled code, but
there are significant drawbacks: Excel does not sup-
port higher-order functions and has a rather limited
and idiosyncratic type system. It is also extremely dif-
ficult to make reusable components out of spreadsheets
or subject them to meaningful version control.
Because Excel is (in the main) a side-effect free en-

vironment, functional programming is in many ways a
natural fit, and we have been using Haskell in various
ways to replace or augment the spreadsheet environ-
ment.
Our past projects include:

◦ Adding higher-order functions to Excel, implemented
via (Haskell) addin code.

◦ Tools to transform spreadsheets into directly exe-
cutable code.

◦ A “lint” tool to check for common errors in spread-
sheets.

Our main current project is Paradise, a domain-
specific language embedded in Haskell for implement-
ing reusable components that can be compiled into mul-
tiple target forms. It has been under development for
over 18 months now, and over that time the team work-
ing on it has grown to several people.
Paradise’s first target form was Excel spreadsheets,

and that backend is now relatively mature; our main
focus at the moment is generating .NET components
which can be run standalone or plugged into a bank-
wide system. In future we may target yet more diverse
platforms such as web browsers.
Several modellers have now been exposed directly

to Haskell by using Paradise, and they have generally
picked it up fairly quickly. All new recruits are now
introduced to Haskell as part of our internal training
program.

Further reading

CUFP 2006 talk about Credit Suisse:
http://cufp.galois.com/slides/2006/HowardMansell.pdf

7.5 Barclays Capital Quantitative
Analytics Group

Report by: Simon Frankau

Barclays Capital’s Quantitative Analytics group is us-
ing Haskell to develop an embedded domain-specific

functional language (called “FPF”) which is used to
specify exotic equity derivatives. These derivatives,
which are naturally best described in terms of math-
ematical functions, and constructed compositionally,
map well to being expressed in an embedded functional
language. This language is now regularly being used by
people who had no previous functional language expe-
rience.
The FPF description then serves as the core descrip-

tion of the trade structure, with different interpreta-
tions being used to perform operations from generating
pricing instructions for the bank’s risk systems through
to generating trade input forms and reports. The sys-
tem thus automates the introduction of new products,
replacing the previous approach of manually extending
each subsystem to cope with a new trade type manu-
ally. It has dramatically reduced the turnaround time
to make a new trade production-ready.
We have found Haskell to be a great language in

which to implement an embedded functional language,
and to be very effective as a language for rapid devel-
opment.
We have been working on the system for a little over

a year, and it has been in production use for most of
that time, with new features and interpretations being
added incrementally over that time.
We are hiring. Please contact Simon Frankau
〈Simon.Frankau@barcap.com〉 for more details.

7.6 Bluespec tools for design of complex
chips

Report by: Rishiyur Nikhil
Status: Commercial product

Bluespec, Inc. provides tools for chip design, mod-
elling, and verification (ASICs and FPGAs), inspired
by Haskell and Term Rewriting Systems. Bluespec also
uses Haskell to implement many of its tools (over 100K
lines of Haskell). Bluespec’s products include synthesis,
simulation, and other tools for Bluespec SystemVerilog
(BSV).
Bluespec’s customers are using BSV’s high expres-

sivity and full synthesisability to move into hard-
ware many functions previously thought to be feasible
only in software (complex algorithms, testbenches, and
models).
BSV is based on the following semantic model: hard-

ware behaviour is expressed using Rewrite Rules, and
inter-module communication is expressed using Rule-
based Interface Methods (which allow rules to be com-
posed from fragments that span module boundaries).
Because rules are atomic transactions, they eliminate
a majority of the “timing errors” and “race condi-
tions” that plague current hardware design using ex-
isting RTL languages like Verilog or VHDL. Rules also

58

http://cufp.galois.com/slides/2006/HowardMansell.pdf
mailto: Simon.Frankau at barcap.com

enable powerful reasoning about the functional correct-
ness of systems. In other words, the concurrency model
provided by rules is much more powerful and abstract
than the low-level concurrency models provided by Ver-
ilog, VHDL, and SystemC.
BSV incorporates Haskell-style polymorphism and

overloading (typeclasses) into SystemVerilog’s type sys-
tem. BSV also treats modules, interfaces, rules, func-
tions, etc. as first-class objects, permitting very power-
ful static elaboration (including recursion).
Bluespec tools synthesise source code into clocked

synchronous hardware descriptions (in Verilog RTL)
that can be simulated or further synthesised to netlists
using industry-standard tools. This automates the gen-
eration of control logic to manage complex concurrent
state update, a major source of errors in current design
methodology, where this logic must be manually coded
by the designer.
The powerful Haskell-like static elaboration in BSV

is control adaptive, i.e., a parameterised design can
elaborate into different microarchitectures which have
different resource conflicts, but the typically complex
control logic necessary to manage these conflicts is syn-
thesised automatically based on the atomic transaction
semantics — this is key to BSV’s high level of abstrac-
tion.
Bluespec participates in standards committees like

IEEE P1800 (SystemVerilog) and IEEE P1666 (Sys-
temC), where it tries to encourage adoption of the
declarative programming ideas in BSV. One success has
been the adoption of Bluespec’s proposals for “tagged
unions (algebraic types) and pattern matching” in the
current IEEE SystemVerilog standard.

Status

Bluespec SystemVerilog and its tools have been avail-
able since 2004. The tools are now in use by several
major semiconductor companies (see Bluespec website
or contact Bluespec for details) and several universi-
ties (including MIT, CMU, UT Austin, Virginia Tech,
Indian Institute of Science, and U. Tokyo).

Availability

Bluespec SystemVerilog tools are sold commercially by
Bluespec, Inc., which also makes all its tools available
at no charge to academic institutions for teaching and
research.

Some historical notes and acknowledgements

The technology for synthesising from Term Rewriting
Systems to competitive RTL was originally developed
by James Hoe and Prof. Arvind at MIT in the late
1990s. At Sandburst Corp., during 2000–2003, Lennart
Augustsson was the principal designer of “Bluespec
Classic”, the first “industrial strength” variant of the

language, with Rishiyur Nikhil, Joe Stoy, Mieszko Lis,
and Jacob Schwartz contributing to language and tool
development and use. The latter four continued work
on BSV at Bluespec, Inc. from 2003 with additional
contributions from Ravi Nanavati, Ed Czeck, Don Bal-
tus, Jeff Newbern, Elliot Mednick, and several summer
interns.

Further reading

◦ Company website and wiki: http://www.bluespec.
com, http://www.bluespec.com/wiki
A series of small illustrative examples: http://www.
bluespec.com/wiki/SmallExamples

◦ Winning entry in MEMOCODE 2008 contest to de-
crypt, sort and re-encrypt a database of records; 1100
times faster than the reference software, 11 times
faster than the runner-up; the only entry to be im-
plemented entirely in hardware (FPGA), written in
BSV: http://rĳndael.ece.vt.edu/memocontest08/

◦ Publications:
http://www.bluespec.com/technology/research.htm
Bringing Declarative Programming into a Commer-
cial Tool for Developing Integrated Circuits, Rishiyur
Nikhil, Commercial Users of Functional Program-
ming (CUFP), September 2006, slides of presenta-
tion at http://www.galois.com/cufp/
MIT courseware, “Complex Digital Systems”:
http://csg.csail.mit.edu/6.375
A fun example with lots of functional-programming
features — BluDACu, a parameterised Bluespec
hardware implementation of Sudoku:
http://www.bluespec.com/products/BluDACu.htm

7.7 Galois, Inc.

Report by: Andy Adams-Moran

Galois is an employee-owned software development
company based in Beaverton, Oregon, U.S.A. Ga-
lois started in late 1999 with the stated purpose of
using functional languages to solve industrial prob-
lems. These days, we emphasise the needs of our
clients and their problem domains over the tech-
niques, and the slogan of the Commercial Users of
Functional Programming Workshop (see http://cufp.
functionalprogramming.com/) exemplifies our approach:
Functional programming as a means, not an end.
Galois develops software under contract, and every

project (bar three) that we have ever done has used
Haskell. The exceptions used ACL2, Poly-ML, SML-
NJ, and OCaml, respectively, so functional program-
ming languages and formal methods are clearly our “se-
cret sauce”. We deliver applications and tools to clients
in industry and the U.S. government. Some diverse ex-
amples: Cryptol, a domain-specific language for cryp-
tography (with an interpreter and a compiler, with mul-

59

http://www.bluespec.com
http://www.bluespec.com
http://www.bluespec.com/wiki
http://www.bluespec.com/wiki/SmallExamples
http://www.bluespec.com/wiki/SmallExamples
http://rijndael.ece.vt.edu/memocontest08/
http://www.bluespec.com/technology/research.htm
http://www.galois.com/cufp/
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://cufp.functionalprogramming.com/
http://cufp.functionalprogramming.com/

tiple targets, including FPGAs); a GUI debugger for a
specialised microprocessor; a specialised, high assur-
ance, cross-domain web and file server, and wiki for
use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.
Web-based technologies are increasingly important

to our clients, and we believe Haskell has a key role
to play in the production of reliable, secure web soft-
ware. The culture of correctness Haskell encourages
is ideally suited to web programming, where issues of
security, authentication, privacy, and protection of re-
sources abound. In particular, Haskell’s type system
makes possible strong static guarantees about access
to resources, critical to building reliable web applica-
tions.
To help push further the adoption of Haskell in the

domain of web programming, Galois released a suite of
Haskell libraries, including:

◦ json: Support for JavaScript Object Notation

◦ xml: A simple, lightweight XML parser/generator.

◦ utf8-string: A UTF8 layer for IO and Strings.

◦ selenium: Communicate with a Selenium Remote
Control server.

◦ curl: libcurl is a rich client-side URL transfer library.

◦ sqlite: Haskell binding to sqlite3 databases.

◦ feed: Interfacing with RSS and Atom feeds

◦ mime: Haskell support for working with MIME
types.

Continuing our deep involvement in the Haskell com-
munity, Galois was happy to sponsor the two Haskell
hackathons held in the past year, Hac 07 II, in Freiburg,
Germany, and Hac4 in Gothenburg, Sweden. Galois
also sponsored the second BarCamp Portland, held in
early May 2008.

Further reading

http://www.galois.com/.

60

http://www.galois.com/

8 Research and User Groups

8.1 Functional Programming Lab at the
University of Nottingham

Report by: Wouter Swierstra

The School of Computer Science at the University of
Nottingham has recently formed the Functional Pro-
gramming Laboratory, a new research group focused on
all aspects of the theory and practice of functional pro-
gramming, together with related topics such as type
theory, category theory, and quantum programming.
The laboratory is lead jointly by Thorsten Altenkirch
and Graham Hutton, and comprises Neil Ghani and
Henrik Nilsson as academic members of staff, and cur-
rently 3 research assistants and 10 PhD students. The
group’s weekly meetings, which started in 2004, are
recorded on the frequently cited FP lunch blog (http:
//sneezy.cs.nott.ac.uk/fplunch/weblog/), giving a lively
picture of ongoing research at Nottingham. With a to-
tal of 20 people in the area, we have a spectrum of
interests:

Application of Category Theory

The Nottingham group is active in applying ideas from
category theory to practical problems in functional pro-
gramming. Mauro Jaskelioff and Neil Ghani are work-
ing on modularity for structured operational seman-
tics. (See also the following sections on initial algebra
semantics and containers.)

Containers

Nottingham is home to the EPSRC grant on contain-
ers, a semantic model of functional data structures.
Neil Ghani, Thorsten Altenkirch, Peter Hancock, Peter
Morris, and Rawle Prince are working with containers
to both write and reason about programs. Peter Morris
has recently finished his PhD, which used containers as
a basis for generic programming with dependent types.

Datatype-Generic Design Patterns

Ondrej Rypacek together with Roland Backhouse and
Henrik Nilsson are working on formal reasoning about
object-oriented designs with emphasis on algebraic and
datatype-generic methods. Our goal is a sound mathe-
matical model allowing us to disclose and formalise cor-
respondences between object-oriented and functional
programming.

Dependently-Typed Haskell

Supported by a Microsoft Research studentship,
Robert Reitmeier is working on integrating dependent
types in Haskell under the supervision of Thorsten Al-
tenkirch, with advice from Simon Peyton Jones. To-
gether with Nicolas Oury we are designing an alter-
native dependently-typed intermediate language, influ-
enced by our experiences with Epigram.

Epigram

Epigram (→ 3.2.3) is a dependently-typed functional
programming language in its second incarnation, im-
plemented in Haskell. With advice from Conor Mc-
Bride the Epigram team Thorsten Altenkirch, James
Chapman, Peter Morris, Wouter Swierstra, and Nico-
las Oury are working on both practical and theoretical
aspects of the language.

Functional Reactive Programming

Yampa, the latest Haskell-based implementation of
Functional Reactive Programming (FRP), is currently
being maintained by Henrik Nilsson. Under his super-
vision, Neil Sculthorpe is working on efficient scalable
implementation techniques for a Yampa-like language,
while George Giorgidze is applying the advantages of
FRP to non-causal modelling languages. The latter ap-
proach is called Functional Hybrid Modelling (→ 5.9.2).

Functional Specifications of Effects

Wouter Swierstra and Thorsten Altenkirch have been
researching pure specifications of several functions in
the IO monad. This research has resulted in the
Test.IOSpec library (→ 5.7.4), which may be of inter-
est to anyone who wants to debug, reason about, anal-
yse, or test impure code. Besides implementing these
ideas in Haskell, the specifications can be made total in
the richer type theories underlying Epigram, Coq, and
Agda 2 (→ 3.2.2).

Initial Algebra Semantics

Neil Ghani has, with Patricia Johann, been working on
the initial algebra semantics of advanced data types.
They showed that there is no need for the generalised
folds in the literature, as the standard fold from initial
algebra semantics, when coupled with Right Kan ex-
tensions, is expressive enough. Interestingly, Left Kan
extensions can be employed to give an initial algebra
semantics for GADTs. They also used the characterisa-
tion of initial algebras as limits to give short cut fusion
rules for both nested data types and GADTs.

61

http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~mjj/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~pgh/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~rcp/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~oxr/
http://cs.nott.ac.uk/~rcb/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~rxr/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~txa/
http://strictlypositive.org/
http://strictlypositive.org/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~npo/
http://cs.nott.ac.uk/~npo/
http://www.haskell.org/yampa/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~nas/
http://cs.nott.ac.uk/~ggg/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/nxg/

Quantum Programming

Thorsten Altenkirch and Alex Green are working on a
Haskell library to interface or simulate a hypothetical
quantum computer — the Quantum IO monad. This is
related and inspired by earlier work on the implemen-
tation of QML with Jonathan Grattage, who finished
his PhD on the subject in 2006.

Reasoning About Programs

Supported by a grant from EPSRC, Graham Hutton,
Nils Anders Danielsson, and Diana Fulger have recently
started a new project on reasoning about exceptions
and interrupts. This project is also closely related to
Liyang HU’s ongoing research on reasoning about con-
current systems using software transactional memory.
During a sabbatical at Galois (→ 7.7) in the summer of
2007, Graham Hutton worked with Andy Gill on the
worker/wrapper transformation.

Teaching

Haskell plays an important role in the undergraduate
programme at Nottingham, as well as our China and
Malaysia campuses. Modules on offer include Func-
tional Programming, Advanced Functional Program-
ming, Mathematics for Computer Science, Principles of
Programming Languages, Compilers, and Computer-
Aided Formal Verification, among others.

Programming in Haskell

Graham Hutton has written an introductory Haskell
textbook (→ 1.6.1), published by Cambridge University
Press, 2007.

Events

The group in Nottingham plays a leading role in the
Midlands Graduate School in the Foundations of Com-
puting Science, the British Colloquium for Theoretical
Computer Science, and the Fun in the Afternoon sem-
inar series on functional programming.

FP Lunch

Every Friday, Nottingham’s functional programmers
gather for lunch with helpings of informal, impromptu-
style whiteboard talks. Lecturers, PhD students, and
visitors are invited to discuss recent developments,
problems, or projects of relevance. We blog summaries
of recent talks.
In the afternoon there is an hour-long seminar. We

are always keen on speakers in any related areas: do
get in touch with Neil Ghani 〈nxg@cs.nott.ac.uk〉 if you
would like to visit our group. See you there!

Further reading

◦ Functional Programming at Nottingham:
http://fop.cs.nott.ac.uk/fp/

◦ Epigram: http://e-pig.org/
◦ Quantum Programming:

http://fop.cs.nott.ac.uk/qml/
◦ Yampa: http://haskell.org/yampa/
◦ Fun in the Afternoon: http://fop.cs.nott.ac.uk/fun/
◦ Midlands Graduate School:

http://cs.nott.ac.uk/MGS/
◦ FP Lunch: http://fop.cs.nott.ac.uk/fplunch/

8.2 Artificial Intelligence and Software
Technology at JWG-University
Frankfurt

Report by: David Sabel
Participants: Manfred Schmidt-Schauß

Equivalence of Call-by-Name and Call-by-Need

Haskell has a call-by-name semantics, but all efficient
implementations of Haskell use call-by-need evaluation,
avoiding multiple evaluations of the same expression.
We showed equivalence of call-by-name and call-by-
need for a tiny deterministic letrec-calculus and also
the correctness of an unrestricted copy-reduction in
both calculi. We also proved that our method scales up
to extended letrec-calculi with case and constructors,
as well as letrec-calculi with a parallel-or operator.

Semantics for Haskell extended with direct-call I/O

We introduced the calculus FUNDIO, which proposes a
non-standard way to combine lazy functional languages
with Input/Output using non-deterministic constructs.
Program equivalence is based on the operational se-
mantics including the input/output behaviour of re-
duction sequences. We proved correctness of a consid-
erable set of program transformations, in particular of
several optimisations of evaluation, including strictness
optimisations.
We also analysed program transformations used in

GHC w.r.t. the FUNDIO semantics. After turning off
a few transformations which are not FUNDIO-correct,
we have achieved a FUNDIO-compatible modification
of GHC, which is called HasFuse. This compiler cor-
rectly compiles Haskell programs which make use of
unsafePerformIO in the common (safe) sense, since
problematic optimisations are turned off or performed
more restrictively. HasFuse can also compile programs
which make use of unsafePerformIO in arbitrary con-
texts, where the semantics is given by FUNDIO. This
allows to combine unsafePerformIO with monadic I/O
in Haskell, where the result is reliable in the sense that
I/O operations will not astonishingly be duplicated.

62

http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~asg/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~nad
http://cs.nott.ac.uk/~dqf/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://nottingham.edu.cn/
http://www.nottingham.edu.my/
http://cs.nott.ac.uk/~nxg/G51FUN06/fun.html
http://cs.nott.ac.uk/~nxg/G51FUN06/fun.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/~nhn/G52CMP/
http://e-pig.org/darcs/g53cfr/
http://e-pig.org/darcs/g53cfr/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/MGS/
http://cs.nott.ac.uk/MGS/
http://www.bctcs.ac.uk/
http://www.bctcs.ac.uk/
http://fop.cs.nott.ac.uk/fun/
http://fop.cs.nott.ac.uk/fplunch/
http://fop.cs.nott.ac.uk/fplunch/weblog/
http://fop.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~nxg/
mailto: nxg at cs.nott.ac.uk
http://fop.cs.nott.ac.uk/fp/
http://e-pig.org/
http://fop.cs.nott.ac.uk/qml/
http://haskell.org/yampa/
http://fop.cs.nott.ac.uk/fun/
http://cs.nott.ac.uk/MGS/
http://fop.cs.nott.ac.uk/fplunch/

Semantics and Transformations for Functional
Hardware Descriptions

We investigated hardware descriptions in a functional
language, i.e., Haskell programs extended by a parallel-
or (por), where the non-deterministic operator por is
implemented using Concurrent Haskell. As seman-
tic model we use a call-by-need lambda calculus ex-
tended with letrec, case, constructors, and in par-
ticular with parallel-or. Ongoing research is devoted
to prove correctness of circuit transformations, also in-
cluding latches and combinational cycles, on the level
of the high-level functional language descriptions.

Mutual Similarity and Finite Simulation

In order to achieve more inference rules for equality
in call-by-need lambda-calculi, Matthias Mann has es-
tablished a soundness (w.r.t. contextual equivalence)
proof for mutual similarity in a non-deterministic call-
by-need lambda calculus. Moreover, we have shown
that this approach scales up well to more expressive
call-by-need non-deterministic lambda calculi, i.e., sim-
ilarity can be used as a co-induction-based proof tool
for establishing contextual preorder in a large class
of untyped higher-order call-by-need calculi, in par-
ticular calculi with constructors, case, let, and non-
deterministic choice.
For non-deterministic call-by-need calculi with

letrec, known approaches to prove that simulation
implies contextual equivalence are inapplicable. A
recent result obtained in collaboration with Elena
Machkasova is correctness of a variation of simula-
tion for checking and proving contextual equivalence
in an extended non-deterministic call-by-need lambda-
calculus with letrec. The basic technique for the sim-
ulation as well as the correctness proof is called pre-
evaluation, which computes a set of answers for ev-
ery closed expression. If simulation succeeds in finite
computation depth, then it is guaranteed to show con-
textual preorder of expressions. Further research is to
adapt and extend the methods to an appropriately de-
fined simulation, and to investigate an extension of the
tools and methods to a combination of may- and must-
convergence.

Locally Bottom-Avoiding Choice

For modelling concurrent evaluation of functional
programs, we investigated an extended call-by-need
lambda-calculus with McCarthy’s non-deterministic
amb-operator. We introduced an observational equiva-
lence based on may- and must-termination w.r.t. a fair
small step reduction semantics. We proved correctness
of several program transformations, in particular par-
tial evaluation using deterministic reductions. We de-
veloped some nontrivial proof techniques including a
standardisation theorem and a weak form of finite sim-
ulation for proving program equivalences. With these

tools it appears promising to show correctness of fur-
ther program transformations. As an implementation
model we developed an abstract machine for lazy evalu-
ation of concurrent computations, implemented a vari-
ant of this machine in Haskell, and proved correctness
of this machine with respect to the calculus extended
with amb.

Strictness Analysis using Abstract Reduction

The algorithm for strictness analysis using abstract re-
duction has been implemented at least twice: Once by
Nöcker in C for Concurrent Clean and on the other
hand by Schütz in Haskell in 1994. In 2005 we proved
correctness of the algorithm by using a call-by-need
lambda-calculus as a semantic basis. Most implemen-
tations of strictness analysis use set constants like >
(all expressions) or ⊥ (expressions that have no weak
head normal form). We have shown that the subset
relationship problem of co-inductively defined set con-
stants is in DEXPTIME.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology: http://www.ki.informatik.uni-frankfurt.de

◦ References to all mentioned research topics are col-
lected on the following webpage: http://www.ki.
informatik.uni-frankfurt.de/research/HCAR.html

8.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

We are a group of staff and students with shared inter-
ests in functional programming. While our work is not
limited to Haskell, in particular our interest in Erlang
has been growing, Haskell provides a major focus and
common language for teaching and research. We are
seeking PhD students for funded research projects.
Our members pursue a variety of Haskell-related

projects, many of which are reported in other sections
of this report. Nik Sultana’s MSc thesis on formal
verification of Haskell refactorings has recently been
accepted. Chris Brown continues extending HaRe,
the Haskell Refactorer (→ 4.4.5). Thomas Davie and
Olaf Chitil continued development of the Haskell tracer
Hat (→ 4.3.5) and its theoretical foundations, studying
in particular the representation of functional values as
finite maps. This summer a student will work with
Olaf Chitil on improving Heat and making a public
release. Heat is a deliberately simple IDE for teach-
ing Haskell that has been used at Kent for three years.
Keith Hanna is continuing work on Vital, a document-
centred programming environment for Haskell, and on

63

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html

Pivotal, a GHC-based implementation of a similar en-
vironment. The Kent Systems Research Group is de-
veloping an occam compiler in Haskell (Tock). Neil
Brown has created a Haskell library (“Communicating
Haskell Processes”) based on the Communicating Se-
quential Processes calculus.

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat: http://www.haskell.org/hat/
◦ Vital: http://www.cs.kent.ac.uk/projects/vital/
◦ Pivotal: http://www.cs.kent.ac.uk/projects/pivotal/
◦ Tock: https://www.cs.kent.ac.uk/research/groups/
sys/wiki/Tock

8.4 Foundations and Methods Group at
Trinity College Dublin

Report by: Andrew Butterfield
Participants: Glenn Strong, Hugh Gibbons, Edsko de

Vries

The Foundations and Methods Group focuses on formal
methods, category theory, and functional programming
as the obvious implementation method. A sub-group
focuses on the use, semantics, and development of func-
tional languages, covering such areas as:

◦ Supporting OO-Design technique for functional pro-
grammers

◦ Using functional programs as invariants in impera-
tive programming

◦ Developing a GUI-based 2nd-order equational theo-
rem prover (→ 6.5.4)

◦ New approaches to uniqueness typing, applicable to
Hindley-Milner style type-inferencing (→ 3.3.1)

Recent work in this area included:

◦ Formal aspects of Functional I/O

◦ Using Testing to Debug Formal Models

Members of other research groups at TCD have also
used Haskell, such as the work done on Image rendering
using GHC/OpenGL, in the Interaction, Simulation,
and Graphics Lab.

Further reading

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/
FunctionalProgramming

8.5 Formal Methods at DFKI Lab Bremen
and University of Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Lücke, Christoph

Lüth, Christian Maeder, Achim Mahnke,
Till Mossakowski, Lutz Schröder

The activities of our group centre on formal meth-
ods and the Common Algebraic Specification Language
(CASL).
We are using Haskell to develop the Heterogeneous

tool set (Hets), which consists of parsers (using Parsec),
static analysers, and proof tools for languages from the
CASL family, such as CASL itself, HasCASL, CoCASL,
CspCASL, and ModalCASL, and additionally OMDoc
and Haskell. HasCASL is a general-purpose higher
order language which is in particular suited for the
specification and development of functional programs;
Hets also contains a translation from an executable
HasCASL subset to Haskell. There is a prototypical
translation of a subset of Haskell to Isabelle/HOL and
HOLCF.
Another project using Haskell is the Proof General

Kit, which designs and implements a component-based
framework for interactive theorem proving. The central
middleware of the toolkit is implemented in Haskell.
The project is the successor of the highly successful
Emacs-based Proof General interface. It is a cooper-
ation of David Aspinall from the University of Edin-
burgh and Christoph Lüth from Bremen.
The Coalgebraic Logic Satisfiability Solver CoLoSS

is being implemented jointly at DFKI-Lab Bremen
and at the Department of Computing, Imperial Col-
lege London. The tool is generic over representations
of the syntax and semantics of certain modal logics;
it uses the Haskell class mechanism, including multi-
parameter type classes with functional dependencies,
extensively to handle the generic aspects.
Other extensions, libraries, and tools of the Glas-

gow Haskell Compiler that we exploit include con-
currency, existential and dynamic types, Template
Haskell, DriFT, Haddock (→ 4.2.1), Programmatica,
Shellac (→ 5.8.3), HaXml (→ 5.10.3), and hxt (→
5.10.2). We also maintain old sources such as bind-
ings to uDrawGraph (formerly Davinci) and Tcl/TK,
Shared Annotated Terms (ATerms), and haifa-lite.

Further reading

◦ Group activities overview: http://www.informatik.
uni-bremen.de/agbkb/forschung/formal_methods/

◦ CASL specification language: http://www.cofi.info
◦ Heterogeneous tool set: http://www.dfki.de/sks/hets
◦ Proof General Kit:

http://proofgeneral.inf.ed.ac.uk/Kit
◦ The Coalgebraic Logic Satisfiability Solver CoLoSS:

http://www.informatik.uni-bremen.de/~lschrode/
projects/GenMod,

64

http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/
http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://proofgeneral.inf.ed.ac.uk/Kit
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod

http://www.doc.ic.ac.uk/~dirk/COLOSS/

8.6 Functional Programming at Brooklyn
College, City University of New York

Report by: Murray Gross

A grant has provided us with 6 new quad-processor
machines, which we are currently integrating into our
existing Linux/Mosix cluster. When the integration is
complete, we will be comparing the performance and
behaviour of the Brooklyn College version of GpH (→
3.1.2) and the SMP facility of the latest release of
GHC (→ 2.1).
In the area of applications, we are working on two

AI projects, three-dimensional tic-tac-toe (noughts and
crosses), and an extended version of the Sudoku puzzle.
We have also begun work on a parallel implementation
of Skibinski’s quantum simulator, which we intend to
use to study Grover’s fast search algorithm.

Contact

Murray Gross 〈magross@its.brooklyn.cuny.edu〉

8.7 SCIence project

Report by: Kevin Hammond

SCIEnce (http://www.symbolic-computation.org/) is a
3.2M euros, 5-year project that brings together ma-
jor developers of symbolic computing systems, includ-
ing Maple, GAP, MuPAD, and Kant with the world-
leading Centre for Research in Symbolic Computation
at RISC-Linz, Austria.
It makes essential use of functional programming

technology in the form of the GRID-GUM functional
programming system for the Grid, which is built on
the Glasgow Haskell Compiler. The objective is not
the technically infeasible goal of rewriting all these
(and more) complex systems in Haskell. Rather, we
use GRID-GUM to link components built from each of
the symbolic systems to form a coherent heterogeneous
whole. In this way, we hope to achieve what is cur-
rently a pious dream for conventional Grid technology,
and obtain a significant user base both for GRID-GUM
and for Haskell. We are, of course, taking full advan-
tage of Haskell’s abilities to compose and link software
components at a very high level of abstraction.
A fuller paper has appeared in the draft proceed-

ings of the 2007 Symposium on Trends in Functional
Programming (TFP 2007), New York, April 2007. A
revised version is currently being prepared for submis-
sion to the post-symposium proceedings.

8.8 Bay Area Functional Programmers

Report by: Keith Fahlgren

The Bay Area Functional Programmers group held
their inaugural meeting in September, giving program-
mers in the San Francisco Bay using or interested in
functional programming and functional programming
languages such as Haskell, OCaml, SML, Scala, and
Erlang, a place to meet, discuss, and learn together.
We followed up the first informal meeting with an Oc-
tober talk by Alex Jacobson on HAppS (http://happs.
org/). November saw David Pollak present the Scala-
based web framework lift (http://liftweb.net). We will
finish our series on functional web frameworks with
Yariv Sadan presenting the Erlang framework ErlyWeb
(http://erlyweb.org/) in December. Videos & slides
are available for all the talks at the BayFP blog, as
well as information on how to join the mailing list:
http://bayfp.org/blog.

65

http://www.doc.ic.ac.uk/~dirk/COLOSS/
mailto: magross at its.brooklyn.cuny.edu
http://www.symbolic-computation.org/
http://happs.org/
http://happs.org/
http://erlyweb.org/
http://bayfp.org/blog

	General
	HaskellWiki and haskell.org
	#haskell
	The Monad.Reader
	Haskell Weekly News
	Planet Haskell
	Books and tutorials
	Programming in Haskell
	Real World Haskell
	Haskell Wikibook
	Gtk2Hs tutorial
	Oleg's Mini tutorials and assorted small projects

	Implementations
	The Glasgow Haskell Compiler
	nhc98
	yhc
	The Helium compiler
	The Reduceron
	Platforms
	Haskell in Gentoo Linux
	OpenBSD Haskell

	Language
	Extensions of Haskell
	Haskell Server Pages (HSP)
	GpH --- Glasgow Parallel Haskell
	Eden
	XHaskell project
	HaskellActorJoin (previously: HaskellJoin)

	Related Languages
	Curry
	Agda
	Epigram

	Type System / Program Analysis
	Uniqueness Typing
	Free Theorems for Haskell

	Tools
	Scanning, Parsing, Transformations
	Alex version 2
	Happy
	UUAG

	Documentation
	Haddock
	lhs2TeX

	Testing and Debugging
	SmallCheck
	Lazy SmallCheck
	EasyCheck
	CyCoTest
	Hat

	Development
	Hoogle --- Haskell API Search
	Leksah, Haskell IDE
	EclipseFP --- Haskell support for the Eclipse IDE
	yi
	HaRe --- The Haskell Refactorer
	Haskell Mode Plugins for Vim
	:def and .ghci (previously: dot.ghci)
	DarcsWatch
	cpphs

	Libraries
	Cabal and Hackage
	Auxiliary Libraries
	libmpd
	gravatar
	mersenne-random
	cmath
	hmatrix (previously: GSLHaskell)
	HPDF
	The Neon Library
	uniplate

	Processing Haskell
	hint
	hs-plugins
	hscolour

	Parsing and Transforming
	pcre-light
	HStringTemplate
	CoreErlang
	parse-dimacs: A DIMACS CNF Parser
	Graph Parser Combinators in Curry
	The X-SAIGA Project
	InterpreterLib

	Data types and data structures
	Data.ByteString
	dlist
	dimensional
	Numeric prelude
	HList --- a library for typed heterogeneous collections
	stream-fusion
	Edison

	Data processing
	bytestring-mmap
	binary
	The Haskell Cryptographic Library
	The Haskell ASN.1 Library
	2LT: Two-Level Transformation

	Types for Safety and Reasoning
	Takusen
	Session Types for Haskell
	Category Extras --- Comonad Transformers and Bird-Meertens combinators
	IOSpec

	User interfaces
	Gtk2Hs
	Grapefruit --- A declarative GUI and graphics library
	Shellac

	(Multi-)Media
	diagrams
	YampaSynth (previously: Programming of Modular Synthesisers)
	Haskore revision

	Web and XML programming
	hvac
	Haskell XML Toolbox
	HaXml
	tagsoup
	WASH/CGI --- Web Authoring System for Haskell

	System
	hinotify
	hspread
	Harpy

	Applications and Projects
	For the Masses
	Darcs
	xmonad

	Education
	Exercise Assistants
	Holmes, plagiarism detection for Haskell
	Geordi IRC C++ eval bot
	Lambda Shell
	INblobs -- Interaction Nets interpreter

	Data Access and Visualisation
	Holumbus Search Engine Framework
	Top Writer
	tiddlyisar
	Emping
	SdfMetz

	Audio and Graphics
	Audio signal processing
	hmp3
	Glome
	easyVision

	Proof Assistants and Reasoning
	Galculator
	funsat: DPLL-style Satisfiability Solver
	sat-micro-hs: SAT-Micro in Haskell
	Saoithín: a 2nd-order proof assistant
	Term Rewriting Tools written in Haskell
	Inference Services for Hybrid Logics
	HyLoRes
	HTab
	HGen

	Modelling and Analysis
	Coconut
	Streaming Component Combinators
	Raskell
	VooDooM

	Specialised Domains
	A Survey on the Use of Haskell in Natural-Language Processing
	GenI
	Bioinformatics tools
	Inductive Programming

	Others
	lambdabot
	FreeArc
	Roguestar

	Commercial Users
	Well-Typed LLP
	SeeReason Partners, LLC
	Ansemond LLC
	Credit Suisse Global Modelling and Analytics Group
	Barclays Capital Quantitative Analytics Group
	Bluespec tools for design of complex chips
	Galois, Inc.

	Research and User Groups
	Functional Programming Lab at the University of Nottingham
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Functional Programming at the University of Kent
	Foundations and Methods Group at Trinity College Dublin
	Formal Methods at DFKI Lab Bremen and University of Bremen
	Functional Programming at Brooklyn College, City University of New York
	SCIence project
	Bay Area Functional Programmers

