
Haskell Communities and Activities Report
http://www.haskell.org/communities/

Eighteenth Edition — May 2010

Janis Voigtländer (ed.)
Robin Adams Krasimir Angelov Heinrich Apfelmus
Jim Apple Dmitry Astapov Justin Bailey

Doug Beardsley Jean-Philippe Bernardy Tobias Bexelius
Edwin Brady Gwern Branwen Joachim Breitner

Roman Cheplyaka Adam Chlipala Olaf Chitil
Jan Christiansen Alberto Gómez Corona Duncan Coutts
Simon Cranshaw Jácome Cunha Nils Anders Danielsson

Larry Diehl Atze Dĳkstra Facundo Dominguez
Jonas Duregård Marc Fontaine Patai Gergely
Brett G. Giles Andy Gill George Giorgidze

Dmitry Golubovsky Carlos Gomez Torsten Grust
Jurriaan Hage Bastiaan Heeren Claude Heiland-Allen
Jeroen Janssen Florian Haftmann David Himmelstrup

Guillaume Hoffmann Martin Hofmann Csaba Hruska
Paul Hudak Jasper Van der Jeugt Farid Karimipour
Oleg Kiselyov Lennart Kolmodin Michal Konečný
Lyle Kopnicky Eric Kow Sean Leather
Bas Lĳnse Andres Löh Tom Lokhorst
Rita Loogen Ian Lynagh John MacFarlane

Christian Maeder José Pedro Magalhães Ketil Malde
Arie Middelkoop Ivan Lazar Miljenovic Neil Mitchell
Dino Morelli Matthew Naylor Jürgen Nicklisch-Franken

Rishiyur Nikhil Thomas van Noort Johan Nordlander
Miguel Pagano Jens Petersen Simon Peyton Jones
Jason Reich Matthias Reisner Stephen Roantree
Fred Ross Alberto Ruiz David Sabel

Antti Salonen Ingo Sander Uwe Schmidt
Martĳn Schrage Tom Schrĳvers Jeremy Shaw
Axel Simon Michael Snoyman Martĳn van Steenbergen

Martin Sulzmann Doaitse Swierstra Henning Thielemann
Simon Thompson Wren Ng Thornton Jared Updike
Marcos Viera Sebastiaan Visser Janis Voigtländer
Jan Vornberger Gregory D. Weber Stefan Wehr
Mark Wotton Kazu Yamamoto Brent Yorgey

http://www.haskell.org/communities/


Preface

This is the 18th edition of the Haskell Communities and Activities Report. Lots of interesting
new stuff; web development has become a hot topic with much activity in particular.
As usual, fresh entries are formatted using a blue background, while updated entries have a

header with a blue background. I have continued the strategy, as in the last edition, of replacing
with online pointers to previous versions those entries for which I received a liveness ping, but
which have seen no essential update for a while. Other entries on which no new activity has
been reported for a year or longer have been dropped completely. Please do revive such entries
next time if you do have news on them.
A call for new entries and updates to existing ones will be issued on the usual mailing lists in

October. Now enjoy the current report and see what other Haskellers have been up to lately.
Any kind of feedback is of course very welcome. Specifically, I have been trying to improve the
generation of the html version of the report (see http://haskell.org/communities/05-2010/html/
report.html), so any remarks on that output could be helpful.
There is no prize question this time. ,

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

http://haskell.org/communities/05-2010/html/report.html
http://haskell.org/communities/05-2010/html/report.html
mailto: hcar at haskell.org


Contents

1 Information Sources 7
1.1 The Monad.Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Haskell Wikibook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Oleg’s Mini tutorials and assorted small projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Haskell Cheat Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Practice of Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Cartesian Closed Comic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Implementations 9
2.1 The Glasgow Haskell Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Helium compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 UHC, Utrecht Haskell Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Haskell front end for the Clean compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 The Reduceron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.1 Haskell in Gentoo Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.2 Fedora Haskell SIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Language 15
3.1 Extensions of Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Eden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 XHaskell project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 HaskellActor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 HaskellJoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Related Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Curry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Idris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Clean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Timber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.6 Ur/Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Tools 20
4.1 Transforming and Generating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.1 UUAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 AspectAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 HFusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.4 Optimus Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.5 Derive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.6 Agata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.7 lhs2TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Analysis and Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 HTF: a test framework for Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 SourceGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 HLint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.4 A Haskell source file scanning tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.5 hp2any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Leksah — Toward a Haskell IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 HEAT: The Haskell Educational Advancement Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.3 HaRe — The Haskell Refactorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3



4.3.4 DarcsWatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.5 DPM — Darcs Patch Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.6 HSFFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.7 Hubris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Libraries 27
5.1 Cabal and Hackage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Haskell Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Auxiliary Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.1 hmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 The Neon Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 mueval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Parsing and Transforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.1 ChristmasTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.2 First Class Syntax Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.3 Utrecht Parser Combinator Library: New version . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.4 Regular Expression Matching with Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Mathematical Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5.1 Halculon: units and physical constants database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5.2 AERN-Real and friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5.3 logfloat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Data types and data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.1 HList — a library for typed heterogeneous collections . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.2 Verified priority queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6.3 bytestring-trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.7 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.7.1 Graphalyze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.7.2 Bravo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Generic and Type-Level Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.8.1 uniplate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.8.2 Generic Programming at Utrecht University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.8.3 Extensible and Modular Generics for the Masses (EMGM) . . . . . . . . . . . . . . . . . . . . . . . 34
5.8.4 Optimizing generic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.9 User interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.9.1 Gtk2Hs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.9.2 CmdArgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10 Graphics and Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10.1 LambdaCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10.2 diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10.3 GPipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.10.4 ChalkBoard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.10.5 graphviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.10.6 Euterpea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.11 Web and XML programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.11.1 Haskell XML Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.11.2 Hawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.11.3 tagsoup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.11.4 BlazeHtml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.11.5 WAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Applications and Projects 41
6.1 For the Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.1 Darcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 xmonad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Bluetile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.1 Exercise Assistants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.2 Holmes, plagiarism detection for Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4



6.2.3 Yahc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.4 grolprep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.5 Sifflet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Web Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.1 Holumbus Search Engine Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 HCluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.3 gitit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.4 Happstack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.5 Mighttpd — yet another Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.6 Yesod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.7 Lemmachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.8 Snap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Data Management and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4.1 Pandoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4.2 HaExcel — From Spreadsheets to Relational Databases and Back . . . . . . . . . . . . . . . . . . . 48
6.4.3 Ferry (Database-Supported Program Execution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4.4 Sirenial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4.5 The Proxima 2.0 generic editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.6 iTasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Functional Reactive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5.1 Functional Hybrid Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5.2 Elerea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 Audio and Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6.1 Audio signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6.2 easyVision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.6.3 n-Dimensional Volume Calculation for Non-Convex Polytops . . . . . . . . . . . . . . . . . . . . . 53
6.6.4 Fl4m6e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.6.5 GULCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6.6 Reflex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6.7 Citten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6.8 Hemkay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7 Proof Assistants and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7.1 HTab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7.2 Haskabelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7.3 Plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7.4 Free Theorems for Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.7.5 CSP-M animator and model checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.8 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.8.1 ForSyDe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.8.2 Kansas Lava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.9 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.9.1 NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.9.2 GenI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.9.3 Grammatical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.10 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.10.1 Bein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.10.2 Biohaskell (previously: Bioinformatics tools) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.11 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.11.1 Freekick2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.11.2 Dungeons of Wor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.12 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.12.1 Vintage BASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.12.2 LQPL — A quantum programming language compiler and emulator . . . . . . . . . . . . . . . . . 62
6.13 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.13.1 IgorII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.13.2 Yogurt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.13.3 Bullet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.13.4 arbtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5



6.13.5 uacpid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.13.6 cltw (Twitter API command-line utility) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Commercial Users 65
7.1 Well-Typed LLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Bluespec tools for design of complex chips and hardware accelerators . . . . . . . . . . . . . . . . . 65
7.3 Industrial Haskell Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 typLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.5 factis research GmbH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.6 Tsuru Capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.7 Oblomov Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Research and User Groups 68
8.1 Artificial Intelligence and Software Technology at Goethe-University Frankfurt . . . . . . . . . . . 68
8.2 Functional Programming at the University of Kent . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Formal Methods at DFKI Bremen and University of Bremen . . . . . . . . . . . . . . . . . . . . . 69
8.4 Haskell at K.U.Leuven, Belgium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.5 Functional Programming at Chalmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.6 Dutch Haskell User Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.7 San Simón Haskell Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.8 Functional Programming at KU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.9 Ghent Functional Programming Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6



1 Information Sources

1.1 The Monad.Reader

Report by: Brent Yorgey

There are plenty of academic papers about Haskell and
plenty of informative pages on the HaskellWiki. Unfor-
tunately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a Wiki page, but more casual than a jour-
nal article.
There are plenty of interesting ideas that maybe do

not warrant an academic publication—but that does
not mean these ideas are not worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if it has all been done before in the Journal
of Impossibly Complicated Theoretical Stuff, explain-
ing a neat idea about “warm fuzzy things” to the rest
of us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there has been one new issue,

featuring articles on space profiling, underappreciated
monads, defining monads operationally, and STM. The
next issue will be published in May.

Further reading

http://themonadreader.wordpress.com/

1.2 Haskell Wikibook

Report by: Heinrich Apfelmus
Participants: Duplode, Orzetto, David House, Eric Kow,

and other contributors
Status: active development

The goal of the Haskell Wikibook project is to build
a community textbook about Haskell that is at once
free (as in freedom and in beer), gentle, and compre-
hensive. We think that the many marvelous ideas of
lazy functional programming can and thus should be
accessible to everyone in a central place. In particular,
the Wikibook aims to answer all those conceptual ques-
tions that are frequently asked on the Haskell mailing
lists.

Everyone including you, dear reader, are invited to
contribute, be it by spotting mistakes and asking for
clarifications or by ruthlessly rewriting existing mate-
rial and penning new chapters.
Recent additions include a gentle introduction to

generalized algebraic data types (GADTs).

Further reading

http://en.wikibooks.org/wiki/Haskell

1.3 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received three additions:

Optimal symbolic differentiation

We demonstrate symbolic differentiation of a wide class
of numeric functions without imposing any interpretive
overhead. The functions to differentiate can be given
to us in separately compiled modules, with no available
source code. We produce a (compiled, if needed) func-
tion that is an exact, algebraically simplified analytic
derivative of the given function. Our approach is an ap-
plication of normalization-by-evaluation. To avoid in-
terpretive overhead, we rely on Template Haskell (if the
interpretive overhead is acceptable, Template Haskell
can be avoided).
Our approach also produces higher- and partial

derivatives. Currently we support algebraic functions
and a bit of trigonometry.
http://okmĳ.org/ftp/Computation/Computation/
Generative.html#diff-th

Logic programming in Haskell optimized for
reasoning

We demonstrate an executable model of the evaluation
of definite logic programs, i.e., of resolving Horn clauses
presented in the form of definitional trees. Our imple-
mentation, DefinitionTree, is yet another embedding
of Prolog in Haskell. It is distinguished not by speed
or convenience. Rather, it is explicitly designed to
formalize evaluation strategies such as SLD and SLD-
interleaving, to be easier to reason about and so help
prove termination and other properties of the evalu-
ation strategies. The main difference of Definition-
Tree from other embeddings of Prolog in Haskell is

7

http://themonadreader.wordpress.com/
http://en.wikibooks.org/wiki/Haskell
http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Computation/Computation/Generative.html#diff-th
http://okmij.org/ftp/Computation/Computation/Generative.html#diff-th


the absence of name-generation effects. We need nei-
ther gensym nor the state monad to ensure the unique
naming of logic variables. Since naming and evaluation
are fully separated, the evaluation strategy is no longer
concerned with fresh name generation and so is eas-
ier to reason about equationally. We have indeed used
DefinitionTree to prove basic properties of solution sets
obtained by SLD or SLD-resolution strategies.
http://okmĳ.org/ftp/Haskell/misc.html#reasoned-LP

Choosing a type-class instance based on the context

This mini-tutorial, written together with Simon
Peyton-Jones, explains how to overload operations
based not on the type of an expression but on the class
to which an expression’s type belongs. For example,
we want to define an overloaded operation print to
be equivalent to (putStrLn . show) when applied to
showable expressions, whose types are the members of
the class Show. For other types, the operation print
should do something different (e.g., print that no show
function is available, or, for Typeable expressions, write
their type instead). The problem is not trivial be-
cause normally the type-checker selects an instance of
the type-class based only on the instance head. The
instance constraints are not taken into account dur-
ing the selection process. The trick is to re-write a
constraint C a which succeeds or fails, into a predi-
cate constraint C’ a flag, which always succeeds, but
once discharged, unifies flag with a type-level Boolean
HTrue or HFalse.
http://okmĳ.org/ftp/Haskell/types.html#
class-based-overloading

1.4 Haskell Cheat Sheet

Report by: Justin Bailey

The “Haskell Cheat Sheet” covers the syntax, key-
words, and other language elements of Haskell 98. It
is intended for beginning to intermediate Haskell pro-
grammers and can even serve as a memory aid to ex-
perts.
The cheat sheet is distributed as a PDF and literate

source file. Spanish and Japanese translations are also
available.

Further reading

http://cheatsheet.codeslower.com

1.5 Practice of Functional Programming

Report by: Dmitry Astapov
Status: five issues ready, collecting materials for

issue #6

“Practice of Functional Programing” is a Russian elec-
tronic magazine promoting functional programming.
The magazine features articles that cover both theoret-
ical and practical aspects of the craft. Most of the al-
ready published material is directly related to Haskell.
The magazine attempts to keep a bi-monthly release

schedule, with Issue #6 slated for release in June 2010.
Full contents of current and past issues are available

in PDF from the official site of the magazine free of
charge.
Articles are in Russian, with English annotations.

Further reading

http://fprog.ru/ for issues ##1–5

1.6 Cartesian Closed Comic

Report by: Roman Cheplyaka
Participants: Maria Kovalyova

Cartesian Closed Comic, or CCC, is a webcomic about
Haskell, the Haskell community, and anything else re-
lated to Haskell. It is published irregularly. The comic
is sometimes inspired by “Quotes of the week” pub-
lished in Haskell Weekly News. New strips are posted
to the Haskell reddit and Planet Haskell. The archives
are also available.

Further reading

http://ro-che.info/ccc/

8

http://okmij.org/ftp/Haskell/misc.html#reasoned-LP
http://okmij.org/ftp/Haskell/types.html#class-based-overloading
http://okmij.org/ftp/Haskell/types.html#class-based-overloading
http://cheatsheet.codeslower.com
http://fprog.ru/
http://ro-che.info/ccc/


2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

In the past 6 months we have made the first 2 releases
from the 6.12 branch. 6.12.1 came out in December,
while 6.12.2 was released in April. The 6.12.2 release
fixes many bugs relative to 6.12.1, including closing 81
trac tickets. For full release notes, and to download
it, see the GHC webpage (http://www.haskell.org/ghc/
download_ghc_6_12_2.html). We plan to do one more
release from this branch before creating a new 6.14 sta-
ble branch.
GHC 6.12.2 will also be included in the upcoming

Haskell Platform release (→ 5.2). The Haskell platform
is the recommended way for end users to get a Haskell
development environment.

Ongoing work

Meanwhile, in the HEAD, the last 6 months have seen
more than 1000 patches pushed from more than a dozen
contributors. As the following graph shows, tickets are
still being opened faster than we can close them, with
the total open tickets growing from around 700 to al-
most 800. We will be looking in the near future at
improving the effectiveness of the way we use the bug
tracker.

Language changes

We have made only a few small language improvements.
The most significant ones concern quasi-quotations, im-
plementing suggestions from Kathleen Fisher:

◦ Quasi-quotes can now appear as a top-level declara-
tion, or in a type, as well as in a pattern or expres-
sion.

◦ Quasi-quotes have a less noisy syntax (no “$”).

Here is an example that illustrates both:

f x = x+1
[pads| ...blah..blah... |]

The second declaration uses the quasi-quoter called
pads (which must be in scope) to parse the
“...blah..blah..”, and return a list of Template
Haskell declarations, which are then spliced into the
program in place of the quote.

Type system

Type families remain the hottest bit of GHC’s type sys-
tem. Simon PJ has been advertising for some months
that he intends to completely rewrite the constraint
solver, which forms the heart of the type inference en-
gine, and that remains the plan although he is being
slow about it. The existing constraint solver works sur-
prisingly well, but we have lots of tickets demonstrating
bugs in corner cases. An upcoming epic (70-page) JFP
paper “Modular type inference with local assumptions”
brings together all the key ideas; watch Simon’s home
page.

The mighty simplifier

One of GHC’s most crucial optimizers is the Simpli-
fier, which is responsible for many local transforma-
tions, plus applying inlining and rewrite-rules. Over
time it had become apparent that the implementation
of INLINE pragmas was not very robust: small changes
in the source code, or small wibbles in earlier opti-
mizations, could mean that something with an INLINE
pragma was not inlined when it should be, or vice versa.
Simon PJ therefore completely re-engineered the way

INLINE pragmas are handled:

◦ GHC now takes a “snapshot” of the original RHS of
a function with an INLINE pragma.

◦ The function is now optimized as normal, but when
the function is inlined it is the snapshot, not the
current RHS, that is inlined.

◦ The function is inlined only when it is applied to as
many arguments as the LHS of its original definition.
Consider

f1, f2 :: Int -> Int -> Int
{-# INLINE f1 #-}
f1 x = \y -> <blah>
{-# INLINE f2 #-}
f2 x y = <blah>

9

http://www.haskell.org/ghc/download_ghc_6_12_2.html
http://www.haskell.org/ghc/download_ghc_6_12_2.html


Here f1 will be inlined when it is applied to one ar-
gument, but f2 will only be inlined if it appears ap-
plied to two arguments. This turns out to be helpful
in reducing gratuitous code bloat.

Another important related change is this. Consider

{-# RULE "foo" flip (flop x) = <blah> #-}
test x = flip y ++ flip y

where
y = flop x

GHC will not fire rule “foo” because it is scared about
duplicating the redex (flop x). However, if you de-
clare that flop is CONLIKE, thus

{-# NOINLINE [1] CONLIKE flop #-}

this declares that an application of flop is cheap
enough that even a shared application can participate
in a rule application. The CONLIKE pragma is a mod-
ifier on a NOINLINE (or INLINE) pragma, because it
really only makes sense to match flop on the LHS of
a rule if you know that flop is not going to be inlined
before the rule has a chance to fire.

The back end

GHC’s back end has been a ferment of activity. In
particular,

◦ David Terei made a LLVM back end for
GHC (http://hackage.haskell.org/trac/ghc/wiki/
Commentary/Compiler/Backends/LLVM). It is not
part of the HEAD, but we earnestly hope that it
will become so.

◦ John Dias, Norman Ramsey, and Simon PJ made
a lot of progress on Hoopl, our new representation
for control flow graphs, and accompanying functions
for dataflow analysis and transformation. There is
a paper (Norman Ramsey, John Dias, and Simon
Peyton Jones, Hoopl: A Modular, Reusable Library
for Dataflow Analysis and Transformation, submit-
ted to ICFP’10; http://research.microsoft.com/en-us/
um/people/simonpj/papers/c--/), and Hoopl itself is
now a standalone, re-usable Cabal package, which
makes it much easier for others to use.

The downside is that the code base is in a state of
serious flux:

◦ We still have two back-end pipelines, because
we do not trust the new one to drop the old
one. See: http://hackage.haskell.org/trac/ghc/wiki/
Commentary/Compiler/NewCodeGen.

◦ We are in the midst of pushing the new Hoopl into
GHC.

Runtime system work (SimonM)

There has been a lot of restructuring in the RTS over
the past few months, particularly in the area of parallel
execution. The biggest change is to the way “black-
holes” work: these arise when one thread is evaluating
a lazy computation (a “thunk”), and another thread or
threads demands the value of the same thunk. Previ-
ously, all threads waiting for the result of a thunk were
kept in a single global queue, which was traversed reg-
ularly. This led to two performance problems. Firstly,
traversing the queue is O(n) in the number of blocked
threads, and we recently encountered some benchmarks
in which this was the bottleneck. Secondly, there could
be a delay between completing a computation and wak-
ing up the threads that were blocked waiting for it. For-
tunately, we found a design that solves both of these
problems, while adding very little overhead.
We also fixed another pathological performance case:

when a large numbers of threads are blocked on an
MVar and become unreachable at the same time, reap-
ing all these threads was an O(n2) operation. A new
representation for the queue of threads blocked on an
MVar solved this problem.
At the same time, we rearchitected large parts of the

RTS to move from algorithms involving shared data
structures and locking to a message-passing style. As
things get more complex in the parallel RTS, using
message-passing lets us simplify some of the invariants
and move towards having less shared state between the
CPUs, which will improve scaling in the long run.
The GC has seen some work too: the goal here is

to enable each processor (“capability” in the internal
terminology) to collect its private heap independently
of the other processors. It turns out that this is quite
tricky to achieve in the context of the current architec-
ture, but we have made some progress in this direction
by privatizing more of the global state and simplify-
ing the GC data structures by removing the concept of
“steps”, while keeping a simple aging policy, which is
what steps gave us previously.

Data Parallel Haskell

In the last months, our focus has been on improving
the scalability of the Quickhull benchmark, and this
work is still ongoing. In addition, Roman has invested
significant energy into the increasingly popular vector
package and the NoSlow array benchmark framework.
Package vector is our next-gen sequential array library,
and we will replace the current sequential array com-
ponent (dph-prim-seq) with package vector sometime
in the next few months.
We completed a first release of the regular, multi-

dimensional array library introduced in the previ-
ous status report. The library is called Repa
and is available from Hackage (http://hackage.haskell.
org/package/repa). The library supports shape-

10

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM
http://research.microsoft.com/en-us/um/people/simonpj/papers/c--/
http://research.microsoft.com/en-us/um/people/simonpj/papers/c--/
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGen
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGen
http://darcs.haskell.org/packages/dph/examples/quickhull/QuickHullVect.hs
http://hackage.haskell.org/package/vector-0.6.0.1
http://hackage.haskell.org/package/vector-0.6.0.1
http://hackage.haskell.org/package/NoSlow
http://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/repa


polymorphism and works with both the sequential and
parallel DPH base library. We discuss the use and
implementation of Repa in a draft paper (Gabriele
Keller, Manuel M. T. Chakravarty, Roman Leshchin-
skiy, Simon Peyton Jones, and Ben Lippmeier: Reg-
ular, shape-polymorphic, parallel arrays in Haskell,
submitted to ICFP’10; http://www.cse.unsw.edu.au/
~chak/papers/KCLPL10.html). We have shown that
Repa can produce efficient and scalable code for FFT
and relaxation algorithms and would be very interested
to hear from early adopters who are willing to try Repa
out in an application they care about. At the start of
the year, Ben Lippmeier has joined the project. He has
started to improve our benchmarks infrastructure and
worked on Repa.

Other miscellaneous stuff

◦ GHC makes heavy use of sets and finite maps. Up
till now it has used its own home-grown UniqFM and
FiniteMap modules. Milan Straka (visiting as an
intern from the Czech Republic) has:
– made GHC use the containers package in-

stead, which happily makes compilation go a
few percent faster;

– developed some improvements to containers
that makes it go faster still.

So UniqFM and FiniteMap are finally dead. Hurrah
for Hackage!

◦ The Threadscope tool for visualizing parallel execu-
tion was released. The tool is ripe for improvement
in many ways; if you are interested in helping, let us
know.

Nightly builds

For some time, it has been clear to us that Buildbot
is not the perfect tool for our nightly builds. The
main problem is that it is very susceptible to net-
work wibbles, which means that many of our builds
fail due to a network issue mid-build. Also, any cus-
tomization beyond that anticipated by the configura-
tion options provided requires some messy python cod-
ing, poking around inside the buildbot classes. Addi-
tionally, we would like to implement a “validate-this”
feature, where developers can request that a set of
patches is validated on multiple platforms before be-
ing pushed. We could not see an easy way to do this
with buildbot.
When the darcs.haskell.org hardware was upgraded,

rather than installing buildbot on the new machine, we
made the decision to implement a system that better
matched our needs instead. The core implementation
is now complete, and we have several machines using
it for nightly builds.
We are always keen to add more build slaves; please

see http://hackage.haskell.org/trac/ghc/wiki/Builder if

you are interested. Likewise, patches for missing fea-
tures are welcome! The (Haskell) code is available at
http://darcs.haskell.org/builder/.

2.2 LHC

Report by: David Himmelstrup
Participants: Austin Seipp
Status: active development

LHC is a backend for the Glorious Glasgow Haskell
Compiler (→ 2.1), adding low-level, whole-program op-
timization to the system. It is based on Urban Bo-
quist’s GRIN language, and using GHC as a frontend,
we get most of its great extensions and features.
Essentially, LHC uses the GHC API to convert pro-

grams to external core format — it then parses the
external core, and links all the necessary modules to-
gether into a whole program for optimization. We
currently have our own base library (heavily and gra-
ciously taken from GHC). This base library is similar
to GHC’s (module-names and all), and it is compiled
by LHC into external core and the package is stored
for when it is needed. This also means that if you can
output GHC’s external core format, then you can use
LHC as a backend.
The short-term goal is to make LHC faster, easier to

use, and more complete in its coverage of Haskell 98.

Further reading

◦ http://lhc.seize.it/
◦ http://lhc-compiler.blogspot.com/

2.3 The Helium compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Arie Middelkoop

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back. The latest versions of the Helium compiler are
available for download from the new website located
at http://www.cs.uu.nl/wiki/Helium. This website also
explains in detail what Helium is about, what it offers,
and what we plan to do in the near and far future.
We are still working on making version 1.7 available,

mainly a matter of updating the documentation and
testing the system. Internally little has changed, but
the interface to the system has been standardized, and
the functionality of the interpreters has been improved
and made consistent. We have made new options avail-
able (such as those that govern where programs are
logged to). The use of Helium from the interpreters is
now governed by a configuration file, which makes the

11

http://www.cse.unsw.edu.au/~chak/papers/KCLPL10.html
http://www.cse.unsw.edu.au/~chak/papers/KCLPL10.html
http://research.microsoft.com/threadscope
http://hackage.haskell.org/trac/ghc/wiki/Builder
http://darcs.haskell.org/builder/
http://lhc.seize.it/
http://lhc-compiler.blogspot.com/
http://www.cs.uu.nl/wiki/Helium


use of Helium from the interpreters quite transparent
for the programmer. It is also possible to use differ-
ent versions of Helium side by side (motivated by the
development of Neon (→ 5.3.2)).
A student has added parsing and static checking for

type class and instance definitions to the language, but
type inferencing and code generating still need to be
added. The work on the documentation has progressed
quite a bit, but there has been little testing thus far,
especially on a platform such as Windows.

2.4 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: many others
Status: active development

UHC, what is new? UHC is the Utrecht Haskell
Compiler, supporting almost all Haskell98 features and
most of Haskell2010, plus experimental extensions. Af-
ter the first release of UHC in spring 2009 we have been
working on the next release, which we expect to have
available this summer. Although UHC did start its life
as a compiler for research and experimentation, much
of the recent work has focussed on improving and sta-
bilizing UHC for actual use. The highlights of the next
release will be:

◦ Support for building libraries with Cabal.

◦ A base library sufficient for Haskell98.

◦ Support for most of the Haskell2010 language fea-
tures.

◦ A new garbage collector, replacing the Boehm GC
we have been using until recently.

◦ More stable implementation of both compiler and
runtime, with many bugfixes.

All of the above is already available for download from
the UHC svn repository.

UHC, what do we currently do? As part of the UHC
project, the following (student) projects and other ac-
tivities are underway (in arbitrary order):

◦ Jan Rochel: “Realising Optimal Sharing”, based on
work by Vincent van Oostrum and Clemens Grab-
mayer.

◦ Tom Lokhorst: type based static analyses.

◦ Jeroen Leeuwestein: incrementalization of whole
program analysis.

◦ Atze van der Ploeg: lazy closures.

◦ Paul van der Ende: garbage collection & LLVM.

◦ Arie Middelkoop (& Lucília Camarão de Figueiredo):
type system formalization and automatic generation
from type rules.

◦ Jeroen Fokker: GRIN backend, whole program anal-
ysis.

◦ Călin Juravle: base libraries.

◦ Levin Fritz: base libraries for Java backend.

◦ Andres Löh: Cabal support.

◦ José Pedro Magalhães: generic deriving.

◦ Doaitse Swierstra: parser combinator library.

◦ Atze Dĳkstra: overall architecture, type system,
bytecode interpreter backend, garbage collector.

Some of the projects are highlighted directly below.

Type based static analysis (Tom Lokhorst) We are
working on various static optimization transformations
on top of the recently introduced typed core interme-
diate language. A particular focus is optimizing code
based on the results of a type based strictness anal-
ysis (Stefan Holdermans and Jurriaan Hage, Making
“Stricterness” More Relevant, PEPM ’10). We are cur-
rently investigating several approaches to optimizing
higher order functions that are polymorphic in their
strictness properties.

Lazy closures (Atze van der Ploeg) We are in-
vestigating cheaper ways to construct closures by re-
using information already present in frames (incarna-
tion records). In this scheme a frame may be used by a
closure after the frame’s function has ended so we put
frames on the heap instead of the stack. If a frame’s
function has ended, the frame may contain more infor-
mation than is necessary for the closures that use it,
the garbage collector needs to be aware of this so that
we do not save too much.

Garbage collection & LLVM (Paul van der Ende)
We want to extend the LLVM backend of UHC with
accurate garbage collection. The LLVM compiler is
known to do various aggressive transformations that
might break static stack descriptors. We will exploit
the existing shadow-stack functionality of the LLVM
framework to connect it with the garbage collection li-
brary.

Generic deriving (José Pedro Magalhães) Recently
we wanted to extend the deriving support in UHC to
allow deriving for other common type classes (such as
Functor and Typeable, for example). However, instead
of hard-wiring particular classes in the compiler, we de-
cided to allow the user to specify how instances should

12



be derived for any type class, using simple generic pro-
gramming techniques. Currently we are working on
implementing this new feature and providing deriving
support for a number of useful classes.

Background UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension:

◦ The implementation of UHC is organized as a series
of increasingly complex steps, and (independent of
these steps) a set of aspects, thus addressing the in-
herent complexity of a compiler. Executable compil-
ers can be generated from combinations of the above.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers, thus keeping description and source code syn-
chronized.

◦ Most of the compiler is described by UUAG, the
Utrecht University Attribute Grammar system (→
4.1.1), thus providing a more flexible means of tree
programming.

For more information, see the references provided.

Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

◦ Parser combinators: http://www.cs.uu.nl/wiki/HUT/
ParserCombinators

◦ Shuffle: http://www.cs.uu.nl/wiki/Ehc/Shuffle
◦ Ruler: http://www.cs.uu.nl/wiki/Ehc/Ruler

2.5 Haskell front end for the Clean
compiler

Report by: Thomas van Noort
Participants: John van Groningen, Rinus Plasmeĳer
Status: active development

We are currently working on a front end for the Clean
compiler (→ 3.2.4) that supports a subset of Haskell 98.
This will allow Clean modules to import Haskell mod-
ules, and vice versa. Furthermore, we will be able to
use some of Clean’s features in Haskell code, and vice
versa. For example, we could define a Haskell module
which uses Clean’s uniqueness typing, or a Clean mod-
ule which uses Haskell’s newtypes. The possibilities are
endless!

Future plans

Although a beta version of the new Clean compiler is
released last year to the institution in Nĳmegen, there

is still a lot of work to do before we are able to release it
to the outside world. So we cannot make any promises
regarding the release date. Just keep an eye on the
Clean mailing lists for any important announcements!

Further reading

http://wiki.clean.cs.ru.nl/Mailing_lists

2.6 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman, Jason Reich
Status: experimental

Over the past year, work on the Reduceron has contin-
ued, and we have reached our goal of improving runtime
performance by a factor of six! This has been achieved
through many small improvements, spanning architec-
tural, runtime, and compiler-level advances.
Two main by-products have emerged from the work.

First, York Lava, now available from Hackage, is the
HDL we use. It is very similar to Chalmers Lava, but
supports a greater variety of primitive components, be-
havioral description, number-parameterized types, and
a first attempt at a Lava prelude. Second, F-lite is our
subset of Haskell, with its own lightweight toolset.
There remain some avenues for exploration. We have

taken a step towards parallel reduction in the form of
speculative evaluation of primitive redexes, but have
not yet attempted the Reducera —multiple Reducerons
running in parallel. And recently, Jason has been con-
tinuing his work on the F-lite supercompiler (→ 4.1.4),
which is now producing some really nice results.
Alas, the time to take stock and publish a full ac-

count of what we have already done is rapidly ap-
proaching!

Further reading

◦ http://www.cs.york.ac.uk/fp/reduceron/
◦ http://hackage.haskell.org/package/york-lava/

2.7 Platforms

2.7.1 Haskell in Gentoo Linux

Report by: Lennart Kolmodin

Gentoo Linux currently officially supports GHC 6.10.4,
including the latest Haskell Platform (→ 5.2) for x86,
amd64, sparc, and ppc64. For previous GHC versions
we also have binaries available for alpha, hppa and ia64.
The full list of packages available through the offi-

cial repository can be viewed at http://packages.gentoo.
org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.

13

http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/Ehc/Shuffle
http://www.cs.uu.nl/wiki/Ehc/Ruler
http://wiki.clean.cs.ru.nl/Mailing_lists
http://www.cs.york.ac.uk/fp/reduceron/
http://hackage.haskell.org/package/york-lava/
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc


Please report problems in the normal Gentoo bug
tracker at bugs.gentoo.org.
We have also recently started an official Gentoo

Haskell blog where we can communicate with our users
what we are doing http://gentoohaskell.wordpress.com/.
There is also an overlay which contains more than

300 extra unofficial and testing packages. Thanks to
the Haskell developers using Cabal and Hackage (→
5.1), we have been able to write a tool called “hack-
port” (initiated by Henning Günther) to generate Gen-
too packages with minimal user intervention. Notable
packages in the overlay include the latest version of
the Haskell Platform as well as the latest 6.12.2 release
of GHC, as well as popular Haskell packages such as
pandoc (→ 6.4.1) and gitit (→ 6.3.3).
More information about the Gentoo Haskell Overlay

can be found at http://haskell.org/haskellwiki/Gentoo.
Using Darcs (→ 6.1.1), it is easy to keep up to date,
to submit new packages, and to fix any problems in
existing packages. It is also available via the Gentoo
overlay manager “layman”. If you choose to use the
overlay, then any problems should be reported on IRC
(#gentoo-haskell on freenode), where we coordinate
development, or via email 〈haskell@gentoo.org〉 (as we
have more people with the ability to fix the overlay
packages that are contactable in the IRC channel than
via the bug tracker).
Through recent efforts we have developed a

tool called “haskell-updater” http://www.haskell.org/
haskellwiki/Gentoo#haskell-updater (initiated by Ivan
Lazar Miljenovic). This is a replacement of the old
ghc-updater script for rebuilding packages when a new
version of GHC is installed which is now not only writ-
ten in Haskell but will also rebuild broken packages.
“haskell-updater” is still in active development to fur-
ther refine and add to its features and capabilities.
As always we are more than happy for (and in fact

encourage) Gentoo users to get involved and help us
maintain our tools and packages, even if it is as simple
as reporting packages that do not always work or need
updating: with such a wide range of GHC and package
versions to co-ordinate, it is hard to keep up! Please
contact us on IRC or email if you are interested!

2.7.2 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Conrad Meyer, Bryan Sullivan, Rakesh

Pandit, Yaakov Nemoy, Fedora Haskell SIG
Status: on-going

The Fedora Haskell SIG is an effort to provide good
support for Haskell in Fedora.
We have been updating packages for Fedora 13 due

to ship soon with ghc-6.12.1 with shared libraries en-
abled, and haskell-platform-2010.1.0.0: special thanks
to Rakesh Pandit for reviewing 11 new packages for-
merly in ghc extralibs. Darcs is updated to 2.4 (thanks

for Conrad Meyer and Lorenzo Villani for reviewing
new dependent packages). New packaging macros in
ghc-rpm-macros have removed nearly all the remaining
tedium of packaging libraries for Fedora with simpler
.spec file templates in the Fedora cabal2spec package.
Fedora 14 changes will probably be more modest:

likely 6.12.2 and more libraries and programs from
hackage.
Contributions to Fedora Haskell are welcome: join

us on #fedora-haskell on Freenode IRC.

Further reading

◦ http://fedoraproject.org/wiki/SIGs/Haskell
◦ http://fedoraproject.org/wiki/Documentation_

Development_Haskell_Beat

14

bugs.gentoo.org
http://gentoohaskell.wordpress.com/
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
http://www.haskell.org/haskellwiki/Gentoo#haskell-updater
http://www.haskell.org/haskellwiki/Gentoo#haskell-updater
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat


3 Language

3.1 Extensions of Haskell

3.1.1 Eden

Report by: Rita Loogen
Participants: in Copenhagen: Jost Berthold

in Madrid: Yolanda Ortega-Mallén,
Mercedes Hidalgo, Fernando Rubio,

Alberto de la Encina, Lidia Sánchez-Gil
in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Oleg Lobachev, Rita Loogen

Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s main constructs are process abstractions and

process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator ( # ) :: Process a b -> a ->
b. Higher-level coordination is achieved by defining
skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelize a set of non-trivial benchmark pro-
grams.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Implementation

The parallel Eden runtime environment for GHC
6.8.3 is available from the Marburg group on re-
quest. The Eden extension of GHC 6.12 will
soon be released. Support for Glasgow par-
allel Haskell (GpH, http://haskell.org/communities/
11-2008/html/report.html#sect3.1.2) is currently being
added to this version of the runtime environment. It
is planned for the future to maintain a common par-
allel runtime environment for Eden, GpH, and other
parallel Haskells. A first parallel Haskell Hackathon
has taken place in St Andrews from December 10th till

12th, 2009. It has been a lively event triggering vari-
ous activities to develop the common parallel runtime
environment further.
Parallel program executions can be visualized using

the Eden trace viewer tool EdenTV. Recent results
show that the Eden system behaves equally well on
workstation clusters and on multi-core machines.

Recent and Forthcoming Publications

◦ Oleg Lobachev and Rita Loogen: Estimating Par-
allel Performance, a Skeleton-based Approach, Tech-
nical Report No 2010–2, Department of Mathemat-
ics and Computer Science, Philipps-Universität Mar-
burg, 2010.

◦ Mischa Dieterle, Thomas Horstmeyer, Rita Loogen:
Skeleton Composition Using Remote Data, in: Prac-
tical Aspects of Declarative Programming 2010
(PADL’10), LNCS 6009, Springer 2010, 337–353.

◦ Thomas Horstmeyer, Rita Loogen: Grace — Graph-
based Communication in Eden, Trends in Functional
Programming, Volume 10, Intellect 2010, 1–16.

◦ Mustafa Aswad, Phil Trinder, Abdallah Al Zain,
Greg Michaelson, Jost Berthold: Low Pain vs No
Pain Multi-core Haskells, Trends in Functional Pro-
gramming, Volume 10, Intellect 2010, 49–64.

◦ Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero,
Yolanda Ortega-Mallén: An Operational Semantics
for Distributed Lazy Evaluation, Trends in Func-
tional Programming, Volume 10, Intellect 2010,
65–80.

◦ Mercedes Hidalgo-Herrero, Yolanda Ortega-Mallén:
To be or not to be... Lazy (in a Parallel Context),
Electronic Notes in Theoretical Computer Science
(ENTCS) VOL. 258, Elsevier, 2009.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.1.2 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu
Status: stable

XHaskell is an extension of Haskell which combines
parametric polymorphism, algebraic data types, and
type classes with XDuce style regular expression types,
subtyping, and regular expression pattern matching.
The latest version can be downloaded via http://code.
google.com/p/xhaskell/

15

http://haskell.org/communities/11-2008/html/report.html#sect3.1.2
http://haskell.org/communities/11-2008/html/report.html#sect3.1.2
http://www.mathematik.uni-marburg.de/~eden
http://code.google.com/p/xhaskell/
http://code.google.com/p/xhaskell/


Latest developments

The latest version of the library-based regular expres-
sion pattern matching component is available via the
google code web site. We are currently working on a
paper describing the key ideas of the approach.

3.1.3 HaskellActor

Report by: Martin Sulzmann
Status: stable

The focus of the HaskellActor project is on
Erlang-style concurrency abstractions. See for
details: http://sulzmann.blogspot.com/2008/10/
actors-with-multi-headed-receive.html.
Novel features of HaskellActor include

◦ Multi-headed receive clauses, with support for

◦ guards, and

◦ propagation

The HaskellActor implementation (as a library ex-
tension to Haskell) is available via http://hackage.
haskell.org/cgi-bin/hackage-scripts/package/actor.
The implementation is stable, but there is plenty of

room for optimizations and extensions (e.g. regular
expressions in patterns). If this sounds interesting to
anybody (students!), please contact me.

Latest developments

We are currently working towards a distributed ver-
sion of Haskell actor following the approach of Frank
Huch, Ulrich Norbisrath: Distributed Programming in
Haskell with Ports, IFL’00.

3.1.4 HaskellJoin

Report by: Martin Sulzmann
Status: stable

HaskellJoin is a (library) extension of Haskell to sup-
port join patterns. Novelties are

◦ guards and propagation in join patterns,

◦ efficient parallel execution model which exploits mul-
tiple processor cores.

Latest developments

In this honors thesis, Olivier Pernet (a student of Susan
Eisenbach) provides a nicer monadic interface to the
HaskellJoin library.

Further reading

http://sulzmann.blogspot.com/2008/12/
parallel-join-patterns-with-guards-and.html

3.2 Related Languages

3.2.1 Curry

Report by: Jan Christiansen
Participants: Bernd Braßel, Michael Hanus, Wolfgang

Lux, Sebastian Fischer, and others
Status: active development

Curry is a functional logic programming language with
Haskell syntax. In addition to the standard features of
functional programming like higher-order functions and
lazy evaluation, Curry supports features known from
logic programming. This includes programming with
non-determinism, free variables, constraints, declara-
tive concurrency, and the search for solutions. Al-
though Haskell and Curry share the same syntax, there
is one main difference with respect to how function dec-
larations are interpreted. In Haskell the order in which
different rules are given in the source program has an
effect on their meaning. In Curry, in contrast, the rules
are interpreted as equations, and overlapping rules in-
duce a non-deterministic choice and a search over the
resulting alternatives. Furthermore, Curry allows to
call functions with free variables as arguments so that
they are bound to those values that are demanded for
evaluation, thus providing for function inversion.
There are three major implementations of Curry.

While the original implementation PAKCS (Portland
Aachen Kiel Curry System) compiles to Prolog, MCC
(Münster Curry Compiler) generates native code via a
standard C compiler. The Kiel Curry System (KiCS)
compiles Curry to Haskell aiming to provide nearly
as good performance for the purely functional part as
modern compilers for Haskell do. From these imple-
mentations only MCC will provide type classes in the
near future. Type classes are not part of the current
definition of Curry, though there is no conceptual con-
flict with the logic extensions.
Recently, new compilation schemes for translating

Curry to Haskell have been developed that promise sig-
nificant speedups compared to both the former KiCS
implementation and other existing implementations of
Curry.
There have been research activities in the area of

functional logic programming languages for more than
a decade. Nevertheless, there are still a lot of inter-
esting research topics regarding more efficient compila-
tion techniques and even semantic questions in the area
of language extensions like encapsulation and function
patterns. Besides activities regarding the language it-
self, there is also an active development of tools con-
cerning Curry (e.g., the documentation tool Curry-
Doc, the analysis environment CurryBrowser, the ob-
servation debuggers COOSy and iCODE, the debugger
B.I.O. (http://www-ps.informatik.uni-kiel.de/currywiki/
tools/oracle_debugger), EasyCheck (http://haskell.org/
communities/05-2009/html/report.html#sect4.3.2), and
CyCoTest). Because Curry has a functional subset,

16

http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://sulzmann.blogspot.com/2008/12/parallel-join-patterns-with-guards-and.html
http://sulzmann.blogspot.com/2008/12/parallel-join-patterns-with-guards-and.html
http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://haskell.org/communities/05-2009/html/report.html#sect4.3.2
http://haskell.org/communities/05-2009/html/report.html#sect4.3.2


these tools can canonically be transferred to the func-
tional world.

Further reading

◦ http://www.curry-language.org/
◦ http://wiki.curry-language.org/

3.2.2 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
New since last time:

◦ Version 2.2.6 has been released, with experimental
support for universe polymorphism.

◦ FreeBSD users can now install Agda using Fresh-
Ports.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

3.2.3 Idris

Report by: Edwin Brady
Status: active development

Idris is an experimental language with full dependent
types. Dependent types allow types to be predicated
on values, meaning that some aspects of a program’s
behavior can be specified precisely in the type. The
language is closely related to Epigram and Agda (→
3.2.2). It is available from http://www.idris-lang.org,
and there is a tutorial at http://www.cs.st-andrews.ac.
uk/~eb/Idris/tutorial.html.
Idris aims to provide a platform for realistic pro-

gramming with dependent types. By realistic, we
mean the ability to interact with the outside world and
use primitive types and operations, to make a depen-
dently typed language suitable for systems program-
ming. This includes networking, file handling, concur-
rency, etc. Idris emphasizes programming over theorem

proving, but nevertheless integrates with an interactive
theorem prover. It is compiled, via C, and uses the
Boehm-Demers-Weiser garbage collector.
One goal of the project is to show that Idris, and

dependently typed programming in general, can be ef-
ficient enough for the development of real world verified
software. To this end, Idris is currently being used to
develop a library for verified network protocol imple-
mentation, with example applications.

Further reading

http://www.idris-lang.org/

3.2.4 Clean

Report by: Thomas van Noort
Participants: Rinus Plasmeĳer, John van Groningen
Status: active development

Clean is a general purpose, state-of-the-art, pure and
lazy functional programming language designed for
making real-world applications. Clean is the only func-
tional language in the world which offers uniqueness
typing. This type system makes it possible in a pure
functional language to incorporate destructive updates
of arbitrary data structures (including arrays) and to
make direct interfaces to the outside imperative world.
Here is a short list of notable features:

◦ Clean is a lazy, pure, and higher-order functional pro-
gramming language with explicit graph-rewriting se-
mantics.

◦ Although Clean is by default a lazy language, one can
smoothly turn it into a strict language to obtain op-
timal time/space behavior: functions can be defined
lazy as well as (partially) strict in their arguments;
any (recursive) data structure can be defined lazy as
well as (partially) strict in any of its arguments.

◦ Clean is a strongly typed language based on an ex-
tension of the well-known Milner/Hindley/Mycroft
type inferencing/checking scheme including the com-
mon higher-order types, polymorphic types, abstract
types, algebraic types, type synonyms, and existen-
tially quantified types.

◦ The uniqueness type system in Clean makes it possi-
ble to develop efficient applications. In particular, it
allows a refined control over the single threaded use
of objects which can influence the time and space
behavior of programs. The uniqueness type system
can be also used to incorporate destructive updates
of objects within a pure functional framework. It al-
lows destructive transformation of state information
and enables efficient interfacing to the non-functional
world (to C but also to I/O systems like X-Windows)
offering direct access to file systems and operating
systems.

17

http://www.curry-language.org/
http://wiki.curry-language.org/
http://wiki.portal.chalmers.se/agda/
http://www.idris-lang.org
http://www.cs.st-andrews.ac.uk/~eb/Idris/tutorial.html
http://www.cs.st-andrews.ac.uk/~eb/Idris/tutorial.html
http://www.idris-lang.org/


◦ The Clean type system supports dynamic types, al-
lowing values of arbitrary types to be wrapped in a
uniform package and unwrapped via a type anno-
tation at run-time. Using dynamics, code and data
can be exchanged between Clean applications in a
flexible and type-safe way.

◦ Clean supports type classes and type constructor
classes to make overloaded use of functions and op-
erators possible.

◦ Clean offers records and (destructively updateable)
arrays and files.

◦ Clean has pattern matching, guards, list comprehen-
sions, array comprehensions and a lay-out sensitive
mode.

◦ Clean offers a sophisticated I/O library with which
window based interactive applications (and the han-
dling of menus, dialogs, windows, mouse, keyboard,
timers, and events raised by sub-applications) can
be specified compactly and elegantly on a very high
level of abstraction.

◦ There is a Clean IDE and there are many libraries
available offering additional functionality.

Future plans

Please see the entry on a Haskell frontend for the Clean
compiler (→ 2.5) for the future plans.

Further reading

◦ http://clean.cs.ru.nl/
◦ http://wiki.clean.cs.ru.nl/

3.2.5 Timber

Report by: Johan Nordlander
Participants: Björn von Sydow, Andy Gill, Magnus

Carlsson, Per Lindgren, Thomas Hallgren,
and others

Status: actively developed

Timber is a general programming language derived
from Haskell, with the specific aim of supporting devel-
opment of complex event-driven systems. It allows pro-
grams to be conveniently structured in terms of objects
and reactions, and the real-time behavior of reactions
can furthermore be precisely controlled via platform-
independent timing constraints. This property makes
Timber particularly suited to both the specification and
the implementation of real-time embedded systems.
Timber shares most of Haskell’s syntax but intro-

duces new primitive constructs for defining classes of re-
active objects and their methods. These constructs live
in the Cmd monad, which is a replacement of Haskell’s
top-level monad offering mutable encapsulated state,

implicit concurrency with automatic mutual exclusion,
synchronous as well as asynchronous communication,
and deadline-based scheduling. In addition, the Tim-
ber type system supports nominal subtyping between
records as well as datatypes, in the style of its precursor
O’Haskell.
A particularly notable difference between Haskell

and Timber is that Timber uses a strict evaluation or-
der. This choice has primarily been motivated by a
desire to facilitate more predictable execution times,
but it also brings Timber closer to the efficiency of tra-
ditional execution models. Still, Timber retains the
purely functional characteristic of Haskell, and also
supports construction of recursive structures of arbi-
trary type in a declarative way.
The latest release of the Timber compiler system is v

1.0.3 and dates back to May 2009. More recent devel-
opments are available in the on-line source code repos-
itory, including a new way of organizing and accessing
external interfaces, a simplified command syntax, and
many bug fixes. A proper release of this version is in
the making and will be announced before summer 2010.
The new view of external interfaces separates access

to OS, hardware or library services from the definition
of a particular run-time system. This move greatly
simplifies the construction of both external bindings
and cross-compilation targets, which is utilized in on-
going development of Xlib, OpenGL, iPhone as well as
ARM7 support. Some of these targets will be part of
the upcoming release, while others are scheduled for
a follow-up at the end of the year. This later release
will also contain a newly developed back-end targeting
Javascript and HTML5, with the purpose of making
Timber applicable to web programming in a reactive
and strongly typed fashion.
Other active projects include interfacing the compiler

to memory and execution-time analysis tools, extend-
ing it with a supercompilation pass, and taking a fun-
damental grip on the generation of type error messages.
The latter work will be based on principles developed
for the Helium compiler (→ 2.3).

Further reading

http:://timber-lang.org

3.2.6 Ur/Web

Report by: Adam Chlipala
Status: beta release

Ur/Web is a domain-specific language for building
modern web applications. It is built on top of the
Ur language as a custom standard library with special
compiler support. Ur draws inspiration from a num-
ber of sources in the world of statically-typed func-
tional programming. From Haskell, Ur takes purity,
type classes, and monadic IO. From ML, Ur takes ea-
gerness and a module system with functors and type

18

http://clean.cs.ru.nl/
http://wiki.clean.cs.ru.nl/
http:://timber-lang.org


abstraction. From the world of dependently-typed pro-
gramming, Ur takes a rich notion of type-level compu-
tation.
The Ur/Web extensions support the core features

of today’s web applications: “Web 1.0” programming
with links and forms, “Web 2.0” programming with
non-trivial client-side code, and interaction with SQL
database backends. Considering programmer produc-
tivity, security, and scalability, Ur/Web has signifi-
cant advantages over the mainstream web frameworks.
Novel facilities for statically-typed metaprogramming
enable new styles of abstraction and modularity. The
type system guarantees that all kinds of code inter-
pretable by browsers or database servers are treated as
richly-typed syntax trees (along the lines of familiar ex-
amples of GADTs), rather than as “strings”, thwarting
code injection attacks. The whole-program optimizing
compiler generates fast native code which does not need
garbage collection.
The open source toolset is in beta release now and

should be usable for real projects. I expect the core
feature set to change little in the near future, and the
next few releases will probably focus on bug fixes and
browser compatibility.

Further reading

http://www.impredicative.com/ur/

19

http://www.impredicative.com/ur/


4 Tools

4.1 Transforming and Generating

4.1.1 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell which makes
it easy to write catamorphisms (i.e., functions that do
to any datatype what foldr does to lists). You define
tree walks using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. Recently, we enhanced these aspect-oriented
programming features. It is now possible to add rules
that transform a value of a synthesized attribute, or
to transform a child and its inherited and synthesized
attributes.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 2.4), the editor Proxima for structured doc-
uments (→ 6.4.5), the Helium compiler (→ 2.3), the
Generic Haskell compiler, UUAG itself, and many mas-
ter student projects. The current version is 0.9.19
(April 2010), is extensively tested, and is available on
Hackage.
We are working on the following enhancements of the

UUAG system, building on attribute grammar research
of the past in a modern setting:

Parallel evaluation We aim to evaluate attributes in
parallel to take advantage of current multi-core pro-
cessors. The static dependencies between attributes
allow us to identify parts that are independent and
schedule them simultaneously in a safe and efficient
way.

Incremental evaluation We generate code that adapts
incrementally to changes in the input data. The goal

is to reuse the outcome of previous computations,
by recomputing only those parts of the computation
that are affected by the changes.

Fixpoint evaluation When static dependencies be-
tween attributes are circular, results can still be com-
puted through lazy evaluation when the dynamic de-
pendencies are not. We are now incorporating a
fixed-point evaluation scheme that computes a result
even in case of a dynamic cycle.

Furthermore, we investigate extensions of the AG for-
malism to make AGs more suitable to express type in-
ferencing. We made prototype implementations that
facilitate the dynamic construction of inference trees,
to use AGs for bidirectional type rules and constraint
solving.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

4.1.2 AspectAG

Report by: Marcos Viera
Participants: Doaitse Swierstra, Wouter Swierstra
Status: experimental

AspectAG is a library of strongly typed Attribute
Grammars implemented using type-level programming.

Introduction

Attribute Grammars (AGs), a general-purpose formal-
ism for describing recursive computations over data
types, avoid the trade-off which arises when building
software incrementally: should it be easy to add new
data types and data type alternatives or to add new
operations on existing data types? However, AGs are
usually implemented as a pre-processor, leaving e.g.
type checking to later processing phases and making
interactive development, proper error reporting and
debugging difficult. Embedding AG into Haskell as
a combinator library solves these problems. Previ-
ous attempts at embedding AGs as a domain-specific
language were based on extensible records and thus
exploiting Haskell’s type system to check the well-
formedness of the AG, but fell short in compactness
and the possibility to abstract over oft occurring AG
patterns. Other attempts used a very generic map-
ping for which the AG well-formedness could not be
statically checked. We present a typed embedding of
AG in Haskell satisfying all these requirements. The

20

http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc


key lies in using HList-like typed heterogeneous collec-
tions (extensible polymorphic records) and expressing
AG well-formedness conditions as type-level predicates
(i.e., typeclass constraints). By further type-level pro-
gramming we can also express common programming
patterns, corresponding to the typical use cases of mon-
ads such as Reader, Writer, and State. The paper
presents a realistic example of type-class-based type-
level programming in Haskell.

Background

The approach taken in AspectAG was proposed by
Marcos Viera, Doaitse Swierstra, and Wouter Swier-
stra in the ICFP 2009 paper “Attribute Grammars Fly
First-Class: How to do aspect oriented programming
in Haskell”.

Further reading

http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

4.1.3 HFusion

Report by: Facundo Dominguez
Participants: Alberto Pardo
Status: experimental

HFusion is an experimental tool for optimizing Haskell
programs. It is based on an algebraic approach where
functions are internally represented in terms of a recur-
sive program scheme known as hylomorphism. The tool
performs source to source transformations by the ap-
plication of a program transformation technique called
fusion. The aim of fusion is to reduce memory manage-
ment effort by eliminating the intermediate data struc-
tures produced in function compositions.
We offer a web interface to test the technique on user-

supplied recursive definitions. The user can ask HFu-
sion to transform a composition of two functions into
an equivalent program which does not build the inter-
mediate data structure involved in the composition. In
future developments of the tool we plan to find fusable
compositions within programs automatically.
In its current state, HFusion is able to fuse composi-

tions of general recursive functions, including primitive
recursive functions like dropWhile or factorial, func-
tions that make recursion over multiple arguments like
zip, zipWith or equality predicates, mutually recursive
functions, and (with some limitations) functions with
accumulators like foldl. In general, HFusion is able to
eliminate intermediate data structures of regular data
types (sum-of-product types plus different forms of gen-
eralized trees).

Further reading

◦ Documentation about the tool can be found in HFu-
sion home

◦ HFusion web interface is available from this URL

4.1.4 Optimus Prime

Report by: Jason Reich
Participants: Colin Runciman, Matthew Naylor
Status: experimental

Optimus Prime is project developing a supercompiler
for programs written in F-lite, the subset of Haskell
used by the Reduceron (→ 2.6). It draws heavily on
Neil Mitchell’s work on the Supero supercompiler for
YHC Core.
The project is still at the highly experimental stage

but preliminary results are very encouraging. The
process appears to produce largely deforested pro-
grams where higher-order functions have been special-
ized. This, as a consequence, appears to enable further
gains from mechanisms such as speculative evaluation
of primitive redexes on the Reduceron architecture.
Optimus Prime supercompilation has led to a 74%

reduction in the number of Reduceron clock-cycles re-
quired to execute some micro-examples.
Work continues on improving the execution time

of the supercompilation transformation and improving
the performance of the supercompiled programs.

Contact

http://www.cs.york.ac.uk/people/?username=jason

Further reading

http://optimusprime.posterous.com/

4.1.5 Derive

Report by: Neil Mitchell
Status: v2.3.0

21

http://www.cs.nott.ac.uk/~gmh/icfp09.html
http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG
http://www.fing.edu.uy/inco/proyectos/fusion/
http://www.fing.edu.uy/inco/proyectos/fusion/
http://www.fing.edu.uy/inco/proyectos/fusion/tool/
http://www.cs.york.ac.uk/people/?username=jason
http://optimusprime.posterous.com/


The Derive tool is used to generate formulaic instances
for data types. For example given a data type, the
Derive tool can generate 34 instances, including the
standard ones (Eq, Ord, Enum etc.) and others such
as Binary and Functor. Derive can be used with SYB,
Template Haskell or as a standalone preprocessor. This
tool serves a similar role to DrIFT, but with additional
features.
Recently Derive has had many derivations added, in-

cluding new Uniplate (→ 5.8.1) instances. The mecha-
nism to derive instances by example has been rewritten,
and the revised mechanism is described in the associ-
ated Approaches and Applications of Inductive Pro-
gramming 2009 paper.

Further reading

http://community.haskell.org/~ndm/derive/

4.1.6 Agata

Report by: Jonas Duregård
Participants: Koen Claessen
Status: experimental, active

The Agata library (Agata Generates Algebraic Types
Automatically) is an outcome of my master’s thesis
work at Chalmers University of Technology. The li-
brary uses Template Haskell to derive instances of the
QuickCheck Arbitrary class for (almost) any Haskell
data type.
The generators differ from regular QuickCheck gen-

erators in that they maintain scalability even for types
analogous to nested collection data structures (e.g.,
[[[[a]]]], where the standard QuickCheck genera-
tor tends to generate values that contain millions of
a’s). Generators also guarantee that independent com-
ponents of the same type have the same expected size,
e.g., in (a,[a]) the single a will have the same ex-
pected size as any a in the list.
Although a few additional features are to be imple-

mented in the near future, efforts will be focused on
documentation and improving performance. When the
library is stable and well documented, the possibility
of integrating it into the QuickCheck package may be
explored.

Further reading

◦ http://hackage.haskell.org/package/Agata
◦ Agata — Random generation of test data (Mas-

ter’s thesis), http://gupea.ub.gu.se/bitstream/2077/
22087/1/gupea_2077_22087_1.pdf

4.1.7 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.
The program is stable and can take on large docu-

ments.
Since version 1.14, lhs2TEX has an experimental

mode for typesetting Agda code.
The current version is 1.15. Due to changes in the

handling of Unicode in ghc-6.12, this version should be
built with ghc-6.10. In the near future, version 1.16 will
be released that is hopefully behaving correctly when
built with ghc-6.12.

Further reading

http://www.cs.uu.nl/~andres/lhs2tex

4.2 Analysis and Profiling

4.2.1 HTF: a test framework for Haskell

Report by: Stefan Wehr
Status: beta, active development

The Haskell Test Framework (HTF for short) lets you
define unit tests, QuickCheck properties, and black box
tests in an easy and convenient way. The HTF uses a
custom preprocessor that collects test definitions au-
tomatically. Furthermore, the preprocessor allows the
HTF to report failing test cases with exact file name
and line number information.
Initially created in 2005, HTF was not actively de-

veloped for almost five years. Development resumed in
2010, adding many improvements to the code base.

Further reading

◦ http://hackage.haskell.org/package/HTF

◦ Tutorial: http://www.factisresearch.com/2010/03/
htf/

4.2.2 SourceGraph

Report by: Ivan Lazar Miljenovic
Status: version 0.6.1.0

SourceGraph is a utility program aimed at helping
Haskell programmers visualize their code and perform

22

http://community.haskell.org/~ndm/derive/
http://hackage.haskell.org/package/Agata
http://gupea.ub.gu.se/bitstream/2077/22087/1/gupea_2077_22087_1.pdf
http://gupea.ub.gu.se/bitstream/2077/22087/1/gupea_2077_22087_1.pdf
http://www.cs.uu.nl/~andres/lhs2tex
http://hackage.haskell.org/package/HTF
http://www.factisresearch.com/2010/03/htf/
http://www.factisresearch.com/2010/03/htf/


simple graph-based analysis (representing entities as
nodes in the graphs and function calls as directed
edges), which started off as an example of how to use
the Graphalyze library (→ 5.7.1), which is designed
as a general-purpose graph-theoretic analysis library.
These two pieces of software were originally developed
as the focus of my mathematical honors thesis, “Graph-
Theoretic Analysis of the Relationships Within Dis-
crete Data”.

Whilst fully usable, SourceGraph is currently lim-
ited in terms of input and output. It analyses all .hs
and .lhs files recursively found in the provided di-
rectory, parsing most aspects of Haskell code (cannot
parse Haskell code using CPP, HaRP, TH, FFI and
XML-based Haskell code; difficulty parsing Data Fam-
ily instances, unknown modules and record puns and
wildcards). The results of the analysis are created in
an Html file in a “SourceGraph” subdirectory of the
project’s root directory.

Various refinements have been implemented since the
last release, including:

◦ “Implicitly exported” entities (e.g., class method in-
stance definitions from external classes) are now sup-
ported; support for these is not perfect and may in-
clude more entities than it should.

◦ Addition of depth analysis (based upon how many
function calls are needed from an exported entity).

◦ Better visualizations, including edge categorizations;
the generated Dot code is also saved if users wish to
tweak these.

Current analysis algorithms utilized include: alter-
native module groupings, whether a module should be
split up, root analysis, depth analysis, clique and cycle
detection, as well as finding functions which can safely
be compressed down to a single function. Please note
however that SourceGraph is not a refactoring utility,
and that its analyses should be taken with a grain of
salt: for example, it might recommend that you split up
a module, because there are several distinct groupings
of functions, when that module contains common util-
ity functions that are placed together to form a library
module (e.g., the Prelude).

Sample SourceGraph analysis reports can be
found at http://code.haskell.org/~ivanm/Sample_
SourceGraph/SampleReports.html. A tool paper on
SourceGraph was presented at the ACM SIGPLAN
2010 Workshop on Partial Evaluation and Program
Manipulation.

Further reading

◦ http://hackage.haskell.org/package/SourceGraph
◦ http://ivanmiljenovic.files.wordpress.com/2008/11/

honoursthesis.pdf

4.2.3 HLint

Report by: Neil Mitchell
Status: v1.6

HLint is a tool that reads Haskell code and suggests
changes to make it simpler. For example, if you call
maybe foo id it will suggest using fromMaybe foo in-
stead. HLint is compatible with almost all Haskell ex-
tensions, and can be easily extended with additional
hints.
There have been numerous feature improvements

since the last HCAR. HLint supports Unicode and more
fully integrates with a C pre-processor. Many hints
have been added, some of which were submitted by
users. A new mode has been added to hunt for suitable
hints given source code. There have been substantial
speed improvements.

Further reading

http://community.haskell.org/~ndm/hlint/

4.2.4 A Haskell source file scanning tool

Report by: Christian Maeder

The Haskell source file scanning tool scan is supposed
to be a complement for hlint (→ 4.2.3). Whereas
hlint makes suggestions to improve your expressions,
scan makes suggestions about your source file format
regarding white spaces, layout and comments, as usu-
ally described by style guides.
The scan tool is also able to write back an untabified

file without trailing white space, with proper blanks
around infix operators and after commas, and with a
single final newline.
I use this tool to keep my Haskell sources tidy and

reduce mere white space changes in evolving revisions.
You are encouraged to do so, too.

Further reading

http://projects.haskell.org/style-scanner/

23

http://code.haskell.org/~ivanm/Sample_SourceGraph/SampleReports.html
http://code.haskell.org/~ivanm/Sample_SourceGraph/SampleReports.html
http://www.program-transformation.org/PEPM10
http://www.program-transformation.org/PEPM10
http://www.program-transformation.org/PEPM10
http://hackage.haskell.org/package/SourceGraph
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://community.haskell.org/~ndm/hlint/
http://projects.haskell.org/style-scanner/


4.2.5 hp2any

Report by: Patai Gergely
Status: experimental, on hold

This project was born during the 2009 Google Summer
of Code under the name “Improving space profiling ex-
perience”. The name hp2any covers a set of tools and
libraries to deal with heap profiles of Haskell programs.
At the present moment, the project consists of three
packages:

◦ hp2any-core: a library offering functions to read
heap profiles during and after run, and to perform
queries on them.

◦ hp2any-graph: an OpenGL-based live grapher that
can show the memory usage of local and remote pro-
cesses (the latter using a relay server included in the
package), and a library exposing the graphing func-
tionality to other applications.

◦ hp2any-manager: a GTK application that can dis-
play graphs of several heap profiles from earlier runs.

The project also aims at replacing hp2ps by reimple-
menting it in Haskell and possibly adding new output
formats. The manager application shall be extended
to display and compare the graphs in more ways, to
export them in other formats and also to support live
profiling right away instead of delegating that task to
hp2any-graph.

Further reading

http://www.haskell.org/haskellwiki/Hp2any

4.3 Development

4.3.1 Leksah — Toward a Haskell IDE

Report by: Jürgen Nicklisch-Franken

Leksah is a Haskell IDE written in Haskell, it uses
Gtk+, and runs on Linux, Windows, and Mac OS X.
Leksah is intended to be a practical tool to support
the Haskell development process. Leksah is completely
free.
Some features of Leksah:

◦ It uses the cabal package format and incorporates a
cabal file editor.

◦ It offers Workspaces for complex projects with mul-
tiple packages with automatic build of dependencies.

◦ It contains a module browser that allows you to find
type information about all the functions/symbols
available in the packages installed on your system.

◦ For most packages it shows as well haddock style
comments, and gives direct navigation to sources.

◦ It integrates ghci debugging (including continuous
recompilation) that allows you to type check and
evaluate highlighted code snippets from within the
editor itself. Includes a scratch buffer for testing
ideas.

◦ It includes a helper for automatic addition of import
statements.

◦ Offers a Haskell-customized editor with “source
candy”.

◦ Multi-window support for a multi head setting.

◦ Many standard features of IDEs like: Jump to errors,
Auto Completion, Grep integration, . . .

◦ Configurable with session support, keymaps, and
flexible appearance.

Future plans

◦ Enhance usability and fix open bugs for the 1.0 re-
lease.

◦ Concept and implementation of an extension mech-
anism.

◦ Better integration of Yi as editor component.

The project needs more users and developers!

Further reading

http://leksah.org/

4.3.2 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Heat was designed
for novice students learning Haskell. Heat provides a
small number of supporting features and is easy to use.

24

http://www.haskell.org/haskellwiki/Hp2any
http://leksah.org/


Heat is portable, small and works on top of Hugs.
Heat provides the following features:

◦ Editor for a single module with syntax-highlighting
and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the source line
is highlighted and additional error explanations are
provided.

◦ Shows a program summary in a tree structure, giving
definitions of types and types of functions . . .

◦ Automatic checking of all (Boolean) properties of a
program; results shown in summary.

Over the summer 2009 Heat was completely re-
engineered to provide a simple and cleaner internal
structure for future development. This new version still
misses a few features compared to the current 3.1 ver-
sion. (Small) modifications for making Heat work with
GHC instead of Hugs have also been submitted. A new
release is still in the works.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

4.3.3 HaRe — The Haskell Refactorer

Report by: Simon Thompson
Participants: Huiqing Li, Chris Brown, Chaddaï Fouché,

Claus Reinke

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactor-
ings in Haskell. The HaRe tool is now in its fifth major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalization and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the

hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.
In order to allow users to extend HaRe themselves,

HaRe includes an API for users to define their own
program transformations, together with Haddock doc-
umentation. Please let us know if you are using the
API.
Snapshots of HaRe are available from our webpage,

as are related presentations and publications from
the group (including LDTA’05, TFP’05, SCAM’06,
PEPM’08, PEPM’10, Huiqing’s PhD thesis and Chris’s
PhD thesis). The final report for the project appears
there, too.
Chris Brown has presently passed his PhD; his PhD

thesis entitled “Tool Support for Refactoring Haskell
Programs” is available from our webpage.

Recent developments

◦ More structural and datatype-based refactorings
have been studied by Chris Brown, including trans-
formation between let and where, generative fold-
ing, introducing pattern matching, and introducing
case expressions;

◦ Clone detection and elimination support has been
added, to allow the automatic detection and semi-
automatic elimination of duplicated code in Haskell.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

4.3.4 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.1.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
The DarcsWatch service is moved to a new machine,

urchin.earth.li, to accommodate its growths. Darc-
sWatch continues to be used by the xmonad project (→
6.1.2), the Darcs project itself, and a few developers.
At the time of writing, it was tracking 32 repositories
and 2631 patches submitted by 171 users.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

25

http://www.cs.kent.ac.uk/projects/heat/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html


4.3.5 DPM — Darcs Patch Manager

Report by: Stefan Wehr
Participants: David Leuschner
Status: beta, active development

The Darcs Patch Manager (DPM for short) is a tool
that simplifies working with the revision control sys-
tem darcs (http://darcs.net). It is most effective when
used in an environment where developers do not push
their patches directly to the main repository but where
patches undergo a reviewing process before they are
actually applied.
The current feature set of DPM is quite stable. In

our company (→ 7.5), we actively use DPM to keep
track of all patches sent to various projects. At the
Haskell hackathon 2010 in Zürich, we started working
on support for tracking conflicts between patches. We
did not yet finish this work, but hope to provide a new
DPM release with support for conflicts in May 2010.
There is some overlap between DPM and darcswatch

(→ 4.3.4). The main difference between darcswatch
and DPM is that the former mainly targets develop-
ers whereas the latter helps reviewers doing their work.

Further reading

◦ http://hackage.haskell.org/package/DPM
◦ Tutorial: http://www.factisresearch.com/2010/03/

dpm/

4.3.6 HSFFIG

Report by: Dmitry Golubovsky
Status: release

Haskell FFI Binding Modules Generator (HSFFIG) is
a tool which parses C include files (.h) and generates
Haskell Foreign Functions Interface import declarations
for all functions, #define’d constants (where possible),
enumerations, and structures/unions (to access their
members). It is assumed that the GNU C Compiler and
Preprocessor are used. Auto-generated Haskell mod-
ules may be imported into applications to access the
foreign library’s functions and variables.
HSFFIG has been in development since 2005, and

was recently released on Hackage. The current version
is 1.1.2 which is mainly a bug-fix release for the version
1.1.
The package provides a small library to link with

programs using auto-generated imports, and two exe-
cutable programs:

◦ hsffig: a filter program which reads pre-processed
include files from standard input, and produces one
large .hsc file;

◦ ffipkg: a program which automates the process of
building a Cabal package out of C include files by the

means of automated running hsffig and other tools
necessary to build a Haskell package.

Further reading

◦ The HSFFIG package on Hackage
http://hackage.haskell.org/package/HSFFIG

◦ The HSFFIG Tutorial
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial

◦ The FFI Imports Packaging Utility
http://www.haskell.org/haskellwiki/FFI_imports_
packaging_utility

4.3.7 Hubris

Report by: Mark Wotton
Participants: James Britt, Larry Diehl, Josh Price,

Tatsuhiro Ujihisa, Andrew Grimm
Status: beta

Hubris is an in-process bridge between Ruby and
Haskell, allowing Ruby programs to use Haskell code
without writing boilerplate.
It is now easier to install, and some 64 bit bugs have

been fixed.
To get it on Linux:
cabal install hubris
gem install hubris
Mac OS X is a bit harder because support for dy-

namic libraries has not been merged into the GHC
mainline yet, but it is in the pipe. Further plans:

◦ work with new versions of Ruby without reinstalla-
tion of Hubris Haskell-side support code

◦ support for passing RTS flags to the Haskell process

◦ translation instance injection (i.e., express equiva-
lents for complex Haskell datatypes in Ruby and vice
versa)

◦ multiple argument support

◦ some way of storing non-translatable instances on
the ruby side — ideally, you should be able to have
a Ruby list of Haskell functions, and apply each
of them in turn. Currently only translateable data
types are marshalled.

Further reading

◦ http://github.com/mwotton/Hubris-Haskell
◦ http://github.com/mwotton/Hubris
◦ http://www.engineyard.com/blog/2010/

a-hint-of-hubris/
◦ http://www.jamesbritt.com/2010/3/13/

a-purely-functional-tale-of-a-bridge-compose-of-hubris

26

http://darcs.net
http://hackage.haskell.org/package/DPM
http://www.factisresearch.com/2010/03/dpm/
http://www.factisresearch.com/2010/03/dpm/
http://hackage.haskell.org/package/HSFFIG
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility
http://github.com/mwotton/Hubris-Haskell
http://github.com/mwotton/Hubris
http://www.engineyard.com/blog/2010/a-hint-of-hubris/
http://www.engineyard.com/blog/2010/a-hint-of-hubris/
http://www.jamesbritt.com/2010/3/13/a-purely-functional-tale-of-a-bridge-compose-of-hubris
http://www.jamesbritt.com/2010/3/13/a-purely-functional-tale-of-a-bridge-compose-of-hubris


5 Libraries

5.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the Common Architecture for Building Appli-
cations and Libraries. It defines a common interface
for defining and building Haskell packages. It is imple-
mented as a Haskell library and associated tools which
allow developers to easily build and distribute pack-
ages.
Hackage is a distribution point for Cabal packages.

It is an online database of Cabal packages which can be
queried via the website and client-side software such as
cabal-install. Hackage enables end-users to download
and install Cabal packages.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

We had a recent release of Cabal-1.8 and cabal-install-
0.8. These are available from hackage and are included
with the upcoming major release of the Haskell Plat-
form (→ 5.2). The primary change is that these releases
work with GHC 6.12.
There is also a new “cabal init” command to help

users create an initial “.cabal” file. This should help
users to follow recommended practise, rather than
copying old idioms from old packages.
There is also a new feature to maintain an HTML

contents page for the haddock documentation for all
installed packages.

Looking forward

Matthew Gruen will be working on the new Hackage
server implementation for his Google Summer of Code
project. The aim is to improve the design so that more
features can be added and then to add many of the
new features that users so frequently request. We have
been discussing using a REST design with the server
presenting both an HTML interface for humans and
also an interface for automated clients.
As ever, there are many improvements we want to

make to Cabal, cabal-install and Hackage. I am pleased
to report that we have had a few new contributors in
the last few months. Nevertheless, our limiting factor

is the amount of volunteer development time and code-
review time. The bug tracker is well maintained so
it should be relatively clear to new contributors what
is in need of attention and which tasks are considered
relatively easy.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.

org/
◦ Bug tracker: http://hackage.haskell.org/trac/

hackage/

5.2 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of a new
“blessed” set of libraries and tools on which to build fur-
ther Haskell libraries and applications. It takes the best
packages from the more than 1500 on Hackage (→ 5.1).
It is intended to provide a comprehensive, stable, and
quality tested base for Haskell projects to work from.
Historically, GHC has shipped with a collection of

packages under the name extralibs. As of GHC 6.12
the task of shipping an entire platform has been trans-
ferred to the Haskell Platform.

Recent progress

At the time of writing we are about to make the
second major release of the platform. This will be
the 2010.2.0.x release series. This release series will
be based on GHC 6.12.2 (or later compatible point
releases). Beta versions of the platform, labelled
2010.1.0.x and using GHC 6.12.1, have been available
for some weeks.
While there have been no new packages included in

this major release, there have been a few significant
upgrades including QuickCheck version 2, the latest
versions of the ‘regex-*’ packages and of course GHC
6.12.x.

Looking forward

Future major releases will be on a 6 month schedule.
Major releases may include new and updated packages
while minor releases will only contain bug fixes and
fixes for packaging problems.
We would like to invite package authors to pro-

pose new packages for future major releases. We

27

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/


also invite the rest of the community to take part
in the review process on the libraries mailing list
libraries@haskell.org. The procedure involves
writing a package proposal and discussing it on the
mailing list with the aim of reaching a consensus. De-
tails of the procedure are on the development wiki.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform
◦ Download: http://hackage.haskell.org/platform/
◦ Wiki: http://trac.haskell.org/haskell-platform/
◦ Adding packages: http://trac.haskell.org/

haskell-platform/wiki/AddingPackages

5.3 Auxiliary Libraries

5.3.1 hmatrix

Report by: Alberto Ruiz
Status: stable, maintained

The hmatrix library is a purely functional interface to
numerical linear algebra, internally implemented using
GSL, BLAS, and LAPACK.
Recent work includes changes in the internal data

structures to make the package compatible with Ro-
man Leshchinskiy’s vector. The modules for the GSL
special functions have been moved to a separate pack-
age (hmatrix-special).

Further reading

◦ http://code.haskell.org/hmatrix
◦ http://perception.inf.um.es/tensor

5.3.2 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van Keeken im-
plemented a library to data mine logged Helium (→ 2.3)
programs to investigate aspects of how students pro-
gram Haskell, how they learn to program, and how
good Helium is in generating understandable feedback
and hints. The software can be downloaded from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Neon, which also
gives some examples of output generated by the sys-
tem. The downloads only contain a small sample of
loggings, but it will allow programmers to play with it.
The recent news is that a paper about Neon will

be published at SLE (1st Conference on Software Lan-
guage Engineering), where it came under the heading
of Tools for Language Usage.
On that note, there has been a posting by Simon

Thompson, Sally Fincher and myself for a PhD stu-
dent to work on understanding how students learn to
program (in Haskell), in Kent. Also, recently I acquired

a new master student to continue to the work of Pe-
ter van Keeken. One of this tasks will be to investigate
the kind of parse errors students make, and continue to
make. In the process, he shall add context properties
(did the student pass or fail, what kind of programming
background can we expect him or her to have) to our
database so that they can be employed by queries to
increase external validity.

5.3.3 mueval

Report by: Gwern Branwen
Participants: Andrea Vezzosi, Daniel Gorin, Spencer

Janssen, Adam Vogt
Status: active development

Mueval is a code evaluator for Haskell; it em-
ploys the GHC API as provided by the Hint
library (http://haskell.org/communities/11-2008/html/
report.html#hint). It uses a variety of techniques to
evaluate arbitrary Haskell expressions safely & securely.
Since it was begun in June 2008, tremendous progress
has been made; it is currently used in Lambdabot
live in #haskell). Mueval can also be called from the
command-line.
Mueval features:

◦ A comprehensive test-suite of expressions which
should and should not work

◦ Defeats all known attacks

◦ Optional resource limits and module imports

◦ The ability to load in definitions from a specified file

◦ Parses Haskell expressions with haskell-src-exts and
tests against black- and white-lists

◦ A process-level watchdog, to work around past and
future GHC issues with thread-level watchdogs

◦ Cabalized

Since the last HCAR report, the internals have been
cleaned up further, a number of minor bugs squashed,
tests added, and mueval updated to avoid bitrot.
We are currently working on the following:

◦ Refactoring modules to render Mueval more useful
as a library

◦ Removing the POSIX-only requirement

◦ Merging in Chris Done’s mueval-interactive fork,
which powers http://tryhaskell.org/

Further reading

The source repository is available: darcs get
http://code.haskell.org/mubot/

28

http://haskell.org/haskellwiki/Haskell_Platform
http://hackage.haskell.org/platform/
http://trac.haskell.org/haskell-platform/
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://code.haskell.org/hmatrix
http://perception.inf.um.es/tensor
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://haskell.org/communities/11-2008/html/report.html#hint
http://haskell.org/communities/11-2008/html/report.html#hint
http://github.com/chrisdone/mueval-interactive
http://tryhaskell.org/
http://code.haskell.org/mubot/


5.4 Parsing and Transforming

5.4.1 ChristmasTree

Report by: Marcos Viera
Participants: Doaitse Swierstra, Eelco Lempsink
Status: experimental

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.5.7.

5.4.2 First Class Syntax Macros

Report by: Marcos Viera
Participants: Doaitse Swierstra, Atze Dĳkstra, Arthur

Baars
Status: experimental

The idea of having an extensible language is appeal-
ing and raises the question how to construct extensible
compilers. In recent years we have developed a collec-
tion of techniques which together enable this in Haskell:
transformation of typed abstract syntax trees makes it
possible to construct parsers on the fly in a type-safe
way, parser combinators make it possible to construct
parsers dynamically, and first-class attribute grammars
make it possible to define semantics compositionally.
We use these techniques together in constructing

compilers out of a collection of pre-compiled, statically
type-checked, possibly mutually dependent “language-
definition fragments”. This way of constructing a com-
piler brings syntax macros for free.

Background

The solution we present builds on a couple of related
developments:

◦ the introduction of typed abstract syntax (Arthur
I. Baars and S. Doaitse Swierstra: Typing dynamic
typing, ICFP’02.)

◦ the introduction of a naming structure which makes
it possible to represent mutually dependent struc-
tures and the possibility to manipulate such struc-
tures while keeping types correct (http://haskell.org/
communities/05-2009/html/report.html#sect5.5.6,
http://hackage.haskell.org/package/TTTAS; Arthur
I. Baars, S. Doaitse Swierstra, and Marcos Viera:
Typed transformations of typed abstract syntax,
TLDI’09.)

◦ the description and composition of typed grammar
descriptions (Marcos Viera, S. Doaitse Swierstra,
and E. Lempsink: Haskell, do you read me?: con-
structing and composing efficient top-down parsers
at runtime, Haskell ’08.)

◦ the typed Left-Corner Transform which removes
left-recursion from a grammar (Arthur I. Baars, s.
Doaitse Swierstra, and Marcos Viera: Typed trans-
formations of typed grammars: The left corner trans-
form, LDTA’09.)

◦ the possibility to construct self-analyzing, error cor-
recting parser on the fly (http://hackage.haskell.org/
package/uulib; S. Doaitse Swierstra: Parser combi-
nators: from toys to tools, Haskell’00; S. Doaitse
Swierstra: Combinator parsing: A Short Tutorial,
LerNet ALFA Summer School 2008)

◦ the type safe extension of semantics via attribute
grammar fragments and their composition, which
make attribute grammars first class Haskell val-
ues, which can be transformed, composed and fi-
nally evaluated ((→ 4.1.2), http://hackage.haskell.
org/package/AspectAG; Marcos Viera, S. Doaitse
Swierstra, and Wouter Swierstra: Attribute gram-
mars fly first-class: how to do aspect oriented pro-
gramming in Haskell, ICFP’09.)

Further reading

http://www.cs.uu.nl/wiki/Center/SyntaxMacrosForFree

5.4.3 Utrecht Parser Combinator Library: New
version

Report by: Doaitse Swierstra
Status: actively developed

The Utrecht Parser Combinator library has remained
largely unmodified for the last five years, and has served
us well. Recently a few modifications were made to the
old library in order to deal with recent changes in the
Haskell offside rule.
With the advent of GADTs, some internals could be

simplified considerably. The Lernet summer school in
February 2008 (http://www.fing.edu.uy/inco/eventos/
lernet2008/) provided an incentive to start a rewrite
of the library; a newly written tutorial has appeared in
the LNCS lecture notes (S. Doaitse Swierstra, Com-
binator Parsers: A Short Tutorial, Language En-
gineering and Rigorous Software Development 2009,
LNCS 5520). The text is also available as a tech-
nical report at http://www.cs.uu.nl/research/techreps/
UU-CS-2008-044.html. The new library was released
as the uu-parsinglib library, which has found its place
in the Text.ParserCombinators category on Hackage.

Features

◦ Much simpler internals than the old li-
brary (http://haskell.org/communities/05-2009/
html/report.html#sect5.5.8).

◦ Online result production, error recovery, combina-
tors for parsing ambiguous grammars, an applicative
interface, a monadic interface.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-

29

http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://haskell.org/communities/05-2009/html/report.html#sect5.5.6
http://haskell.org/communities/05-2009/html/report.html#sect5.5.6
http://hackage.haskell.org/package/TTTAS
http://hackage.haskell.org/package/uulib
http://hackage.haskell.org/package/uulib
http://hackage.haskell.org/package/AspectAG
http://hackage.haskell.org/package/AspectAG
http://www.cs.uu.nl/wiki/Center/SyntaxMacrosForFree
http://www.fing.edu.uy/inco/eventos/lernet2008/
http://www.fing.edu.uy/inco/eventos/lernet2008/
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8


put file.

◦ Fixes a potential black hole which went unnoticed for
years in the code for the monadic bind as presented
by Swierstra and Hughes in the ICFP 2003 paper:
Polish Parsers: Step by Step.

Future plans

The next version of the library, with an abstract in-
terpretation part in order to get the parsing speed we
got used to, will be released on Hackage again, with
an extensive documentation of its internals and ways
to use them. Since many aspects of the old library,
such as its applicative interface and the possibility to
build, e.g., a parser for permutation phrases, have now
become available elsewhere in other packages, we will
also try to make the new library to conform as much
as possible with these new developments.
Furthermore we plan to carry the implementation of

the Left-Corner Transform to a version of this library,
so we will be able to deal with left-recursive grammar
here too.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉.

5.4.4 Regular Expression Matching with Partial
Derivatives

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu

Regular expression matching is a classical and well-
studied problem. Prior work applies DFA and Thomp-
son NFA methods for the construction of the match-
ing automata. We propose the novel use of derivatives
and partial derivatives for regular expression matching.
We show how to obtain algorithms for various match-
ing policies such as POSIX and greedy left-to-right.
Our benchmarking results show that the run-time per-
formance is promising and that our approach can be
applied in practice.

Further reading

http://sulzmann.blogspot.com/2010/04/
regular-expression-matching-using.html

5.5 Mathematical Objects

5.5.1 Halculon: units and physical constants
database

Report by: Jared Updike
Status: web application in beta, database stable

A number of Haskell libraries can represent numeri-
cal values with physical dimensions that are checked
at runtime or compile time (including dimensional and
the Numeric Prelude), but neither provide an exhaus-
tive, searchable, annotated database of units, measures,
and physical constants. Halculon is an interactive unit
database of 4,250 units, with a sample Haskell AJAX
web application, based on the units database created by
Alan Eliasen for the wonderful physical units program-
ming language Frink. (Because each unit in Frink’s
unit.txt database is defined in terms of more basic
unit definitions — an elegant approach in general —
units.txt is inconvenient for looking up a single random
unit; the entire file might need to be parsed to repre-
sent any given constant solely in terms of the base SI
units, which is precisely what the Halculon database
provides.)
Halculon also provides a carefully tuned, user- and

developer-friendly search string database that aims to
make interactive use pleasant. The database tables are
available online and downloadable as UTF-8 text.
The example web application now has a mobile ver-

sion available (tested in iPhone OS 3.1, Safari 3.0, and
Firefox 2.0). For best results on the iPhone or iPod
touch, Add to Home Screen to use the application in
full screen. The calculator works offline, too.

Further reading

◦ http://www.updike.org/articles/Units
◦ http://www.updike.org/halculon/
◦ http://www.updike.org/halcmobile/

30

mailto: doaitse at swierstra.net
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
http://www.updike.org/articles/Units
http://www.updike.org/halculon/
http://www.updike.org/halcmobile/


5.5.2 AERN-Real and friends

Report by: Michal Konečný
Participants: Amin Farjudian, Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of the following libraries for
fast exact real number arithmetic:

◦ AERN-Real: arbitrary precision safely rounded
interval arithmetic with multiple backends (pure
Haskell floating point numbers, MPFR, machine
doubles) and with support for inner rounding, anti-
consistent intervals and Kaucher arithmetic

◦ AERN-RnToRm: arbitrary precision safely-rounded
arithmetic of piece-wise polynomial function en-
closures (PFEs) for functions over n-dimensional
real intervals with support for inner rounding,
anti-consistent intervals and approximated Kaucher
arithmetic

◦ AERN-RnToRm-Plot: GTK window for inspecting
the graphs of PFEs in one variable (see figure below,
showing a screenshot of an AERN-RnToRm-Plot
window exploring an enclosure of cos(10x) (blue) and
an enclosure of its primitive function (red))

◦ AERN-Net: an implementation of distributed query-
based (i.e., lazy) computation over analytical and ge-
ometrical objects

The development is driven mainly by the needs of our
two research projects. We use the libraries extensively
to:

◦ prototype algorithms for reliable and ultimately con-
verging methods for solving differential equations in
many variables (AERN-RnToRm, AERN-Net)

◦ solve numerical constraint satisfaction problems, es-
pecially those arising from verification of programs
that use floating point numbers (AERN-RnToRm)

The current versions have been fairly stable for our
purposes.
We are currently redesigning and rewriting the li-

braries almost from scratch with the following goals:

◦ A larger number of simpler and more reusable type
classes instead of the few and fairly complex type
classes provided in the current version; this includes
type classes such as RoundedLattice or RoundedMul-
tiplication.

◦ A more thorough approach to testing, with proper-
ties defined alongside the type classes.

◦ Support for both pure arithmetic and in-place up-
dates using the ST monad for extra efficiency with
backends written in C such a MPFR.

◦ A faster implementation of polynomial arithmetic,
probably with a core written in C.

Further reading

◦ See Haddock documentation via Hackage — has links
to research papers.

◦ New version under construction on http://code.
google.com/p/aern/.

5.5.3 logfloat

Report by: Wren N.G. Thornton
Status: stable?
Current release: 0.12.1
Portability: GHC 6.8, GHC 6.10, Hugs Sept2006

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.6.7.

5.6 Data types and data structures

5.6.1 HList — a library for typed heterogeneous
collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).
An immediate application of HLists is the imple-

mentation of open, extensible records with first-class,

31

http://code.google.com/p/aern/
http://code.google.com/p/aern/
http://haskell.org/communities/05-2009/html/report.html#sect5.6.7
http://haskell.org/communities/05-2009/html/report.html#sect5.6.7


reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We, and now others (Alexandra
Silva, Joost Visser: PURe.CoddFish project), have also
used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell (http:
//code.haskell.org/OOHaskell). The HList library relies
on common extensions of Haskell 98.
HList is being used in AspectAG (→ 4.1.2), typed

EDSL of attribute grammars, and in HaskellDB. There
has been many miscellaneous changes related to the
names of exposed modules, fixity declarations. Patches
by Adam Vogt significantly improve the Haddock-
generated documentation. The current version is 0.2.1;
it works with GHC 6.12.
We are investigating the use of type functions pro-

vided in the new versions of GHC.

Further reading

◦ HList: http://homepages.cwi.nl/~ralf/HList/
◦ OOHaskell: http://homepages.cwi.nl/~ralf/
OOHaskell/

5.6.2 Verified priority queues

Report by: Jim Apple
Status: stable

A priority queue (or sometimes “heap”) is a container
supporting the insertion of elements and the extrac-
tion of the minimum element. Gerth Brodal and Chris
Okasaki presented a purely functional priority queue
that also supports an O(1) meld operation in their pa-
per “Optimal Purely Functional Priority Queues”. This
project provides an implementation of these priority
queues that has been verified using the Coq proof as-
sistant.
It is available on Hackage and can be installed with

cabal install meldable-heap. The Coq proofs are
included in the package.

Further reading

http://hackage.haskell.org/package/meldable-heap/

5.6.3 bytestring-trie

Report by: Wren N.G. Thornton
Status: slow development
Current release: 0.2.1.1
Portability: Haskell 98 + CPP

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.7.4.

5.7 Data processing

5.7.1 Graphalyze

Report by: Ivan Lazar Miljenovic
Status: version 0.9.0.0

The Graphalyze library is a general-purpose, fully ex-
tensible graph-theoretic analysis library, which includes
functions to assist with graph creation and visualiza-
tion, as well as many graph-related algorithms. Also
included is a small abstract document representation,
with a sample document generator utilizing Pandoc (→
6.4.1). Users of this library are able to mix and match
Graphalyze’s algorithms with their own. Changes since
previous versions have focused on refining the contents
of the library and inclusion of new analysis algorithms,
with future plans to re-write the document generation
modules to use pretty-printing functions.
Graphalyze is used in SourceGraph (→ 4.2.2) (which

is the driving force behind improvements to Grapha-
lyze), and was initially developed as part of my Math-
ematics Honours’ thesis, Graph Theoretic Analysis of
Relationships Within Discrete Data. The focus of this
thesis was to develop computational tools to allow peo-
ple to analyze discrete data sets.

Further reading

◦ http://hackage.haskell.org/package/Graphalyze
◦ http://ivanmiljenovic.files.wordpress.com/2008/11/

honoursthesis.pdf

5.7.2 Bravo

Report by: Matthias Reisner
Status: experimental; active development

Bravo is a general-purpose text template library, pro-
viding the parsing and generation of templates at com-
pile time. Templates can be read from strings or files
and for each a new record data type is created, al-
lowing convenient access to all template variables in a
type-safe manner. The data type creation it achieved
by the use of the Template Haskell language extension.

Features

Compared to other template libraries, Bravo’s features
are:

◦ Static template processing: All templates are read,
parsed, and processed at compile time, so no extra
file access or error handling at runtime is necessary.

◦ Multiple templates per file: Bravo allows the user to
define multiple templates per file with arbitrary com-
ments between them, e.g., for template documenta-
tion.

32

http://code.haskell.org/OOHaskell
http://code.haskell.org/OOHaskell
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://hackage.haskell.org/package/meldable-heap/
http://haskell.org/communities/05-2009/html/report.html#sect5.7.4
http://haskell.org/communities/05-2009/html/report.html#sect5.7.4
http://hackage.haskell.org/package/Graphalyze
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf


◦ Conditional template evaluation: To check condi-
tions at runtime and return the appropriate template
text, conditional template expressions are provided.

◦ Embedding of Haskell expressions: Bravo allows the
user to embed arbitrary Haskell 98 expressions com-
bined with template variables. The set of permit-
ted functions/operators/types can be controlled us-
ing Haskell’s module system.

◦ Customized data type generation: Bravo uses a de-
fault scheme for the data type creation that can be
replaced by a user defined scheme easily.

Future plans

There were plans to extend Bravo’s capabilities by in-
troducing new template expressions, e.g., to “map” a
template over a list of values. Contrary to expectations,
this requires the internal parser to be rewritten and
split into lexer and parser. However, this would also
improve extensibility and stability of the implementa-
tion. Further work will include performance analysis
and handling of different input encodings. Support for
custom template expression delimiters (the current are
{{ and }}) and caching are also planned.

Further reading

◦ http://www.haskell.org/haskellwiki/Bravo
◦ http://hackage.haskell.org/package/Bravo

5.8 Generic and Type-Level Programming

5.8.1 uniplate

Report by: Neil Mitchell

Uniplate is a library for writing simple and concise
generic operations. Uniplate has similar goals to the
original Scrap Your Boilerplate work, but is substan-
tially simpler and faster. If you are writing any sort of
compiler, you should be using a generics library. If you
do not know any generics libraries, Uniplate is a good
place to start.
Uniplate has recently undergone major revisions.

The new version drops Haskell 98 compatibility, in fa-
vor of Haskell 2010 compatibility — simplifying the
module layout. All the instances have been revised
with a focus on performance. Some of the instances can
now be generated by the Derive tool (→ 4.1.5). The in-
stances based on the Data class have been optimized
and extended — they now work on more types, and
run faster.

Further reading

http://community.haskell.org/~ndm/uniplate/

5.8.2 Generic Programming at Utrecht University

Report by: José Pedro Magalhães
Participants: Stefan Holdermans, Johan Jeuring, Sean

Leather, Andres Löh, Thomas van Noort
Status: actively developed

One of the research themes investigated within the
Software Technology Center in the Department of In-
formation and Computing Sciences at Utrecht Univer-
sity is generic programming. Over the last 10 years, we
have played a central role in the development of generic
programming techniques, languages, and libraries.
Currently, we are maintaining five generic program-

ming libraries: emgm, instantgenerics, multirec,
regular, and syb. We report on the latter four in
this entry; emgm has its own entry (→ 5.8.3).

instant-generics Using type families and type
classes in a way similar to multirec and regular,
instant-generics is yet another approach to
generic programming, supporting a large variety of
datatypes and allowing the definition of type-indexed
datatypes. It was first described by Chakravarty
et al., and forms the basis of our new rewriting li-
brary. The current release of instant-generics
on Hackage is a minimal version designed mostly
to support our new rewriting package. This new
rewriting library supports conditional guards on the
rewrite rules and allows metavariables to range over
any types, unlike our previous rewriting library.

multirec This library represents datatypes uniformly
and grants access to sums (the choice between con-
structors), products (the sequence of constructor ar-
guments), and recursive positions. Families of mu-
tually recursive datatypes are supported. Functions
such as map, fold, show, and equality are provided as
examples within the library. Using the library func-
tions on your own families of datatypes requires some
boilerplate code in order to instantiate the frame-
work, but is facilitated by the fact that multirec
contains Template Haskell code that generates these
instantiations automatically.
The multirec library can also be used for type-
indexed datatypes. As a demonstration, the zipper
library is available on Hackage. With this datatype-
generic zipper, you can navigate values of several
types.
Unfortunately, multirec does not work well with
ghc-6.12, due to a change in the expansion of type
families that will hopefully be reverted in the future.
If you are using multirec, then for the moment, we
advise to use ghc-6.10.
We are still planning to extend the multirec li-
brary with support for parameterized datatypes and
datatype compositions.

33

http://www.haskell.org/haskellwiki/Bravo
http://hackage.haskell.org/package/Bravo
http://community.haskell.org/~ndm/uniplate/
http://www.cs.uu.nl/wiki/Center
http://www.cs.uu.nl/
http://www.cs.uu.nl/
http://www.uu.nl/EN
http://www.uu.nl/EN
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://www.cse.unsw.edu.au/~chak/project/generics/
http://www.cse.unsw.edu.au/~chak/project/generics/
http://www.cs.uu.nl/wiki/GenericProgramming/GuardedRewriting
http://www.cs.uu.nl/wiki/GenericProgramming/GuardedRewriting
http://hackage.haskell.org/package/instant-generics
http://hackage.haskell.org/package/instant-generics
http://hackage.haskell.org/package/guarded-rewriting
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting


regular While multirec focuses on support for mu-
tually recursive regular datatypes, regular supports
only single regular datatypes. The approach used is
similar to that of multirec, namely using type fam-
ilies to encode the pattern functor of the datatype
to represent generically. There have been no ma-
jor releases of the regular or regular-extras pack-
ages on Hackage since the last report. The current
versions provide a number of typical generic func-
tions, but also some less well-known but useful func-
tions: deep seq, QuickCheck’s arbitrary and coarbi-
trary, and binary’s get and put.

syb Scrap Your Boilerplate (syb) has been supported
by GHC since the 6.0 release. This library is based on
combinators and a few primitives for type-safe cast-
ing and processing constructor applications. It was
originally developed by Ralf Lämmel and Simon Pey-
ton Jones. Since then, many people have contributed
with research relating to syb or its applications.
Since syb has been separated from the base package,
it can now be updated independently of GHC. We
have recently released version 0.2 on Hackage, which
has reintegrated the testsuite and introduced new
generic producers, along with smaller changes and
fixes.

We also continue to look at benchmarking and
improving the performance of different libraries for
generic programming (→ 5.8.4). Recently we have also
investigated how to integrate generics in the Utrecht
Haskell Compiler (→ 2.4).

Further reading

http://www.cs.uu.nl/wiki/GenericProgramming

5.8.3 Extensible and Modular Generics for the
Masses (EMGM)

Report by: Sean Leather
Participants: José Pedro Magalhães, Alexey Rodriguez,

Andres Löh
Status: actively developed

Extensible and Modular Generics for the Masses
(EMGM) is a general-purpose library for generic pro-
gramming with type classes.

Introduction

EMGM is a library for datatype-generic programming
using type classes. We represent Haskell datatypes as
values using a sum-of-products structure representa-
tion. The foundation of EMGM allows programmers
to write generic functions by induction on the struc-
ture of datatypes. The use of type classes in EMGM
allows generic functions to support ad-hoc cases for ar-
bitrary datatypes.

The library provides a sizable (and constantly grow-
ing) collection of ready-to-use generic functions. Here
are some examples of these functions:

◦ Crush, a useful generalization of fold-like opera-
tions that supports flattening, integer operations,
and logic operations on all values of an arbitrary
datatype

◦ Extensible Read and Show functions to which one
might add special cases for certain types

◦ Collect for collecting values of a certain type con-
tained within a value of a different type

◦ ZipWith, a generic version of the standard zipWith

EMGM also comes with support for standard
datatypes such as lists, Either, Maybe, and tuples.
Adding support for your own datatype is straightfor-
ward using the deriving API.

Background

The ideas for EMGM come from research by Ralf
Hinze, Bruno Oliveira, and Andres Löh. It was fur-
ther explored in a comparison of generic programming
libraries by Alexey Rodriguez, et al. Our particular im-
plementation was developed simultaneously along with
lecture notes for the 2008 Advanced Functional Pro-
gramming Summer School. The article from these lec-
tures has been extended and published as a technical
report.

Recent Development

No changes have been made since the previous report.

Future plans

We plan to continue developing EMGM and to explore
the use of this library in many domains. We welcome
ideas or contributions from the community.

Contact

Let us know if you use EMGM, how you use it, and
where it can be improved. Contact us on the Generics
mailing list.

Further reading

More information can be found on the EMGM web-
site. Download the package and browse the API at the
Hackage page.

5.8.4 Optimizing generic functions

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Andres Löh
Status: actively developed

34

http://hackage.haskell.org/package/regular
http://hackage.haskell.org/package/regular-extras
http://web.archive.org/web/20080622204226/http://www.cs.vu.nl/boilerplate/
http://hackage.haskell.org/package/syb
http://hackage.haskell.org/packages/archive/syb/0.2.1/doc/html/Data-Generics-Builders.html
http://hackage.haskell.org/packages/archive/syb/0.2.1/doc/html/Data-Generics-Builders.html
http://www.cs.uu.nl/wiki/GenericProgramming
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Crush.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Read.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Show.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Collect.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-ZipWith.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Derive.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-025.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-025.html
http://www.haskell.org/mailman/listinfo/generics
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://hackage.haskell.org/package/emgm


Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. Several generic program-
ming libraries for Haskell have been developed in the
past few years. These libraries have been compared in
detail with respect to expressiveness, extensibility, typ-
ing issues, etc., but performance comparisons have been
brief, limited, and preliminary. It is widely believed
that generic programs run slower than hand-written
code.

At Utrecht University we are looking into the perfor-
mance of different generic programming libraries and
how to optimize them. We have confirmed that generic
programs, when compiled with the standard optimiza-
tion flags of the Glasgow Haskell Compiler (GHC), are
substantially slower than their hand-written counter-
parts. However, we have also found that more advanced
optimization capabilities of GHC can be used to fur-
ther optimize generic functions, sometimes achieving
the same efficiency as hand-written code.

We have benchmarked four generic programming li-
braries: emgm, syb, multirec, and regular. We com-
pare different generic functions in each of these libraries
to a hand-written version. We have concluded that in-
lining plays a crucial role in the optimization of gener-
ics. Previously we used flags to increase the chances of
the GHC inliner to optimize our functions. However,
such flags change the behavior of the inliner for the en-
tire set of modules being compiled, which might have
detrimental effects on performance. Currently we are
investigating how to localize these hints to the compiler
by using INLINE pragmas, for the instant-generics
and regular generic programming libraries in particu-
lar.

In most cases, we can achieve very good performance
results by providing INLINE pragmas to the conver-
sion functions (from and to) for each datatype and for
each instance of the generic function on a representa-
tion type (such as Sum, Prod, etc.). We have to be
careful with the optimization phases, as sometimes in-
lining too early can prevent later optimizations. In this
way, we achieve the same performance as a type-specific
hand-written version for functions like show and up-
date, using only the infrastructure that GHC already
provides. The performance of generic read is also sig-
nificantly improved.

Unfortunately, some generic functions are still dif-
ficult to optimize with this technique. In particular,
functions which involve additional datatypes in their
type (such as enum, which returns a list of elements)
prevent proper optimization. We are currently looking
into how we can circumvent this restriction. We also
plan to update our libraries to add the necessary prag-
mas for increased efficiency, but since we require the
new inliner we have to wait until GHC version 6.14 is
released.

Further reading

http://dreixel.net/research/pdf/ogie.pdf

5.9 User interfaces

5.9.1 Gtk2Hs

Report by: Axel Simon
Participants: Andy Stewart and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ High quality vector graphics using Cairo

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

While that last six months have seen the addition of
several new functions and even whole libraries, one of
the most visible changes is that Gtk2Hs is now available
as a set of Cabal packages. This transition also means
that many of the additional libraries that reside in the
Gtk2Hs repository will move into their own repositories
and can be maintained by people outside the Gtk2hs
core team. Cabal packages also mean that no more
Windows installer is needed and that building the code
is more resilient to changes to the way GHC manages
its build process: These issues are now all dealt with
by Cabal, thereby greatly simplifying the installation
and maintenance of Gtk2Hs. The separation into many
Cabal files also makes it possible to use just the Cairo
package to render vector graphics into PNGs or to use
Cairo and Pango to produce Unicode PDF documents!
Another important addition is the support for cor-

rect garbage collection in multi-threaded programs.
This has bitten several users who wanted to write

35

http://hackage.haskell.org/package/instant-generics
http://hackage.haskell.org/package/regular
http://dreixel.net/research/pdf/ogie.pdf


multi-threaded programs and became a more pressing
issue with GHC’s support for concurrent garbage col-
lection.
Gtk2Hs version 0.11.0 has been released on May 25th.
It has been tested on Linux, Mac OS X, and Windows
(XP/7), and works in GHCi and multi-threaded pro-
grams.

Further reading

◦ News, downloads, and documentation: http://
haskell.org/gtk2hs/

◦ Development version: darcs get http://code.
haskell.org/gtk2hs/

5.9.2 CmdArgs

Report by: Neil Mitchell
Status: released

CmdArgs is a library for defining and parsing com-
mand lines. The focus of CmdArgs is allowing the con-
cise definition of fully-featured command line argument
processors, in a mainly declarative manner (i.e., little
coding needed). Compared to the standard GetOpt
library, CmdArgs is often about three times shorter.
CmdArgs also supports multiple mode programs, for
example as used in git/darcs/Cabal.

Further reading

http://community.haskell.org/~ndm/cmdargs/

5.10 Graphics and Music

5.10.1 LambdaCube

Report by: Csaba Hruska
Status: experimental, active development

LambdaCube is a 3D rendering engine entirely written
in Haskell.
The main goal of this project is to provide a modern

and feature rich graphical backend for various Haskell
projects, and in the long run it is intended to be a
practical solution even for serious purposes. The en-
gine uses Ogre3D’s (http://www.ogre3d.org) mesh and
material file format, therefore it should be easy to find
or create new content for it. The code sits between the
low-level C API (raw OpenGL, DirectX or anything
equivalent; the engine core is graphics backend agnos-
tic) and the application, and gives the user a high-level
API to work with.
The most important features are the following:
◦ loading and displaying Ogre3D models
◦ resource management
◦ modular architecture
If your system has OpenGL and GLUT installed,

the lambdacube-examples package should work out of

the box. The engine is also integrated with the Bullet
physics engine (→ 6.13.3), and you can find a running
example in the lambdacube-bullet package.

Everyone is invited to contribute! You can help
the project by playing around with the code, thinking
about API design, finding bugs (well, there are a lot of
them anyway), creating more content to display, and
generally stress testing the library as much as possible
by using it in your own projects.

Further reading

http://www.haskell.org/haskellwiki/LambdaCubeEngine

5.10.2 diagrams

Report by: Brent Yorgey
Status: active development

The diagrams library provides an embedded domain-
specific language for creating simple pictures and dia-
grams. Values of type Diagram are built up in a compo-
sitional style from various primitives and combinators,
and can be rendered to a physical medium, such as a file
in PNG, PS, PDF, or SVG format. The overall vision
is for diagrams to become a viable alternative to DSLs
like MetaPost or Asymptote, but with the advantages
of being purely functional and embedded.
For example, consider the following diagram to illus-

trate the 24 permutations of four objects:

The diagrams library was used to create this dia-
gram with very little effort (about ten lines of Haskell,
including the code to actually generate permutations).
The source code for this diagram, as well as other ex-
amples and further resources, can be found at http:
/code.haskell.org/diagrams/.

36

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://community.haskell.org/~ndm/cmdargs/
http://www.ogre3d.org
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http:/code.haskell.org/diagrams/
http:/code.haskell.org/diagrams/


The library is currently undergoing a major rewrite,
in order to use a more flexible constraint-solving lay-
out engine and abstract out the rendering backend (the
current version depends solely on the Cairo library for
rendering). Other planned features include animation
support, more sophisticated paths and path operations,
and an xmonad-like core/contrib model for incorporat-
ing user-submitted extension modules.

Further reading

◦ http://code.haskell.org/diagrams/
◦ http://byorgey.wordpress.com/2009/09/24/

diagrams-0-2-1-and-future-plans/
◦ http://www.tug.org/metapost.html
◦ http://asymptote.sourceforge.net/

5.10.3 GPipe

Report by: Tobias Bexelius

GPipe models the entire graphics pipeline in a purely
functional, immutable and type-safe way. It is built
on top of the programmable pipeline (i.e., non-fixed
function) of OpenGL 2.1 and uses features such as ver-
tex buffer objects (VBO’s), texture objects, and GLSL
shader code synthetization to create fast graphics pro-
grams. Buffers, textures, and shaders are cached in-
ternally to ensure fast framerate, and GPipe is also
capable of managing multiple windows and contexts.
GPipe’s aim is to be as close to the conceptual graph-
ics pipeline as possible, and not to add any more levels
of abstraction.
In GPipe, you work with four main data types: Prim-

itiveStreams, FragmentStreams, FrameBuffers, and
textures. They are all immutable, and all parameter-
ized on the type of data they contain to ensure type
safety between pipeline stages. By creating your own
instances of GPipes type classes, it is possible to use
additional data types on the GPU.
Version 1.2.1 with documentation is released on

Hackage, as well as some utility libraries that en-
able loading of Collada geometries and JPEG textures.
There are also a few examples and tutorials that can
be found through the wiki.
I am not currently working on any more additions

myself, but the sources are available on github and any-
one is welcome to contribute.

Further reading

http://www.haskell.org/haskellwiki/GPipe

5.10.4 ChalkBoard

Report by: Andy Gill
Participants: Kevin Matlage
Status: ongoing

ChalkBoard is a domain specific language for describing
images. The language is uncompromisingly functional
and encourages the use of modern functional idioms.
The novel contribution of ChalkBoard is that it uses
off-the-shelf graphics cards to speed up rendering of
our functional description.
We always intended to use ChalkBoard to animate

educational videos, as well as for processing stream-
ing videos. Since the last HCAR report, we have used
ChalkBoard in two main projects, covering both these
goals.

◦ We used ChalkBoard to post-process a “special fea-
ture” presentation at PEPM’10, where we turned a
video of KU actors (err, us) giving a presentation,
into individual frames, and processed these frames
using ChalkBoard to add clearer slides, and some
animations.

◦ We are working on a new animation language, based
round a new applicative functor, Active. It has
been called Functional Reactive Programming, with-
out the reactive part!

We talked about a case study of using our Active
language at TFP in May, when Kevin gave the talk
“Every Animation Should Have a Beginning, a Middle,
and an End”.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard

5.10.5 graphviz

Report by: Ivan Lazar Miljenovic
Status: version 2999.9.0.0

The graphviz library provides Haskell bindings for the
Graphviz suite of tools for visualizing graphs by utiliz-
ing Graphviz’s Dot language. The major features of
the graphviz library include:

◦ Almost complete coverage of all Graphviz attributes
and syntax.

◦ Support for specifying clusters.

◦ The ability to use a custom node type.

◦ Functions for running a Graphviz layout tool with
all specified output types.

◦ The ability to not only generate but also parse Dot
code with two options: strict and liberal (in terms of
ordering of statements).

◦ Functions to convert FGL graphs to Dot code —
including support to group them into clusters — with
a high degree of customization by specifying which
attributes to use and limited support for the inverse
operation.

37

http://code.haskell.org/diagrams/
http://byorgey.wordpress.com/2009/09/24/diagrams-0-2-1-and-future-plans/
http://byorgey.wordpress.com/2009/09/24/diagrams-0-2-1-and-future-plans/
http://www.tug.org/metapost.html
http://asymptote.sourceforge.net/
http://www.haskell.org/haskellwiki/GPipe
http://www.program-transformation.org/PEPM10/SpecialFeature
http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard


◦ Round-trip support for passing an FGL graph
through Graphviz to augment node and edge labels
with positional information, etc.

For a sample graph visualized using the graphviz li-
brary, see SourceGraph (→ 4.2.2).

Further reading

◦ http://projects.haskell.org/graphviz/
◦ http://hackage.haskell.org/package/graphviz
◦ http://www.graphviz.org/

5.10.6 Euterpea

Report by: Paul Hudak
Participants: Eric Cheng, Paul Liu, Donya Quick
Status: experimental, active development

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.12.2.

5.11 Web and XML programming

5.11.1 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 8.5.2)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml and HXML, but introduces a more general ap-
proach for processing XML with Haskell. The process-
ing model is based on arrows. The arrow interface is
more flexible than the filter approach taken in the ear-
lier HXT versions and in HaXml. It is also safer; type
checking of combinators becomes possible with the ar-
row approach.
HXT is partitioned into 6 packages: The base pack-

age hxt, the package for the old approach working with
filter hxt-filter (this one will not be further devel-
oped), the package hxt-xpath for XPath functional-
ity, hxt-xslt for the XSLT interpreter, hxt-binary
a small package for binary (de-)serialization of HXT
DOM trees, and hxt-cache, a package for caching
XML/HTML documents in parsed format.

Features

◦ Validating XML parser
◦ Very liberal HTML parser

◦ Lightweight lazy parser for XML/HTML based on
Tagsoup (→ 5.11.3)

◦ Easy de-/serialization between native Haskell data
and XML by pickler and pickler combinators

◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ HTTP access via Haskell bindings to libcurl
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ An HXT Cookbook for using the toolbox and the

arrow interface
◦ Basic XSLT support
◦ Git repository with current development versions of

all packages http://git.fh-wedel.de/repos/hxt.git

Current Work

Currently mainly maintenance work is done. This in-
cludes space and runtime optimizations.
The HXT library is extensively used in the Holum-

bus project (→ 6.3.1), there it forms the basis for the
index generation. Development is currently driven by
the needs of the Holumbus project.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML processing
using arrows and RDF documents, and master theses
describing the design of the toolbox, the DTD val-
idator, the arrow based Relax NG validator, and the
XSLT system.
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT ). The conversion between XML
and native Haskell datatypes is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

5.11.2 Hawk

Report by: Uwe Schmidt
Participants: Björn Peemöller, Stefan Roggensack,

Alexander Treptow
Status: first release

The Hawk system is a web framework for Haskell. It
is comparable in functionality and architecture with
Ruby on Rail and other web frameworks. Its architec-
ture follows the MVC pattern. It consists of a sim-
ple relational database mapper for persistent storage
of data and a template system for the view compo-
nent. This template system has two interesting fea-

38

http://projects.haskell.org/graphviz/
http://hackage.haskell.org/package/graphviz
http://www.graphviz.org/
http://haskell.org/communities/05-2009/html/report.html#sect5.12.2
http://haskell.org/communities/05-2009/html/report.html#sect5.12.2
http://git.fh-wedel.de/repos/hxt.git
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML


tures: First, the templates are valid XHTML docu-
ments. The parts where data has to be filled in are
marked with Hawk specific elements and attributes.
These parts are in a different namespace, so they do not
destroy the XHTML structure. The second interesting
feature is that the templates contain type descriptions
for the values to be filled in. This type information en-
ables a static type check whether the models and views
fit together.
A first application of the Hawk framework is a cus-

tomizable search for Hayoo! (→ 6.3.1). But the frame-
work is independent of the Holumbus search engine. It
will be applicable for the development of arbitrary web
applications.
Hawk was developed by Björn Peemöller and Stefan

Roggensack. Currently, Alexander Treptow is apply-
ing, testing, and extending the framework.

5.11.3 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.
The library provides a basic data type for a list of un-

structured tags, a parser to convert HTML into this tag
type, and useful functions and combinators for finding
and extracting information. The library has seen real
use in an application to give Hackage (→ 5.1) listings,
and is used in Hoogle (http://haskell.org/communities/
05-2009/html/report.html#sect4.4.1).
A new version of tagsoup has been released, fully

supporting the HTML 5 specification. The API also
has experimental support for ByteString (although cur-
rently ByteString is slower than String).

Further reading

http://community.haskell.org/~ndm/tagsoup

5.11.4 BlazeHtml

Report by: Jasper Van der Jeugt
Participants: Simon Meier, Chris Done, Fred Ross, Jim

Whitehead, Harald Holtmann, Oliver
Mueller and Tom Harper

Status: in development

BlazeHtml is a blazingly fast HTML combinator li-
brary.
Our main goal is to push Haskell as a web de-

velopment language. Compared to the popular lan-
guages currently used for web development (php, Ruby,

Python) Haskell has the advantages of speed and type-
safety.
To write a web application, at least three components

are required: A web application server, a data storage
layer, and an HTML generation library. This library
addresses the last of these three components.
We want to provide a set of combinators with which

the user can describe HTML documents in an abstract
way. Our main focus is on efficiency, and initial bench-
marks have already pointed out that we can be a lot
faster than heavily optimized libraries in other pro-
gramming languages. Furthermore, we want to guar-
antee correctness (validity) of the produced documents.
Composability is also a key feature, since all documents
are first-class Haskell values.
This library originated on ZuriHac 2010, and has

been under heavy development since. It was accepted
as a project for Google Summer of Code 2010, meaning
that the community can expect it to be stable, usable,
and well-documented in August.

Currently, we are trying to get a very strong per-
formance baseline. After that, we can add more ab-
straction and features to the library. Then, the library
will be completed with a set of benchmarks, tests, and
tutorials.
The project is, in its current state, accessible through

the GitHub repository. However, it is not stable enough
for real-world use (yet).

Further reading

http://github.com/jaspervdj/BlazeHtml

5.11.5 WAI

Report by: Michael Snoyman
Status: experimental

The Web Application Interface (WAI) is an interface
between web applications and web servers. By target-
ing the WAI, a web application can get access to mul-
tiple servers; and through WAI, a server can support
web applications never intended to run on it.

39

http://haskell.org/communities/05-2009/html/report.html#sect4.4.1
http://haskell.org/communities/05-2009/html/report.html#sect4.4.1
http://community.haskell.org/~ndm/tagsoup
http://github.com/jaspervdj/BlazeHtml


In designing this package, performance was first pri-
ority: there should be no performance overhead for us-
ing the WAI. As such, an enumerator interface was se-
lected for the response body, a handle-like interface,
called a source, for the request body, and bytestrings
used throughout.
In addition, to promote type safety, datatypes such

as RequestHeader or Status are used instead of raw
ByteStrings and Ints. Finally, this interface has been
kept as general as possible by excluding variables which
are not universal to all web servers.
WAI is not set in stone; work has begun on the next

version. However, do not let this prevent you from
using WAI right now: the upcoming changes will be
minor, and the Package Versioning Policy is being fol-
lowed strictly, so old code will not be broken. All input
is taken very seriously, so send in your suggestions.
Hopefully, WAI can be one of many smaller pack-

ages which lead to collaboration in the Haskell web
development community and development of a healthy
ecosystem. (See also Yesod (→ 6.3.6).)

Further reading

http://github.com/snoyberg/wai

40

http://github.com/snoyberg/wai


6 Applications and Projects

6.1 For the Masses

6.1.1 Darcs

Report by: Eric Kow
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent major release, Darcs 2.4, was in

January 2010. It provides faster repository-local op-
erations, a new interactive hunk editing feature among
other bug fixes and features. For our next release, we
hope to continue the trend of improving Darcs perfor-
mance:

1. Better support for long histories: Petr Rockai has
begun work (originally started by David Roundy) to
make Darcs handle long histories in hashed reposi-
tories. If you tag your repositories regularly, oper-
ations that add or remove patches to Darcs should
take O(1) time instead of O(N) with respect to the
number of the patches in your history.

2. Faster Darcs annotate: Benedikt Schmidt has nearly
completed his work on a new “patch index” feature
which we hope to make darcs annotate considerably
faster. He also plans to overhaul the user interface
to provide more human-readable output.

These changes and more will appear in the upcom-
ing Darcs 2.5 release, scheduled for July 2010. Also,
we are excited to report that a Darcs project has
been accepted for the 2010 Google Summer of Code.
Alexey Levan will be working to improve Darcs perfor-
mance over networks. Meanwhile, we still have a lot of
progress to make and are always open to contributions.
Haskell hackers, we need your help!
Darcs is free software licensed under the GNU GPL.

Darcs is a proud member of the Software Freedom Con-
servancy, a US tax-exempt 501(c)(3) organization. We
accept donations at http://darcs.net/donations.html.

Further reading

http://darcs.net

6.1.2 xmonad

Report by: Gwern Branwen
Status: active development

XMonad is a tiling window manager for X. Windows
are arranged automatically to tile the screen without
gaps or overlap, maximizing screen use. Window man-
ager features are accessible from the keyboard; a mouse
is optional. XMonad is written, configured, and exten-
sible in Haskell. Custom layout algorithms, key bind-
ings, and other extensions may be written by the user
in config files. Layouts are applied dynamically, and
different layouts may be used on each workspace. Xin-
erama is fully supported, allowing windows to be tiled
on several physical screens.
Development since the last report has continued

apace, with versions 0.8, 0.8.1, 0.9 and 0.9.1 released,
with simultaneous releases of the XMonadContrib li-
brary of customizations and extensions, which has now
grown to no less than 205 modules encompassing a
dizzying array of features.
Details of changes between releases can be found in

the release notes:
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.7
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.8
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.9
◦ XMonad.Config.PlainConfig allows writing configs in

a more ’normal’ style, and not raw Haskell
◦ Supports using local modules in xmonad.hs;

for example: to use definitions from
/̃.xmonad/lib/XMonad/Stack/MyAdditions.hs

◦ xmonad –restart CLI option
◦ xmonad –replace CLI option
◦ XMonad.Prompt now has customizable keymaps
◦ Actions.GridSelect - a GUI menu for selecting win-

dows or workspaces
◦ Actions.OnScreen
◦ Extensions now can have state
◦ Actions.SpawnOn - uses state to spawn applications

on the workspace the user was originally on, and not
where the user happens to be

◦ Markdown manpages and not man/troff
◦ XMonad.Layout.ImageButtonDecoration &

XMonad.Util.Image
◦ XMonad.Layout.Groups

41

http://darcs.net/donations.html
http://darcs.net
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.7
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.7
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9


◦ XMonad.Layout.ZoomRow
◦ XMonad.Layout.Renamed
◦ XMonad.Layout.Drawer
◦ XMonad.Hooks.ScreenCorners
◦ XMonad.Actions.DynamicWorkspaceOrder
◦ XMonad.Actions.WorkspaceNames
◦ XMonad.Actions.DynamicWorkspaceGroups
Binary packages of XMonad and XMonadContrib

are available for all major Linux distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:

darcs get http://code.haskell.org/xmonad
◦ IRC channel: #xmonad @ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

6.1.3 Bluetile

Report by: Jan Vornberger
Status: active development

Bluetile is a tiling window manager for X based on
xmonad ((→ 6.1.2)). Windows are arranged to use the
entire screen without overlapping. Bluetile’s focus lies
on making the tiling paradigm easily accessible to users
coming from traditional window managers by drawing
on known conventions and providing both mouse and
keyboard access for all features. It also tries to be us-
able “out of the box”, requiring minimal to no config-
uration in most cases.

◦ Hybrid approach: Stacking window layout & tiling
layouts available

◦ Maximizing & minimizing windows in all layouts

◦ All features accessible from mouse, as well as key-
board

◦ Good multihead support

◦ Proper handling of fullscreen applications

◦ Designed to integrate with the GNOME desktop en-
vironment

Further reading

http://www.bluetile.org/

6.2 Education

6.2.1 Exercise Assistants

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder
Status: experimental, active development

At the Open Universiteit Nederland and Universiteit
Utrecht we are continuing our work on tools that
support students in solving exercises incrementally by
checking intermediate steps. The distinguishing feature
of our tools is the detailed feedback that they provide,
on several levels. For example, we have an online exer-
cise assistant that helps to rewrite logical expressions
into disjunctive normal form. Students get instant feed-
back when solving an exercise, and can ask for a hint
at any point in the derivation. Other areas covered
by our tools are solving equations, reducing matrices
to echelon normal form, and simplifying expressions in
relation algebra (among others).

We have been working on exercise assistants for
learning how to program in Haskell. A case study
was performed to use programming strategies for auto-
matically assessing student programs submitted for a
first-year course on functional programming in Utrecht.
This is ongoing research.
We have further integrated our tools with the Digital

Mathematics Environment (DWO) of the Freudenthal
Institute and the ActiveMath learning system (DFKI
and Saarland University). Both environments offer a
rich collection of interactive exercises for practicing ex-
ercises in mathematics. We have extended these exer-
cises with our facility to automatically generate hints
and worked-out examples. In the last couple of months,
support for solving inequalities and rewriting expres-
sions involving powers has been added to our tools.

42

http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org
http://www.bluetile.org/


We have recently updated the Cabal source package of
our feedback services.

Further reading

◦ Online exercise assistant, accessible from our project
page.

◦ Bastiaan Heeren, Johan Jeuring and Alex Gerdes.
Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science, 3(3):349–
370, 2010.

◦ Alex Gerdes, Johan Jeuring, and Bastiaan Heeren.
Using Strategies for Assessment of Programming Ex-
ercises. Technical Symposium on Computer Science
Education (SIGCSE 2010).

6.2.2 Holmes, plagiarism detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer

Years ago, Jurriaan Hage developed Marble to detect
plagiarism among Java programs. Marble was written
in Perl, takes just 660 lines of code and comments, and
does the job well. The techniques used there, however,
do not work well for Haskell, which is why a master
thesis project was started, starring Brian Vermeer as
the master student, to see if we can come up with a
working system to discover plagiarism among Haskell
programs. We are fortunate to have a large group of
students each year that try their hand at our functional
programming course (120-130 per year), and we have
all the loggings of Helium that we hope can help us tell
whether the system finds enough plagiarism cases. The
basic idea is to implement as many metrics as possible,
and to see, empirically, which combination of metrics
scores well enough for our purposes. The implementa-
tion will be made in Haskell. One of the things that
we are particularly keen about, is to make sure that for
assignments in which students are given a large part of
the solution and they only need to fill in the missing
parts, we still obtain good results.
We are currently at the stage that metrics can be

implemented on top of the Helium front-end. Many of
these metrics will be defined on an auxiliary structure,
the function-call flow graph. Dead-code removal has
taken place, fully qualified names are used throughout,
and template removal is now easily possible.

6.2.3 Yahc

Report by: Miguel Pagano
Participants: Renato Cherini
Status: testing, maintained

The first course on algorithms in CS at Universidad Na-
cional de Córdoba is centered on the derivations of al-
gorithms from specifications, as proposed by R.S. Bird
(Introduction to functional programming using Haskell,

Prentice Hall Series in Computer Science, 1998), E.W.
Dĳkstra (A Discipline of Programming, Prentice Hall,
1976), and R.R. Hoogerwoord (The design of functional
programs: a calculational approach, Technische Uni-
versiteit Eindhoven, 1989). To achieve this goal, stu-
dents should acquire the ability to manipulate complex
predicate formulae; thus the students first learn how
to prove theorems in a propositional calculus similar
to the equational propositional logic of D. Gries and
F.B. Schneier (A Logical Approach to Discrete Math,
Springer-Verlag, 1993).
During the semester students make many derivations

as exercises and it is helpful for them to have a tool
for checking the correctness of their solutions. Yahc
checks the correctness of a sequence of applications of
some axioms and theorems to the formulae students
are trying to prove. The student starts a derivation by
entering an initial formula and a goal and then pro-
ceeds by telling Yahc which axiom will be used and the
expected outcome of applying the axiom as a rewrite
rule; if that rewriting step is correct then the process
continues until the student reaches the goal.
After the experience gained during one semester we

made some changes in the user-interface. We have also
added the definition of new constants and rules, which
permits the resolution of logical puzzles.
In the long term we plan to consider an equational

calculus with functions defined by induction over lists
and natural numbers.

Further reading

http://www.cs.famaf.unc.edu.ar/~mpagano/yahc/

6.2.4 grolprep

Report by: Dino Morelli
Participants: Betty Diegel
Status: experimental, actively developed

grolprep is a web application for studying the FCC
GROL questions in preparation of taking the exams.
The study of this multiple-choice data is in the flash-

card style. Students can choose from Elements 1, 3
and 8 and can specify any subelement of those three for
specific study. Questions and answers can be randomly
presented.
Additionally, simulations of the randomly-chosen ex-

ams can be practiced with this software.
grolprep will shortly be used by students of Avionics

program at the Burlington Aviation Technology School.

Further reading

◦ Live website: http://ui3.info/grolprep/bin/
fcc-grol-prep.cgi

◦ Project page: http://ui3.info/d/proj/grolprep.html
◦ Source repository: darcs get http://ui3.info/darcs/

grolprep

43

http://hackage.haskell.org/package/ideas-0.6
http://ideas.cs.uu.nl/trac
http://ideas.cs.uu.nl/trac
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://www.cs.uu.nl/research/techreps/repo/CS-2009/2009-031.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2009/2009-031.pdf
http://www.cs.famaf.unc.edu.ar/~mpagano/yahc/
http://ui3.info/grolprep/bin/fcc-grol-prep.cgi
http://ui3.info/grolprep/bin/fcc-grol-prep.cgi
http://ui3.info/d/proj/grolprep.html
http://ui3.info/darcs/grolprep
http://ui3.info/darcs/grolprep


6.2.5 Sifflet

Report by: Gregory D. Weber
Status: experimental, actively developed

Sifflet is a visual, functional programming language.
Sifflet programmers define functions by drawing dia-
grams. Sifflet shows how a function call is evaluated
on the diagram. It is intended as an aid for learning
about recursion.
Here is Sifflet showing the first two levels of evaluat-

ing 4!:

Features

◦ Visual editor.

◦ Visual tracer/debugger which shows how function
calls are evaluated. This supports an active learning
process: Sifflet does not overwhelm students with a
huge trace of function calls; it provides only as much
expansion as the student requests.

◦ Extensive tutorial with 6,348 words and 31 pictures.

◦ Number, string, and list data types.

◦ A function “palette” with a small number of primi-
tive functions.

◦ Runnable examples of compound functions.

Availability

Sifflet made its public debut in May, 2010. It is
available from Hackage: http://hackage.haskell.org/
package/sifflet

Future plans

The next release will provide a few usability improve-
ments. Longer-term plans include:

◦ Export code to Haskell and other programming lan-
guages.

◦ Type inference.

◦ Higher-order functions.

◦ Tree data and/or user-defined data types.

Further reading

◦ http://mypage.iu.edu/~gdweber/software/sifflet/
home.html

◦ http://mypage.iu.edu/~gdweber/software/sifflet/doc/
tutorial.html

6.3 Web Development

6.3.1 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Hübel, Sebastian Gauck, Stefan

Schmidt, Björn Peemöller, Stefan
Roggensack, Sebastian Reese, Alexander

Treptow
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/). The web interface for Hayoo! is
implemented with the Janus web server, written in
Haskell and based on HXT (→ 5.11.1).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.
◦ The Holumbus Search Engine
◦ The Holumbus Distribution Library
◦ The Holumbus Storage System
◦ The Holumbus MapReduce Framework

44

http://hackage.haskell.org/package/sifflet
http://hackage.haskell.org/package/sifflet
http://mypage.iu.edu/~gdweber/software/sifflet/home.html
http://mypage.iu.edu/~gdweber/software/sifflet/home.html
http://mypage.iu.edu/~gdweber/software/sifflet/doc/tutorial.html
http://mypage.iu.edu/~gdweber/software/sifflet/doc/tutorial.html
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/


The search engine package includes the indexer and
search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customizable result ranking
◦ Index structure designed for distributed search
◦ Git repository containing the current development

version of all packages under http://holumbus.
fh-wedel.de/src.git

◦ Distributed building of search indexes

Current Work

The data structures of the Holumbus indexes have been
optimized for space and time. There is a new and effi-
cient prefix tree structure, which further enables index
updates.
The indexer and search module is used to

support the Hayoo! engine for searching the
hackage package library (http://holumbus.fh-
wedel.de/hayoo/hayoo.html). Because of the fast
growing number of packages on hackage, the Hayoo!
search engine will be extended by a package search.
Sebastian Reese has finished his work on applying the

MapReduce framework and for giving tuning and con-
figuration hints. Benchmarks for various small prob-
lems and for generating search indexes have shown that
the architecture scales very well.
In a subproject of Holumbus, the so called Hawk

framework (→ 5.11.2), Björn Peemöller and Stefan
Roggensack have developed a web framework for
Haskell. Currently Alexander Treptow is applying,
testing, and extending the framework. A first appli-
cation is a customizable search for Hayoo!

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Git web interface, cur-
rent status, requirements, and documentation. Timo
Hübel’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/
doc/thesis-searching.pdf. Sebastian Gauck’s thesis
dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the

Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf.

6.3.2 HCluster

Report by: Alberto Gómez Corona

HCluster (provisional name) is a remote clustering mid-
dleware aimed initially at verifying online and offline
computations in distributed electoral processes. Ex-
tended to permit clustering with distributed transac-
tions and cloud computing.
◦ distributed transactions between connected nodes in

the Internet
◦ work with online nodes as well as offline + synchro-

nization
◦ hot plug-in of nodes
◦ no single point of failure/control
◦ theoretical massive scalability, reliability, availability
Any node can initiate a process (that may involve a

transaction, a query, a calculation etc.). The design of
synchronization permits nodes to work in online as well
as offline mode with periodic synchronization with cer-
tain restrictions. The restrictions depend on algebraic
properties of the transactions.
Distribution of data and distributed transactions are

possible. The distribution is transparent to the pro-
grammer, so re-locations of data can be done among
the nodes.
Finished basic services: HTTP protocol, reconnec-

tion, synchronization. Testing synchronization and on-
line clustering now defined and coded the model for
distributed transactions.

Future plans

◦ test distributed transactions
◦ create internet documentation

Contact

〈agocorona@gmail.com〉

6.3.3 gitit

Report by: John MacFarlane
Participants: Gwern Branwen, Simon Michael, Henry

Laxen, Anton van Straaten, Robin Green,
Thomas Hartman, Justin Bogner, Kohei

Ozaki, Dmitry Golubovsky, Anton
Tayanovskyy, Dan Cook, Jinjing Wang

Status: active development

Gitit is a wiki built on Happstack and backed by a
git, darcs, or mercurial filestore. Pages and uploaded
files can be modified either directly via the VCS’s
command-line tools or through the wiki’s web inter-
face. Pandoc (→ 6.4.1) is used for markup process-
ing, so pages may be written in (extended) markdown,

45

http://holumbus.fh-wedel.de/src.git
http://holumbus.fh-wedel.de/src.git
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
mailto: agocorona at gmail.com


reStructuredText, LaTeX, HTML, or literate Haskell,
and exported in eleven different formats, including La-
TeX, ConTeXt, DocBook, RTF, OpenOffice ODT, Me-
diaWiki markup, and PDF.
Notable features of gitit include:
◦ Plugins: users can write their own dynamically
loaded page transformations, which operate directly
on the abstract syntax tree.

◦ Math support: LaTeX inline and display math
is automatically converted to MathML, using the
texmath library.

◦ Highlighting: Any git, darcs, or mercurial repos-
itory can be made a gitit wiki. Directories can
be browsed, and source code files are automatically
syntax-highlighted. Code snippets in wiki pages can
also be highlighted.

◦ Library: Gitit now exports a library,
Network.Gitit, that makes it easy to include
a gitit wiki (or wikis) in any Happstack application.

◦ Literate Haskell: Pages can be written directly in
literate Haskell.

Further reading

http://gitit.net (itself a running demo of gitit)

6.3.4 Happstack

Report by: Jeremy Shaw

Happstack, the Haskell Application Server Stack, is
loosely defined as a web development framework. It
includes a web server, multiple systems for routing in-
coming requests to handlers, integration with a variety
of templating systems, a persistent data storage layer,
and more!
Instead of having to configure Apache, MySQL,

PHP, etc., you just deploy your self-contained binary
and run it! We do also support integration with
MySQL and Apache if that is what your app demands.
The happstack persistent storage layer (often re-

ferred to as MACID) gives you the power of ACID
databases, with the convenience of Haskell data types
and functions. You can use normal Haskell data types,
and your queries are written in pure Haskell. Work
with trees, maps, graphs, and your other favorite types
with ease!

Future plans

The big focus now is on improving the Happstack doc-
umentation. We also plan to continue work on MACID
by improving replication support, and adding support
for sharding.

Further reading

http://www.happstack.com/

6.3.5 Mighttpd — yet another Web server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) is a simple but practical Web
server in Haskell. It is now working on Mew.org provid-
ing basic web features and CGI (mailman and contents
search). Three packages are registered in hackageDB.

c10k Since GHC is using the select system call, a
Haskell program complied with GHC cannot han-
dle over 1,024 connections/files simultaneously. The
c10k package uses the prefork technique to get rid of
this barrier.

webserver The webserver package provides HTTP
parser, session management, redirection, CGI, and so
on. This package is independent from back-end stor-
age systems. So you can build a Web server on any
storage system including files, key-value-store DB,
etc.

mighttpd This package provides a simple but practi-
cal web server based on files using the c10k and web-
server packages.

I am planning to implement FastCGI and WebSocket.

Further reading

http://www.mew.org/~kazu/proj/mighttpd/en/

6.3.6 Yesod

Report by: Michael Snoyman
Status: experimental

Yesod is a web framework designed to play towards
the strengths of the Haskell language to make web pro-
gramming safer and more productive. It is fair to say
that most web development today occurs in dynamic
languages like PHP, Python, and Ruby, and we see the
results: cross-site scripting attacks, applications that
do not scale, and countless minor bugs entering pro-
duction because they can only be detected at runtime.
Yesod itself, however, provides very little functional-

ity. Instead of bundling features into the main package,
useful features have been spun off so that they are us-
able outside of Yesod whenever possible. Packages for
authentication, client-side encrypted session data, mid-
dlewares, web encodings, YAML, and more are all fully
available on Hackage, without any reliance on Yesod.
The second major version of Yesod is currently being

written. In collaboration with others in the commu-
nity, this release will see even more features factored
out: the controller has become web-routes-quasi. This
split benefits Yesod as well: it will be gaining type-safe
URLs and pluggable components. A new templating
system, Hamlet, which is fully type-checked and prop-

46

http://gitit.net
http://www.happstack.com/
http://www.mew.org/~kazu/proj/mighttpd/en/


erly handles the aforementioned type-safe URLs, has
also been released.
Now is a great time to get involved in the project.

There is a brand new site (http://docs.yesodweb.com/)
which will provide in-depth documentation on Yesod
and many of its related packages. Check out what is
there, e-mail in suggestions and features you would like
to see, and send in your patches!

Further reading

http://docs.yesodweb.com/

6.3.7 Lemmachine

Report by: Larry Diehl
Participants: Jason Dusek
Status: experimental, active development

Lemmachine is a REST’ful web framework that makes
it easy to get HTTP right by exposing users to overrid-
able hooks with sane defaults. The main architecture
is a copy of Erlang-based Webmachine, which is cur-
rently the best documentation reference (for hooks &
general design).
Lemmachine stands out from the dynamically typed

Webmachine by being written in dependently typed
Agda (→ 3.2.2). The goal of the project is to show the
advantages gained from compositional testing by taking
advantage of proofs being inherently compositional.
See http://github.com/larrytheliquid/Lemmachine/
blob/master/src/Lemmachine/Default/Proofs.agda for
examples of universally quantified proofs (tests over
all possible input values) written against the default
resource, which does not override any hooks.
When a user implements their own resource, they

can write simple lemmas (“unit tests”) against the re-
source’s hooks, but then literally reuse those lemmas
to write more complex proofs (“integration tests”). For
examples see some reuse of lemmas in the proofs.
The big goal is to show that in service oriented

architectures, proofs of individual middlewares can
themselves be reused to write cross-service proofs
(even higher level “integration tests”) for a con-
sumer application that mounts those middlewares.
See a post at http://vision-media.ca/resources/ruby/
ruby-rack-middleware-tutorial for what is meant by mid-
dleware.
Another goal is for Lemmachine to come with proofs

against the default resource (as it already does). Any
hooks the user does not override can be given to the
user for free by the framework! Anything that is over-
ridden can generate proofs parameterized only by the
extra information the user would need to provide. This
would be a major boost in productivity compared to
traditional languages whose libraries cannot come with
tests for the user that have language-level semantics for
real proposition reuse!

Lemmachine currently uses the Haskell Hack ab-
straction so it can run on several Haskell webservers.
Because Agda compiles to Haskell and has an FFI, ex-
isting Haskell code can be integrated quite easily.
The project is still in development and rapidly chang-

ing. Lemmas and proofs exist for status resolution,
and you can now run resources! The focus will now
comprise of a gradual direct translation of RFC 2616
sections into dependent type theory.

Further reading

http://github.com/larrytheliquid/Lemmachine

6.3.8 Snap

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.
The project’s initial release consisted of a low-level

web server API, a fast web server that includes an op-
tional high-concurrency libev backend, and an XML-
based tempting system. We also placed special em-
phasis on clean code, good test coverage, and quality
documentation and tutorials.

Future plans

The next step for Snap is the development of a com-
ponent system that allows web apps to be constructed
from modular pieces. This will lay the groundwork
for higher-level functionality such as session manage-
ment, form handling, administration console, data per-
sistence, etc. The component system will allow the ab-
straction of functionality and enable different concrete
implementations to be used interchangeably.

Further reading

http://snapframework.com

6.4 Data Management and Visualization

6.4.1 Pandoc

Report by: John MacFarlane
Participants: Andrea Rossato, Peter Wang, Paulo

Tanimoto, Eric Kow, Luke Plant, Justin
Bogner

Status: active development

47

http://docs.yesodweb.com/
http://docs.yesodweb.com/
http://webmachine.basho.com
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Proofs.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Proofs.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Lemmas.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Proofs.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Utils.agda
http://vision-media.ca/resources/ruby/ruby-rack-middleware-tutorial
http://vision-media.ca/resources/ruby/ruby-rack-middleware-tutorial
http://github.com/nfjinjing/hack
http://github.com/larrytheliquid/Lemmachine
http://snapframework.com


Pandoc aspires to be the swiss army knife of text
markup formats: it can read markdown and (with some
limitations) HTML, LaTeX, and reStructuredText, and
it can write markdown, reStructuredText, HTML, Doc-
Book XML, OpenDocument XML, ODT, RTF, groff
man, MediaWiki markup, GNU Texinfo, LaTeX, Con-
TeXt, and S5. Pandoc’s markdown syntax includes ex-
tensions for LaTeX math, tables, definition lists, foot-
notes, and more.
There have been several releases since the last report,

with many bug fixes and small improvements. There
are two big architectural changes. First, pandoc no
longer requires Template Haskell, which should make it
more portable. Second, a new, flexible template system
has been added, allowing users much more control over
document headers and footers. Other major changes
include support for xetex, support for reST tables, sup-
port for tables without header rows, support for for-
matting math as MathML, a new “plain text” output
format, and a much more permissive HTML parser.
The old hsmarkdown and html2markdown scripts have
been removed; pandoc itself can now do the work of
html2markdown. Summaries of the new features in each
release are available on the (newly redesigned) website,
along with full documentation and a new tutorial on
using the pandoc library for structured text manipula-
tion.

Further reading

http://johnmacfarlane.net/pandoc/

6.4.2 HaExcel — From Spreadsheets to Relational
Databases and Back

Report by: Jácome Cunha
Participants: João Saraiva, Joost Visser
Status: unstable, work in progress

HaExcel is a framework to manipulate and transform
spreadsheets. It is composed by a generic/reusable
library to map spreadsheets into relational database
models and back: this library contains an algebraic
data type to model a (generic) spreadsheet and func-
tions to transform it into a relational model and vice
versa. Such functions implement the refinement rules
introduced in paper “From Spreadsheets to Relational
Databases and Back”. The library includes two code
generator functions: one that produces the SQL code to
create and populate the database, and a function that
generates Excel/Gnumeric code to map the database
back into a spreadsheet. A MySQL database can also
be created and manipulated using this library under
HaskellDB.
The tool also contains a front-end to read spread-

sheets in the Excel and Gnumeric formats: the front-
end reads spreadsheets in portable XML documents us-
ing the UMinho Haskell Libraries. We reuse the spatial

logic algorithms from the UCheck project to discover
the tables stored in the spreadsheet.
Finally, two spreadsheet tools are available: a batch

and an online tool that allows the users to read, trans-
form and refactor spreadsheets.
Using part of HaExcel, we developed an OpenOffice

Calc (http://www.openoffice.org/product/calc.html) ad-
don. Its back-end reuses part of HaExcel and its front-
end is written in OpenOffice Basic. This addon allows
the integration of a relational model into the spread-
sheet. Using this model the user gets three new fea-
tures in the spreadsheet environment: auto-completion
of columns, that is, choosing values of some columns,
other columns become automatically completed; safe
deletion of rows where the user is warned when delet-
ing important information; and no edition of columns
that could compromise the data integrity. All the fea-
tures can be enabled and disabled by the user at any
time. A snapshot of a spreadsheet with the addon can
be seen below.

More about this can be read in the paper “Discovery-
based Edit Assistance for Spreadsheets”.
The sources, the online tool and the addon are avail-

able from the project home page.
We are currently exploring foreign key constraints

from their detection to their migration to the generated
spreadsheet.

Further reading

http://www.di.uminho.pt/~jacome

6.4.3 Ferry (Database-Supported Program
Execution)

Report by: Torsten Grust
Participants: Tom Schreiber, Jeroen Weĳers
Status: active development

With project Ferry we try to establish a connection be-
tween two somewhat distant shores: programming lan-
guages and database technology. Ferry explores how
far we can push the idea of relational database en-
gines that directly and seamlessly participate in pro-
gram evaluation to support the super-fast execution of
data-intensive programs written in a variety of (func-
tional) programming languages. Relational database
systems (RDBMSs) provide the best understood and
most carefully engineered query processing infrastruc-
ture available today. Notwithstanding these data pro-
cessing capabilities, RDBMSs are often operated as
plain stores that do little more than reproduce stored
data items for further processing outside the database

48

http://johnmacfarlane.net/pandoc/
http://www.openoffice.org/product/calc.html
http://www.di.uminho.pt/~jacome


host. With Ferry, instead, we aim to turn the database
system into an efficient, capable, and highly scalable
co-processor for your programming language’s runtime.
To this end, we search for, design, and implement new
compilation strategies that map data types (e.g., nested
and ordered lists, arrays, dictionaries), control struc-
tures (e.g., nested iteration, conditionals, variable as-
signment and reference), and idioms prevalent in func-
tional programming and scripting languages into effi-
cient database queries. Here, we try to push the lim-
its of what has been considered possible (this includes
algebraic data types, pattern matching, higher-order
functions, and closures, to name a few).
Variants of the Ferry technology have been used

◦ to enhance the SQL code generator in Philip
Wadler’s Links, such that a significantly larger class
of Links programs may be considered databaseable
now, and

◦ to create a capable and efficient version of LINQ
to SQL provider (plugging into the Microsoft .NET
Language Integrated Query framework).

We are currently re-implementing the Ferry compiler in
Haskell (using GHC). It will be published as an open
source project soon.

Future plans

Ferry employs a compilation strategy revolving around
the concept of loop lifting that appears to have quite
close and interesting connections to the flattening
transformation employed by Data Parallel Haskell. In-
deed, Ferry understands the relational query engine as
being a specific kind of data-parallel machine. The ex-
act connection between Ferry and Data Parallel Haskell
remains to be explored.

Further reading

http://www.ferry-lang.org

6.4.4 Sirenial

Report by: Martĳn van Steenbergen

Sirenial is an embedded DSL for modelling SQL state-
ments.

select t0.townName
from towns t0
where (t0.id = 1)

The above query is the result of executing
getTownName 1, where getTownName is defined as fol-

lows:

getTownName :: Ref Db.Town → Query String
getTownName townId = do

[townName]← select $ do
t ← from Db.tableTown
restrict (t # Db.townId .== . expr townId)
return (t # Db.townName)
returntownName

The inner do-block is code in the Select monad, con-
taining functions such as from and restrict, responsible
for the creation of a single SELECT statement. These
Select computations are lifted into the Query monad
using select, where it becomes apparent that a query
always yields a list of results.
The symbols prefixed with Db model the database

schema:

data Town
tableTown = Table ”towns”

:: Table Town
townName = Field tableTown ”townName”

:: Field Town String
townId = Field tableTown ”id”

:: Field Town (Ref Town)

An unusual feature of Sirenial is the automatic com-
bining of queries: if similar Query computations are
composed in applicative fashion, Sirenial will merge
them transparently and send only a single state-
ment to the database server. For example, executing
for [11..20] getTownName results in only one SELECT
statement being sent:

select t0.id, t0.townName
from towns t0
where t0.id in (11,12,13,14,15,16,17,18,19,20)

By locally replaying the WHERE clauses, the re-
sults from the database are distributed over the orig-
inal select calls. All this happens transparently: the
user can write the queries as if they were executed one
by one.
The library is designed to be moderately type-safe:

catch many mistakes at compile-time, yet use simple
types, leading to simple and understandable type er-
rors. It is easy to predict the generated SQL, as there
is very little rewriting done on the statements. Finally,
Sirenial is designed in such a way that it is easy to
switch to using the library completely or partially, on
existing databases and existing data.

Further reading

http://code.google.com/p/sirenial/

49

http://www.ferry-lang.org
http://code.google.com/p/sirenial/


6.4.5 The Proxima 2.0 generic editor

Report by: Martĳn Schrage
Participants: Lambert Meertens, Doaitse Swierstra
Status: actively developed

Proxima 2.0 is an open-source web-based version of the
Proxima generic presentation-oriented editor for struc-
tured documents. The system is being maintained by
Oblomov Systems (→ 7.7).

◦ Proxima is a generic editor. This means that the edi-
tor can be instantiated for arbitrary document types,
supplemented by parser and presentation sheets.
The content of a Proxima document can be mixed
text, images and diagrams.

◦ Proxima is a presentation-oriented editor. This
means that the user performs edit operations on the
WYSIWYG presentation of the document.

◦ Proxima is aware of the structure of the document.
While editing the presentation of the document, the
edit operations may also be structural. For example,
a section can be changed into a subsection.

Another feature of Proxima is that it offers generic
support for specifying content-dependent computa-
tions. For example, it is possible to create a table of
contents of a document that is automatically updated
as chapters or sections are added or modified.

Proxima 2.0

Proxima 2.0 provides a web-interface for Proxima. In-
stead of an application that renders onto a window,
Proxima 2.0 is a web server that sends an HTML ren-
dering of the document to a client. The client catches
mouse and keyboard events, and sends these back to
the server, after which the server sends an incremen-
tal rendering update back to the client. As a result,
advanced editors can be created, which run in any
browser. Among the current features of the system
are drag and drop editing, session handling, and com-
plex graphical presentations that may contain com-
puted values and structures.
Because the (possibly large) HTML rendering may

need to be communicated to the client on each key
stroke or mouse gesture, Proxima 2.0 employs a num-
ber of techniques to ensure the editors respond fast
enough over a network connection. On the one hand,
low bandwidth may cause delays when sending large
HTML renderings to the client. This problem is han-
dled by using incremental algorithms to only send those
parts of the rendering that were changed. On the other
hand, network latencymay cause a delay between a user
edit gesture and the update received from the server.
This problem is handled by using predictive rendering,
which means that the client shows the predicted effect

of the edit operation, until the actual update from the
server is received and applied. Though both techniques
may fail for pathological cases, they work very well for
the majority of editors. As a result, the editors feel
responsive enough even over remote network connec-
tions.
The Proxima website contains a gallery of live demo

editors, as well as download instructions and documen-
tation. The screenshot shows an editor for document-
ing Bayesian networks, running in Firefox.

Future plans

Proxima 2.0 is an open source project. We are looking
for people who would like to participate.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/Proxima
◦ http://www.oblomov.com

6.4.6 iTasks

Report by: Bas Lĳnse
Participants: Rinus Plasmeĳer, Peter Achten, Pieter

Koopman, Thomas van Noort, Jan Martin
Jansen, Erik Crombag

Status: active development

The iTask system provides a set of combinators to
specify workflow in the pure and functional language
Clean (→ 3.2.4) at a very high level of abstraction.
Workflow systems are automated systems in which
tasks are coordinated that have to be executed by ei-
ther humans or computers. Workflow specifications are
supplemented with a generic foundation to generate
executable multi-user workflow support systems that
consist of a webservice-based server and a user-friendly
Ajax client.
Compared to contemporary workflow systems, that

often use simple graphical specification languages, the
iTask system offers several advantages:

◦ Tasks are statically typed and can be higher-order.

◦ Combinators are fully compositional.

50

http://www.cs.uu.nl/wiki/bin/view/Proxima
http://www.oblomov.com


◦ Dynamic and recursive workflow is supported.

◦ Workflow instances can be modified during execu-
tion.

The iTask system makes extensive use of Clean’s
generic programming facilities for generating dynamic
user-interfaces and data encoding/decoding.

Future plans

Currently, we are working on extending and stabilizing
the iTask base system to a level where it can be used
for serious applications. Additionally, we are working
out case studies to explore use of iTasks to support
real-world processes. We are also exploring how even
more dynamic and unpredictable workflows can be sup-
ported.

Further reading

◦ http://itasks.cs.ru.nl/
◦ http://www.st.cs.ru.nl/Onderzoek/Publicaties/

publicaties.html

6.5 Functional Reactive Programming

6.5.1 Functional Hybrid Modelling

Report by: George Giorgidze
Participants: Joey Capper, Henrik Nilsson
Status: active research and development

The goal of the FHM project is to gain a better foun-
dational understanding of non-causal, hybrid modelling
and simulation languages for physical systems and ul-
timately to improve on their capabilities. At present,
our central research vehicle to this end is the design and
implementation a new such language centered around
a small set of core notions that capture the essence of
the domain.
Causal modelling languages are closely related to

synchronous data-flow languages. They model system
behavior using ordinary differential equations (ODEs)

in explicit form. That is, cause-effect relationship be-
tween variables must be explicitly specified by the mod-
eler. In contrast, non-causal languages model system
behavior using differential algebraic equations (DAEs)
in implicit form, without specifying their causality. In-
ferring causality from usage context for simulation pur-
poses is left to the compiler. The fact that the causal-
ity can be left implicit makes modelling in a non-causal
language more declarative (the focus is on expressing
the equations in a natural way, not on how to express
them to enable simulation) and also makes the models
much more reusable.

FHM is an approach to modelling which combines
functional programming and non-causal modelling. In
particular, the FHM approach proposes modelling with
first class models (defined by continuous DAEs) using
combinators for their composition and discrete switch-
ing. The discrete switching combinators enable mod-
elling of hybrid systems (i.e. systems that exhibit both
continuous and discrete dynamic behavior). The key
concepts of FHM originate from work on Functional
Reactive Programming (FRP).

We are implementing Hydra, an FHM language, as
a domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting and en-
ables modelers to use the domain specific syntax in
their models. The present prototype implementation
of Hydra enables modelling with first class models and
supports combinators for their composition and dis-
crete switching.

Recently, we have implemented support for dynamic
switching among models that are computed at the
point when they are being “switched in”. Models that
are computed at run-time are just-in-time (JIT) com-
piled to efficient machine code. This allows efficient
simulation of highly structurally dynamic systems (i.e.,
systems where the number of structural configurations
is large, unbounded or impossible to determine in ad-
vance). This goes beyond to what current state-of-the-
art non-causal modelling languages can model. The
implementation techniques that we developed should
benefit other modelling and simulation languages as
well.

We are also exploring ways of utilizing the type sys-
tem to provide stronger correctness guarantees and to
provide more compile time reassurances that our sys-
tem of equations is not unsolvable. Properties such as
equational balance (ensuring that the number of equa-
tions and unknowns are balance) and ensuring the solv-
ability of locally scoped variables are among our goals.
Dependent types have been adopted as the tool for ex-
pressing these static guarantees. However, we believe
that more practical type systems (such as system F)
could be conservatively extended to make FHM safer
without compromising their usability.

51

http://itasks.cs.ru.nl/
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html


Further reading

The implementation of Hydra is available from http:
//www.cs.nott.ac.uk/~ggg/ under the open source BSD
license.

6.5.2 Elerea

Report by: Patai Gergely
Status: experimental, active

Elerea (Eventless reactivity) is a tiny continuous-time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialized monad, while stateless combina-
tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. A unique feature of the library is
that cyclic dependencies are detected on the fly and re-
solved by inserting delays dynamically, unless the user
does it explicitly.
As an example, the following code snippet is a possi-

ble way to define an approximation of our beloved trig
functions:

(sine,cosine) <- mdo
s <- integral 0 c
c <- integral 1 (-s)
return (s,c)

The library is minimal by design, and it provides
low-level primitives one can build a cleaner set of com-
binators upon. Also, it is relatively easy to adapt it
to any imperative framework, although it is probably
not a good choice to program primarily event-driven
systems, because it is pull-based.
Version 1.1.0 introduced an experimental branch,

which is a different implementation of the same ba-
sic idea. Unlike the current branch (which is to be
deprecated in the near future), the experimental ver-
sion preserves referential transparency. There are three
variants to pick from in increasing order of complexity:

◦ Simple: discrete streams, which are isomorphic to
functions over natural numbers (including the be-
havior of their class instances);

◦ Param: streams where a globally accessible input can
be supplied to every node of the data-flow network
in each sampling step; if this is a time step, we can
simulate continuous-time streams to a certain extent
— the catch being the lack of clear semantics;

◦ Delayed: the parametric variant augmented with the
automatic delay feature, which allows users to be
less explicit about how to make feedback loops well-
formed (non-instantaneous). Note that referential
transparency is lost again with this feature, which
might or might not be acceptable depending on the
application.

The code is readily available via cabal-install in
the elerea package. You are advised to install
elerea-examples as well to get an idea how to build
non-trivial systems with it. The examples are sepa-
rated in order to minimize the dependencies of the core
library. The experimental branch is showcased by Dun-
geons of Wor, found in the dow package (→ 6.11.2).
Additionally, the basic idea behind the experimental
branch is laid out in the WFLP 2010 article Efficient
and Compositional Higher-Order Streams.

Further reading

◦ http://hackage.haskell.org/package/elerea
◦ http://hackage.haskell.org/package/elerea-examples
◦ http://hackage.haskell.org/package/dow
◦ http://sgate.emt.bme.hu/documents/patai/

publications/PataiWFLP2010.pdf
◦ http://babel.ls.fi.upm.es/events/wflp2010/video/

video-08.html (WFLP talk)

6.6 Audio and Graphics

6.6.1 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project, audio signals are processed using pure
Haskell code and the Numeric Prelude framework
(http://haskell.org/communities/05-2009/html/report.
html#sect5.6.2). The highlights are:
◦ a basic signal synthesis backend for Haskore

(http://haskell.org/communities/05-2009/html/
report.html#sect5.12.1),

◦ support for physical units while maintaining effi-
ciency,

◦ frameworks for abstraction from sample rate, that is,
the sampling rate can be omitted in most parts of a
signal processing expression.

◦ We checked several low-level implementations in or-
der to achieve reasonable speed. We complement
the standard list type with a lazy StorableVector
structure and a StateT s Maybe a generator, like in
stream-fusion. Now, both our custom signal genera-
tor type and the Stream type from stream-fusion can
be fused to work directly on storable vectors.

◦ support for causal processes. Causal signal processes
only depend on current and past data and thus are

52

http://www.cs.nott.ac.uk/~ggg/
http://www.cs.nott.ac.uk/~ggg/
http://hackage.haskell.org/package/elerea
http://hackage.haskell.org/package/elerea-examples
http://hackage.haskell.org/package/dow
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.12.1
http://haskell.org/communities/05-2009/html/report.html#sect5.12.1


suitable for real-time processing (in contrast to a
function like time reversal). These processes are
modeled as mapAccumL like functions. Many impor-
tant operations like function composition maintain
the causality property. They are important for shar-
ing on a per sample basis and in feedback loops where
they statically warrant that no future data is ac-
cessed.

Recent advances are:
◦ Lazy time values to be used for gate signals,
◦ enhanced type class framework for unifying lazy time

values and signals expressed by lists, storable vectors
or signal generators.

◦ Connection to alsa bindings, in order to provide real-
time sound synthesis controlled by MIDI events from
keyboards or sequencers,

◦ Stand-alone binding to Sox for audio format conver-
sion and playback,

◦ A pyramid filter for efficient computation of moving
average and moving maximum for baseline detection
of mass spectra,

◦ A set of signal processors that generates maximally
efficient vectorized code using LLVM as portable as-
sembler.

Further reading

◦ http://www.haskell.org/haskellwiki/Synthesizer
◦ http://arxiv.org/abs/1004.4796

6.6.2 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of experimental
libraries for computer vision and image processing. The
low level computations are internally implemented by
optimized libraries (IPP, HOpenGL, hmatrix (→ 5.3.1),
etc.). Once appropriate geometric primitives have been
extracted by the image processing wrappers we can de-
fine interesting computations using elegant functional
constructions. Recent work includes cabalization of the
main modules.

Further reading

http://code.haskell.org/easyVision

6.6.3 n-Dimensional Volume Calculation for
Non-Convex Polytops

Report by: Farid Karimipour
Participants: Mahmoud R. Delavar, Andrew U. Frank
Status: active development

This is the continuation of the work “n-dimensional
convex decomposition of polytops” (http://haskell.
org/communities/11-2009/html/report.html#sect6.6.4)
where we showed how to decompose an n-dimensional

non-convex polytop to a set of convex components.
The algorithm builds a tree of signed convex com-
ponents that are stored as a set of n-simplexes:
even levels are additive, whereas components in odd
levels are subtractive. Here, the elements of this tree
are utilized to calculate the volume of the original
n-dimensional non-convex polytop (“volume” is used
as a generalized term for all dimensions, i.e., “area” for
2D, etc.). The resultant components are triangulated
whose volume calculation is straightforward:

Summing up the volumes of all triangles (tetrahedrons
in 3D) will provide us with the volume of the n-
dimensional non-convex polytop:

where Pij means the jth component of the ith level
and mi is the number of components exist in the ith
level. Note that this equation subtracts the volumes of
the components of the odd levels. To implement this
algorithm, the n-simplexes are represented as a list of
points. Then, their operations (e.g., convex decompo-
sition, triangulation, volume calculation, etc.) become
operations on lists:

vS = 0.5 (∗) . abs . det . map (1 :)
vC = sum . map vS . tri
vNC = sum (zipWith (∗) (cycle [1, (−1)])

(map vC cd))

where vS is the volume of an n-simplex, vC is the vol-
ume of a convex polytop, vNC is the volume of a non-
convex polytop, tri is triangulation of a convex poly-
top and cd decomposes a non-convex polytop to a set
of convex components. Since the representation and
operations are defined independent of dimension, the
developed algorithms can be used for polytops of any
dimension.
The implementation was used to calculate the surface
and volume of a lake at certain water levels, which leads
to a level-surface-volume diagram. This diagram shows
the surface and volume of the lake at different water
levels. First, the 3D TIN (Triangulated Irregular Net-
work) of the lake was constructed:

53

http://www.haskell.org/haskellwiki/Synthesizer
http://arxiv.org/abs/1004.4796
http://code.haskell.org/easyVision
http://haskell.org/communities/11-2009/html/report.html#sect6.6.4
http://haskell.org/communities/11-2009/html/report.html#sect6.6.4


To calculate the surface and volume of the lake at a
certain water level, say h, the 3D TIN was intersected
with the plan z = h, which results in the volume of
the lake where z < h and the surface of the lake at
z = h, whose surface and volume is calculated using
the implemented algorithm:

By applying the above process for different water levels,
the level-surface-volume diagram was produced:

6.6.4 Fl4m6e

Report by: Claude Heiland-Allen
Status: unstable

Fl4m6e is a fast fractal flame renderer, currently un-
der active development. Inspired by flam3 and electric
sheep, Fl4m6e performs all the rendering calculations
on the GPU, using OpenGL shaders. The features so
far include runtime generation of low level GLSL source
code from abstract scene descriptions, smooth transi-
tions between scenes using rigid transformations, and
interactive control of animation and quality settings.
Contrasting to flam3, the aim is not exact image re-

producibility, but to get fast enough that pre-rendering
videos is not necessary — then a peer-to-peer network
exchanging small scene descriptions would supercede
a centralized file server and corresponding large band-
width requirements. However, there is a long way to go
before the electric sheep have anything to worry about.

Further reading

◦ http://claudiusmaximus.goto10.org/cm/2009-08-28_
fl4m6e_proof_of_concept.html

◦ http://claudiusmaximus.goto10.org/cm/2009-09-24_
fl4m6e_in_haskell.html

◦ http://claudiusmaximus.goto10.org/g/fl4m6e/
examples/

◦ http://flam3.com/
◦ http://electricsheep.org/

54

http://claudiusmaximus.goto10.org/cm/2009-08-28_fl4m6e_proof_of_concept.html
http://claudiusmaximus.goto10.org/cm/2009-08-28_fl4m6e_proof_of_concept.html
http://claudiusmaximus.goto10.org/cm/2009-09-24_fl4m6e_in_haskell.html
http://claudiusmaximus.goto10.org/cm/2009-09-24_fl4m6e_in_haskell.html
http://claudiusmaximus.goto10.org/g/fl4m6e/examples/
http://claudiusmaximus.goto10.org/g/fl4m6e/examples/
http://flam3.com/
http://electricsheep.org/


6.6.5 GULCI

Report by: Claude Heiland-Allen
Status: unstable

GULCI is a graphical untyped lambda calculus inter-
preter. Programs are written with mouse clicks and
drags, and executed with a keypress. During execution
the graph reduction is visualized. GULCI also dumps
data on its standard output stream, suitable for soni-
fication. The eventual intent is to use it for a short
abstract code performance sometime in the future.
GULCI is the interactive descendant of the non-

interactive (but also graphical) ULCIv1, which took
the form of audiovisualizations of some simple arith-
metical computations in untyped lambda calculus.

Further reading

http://claudiusmaximus.goto10.org/cm/2009-06-19_
untyped_lambda_calculus_interpretations_v1.html

6.6.6 Reflex

Report by: Claude Heiland-Allen
Status: experimental

Reflex is a program to interactively experience vari-
ously truncated regular 4D polytopes. The name is in-
spired by reflection symmetry groups and the eventual
intent of using it as an interactive live audiovisual per-
formance environment with quick reactions required,
the idea for the software itself is inspired by The Sym-
metriad.
Starting from the Shlaefli symbol p, q, r, Reflex con-

structs a 4D symmetry group, from which a wide va-
riety of different forms can be visualized. The pro-
jection method results in aesthetically pleasing curves,
enhanced by the animation. Currently Reflex accepts
commands on its standard input, but the goal is to use
a game controller to navigate through the world.

Further reading

◦ http://claudiusmaximus.goto10.org/cm/2009-10-15_
reflex_preview.html

◦ http://web.mit.edu/~axch/www/Symmetriad/index.
html

◦ http://en.wikipedia.org/wiki/SchlÃďfli_symbol

6.6.7 Citten

Report by: Stephen Roantree
Status: alpha, active

Citten brings a new functional language to the GPU
shader platform. It is also an investigation into how to
create a language that is able to shift target, to some
degree, without needing to alter the compiler or lan-
guage specification. We want to allow the language
to define in itself the variable components of the plat-
form. This is done with a view to making the language
at least partially resilient to the frequent extensions to
shader technologies.
Functional programming suits the nature of tradi-

tional shader programs. These programs lack side ef-
fects, and are often representations of cascaded formu-
lae. This, combined with Citten’s type system, pro-
vides programmers with concrete benefits over the ex-
isting alternatives.
Citten is currently a first order, strict language. The

compiler is being extended to be high order, and to use
a more fully featured type system. The current version
(0.1.0) is not recommended for general use. This will
change with the coming version.

Future plans

In order to lower the barrier of entry, integration with
the XNA Content Pipeline is planned.
Providing a more rigorous encapsulation of side ef-

fects will be required to elegantly represent certain
kinds of operations. This would allow better represen-
tation of geometry shaders, and hopefully should allow
the coming compute shader stage to be supported with
little effort as well.

Further reading

http://github.com/stroan/Citten

55

http://claudiusmaximus.goto10.org/cm/2009-06-19_untyped_lambda_calculus_interpretations_v1.html
http://claudiusmaximus.goto10.org/cm/2009-06-19_untyped_lambda_calculus_interpretations_v1.html
http://claudiusmaximus.goto10.org/cm/2009-10-15_reflex_preview.html
http://claudiusmaximus.goto10.org/cm/2009-10-15_reflex_preview.html
http://web.mit.edu/~axch/www/Symmetriad/index.html
http://web.mit.edu/~axch/www/Symmetriad/index.html
http://en.wikipedia.org/wiki/Schläfli_symbol
http://github.com/stroan/Citten


6.6.8 Hemkay

Report by: Patai Gergely
Status: experimental, active

Hemkay (An M.K. Player Whose Name Starts with
an H) is a simple music module player that performs
all the mixing in Haskell. It supports the popular Pro-
Tracker format and some of its variations with different
numbers of channels. The device independent mixing
functionality can be found in the hemkay-core pack-
age.
The current version of the player uses the PortAu-

dio bindings for playback, but there is also a yet unre-
leased functional version based on OpenAL, which puts
a much smaller load on the CPU. Also, an OpenGL
based graphical frontend is currently in the works.

Further reading

◦ http://hackage.haskell.org/package/hemkay-core
◦ http://hackage.haskell.org/package/hemkay
◦ http://en.wikipedia.org/wiki/MOD_(file_format)

6.7 Proof Assistants and Reasoning

6.7.1 HTab

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development
Current release: 1.5.3

HTab is an automated theorem prover for hy-
brid logics (http://haskell.org/communities/11-2009/
html/report.html#sect6.7.3) based on a tableau calcu-
lus. It handles hybrid logic with nominals, satisfaction
operators, converse modalities, universal and difference
modalities, the down-arrow binder, and role inclusion.
The source code is distributed under the terms of the

GNU GPL.

Further reading

◦ http://code.google.com/p/intohylo/

6.7.2 Haskabelle

Report by: Florian Haftmann
Status: working

Since Haskell is a pure language, reasoning about
equational semantics of Haskell programs is conceptu-
ally simple. To facilitate machine-aided verification of
Haskell programs further, we have developed a con-
verter from Haskell source files to Isabelle theory files:
Haskabelle.
Isabelle itself is a generic proof assistant. It allows

mathematical formulas to be expressed in a formal lan-
guage and provides tools for proving those formulas in

a logical calculus. One such formal language is higher-
order logic, a typed logic close to functional program-
ming languages. This is used as translation target of
Haskabelle.
Both Haskabelle and Isabelle in combination allow to

formally reason about Haskell programs, particularly
verifying partial correctness.
The conversion employed by Haskabelle covers only

a subset of Haskell, mainly since the higher-order logic
of Isabelle has a more restrictive type system than
Haskell. A simple adaption mechanisms allows to tailor
the conversion process to specific needs.
Recently some minor deficiencies of Haskabelle have

been amended. The tool chain has been presented at
the PEPM’10 workshop with a workshop paper.

Further reading

http://isabelle.in.tum.de/haskabelle.html and http://
isabelle.in.tum.de/

6.7.3 Plastic

Report by: Robin Adams
Participants: Zhaohui Luo
Status: prototype

The Plastic proof assistant was developed by Paul
Callaghan in 2001 as an implementation of the logical
framework LF, a Church-typed version of Martin-Löf’s
logical framework. Its development never advanced far
beyond the experimental, prototype stage.
We have recently taken up the development of Plas-

tic. A few years ago, Callaghan kindly adapted plastic
to implement the Type Theoretic Framework, a frame-
work for declaring several Logic-Enriched Type The-
ories (LETTs). We have already used this modified
version of Plastic to formalize Weyl’s Das Kontinuum
in a classical predicative LETT.
We are currently experimenting with using Plastic

for carrying out pluralist formalizations, where work in
one mathematical setting may be reused in another set-
ting, by providing an appropriate translation between
the two.
For example, we have a proof script that proves a

theorem A in a classical LETT. We may reuse this in
a constructive LETT by plugging in a module that de-
scribes the double negation translation. The result is
a proof of the double negation translation of A in the
constructive LETT.
Plastic is written in Haskell.

Further reading

Details about this project will appear here soon: http:
//www.cs.rhul.ac.uk/~robin/plastic

56

http://hackage.haskell.org/package/hemkay-core
http://hackage.haskell.org/package/hemkay
http://en.wikipedia.org/wiki/MOD_(file_format)
http://haskell.org/communities/11-2009/html/report.html#sect6.7.3
http://haskell.org/communities/11-2009/html/report.html#sect6.7.3
http://code.google.com/p/intohylo/
http://www.program-transformation.org/PEPM10/
http://www4.informatik.tu-muenchen.de/~haftmann/pdf/isabelle_haskell_haftmann.pdf
http://isabelle.in.tum.de/haskabelle.html
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/
http://www.cs.rhul.ac.uk/~robin/plastic
http://www.cs.rhul.ac.uk/~robin/plastic


6.7.4 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Daniel Seidel, Matthias Bartsch

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs to
be refined and extended. We aim to provide such new
theoretical foundations, as well as to apply the theo-
retical results to practical problems. A recent publica-
tion is “Automatically Generating Counterexamples to
Naive Free Theorems” (FLOPS’10).
On the practical side, we maintain a library and tools

for generating free theorems from Haskell types, orig-
inally implemented by Sascha Böhme and with con-
tributions from Joachim Breitner and now Matthias
Bartsch. Both the library and a shell-based tool
are available from Hackage (as free-theorems and ft-
shell, respectively). There is also a web-based tool at
http://www-ps.iai.uni-bonn.de/ft/. General features in-
clude:
◦ three different language subsets to choose from
◦ equational as well as inequational free theorems
◦ relational free theorems as well as specializations

down to function level
◦ support for algebraic data types, type synonyms and

renamings, type classes
A new version of the web-based tool will be online very
soon, which will enable the user to declare their own
algebraic data types and so on, and then to derive free
theorems from types involving those. (Previously, this
was only possible in the shell-based tool.) Also, in ad-
dition to plain text, LATEX source, and PDF output,
the new version will be able to output inline graphics
with nicely typeset theorems.

Further reading

http://www.iai.uni-bonn.de/~jv/project/

6.7.5 CSP-M animator and model checker

Report by: Marc Fontaine
Status: active development, download available

We develop a Haskell based, integrated CSP-M anima-
tor and model checker.
Communicating-Sequential-Processes is a formalism

for concurrent systems, invented by Tony Hoare.
Our Haskell-CSP-Tool features:

◦ FDR compatibility

◦ Fast computation of state spaces

◦ GTK+ based graphical user interface

◦ Support for shared-memory-parallelism / multicore
CPUs

Binary releases of the gui-tool are available for down-
load via http://www.stups.uni-duesseldorf.de/~fontaine/
csp.
The aim of the project is not only to write a black-

box end-user tool, but also to provide components that
can be useful for other formal methods researchers who
are investigating communicating sequential processes.
The following packages are available on Hackage:

CSPM-Frontend A FDR compatible CSP-M parser.

CSPM-CoreLanguage An abstract interface for a CSP
core language.

CSPM-FiringRules An implementation of the firing
rule semantic of CSP.

CSPM-Interpreter An interpreter for the functional
sub language included in FDR.

CSPM-cspm A small command line executable that
demonstrates how to clue the above libraries to-
gether.

Further reading

http://www.stups.uni-duesseldorf.de/~fontaine/csp

6.8 Hardware Design

6.8.1 ForSyDe

Report by: Ingo Sander
Participants: Hosein Attarzadeh, Alfonso Acosta, Axel

Jantsch, Jun Zhu
Status: experimental

The ForSyDe (Formal System Design) methodology
has been developed with the objective to move system-
on-chip design to a higher level of abstraction. ForSyDe
is implemented as a Haskell-embedded behavioral DSL.
ForSyDe allows to model heterogeneous embedded

systems at a high level of abstraction by providing
libraries for different models of computation (MoCs).
This allows to model systems consisting of both digital
and analog hardware.
The current release is ForSyDe 3.1, which con-

tains two implementations of ForSyDe. The shallow-
embedded DSL has been designed for the modeling
purpose and provides a rapid-prototyping framework
which allows to model and simulate heterogeneous em-
bedded systems based on different MoCs. The deep-
embedded DSL supports only the synchronous MoC,

57

http://www-ps.iai.uni-bonn.de/ft/
http://www.iai.uni-bonn.de/~jv/project/
http://www.stups.uni-duesseldorf.de/~fontaine/csp
http://www.stups.uni-duesseldorf.de/~fontaine/csp
http://www.stups.uni-duesseldorf.de/~fontaine/csp


but comes with an embedded compiler with differ-
ent backends (simulation, synthesizable VHDL and
GraphML). It is possible to integrate and simulate
shallow-embedded models with deep-embedded mod-
els.
The source code, together with example system mod-

els, is available from HackageDB under the BSD3 li-
cense.

Features

ForSyDe systems are modeled as concurrent process
networks, where processes communicate via signals.
To create processes, ForSyDe uses higher-order func-
tions to implement the concept of process constructors,
which leads to a structured model with a clear separa-
tion of computation from communication.
The two DSL flavors of ForSyDe offer different fea-

tures:

1. Shallow-embedded DSL
Shallow-embedded signals
(ForSyDe.Shallow.Signal) are modeled as streams
of data isomorphic to lists. Systems built with them
are restricted to simulation. However, shallow-
embedded signals provide a rapid-prototyping
framework which allows to simulate heterogeneous
systems based on different models of computation.
At present ForSyDe supports the following models
of computation.
◦ Synchronous MoC
◦ Untimed MoC
◦ Continuous Time MoC

Process networks belonging to different MoCs com-
municate via domain interfaces, which establish a re-
lation with respect to timing between two MoCs.

2. Deep-embedded DSL
Deep-embedded signals (ForSyDe.Signal), based on
the same concepts as Lava (→ 8.5), are aware of the
system structure. Based on that structural infor-
mation ForSyDe’s embedded compiler can perform
different analysis and transformations.

◦ Thanks to Template Haskell, specification of be-
havior is expressed in Haskell, not needing to
specifically design a DSL for that purpose.

◦ Embedded compiler backends:
– Simulation
– VHDL (with support for Modelsim and

Quartus II)
– GraphML (with yFiles graphical markup

support)
◦ Synchronous model of computation
◦ Support for hierarchy by component instantia-
tion

◦ Support for fixed-sized vectors

ForSyDe allows to integrate deep-embedded models
into shallow-embedded ones. This makes it possible
to simulate a synthesizable deep-embedded model to-
gether with its environment, which may consist of ana-
log and digital hardware, and software parts. Once the
functionality of the deep-embedded model is validated,
it can be synthesized to hardware using the VHDL-
backend of ForSyDe’s embedded compiler.

Further reading

http://www.ict.kth.se/forsyde/

6.8.2 Kansas Lava

Report by: Andy Gill
Participants: Tristan Bull, Andrew Farmer, Garrin

Kimmell, Ed Komp
Status: ongoing

Kansas Lava is a modern implementation of a hard-
ware description language that uses functions to ex-
press hardware components, and leverages the abstrac-
tions in Haskell to build complex circuits. Lava, the
given name for a family of Haskell based hardware de-
scription libraries, is an idiomatic way of expressing
hardware in Haskell which allows for simulation and
synthesis to hardware.
Driven by a self-imposed requirement to implement-

ing some specific telemetry circuits in Lava, we have
made a number of recent improvements to both the ex-
ternal API and the internal representations used. We
have retained our dual shallow/deep representation of
signals in general, but now have a number of exter-
nally visible abstractions for combinatorial, sequential,
and enabled signals. We also have new abstractions
for memory and memory updates. Internally, we found
the need to represent unknown values inside our cir-
cuits, so we made aggressive use of type functions to
lift our values in a principled and regular way. This de-
sign decision unfortunately complicates the internals of
Kansas Lava, but the external API remains unaffected.
An overarching design decision is the aggressive use

of an algebra over commutable functors and observable
functors for circuit refinement, the details of which we
hope to write up this summer.
We have also been working on a new debugging sys-

tem, which combines the deep and shallow embedding
in a way to allow probes to be inserted onto functions.
The values of the usage of these functions can be ob-
served, as well as used to generate test vectors.
A release is planned for late summer, and will be

available on Hackage. Recent presentations about
Kansas Lava include (slides on website):

◦ May 18th, What’s the matter with Kansas Lava?,
Eleventh Symposium on Trends in Functional Pro-
gramming, Norman, OK.

58

http://www.ict.kth.se/forsyde/


◦ May 18th, The Internals and Externals of Kansas
Lava, Eleventh Symposium on Trends in Functional
Programming, Norman, OK.

◦ May 11th, Generating Implementations of Error
Correcting Codes using Kansas Lava, 10th Annual
High Confidence Software and Systems Conference,
Linthicum Heights, MD.

◦ February 26th, Forward Error Correction Codes and
Kansas Lava, Brigham Young University, Provo,
Utah.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

6.9 Natural Language Processing

6.9.1 NLP

Report by: Eric Kow

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.10.1.

6.9.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language utter-
ances, e.g., English texts, out of abstract inputs). GenI
in particular takes an FB-LTAG grammar and an in-
put semantics (a conjunction of first order terms), and
produces the set of sentences associated to the input
semantics by the grammar. It features a surface real-
ization library, several optimizations, batch generation
mode, and a graphical debugger written in wxHaskell.
It was developed within the TALARIS project and is
free software licensed under the GNU GPL.

GenI is available on Hackage, and can be installed
via cabal-install. Our most recent release of GenI was
version 0.20.1 (2009-10-01), which offers cleaner inter-
actions with the third-party tools (using JSON), sim-
pler installation on MacOS X and a user manual. For
more information, please contact us on the geni-users
mailing list.

Further reading

◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

6.9.3 Grammatical Framework

Report by: Krasimir Angelov
Participants: Krasimir Angelov, Håkan Burden, Aarne

Ranta

Grammatical Framework (GF) is a programming lan-
guage for multilingual grammar applications. It can
be used as a more powerful alternative to Happy but
in fact its main usage is to describe natural language
grammars instead of programming languages. The lan-
guage itself will look familiar for most Haskell or ML
users. It is a dependently typed functional language
based on Per Martin-Löf’s type theory.
An important objective in the language development

was to make it possible to develop modular gram-
mars. The language provides modular system inspired
from ML but adapted to the specific requirements in
GF. The modules system was exploited to a large ex-
tent in the Resource Libraries project. The library
provides large linguistically motivated grammars for a
number of languages. When the languages are closely
related the common parts in the grammar could be
shared using the modules system. Currently there
are complete grammars for Bulgarian, Danish, English,
Finnish, French, German, Interlingua, Italian, Norwe-
gian, Russian, Spanish, and Swedish. There are work
in progress grammars for Arabic, Catalan, Latin, Thai,
and Hindi/Urdu. On top of these grammars a user
with limited linguistic background can build applica-
tion grammars for a particular domain.

59

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
http://haskell.org/communities/05-2009/html/report.html#sect6.10.1
http://haskell.org/communities/05-2009/html/report.html#sect6.10.1
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users


On 24 June 2009 after one year of hard work the
previous beta version of GF 3.0 is turned into stable
release. This is a major refactoring of the existing sys-
tem. The code base is about half in size and makes a
clear separation between compiler and runtime system.
A Haskell library is provided that allows GF grammars
to be easily embedded in user applications. There is a
translator that generates JavaScript code which allows
the grammar to be used in web applications as well.
The new release also provides new parser algorithm
which works faster and is incremental. The incremen-
tality allows the parser to be used for word prediction,
i.e., someone could imagine a development environment
where the programming language is natural language
and the user still can press some key to see the list of
words allowed in this position just like it is possible in
Eclipse, JBuilder, etc.
We are continuing to work hard. Some of the projects

that keeps us busy:

◦ Type checker for dependent types in the interpreter.
Currently only the compiler has type checker.

◦ Semantic parsing — i.e., parser which considers not
only the syntax but also the semantics of the lan-
guage. The semantics is encoded using dependent
types.

◦ New resource grammars for Romanian and Polish

◦ Visualization of parse trees and dependency trees in
addition to syntax trees

◦ Experiments with natural languages and big ontolo-
gies

◦ Building wide coverage Swedish grammar based on
the resource grammar.

Further reading

www.digitalgrammars.com/gf

6.10 Bioinformatics

6.10.1 Bein

Report by: Fred Ross
Status: preparing for first release and deployment

Scientists doing exploratory data analysis typically run
short sequences of commands with a range of param-
eters on a small number of data sets. In the standard
unix shell, this results in a plethora of files with no obvi-
ous description of how they were created. Full workflow
managers such as Knime excel for long, complicated se-
quences to be run over and over again on a large number
of data sets, but are useless for exploration.
Bein fills this niche. It tracks programs, files (and in

later releases biological sequence data, since it is being

written for a bioinformatics group), and executions of
programs on given sets of inputs, interfaces with LSF
clusters, and exposes a web interface to users.
The first release and deployment in Lausanne is

scheduled for late May, 2010. It will be deployed else-
where in Switzerland under the auspices of the SyBit
project. The code, and all future updates, are available
from GitHub.

Further reading

http://github.com/madhadron/bein

6.10.2 Biohaskell (previously: Bioinformatics tools)

Report by: Ketil Malde

The Haskell bioinformatics library supports working
with nucleotide and protein sequences and associated
data. It supports a variety of file and alignment for-
mats, and provides basic functions for working with
sequences.
The library is considered in development (meaning

things will be added, some functionality may not be as
complete or well documented as one would wish, and so
on), but central parts should be fairly well documented,
and it comes with a QuickCheck test and benchmarking
suite.
Recent changes include extensive features for han-

dling the native Roche 454 sequence formats (flow-
grams), including quality filtering and trimming.
The library has been used in a number of applica-

tions, the latest are are flowsim, a simulator for 454-
style sequences, and flowt, a fast filter for removing
duplicate clones.

Further reading

◦ http://blog.malde.org/
◦ darcs repositories at http://malde.org/~ketil/

biohaskell

60

www.digitalgrammars.com/gf
http://github.com/madhadron/bein
http://blog.malde.org/index.php/flowsim/
http://blog.malde.org/
http://malde.org/~ketil/biohaskell
http://malde.org/~ketil/biohaskell


6.11 Games

6.11.1 Freekick2

Report by: Antti Salonen
Status: experimental, active development

Freekick2 is a 2D arcade-style soccer game, written in
Haskell. It is still very young, but playable. It features
texture-mapped graphics, a simple but functional and
well playing AI, and the ability to import Sensible Soc-
cer team data files. Freekick2 uses the Haskell bindings
to OpenGL, FTGL and SDL for input handling, graph-
ics and GUI. It is available at Hackage. Future plans
include improving the AI and the gameplay.

Further reading

◦ http://github.com/anttisalonen/freekick2
◦ http://codeflow.wordpress.com/2010/05/04/

announcing-freekick2/

6.11.2 Dungeons of Wor

Report by: Patai Gergely
Status: experimental, active

Dungeons of Wor is an homage to the classic arcade
game, Wizard of Wor. It uses the artwork and levels
from the arcade version, but the gameplay mechanics
differ from the original in several ways.
This game is also an experiment in functional re-

active programming, so it might be a useful resource
to anyone interested in this topic. It was coded us-
ing the Simple variant of the experimental Elerea li-
brary (→ 6.5.2), which provides discrete streams as
first-class values.

Further reading

◦ http://hackage.haskell.org/package/dow
◦ http://en.wikipedia.org/wiki/Wizard_of_Wor

6.12 Programming Languages

6.12.1 Vintage BASIC

Report by: Lyle Kopnicky
Current release: 1.0.1
Portability: GHC 6.10, 6.12

Vintage BASIC is an interpreter for microcomputer-
era BASIC, written in Haskell. It is fully unit-tested,
and implements all common features of the language.
The web site includes games from Creative Comput-
ing’s BASIC Computer Games, all of which can be run
under the interpreter.

61

http://github.com/anttisalonen/freekick2
http://codeflow.wordpress.com/2010/05/04/announcing-freekick2/
http://codeflow.wordpress.com/2010/05/04/announcing-freekick2/
http://hackage.haskell.org/package/dow
http://en.wikipedia.org/wiki/Wizard_of_Wor


The interpreter makes use of a novel technique for
implementing BASIC’s dynamic control structures: re-
sumable exceptions. For example, in BASIC loops, the
FOR keyword becomes an exception handler, and the
NEXT keyword throws an exception. Furthermore,
the exceptions are caught in the continuation, rather
than the containing expression. The handlers can also
be selectively persisted after handling exceptions. Be-
cause of these two features, I refer to them as “durable
traps”. The DurableTraps library is fully abstracted
using monad transformers, and can be used in any pro-
gram.

Further reading

http://www.vintage-basic.net

6.12.2 LQPL — A quantum programming language
compiler and emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.8.4 experimental released

LQPL (Linear Quantum Programming Language) con-
sists of a compiler for a functional quantum program-
ming language and an associated assembler and emu-
lator.
This programming language was inspired by Peter

Selinger’s paper “Toward a Quantum Programming
Language”. LQPL incorporates a simplified module /
include system (more like C’s include than Haskell’s im-
port), predefined unitary transforms, quantum control
and classical control, algebraic data types, and opera-
tions on purely classical data. The compiler translates
LQPL programs into an assembler language targeted to
a quantum stack machine. The emulator, written using
Gtk2Hs, translates the assembler to machine code and
provides visualization of the program as it executes.
In version 0.8.4, some examples of probabilistic pro-

gramming have been added and the operational se-
mantics of measure, use, and case have been revised
slightly to make them show more sensibly in the asso-
ciated emulator.
Quantum programming allows us to provide a fair

coin toss, as shown in the code example below.

qdata Coin = {Heads | Tails}
toss ::( ; c:Coin) =
{ q = |0>; Had q;

measure q of
|0> => {c = Heads}
|1> => {c = Tails}

}

This allows programming of various probabilistic algo-
rithms, such as leader election. The picture below is
a screenshot of the emulator part way through leader

election, showing a probabilistic list (outslis) with
equal chances of being one of [3, 2] or [3, 1] and a coin
toss (bToss) with equal chances of being Heads or Tails.

Further reading

http://pll.cpsc.ucalgary.ca/lqpl/index.html

6.13 Others

6.13.1 IgorII

Report by: Martin Hofmann
Participants: Emanuel Kitzelmann, Ute Schmid
Status: experimental, active development

IgorII is a new method and an implemented prototype
for constructing recursive functional programs from a
few non-recursive, possibly non-ground, example equa-
tions describing a subset of the input/output behavior
of a target function to be implemented.
For a simple target function like reverse the sole

input would be the following, the k smallest w.r.t. the
input data type, examples:

reverse [] = []
reverse [a] = [a]
reverse [a,b] = [b,a]
reverse [a,b,c] = [c,b,a]

The result, shown below, computed by IgorII is a
recursive definition of reverse, where the subfunctions
last and init have been automatically invented by the
program.

reverse [] = []
reverse (x:xs) = (last (x:xs)):(reverse (init (x:xs))

last [x] = x
last (x:y:ys) = last (y:ys)
init [x] = []
init (x:y:ys) = x:(init (y:ys))

IgorII has been extended to use catamorphisms on
lists as higher-order templates. After enabling the
higher-order mode, given the previous examples of
reverse, the system outputs the following solution:

62

http://www.vintage-basic.net
http://pll.cpsc.ucalgary.ca/lqpl/index.html


reverse xs = foldr snoc [] xs

snoc x xs = foldr cons [x] xs
cons x (y:ys) = x:(y:ys)

Recently, the use of list-catamorphism has been gen-
eralized to arbitrary inductive data types. Based on
the Pointless Haskell library IgorII uses its generic
implementation of recursion patterns to solve recursive
problems as e.g. mirroring binary trees, computing the
power set, or to find a recursive solution for the towers
of hanoi, to mention just a few.

Features

◦ termination by construction
◦ handling arbitrary user-defined data types
◦ utilization of arbitrary background knowledge
◦ automatic invention of auxiliary functions as subpro-

grams
◦ learning complex calling relationships (tree- and

nested recursion)
◦ allowing for variables in the example equations
◦ simultaneous induction of mutually recursive target

functions
◦ using catamorphisms on arbitrary inductive data

types as higher-order templates or generic recursion
schemes

Current Status and Future Plans

The original version of IgorII is implemented in the
reflective rewriting based programming and specifica-
tion language Maude. However, a Haskell implemen-
tation of the algorithm is the current research proto-
type. Both can be obtained from the project page.
A tool demo and a research paper about the use

of catamorphisms as higher-order templates were pre-
sented at PEPM 2010.
For the future, we plan to extend the system to use

other type morphisms as generic recursion schemes.
Also it would be worth investigating to which extent
knowledge about types, e.g. universal properties, can
be used for the synthesis process, e.g. to guide the
search or resolve ambiguities.

Further reading

◦ http://www.cogsys.wiai.uni-bamberg.de/effalip/
◦ http://www.inductive-programming.org/

6.13.2 Yogurt

Report by: Martĳn van Steenbergen

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.12.6.

6.13.3 Bullet

Report by: Csaba Hruska
Status: experimental, active development

Bullet is a professional open source multi-threaded 3D
Collision Detection and Rigid Body Dynamics Library
written in C++. It is free for commercial use under
the zlib license. The Haskell bindings ship their own C
compatibility layer, so the library can be used without
modifications.
At the current state of the project only basic services

are accessible from Haskell, i.e., you can load collision
shapes and step the simulation. More advanced Bullet
features (constraints, soft body simulation etc.) will be
added later.

Further reading

http://www.haskell.org/haskellwiki/Bullet

6.13.4 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
Since the last HCAR, arbtt was added to Debian. At

the Haskell Hackathon in Zürich, three new contribu-
tors to arbtt joined the development.

Further reading

◦ http://www.joachim-breitner.de/projects#arbtt
http://www.joachim-breitner.de/blog/archives/
336-The-Automatic-Rule-Based-Time-Tracker.html

◦ http://darcs.nomeata.de/arbtt/doc/users_guide/

6.13.5 uacpid

Report by: Dino Morelli
Status: experimental, actively developed

uacpid is a daemon designed to be run in userspace that
will monitor the local system’s acpid socket for hard-
ware events. These events can then be acted upon by
handlers with access to the user’s environment. Con-
figuration of uacpid closely mimics that of acpid.
uacpid is available in binary form for Arch Linux

through the AUR and can be acquired using darcs or
other methods.

63

http://hackage.haskell.org/package/pointless-haskell
http://www.program-transformation.org/PEPM10/
http://www.cogsys.wiai.uni-bamberg.de/effalip/
http://www.inductive-programming.org/
http://haskell.org/communities/05-2009/html/report.html#sect6.12.6
http://haskell.org/communities/05-2009/html/report.html#sect6.12.6
http://www.haskell.org/haskellwiki/Bullet
http://www.joachim-breitner.de/projects#arbtt
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://darcs.nomeata.de/arbtt/doc/users_guide/


Further reading

◦ Project page: http://ui3.info/d/proj/uacpid.html
◦ Source repository: darcs get http://ui3.info/darcs/

uacpid

6.13.6 cltw (Twitter API command-line utility)

Report by: Dino Morelli
Status: experimental, actively developed

This is a tool for performing some Twitter API func-
tions from the command-line. So far supporting
three calls: statuses/followers, statuses/friends, sta-
tuses/update.
cltw is available from Hackage, the darcs repository

below, and also in binary form for Arch Linux through
the AUR.

Further reading

◦ Project page: http://ui3.info/d/proj/cltw.html
◦ Source repository: darcs get http://ui3.info/darcs/

cltw

64

http://ui3.info/d/proj/uacpid.html
http://ui3.info/darcs/uacpid
http://ui3.info/darcs/uacpid
http://ui3.info/d/proj/cltw.html
http://ui3.info/darcs/cltw
http://ui3.info/darcs/cltw


7 Commercial Users

7.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a develop-
ment platform. We also offer consulting services, con-
tracting, and training. For more information, please
take a look at our website or drop us an e-mail at
〈info@well-typed.com〉.
This has been another busy 6 months for us, with a

mixture of proprietary contracts and open source work.
We have a number of interesting opportunities on the
horizon, and are looking forward to the next 6 months.
In the coming weeks we will begin a 2-year project,

funded by Microsoft Research, to push the real-world
adoption and practical development of parallel Haskell
with GHC. We are currently seeking organizations to
take part. For more details, see our blog.
As the business grows, we are also looking for more

people. If you are interested in a Haskell job, see our
blog for details.

Further reading

◦ http://www.well-typed.com/
◦ Blog: http://blog.well-typed.com/

7.2 Bluespec tools for design of complex
chips and hardware accelerators

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides a language, BSV, which is be-
ing used for all aspects of ASIC and FPGA system de-
sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. Unlike HW design with C, which can
only be used for “loop-and-array” computations, BSV
is universal, accommodating the diverse range of blocks
found in modern SoCs, from algorithmic “datapath”
blocks to complex control blocks such as processors,
DMAs, interconnects, and caches.

Bluespec’s core tool synthesizes (compiles) BSV into
high-quality RTL (Verilog), which can be further syn-
thesized into netlists for ASICs and FPGAs using other
commercial tools. Automatic synthesis from atomic
transactions enables design-by-refinement, where an
initial executable approximate design is systematically
transformed into a quality implementation by succes-
sively adding functionality and architectural detail.
The core tool is implemented in Haskell (well over 100K
lines).
In addition to the core synthesis tool, Bluespec pro-

vides a fast simulation tool for BSV, and extensive
libraries and infrastructure to make it easy to build
FPGA-based accelerators for computationally intensive
software, including for the Xilinx XUP board popular
in universities.
These industrial strength tools have enabled some

large designs (over a million gates) and significant ar-
chitecture research projects in academia and indus-
try, because complex architectural models can now be
coded with the same convenience of expression as SW
languages, but with the execution speed of FPGAs.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor and electronic equipment compa-
nies, and universities. The tools are free for academic
teaching and research.

Further reading

◦ R.S.Nikhil, Bluespec, a General-Purpose Approach
to High-Level Synthesis Based on Parallel Atomic
Transactions, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ Small illustrative examples: http://sites.google.
com/a/bluespec.com/learning-bluespec/Home/
Small-Examples

◦ MIT courseware, “Complex Digital Systems”: http:
//csg.csail.mit.edu/6.375

◦ A fun example with many functional-programming
features — BluDACu, a parameterized Bluespec
hardware implementation of Sudoku: http://www.
bluespec.com/products/BluDACu.htm

7.3 Industrial Haskell Group

Report by: Duncan Coutts
Participants: Ian Lynagh

65

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/
http://sites.google.com/a/bluespec.com/learning-bluespec/Home/Small-Examples
http://sites.google.com/a/bluespec.com/learning-bluespec/Home/Small-Examples
http://sites.google.com/a/bluespec.com/learning-bluespec/Home/Small-Examples
http://csg.csail.mit.edu/6.375
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://www.bluespec.com/products/BluDACu.htm


The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
It was formed in early 2009, and has already made a
significant contribution to the recent GHC 6.12 release:
In the first 6 months collaborative development scheme,
the IHG has funded work on dynamic libraries, more
flexible Integer library support for GHC, and Cabal
development work. The details of these projects are on
the website.
While the aim had been to start the next round of

the scheme at the beginning of this year, it has been on
hiatus due to Duncan taking longer than expected to
complete his PhD thesis. Well-Typed (→ 7.1) is how-
ever increasing its capacity and the plan is to run the
collaborative development scheme on a continuous ba-
sis in future.
If you are interested in joining the IHG, or if you

just have any comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

http://industry.haskell.org/

7.4 typLAB

Report by: Sebastiaan Visser
Participants: Lon Boonen, Erik Hesselink, Salar al

Khafaji

TypLAB is a startup company located in the city center
of Amsterdam. We investigate and develop new ways of
creating and consuming online content. Our current fo-
cus is in building an online environment in which users
can manage content in unconventional ways.
The Happstack powered server application, the au-

tomated deployment scripts, the JavaScript preproces-
sors; all code running at the server is written entirely
in Haskell. The vast amount of Haskell packages, espe-
cially for XML manipulation and generic programming,
allow us to easily interface with our Berkeley XML
database back-end. A large part of our application is
written in JavaScript and runs in the client. Most of the
JavaScript code is heavily inspired by functional (reac-
tive) programming and enables us to achieve a very
high level of abstraction, even in the web browser.
TypLAB is showing that combining the theoretical

foundations of computer science with the day-to-day
practice of the web allows for building high-quality
web-applications. Still a lot of work has to be done
before our first beta will see the light. Please keep in
touch with our progress by checking out our weblog.

Further reading

◦ http://typlab.com
◦ http://blog.typlab.com

7.5 factis research GmbH

Report by: Stefan Wehr
Participants: David Leuschner, Harald Fischer
Status: beta, active development

factis research, located in Freiburg, Germany, develops
reliable and user-friendly mobile solutions. Our client
software runs under J2ME, Symbian, iPhone OS, An-
droid, and Blackberry. The server components are im-
plemented in Python and Haskell.
We are actively using Haskell for a number of

projects, most of which are released under an open-
source license:

◦ Server backends for our mobile software solutions.

◦ DPM (→ 4.3.5), a patch manager for darcs.

◦ HTF (→ 4.2.1), a test framework.

◦ fos (http://openfactis.org/fos/), a customer relation-
ship management tool. Originally, fos was written
as a Haskell GTK application, but we are currently
rewriting it as a web application.

◦ ntee (http://openfactis.org/ntee), an adaptation of
the Unix tool tee to network streams.

Further reading

http://www.factisresearch.com/

7.6 Tsuru Capital

Report by: Simon Cranshaw

Tsuru Capital is engaged in high-frequency market-
making on options markets. Tsuru is a private com-
pany, and trades with its own capital. Tsuru Capi-
tal currently runs arbitrage based liquidity provision

66

mailto: info at industry.haskell.org
http://industry.haskell.org/
http://typlab.com
http://blog.typlab.com
http://openfactis.org/fos/
http://openfactis.org/ntee
http://www.factisresearch.com/


strategies on the Kospi 200 index and plans to expand
to Nikkei 225 index, and other electronic markets, over
the next year.
The trading software has been developed entirely in

Haskell, and is one of the few systems in the world
written completely in a functional language.

Further reading

http://tsurucapital.com/en/

7.7 Oblomov Systems

Report by: Martĳn Schrage

Oblomov Systems is a one-person software company
based in Utrecht, The Netherlands. Founded in 2009
for the Proxima 2.0 project (→ 6.4.5), Oblomov has
since then been working on a number of Haskell-related
projects. The main focus lies on web-applications and
(web-based) editors. Haskell has turned out to be ex-
tremely useful for implementing web servers that com-
municate with JavaScript clients or iPhone apps.
Awaiting the acceptance of Haskell by the world at

large, Oblomov Systems also offers software solutions
in Java, Objective C, and C#, as well as on the iPhone.

Further reading

http://www.oblomov.com

67

http://tsurucapital.com/en/
http://www.oblomov.com


8 Research and User Groups

8.1 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Conrad Rau, Manfred Schmidt-Schauß

One of our research topics focuses on programming lan-
guage semantics, especially on contextual equivalence
which is usually based on the operational semantics of
the language. We explored several call-by-need lambda
calculi. Deterministic call-by-need lambda calculi with
letrec provide a semantics for the core language of
Haskell. In the setting of such an extended calculus
we proved correctness of strictness analysis using ab-
stract reduction. Furthermore, we proved equivalence
of the call-by-name and call-by-need semantics of an
extended lambda calculus with letrec, case, and con-
structors.
Recently, we extended our investigations to paramet-

ric polymorphism and and showed correctness of type
dependent program transformations. Most recently, in
collaboration with Elena Machkasova we have shown
that the call-by-need lambda calculus with letrec is iso-
morphic to the lazy lambda calculus and that bisimi-
larity coincides with contextual equivalence in the call-
by-need lambda calculus with letrec.
We also explored several nondeterministic exten-

sions of call-by-need lambda calculi and their appli-
cations. We analyzed a model for a lazy functional
language with direct-call I/O providing a semantics for
unsafePerformIO in Haskell. We investigated a call-
by-need lambda calculus extended with McCarthy’s
amb and an abstract machine for lazy evaluation of
concurrent computations. We have shown that mu-
tual similarity is a sound proof method w.r.t. contex-
tual equivalence in a class of untyped higher-order non-
deterministic call-by-need lambda calculi.
In a recently started research project we try to au-

tomatize correctness proofs of program transforma-
tions. A main step for this goal is the computation
of overlappings between reductions of the operational
semantics and transformations steps. This computa-
tion requires the combination of several unification al-
gorithms. We implemented a prototype of this com-
bined algorithm in Haskell.
As a further research topic we analyzed the expres-

sivity of concurrency primitives in various functional
languages. In collaboration with Jan Schwingham-
mer and Joachim Niehren, we showed how to encode
Haskell’s MVars into a lambda calculus with storage

and futures which is an idealized core language of Al-
ice ML. We proved correctness of the encoding using
operational semantics and the notions of adequacy and
full-abstractness of translations.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

8.2 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the newly formed Programming Languages
and Systems Group of the School of Computing. We
are a group of staff and students with shared interests
in functional programming. While our work is not lim-
ited to Haskell — in particular our interest in Erlang
has been growing — Haskell provides a major focus and
common language for teaching and research.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sections
of this report. Thomas Schilling is developing ideas for
improving type error messages for GHC. Part of this
work is currently under review for ICFP and will be
included in the next major release of the Scion IDE
library. Neil Brown developed a library for Communi-
cating Haskell Processes (CHP). Several members de-
velop an occam compiler in Haskell (Tock).

Further reading

◦ PLAS group: http://www.cs.kent.ac.uk/research/
groups/plas/

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/research/groups/plas/hare.html

◦ Tracing and debugging with Hat: http://www.
haskell.org/hat

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/
◦ Scion: http://code.google.com/p/scion-lib/
◦ Message-Passing Concurrency for Haskell using the

CHP library: http://chplib.wordpress.com/
◦ Tock: http://projects.cs.kent.ac.uk/projects/tock/

68

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.haskell.org/hat
http://www.haskell.org/hat
http://www.cs.kent.ac.uk/projects/heat/
http://code.google.com/p/scion-lib/
http://chplib.wordpress.com/
http://projects.cs.kent.ac.uk/projects/tock/


8.3 Formal Methods at DFKI Bremen and
University of Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Lücke, Christoph

Lüth, Christian Maeder, Till Mossakowski,
Lutz Schröder

See: http://haskell.org/communities/05-2009/html/
report.html#sect8.5.

8.4 Haskell at K.U.Leuven, Belgium

Report by: Tom Schrĳvers
Participants: Pieter Wuille

We are a two-man unit of functional programming re-
search within the Declarative Languages and Artificial
Intelligence group at the Katholieke Universiteit Leu-
ven, Belgium.
Our Haskell-related projects are:

◦ The Monad Zipper : Limitations of monad stacks
get in the way of developing highly modular pro-
grams with effects. This pearl demonstrates that
Functional Programming’s abstraction tools are up
to the challenge. Of course, abstraction must be
followed by clever instantiation: Huet’s zipper for
the monad stack makes components jump through
unanticipated hoops. This is joint work with Bruno
Oliveira.

◦ EffectiveAdvice: EffectiveAdvice is a disciplined
model of (AOP-style) advice, inspired by Aldrich’s
Open Modules, that has full support for effects in
both base components and advice. EffectiveAdvice
is implemented as a Haskell library. Advice is mod-
eled by mixin inheritance and effects are modeled
by monads. Interference patterns previously identi-
fied in the literature are expressed as combinators.
Equivalence of advice, as well as base components,
can be checked by equational reasoning. Parametric-
ity, together with the combinators, is used to prove
two harmless advice theorems. The result is an ef-
fective model of advice that supports effects in both
advice and base components, and allows these effects
to be separated with strong non-interference guaran-
tees, or merged as needed. This is joint work with
Bruno Oliveira and William Cook.

◦ Type Checking: Recent results are on type inference
for GADTs, type invariants, and type checking for
type families. Ongoing work concerns the simplifica-
tion of type checking for Haskell extensive type sys-
tem, and adding new extensions. This is joint work
with Martin Sulzmann, Simon Peyton Jones, Manuel
Chakravarty, Dimitrios Vytiniotis, Stefan Monnier,
Louis-Julien Guillemette and Dominic Orchard.

◦ The Monadic Constraint Programming Framework:
The main article on the MCP framework by Tom
Schrĳvers, Peter Stuckey and Phil Wadler has ap-
peared in the Journal of Functional Programming.
It explains how the framework captures the generic
aspects of Constraint Programming in Haskell. Of
particular interest is the solver-independent frame-
work for compositional search strategies.
Currently we are extending the framework to act
as a finite domain modeling language for both the
problem description and the search component. The
model in Haskell serves as a high-level front-end for
a state-of-the-art Constraint Programming system
such as Gecode (C++). Models can be compiled
to C++ code, can be solved by calling Gecode from
Haskell at runtime, or can be solved purely in Haskell
itself.

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/monadiccp

◦ http://www.cs.kuleuven.be/~toms/Haskell/
◦ https://www.cs.kuleuven.be/~pieterw/site/Research/

Papers/

8.5 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component of
the Department of Computer Science and Engineering
at Chalmers. In particular, Haskell has a very impor-
tant place, as it is used as the vehicle for teaching and
numerous projects. Besides functional programming,
language technology, and in particular domain specific
languages is a common aspect in our projects.
The Functional Programming research group has 5

faculty members and 12 postdoc and doctoral students.
Research is going on in various exciting topics:

Property-based testing QuickCheck is the basis for
a European Union project on Property Based Test-
ing (www.protest-project.eu). We are applying the
QuickCheck approach to Erlang software, together
with Ericsson, Quviq, and others. Much recent work
has focused on PULSE, the ProTest User-Level Sched-
uler for Erlang, which has been used to find race
conditions in industrial software — see our ICFP
2009 paper for details. A new tool, QuickSpec, gen-
erates algebraic specifications for an API automati-
cally, in the form of equations verified by random
testing. We will publish about it at TAP 2010;
an earlier paper can be found here: http://www.cse.
chalmers.se/~nicsma/quickspec.pdf. Lastly, we have de-
vised a technique to speed up testing of polymor-

69

http://haskell.org/communities/05-2009/html/report.html#sect8.5
http://haskell.org/communities/05-2009/html/report.html#sect8.5
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/monadiccp
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/monadiccp
http://www.cs.kuleuven.be/~toms/Haskell/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/
www.protest-project.eu
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf


phic properties: http://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=99387.

Natural language technology Grammatical Frame-
work (→ 6.9.3) is a declarative language for describing
natural language grammars. It is useful in various ap-
plications ranging from natural language generation,
parsing and translation to software localization. The
framework provides a library of large coverage gram-
mars for currently fifteen languages from which the de-
velopers could derive smaller grammars specific for the
semantics of a particular application.

Generic Programming Starting with Polytypic
Programming in 1995 there is a long history of
generic programming research at Chalmers. Recent
developments include work on dependent types (a JFP
paper + library around “Algebra of Programming
using Agda”; as well as an account of parametricity for
dependent types), two survey papers “C++ Concepts
=? Haskell Type Classes” and “Comparing GP Libs in
Haskell” and applications to sustainable development
with the Potsdam Institute for Climate Impact Re-
search (http://www.pik-potsdam.de/. Patrik Jansson
(with Sibylle Schupp) chaired the last Workshop on
Generic Programming. Related publications are avail-
able here: http://publications.lib.chalmers.se/cpl/lists/
publications/people/html/index.xsql?ids=701&lyear=
1900&hyear=2020

Language-based security SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 3.2.2) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

DSP programming Feldspar is a domain-specific lan-
guage for digital signal processing (DSP), developed
in co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest. The
motivating application is telecom processing, but the
language is intended to be more general. As a first
stage, we have focused on the data-intensive numeric

algorithms which are at the core of any DSP applica-
tion. More recently, we have started to work on ex-
tending the language to deal with more system-level
aspects. The data processing language is purely func-
tional and highly inspired by Haskell. Currently the
language is implemented as an embedded language in
Haskell.
The implementation is available from Hackage:

http://hackage.haskell.org/package/feldspar-language.
There is also a code generator, developed at ELTE
University: http://hackage.haskell.org/package/
feldspar-compiler
See also the official project page: http://dsl4dsp.inf.

elte.hu

Hardware design/verification The functional pro-
gramming group has developed three different hard-
ware description languages — Lava, Wired and Chalk
(chronological order) — implemented in Haskell. Each
language targets a different abstraction level. The basic
idea behind all three is to model circuits as functions
from inputs to outputs. This allows structural hard-
ware description in standard functional programming
style.
Chalk is a new language for architecture design.

Once you have defined a Chalk circuit, you can sim-
ulate it, or explore it further using non-standard in-
terpretations. This is particularly useful if you want
to perform high-level power and performance analysis
early on in the design process.
More info: http://www.cse.chalmers.se/~wouter/

Publications/DCC2010.pdf
In Lava, circuits are described at the gate level

(with some RTL support). The version devel-
oped at Chalmers (http://www.cse.chalmers.se/~koen/
Lava/) has a particular aim to support formal verifica-
tion in a convenient way. The version developed at Xil-
inx Inc. (http://raintown.org/lava/) focuses on FPGA
core generation, and has been successfully used in real
industrial design projects.
Wired is an extension to Lava, targeting (not exclu-

sively) semi-custom VLSI design. A particular aim of
Wired is to give the designer more control over on-chip
wires’ effects on performance. Some features of Wired
are:

◦ Initial description can be purely functional (a la
Lava).

◦ Incremental specification of physical aspects.

◦ Accurate, wire-aware timing/power analysis within
the system.

◦ Support for an academic 45nm cell library.

Wired is not actively developed at the moment, but
the system has recently been used to explore the layout

70

http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://www.pik-potsdam.de/
http://publications.lib.chalmers.se/cpl/lists/publications/people/html/index.xsql?ids=701&lyear=1900&hyear=2020
http://publications.lib.chalmers.se/cpl/lists/publications/people/html/index.xsql?ids=701&lyear=1900&hyear=2020
http://publications.lib.chalmers.se/cpl/lists/publications/people/html/index.xsql?ids=701&lyear=1900&hyear=2020
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
http://hackage.haskell.org/package/feldspar-compiler
http://dsl4dsp.inf.elte.hu
http://dsl4dsp.inf.elte.hu
http://www.cse.chalmers.se/~wouter/Publications/DCC2010.pdf
http://www.cse.chalmers.se/~wouter/Publications/DCC2010.pdf
http://www.cse.chalmers.se/~koen/Lava/
http://www.cse.chalmers.se/~koen/Lava/
http://raintown.org/lava/


of multipliers (Kasyab P. Subramaniyan, Emil Axels-
son, Mary Sheeran and Per Larsson-Edefors. Layout
Exploration of Geometrically Accurate Arithmetic Cir-
cuits. Proceedings of IEEE International Conference of
Electronics, Circuits and Systems. 2009).
Home page: http://www.cs.chalmers.se/~emax/

wired/

Automated reasoning Equinox is an automated the-
orem prover for pure first-order logic with equality.
Equinox actually implements a hierarchy of logics, re-
alized as a stack of theorem provers that use abstrac-
tion refinement to talk with each other. In the bottom
sits an efficient SAT solver. Paradox is a finite-domain
model finder for pure first-order logic with equality.
Paradox is a MACE-style model finder, which means
that it translates a first-order problem into a sequence
of SAT problems, which are solved by a SAT solver.
Infinox is an automated tool for analyzing first-order
logic problems, aimed at showing finite unsatisfiability,
i.e. the absence of models with finite domains. All three
tools are developed in Haskell.

Teaching Haskell is present in the curriculum as early
as the first year of the Bachelors program. We have
three courses solely dedicated to functional program-
ming (of which two are Masters-level courses), but
we also provide courses which use Haskell for teach-
ing other aspects of computer science, such as pro-
gramming languages, compiler construction, hardware
description and verification, data structures and pro-
gramming paradigms.

Student Projects Masters students Anders Mortberg
and Bassel Mannaa are implementing basic computer
algorithms in Haskell. Anders is representing the so-
lutions of linear systems of equations over a coherent
ring and Bassel is representing the algebraic closure of
a field and Newton’s solution of polynomial equations
with Puiseux series.

8.6 Dutch Haskell User Group

Report by: Tom Lokhorst

The Dutch Haskell User Group is a diverse group of
people interested in Haskell and functional program-
ming.

Since the inception of our user group in April of 2009,
we have had monthly meetings and an afternoon sym-
posium. Our meetings alternate between pure socializ-
ing and evenings that include talks by members.
We have a wide range of international members; peo-

ple using functional programming in academia, as a
hobby, or for commercial purposes.
Anyone is welcome to join, from beginners to ad-

vanced users. Do join us!

Further reading

http://dutchhug.nl/

8.7 San Simón Haskell Community

Report by: Carlos Gomez

The San Simón Haskell Community from San Simón
University Cochabamba-Bolivia, is an informal Spanish
group that search to learn, share information, knowl-
edge and experience related to the functional paradigm.
Since more than a year, we are trying to expand

our community all across Latin American Haskell pro-
grammers, and in order to do that, we created a web
page (http://comunidadhaskell.org) that serves us as a
medium of communication and work environment. All
Haskell programmers are welcome to contribute to this
site.
Our main activity is the development of projects,

and related to that we have information links, a wiki,
a blog, some materials and lately we have a sec-
tion for challenges related to Haskell (http://challenges.
comunidadhaskell.org). We started an event for every
year in which we present the projects of the last year.
On 15th April 2010, we celebrated our 1st Open House
Haskell Community in which we presented our projects.
You can also meet us on Facebook, this community

is open to all Haskell programmers and specially to
Spanish Haskell programmers.

Further reading

http://comunidadhaskell.org

8.8 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming remains active at KU and the
Computer Systems Design Laboratory in ITTC. The
System Level Design Group (led by Perry Alexander)
and the Functional Programming Group (led by Andy
Gill) together form the core functional programming
initiative at KU. Apart from Kansas Lava (→ 6.8.2)
and ChalkBoard (→ 5.10.4), there are many other FP
and Haskell related things going on.

71

http://www.cs.chalmers.se/~emax/wired/
http://www.cs.chalmers.se/~emax/wired/
http://dutchhug.nl/
http://comunidadhaskell.org
http://challenges.comunidadhaskell.org
http://challenges.comunidadhaskell.org
http://comunidadhaskell.org


◦ We are developing a Haskell version of HOL. Tra-
ditionally, members of the higher-order logic (HOL)
theorem proving family have been implemented in
the Standard ML programming language or one of its
derivatives. HaskHOL aims to break with tradition
by implementing a lightweight HOL theorem prover
library as a Haskell hosted domain specific language.
Based on the HOL Light logical system, HaskHOL
aims to provide the ability for Haskell users to reason
about their code directly without having to trans-
form it or otherwise export it to an external tool.
For details talk to Evan Austin.

◦ We are actively working on enabling Type-Directed
Specification Refinement in Rosetta. Rosetta is a
specification language that focuses on the interac-
tion between different domains, such as state-based
and signal-based domains. With dependent types,
first-class types, and reflection, there are many ar-
eas where a traditional all-or-nothing typing analysis
would be impractical — especially when considering
that specifications are likely written at first in a high-
level, incomplete fashion. This project uses Inter-
preterLib (http://haskell.org/communities/11-2008/
html/report.html#sect5.5.6) and various Rosetta
analysis tools to define a typing analysis that at-
tempts to extract typing information, constraints,
and errors to present to the user, in order to guide
the specification refinement process. It is in the early
stages of development, but may eventually link up
with HaskHOL to discharge some TCC’s. For de-
tails talk to Mark Snyder.

◦ We are developing a library in Haskell for processing
Rosetta specifications. A current focus is the mod-
ularity and re-use of distinct processing elements,
such as type-checking, partial evaluation, and rea-
soning assistants. Mutually defined elements that
are more convenient to consider as distinct interact
via a reactive monadic computation, so the two el-
ements’ code can be managed as separate packages.
Also, our principal specification representation uses
functors and type-level fixed points to achieve exten-
sibility and generic programming. The goal of the
library is to provide a tight and graduated interface
to the basic processing elements, so that the users
may incorporate the most appropriate basic elements
when implementing their own, more domain-specific
Rosetta processors. For details talk to Nick Frisby.

◦ CSDL is developing Oread (http://haskell.org/
communities/11-2008/html/report.html#sect6.9.4), a
language utilizing monadic concepts capturing
message-passing concurrency, to explore the appli-
cation of functional languages to hardware/software
system design and implementation. The Oread
toolset, implemented in Haskell, is used to compile
the language to either embedded processor cores or

FPGA hardware technology. The compiler is capa-
ble of emitting LLVM code, which can then be com-
piled to the Microblaze soft processor, or VHDL and
Verilog, for direct implementation on Xilinx FPGA
devices. For details talk to Garrin Kimmell.

We also lose Garrin Kimmell in June, when he moves
to Iowa.

Further reading

◦ The Functional Programming Group (with a new
website) http://www.ittc.ku.edu/csdl/fpg.

◦ CSDL website: https://wiki.ittc.ku.edu/csdl/Main_
Page

8.9 Ghent Functional Programming Group

Report by: Jeroen Janssen
Participants: Bart Coppens, Jasper Van der Jeugt
Status: starting up

The Ghent Functional Programming Group is a new
user group aiming to bring together programmers, aca-
demics, and others interested in functional program-
ming located in the area of Ghent, Belgium. Our goal
is to have regular meetings with talks on functional pro-
gramming, organize functional programming related
events such as hackathons, and to promote functional
programming in Ghent by giving after-hours tutorials.
We had our first meeting on April 1, 2010 and wel-
comed almost 30 people. The first meeting consisted
of a number of talks:

1. Jeroen Janssen — “Welcome and short introduction
to Functional Programming”

2. Jasper Van der Jeugt — “BlazeHtml: a blazingly
fast html generator in Haskell”

3. Tom Schrĳvers — “Functional Pearl: The Monad
Zipper”

4. Romain Slootmaekers — “Functional Programming
at Amplidata: a tentative experience report”

The second meeting was on May 13, 2010. The pro-
gram was as follows:

1. Atze Dĳkstra — “The Utrecht Haskell Compiler”

72

http://haskell.org/communities/11-2008/html/report.html#sect5.5.6
http://haskell.org/communities/11-2008/html/report.html#sect5.5.6
http://haskell.org/communities/11-2008/html/report.html#sect6.9.4
http://haskell.org/communities/11-2008/html/report.html#sect6.9.4
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
https://wiki.ittc.ku.edu/csdl/Main_Page


2. Jean-Christophe Mincke — “An Introduction To
Monads”

3. Drinks at a local bar

We are currently in the process of planning our
third meeting, which will take place around the end
of June. For more information you can follow us
on twitter (@ghentfpg), via google groups (http://
groups.google.com/group/ghent-fpg), or by visiting us
at irc.freenode.net in channel #ghentfpg. We hope to
be able to greet you at one of our next meetings.

Further reading

http://groups.google.com/group/ghent-fpg

73

http://groups.google.com/group/ghent-fpg
http://groups.google.com/group/ghent-fpg
http://groups.google.com/group/ghent-fpg

	Information Sources
	The Monad.Reader
	Haskell Wikibook
	Oleg's Mini tutorials and assorted small projects
	Haskell Cheat Sheet
	Practice of Functional Programming
	Cartesian Closed Comic

	Implementations
	The Glasgow Haskell Compiler
	LHC
	The Helium compiler
	UHC, Utrecht Haskell Compiler
	Haskell front end for the Clean compiler
	The Reduceron
	Platforms
	Haskell in Gentoo Linux
	Fedora Haskell SIG


	Language
	Extensions of Haskell
	Eden
	XHaskell project
	HaskellActor
	HaskellJoin

	Related Languages
	Curry
	Agda
	Idris
	Clean
	Timber
	Ur/Web


	Tools
	Transforming and Generating
	UUAG
	AspectAG
	HFusion
	Optimus Prime
	Derive
	Agata
	lhs2TeX

	Analysis and Profiling
	HTF: a test framework for Haskell
	SourceGraph
	HLint
	A Haskell source file scanning tool
	hp2any

	Development
	Leksah --- Toward a Haskell IDE 
	HEAT: The Haskell Educational Advancement Tool
	HaRe --- The Haskell Refactorer
	DarcsWatch
	DPM --- Darcs Patch Manager
	HSFFIG
	Hubris


	Libraries
	Cabal and Hackage
	Haskell Platform
	Auxiliary Libraries
	hmatrix
	The Neon Library
	mueval

	Parsing and Transforming
	ChristmasTree
	First Class Syntax Macros
	Utrecht Parser Combinator Library: New version
	Regular Expression Matching with Partial Derivatives

	Mathematical Objects
	Halculon: units and physical constants database
	AERN-Real and friends
	logfloat

	Data types and data structures
	HList --- a library for typed heterogeneous collections
	Verified priority queues
	bytestring-trie

	Data processing
	Graphalyze
	Bravo

	Generic and Type-Level Programming
	uniplate
	Generic Programming at Utrecht University
	Extensible and Modular Generics for the Masses (EMGM)
	Optimizing generic functions

	User interfaces
	Gtk2Hs
	CmdArgs

	Graphics and Music
	LambdaCube
	diagrams
	GPipe
	ChalkBoard
	graphviz
	Euterpea

	Web and XML programming
	Haskell XML Toolbox
	Hawk
	tagsoup
	BlazeHtml
	WAI


	Applications and Projects
	For the Masses
	Darcs
	xmonad
	Bluetile

	Education
	Exercise Assistants
	Holmes, plagiarism detection for Haskell
	Yahc
	grolprep
	Sifflet

	Web Development
	Holumbus Search Engine Framework
	HCluster
	gitit
	Happstack
	Mighttpd --- yet another Web server
	Yesod
	Lemmachine
	Snap

	Data Management and Visualization
	Pandoc
	HaExcel --- From Spreadsheets to Relational Databases and Back
	Ferry (Database-Supported Program Execution)
	Sirenial
	The Proxima 2.0 generic editor
	iTasks

	Functional Reactive Programming
	Functional Hybrid Modelling
	Elerea

	Audio and Graphics
	Audio signal processing
	easyVision
	n-Dimensional Volume Calculation for Non-Convex Polytops
	Fl4m6e
	GULCI
	Reflex
	Citten
	Hemkay

	Proof Assistants and Reasoning
	HTab
	Haskabelle
	Plastic
	Free Theorems for Haskell
	CSP-M animator and model checker

	Hardware Design
	ForSyDe
	Kansas Lava

	Natural Language Processing
	NLP
	GenI
	Grammatical Framework

	Bioinformatics
	Bein
	Biohaskell (previously: Bioinformatics tools)

	Games
	Freekick2
	Dungeons of Wor

	Programming Languages
	Vintage BASIC
	LQPL --- A quantum programming language compiler and emulator

	Others
	IgorII
	Yogurt
	Bullet
	arbtt
	uacpid
	cltw (Twitter API command-line utility)


	Commercial Users
	Well-Typed LLP
	Bluespec tools for design of complex chips and hardware accelerators
	Industrial Haskell Group
	typLAB
	factis research GmbH
	Tsuru Capital
	Oblomov Systems

	Research and User Groups
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI Bremen and University of Bremen
	Haskell at K.U.Leuven, Belgium
	Functional Programming at Chalmers
	Dutch Haskell User Group
	San Simón Haskell Community
	Functional Programming at KU
	Ghent Functional Programming Group


