
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Twentieth Edition — May 2011

Janis Voigtländer (ed.)
Andreas Abel Iain Alexander Krasimir Angelov

Heinrich Apfelmus Dmitry Astapov Christiaan Baaĳ
Justin Bailey Alexander Bau Doug Beardsley

Jean-Philippe Bernardy Annette Bieniusa Mario Blažević
Anthonin Bonnefoy Gwern Branwen Joachim Breitner

Matt Brown Björn Buckwalter Bryan Buecking
Joel Burget Douglas Burke Carlos Camarão

Erik de Castro Lopo Roman Cheplyaka Olaf Chitil
Duncan Coutts Nils Anders Danielsson Dominique Devriese
Daniel Díaz Atze Dĳkstra Péter Diviánszky

Facundo Dominguez Marc Fontaine Patai Gergely
Jürgen Giesl Brett G. Giles Andy Gill

George Giorgidze Dmitry Golubovsky Marco Gontĳo
Matthew Gruen Torsten Grust Jurriaan Hage
Sönke Hahn Malte Harder Bastiaan Heeren

Judah Jacobson PÁLI Gábor János Jeroen Janssen
Csaba Hruska Oleg Kiselyov Michal Konečný

Eric Kow Ben Lippmeier Andres Löh
Hans-Wolfgang Loidl Tom Lokhorst Rita Loogen

Ian Lynagh John MacFarlane Christian Maeder
José Pedro Magalhães Ketil Malde Alex McLean

Vivian McPhail Simon Michael Arie Middelkoop
Neil Mitchell Dino Morelli JP Moresmau

Matthew Naylor Victor Nazarov Jürgen Nicklisch-Franken
Rishiyur Nikhil Thomas van Noort Johan Nordlander
Miguel Pagano David M. Peixotto Jens Petersen

Simon Peyton Jones Dan Popa Bernie Pope
Antonio M. Quispe Alberto Ruiz David Sabel

Antti Salonen Ingo Sander Uwe Schmidt
Martĳn Schrage Tom Schrĳvers Jeremy Shaw
Axel Simon Jan Šnajder Michael Snoyman
Will Sonnex Andy Stewart Martin Sulzmann

Doaitse Swierstra Henning Thielemann Simon Thompson
Sergei Trofimovich Thomas Tuegel Marcos Viera
Janis Voigtländer David Waern Greg Weber
Gregory D. Weber Kazu Yamamoto Brent Yorgey

http://tinyurl.com/haskcar

Preface

This is the 20th edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a
blue background. Entries for which I received a liveness ping, but which have seen no essential
update for a while, have been replaced with online pointers to previous versions. Other entries
on which no new activity has been reported for a year or longer have been dropped completely.
Please do revive such entries next time if you do have news on them.

A call for new entries and updates to existing ones will be issued on the usual mailing lists in
October. Now enjoy the current report and see what other Haskellers have been up to lately.
Any feedback is very welcome.

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

mailto: hcar at haskell.org

Contents

1 Community, Articles/Tutorials 7
1.1 Haskellers . 7
1.2 Haskell Wikibook . 7
1.3 The Monad.Reader . 7
1.4 Oleg’s Mini Tutorials and Assorted Small Projects . 7
1.5 Haskell Cheat Sheet . 8
1.6 A Tutorial on the Enumerator Library . 8
1.7 Practice of Functional Programming . 8

2 Implementations 9
2.1 Haskell Platform . 9
2.2 The Glasgow Haskell Compiler . 9
2.3 Immix Garbage Collector on GHC . 12
2.4 UHC, Utrecht Haskell Compiler . 12
2.5 Exchanging Sources between Clean and Haskell . 13
2.6 The Reduceron . 13
2.7 Specific Platforms . 13
2.7.1 Haskell on FreeBSD . 13
2.7.2 Debian Haskell Group . 14
2.7.3 Haskell in Gentoo Linux . 14
2.7.4 Fedora Haskell SIG . 15
2.8 Fibon Benchmark Tools & Suite . 15

3 Related Languages 17
3.1 Agda . 17
3.2 MiniAgda . 17
3.3 Clean . 17
3.4 Timber . 18
3.5 Disciple . 18

4 Haskell and . . . 20
4.1 Haskell and Parallelism . 20
4.1.1 TwilightSTM . 20
4.1.2 Haskell-MPI . 20
4.1.3 Eden . 20
4.1.4 GpH — Glasgow Parallel Haskell . 21
4.1.5 Parallel GHC Project . 22
4.2 Haskell and the Web . 23
4.2.1 GHCJS: Haskell to Javascript compiler . 23
4.2.2 WAI . 23
4.2.3 Warp . 24
4.2.4 Holumbus Search Engine Framework . 24
4.2.5 gitit . 25
4.2.6 Happstack . 25
4.2.7 Mighttpd2 — Yet another Web Server . 26
4.2.8 Yesod . 26
4.2.9 Snap Framework . 27
4.2.10 rss2irc . 27
4.3 Haskell and Games . 28
4.3.1 FunGEn . 28
4.3.2 Nikki and the Robots . 28
4.3.3 Freekick2 . 29

3

4.4 Haskell and Compiler Writing . 29
4.4.1 UUAG . 29
4.4.2 AspectAG . 29
4.4.3 Berp . 30
4.4.4 LQPL — A Quantum Programming Language Compiler and Emulator 30

5 Development Tools 32
5.1 Environments . 32
5.1.1 EclipseFP . 32
5.1.2 ghc-mod — Happy Haskell Programming on Emacs . 32
5.1.3 Leksah — The Haskell IDE in Haskell . 32
5.1.4 HEAT: The Haskell Educational Advancement Tool . 33
5.1.5 HaRe — The Haskell Refactorer . 33
5.2 Documentation . 34
5.2.1 Haddock . 34
5.2.2 Hoogle . 34
5.2.3 lhs2TEX . 35
5.3 Testing and Analysis . 35
5.3.1 shelltestrunner . 35
5.3.2 HLint . 35
5.3.3 hp2any . 35
5.4 Optimization . 36
5.4.1 HFusion . 36
5.4.2 Optimizing Generic Functions . 36
5.5 Boilerplate Removal . 37
5.5.1 A Generic Deriving Mechanism for Haskell . 37
5.5.2 Derive . 37
5.6 Code Management . 37
5.6.1 Darcs . 37
5.6.2 ipatch . 38
5.6.3 DarcsWatch . 38
5.6.4 darcsden . 38
5.6.5 darcsum . 38
5.6.6 Improvements to Cabal’s Test Support . 39
5.6.7 cab — A Maintenance Command of Haskell Cabal Packages . 39
5.6.8 Hackage-Debian . 39
5.7 Interfacing to other Languages . 39
5.7.1 HSFFIG . 39
5.8 Deployment . 39
5.8.1 Cabal and Hackage . 39
5.8.2 Hackage 2.0 . 40
5.8.3 Capri . 41
5.8.4 Shaker . 41

6 Libraries 42
6.1 Processing Haskell . 42
6.1.1 The Neon Library . 42
6.1.2 mueval . 42
6.2 Parsing and Transforming . 42
6.2.1 The grammar-combinators Parser Library . 42
6.2.2 language-python . 42
6.2.3 Loker . 42
6.2.4 epub-metadata . 43
6.2.5 ChristmasTree . 43
6.2.6 First Class Syntax Macros . 43
6.2.7 Utrecht Parser Combinator Library: uu-parsinglib . 43
6.2.8 Regular Expression Matching with Partial Derivatives . 44
6.3 Mathematical Objects . 44

4

6.3.1 normaldistribution: Minimum Fuss Normally Distributed Random Values 44
6.3.2 dimensional: Statically Checked Physical Dimensions . 44
6.3.3 AERN-Real and Friends . 44
6.3.4 hmatrix . 45
6.4 Data Types and Data Structures . 45
6.4.1 HList — A Library for Typed Heterogeneous Collections . 45
6.4.2 Persistent . 45
6.5 Generic and Type-Level Programming . 46
6.5.1 Unbound . 46
6.5.2 FlexiWrap . 46
6.5.3 uniplate . 46
6.5.4 Generic Programming at Utrecht University . 46
6.6 User Interfaces . 47
6.6.1 Gtk2Hs . 47
6.6.2 Haskeline . 47
6.6.3 CmdArgs . 48
6.7 Graphics . 48
6.7.1 Assimp . 48
6.7.2 plot/plot-gtk . 48
6.7.3 Craftwerk . 48
6.7.4 LambdaCube . 49
6.7.5 diagrams . 50
6.7.6 ChalkBoard . 50
6.8 Text and Markup Languages . 50
6.8.1 HaTeX . 50
6.8.2 Haskell XML Toolbox . 50
6.8.3 tagsoup . 51

7 Applications and Projects 52
7.1 Education . 52
7.1.1 Holmes, Plagiarism Detection for Haskell . 52
7.1.2 Interactive Domain Reasoners (previously: Exercise Assistants) . 52
7.1.3 Yahc . 53
7.1.4 Sifflet . 53
7.2 Data Management and Visualization . 53
7.2.1 HaskellDB . 53
7.2.2 lhae . 54
7.2.3 Pandoc . 54
7.2.4 Ferry (Database-Supported Program Execution) . 54
7.2.5 The Proxima 2.0 Generic Editor . 55
7.3 Functional Reactive Programming . 55
7.3.1 reactive-banana . 55
7.3.2 Functional Hybrid Modelling . 56
7.3.3 Elerea . 56
7.4 Audio and Graphics . 57
7.4.1 Audio Signal Processing . 57
7.4.2 Tidal, Texture and Live Music with Haskell . 57
7.4.3 Hemkay . 58
7.4.4 Functional Modelling of Musical Harmony . 58
7.4.5 Cologne . 58
7.4.6 easyVision . 59
7.5 Hardware Design . 59
7.5.1 CλaSH . 59
7.5.2 ForSyDe . 59
7.5.3 Kansas Lava . 59
7.6 Proof Assistants and Reasoning . 60
7.6.1 Automated Termination Analyzer for Haskell . 60
7.6.2 Zeno — Inductive Theorem Proving for Haskell Programs . 60

5

7.6.3 Free Theorems for Haskell . 60
7.6.4 Streaming Component Combinators . 61
7.6.5 CSP-M Animator and Model Checker . 61
7.6.6 Swish . 61
7.7 Natural Language Processing . 61
7.7.1 NLP . 61
7.7.2 GenI . 62
7.7.3 Grammatical Framework . 62
7.8 Others . 63
7.8.1 GenProg — Genetic Programming Library . 63
7.8.2 Manatee . 63
7.8.3 xmonad . 64
7.8.4 Biohaskell . 65
7.8.5 Bullet . 65
7.8.6 Sloth2D . 65
7.8.7 hledger . 66
7.8.8 arbtt . 66
7.8.9 uacpid (Userspace ACPI Daemon) . 66
7.8.10 epub-tools (Command-line epub Utilities) . 66

8 Commercial Users 67
8.1 Well-Typed LLP . 67
8.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 67
8.3 Industrial Haskell Group . 67
8.4 Tsuru Capital . 67
8.5 Oblomov Systems . 68

9 Research and User Groups 69
9.1 Haskell at Eötvös Loránd University (ELTE), Budapest . 69
9.2 Functional Programming at UFMG and UFOP . 69
9.3 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 70
9.4 Functional Programming at the University of Kent . 71
9.5 Formal Methods at DFKI and University Bremen . 71
9.6 Haskell at Universiteit Gent, Belgium . 72
9.7 Haskell in Romania . 72
9.8 fp-syd: Functional Programming in Sydney, Australia . 74
9.9 Functional Programming at Chalmers . 74
9.10 Functional Programming at KU . 75
9.11 Dutch Haskell User Group . 76
9.12 San Simón Haskell Community . 76
9.13 Ghent Functional Programming Group . 77

6

1 Community, Articles/Tutorials

1.1 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Since the last HCAR, Haskellers has added job post-

ings, strike forces, and the ever important bling, as
well as a brand new, community-developed site design.
Haskellers is quickly approaching 800 active accounts.
To be clear, the site is intended for all members of the
Haskell community, from professionals with 15 years
experience to people just getting into the language.

Further reading

http://www.haskellers.com/

1.2 Haskell Wikibook

Participants: Heinrich Apfelmus, Duplode, Orzetto,
David House, Eric Kow, and other

contributors
Status: active development

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect1.2.

1.3 The Monad.Reader

Report by: Brent Yorgey

There are many academic papers about Haskell and
many informative pages on the HaskellWiki. Unfortu-
nately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a Wiki page, but more casual than a jour-
nal article.
There are plenty of interesting ideas that might not

warrant an academic publication—but that does not
mean these ideas are not worth writing about! Com-
municating ideas to a wide audience is much more im-
portant than concealing them in some esoteric journal.
Even if it has all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining

a neat idea about “warm fuzzy things” to the rest of
us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there have been two new is-

sues. Issue 17, published in January 2011, featured
articles on difference lists, a new abstraction for inter-
leaving streams of behavior, and abstraction elimina-
tion. March saw the publication of a special poetry
and fiction edition full of Haskell-related song lyrics,
poems, and stories. Issue 18 is planned for release in
May 2011.

Further reading

http://themonadreader.wordpress.com/

1.4 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received three additions:

A non-traditional tutorial on Hindley-Milner type
inference

This lecture course, developed together with Chung-
chieh Shan and presented at the Formosan Summer
School on Logic, Language, and Computation (Taipei,
Taiwan, July 9-10 2008) teaches writing evaluators,
type checkers, type reconstructors and inferencers for
a higher-order language with Hindley-Milner type sys-
tem.
The course is built around the idea that type check-

ing is evaluation with “abstract values”. The course
presents, among others, the less-known simple-type in-
ference algorithm that reconstructs not only types but
also the type environment, letting us type check open
terms and determine environments in which they may
be used.
The course explores the deep relation between para-

metric polymorphism and “inlining”. Polymorphic type
checking then is an optimization to type check a poly-
morphic term at the place of its definition rather than
at the places of its use.

7

http://www.haskellers.com/
http://www.haskell.org/communities/11-2010/html/report.html#sect1.2
http://www.haskell.org/communities/11-2010/html/report.html#sect1.2
http://themonadreader.wordpress.com/
http://okmij.org/ftp/Haskell/

◦ http://okmĳ.org/ftp/Computation/index.html#teval
◦ http://okmĳ.org/ftp/Computation/FLOLAC/lecture.

pdf

Pure functional, mutation-free, efficient
double-linked lists

We show a simple example of achieving all the benefits
of an imperative data structure — including sharing
and efficient updates — in a pure functional program.
Our data structure is a doubly-linked, possibly cyclic
list, with the standard operations of adding, deleting
and updating elements; traversing the list in both di-
rections; and iterating over the list with cycle detection.
The code is purely functional, performing no destruc-
tive updates, employing no mutable variables such as
IORef, and using no state monads. Therefore, updates
can be easily undone and redone. The code uniformly
handles both cyclic and terminated lists. Updating an
element takes time bound by a small constant; the up-
date does not rebuild the whole list.
It is not for nothing that Haskell has been called the

best imperative language. One can implement impera-
tive algorithms just as they are — yet genuinely func-
tionally, without resorting to the monadic sub-language
but taking the full advantage of clausal definitions, pat-
tern guards and laziness.
http://okmĳ.org/ftp/Algorithms.html#pure-cyclic-list

Simple and reliable uni- and bi-directional pipes

MySysOpen, Haskell binding to sys_open.c, lets
Haskell code interact with another local or remote
process via a uni- or bi-directional channel. Exam-
ples include communication with a SAT solver, feath-
erweight Web (service) client, proxies and wrappers.
MySysOpen supports Unix pipes, and Unix domain
and TCP sockets. MySysOpen and the underlying
sys_open.c have been used in production for many
years, on Linux and various Unix platforms.
The included tests check sending and receiving of

large amounts of data, and communicating with third-
party programs such as a SAT solver via a bi-directional
pipe. Generally, a program must be specifically writ-
ten for interactive use over a bi-directional pipe: The
program should avoid read-ahead, produce output as
soon as it obtained all necessary input data, and be es-
pecially careful with buffering. Most systems programs
are not written with these goals in mind. Our test uses
Unix sort, which is particularly unsuitable for interac-
tion: it cannot produce any output before it has read all
of the input. It has no input terminator other than the
EOF condition. Alas, to send EOF, we have to close the
communication channel. Our test demonstrates two
work-arounds, using shutdown(2) and a custom EOF
indicator.
http://okmĳ.org/ftp/Haskell/misc.html#sys_open

1.5 Haskell Cheat Sheet

Report by: Justin Bailey
Status: active development

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect1.4.

1.6 A Tutorial on the Enumerator Library

Report by: Kazu Yamamoto

Enumerator/Iteratee (EI) developed by Oleg Kiselyov
is an API to enable modular programming in the IO
monad. A popular implementation of EI is the enumer-
ator library developed by John Millikin. This tutorial
is a gentle introduction of the background of EI and
how to use the enumerator library.

Further reading

http://www.mew.org/~kazu/proj/enumerator/

1.7 Practice of Functional Programming

Report by: Dmitry Astapov
Status: seven issues out, issue #8 is looming ahead,

collecting materials for more

“Practice of Functional Programing” is a Russian
electronic magazine promoting functional program-
ming. The magazine features articles that cover both
theoretical and practical aspects of the craft. Signif-
icant amount of the already published material is di-
rectly related to Haskell.
The magazine attempts to keep a bi-monthly release

schedule, with Issue #7 leaving the press at the end of
April 2011. Full contents of current and past issues are
available in PDF from the official site of the magazine
free of charge. Articles are in Russian, with English
annotations.

Further reading

http://fprog.ru/ for issues ##1–7

8

http://okmij.org/ftp/Computation/index.html#teval
http://okmij.org/ftp/Computation/FLOLAC/lecture.pdf
http://okmij.org/ftp/Computation/FLOLAC/lecture.pdf
http://okmij.org/ftp/Algorithms.html#pure-cyclic-list
http://okmij.org/ftp/Haskell/misc.html#sys_open
http://www.haskell.org/communities/05-2010/html/report.html#sect1.4
http://www.haskell.org/communities/05-2010/html/report.html#sect1.4
http://www.mew.org/~kazu/proj/enumerator/
http://fprog.ru/

2 Implementations

2.1 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of the “blessed”
set of libraries and tools on which to build further
Haskell libraries and applications. It takes a core se-
lection of packages from the more than 3000 on Hack-
age (→ 5.8.1). It is intended to provide a comprehen-
sive, stable, and quality tested base for Haskell projects
to work from.
Historically, GHC shipped with a collection of pack-

ages under the name extralibs. Since GHC 6.12 the
task of shipping an entire platform has been transferred
to the Haskell Platform.

Recent progress

This spring we had the third major release of the plat-
form. This is the 2011.1.0.x release series. This in-
cluded the excellent new text package, a major up-
grade to the mtl package and of course GHC 7.0.x.

Looking forward

Major releases take place on a 6 month cycle. The
next major release will be in Autumn 2011 and will
most likely include GHC 7.2.x.
This is was the first round where we went through

the community review process to accept new packages
into the platform. For one package this process went
smoothly and for another it did not. The platform
steering committee will be proposing some modifica-
tions to the process with the aim of reducing the burden
for package authors and keeping the review discussions
productive.
Though we will be making some modifications, we

would still like to invite package authors to propose
new packages. This can be initiated at any time. We
also invite the rest of the community to take part in the
review process on the libraries mailing list 〈libraries@
haskell.org〉. The procedure involves writing a package
proposal and discussing it on the mailing list with the
aim of reaching a consensus. Details of the procedure
are on the development wiki.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform
◦ Download: http://hackage.haskell.org/platform/

◦ Wiki: http://trac.haskell.org/haskell-platform/
◦ Adding packages: http://trac.haskell.org/

haskell-platform/wiki/AddingPackages

2.2 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

GHC is still busy as ever. The GHC 7.0 branch has
come and gone, and now that the branch has been
closed we have finally made the long-planned switch
from darcs to git. Meanwhile, we are busily working
towards the 7.2 branch, and hope to make the 7.2.1
release in June. Some of the forthcoming highlights
are:

◦ In the autumn, Dimitrios and Simon PJ imple-
mented a completely new constraint solver for the
type checker; we also complete an epic JFP paper
describing how it works [OutsideIn]. The new solver
is far more tractable and maintainable than the old
type checker, and has fixed many outstanding prob-
lems. We are still shaking out the last bugs, and
we have some nifty ideas for improving performance.
Based on this new foundation, we are planning to de-
velop the type system further, notably by adding a
richer kind system along the lines of Conor McBride’s
SHE system [SHE].

◦ GHC’s intermediate language (which we call “Core”)
is a simple, explicitly-typed lambda in the style
of System F. Core is far, far simpler than Haskell
(CoreExpr has only eight data constructors), so GHC
can type-check Core very fast and reliably. In the-
ory, such a typecheck is redundant (since the original
Haskell program was typechecked), but in practice,
typechecking Core is a very powerful internal consis-
tency check on GHC itself: many compiler bugs gen-
erate type-incorrect Core. This consistency check is
run by -dcore-lint.
With the advent of GADTs and type families, the
type system of the Core had to grow a little. For a
few years we have been using an extension of System
F, called System FC, as described in our 2007 paper
[FC]. However, the way that System FC was actually
implemented in GHC’s Core language was a bit un-
satisfactory so, with help from Brent Yorgey, Simon
PJ is busy re-engineering it. In particular, FC has
coercion terms, and these will now be represented
by their own data type Coercion, rather than being
squeezed into Type. Moreover, these coercion terms

9

mailto: libraries at haskell.org
mailto: libraries at haskell.org
http://haskell.org/haskellwiki/Haskell_Platform
http://hackage.haskell.org/platform/
http://trac.haskell.org/haskell-platform/
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://research.microsoft.com/~simonpj/papers/constraints/
http://personal.cis.strath.ac.uk/~conor/pub/she/
http://research.microsoft.com/~simonpj/papers/ext-f/

can get big, so there is a new “coercion optimiser” to
replace big coercions by equivalent smaller ones. All
this is described in our new paper [NewFC]. These
changes will (finally) complete the type-family story
by making so-called “equality superclasses” work for
the first time in GHC 7.2.

◦ José Pedro Magalhães has nearly completed his im-
plementation of the derivable type classes mecha-
nism described in his 2010 Haskell Symposium paper
[Derivable] and elsewhere in this report (→ 5.5.1). It
will be in GHC 7.2.

◦ Edward Yang has spearheaded a flurry of work on the
new code generation backend (-fuse-new-codegen,
the rewrite of the part of GHC that turns STG syn-
tax into C–). Hoopl is now fully part of GHC [Hoopl],
and the new path uses it extensively; we have ironed
out most of the bugs in the backend; and now we
are working on new optimization passes and fixing
inefficiencies to get the generated code as good (or
better) than the old code generator. We are still
not at the point where the new code generator will
generate better code, but we are pretty close! Stay
tuned.

◦ Simon Marlow and Ryan Newton have developed a
neat new library for deterministic parallel program-
ming in Haskell; read their ICFP submission [Det-
Par]. The model is monadic and has explicit con-
trol over granularity, but allows dynamic construc-
tion of dataflow networks that are scheduled at run-
time, while remaining deterministic and pure.

◦ Simon Marlow has been busy implementing and
benchmarking a new garbage collector. GHC’s cur-
rent garbage collector is of the parallel “stop-the-
world” variety, where to collect the heap all cores
stop running the program and collect the heap in
parallel. The new collector is a “local heap” collec-
tor, in which each core has a private heap that can
be collected independently of the other cores, mean-
while there is a shared global heap that is collected
(much less frequently) by the usual parallel stop-the-
world algorithm. We have a paper describing the new
design which has been accepted at ISMM’11 (and
will be online shortly). The results are mixed; while
on average performance improves with the new col-
lector for parallel programs, the improvements are
not dramatic (at least up to 24 cores). The new
collector is significantly more complex than GHC’s
current collector. Hence we do not plan to merge it
into the mainline yet, but will maintain it on a git
branch for the time being, while we continue to ex-
periment with and tune it. Some improvements from
the branch that were independent of the new GC al-
gorithm have already been merged into the mainline,
so 7.2.1 will see some small improvements in GC per-
formance and stats reporting.

◦ Simon Marlow has implemented a chunked stack rep-
resentation, which should improve the performance
of programs that need large stacks. See the [Chun-
kedStack]. This is already in the mainline and will
be in the 7.2.1 release.

We are fortunate to have a growing team of people
willing to roll up their sleeves and help us with GHC.
Amongst those who have been active recently are:
◦ Mark Lentczner and Dan Knapp have been working

on cross-compilation support
◦ Continued work on the new I/O manager by Johan

Tibell
◦ Various improvements and build fixes for OS X, from

PHO, Greg Wright, Thorkil Naur and William Knop
◦ Solaris fixes from Karel Gardas and Christian

Maeder
◦ Gentoo fixes (for SE Linux and x86 FreeBSD sup-

port) from Sergei Trofimovich
◦ Other FreeBSD fixes from Marco Silva
◦ Linux PowerPC fixes from Erik de Castro Lopo
◦ Objective C support has been added by Austin Seipp
◦ Documentation updates from Orphi
◦ Various improvements from Michal Terepeta
◦ General tidyups from Matthias Kilian
◦ Primop improvements from Daniel Peebles
◦ Some GHCi improvements from Vivian McPhail and

Boris Lykah
◦ More GHCi debugger fixes from Pepe Iborra
◦ LLVM development continues with David Terei
◦ Many people have given git help to those of us new

to git
At GHC HQ we are having way too much fun; if you
wait for us to do something you have to wait a long
time. So do not wait; join in!

Other developments

GHC continues to act as an incubator for interesting
new language developments. Here is a selection that
we know about.

◦ Jeff Epstein, in collaboration with Andrew Black, has
implemented a library that brings Erlang’s program-
ming model to Haskell programmers. In particular,
you can write a Haskell program that runs on a clus-
ter of machines that do not share memory. It is all
based on a modest but powerful language extension
that makes it possible for a programmer to work with
“static” functions; that is, ones consisting of pure
code with no free variables. The paper that describes
all this is called “Haskell for the cloud” [Cloud].

◦ Max Bolingbroke continues his PhD work on super-
compilation, with a nice new paper [ImprovingSuper-
compilation]. The plan is to make his supercompiler
part of GHC, over the next year or so.

◦ David Terei at Stanford is busy implementing “Safe
Haskell”, a flag for GHC that will guarantee that

10

http://research.microsoft.com/~simonpj/papers/ext-f/
http://www.dreixel.net/research/pdf/gdmh_nocolor.pdf
http://research.microsoft.com/~simonpj/papers/c--/
http://research.microsoft.com/~simonpj/papers/parallel/
http://research.microsoft.com/~simonpj/papers/parallel/
http://hackage.haskell.org/trac/ghc/blog/stack-chunks
http://hackage.haskell.org/trac/ghc/blog/stack-chunks
http://research.microsoft.com/~simonpj/papers/parallel/
http://research.microsoft.com/~simonpj/papers/supercompilation/
http://research.microsoft.com/~simonpj/papers/supercompilation/
http://hackage.haskell.org/trac/ghc/wiki/SafeHaskell
http://hackage.haskell.org/trac/ghc/wiki/SafeHaskell

your program has certain properties such as refer-
ential transparency and constructor access control,
while still having the same semantics as it normally
would. The flag basically allows you to trust the
types of your program, giving you if you will a more
“pure” version of Haskell where unsafePerformIO is
outlawed, abstract data types are actually abstract
and safety is provided by the compiler not the user.
This is being done as part of a larger project by the
Stanford Secure Computing Systems group involving
the use of dynamic information flow based security in
Haskell to build a secure web framework that allows
the inclusion of third party untrusted code.

◦ Ranjit Jhala at UC San Diego is working on imple-
menting Liquid Types [Liquid] within GHC. The goal
is to allow programmers to use lightweight refine-
ment types to specify key invariants which can then
be verified through a combination of type inference
and SMT solving.

The Parallel GHC Project

Microsoft Research is funding a 2-year project to de-
velop the real-world use of parallel Haskell. The project
is now underway with four industrial partners:
◦ Dragonfly (New Zealand)
◦ IĲ Innovation Institute Inc. (Japan)
◦ Los Alamos National Laboratory (USA)
◦ Willow Garage Inc. (USA)
with consulting and engineering support from Well-
Typed (→ 8.1). Each organisation is working on its
own particular project making use of parallel Haskell.
The overall goal is to demonstrate successful serious
use of parallel Haskell, and along the way to apply en-
gineering effort to any problems with the tools that the
organisations might run into.
For more details, see the Parallel GHC Project entry

(→ 4.1.5), and the project home page [ParallelGhcPro-
ject]

Data Parallel Haskell

The main user-visible development concerning data-
parallel programming with GHC since the last status
report is the release of our library for regular, multi-
dimensional, shape-polymorphic arrays: [Repa]. The
current release on Hackage performs well with GHC
7.0.3 and already includes Ben’s recent work on high-
performance stencil-based convolutions — see also the
draft paper [Stencil] and Ben’s screencast [EdgeDetect]
of a real-time edge detection application, written in
Objective-C and Haskell, using the new Repa library.
We have pushed back the release of a stable version of

the main DPH libraries again. They are now scheduled
to be released with the forthcoming GHC 7.2.

Bibliography

ChunkedStack “An overhaul of stack management,
and some performance improvements”, Simon Mar-
low, blog post, Dec2010, http://hackage.haskell.org/
trac/ghc/blog/stack-chunks

Cloud “Haskell for the cloud”, Epstein, Black, Pey-
ton Jones, submitted to ICFP 2011, http://research.
microsoft.com/~simonpj/papers/parallel/

Derivable “A generic deriving mechanism for Haskell”,
Magalhães, Dĳkstra, Jeuring and Löh, Haskell Sym-
posium 2010, http://www.dreixel.net/research/pdf/
gdmh_nocolor.pdf

DetPar “A monad for deterministic parallelism”, Mar-
low, Newton, and Peyton Jones, submitted to
ICFP 2011, http://research.microsoft.com/~simonpj/
papers/parallel/

EdgeDetect “Edge-detection video”, http:
//code.ouroborus.net/beholder/video/Edge480.mov

FC “System F with type equality coercions”, Sulz-
mann, Chakravarty, Peyton Jones, TLDI 2007, http:
//research.microsoft.com/~simonpj/papers/ext-f/

Hoopl “A modular, reusable library for dataflow anal-
ysis and transformation”, Dias, Ramsey, and Pey-
ton Jones, Haskell Symposium 2010, http://research.
microsoft.com/~simonpj/papers/c--/

ImprovingSupercompilation “Improving supercompi-
lation: tag-bags, rollback, speculation, normalisa-
tion, and generalisation”, Bolingbroke and Peyton
Jones, submitted to ICFP 2011, http://research.
microsoft.com/~simonpj/papers/supercompilation/

Liquid “Liquid types”, Ranjit Jhala, http://goto.ucsd.
edu/~rjhala/liquid

NewFC “Practical aspects of evidence-based compila-
tion in System FC”, Vytiniotis and Peyton Jones,
submitted to ICFP 2011, http://research.microsoft.
com/~simonpj/papers/ext-f/

OutsideIn “Modular type inference with local as-
sumptions”, Vytiniotis, Peyton Jones, Schrĳvers,
and Sulzmann, Journal of Functional Programming
(to appear), http://research.microsoft.com/~simonpj/
papers/constraints/

ParallelGhcProject “The Parallel GHC Project home
page”, http://www.haskell.org/haskellwiki/Parallel_
GHC_Project

Repa “Regular, shape-polymorphic parallel arrays in
Haskell”, Keller, Chakravarty, Leshchinskiy, Pey-
ton Jones, and Lippmeier, ICFP 2010. Pa-
per: http://research.microsoft.com/~simonpj/papers/
ndp/, Hackage package: http://hackage.haskell.org/
package/repa

11

http://www.scs.stanford.edu/
http://goto.ucsd.edu/~rjhala/liquid
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://hackage.haskell.org/package/repa
http://www.cse.unsw.edu.au/~benl/papers/stencil/stencil-icfp2011-sub.pdf
http://code.ouroborus.net/beholder/video/Edge480.mov
http://hackage.haskell.org/trac/ghc/blog/stack-chunks
http://hackage.haskell.org/trac/ghc/blog/stack-chunks
http://research.microsoft.com/~simonpj/papers/parallel/
http://research.microsoft.com/~simonpj/papers/parallel/
http://www.dreixel.net/research/pdf/gdmh_nocolor.pdf
http://www.dreixel.net/research/pdf/gdmh_nocolor.pdf
http://research.microsoft.com/~simonpj/papers/parallel/
http://research.microsoft.com/~simonpj/papers/parallel/
http://code.ouroborus.net/beholder/video/Edge480.mov
http://code.ouroborus.net/beholder/video/Edge480.mov
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/c--/
http://research.microsoft.com/~simonpj/papers/c--/
http://research.microsoft.com/~simonpj/papers/supercompilation/
http://research.microsoft.com/~simonpj/papers/supercompilation/
http://goto.ucsd.edu/~rjhala/liquid
http://goto.ucsd.edu/~rjhala/liquid
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/constraints/
http://research.microsoft.com/~simonpj/papers/constraints/
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://research.microsoft.com/~simonpj/papers/ndp/
http://research.microsoft.com/~simonpj/papers/ndp/
http://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/repa

SHE “The Strathclyde Haskell Enhancement”, Conor
McBride, 2010, http://personal.cis.strath.ac.uk/
~conor/pub/she/

Stencil “Efficient Parallel Stencil Convolution in
Haskell”, Lippmeier et al., http://www.cse.unsw.edu.
au/~benl/papers/stencil/stencil-icfp2011-sub.pdf

2.3 Immix Garbage Collector on GHC

Report by: Marco Gontĳo
Status: unconcluded

During the summer of 2010, Marco Silva e Gontĳo
worked on the implementation of the Immix algo-
rithm in GHC. Immix is a relatively new technique for
garbage collection, which has been shown to be bet-
ter than other alternatives, including the ones used in
GHC. The work was done as a project in the Google
Summer of Code.
The code is functional and does not contain known

bugs. It gets better results than the default GC in the
nofib suite. On the other hand, it gets worse results
than the default GC for the nofib/gc suite. This sce-
nario may change if more tuning is done in the details
of the implementation. Given that GHC allows the
user to choose between garbage collection alternatives
at runtime, it is easy to test and compare the different
techniques.
Immix was implemented using the experimental code

from mark-sweep as a base. Currently, it overrides
mark-sweep so that it is not that easy to compare im-
mix with mark-sweep. The plan is to split them apart
in the future.
On the GHC Commentary there is a page about the

current state, with a to do list. There are some fun-
damental parts that are not yet implemented and that
may improve performance, such as the allocation in
lines in minor GCs and the removal of partial lists,
which are not necessary in Immix.

Further reading

http://hackage.haskell.org/trac/ghc/wiki/Commentary/
Rts/Storage/GC/Immix

2.4 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: many others
Status: active development

What is new? UHC is the Utrecht Haskell Com-
piler, supporting almost all Haskell98 features and most
of Haskell2010, plus experimental extensions. Since
the last release a Javascript backend has been imple-
mented. We plan to make a next release autumn this
year.

What do we currently do and/or has recently been
completed? As part of the UHC project, the follow-
ing (student) projects and other activities are underway
(in arbitrary order):

◦ Jeroen Bransen (PhD): “Incremental Global Analy-
sis”.

◦ Jan Rochel (PhD): “Realising Optimal Sharing”,
based on work by Vincent van Oostrum and Clemens
Grabmayer.

◦ Arie Middelkoop (PhD, to be defended soon): type
system formalization and automatic generation from
type rules, in particular the Attribute Grammar vari-
ants Ruler-Core for supporting more complex type
system implementations.

◦ Tamar Christina: an implementation of HML using
Ruler-Core.

◦ Jeroen Leeuwestein: incrementalization of whole
program analysis.

◦ Jeroen Fokker: GRIN backend, whole program anal-
ysis.

◦ Doaitse Swierstra: parser combinator library.

◦ Atze Dĳkstra: overall architecture, type system,
bytecode interpreter + java + javascript backend,
garbage collector.

Background UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 4.4.1).

Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ UHC Blog: http://utrechthaskellcompiler.wordpress.
com

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

◦ Parser combinators: http://www.cs.uu.nl/wiki/HUT/
ParserCombinators

◦ Shuffle: http://www.cs.uu.nl/wiki/Ehc/Shuffle
◦ Ruler: http://www.cs.uu.nl/wiki/Ehc/Ruler

12

http://personal.cis.strath.ac.uk/~conor/pub/she/
http://personal.cis.strath.ac.uk/~conor/pub/she/
http://www.cse.unsw.edu.au/~benl/papers/stencil/stencil-icfp2011-sub.pdf
http://www.cse.unsw.edu.au/~benl/papers/stencil/stencil-icfp2011-sub.pdf
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/GC/Immix
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/GC/Immix
http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
http://utrechthaskellcompiler.wordpress.com
http://utrechthaskellcompiler.wordpress.com
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/Ehc/Shuffle
http://www.cs.uu.nl/wiki/Ehc/Ruler

2.5 Exchanging Sources between Clean
and Haskell

Report by: Thomas van Noort
Participants: John van Groningen, Peter Achten, Pieter

Koopman, Rinus Plasmeĳer
Status: active development

In a Haskell’10 paper we describe how we facilitate
the exchange of sources between Clean (→ 3.3) and
Haskell. We use the existing Clean compiler as start-
ing point, and implement a double-edged front end for
this compiler: it supports both standard Clean 2.1 and
(currently a large part of) standard Haskell 98. More-
over, it allows both languages to seamlessly use many
of each other’s language features that were alien to each
other before. For instance, Haskell can now use unique-
ness typing anywhere, and Clean can use newtypes ef-
ficiently. This has given birth to two new dialects of
Clean and Haskell, dubbed Clean* and Haskell*. Mea-
surements of the performance of the new compiler indi-
cate that it is on par with the flagship Haskell compiler
GHC.

Future plans

Although the most important features of Haskell 98
have been implemented, the list of remaining issues
is still rather long since some features took much
more work than expected. Also, to enable the prac-
tical reuse of Haskell libraries, we have to implement
some of GHC’s extensions, such as generalised algebraic
datatypes and type families. This is challenging, not
only in terms of the programming effort, but more be-
cause of the consequences it will have on features such
as uniqueness typing. We plan to use this double-edged
front as an implementation laboratory to investigate
these avenues.

Further reading

◦ John van Groningen, Thomas van Noort, Peter
Achten, Pieter Koopman, and Rinus Plasmeĳer. Ex-
changing sources between Clean and Haskell — A
double-edged front end for the Clean compiler. In
Jeremy Gibbons, editor, Proceedings of the Haskell
Symposium, Haskell ’10, Baltimore, MD, USA,
pages 49–60. ACM Press, 2010.

◦ The front end is under active development, current
releases are available via http://wiki.clean.cs.ru.nl/
Download_Clean.

2.6 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman, Jason Reich, Marco

Perez Cervantes
Status: experimental

The Reduceron is a graph-reduction processor imple-
mented on an FPGA.
Between May 2009 and November 2010, work on the

Reduceron has led to a factor of five speed-up. This has
been achieved through a range of design improvements
spanning architectural, machine, and compiler-level is-
sues. See our ICFP’10 paper for details.
Work on the Reduceron continues. We have taken a

step towards parallel reduction in the form of prim-
itive redex speculation. We have developed a static
analysis and transformation (currently limited to first-
order programs) that predicts and increases run-time
occurrences of primitive redexes, allowing a simpler and
faster machine design. Early results look good, and we
hope to extend the technique to higher-order programs.
Experiments in verification, both at the compiler

level and the bytecode level, are also underway.
Looking ahead, we aim eventually to have multiple

Reducerons running in parallel. We are also interested
in increasing the amount of memory available to the
Reduceron, and in technology advances that may en-
able faster clocking frequencies.
Two main by-products have emerged from the work.

First, York Lava, now available from Hackage, is the
HDL we use. It is very similar to Chalmers Lava (→
9.9), but supports a greater variety of primitive compo-
nents, behavioral description, number-parameterized
types, and a first attempt at a Lava prelude. Second,
F-lite is our subset of Haskell, with its own lightweight
toolset and experimental supercompiler (http://haskell.
org/communities/11-2009/html/report.html#sect4.1.4).

Further reading

◦ http://www.cs.york.ac.uk/fp/reduceron/
◦ http://hackage.haskell.org/package/york-lava/

2.7 Specific Platforms

2.7.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of contrib-
utors who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the Ports Collection.

13

http://wiki.clean.cs.ru.nl/Download_Clean
http://wiki.clean.cs.ru.nl/Download_Clean
http://haskell.org/communities/11-2009/html/report.html#sect4.1.4
http://haskell.org/communities/11-2009/html/report.html#sect4.1.4
http://www.cs.york.ac.uk/fp/reduceron/
http://hackage.haskell.org/package/york-lava/

FreeBSD has become a Tier-1 platform for GHC in
April 2010 (on both i386 and amd64), and starting from
GHC 6.12.1, one can download vanilla binary distribu-
tions for each release. In addition, we have an experi-
mental project, called “hsporter” to help conversion of
existing Cabal packages to FreeBSD ports.
We also created a developer repository for Haskell

ports that now includes around 200 ported packages,
featuring the latest version of many popular Cabal
packages. The updates committed to this repository
are continuously integrated to the Ports Collection as
they become stable. We expect smoother and more
regular updates in the future.
We have recently merged most of our new and up-

dated ports back to the official tree, so it now has
GHC 7.0.3, Haskell Platform 2011.2.0.1, Gtk2Hs 0.12,
XMonad 0.9.2, Pandoc 1.8, and Darcs 2.5.
If you find yourself interested in helping us or simply

want to use the latest versions of Haskell programs on
FreeBSD, check out our page at the FreeBSD wiki (see
below) where you can find all important pointers and
information required for use, contact, or contribution.

Further reading

http://wiki.FreeBSD.org/Haskell

2.7.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. In total, we maintain 215
source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with the profiling
data and the documentation packages register with the
system-wide index.
While writing these lines, we are in the progress of

transitioning to ghc version 7, of which the Haskell
Group has become the maintainer as well. While
doing that, we drop the 6 from the library package
names, which causes the transition to take longer than
usual. Nevertheless, the Haskell Platform is available
in Debian unstable in version 2011.2.0.1, while the
recently released stable version of Debian, “squeeze”,
ships 2010.1.0.0.

Further reading

http://wiki.debian.org/Haskell

2.7.3 Haskell in Gentoo Linux

Report by: Sergei Trofimovich

Gentoo Linux currently officially supports GHC 6.12.3
on x86, amd64, sparc, ppc, ppc64, alpha and ia64.
Hppa support was dropped.
GHC also runs on gentoo-hardened http:

//www.gentoo.org/proj/en/hardened/ and on some
gentoo-alt http://www.gentoo.org/proj/en/gentoo-alt/
systems. They are freebsd, macos-prefix and solaris-
prefix for now. Special thanks to Fabian Groffen and
the Prefix Team.
The full list of packages available through the offi-

cial repository can be viewed at http://packages.gentoo.
org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.
There is also an overlay which contains more than

600 extra unofficial and testing packages. Thanks to
the Haskell developers using Cabal and Hackage (→
5.8.1), we have been able to write a tool called “hack-
port” (initiated by Henning Günther) to generate Gen-
too packages with minimal user intervention. Notable
packages in the overlay include the latest version of the
Haskell Platform (→ 2.1) as well as the latest 7.0.3 re-
lease of GHC, as well as popular Haskell packages such
as pandoc (→ 7.2.3) and gitit (→ 4.2.5).
Due to tremendous amount of work done by Mark

Wright most of the packages work with GHC 7.0.3.
All Gentoo Haskell projects moved to https://github.

com/gentoo-haskell where one can find the new home
of our overlay and tools helping to keep the overlay
up-to-date.
More information about the Gentoo Haskell Overlay

can be found at http://haskell.org/haskellwiki/Gentoo.
It is available via the Gentoo overlay manager “lay-
man”. If you choose to use the overlay, then any prob-
lems should be reported on IRC (#gentoo-haskell
on freenode), where we coordinate development, or
via email 〈haskell@gentoo.org〉 (as we have more peo-
ple with the ability to fix the overlay packages that
are contactable in the IRC channel than via the bug
tracker).
As always we are more than happy for (and in fact

encourage) Gentoo users to get involved and help us
maintain our tools and packages, even if it is as simple
as reporting packages that do not always work or need
updating: with such a wide range of GHC and package
versions to co-ordinate, it is hard to keep up! Please
contact us on IRC or email if you are interested!

14

http://wiki.FreeBSD.org/Haskell
http://wiki.debian.org/Haskell
http://www.gentoo.org/proj/en/hardened/
http://www.gentoo.org/proj/en/hardened/
http://www.gentoo.org/proj/en/gentoo-alt/
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
https://github.com/gentoo-haskell
https://github.com/gentoo-haskell
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org

2.7.4 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Lakshmi Narasimhan, Ben Boeckel,

Shakthi Kannan, Bryan O’Sullivan, and
others

Status: ongoing

The Fedora Haskell SIG is an effort to provide good
support for Haskell in Fedora.
Fedora 15 is scheduled to ship at the end of May with

ghc-7.0.2, haskell-platform-2011.2.0.0, and darcs-2.5.2.
There are some major packaging improvements:
◦ All libraries from GHC are now subpackaged: this is
good for Fedora which ships shared Haskell libraries.

◦ GHC package hash metadata has been added to all
the binary packages for Fedora 15 to ensure consis-
tency of library dependencies at build- and run-time.

The Fedora Haskell Packaging Guidelines are being up-
dated and revised: a draft is currently under review.
Newly added packages this time include pandoc,

bluetile, and over 35 new libraries.
There are currently 106 Haskell-related source pack-

ages in Fedora, and about 30 new packages in the re-
view queue. Our packages are now also listed on the
Hackage website.
Here is a graph of the package dependencies in Fe-

dora 15 (with ghc and haskell-platform packages fac-
tored out):

In the Fedora 16 cycle we may update to ghc-7.0.3
and will add more packages: including leksah and hope-
fully a web framework.
Contributions to Fedora Haskell are welcome: join us

on #fedora-haskell on Freenode IRC and our mailing-
list.

Further reading

◦ Homepage: http://fedoraproject.org/wiki/SIGs/
Haskell

◦ Fedora 15 Haskell release-notes: http://fedoraproject.
org/wiki/Documentation_Development_Haskell_
Beat

◦ Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig?tg_paginate_limit=0

◦ Open package reviews: https://bugzilla.
redhat.com/showdependencytree.cgi?id=
Haskell-pkg-reviews&hide_resolved=1

◦ Revision of Packaging Guidelines: https:
//fedoraproject.org/wiki/PackagingDrafts/Haskell

◦ Dependency graphs: https://fedoraproject.org/wiki/
Haskell_package_interdependencies

2.8 Fibon Benchmark Tools & Suite

Report by: David M. Peixotto
Status: stable

Fibon is a set of tools for running and analyzing bench-
mark programs in Haskell. It contains an optional set
of benchmarks from various sources including several
programs from the Hackage repository.
The Fibon benchmark tools draw inspiration from

both the venerable nofib Haskell benchmark suite and
the industry standard SPEC benchmark suite. The
tools automate the tedious parts of benchmarking:
building the benchmark in a sand-boxed directory, run-
ning the benchmark multiple times, verifying correct-
ness, collecting statistics, and summarizing results.
Benchmarks are built using the standard cabal

tool. Any program that has been cabalized can be
added as benchmark simply by specifying some meta-
information about the program inputs and expected
outputs. Fibon will automatically collect execution
times for benchmarks and can optionally read the
statistics output by the GHC runtime. The program
outputs are checked to ensure correct results making
Fibon a good option for testing the safety and perfor-
mance of program optimizations. The Fibon tools are
not tied to any one benchmark suite. As long as the
correct meta-information has been supplied, the tools
will work with any set of programs.
As a real life example of a complete benchmark

suite, Fibon comes with its own set of benchmarks
for testing the effectiveness of compiler optimizations
in GHC. The benchmark programs come from Hack-
age, the Computer Language Shootout, Data Parallel
Haskell, and Repa. The benchmarks were selected to
have minimal external dependencies so they could be
easily used with a version of GHC compiled from the
latest sources. The following figure shows the perfor-
mance improvement of GHC’s optimizations on the Fi-
bon benchmark suite.

15

http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig?tg_paginate_limit=0
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig?tg_paginate_limit=0
https://bugzilla.redhat.com/showdependencytree.cgi?id=Haskell-pkg-reviews&hide_resolved=1
https://bugzilla.redhat.com/showdependencytree.cgi?id=Haskell-pkg-reviews&hide_resolved=1
https://bugzilla.redhat.com/showdependencytree.cgi?id=Haskell-pkg-reviews&hide_resolved=1
https://fedoraproject.org/wiki/PackagingDrafts/Haskell
https://fedoraproject.org/wiki/PackagingDrafts/Haskell
https://fedoraproject.org/wiki/Haskell_package_interdependencies
https://fedoraproject.org/wiki/Haskell_package_interdependencies
http://hackage.haskell.org/packages/hackage.html
http://hackage.haskell.org/packages/hackage.html
http://shootout.alioth.debian.org
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://hackage.haskell.org/package/repa

The Fibon tools and benchmark suite are ready for
public consumption. They can be found on github
at the url indicated below. People are invited to use
the included benchmark suite or just use the tools and
build a suite of their own creation. Any improvements
to the tools or additional benchmarks are most wel-
come. Benchmarks have been used to tell lies for many
years, so join in the fun and keep on fibbing with Fibon.

Further reading

◦ https://github.com/dmpots/fibon
◦ https://github.com/dmpots/fibon-benchmarks
◦ https://github.com/dmpots/fibon-config

16

https://github.com/dmpots/fibon
https://github.com/dmpots/fibon-benchmarks
https://github.com/dmpots/fibon-config

3 Related Languages

3.1 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell, Andreas Abel, and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
In February version 2.2.10 was released. This re-

lease includes a new compiler backend, implemented by
Daniel Gustafsson and Olle Fredriksson. The backend
incorporates several new optimisations, based on work
by Edwin Brady and others, and work is in progress to
add even more optimisations.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

3.2 MiniAgda

Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (→ 3.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Equality incorporates eta-
expansion at record and singleton types. Function ar-
guments can be declared as static; such arguments are
discarded during equality checking and compilation.
Recent features include bounded size quantification

and destructor patterns for a more general handling of
coinduction. In the long run, I plan to evolve Mini-
Agda into a core language for Agda with termination
certificates.
MiniAgda is available as Haskell source code and

compiles with GHC > 6.12.x.

Further reading

http://www2.tcs.ifi.lmu.de/~abel/miniagda/

3.3 Clean

Report by: Thomas van Noort
Participants: Rinus Plasmeĳer, John van Groningen
Status: active development

Clean is a general purpose, state-of-the-art, pure and
lazy functional programming language designed for
making real-world applications. Here is a short list of
notable features:

◦ Clean is a lazy, pure, and higher-order functional pro-
gramming language with explicit graph-rewriting se-
mantics.

◦ Although Clean is by default a lazy language, one can
smoothly turn it into a strict language to obtain op-
timal time/space behavior: functions can be defined
lazy as well as (partially) strict in their arguments;
any (recursive) data structure can be defined lazy as
well as (partially) strict in any of its arguments.

◦ Clean is a strongly typed language based on an ex-
tension of the well-known Milner/Hindley/Mycroft
type inferencing/checking scheme including the com-
mon higher-order types, polymorphic types, abstract
types, algebraic types, type synonyms, and existen-
tially quantified types.

◦ Clean has pattern matching, guards, list comprehen-
sions, array comprehensions and a lay-out sensitive
mode.

◦ Clean supports type classes and type constructor
classes to make overloaded use of functions and op-
erators possible.

◦ The uniqueness typing system in Clean makes it pos-
sible to develop efficient applications. In particular,
it allows a refined control over the single-threaded
use of objects which can influence the time and space
behavior of programs. Uniqueness typing can also be
used to incorporate destructive updates of objects
within a pure functional framework. It allows de-
structive transformation of state information and en-
ables efficient interfacing to the nonfunctional world
(to C but also to I/O systems like X-Windows) of-
fering direct access to file systems and operating sys-
tems.

◦ Clean offers records and (destructively updateable)
arrays and files.

17

http://wiki.portal.chalmers.se/agda/
http://www2.tcs.ifi.lmu.de/~abel/miniagda/

◦ The Clean type system supports dynamic typing, al-
lowing values of arbitrary types to be wrapped in a
uniform package and unwrapped via a type annota-
tion at run time. Using dynamics, code and data
can be exchanged between Clean applications in a
flexible and type-safe way.

◦ Clean provides a built-in mechanism for generic func-
tions.

◦ There is a Clean IDE and there are many libraries
available offering additional functionality.

◦ There is (experimental) support for the exchange of
sources between Clean and Haskell, please see the
corresponding entry (→ 2.5) for more information.

Future plans

◦ We are currently working on the generic function
mechanism: we are improving efficiency and includ-
ing support for generic dependencies, the latter al-
lows us to use arbitrary generic functions on the type
parameters of a generic type argument.

◦ Clean is already available for 32-bit and 64-bit Win-
dows and Linux, we are currently working on 64-bit
Mac support.

◦ Please see the entry on exchanging sources between
Clean and Haskell (→ 2.5) for more future plans.

Further reading

◦ http://wiki.clean.cs.ru.nl/
◦ http://wiki.clean.cs.ru.nl/Download_Clean

3.4 Timber

Report by: Johan Nordlander
Participants: Björn von Sydow, Andy Gill, Magnus

Carlsson, Per Lindgren, Thomas Hallgren,
and others

Status: actively developed

Timber is a general programming language derived
from Haskell, with the specific aim of supporting devel-
opment of complex event-driven systems. It allows pro-
grams to be conveniently structured in terms of objects
and reactions, and the real-time behavior of reactions
can furthermore be precisely controlled via platform-
independent timing constraints. This property makes
Timber particularly suited to both the specification and
the implementation of real-time embedded systems. An
implementation of Timber is available as a command-
line compiler tool, currently targeting POSIX-based
systems only.
Timber shares most of Haskell’s syntax but intro-

duces new primitive constructs for defining classes of re-
active objects and their methods. These constructs live
in the Cmd monad, which is a replacement of Haskell’s

top-level monad offering mutable encapsulated state,
implicit concurrency with automatic mutual exclusion,
synchronous as well as asynchronous communication,
and deadline-based scheduling. In addition, the Tim-
ber type system supports nominal subtyping between
records as well as datatypes, in the style of its precursor
O’Haskell.
A particularly notable difference between Haskell

and Timber is that Timber uses a strict evaluation or-
der. This choice has primarily been motivated by a
desire to facilitate more predictable execution times,
but it also brings Timber closer to the efficiency of tra-
ditional execution models. Still, Timber retains the
purely functional characteristic of Haskell, and also
supports construction of recursive structures of arbi-
trary type in a declarative way.
The Timber compiler is currently undergoing a major

reimplementation of its front-end, an effort triggered
by increasing needs to significantly improve error mes-
sages as well as to sharpen up the documentation of
the language syntax and its scoping rules. Regrettably,
no visible developments of this undertaking can be re-
ported since the November 2010 issue of HCAR. Work
on the new compiler continues, however, with the aim
of releasing a version 2 before the end of 2011. The cur-
rent release of the Timber compiler system dates back
to May 2009 (version 1.0.3).

Further reading

http:://timber-lang.org

3.5 Disciple

Report by: Ben Lippmeier
Participants: Erik de Castro Lopo
Status: experimental, active development

Disciple is a dialect of Haskell that uses strict evalua-
tion as the default and supports destructive update of
arbitrary data. Many Haskell programs are also Dis-
ciple programs, or will run with minor changes. In
addition, Disciple includes region, effect, and closure
typing, and this extra information provides a handle
on the operational behaviour of code that is not avail-
able in other languages. Our target applications are the
ones that you always find yourself writing C programs
for, because existing functional languages are too slow,
use too much memory, or do not let you update the
data that you need to.
Our compiler (DDC) is still in the “research pro-

totype” stage, meaning that it will compile programs
if you are nice to it, but expect compiler panics and
missing features. You will get panics due to ungraceful
handling of errors in the source code, but valid pro-
grams should compile ok. The test suite includes a few

18

http://wiki.clean.cs.ru.nl/
http://wiki.clean.cs.ru.nl/Download_Clean
http:://timber-lang.org

thousand-line graphical demos, like a ray-tracer and an
n-body collision simulation, so it is definitely hackable.
Over the last six months Erik has continued work on

the LLVM backend, which is almost finished now. It
compiles all the programs in the test-suite, with just
a few hacky things in the DDC base library needing
to be fixed. In the meantime, I have started to mech-
anise the proofs of the core language in Coq, as the
old latex proofs were just getting too big to manage by
hand. I have made it through Progress and Preserva-
tion for System-F just using vanilla de Bruĳn indices
for binders, and am starting to add the features specific
to DDC core now.

Further reading

http://disciple.ouroborus.net

19

http://disciple.ouroborus.net

4 Haskell and . . .

4.1 Haskell and Parallelism

4.1.1 TwilightSTM

Report by: Annette Bieniusa
Participants: Arie Middelkoop, Peter Thiemann
Status: experimental

TwilightSTM is an extended Software Transactional
Memory system. It safely augments the STM monad
with non-reversible actions and allows introspection
and modification of a transaction’s state.
TwilightSTM splits the code of a transaction into a

(functional) atomic phase, which behaves as in GHC’s
implementation, and an (imperative) twilight phase.
Code in the twilight phase executes before the decision
about a transaction’s fate (restart or commit) is made
and can affect its outcome based on the actual state of
the execution environment.
The Twilight API has operations to detect and repair

read inconsistencies as well as operations to overwrite
previously written variables. It also permits the safe
embedding of I/O operations with the guarantee that
each I/O operation is executed only once. In contrast
to other implementations of irrevocable transactions,
twilight code may run concurrently with other transac-
tions including their twilight code in a safe way. How-
ever, the programmer is obliged to prevent deadlocks
and race conditions when integrating I/O operations
that participate in locking schemes.
A prototype implementation is available on Hackage

(http://hackage.haskell.org/package/twilight-stm). We
are currently working on the composability of Twilight
monads and are applying TwilightSTM to different use
cases.

Further reading

http://proglang.informatik.uni-freiburg.de/projects/
twilight/

4.1.2 Haskell-MPI

Report by: Bernie Pope
Participants: Dmitry Astapov, Duncan Coutts
Status: first public version to be released soon

MPI, the Message Passing Interface, is a popular com-
munications protocol for distributed parallel comput-
ing (http://www.mpi-forum.org/). It is widely used in
high performance scientific computing, and is designed
to scale up from small multi-core personal computers
to massively parallel supercomputers. MPI applica-
tions consist of independent computing processes which
share information by message passing communication.

It supports both point-to-point and collective commu-
nication operators, and manages much of the mundane
aspects of message delivery. There are several high-
quality implementations of MPI available which adhere
to the standard API specification (the latest version of
which is 2.2). The MPI specification defines interfaces
for C, C++, and Fortran, and bindings are available
for many other programming languages. As the name
suggests, Haskell-MPI provides a Haskell interface to
MPI, and thus facilitates distributed parallel program-
ming in Haskell. It is implemented on top of the C API
via Haskell’s foreign function interface. Haskell-MPI
provides three different ways to access MPI’s function-
ality:
1. A direct binding to the C interface.

2. A convenient interface for sending arbitrary serial-
izable Haskell data values as messages.

3. A high-performance interface for working with (pos-
sibly mutable) arrays of storable Haskell data types.

We do not currently provide exhaustive coverage of all
the functions and types defined by MPI 2.2, although
we do provide bindings to the most commonly used
parts. In the future we plan to extend coverage based
on the needs of projects which use the library.
We are in the final stages of preparing the first release

of Haskell-MPI. We will publish the code on Hackage
once the user documentation is complete. We have run
various simple latency and bandwidth tests using up
to 512 Intel x86-64 cores, and for the high-performance
interface, the results are within acceptable bounds of
those achieved by C. Haskell-MPI is designed to work
with any compliant implementation of MPI, and we
have successfully tested it with both OpenMPI (http:
//www.open-mpi.org/) and MPICH2 (http://www.mcs.
anl.gov/research/projects/mpich2/).

Further reading

http://github.com/bjpop/haskell-mpi

4.1.3 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Dominik Krappel, Oleg
Lobachev, Rita Loogen, Bernhard

Pickenbrock, Tobias Sauerwein
in Copenhagen: Jost Berthold

Status: ongoing

20

http://hackage.haskell.org/package/twilight-stm
http://proglang.informatik.uni-freiburg.de/projects/twilight/
http://proglang.informatik.uni-freiburg.de/projects/twilight/
http://www.mpi-forum.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://github.com/bjpop/haskell-mpi

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s main constructs are process abstractions and

process instantiations. The new Eden logo

consists of four λ turned in such a way that they form
the Eden instantiation operator #. Higher-level coordi-
nation is achieved by defining skeletons, ranging from
a simple parallel map to sophisticated master-worker
schemes. They have been used to parallelize a set of
non-trivial programs.
Recently we have extended Eden’s interface to sup-

port a simple definition of arbitrary communication
topologies using Remote Data. Also, a new PA-monad
enables the eager execution of user defined sequences
of Parallel Actions in Eden.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Implementation

The current release of the Eden compiler based on GHC
6.12.3 is available on our web pages, see http://www.
mathematik.uni-marburg.de/~eden.
The next update will include a shared memory mode

which does not depend on a middleware like MPI but
which nevertheless uses multiple independent heaps (in
contrast to GHCs threaded runtime system) connected
by Eden’s parallel runtime system. A compiler version
based on GHC 7.0.3 is in its final testing phase.

Tools and libraries

The Eden trace viewer tool EdenTV was further devel-
oped to enhance its performance, usability and com-
patibility through newer eventlog format versions. This
tool has been written in Haskell and is also freely avail-
able on the Eden web pages.
The Eden skeleton library is under constant devel-

opment. It is available on the Eden pages.

Recent and Forthcoming Publications

◦ J. Berthold: Orthogonal Serialisation for Haskell,
22nd Symposium on Implementation and Applica-
tion of Functional Languages (IFL 2010), Springer
LNCS (to appear), 2011.

◦ C. Brown, H.-W. Loidl, J. Berthold, and K. Ham-
mond: Improve your CASH flow: The Computer Al-
gebra SHell, In 22nd Symposium on Implementation
and Application of Functional Languages (IFL 2010),
Springer LNCS (to appear), 2011.

◦ R. Loogen: Eden, Entry for the Springer Encyclope-
dia of Parallel Computing, Springer 2011, to appear.

◦ B. Pickenbrock: A Multicore Implementation of
Eden, Bachelor Thesis, Philipps-Universität Mar-
burg, 2011 (in German).

◦ L. Sánchez-Gil, M. Hidalgo-Herrero, and Y. Ortega-
Mallén: Relating function spaces to resourced func-
tion spaces, Proceedings of the 26th Symposium on
Applied Computing 2011 (SAC 2011), ACM 2011,
1301–1308.

Further reading

http://www.mathematik.uni-marburg.de/~eden

4.1.4 GpH — Glasgow Parallel Haskell

Report by: Hans-Wolfgang Loidl
Participants: Phil Trinder, Patrick Maier, Mustafa

Aswad, Malak Aljabri, Robert Stewart
(Heriot-Watt University); Kevin

Hammond, Vladimir Janjic, Chris Brown
(St Andrews University)

Status: ongoing

Status

A distributed-memory, GHC-based implementation of
the parallel Haskell extension GpH and of a fundamen-
tally revised version of the evaluation strategies ab-
straction is available in a prototype version. In cur-
rent research an extended set of primitives, support-
ing hierarchical architectures of parallel machines, and
extensions of the runtime-system for supporting these
architectures are being developed.

System Evaluation and Enhancement

◦ Both GpH and Eden (→ 4.1.3) parallel Haskells are
being used for parallel language research and in the
SCIEnce and HPC-GAP projects (see below).

◦ We are extending the set of primitives for parallelism
to better control data locality.

◦ We are revising the evaluation strategies abstraction
for improved genericity.

21

http://www.mathematik.uni-marburg.de/~eden
http://www.mathematik.uni-marburg.de/~eden
http://www.mathematik.uni-marburg.de/~eden

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universität Mar-
burg.

GpH Applications

As part of the SCIEnce EU FP6 I3 project (026133)
(April 2006 – December 2011) and the HPC-GAP
project (October 2009 – September 2013) we use Eden
and GpH as middleware to provide access to compu-
tational Grids from Computer Algebra (CA) systems,
including GAP, Maple MuPad and KANT. We have
developed and released SymGrid-Par, a Haskell-side
infrastructure for orchestrating heterogeneous compu-
tations across high-performance computational Grids.
Based on this infrastructure we have developed a range
of domain-specific parallel skeletons for parallelising
representative symbolic computation applications. We
are currently extending SymGrid-Par with support
for fault-tolerance, targeting massively parallel high-
performance architectures.
In recent work we have developed and released a

GHCi-based computer algebra shell (CASH) that gives
direct access to computer algebra functionality, pro-
vided by an SCSCP server, and enabling easy paral-
lelism on the Haskell side.

Implementations

The latest GUM implementation of GpH is built on
GHC 6.12, using either PVM or MPI as communica-
tions library. It implements a virtual shared memory
abstraction over a collection of physically distributed
machines. At the moment our main hardware plat-
forms are Intel-based Beowulf clusters of multicores.
We plan to connect several of these clusters into a wide-
area, hierarchical, heterogenous parallel architecture.

Further reading

http://www.macs.hw.ac.uk/~dsg/gph/

Contact

〈gph@macs.hw.ac.uk〉

4.1.5 Parallel GHC Project

Report by: Eric Kow
Participants: Duncan Coutts, Andres Löh, Spencer

Janssen
Status: active

Microsoft Research is funding a 2-year project to pro-
mote the real-world use of parallel Haskell. The project
started in November 2010, with four industrial part-
ners, and consulting and engineering support from
Well-Typed (→ 8.1). Each organisation is working
on its own particular project making use of parallel
Haskell. The overall goal is to demonstrate successful

serious use of parallel Haskell, and along the way to
apply engineering effort to any problems with the tools
that the organisations might run into.
The participating organisations are working on a di-

verse set of complex real world problems:

◦ Dragonfly (New Zealand): Hierarchichal Bayesian
Modeling

◦ Los Alamos National Laboratory (USA): high per-
formance Monte Carlo algorithms to model the flow
of radiation and other physical phenomena

◦ Willow Garage Inc. (USA): Distributed Rigid Body
dynamics in ROS (Robot Operating System) on clus-
ters

◦ IĲ Innovation Institute Inc. (Japan): network
servers handling a massive number of concurrent con-
nections

Work from these organisations is progressing well.
The LANL team are well on their way to a demonstra-
tor of a parallel particle tracer which is to be presented
to other developers in the laboratory. Dragonfly have
done some explatory coding in Haskell (with one work-
ing model as a prototype), and have identified some
concrete performance needs, particularly a library for
sampling random distributions in Haskell. Kazu from
IĲ has developed Mighttpd 2 (→ 4.2.7), a web-server
on top of WAI/Warp, providing basic web features and
CGI.
For the wider community, the tangible outcomes of

the project so far have been an MPI binding (→ 4.1.2)
now on Hackage, a number of bugfixes to the GHC
runtime system, and improvements to c2hs.
Work is now underway to make avaible in Haskell

the “Modified Additive Lagged Fibonacci” random
number generator and perhaps other RNGs from the
C++/Fortran SPRNG library. We currently have a
binding to the library which we are using as the basis
to test the native Haskell implementation being devel-
oped.
Work is also underway to improve tools for pro-

filing parallel Haskell programs. We are extending
ThreadScope (and the associated backend infrastruc-
ture such as the GHC EventLog) to support profiling
of multi-process or distributed Haskell systems such as
client/server or MPI programs. Building off this work,
we are also adding better profiling for single-process
programs by making it possible to compare multiple
runs of the same program (e.g., different inputs or
slightly different code) on the same timeline. These
improvements will be accompanied by ongoing work on
adding new visualisations to ThreadScope, for example,
the rate of parallel spark creation and the distribution
of spark evaluation times.

22

http://www.macs.hw.ac.uk/~dsg/gph/
mailto: gph at macs.hw.ac.uk
http://sprng.cs.fsu.edu/

In addition to the technical outcomes, this project
has also resulted in some new resources for the paral-
lel Haskell community. For the various groups working
on parallel Haskell, we have established a new public
mailing list to encourage collaboration and to improve
the visibility of each others’ efforts. For newcomers to
Haskell and/or parallelism and concurrency, we have
developed a Parallel Haskell portal steering users to-
wards the most immediately useful tools and documen-
tation to get started. Finally for the community as
a whole, we are putting together a monthly digest to
highlight work from people using and developing Par-
allel Haskell. Further progress on the project will be
reported back to the community on these channels.

Further reading

http://haskell.org/haskellwiki/Parallel_GHC_Project

4.2 Haskell and the Web

4.2.1 GHCJS: Haskell to Javascript compiler

Report by: Victor Nazarov
Status: 0.1.0 released

GHCJS currently is a GHC back-end which pro-
duces Javascript code. Modern Javascript environ-
ments become more and more advanced. TraceMon-
key and V8 engines allow very fast Javascript ex-
ecution. It is possible, for instance, to create an
in-browser hardware emulator: an emulated CPU’s
instructions are compiled down to Javascript func-
tions, and Javascript instructions are compiled to the
native host CPU’s instructions by Javascript JIT-
compilers (http://weblogs.mozillazine.org/roc/archives/
2010/11/implementing_a.html).
The idea to bring the power of the Haskell lan-

guage to the world of AJAX-applications is not new.
It has been proposed many times in Haskell-café.
The success of Google’s GWT was uncomfortable to
watch, when our beloved language lacked such a fea-
ture. The first implementation I know is Dmitry
Golubovsky’s YHC back-end (http://www.haskell.org/
haskellwiki/Yhc/Javascript). The second one was my
GHC backend hs2js (http://vir.mskhug.ru/). There
were differences between the two projects. Dmitry
had tried to provide a Haskell environment to de-
velop everything in Haskell. He had developed an au-
tomated conversion tool to generate Haskell-bindings
from DOM IDL specifications provided by the W3C.
My aim was more modest: I thought that we could
use Haskell to implement complex logic. The abil-
ity to use Parsec in a browser was asked for sev-
eral times in Haskell-café. With the latter ap-
proach we can extend existing Javascript-applications
with algorithms implemented in Haskell. UHC (→

2.4) started to implement a Javascript-backend
recently (http://utrechthaskellcompiler.wordpress.com/
2010/10/18/haskell-to-javascript-backend/), but I have
not looked at it, yet.
GHCJS is a fresh rewrite of hs2js that was started

in August 2010. It is currently a standalone tool that
uses GHC as a library and produces a .js-file for each
Haskell-module. Javascript code can load any Haskell-
module and evaluate any exported Haskell-value. Some
examples that are available with the GHCJS package
show some simple Haskell programs like generation of
a sequence of prime-numbers. Each Haskell module is
currently a standalone Javascript file. When a value of
some module is needed, the module is loaded dynami-
cally.
The code is available at the GHCJS github page (see

below) under the terms of the BSD3 license. It was
tested with GHC 6.12.
There are many tasks awaiting completion with

GHCJS:

A faster and more robust module loader: Now it
loses a lot of time on 404 errors, trying to access
modules in the wrong package directory. I plan to
use GHC’s package abstraction. A package will be a
Web-server’s directory and Javascript’s namespace.
Every module will be unambiguously associated
with one package. It will become possible to load
a module with one unambiguous HTTP-request.
This change will short the loading time of Haskell
programs.

Make it work in all major browsers: There are some
minor problems with Internet Explorer. But it
should be trivial to fix them.

FFI support: FFI support should make the whole
thing generally usable. FFI-exports should gen-
erate easily-callable Javascript functions that will
type-check their arguments to make a combination
of dynamically-typed Javascript and statically-typed
Haskell seamless. FFI-imports will allow the im-
plementation of DOM-manipulation in Haskell pro-
grams.

Further reading

https://github.com/sviperll/ghcjs

4.2.2 WAI

Report by: Matt Brown
Status: stable

The Web Application Interface (WAI) is an interface
between web applications and web servers. By target-
ing the WAI, a web application can get access to mul-
tiple servers; and through WAI, a server can support
web applications never intended to run on it.

23

https://groups.google.com/group/parallel-haskell
https://groups.google.com/group/parallel-haskell
http://www.haskell.org/haskellwiki/Parallel
http://www.haskell.org/haskellwiki/Parallel/Digest
http://haskell.org/haskellwiki/Parallel_GHC_Project
http://weblogs.mozillazine.org/roc/archives/2010/11/implementing_a.html
http://weblogs.mozillazine.org/roc/archives/2010/11/implementing_a.html
http://www.haskell.org/haskellwiki/Yhc/Javascript
http://www.haskell.org/haskellwiki/Yhc/Javascript
http://vir.mskhug.ru/
http://utrechthaskellcompiler.wordpress.com/2010/10/18/haskell-to-javascript-backend/
http://utrechthaskellcompiler.wordpress.com/2010/10/18/haskell-to-javascript-backend/
https://github.com/sviperll/ghcjs

WAI has matured significantly since the last HCAR.
Much progress has been made in areas of efficiency,
generality, and standardization. While WAI is perhaps
most often used in conjunction with the Yesod web
framework (→ 4.2.8), these gains have helped attract
more interest from non-yesod projects. Notable exam-
ples include Hoogle, the popular Haskell API search
engine (→ 5.2.2), Hums, a UPnP media server, and the
Happstack web framework (→ 4.2.6).
Key developments include:

◦ The release of Warp (→ 4.2.3), a high-performance
HTTP backend written in Haskell.

◦ The adoption of http-types, a standard interface for
HTTP servers and clients.

◦ The adoption of text, an efficient representation for
unicode data.

Matt Brown is taking over future maintenance of WAI
from Michael Snoyman.

Further reading

http://github.com/snoyberg/wai

4.2.3 Warp

Report by: Matt Brown

Warp is a high performance, easy to deploy HTTP
server backend for WAI (→ 4.2.2). Warp has replaced
FastCGI as the officially recommended WAI backend.
It evolved out of WAI’s SimpleServer after some per-
formance and security tuning by Michael Snoyman and
Matt Brown. Due to the combined use of ByteStrings,
Blaze-Builder, Enumerators, and GHC’s improved I/O
manager, Wai+Warp has consistently proven to be one
of the most performant web deployment options avail-
able. Warp currently services Hoogle (→ 5.2.2), hums,
and several production Yesod web sites (→ 4.2.8).
“Warp: A Haskell Web Server” by Michael Snoyman

was published in the May/June 2011 issue of IEEE In-
ternet Computing:
◦ Issue page: http://www.computer.org/portal/web/
csdl/abs/mags/ic/2011/03/mic201103toc.htm

◦ PDF: http://steve.vinoski.net/pdf/IC-Warp_a_
Haskell_Web_Server.pdf

4.2.4 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Hübel, Sebastian Gauck, Stefan

Schmidt, Sebastian Schröder
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-

tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.
◦ The Holumbus Search Engine
◦ The Holumbus Distribution Library
◦ The Holumbus Storage System
◦ The Holumbus MapReduce Framework
The search engine package includes the indexer and

search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customizable result ranking
◦ Index structure designed for distributed search
◦ Git repository containing the current development

version of all packages under https://github.com/
fortytools/holumbus

◦ Distributed building of search indexes

Current Work

There are two running projects. The first, a masters
thesis done by Sebastian Schröder, deals with the de-
velopment of a framework for news systems. The func-
tionality will be like with google news, but the target
is to build news systems for specialized topics. In the
second project a search engine for the FH-Wedel web
site will be built. The new aspect in this application
is a specialized search for appointments, deadlines, an-
nouncements, meetings and other dates.

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Git web interface, cur-

24

http://github.com/snoyberg/wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
https://github.com/fortytools/holumbus
https://github.com/fortytools/holumbus
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/

rent status, requirements, and documentation. Timo
Hübel’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/
doc/thesis-searching.pdf. Sebastian Gauck’s thesis
dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the
Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf.

4.2.5 gitit

Report by: John MacFarlane
Participants: Gwern Branwen, Simon Michael, Henry

Laxen, Anton van Straaten, Robin Green,
Thomas Hartman, Justin Bogner, Kohei

Ozaki, Dmitry Golubovsky, Anton
Tayanovskyy, Dan Cook, Jinjing Wang

Status: active development

Gitit is a wiki built on Happstack (→ 4.2.6) and backed
by a git, darcs, or mercurial filestore. Pages and up-
loaded files can be modified either directly via the
VCS’s command-line tools or through the wiki’s web
interface. Pandoc (→ 7.2.3) is used for markup process-
ing, so pages may be written in (extended) markdown,
reStructuredText, LaTeX, HTML, or literate Haskell,
and exported in thirteen different formats, including
LaTeX, ConTeXt, DocBook, RTF, OpenOffice ODT,
MediaWiki markup, EPUB, and PDF.
Notable features of gitit include:
◦ Plugins: users can write their own dynamically
loaded page transformations, which operate directly
on the abstract syntax tree.

◦ Math support: LaTeX inline and display math
is automatically converted to MathML, using the
texmath library.

◦ Highlighting: Any git, darcs, or mercurial repos-
itory can be made a gitit wiki. Directories can
be browsed, and source code files are automatically
syntax-highlighted. Code snippets in wiki pages can
also be highlighted.

◦ Library: Gitit now exports a library,
Network.Gitit, that makes it easy to include
a gitit wiki (or wikis) in any Happstack application.

◦ Literate Haskell: Pages can be written directly in
literate Haskell.

Further reading

http://gitit.net (itself a running demo of gitit)

4.2.6 Happstack

Report by: Jeremy Shaw

The Happstack project is focused on leveraging the
unique characteristics of Haskell to create a web frame-

work which is easier to use, more robust, and more
scalable than would be possible in other languages.
The Happstack efforts are divided into three cate-

gories:

Integration Where possible, we prefer to integrate and
improve existing third party libraries from hackage.
For example, we have added integration for many
templating libraries such as HSP, Heist, Hamlet,
HStringTemplate, BlazeHtml, and digestive func-
tors. In some cases this has included significant
improvements and bugfixes to the upstream source
code.

Creation In other cases the technology we need does
not yet exist and so we implement it ourselves. This
includes libraries such as web-routes (for type-safe
URL routing) and MACID (a native Haskell persis-
tent data store).

Documentation At the most basic level this includes
documenting the API and creating tutorials. But an
important long term goal is describing how to archi-
tect systems that are scalable, robust, and maintain-
able.

We are currently focused on the Happstack 7 release
which is centered around improvements to MACID.
MACID is a persistent data store which can hold arbi-
trary Haskell data types. Like a traditional database,
MACID provides operations which are Atomic, Con-
sistent, Isolated, and Durable. Pull the plug on your
server and restart with all your data intact.
MACID is superior to other SQL and NoSQL solu-

tions because it can natively store almost any Haskell
datatype. No need to marshal data or give up complex
data structures. Queries are written in straight-forward
(and powerful) Haskell. No need to learn a special, lim-
ited query language or funky DSL.
Compared to previous versions of MACID, the new

version is, faster, more robust, and less “magical”. But
even more importantly, happstack-data and happstack-
state have been replaced by two new packages safe-
copy and acid-state, which are completely independent
of the Happstack project. We hope this will encour-
age more wide spread adoption of MACID by other
projects.
We also plan to provide benchmarks of MACID

performance compared to other popular solutions like
MongoDB, Redis, MySQL, etc.

Future plans

Happstack 8 will migrate to an iteratee-based HTTP
backend for even better performance and resource man-
agement. The tentative plan is to use Warp.
Happstack 9 will focus on improving some of the

higher level components such as authentication and ses-
sion management.

25

http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://gitit.net

Further reading

◦ http://www.happstack.com/
◦ http://www.happstack.com/docs/crashcourse/index.

html
◦ http://acid-state.seize.it/

4.2.7 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 2 is a simple but
practical Web server in Haskell. It is now working on
Mew.org providing basic web features and CGI (mail-
man and contents search).
Mighttpd version 1 was implemented with two li-

braries c10k and webserver. Since GHC 6 uses select(),
more than 1,024 connections cannot be handled at the
same time. The c10k library gets over this barrier with
the pre-fork technique. The webserver library provides
HTTP transfer and file/CGI handling.
Mighttpd 2 stops using the c10k library be-

cause GHC 7 starts using epoll()/kqueue(). The
file/CGI handling part of the webserver library is re-
implemented as a web application on the wai library
(→ 4.2.2). For HTTP transfer, Mighttpd 2 links the
warp library (→ 4.2.3) which can send a file in zero
copy manner thank to sendfile().
You can install Mighttpd 2 (mighttpd2) from Hack-

ageDB.

Further reading

http://www.mew.org/~kazu/proj/mighttpd/en/

4.2.8 Yesod

Report by: Greg Weber
Participants: Michael Snoyman
Status: beta

Yesod is a web framework using the Haskell language
to make web programming safer, fast, more productive,
and fun. The Haskell community is a very progressive
type, and have often approached solving the issues of
web development in Haskell with a revolutionary mind-
set — offering up solutions to web development that
use continutaions, components, or recommending new
forms of data storage. In contrast, Yesod is in many
ways a traditional MVC REST web framework — the
revolution comes from consitently applying Haskell’s
strengths to that model.
Type-safety guarantees against programmer errors

such as mis-typing a URL, or forgetting a closing
HTML tag, but also allows us to make higher-level
security guarantees. We can guarantee against XSS

attacks and SQL injections. When type safety con-
flicts with programmer productivity, Yesod is not afraid
to use Haskell’s most advanced features of Template
Haskell and quasi-quoting to provide easier develop-
ment for its users. In particular, these are used for
declarative routing, declarative schemas, and compile-
time templates. Haskell provides us with fast code,
and GHC7 provides us with the ability to deploy with
a highly-scalable web server that can serve tens of thou-
sands of concurrent users, but is dead simple to deploy
(→ 4.2.2).
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 6.4.2), which
provides a type-safe interface to data stores of your
choosing. Views are handled by the Hamlet family
of compile-time template languages. Controllers work
with declarative routing to easily provide different re-
sponse types based on the request.
Instead of providing a single monolithic package,

Yesod is broken up into many smaller projects. This
means that many of the powerful features of Yesod
can be used in your own web development tool stack
without issue. Packages for authentication, client-side
encrypted session data, middlewares, web encodings,
YAML, persistence, HTML templating and more are
all fully available on Hackage, without any reliance on
Yesod.
Yesod is currently on its 0.8 version. The last HCAR

entry was for the 0.5 version. Since then we have added:

◦ GHC7 support with GHC6 compatibility

◦ Migration to using the aeson JSON package

◦ Security — CSRF protection for forms and sessions
that can be tied to a static IP address

◦ Automatic javascript minification

◦ The Lucius template language — a superset of CSS
that adds features such as automatic nesting

◦ Improved Hamlet (html templating language) syntax
— Hamlet syntax is now html by default, there is no
need to learn a radical new syntax. Just by making
white space significant to remove closing tags, it elim-
inates the main source of invalid HTML. With that,
and some id/class shortcuts, and making attribute
quoting optional, it eliminates the main sources of
tedium in HTML.

◦ Preliminary support for coffeescript (a better
javascript) templates.

◦ Atom/RSS feeds

◦ Improved static file serving — directory listings and
beta support for caching headers

We are working towards a 1.0 release by this sum-
mer. 1.0 to us means API stability and a web frame-
work that gives developers all the tools they need for

26

http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://acid-state.seize.it/
http://www.mew.org/~kazu/proj/mighttpd/en/

productive web development. For the 1.0 release we
have the following goals:

◦ Polish the development environment — we want an
ease of development on par with dynamic languages.

◦ Great documentation, including improved ways for
the community to contribute documentation.

◦ Easier testing for your application.

◦ Easier interopration with different templating lan-
guages.

◦ Support for faster javascript loading.

◦ Better form generation.

◦ A complete i18n (internationalization) solution.

Every major 1.0 feature is already underway, and
we already have a productive framework in use by the
Haskell community, including commercial users.
To see an example site with source code available,

you can view Haskellers (→ 1.1) source code: (https:
//github.com/snoyberg/haskellers).
The Yesod site (http://yesodweb.com/) is a great

place for information. It has code examples, screen-
casts, the Yesod blog and — most importantly — a
book on Yesod. The book is not yet complete, but pro-
vides a very solid introduction to the main features,
and it is constantly being revised and expanded.

Further reading

http://yesodweb.com/

4.2.9 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith

Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.
The Snap Framework has seen two major releases

(0.3 and 0.4) since the last HCAR with contributions
from two new core contributors. The framework was
also featured in the January issue of IEEE Internet
Computing magazine in their column “The Functional
Web”. Some of the most significant new features are:

◦ SSL support

◦ A development mode that uses Hint (http://haskell.
org/communities/11-2008/html/report.html#hint) to
recompile your application on the fly when you make
code changes

◦ Support for file uploads and the multipart/form-data
content type

◦ The ability to modify socket timeouts, making it pos-
sible to have long-running request handlers

◦ A new HTML5 parser designed specifically for the
Heist template system

We also have development in progress for sessions,
authentication, and mongoDB support. These will be
available on hackage once design solidifies, but they
are usable right now for developers who do not mind
working with a less stable code base.
The team is currently working on infrastructure and

an API to facilitate modular web development. From
that base we plan to build out more of the high-level
features that developers have come to expect from mod-
ern web frameworks.

Further reading

◦ IEEE Article: http://steve.vinoski.net/blog/2011/
01/21/column-on-the-snap-framework/

◦ Intro to xmlhtml: http://cdsmith.wordpress.com/
2011/02/05/html-5-in-haskell/

◦ http://snapframework.com

4.2.10 rss2irc

Report by: Simon Michael
Status: occasional development; suitable for

production use

rss2irc is an IRC bot that polls a single RSS or Atom
feed and announces new items to an IRC channel, with
options for customizing output and behavior. It aims
to be an easy to use, dependable bot that does its job
and creates no problems.
rss2irc was published in 2008 by Don Stewart. Simon

Michael took over maintainership in 2009, with the goal
of making a robust low-maintenance bot to stimulate
development in various free/open-source software com-
munities. It is currently used for several full-time bots
including:
◦ hackagebot — announces new hackage releases in

#haskell
◦ hledgerbot — announces hledger commits in #ledger
◦ zwikicommitbot — announces Zwiki commits in

#zwiki
◦ squeaksobot — announces Squeak and Smalltalk-

related Stack Overflow questions in #squeak
◦ squeakquorabot — announces Squeak/Smalltalk-

related Quora questions in #squeak
◦ etoystrackerbot — announces new Etoys bugs in

#etoys

27

https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://yesodweb.com/
http://yesodweb.com/
http://haskell.org/communities/11-2008/html/report.html#hint
http://haskell.org/communities/11-2008/html/report.html#hint
http://steve.vinoski.net/blog/2011/01/21/column-on-the-snap-framework/
http://steve.vinoski.net/blog/2011/01/21/column-on-the-snap-framework/
http://cdsmith.wordpress.com/2011/02/05/html-5-in-haskell/
http://cdsmith.wordpress.com/2011/02/05/html-5-in-haskell/
http://snapframework.com

◦ etoysupdatesbot — announces Etoys commits in
#etoys

◦ planetzopebot — announces new planet.zope.org
posts in #zope
The project is available under BSD license from

its home page at http://hackage.haskell.org/package/
rss2irc.
A 0.5 release containing robustness and feature im-

provements is in preparation and should arrive soon.
More testers and contributors are invited.

Further reading

http://hackage.haskell.org/package/rss2irc

4.3 Haskell and Games

4.3.1 FunGEn

Report by: Simon Michael
Status: usable; ready for contributors and users

FunGEn (Functional Game Engine) is a BSD-licensed
cross-platform 2D game engine implemented in and for
Haskell, using OpenGL and GLUT.
FunGEn was created in 2002 by Andre Furtado, who

then moved on to other projects. In 2008 it was up-
dated for current GHC by Simon Michael and then
again by Miloslav Raus, who also cabalised it. Ear-
lier this year Simon revived it again, with a GHC 6.12-
tested 0.3 release on Hackage, preliminary haddockifi-
cation and an updated home page.
This is currently probably the easiest way to build

a cross-platform graphical game with Haskell, due to
its convenient game building framework and its widely-
available dependencies (OpenGL and GLUT). FunGEn
comes with several working examples that are quite
easy to read and build (pong, worms).
The main Darcs repository is now http://darcsden.

com/simon/fungen, which also serves as the project’s
main home page. Start here to find all code and doc-
umentation. See also the #haskell-game channel on
irc.freenode.net for discussion.

Further reading

http://darcsden.com/simon/fungen

4.3.2 Nikki and the Robots

Report by: Sönke Hahn
Participants: Joyride Laboratories GbR
Status: alpha, active

Nikki and the Robots is a 2D platformer written in
Haskell and produced by Joyride Laboratories. Nikki,
the protagonist, walks and jumps around the levels
wearing a cute ninja/cat costume. Nikki refrains from
using any tools or weapons, with one exception: The
Robots. These come in various types with different
abilities and can be used by Nikki to solve puzzles,
overcome obstacles, and complete the level tasks. The
game features an integrated level editor.
We made our first binary release of Nikki and the

Robots in April 2011.

Publishing

We are releasing the game and the level editor under
an open source license (LGPL). The included graphics
are published under a permissive Creative Commons
license (cc-by-sa). We are also planning to create a
server that will allow players to upload the levels they
created and download levels from other players. We
hope that a community of coders, level creators, and
players will emerge around the game.
Simultaneously, we are working on episodes that we

plan to sell via the game. These will include new graph-
ics, more robots, a story line, other characters, and
other surprises.
(Just to clarify: The licensing is very permissive.

It allows others to create their own episodes and dis-
tribute them freely or sell them. This would be very
welcome. If anybody is interested in this, we propose
to join forces and sell all our episodes through one sys-
tem.)

Technologies Used

◦ Qt for user input and rendering.

◦ OpenGL as an efficient rendering backend for Qt.
Everything will remain 2D, though - we promise!

◦ Hipmunk, the Haskell bindings to the chipmunk
physics engine.

Getting Involved

The project is still in alpha stage, so there are some
features that are not yet implemented. For some, we

28

http://hackage.haskell.org/package/rss2irc
http://hackage.haskell.org/package/rss2irc
http://hackage.haskell.org/package/rss2irc
http://darcsden.com/simon/fungen
http://darcsden.com/simon/fungen
http://darcsden.com/simon/fungen

have a clear vision on how to implement them; for oth-
ers, we do not. If you want to get involved, check out
our darcs repo, our launchpad site, and do not hesitate
to contact us.

Further reading

◦ http://joyridelabs.de
◦ http://joyridelabs.de/game/code/
◦ http://joyridelabs.de/game/download/

4.3.3 Freekick2

Report by: Antti Salonen
Status: experimental, active development

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect6.11.1.

4.4 Haskell and Compiler Writing

4.4.1 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell which makes
it easy to write catamorphisms (i.e., functions that do
to any data type what foldr does to lists). You define
tree walks using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 2.4), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects. The
current version is 0.9.29 (July 2010), is extensively
tested, and is available on Hackage.

We are working on the following enhancements of the
UUAG system:

First-class AGs We provide a translation from UUAG
to AspectAG (→ 4.4.2). AspectAG is a library of
strongly typed Attribute Grammars implemented us-
ing type-level programming. With this extension, we
can write the main part of an AG conveniently with
UUAG, and use AspectAG for (dynamic) extensions.
Our goal is to have an extensible version of the UHC.

Fixpoint evaluation We incorporated a fixed-point
evaluation scheme for circular grammars. A cycle is
broken by specifying an initial value for an attribute
on the cycle, and repeating the evaluation with an
updated value until it converges.

Step-wise evaluation We provide the possibility to
evaluate AGs step-wise. The evaluation for a non-
terminal may yield user-defined progress reports, and
we can direct the evaluation until the next progress
report. With this mechanism, we can resolve non-
determinism and encode breadth-first search strate-
gies.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

4.4.2 AspectAG

Report by: Marcos Viera
Participants: Doaitse Swierstra, Wouter Swierstra
Status: experimental

AspectAG is a library of strongly typed Attribute
Grammars implemented using type-level programming.

Introduction

Attribute Grammars (AGs), a general-purpose formal-
ism for describing recursive computations over data
types, avoid the trade-off which arises when building
software incrementally: should it be easy to add new
data types and data type alternatives or to add new
operations on existing data types? However, AGs are
usually implemented as a pre-processor, leaving e.g.
type checking to later processing phases and making
interactive development, proper error reporting and
debugging difficult. Embedding AG into Haskell as
a combinator library solves these problems. Previ-
ous attempts at embedding AGs as a domain-specific
language were based on extensible records and thus
exploiting Haskell’s type system to check the well-
formedness of the AG, but fell short in compactness
and the possibility to abstract over oft occurring AG
patterns. Other attempts used a very generic map-
ping for which the AG well-formedness could not be

29

http://joyridelabs.de
http://joyridelabs.de/game/code/
http://joyridelabs.de/game/download/
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.1
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.1
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc

statically checked. We present a typed embedding of
AG in Haskell satisfying all these requirements. The
key lies in using HList-like typed heterogeneous collec-
tions (extensible polymorphic records) and expressing
AG well-formedness conditions as type-level predicates
(i.e., typeclass constraints). By further type-level pro-
gramming we can also express common programming
patterns, corresponding to the typical use cases of mon-
ads such as Reader, Writer, and State. The paper
presents a realistic example of type-class-based type-
level programming in Haskell.

Current Status

In the current version (0.3) we have included support
for local and higher-order attributes. Furthermore,
a translation from UUAG (→ 4.4.1) to AspectAG is
added to UUAGC as an experimental feature.

Background

The approach taken in AspectAG was proposed by
Marcos Viera, Doaitse Swierstra, and Wouter Swier-
stra in the ICFP 2009 paper “Attribute Grammars Fly
First-Class: How to do aspect oriented programming
in Haskell”.

Further reading

http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

4.4.3 Berp

Report by: Bernie Pope
Status: under development

Berp is an implementation of Python 3. At its heart it
is a translator which takes Python code as input and
generates Haskell code as output. The Haskell code is
fed into a Haskell compiler (GHC) for compilation to
machine code or interpretation as byte code. One of the
main advantages of this approach is that berp is able
to use the rich functionality provided by the GHC run-
time system with minimal implementation effort. Berp
provides both a compiler and an interactive interpreter,
and for the most part it can be used in the same way
as CPython (the main Python implementation). Al-
though berp is in the early stages of development, it
is able to demonstrate some novel capabilities (com-
pared to CPython), such as tail-call optimisation and
call-with-current-continuation.
The syntactic analysis component of berp is pro-

vided by a separate Haskell library called language-
python (→ 6.2.2), which can be used independently of
berp to produce tools for processing Python source.
Berp underwent a flurry of development activity in

the first part of 2010, but since then the pace slowed
down as I worked on other projects. Those other
projects are now maturing, and I plan to return to

berp development soon. Berp is still missing support
for some critical features, such as module imports.

Further reading

◦ http://hackage.haskell.org/package/berp
◦ http://github.com/bjpop/berp
◦ http://github.com/bjpop/berp/wiki

4.4.4 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.8.4 experimental released

LQPL (Linear Quantum Programming Language) con-
sists of a compiler for a functional quantum program-
ming language and an associated assembler and emu-
lator.
This programming language was inspired by Peter

Selinger’s paper “Toward a Quantum Programming
Language”. LQPL incorporates a simplified module /
include system (more like C’s include than Haskell’s im-
port), predefined unitary transforms, quantum control
and classical control, algebraic data types, and opera-
tions on purely classical data.
Quantum programming allows us to provide a fair

coin toss, as shown in the code example below.

qdata Coin = {Heads | Tails}
toss ::(; c:Coin) =
{ q = |0>; Had q;

measure q of
|0> => {c = Heads}
|1> => {c = Tails}

}

This allows programming of various probabilistic algo-
rithms, such as leader election. The picture below is
a screenshot of the emulator part way through leader
election, showing a probabilistic list (outslis) with
equal chances of being one of [3, 2] or [3, 1] and a coin
toss (bToss) with equal chances of being Heads or Tails.

Work on version 0.9 has begun, with the primary goal
of further de-coupling the emulator from the user inter-
face. Currently, the user display, the emulator and the

30

http://www.cs.nott.ac.uk/~gmh/icfp09.html
http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG
http://hackage.haskell.org/package/berp
http://github.com/bjpop/berp
http://github.com/bjpop/berp/wiki

assembler are in a monolithic form. Once de-coupled,
the intent is to allow the emulator to run independently
of the display. This will allow a greater allocation of
resources to the emulator, and allow the development
of alternate display visualizations.

Further reading

http://pll.cpsc.ucalgary.ca/lqpl/index.html

31

http://pll.cpsc.ucalgary.ca/lqpl/index.html

5 Development Tools

5.1 Environments

5.1.1 EclipseFP

Report by: JP Moresmau
Participants: B. Scott Michel, Alejandro Serrano,

building on code from Thiago Arrais, Leif
Frenzel, Thomas ten Cate, and others

Status: stable, maintained

EclipseFP is a set of Eclipse plugins to allow working
on Haskell code projects. It features Cabal integra-
tion (.cabal file editor, uses Cabal settings for compi-
lation), and GHC integration. Compilation is done via
the GHC API, syntax coloring uses the GHC Lexer.
Other standard Eclipse features like code outline, fold-
ing, and quick fixes for common errors are also pro-
vided. EclipseFP also allows launching GHCi sessions
on any module including extensive debugging facili-
ties. It uses Scion to bridge between the Java code
for Eclipse and the Haskell APIs. The source code
is fully open source (Eclipse License) and anyone can
contribute. Current version is 2.0.4, released in March
2011 and supporting GHC 6.12 and 7.0, and more ver-
sions with additional features are planned. Feedback
on what is needed is welcome! The website has infor-
mation on downloading binary releases and getting a
copy of the source code. Support and bug tracking is
handled through Sourceforge forums.

Further reading

http://eclipsefp.sourceforge.net/

5.1.2 ghc-mod — Happy Haskell Programming on
Emacs

Report by: Kazu Yamamoto
Status: open source, actively developed

ghc-mod is an enhancement of the Haskell mode on
Emacs. It provides the following features:

Completion You can complete a name of keyword,
module, class, function, types, language extensions,
etc.

Code template You can insert a code template ac-
cording to the position of the cursor. For instance,
“module Foo where” is inserted in the beginning of
a buffer.

Syntax check Code lines with error messages are au-
tomatically highlighted thanks to flymake. You can
display the error message of the current line in an-
other window. hlint (→ 5.3.2) can be used instead
of GHC to check Haskell syntax.

Document browsing You can browse the module doc-
ument of the current line either locally or on Hack-
age.

Function type You can display the type/information
of the function on the cursor. (new)

ghc-mod consists of code in Emacs Lisp and a sub-
command in Haskell. The Emacs code executes the
sub-command to obtain information about your Haskell
environment. The sub-command makes use of the GHC
API for that purpose. ghc-mod now supports both
GHC 6 and GHC 7.

Further reading

http://www.mew.org/~kazu/proj/ghc-mod/en/

5.1.3 Leksah — The Haskell IDE in Haskell

Report by: Jürgen Nicklisch-Franken
Participants: Hamish Mackenzie

32

http://eclipsefp.sourceforge.net/
http://www.mew.org/~kazu/proj/ghc-mod/en/

Leksah is a Haskell IDE written in Haskell. It is still
beta quality, but we hope we can publish the 1.0 release
this year.
The project has its focus on providing a practical tool

for Haskell development. Leksah has already proved its
usefulness in industrial projects. We have had positive
feedback and are pleased to see that a large number of
people are downloading Leksah and we hope you are
finding it useful.
Leksah is at a critical point in its development, as it

is difficult to bring a project of this size to a success,
considering we are just two developers which work on
it in their rare spare time. If you can spare some time
to work on part of the project, please get in touch by
mailing the Leksah group or log onto IRC #leksah. If
there is something you do not like about Leksah let
us know and we can probably show you where to get
started fixing it.
We believe that Leksah can be an important contri-

bution for Haskell, to make its way from an academic
language to a valuable tool in industry.

Further reading

http://leksah.org/

5.1.4 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Heat was designed
for novice students learning the functional program-
ming language Haskell. Heat provides a small num-
ber of supporting features and is easy to use. Heat is
portable, small and works on top of the Haskell inter-
preter Hugs.
Heat provides the following features:

◦ Editor for a single module with syntax-highlighting
and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the source line
is highlighted and additional error explanations are
provided.

◦ Shows a program summary in a tree structure, giving
definitions of types and types of functions.

◦ Automatic checking of all (Boolean) properties of a
program; results shown in summary.

A complete re-write of the current version 3.1 is
planned to improve the internal structure and make
Heat work with GHC.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

5.1.5 HaRe — The Haskell Refactorer

Report by: Simon Thompson
Participants: Huiqing Li, Chris Brown, Claus Reinke

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its sixth major
release. HaRe supports full Haskell 98, and is inte-
grated with (X)Emacs and Vim. All the refactorings
that HaRe supports, including renaming, scope change,
generalization and a number of others, are module-
aware, so that a change will be reflected in all the
modules in a project, rather than just in the module
where the change is initiated. The system also con-
tains a set of data-oriented refactorings which together
transform a concrete data type and associated uses of
pattern matching into an abstract type and calls to
assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.
In order to allow users to extend HaRe themselves,

HaRe includes an API for users to define their own
program transformations, together with Haddock doc-
umentation. Please let us know if you are using the
API.
Snapshots of HaRe are available from our webpage,

as are related presentations and publications from
the group (including LDTA’05, TFP’05, SCAM’06,
PEPM’08, PEPM’10, TFP’10, Huiqing’s PhD thesis
and Chris’s PhD thesis). The final report for the
project appears there, too.

33

http://leksah.org/
http://www.cs.kent.ac.uk/projects/heat/

Recent developments

◦ HaRe 0.6, which is compatible with GHC-6.12.1, has
been released; HaRe 0.6 is available on Hackage, and
also downloadable from our project webpage.

◦ HaRe 0.6 comes with a number of new refactorings,
including adding and removing fields and construc-
tors to data-type definitions, folding and unfolding
against as-patterns, merging and splitting function
definitions, converting between let and where con-
structs, introducing pattern matching and generative
folding.

◦ Support for automatic detection and semi-automatic
elimination of duplicated code in Haskell programs is
also available from HaRe 0.6.

◦ Support for a number of new refactorings for parallel
Haskell have recently been added to HaRe. These
include support to introduce simple divide and con-
quer parallelism, using the new Strategies module.
The refactorings are designed to issue warnings to
the user when ill-defined evaluation degrees are set,
together with support for adding a threshold value.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.2 Documentation

5.2.1 Haddock

Report by: David Waern
Status: experimental, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates docu-
mentation by parsing and typechecking Haskell source
code directly and including documentation supplied
by the programmer in the form of specially-formatted
comments in the source code itself. Haddock has direct
support in Cabal (→ 5.8.1), and is used to generate the
documentation for the hierarchical libraries that come
with GHC, Hugs, and nhc98 (http://www.haskell.org/
ghc/docs/latest/html/libraries) as well as the documen-
tation on Hackage.
The latest release is version 2.8.1, released September

3 2010.
Recent changes:

◦ HTML backend completely rewritten to generate se-
mantically rich XHTML using the xhtml package.

◦ New default CSS based on the color scheme chosen
for the new Haskell wiki, with a pull-out tab for the
synopsis.

◦ Theme engine based on CSS files. Themes can be
switched from the header menu.

◦ Markup support for executable examples/unit-tests.

◦ Addition of a LaTeX backend.

◦ Additions and changes to the Haddock API.

◦ Various smaller new features and bug fixes.

Future plans

◦ Although Haddock understands many GHC lan-
guage extensions, we would like it to understand all
of them. Currently there are some constructs you
cannot comment, like GADTs and associated type
synonyms.

◦ Error messages is an area with room for improve-
ment. We would like Haddock to include accurate
line numbers in markup syntax errors.

◦ On the HTML rendering side we want to make more
use of Javascript in order to make the viewing expe-
rience better. The frames-mode could be improved
this way, for example.

◦ Finally, the long term plan is to split Haddock into
one program that creates data from sources, and sep-
arate backend programs that use that data via the
Haddock API. This will scale better, not requiring
adding new backends to Haddock for every tool that
needs its own format.

Further reading

◦ Haddock’s homepage: http://www.haskell.org/
haddock/

◦ Haddock’s developer Wiki and Trac: http://trac.
haskell.org/haddock

◦ Haddock’s mailing list: haddock@projects.haskell.org

5.2.2 Hoogle

Report by: Neil Mitchell
Status: stable

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name,
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online. Hoogle is available as a web interface,
a command line tool, and a lambdabot plugin.
Hoogle has seen significant revisions in the last few

months. Hoogle can now search all of Hackage (→
5.8.1), and has a brand new look and feel, including
instant results as you type. Work continues improving
the performance and quality of the results.

34

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://trac.haskell.org/haddock
http://trac.haskell.org/haddock
haddock@projects.haskell.org

Further reading

http://haskell.org/hoogle

5.2.3 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.
The program is stable and can take on large docu-

ments.
Since version 1.14, lhs2TEX has an experimental

mode for typesetting Agda code.
The current version is 1.17 and has only mi-

nor changes compared to earlier versions, but makes
lhs2TEX work with the latest versions of Cabal and
ghc. Development has moved to GitHub, which means
that there is now also a way to report bugs. Work has
started on a more substantial rewrite of lhs2TEX with
the goal of cleaning up the internals and making the
functionality of lhs2TEX available as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

5.3 Testing and Analysis

5.3.1 shelltestrunner

Report by: Simon Michael
Status: occasional development; suitable for daily

use

shelltestrunner was first released in 2009, inspired by
the test suite in John Wiegley’s ledger project. It is
a command-line tool for doing repeatable functional
testing of command-line programs or shell commands.
Tests are defined in one or more files, each test case
specifying some or all of: command line, standard in-
put, expected standard output, expected standard er-
ror output, expected exit code. Tests can be run selec-
tively or in parallel for greater speed. shelltestrunner
is used to test hledger (→ 7.8.7) and at least one other
Haskell project.

shelltestrunner is available under the GPL version
3 or later from Hackage or http://joyful.com/repos/
shelltestrunner.
The next release will be 1.0, and should appear soon.

Feedback and contributors are welcome.

Further reading

http://joyful.com/repos/shelltestrunner

5.3.2 HLint

Report by: Neil Mitchell
Status: stable

HLint is a tool that reads Haskell code and suggests
changes to make it simpler. For example, if you call
maybe foo id it will suggest using fromMaybe foo in-
stead. HLint is compatible with almost all Haskell ex-
tensions, and can be easily extended with additional
hints.
There have been numerous feature improvements

since the last HCAR, including features to detect dupli-
cated code within a module. HLint can be tried online
within hpaste.org.

Further reading

http://community.haskell.org/~ndm/hlint/

5.3.3 hp2any

Report by: Patai Gergely
Status: experimental

This project was born during the 2009 Google Summer
of Code under the name “Improving space profiling ex-
perience”. The name hp2any covers a set of tools and
libraries to deal with heap profiles of Haskell programs.
At the present moment, the project consists of three
packages:

◦ hp2any-core: a library offering functions to read
heap profiles during and after run, and to perform
queries on them.

◦ hp2any-graph: an OpenGL-based live grapher that
can show the memory usage of local and remote pro-
cesses (the latter using a relay server included in the
package), and a library exposing the graphing func-
tionality to other applications.

◦ hp2any-manager: a GTK application that can dis-
play graphs of several heap profiles from earlier runs.

The project also aims at replacing hp2ps by reimple-
menting it in Haskell and possibly adding new output

35

http://haskell.org/hoogle
http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex
http://joyful.com/repos/shelltestrunner
http://joyful.com/repos/shelltestrunner
http://joyful.com/repos/shelltestrunner
http://community.haskell.org/~ndm/hlint/

formats. The manager application shall be extended
to display and compare the graphs in more ways, to
export them in other formats and also to support live
profiling right away instead of delegating that task to
hp2any-graph.
The manager application was recently enabled to ac-

cept files to load over the command line due to a re-
quest. If you feel the need for a feature, do not hesitate
to voice it either by e-mailing the author or using the
issue tracker of the Google Code repository.

Further reading

◦ http://www.haskell.org/haskellwiki/Hp2any
◦ http://code.google.com/p/hp2any/

5.4 Optimization

5.4.1 HFusion

Report by: Facundo Dominguez
Participants: Alberto Pardo
Status: experimental

HFusion is an experimental tool for optimizing Haskell
programs. The tool performs source to source trans-
formations by the application of a program transfor-
mation technique called fusion. The aim of fusion is to
reduce memory management effort by eliminating the
intermediate data structures produced in function com-
positions. It is based on an algebraic approach where
functions are internally represented in terms of a recur-
sive program scheme known as hylomorphism.
We offer a web interface to test the technique on user-

supplied recursive definitions and since very recently
HFusion is also available as a library on Hackage. The
user can ask HFusion to transform a composition of
two functions into an equivalent program which does
not build the intermediate data structure involved in
the composition.

In its current state, HFusion is able to fuse composi-
tions of general recursive functions, including primitive

recursive functions (like dropWhile or insertions in bi-
nary search trees), functions that make recursion over
multiple arguments like zip, zipWith or equality pred-
icates, mutually recursive functions, and (with some
limitations) functions with accumulators like foldl. In
general, HFusion is able to eliminate intermediate data
structures of regular data types (sum-of-product types
plus different forms of generalized trees).
The next immediate steps will be improving usabil-

ity of the HFusion library API and working on finding
fusable compositions within programs automatically.

Further reading

◦ HFusion publications: http://www.fing.edu.uy/inco/
proyectos/fusion

◦ HFusion web interface: http://www.fing.edu.uy/inco/
proyectos/fusion/tool

◦ HFusion on Hackage: http://hackage.haskell.org/
package/hfusion

5.4.2 Optimizing Generic Functions

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Andres Löh
Status: actively developed

Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. Several generic program-
ming libraries for Haskell have been developed in the
past few years. These libraries have been compared in
detail with respect to expressiveness, extensibility, typ-
ing issues, etc., but performance comparisons have been
brief, limited, and preliminary. It is widely believed
that generic programs run slower than hand-written
code.
At Utrecht University we are looking into the perfor-

mance of different generic programming libraries and
how to optimize them. We have confirmed that generic
programs, when compiled with the standard optimiza-
tion flags of the Glasgow Haskell Compiler (GHC), are
substantially slower than their hand-written counter-
parts. However, we have also found that advanced
optimization capabilities of GHC, such as inline prag-
mas and rewrite rules, can be used to further optimize
generic functions, often achieving the same efficiency
as hand-written code.
We are continuing our research in this topic and hope

to provide more information in the near future.

Further reading

http://dreixel.net/research/pdf/ogie.pdf

36

http://www.haskell.org/haskellwiki/Hp2any
http://code.google.com/p/hp2any/
http://www.fing.edu.uy/inco/proyectos/fusion
http://www.fing.edu.uy/inco/proyectos/fusion
http://www.fing.edu.uy/inco/proyectos/fusion/tool
http://www.fing.edu.uy/inco/proyectos/fusion/tool
http://hackage.haskell.org/package/hfusion
http://hackage.haskell.org/package/hfusion
http://dreixel.net/research/pdf/ogie.pdf

5.5 Boilerplate Removal

5.5.1 A Generic Deriving Mechanism for Haskell

Report by: José Pedro Magalhães
Participants: Atze Dĳkstra, Johan Jeuring, Andres Löh,

Simon Peyton Jones
Status: actively developed

Haskell’s deriving mechanism supports the automatic
generation of instances for a number of functions. The
Haskell 98 Report only specifies how to generate in-
stances for the Eq, Ord, Enum, Bounded, Show, and
Read classes. The description of how to generate in-
stances is largely informal. As a consequence, the
portability of instances across different compilers is not
guaranteed. Additionally, the generation of instances
imposes restrictions on the shape of datatypes, depend-
ing on the particular class to derive.
We have developed a new approach to Haskell’s

deriving mechanism, which allows users to specify
how to derive arbitrary class instances using standard
datatype-generic programming techniques. Generic
functions, including the methods from six standard
Haskell 98 derivable classes, can be specified entirely
within Haskell, making them more lightweight and
portable.
We have implemented our deriving mechanism to-

gether with many new derivable classes in the Utrecht
Haskell Compiler (→ 2.4). Currently we are work-
ing on implementing it in GHC as well, replacing
the existing (but rarely used) generic classes. The
underlying library for generic data representation,
generic-deriving, is available on Hackage.
The new mechanism will allow users to define their

own generic classes, making instantiation much sim-
pler. Consider enumeration:

class GEnum a where
genum :: [a]
default genum :: (Representable0 a,

Enum′ (Rep0 a))
⇒ [a]

genum = map to0 enum′

The Enum′ and GEnum classes are defined by the
generic library writer. The end user can then give in-
stances for his/her datatypes without defining an im-
plementation:

instance (GEnum a)⇒ GEnum (Maybe a)
instance (GEnum a)⇒ GEnum [a]

These instances are empty, and therefore use the
(generic) default implementation. This is as convenient
as writing deriving clauses, but allows the user to de-
fine more generic classes. This implementation relies on
the new functionality of generic default methods, like
genum above, which are like standard default methods

but allow for a different type signature. We hope to
have a prototype version of the new generic deriving
mechanism included in the upcoming GHC 7.2 release.

Further reading

http://dreixel.net/research/pdf/gdmh.pdf

5.5.2 Derive

Report by: Neil Mitchell
Status: v2.3.0

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect4.1.5.

5.6 Code Management

5.6.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent major release, Darcs 2.5, was in

November 2010. It provides faster repository-local op-
erations, and faster record with long patch histories,
among other bug fixes and features.
We are now looking forward to the release of Darcs

2.8 this summer, including Alexey Levan’s 2010 Google
Summer of Code work on optimised darcs get (using
the “optimize –http” command) and a few refinements
to Adolfo Builes’ cache reliability work. The Darcs 2.8
release is planned to include a faster and more human-
readable annotate command and potentially an exper-
imental rebase feature.
In addition to the upcoming release, we are excited

to be participating in Google Summer of Code 2011.
We have two projects this year, one to develop a bidi-
rectional bridge between Darcs and Git (and poten-
tially other VCSs), and the other to do some new ex-
ploratory work on primitive patch types for a future
Darcs 3. The bridge project will improve collaboration
between Darcs and Git users, allowing each to con-
tribute to projects hosted in the other’s VCS of choice.
The primitive patches work will allow us to implement

37

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving
http://www.haskell.org/ghc/docs/6.12.2/html/users_guide/generic-classes.html
http://hackage.haskell.org/package/generic-deriving
http://dreixel.net/research/pdf/gdmh.pdf
http://www.haskell.org/communities/05-2010/html/report.html#sect4.1.5
http://www.haskell.org/communities/05-2010/html/report.html#sect4.1.5

some ideas we have been discussing in the Darcs team
in recent months, in particular, separation of file den-
tifiers from file names and the separation of on-disk
patch contents from their in-memory representation.
Making a prototype implementation of these ideas will
give us a better idea how feasible they are in practice
and help us to identify the technical difficulities that
may be lurking around the corner.
The two projects are very exciting, and they repre-

sent a potential trend in Darcs away from catching up
with day-to-day issues and towards a more long-term
perspective. Meanwhile, we still have a lot progress to
make and are always open to contributions. Haskell
hackers, we need your help!
Darcs is free software licensed under the GNU GPL.

Darcs is a proud member of the Software Freedom Con-
servancy, a US tax-exempt 501(c)(3) organization. We
accept donations at http://darcs.net/donations.html.

Further reading

http://darcs.net

5.6.2 ipatch

Report by: Joachim Breitner
Status: working

ipatch brings some of Darcs’ specialities, most notably
the hunk selection and editing interface, to those who
work with plain patch files outside any version control
system. Currently, it allows you to interactively and
selectively apply a patch or to split a patch into several
patch files.
ipatch has not seen a lot of use yet and certainly

has rough edges. It can nevertheless be useful already.
It can be installed from hackage, and patches are, as
always, welcome.

Further reading

◦ http://hackage.haskell.org/package/ipatch
◦ https://www.joachim-breitner.de/blog/archives/

425-ipatch,-the-interactive-patch-editor.html

5.6.3 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
5.6.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
DarcsWatch continues to be used by the xmonad

project (→ 7.8.3), the Darcs project itself, and a few
developers. At the time of writing, it was tracking 42
repositories and 4069 patches submitted by 203 users.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

5.6.4 darcsden

Report by: Simon Michael
Participants: Alex Suraci
Status: suitable for casual use; low development

activity

http://darcsden.com is a free Darcs (→ 5.6.1) reposi-
tory hosting service, similar to patch-tag.com or (in
essence) github. The darcsden software is also avail-
able (on darcsden) so that anyone can set up a similar
service. darcsden was created by Alex Suraci.
The last Hackage release was in 2010. Alex is keeping

the existing service running, but has (mostly) moved
on to other projects. It is a viable hosting option for
smaller projects, with occasional outages/glitches.
The software is available under BSD license.

Further reading

http://darcsden.com

5.6.5 darcsum

Report by: Simon Michael
Participants: Dave Love, Simon Marlow
Status: occasional development; suitable for daily

use

darcsum is an emacs add-on providing an efficient, pcl-
cvs-like interface for the Darcs revision control sys-
tem (→ 5.6.1). It is especially useful for reviewing and
recording pending changes.
Simon Michael took over maintainership in 2010, and

tried to make it more robust with current Darcs. The
tool remains slightly fragile, as it depends on Darcs’
exact command-line output, and needs updating when
that changes. Dave Love has contributed a large num-
ber of cleanups.
darcsum is available under the GPL version 2 or later

from http://joyful.com/repos/darcsum.
It is due for a release, which will be 1.3. A new

maintainer for darcsum would be welcome — please
contact Simon Michael 〈simon@joyful.com〉 if interested.

Further reading

http://joyful.com/repos/darcsum/

38

http://darcs.net/donations.html
http://darcs.net
http://hackage.haskell.org/package/ipatch
https://www.joachim-breitner.de/blog/archives/425-ipatch,-the-interactive-patch-editor.html
https://www.joachim-breitner.de/blog/archives/425-ipatch,-the-interactive-patch-editor.html
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcsden.com
http://darcsden.com
http://joyful.com/repos/darcsum
mailto: simon at joyful.com
http://joyful.com/repos/darcsum/

5.6.6 Improvements to Cabal’s Test Support

Report by: Thomas Tuegel
Participants: Johan Tibell (Mentor)
Status: active development

As part of the Google Summer of Code 2010, Cabal’s
test support was improved to allow automated testing
of packages. The intent is to provide the technical en-
hancements necessary for wide adoption of automatic
testing in Haskell software, improving the software’s
general quality. The results of the Summer of Code
project were presented at the 2010 Haskell Implemen-
tors Workshop, but work is ongoing.
A basic test interface allowing package authors to

specify standalone test executables in their package de-
scription files will be available in Cabal 1.10 (→ 5.8.1).
Cabal can run these tests from the command line and
report the aggregate results of the test suite in human-
and machine-readable format. Work is in progress to
support a standard interface for modules containing
multiple test cases; this will make it possible for Ca-
bal to report on the results of individual cases within
a test suite. Future work on Hackage will make test
reports for uploaded packages available automatically.

Further reading

◦ http://cabaltest.blogspot.com
◦ http://haskell.org/haskellwiki/

HaskellImplementorsWorkshop/2010

5.6.7 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg, cabal, and cabal-dev.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

5.6.8 Hackage-Debian

Report by: Marco Gontĳo
Status: unconcluded

Hackage-Debian is a tool for creating a Debian repos-
itory with all, or almost all, of the packages in Hack-
age. It is highly based on the debian available at
http://hackage.haskell.org/package/debian. It should
build a snapshot of the Hackage database and then
track each new package added to build it on demand.

It is still under development, but the first release should
be announced soon.
A limitation of the first version being developed is

that it only builds the latest version of each library.
So, if a library depends on an older version of another
library, it will not be built. This is the reason why it
does not build all packages, but almost all of them.
Also, the first version will only deal with libraries,

but there are plans to also build programs.
The darcs repository for both hackage-debian

and the modified version of the debian package
that it uses are available at http://marcot.eti.br/
darcs/hackage-debian and http://marcot.eti.br/darcs/
haskell-debian.

5.7 Interfacing to other Languages

5.7.1 HSFFIG

Report by: Dmitry Golubovsky
Status: release

Haskell FFI Binding Modules Generator (HSFFIG) is
a tool which parses C include files (.h) and generates
Haskell Foreign Functions Interface import declarations
for all functions, suitable #define’d constants, enumer-
ations, and structures/unions (to access their mem-
bers). It is assumed that the GNU C Compiler and
Preprocessor are used. Auto-generated Haskell mod-
ules may be imported into applications to access foreign
libraries’ functions and variables in type-safe manner.
In the current version 1.1.3, speed of processing

#define’d constants is considerably improved by using
HSFFIG’s own C language syntax parser to determine
suitability of constants for FFI import. Previous ver-
sions of HSFFIG invoked an external C compiler for
this purpose.

Further reading

◦ The HSFFIG package on Hackage
http://hackage.haskell.org/package/HSFFIG

◦ The HSFFIG Tutorial
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial

◦ The FFI Imports Packaging Utility
http://www.haskell.org/haskellwiki/FFI_imports_
packaging_utility

5.8 Deployment

5.8.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard package system for Haskell soft-
ware. It specifies a standard way in which Haskell li-

39

http://cabaltest.blogspot.com
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2010
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2010
http://www.mew.org/~kazu/proj/cab/en/
http://hackage.haskell.org/package/debian
http://marcot.eti.br/darcs/hackage-debian
http://marcot.eti.br/darcs/hackage-debian
http://marcot.eti.br/darcs/haskell-debian
http://marcot.eti.br/darcs/haskell-debian
http://hackage.haskell.org/package/HSFFIG
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility

braries and applications can be packaged so that it is
easy for consumers to use them, or re-package them, re-
gardless of the Haskell implementation or installation
platform.
Hackage is a distribution point for Cabal packages.

It is an online database of Cabal packages which can be
queried via the website and client-side software such as
cabal-install. Hackage enables end-users to download
and install Cabal packages.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

Cabal-1.10 and cabal-install-0.10 were released re-
cently. They are available from hackage and are also
included in the current release of the Haskell Plat-
form (→ 2.1).
The major new feature for Cabal-1.10 is “cabal test”.

This is a feature to allow packages to define test suites.
There is an interface to allow build agents such as
cabal or a hackage buildbot to run the testsuites and
collect the results.
The biggest new feature in cabal-install-0.10 is that

it can now work with a wider range of targets. Rather
than just the package in the local directory or named
packages from hackage, it can now work with packages
in local directories and local and remote package tar-
balls. For example:

\$ cabal install ./ ./deps/pkgA/
./deps/pkgB-1.0.tar.gz

\$ cabal install
http://example.com/pkgC-1.0.tar.gz

This enables a collection of inter-dependent local
packages to be installed in one go. The support for
remote tarballs will enable developers to publish beta
versions and development snapshots in an ad-hoc way
using their own web hosting. This should reduce the
pressure to publish betas on hackage.

Looking forward

We have two GSoC students working on Cabal this
summer. Mikhail Glushenkov will be working on par-
allel builds: initially building independent packages
in parallel, and if time allows, replacing the serial
ghc --make with parallel invocations of ghc -c on in-
dividual modules. Sam Anklesaria will be implement-
ing “cabal repl” which will launch an interactive session
(i.e. GHCi) but with all the appropriate pre-processing
and context from the project’s .cabal file.
Progress on the new hackage-server has been slow

in the last 6 months. Volunteering to help with this
would be a great service to the community.

There are of course many improvements we want
to make to Cabal, cabal-install, and Hackage. We
have had a number of good contributions in the last
few months, and we have cleared the previous back-
log of patches. As ever our limiting factor remains the
amount of volunteer development time and maintainer
oversight. We would like to encourage people consider-
ing contributing to join the cabal-devel mailing list
so that we can increase development discussion and im-
prove collaboration. The bug tracker is well maintained
and it should be relatively clear to new contributors
what is in need of attention and which tasks are con-
sidered relatively easy.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.

org/
◦ Bug tracker: http://hackage.haskell.org/trac/

hackage/

5.8.2 Hackage 2.0

Report by: Matthew Gruen
Participants: Duncan Coutts
Status: in development

Hackage 2.0 is a rewrite of the original Hackage (→
5.8.1) infrastructure intended to provide additional fea-
tures and better handle Haskell’s sustained growth. It
was developed to a near-deployable state as part of
the 2010 Google Summer of Code program. Enhancing
Hackage’s role as a package repository, it adds metrics
for packages, means of communication between end-
users and maintainers, and tools to aid quality assur-
ance.
Currently, Hackage runs an Apache instance to store

packages. It is very stable, but also difficult to extend.
Plain text files are used to store information, so some
features which require plenty of in-memory data manip-
ulation are costly. The new codebase, called hackage-
server (in contrast to the current hackage-scripts), uses
the Happstack web framework (→ 4.2.6) for just about
everything. It employs happstack-state to store native
Haskell datatypes in-memory, with a separate file store
for the package tarballs themselves.

Features

The primary design goal of hackage-server is to provide
a modular, extensible infrastructure for any conceivable
feature that might be added to Hackage. It has full
feature parity with hackage-scripts and more, with a
RESTful backend supporting multiple content formats.
Reverse dependencies, editable tags, and download

counts have all been implemented to help locate use-
ful libraries out of thousands. Deprecation, user-
submitted build reports, and a user groups system are

40

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/

intended to make maintainance easier. There is also the
ability to post packages on a beta-testing index before
publishing it on Hackage proper.

Roadmap

The eventual goal is to have the hackage-server code-
base serving packages at http://hackage.haskell.org. It
is much closer to this now than half a year ago! Further
work involves improving performance in both time and
memory.
The first major deployment will be a simple mir-

ror for the main Hackage on the sparky server (at
sparky.haskell.org, port 8080) which Cabal can set as
a remote repository. Afterwards, the mirror will be
open for editing by anyone with an account on the main
Hackage. The full switchover will occur as soon as we
are confident about the stability.

Further reading

◦ Wiki documentation: http://hackage.haskell.org/
trac/hackage/wiki/HackageDB/2.0

◦ Code: darcs get http://code.haskell.org/
hackage-server

5.8.3 Capri

Report by: Dmitry Golubovsky
Status: experimental

Capri (abbreviation of CAbal PRIvate) is a wrapper
program on top of cabal-install to operate it in project-
private mode. In this mode, there is no global or user
package databases; only one package database is de-
fined, private to the project, located under the root
directory of a project.
Capri invokes cabal-install and ghc-pkg in the way

that only a project’s private package database is visible
to them. Starting with a minimally required set of
packages, all necessary dependencies will be installed
per project, not affecting user or global databases. This
helps maintain a clean build environment without the
risk of accidental installation of conflicting versions of
the same package which sometimes happens with the
global packages database.
Capri is mainly intended to build executable pro-

grams. It depends on certain features of GHC, and is
not usable with other Haskell compilers.

Further reading

◦ The Capri package on Hackage
http://hackage.haskell.org/package/capri

◦ The Capri Tutorial
http://www.haskell.org/haskellwiki/Capri

5.8.4 Shaker

Report by: Anthonin Bonnefoy
Status: active development

Shaker is an interactive build tool which allows to com-
pile and execute tests on a Haskell project and provides
several features like:

◦ Continuous mode: In continuous mode, an action
(compile or test) is triggered by source changes.

◦ Automatic test discovery: Shaker discovers and
executes tests via the GHC API. All exported
QuickCheck properties and HUnit test cases can be
executed by Shaker.

◦ Selectable test execution: One or several tests can
be selected for execution using regular expressions.

◦ test-framework integration for test execution

◦ Easy configuration: Shaker reuses cabal configura-
tion so there is no need for extra configuration if
your project is already cabalized.

Shaker can be used to type check your code as you edit
it; With the ~compile command, a compilation will be
executed as soon as a source change is detected. You
can also execute a specific test on source change with
~test aTestName.

Future plans

Shaker is incompatible with several projects due to
some special cases not managed, and current develop-
ment aims to make it compatible with more projects.
After this, the next feature will be the possibility to
execute only previously failing tests.

Further reading

◦ http://hackage.haskell.org/package/shaker
◦ http://github.com/bonnefoa/Shaker

41

http://hackage.haskell.org
sparky.haskell.org
http://hackage.haskell.org/trac/hackage/wiki/HackageDB/2.0
http://hackage.haskell.org/trac/hackage/wiki/HackageDB/2.0
http://code.haskell.org/hackage-server
http://code.haskell.org/hackage-server
http://hackage.haskell.org/package/capri
http://www.haskell.org/haskellwiki/Capri
http://hackage.haskell.org/package/shaker
http://github.com/bonnefoa/Shaker

6 Libraries

6.1 Processing Haskell

6.1.1 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van
Keeken implemented a library to data mine logged
Helium (http://www.haskell.org/communities/05-2009/
html/report.html#sect2.3) programs to investigate as-
pects of how students program Haskell, how they
learn to program, and how good Helium is in generat-
ing understandable feedback and hints. The software
can be downloaded from http://www.cs.uu.nl/wiki/bin/
view/Hage/Neon, which also gives some examples of
output generated by the system. The downloads only
contain a small sample of loggings, but it will allow
programmers to play with it. This work has been con-
tinued by Mathĳs Swint, but the results of his work
have told us that although we do have a lot of data, we
need quite a bit more in order to get significant results
from Neon.

6.1.2 mueval

Report by: Gwern Branwen
Participants: Andrea Vezzosi, Daniel Gorin, Spencer

Janssen, Adam Vogt
Status: active development

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect5.3.3.

6.2 Parsing and Transforming

6.2.1 The grammar-combinators Parser Library

Report by: Dominique Devriese
Status: partly functional

The grammar-combinators library is an experimen-
tal next-generation parser library written in Haskell
(LGPL license). The library features much of the power
of a parser generator like Happy or ANTLR, but with
the library approach and most of the benefits of a
parser combinator library.
The project’s initial release was in September 2010.

A paper about the main idea is being published at the
PADL’11 conference and an accompanying technical re-
port with more implementation details is available on-
line. The library is published on Hackage under the
name grammar-combinators.
We believe this library is an ideal place for inno-

vations in practical functional parsing libraries. The
library adds substantial fundamental power to tradi-
tional parser combinator libraries and opens up the

path to implementing many parsing techniques that
were previously impossible. We believe people inter-
ested in parsing techniques will find the library ideal
for implementing their ideas and we encourage all con-
tributions.
However, the library still needs a lot of love before

it is suited for mainstream use. Performance is not
ideal and many real-world features are missing. People
interested to work on these topics are very welcome to
contact us!

Further reading

http://projects.haskell.org/grammar-combinators/

6.2.2 language-python

Report by: Bernie Pope
Status: stable

Language-python is a Haskell library for lexical analy-
sis, parsing, and pretty printing Python code. It sup-
ports versions 2.x and 3.x of Python. The parser is im-
plemented using the happy parser generator, and the
alex lexer generator. It supports source accurate span
information and optional parsing of comments. A sepa-
rate package called language-python-colour is available
on Hackage which demonstrates the use of the library
to render Python source in coloured XHTML. the li-
brary is also used for the syntactic analysis component
of the berp Python compiler (→ 4.4.3).

Further reading

◦ http://hackage.haskell.org/package/language-python
◦ http://github.com/bjpop/language-python

6.2.3 Loker

Report by: Roman Cheplyaka
Participants: Alexander Batischev
Status: in development

Loker is a collection of programs to deal with UNIX
Shell scripts. It will include a parser, a static analysis
tool, and a compiler. The distinctive feature of the
project is strong compliance to the POSIX standard.
All the parts are written in Haskell.
Currently the main focus is on the correctness of the

parser and the quality of its error messages. The work
has led to several patches to the Parsec 3 library, which
improve its error reporting.

42

http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.haskell.org/communities/05-2010/html/report.html#sect5.3.3
http://www.haskell.org/communities/05-2010/html/report.html#sect5.3.3
http://projects.haskell.org/grammar-combinators/
http://hackage.haskell.org/package/language-python
http://github.com/bjpop/language-python

Further reading

http://github.com/feuerbach/loker

6.2.4 epub-metadata

Report by: Dino Morelli
Status: stable, actively developed

Library for parsing and manipulating ePub files and
OPF package data. An attempt has been made here
to very thoroughly implement the OPF Package Doc-
ument specification.
epub-metadata is available from Hackage, the Darcs

repository below, and also in binary form for Arch
Linux through the AUR.
See also epub-tools (→ 7.8.10).

Further reading

◦ Project page: http://ui3.info/d/proj/epub-metadata.
html

◦ Source repository: darcs get http://ui3.info/darcs/
epub-metadata

6.2.5 ChristmasTree

Report by: Marcos Viera
Participants: Doaitse Swierstra, Eelco Lempsink
Status: experimental

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.5.7.

6.2.6 First Class Syntax Macros

Report by: Marcos Viera
Participants: Doaitse Swierstra, Atze Dĳkstra, Arthur

Baars
Status: experimental

See: http://haskell.org/communities/05-2010/html/
report.html#sect5.4.2.

6.2.7 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

The previous extension for recognizing merging parsers
was generalized so now any kind of applicative and
monadic parsers can be merged in an interleaved way.
As an example take the situation where many different
programs write log entries into a log file, and where
each log entry is uniquely identified by a transaction
number (or process number) which can be used to dis-
tinguish them. E.g., assume that each transaction con-
sists of an a, a b and a c action, and that a digit is
used to identify the individual actions belonging to the

same transaction; the individual transactions can now
be recognized by the parser:

pABC :: Grammar String
pABC = (λa d → d : a)<$> pA<∗> (pDigit′ >>=

λd → pB ∗> mkGram (pSym d) ∗>
pC ∗>mkGram (pSym d)

)

Now running many merged instances of this parser on
the input returns the list of first lines prefixed by their
number:

run (pmMany(pABC)) "a2a1b1b2c2a3b3c1c3"
Result: ["2a","1a","3a"]

Furthermore the library was provided with many
more examples in two modules in the Demo directory.

Features

◦ Much simpler internals than the old li-
brary (http://haskell.org/communities/05-2009/
html/report.html#sect5.5.8).

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the input
and provide excellent error messages.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library provides both an applicative interface
and a monadic interface.

◦ No need for try-like constructs which makes writing
Parsec based parsers tricky.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative ineterface.

Future plans

The next version will contain a check for grammars
being not left-recursive, thus taking away the only re-
maining source of surprises when using parser combina-
tor libraries. This makes the library great for teaching
environments too. Future versions of the library, us-
ing even more abstract interpretation, will make use of
computed look-ahead information to speed up the pars-
ing process further. Gradually software from Utrecht
will be moving to use the new library uu-parsinglib.

43

http://github.com/feuerbach/loker
http://ui3.info/d/proj/epub-metadata.html
http://ui3.info/d/proj/epub-metadata.html
http://ui3.info/darcs/epub-metadata
http://ui3.info/darcs/epub-metadata
http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://haskell.org/communities/05-2010/html/report.html#sect5.4.2
http://haskell.org/communities/05-2010/html/report.html#sect5.4.2
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list at 〈parsing@cs.uu.
nl〉. More information can be found at http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators.

6.2.8 Regular Expression Matching with Partial
Derivatives

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu
Status: stable

We have substantially improved the performance of our
matching algorithms. The latest implementation can
be downloaded via hackage. A paper describing our
approach has been submitted to ICFP 2011.

Further reading

◦ http://hackage.haskell.org/package/regex-pderiv
◦ http://sulzmann.blogspot.com/2010/04/

regular-expression-matching-using.html

6.3 Mathematical Objects

6.3.1 normaldistribution: Minimum Fuss Normally
Distributed Random Values

Report by: Björn Buckwalter
Status: stable

Normaldistribution is a new package that lets you pro-
duce normally distributed random values with a min-
imum of fuss. The API builds upon, and is largely
analogous to, that of the Haskell 98 Random module
(more recently System.Random). Usage can be as sim-
ple as: sample ← normalIO. For more information and
examples see the package description on Hackage.

Further reading

http://hackage.haskell.org/package/normaldistribution

6.3.2 dimensional: Statically Checked Physical
Dimensions

Report by: Björn Buckwalter
Status: active, stable core with experimental extras

Dimensional is a library providing data types for per-
forming arithmetics with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity

of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage within
the frame of the si. Example:

d :: Fractional a ⇒ Time a → Length a
d t = a /_2 ∗ t ˆ pos2

where a = 9.82 ∗˜ (meter / second ˆ pos2)

The dimensional library is stable with units being
added on an as-needed basis. The primary documen-
tation is the literate Haskell source code. The wiki on
the project web site has several usage examples to help
with getting started.
Ongoing experimental work includes:

◦ Support for user-defined dimensions and a proof-of-
concept implementation of the cgs system of units.

◦ dimensional-vectors — a rudimentary linear algebra
library which statically tracks the sizes of vectors
and matrices as well as the physical dimensions of
their elements on a per element basis, disallowing
non-sensical operations. This library makes it very
difficult to accidentally implement, e.g., a Kalman
filter incorrectly. My work on dimensional-vectors is
need-driven and tends to occur in spurts.

◦ dimensional-experimental — a library in heavy flux
of which the most interesting feature is probably au-
tomatic differentiation of functions involving physi-
cal quantities. Example:

v :: Fractional a ⇒ Time a → Velocity a
v t = diff d t

The core library, dimensional, can be installed off
Hackage using cabal. The experimental packages can
be cloned off of Github.
Dimensional relies on numtype for type-level integers

(e.g., pos2 in the above example), ad for automatic dif-
ferentiation, and HList (→ 6.4.1) for type-level vector
and matrix representations.

Further reading

◦ http://dimensional.googlecode.com
◦ https://github.com/bjornbm/dimensional-vectors
◦ https://github.com/bjornbm/

dimensional-experimental

6.3.3 AERN-Real and Friends

Report by: Michal Konečný
Participants: Jan Duracz
Status: experimental, actively developed

44

mailto: doaitse at swierstra.net
mailto: parsing at cs.uu.nl
mailto: parsing at cs.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://hackage.haskell.org/package/regex-pderiv
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
http://hackage.haskell.org/package/normaldistribution
http://dimensional.googlecode.com
https://github.com/bjornbm/dimensional-vectors
https://github.com/bjornbm/dimensional-experimental
https://github.com/bjornbm/dimensional-experimental

AERN stands for Approximating Exact Real Numbers.
We are developing a family of libraries that will provide:
◦ a reliable and fast arbitrary precision correclty
rounded interval arithmetic, including both stan-
dard and inverted intervals with Kaucher arithmetic

◦ arbitrary precision arithmetic of polynomial inter-
vals to
– automatically reduce overestimations in inter-

val computations
– efficiently support validated numerical integra-

tion

◦ a type class hierarchy for validated and exact com-
putation, featuring
– standard mathematical structures such as

posets and lattices extended to take account of
rounding errors and partially decided relations
such as equality

– separate treatment of numerical order and in-
terval refinement order

– ability to increase computational effort to re-
duce the effect of rounding and partiality, con-
verging to zero with infinite effort

– extensive set of QuickCheck properties for each
type class, enabling automatic checking of, e.g.,
algebraic properties such as associativity ex-
tended to take rounding into account

◦ a framework for distributed dataflow exact numeri-
cal computation with tidy exact semantics based on
Domain Theory
There are stable older versions of the libraries on

Hackage but these lack the type classes described
above. We are currently redesigning and rewriting the
libraries from scratch, with an imminent release of an
interval arithmetic with Double endpoints. A release
supporting MPFR endpoints should follow in the sum-
mer of 2011 and polynomial arithmetic with an efficient
core written in C is also being developed. All develop-
ment is open and we welcome contributions.

Further reading

http://code.google.com/p/aern/

6.3.4 hmatrix

Report by: Alberto Ruiz
Participants: Vivian McPhail
Status: stable, maintained

hmatrix is a purely functional interface to numeri-
cal linear algebra, internally implemented using GSL,
BLAS, and LAPACK. Recent changes include using
by default Data.Vector.Storable from Roman Leshchin-
skiy’s vector package. Future work includes a possible
separation of the library into smaller packages.

Further reading

http://perception.inf.um.es/hmatrix

6.4 Data Types and Data Structures

6.4.1 HList — A Library for Typed Heterogeneous
Collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect5.6.1.

6.4.2 Persistent

Report by: Greg Weber
Participants: Michael Snoyman
Status: stable

Persistent is a universal, type-safe data store inter-
face for Haskell. Haskell has many different database
bindings available. However, most of these have little
knowledge of a schema and therefore do not provide
useful static guarantees. They also force database-
dependent interfaces and data structures on the pro-
grammer. Haskellers have attempted a more revolu-
tionary route of creating Haskell specific data stores to
get around these flaws. This allows one to easily store
any Haskell type, and a great option for certain use
cases. However, they constrain one to the storage tech-
niques provided by the library, do not interface well
with other languages, and may not have easy and effi-
cient techniques for querying data. In contrast, Persis-
tent allows us to choose among existing databases that
are highly tuned for different data storage use cases, to
interoperate with other programming languages, and
to use a safe, but highly productive query interface.
Recently, Persistent has seen 2 major feature addi-

tions of joins and MongoDB support.
Persistent was always designed with newer databases

(NoSQL) in mind, but only a Sqlite and Postgresql
backend were implemented. The lastest release adds
alpha support for MongoDB, which really showcases
the advantages of Persistent. By default, MongoDB
is schema-less, and the Haskell driver supports this as
it should because some use cases can take advantage
of this. However, for most use cases there is a known
schema, and you are always a typo away from inserting
the wrong key or querying a key that does not exist.
With Persistent you know at compile time that this will
not occur. You also get automatic conversion from the
driver type to a normal Haskell data type.
This release also adds application level joins for all

backends and SQL joins for the SQL backends.

Future plans

There are 3 main directions for Persistent:

45

http://code.google.com/p/aern/
http://perception.inf.um.es/hmatrix
http://www.haskell.org/communities/05-2010/html/report.html#sect5.6.1
http://www.haskell.org/communities/05-2010/html/report.html#sect5.6.1

◦ Improvements that work across all Persistent back-
ends (better application-level joins)

◦ Better database-specific integration (better SQL
joins)

◦ Adding more database backends
We want to stress that while most of Persistent devel-
opment does occur within the Yesod (→ 4.2.8) commu-
nity, there is nothing specific to Yesod about it. There
is nothing stopping you from reaping its benefits in a
different web framework, or on a project that has noth-
ing to do with web development.

Further reading

http://yesodweb.com/book/persistent

6.5 Generic and Type-Level Programming

6.5.1 Unbound

Report by: Brent Yorgey
Participants: Stephanie Weirich, Tim Sheard
Status: active development

Unbound is a new domain-specific language and library
for working with binding structure. Implemented on
top of the RepLib generic programming framework, it
automatically provides operations such as alpha equiv-
alence, capture-avoiding substitution, and free variable
calculation for user-defined data types, requiring only
a tiny bit of boilerplate on the part of the user. It fea-
tures a simple yet rich combinator language for bind-
ing specifications, including support for pattern bind-
ing, type annotations, recursive binding, nested bind-
ing, and multiple atom types.
Work is ongoing to extend Unbound with support

for generalized abstract data types (GADTs) and other
features.

Further reading

◦ http://byorgey.wordpress.com/2011/03/28/
binders-unbound/

◦ http://hackage.haskell.org/package/unbound
◦ http://code.google.com/p/replib/

6.5.2 FlexiWrap

Report by: Iain Alexander
Status: prototype released

A library of flexible newtype wrappers which simplify
the process of selecting appropriate typeclass instances,
which is particularly useful for composed types.

A proof-of-concept prototype has been released on
Hackage. Work is ongoing to flesh out the typeclass
instances available and provide documentation.

6.5.3 uniplate

Report by: Neil Mitchell

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect5.8.1.

6.5.4 Generic Programming at Utrecht University

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Sean Leather
Status: actively developed

One of the research themes investigated within the
Software Technology Center in the Department of In-
formation and Computing Sciences at Utrecht Univer-
sity is generic programming. Over the last 10 years, we
have played a central role in the development of generic
programming techniques, languages, and libraries.
Currently we maintain a number of generic pro-

gramming libraries and applications. We report
most of them in this entry; emgm was reported on
before (http://haskell.org/communities/05-2009/html/
report.html#sect5.9.3), and our generic deriving mech-
anism has its own entry (→ 5.5.1).

instant-generics Using type families and type
classes in a way similar to multirec and regular,
instant-generics is yet another approach to
generic programming, supporting a large variety of
datatypes and allowing the definition of type-indexed
datatypes. It was first described by Chakravarty
et al., and forms the basis of one of our rewriting
libaries.

multirec This library represents datatypes uniformly
and grants access to sums (the choice between con-
structors), products (the sequence of constructor ar-
guments), and recursive positions. Families of mu-
tually recursive datatypes are supported. Functions
such as map, fold, show, and equality are provided as
examples within the library. Using the library func-
tions on your own families of datatypes requires some
boilerplate code in order to instantiate the frame-
work, but is facilitated by the fact that multirec
contains Template Haskell code that generates these
instantiations automatically.
The multirec library can also be used for type-
indexed datatypes. As a demonstration, the zipper
library is available on Hackage. With this datatype-
generic zipper, you can navigate values of several
types.
We are still planning to extend the multirec li-
brary with support for parameterized datatypes and
datatype compositions.

46

http://yesodweb.com/book/persistent
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://hackage.haskell.org/package/unbound
http://code.google.com/p/replib/
http://www.haskell.org/communities/05-2010/html/report.html#sect5.8.1
http://www.haskell.org/communities/05-2010/html/report.html#sect5.8.1
http://www.cs.uu.nl/wiki/Center
http://www.cs.uu.nl/
http://www.cs.uu.nl/
http://www.uu.nl/EN
http://www.uu.nl/EN
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://haskell.org/communities/05-2009/html/report.html#sect5.9.3
http://haskell.org/communities/05-2009/html/report.html#sect5.9.3
http://www.cse.unsw.edu.au/~chak/project/generics/
http://www.cse.unsw.edu.au/~chak/project/generics/
http://hackage.haskell.org/package/zipper

regular While multirec focuses on support for mu-
tually recursive regular datatypes, regular supports
only single regular datatypes. The approach used is
similar to that of multirec, namely using type fam-
ilies to encode the pattern functor of the datatype
to represent generically. There have been no ma-
jor releases of the regular or regular-extras pack-
ages on Hackage since the last report. The current
versions provide a number of typical generic func-
tions, but also some less well-known but useful func-
tions: deep seq, QuickCheck’s arbitrary and coarbi-
trary, and binary’s get and put.

syb Scrap Your Boilerplate (syb) has been supported
by GHC since the 6.0 release. This library is based on
combinators and a few primitives for type-safe cast-
ing and processing constructor applications. It was
originally developed by Ralf Lämmel and Simon Pey-
ton Jones. Since then, many people have contributed
with research relating to syb or its applications.

Since syb has been separated from the base package,
it can now be updated independently of GHC. We
have recently released version 0.3 on Hackage, which
has some minor extensions and fixes.

Annotations We presented two applications of generic
annotations at the Workshop on Generic Program-
ming 2010: selections and storage. In the former
we use annotations at every recursive position of a
datatype to allow for inserting position information
automatically. This allows for informative parsing
error messages without the need for explicitly chang-
ing the datatype to contain position information. In
the latter we use the annotations as pointers to lo-
cations in the heap, allowing for transparent and ef-
ficient data structure persistency on disk.

Rewriting We also maintain two libraries for generic
rewriting: a simple, earlier library based on
regular, and the guarded rewriting library, based on
instant-generics. The former allows for rewriting
only on regular datatypes, while the latter supports
more datatypes and also rewriting rules with precon-
ditions.

We also continue to look at benchmarking and
improving the performance of different libraries for
generic programming (→ 5.4.2).

Further reading

http://www.cs.uu.nl/wiki/GenericProgramming

6.6 User Interfaces

6.6.1 Gtk2Hs

Report by: Axel Simon
Participants: Andy Stewart and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ High quality vector graphics using Cairo

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

Gtk2Hs has seen little activity and a perceived neg-
ative publicity since its web-site disappeared with the
relocation of the Haskell server. As time permits, we
are trying to get the web-site up and running again
and recover access to our repositories. Pending this,
we will apply all the good patches people sent in and
do a release that works out-of-the box with GHC 7.

Further reading

◦ News, downloads, and documentation (currently un-
available): http://haskell.org/gtk2hs/

◦ Development version: darcs get http://code.
haskell.org/gtk2hs/

6.6.2 Haskeline

Report by: Judah Jacobson
Status: active development

The Haskeline library provides a user interface for line
input in command-line programs. It is similar in pur-
pose to readline or editline, but is written in Haskell
and aims to be more easily integrated into other Haskell

47

http://hackage.haskell.org/package/regular
http://hackage.haskell.org/package/regular-extras
http://web.archive.org/web/20080622204226/http://www.cs.vu.nl/boilerplate/
http://hackage.haskell.org/package/syb
http://portal.acm.org/citation.cfm?id=1863495.1863501
http://portal.acm.org/citation.cfm?id=1863495.1863500
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting
http://www.cs.uu.nl/wiki/GenericProgramming/GuardedRewriting
http://www.cs.uu.nl/wiki/GenericProgramming
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/

programs. A simple, monadic API allows this library to
provide guarantees such as restoration of the terminal
settings on exit and responsiveness to control-c events.
Haskeline supports Unicode and runs both on the na-

tive Windows console and on POSIX-compatible sys-
tems. It has a rich, user-customizable line-editing in-
terface. Recent improvements include support for lan-
guages with wide characters and several optimizations
for speed and responsiveness. Additionally, the API
now provides hidden password entry and allows more
control over the choice between terminal-style and file-
style interactions.

Further reading

◦ http://trac.haskell.org/haskeline
◦ http://hackage.haskell.org/package/haskeline

6.6.3 CmdArgs

Report by: Neil Mitchell
Status: released

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect5.9.2.

6.7 Graphics

6.7.1 Assimp

Report by: Joel Burget
Status: actively developed

Assimp is a set of bindings to the Assimp Open Asset
Import Library. This library can import many different
types of 3D models for use in graphics. The full list
of formats is available at the project website (linked
below) and at the git repo for the project. Assimp is
being developed alongside the Cologne ray tracer (→
7.4.5) but could be useful in any 3D graphics project.

Further reading

◦ https://github.com/joelburget/assimp
◦ http://assimp.sourceforge.net

6.7.2 plot/plot-gtk

Report by: Vivian McPhail
Status: Active Development

plot is an embedded domain-specific language for the
generation of figures. plot-gtk is a driver that pro-
vides a GTK widget to display figures and also a wrap-
per that allows interactive plotting sessions with GHCi.
The package generates instructions for the Cairo ren-
derer, which can be used to output figures in PS, PDF,
PNG, and SVG file formats.

The motivation for this package is to provide a tool
both for publication quality graphics and for the in-
teractive visualisation of mathematical objects as a
Haskell replacement for octave/gnuplot, matlab, and
other non-Haskell numerical tools.
Users can plot functions of type Double -> Double

and data series of type Vector Double, which are
compatible with the high-performance vector package
when hmatrix (→ 6.3.4) is installed with the -fvector
flag.
Features:
◦ simple monadic interface to configure each figure and

elements
◦ title/subtitle
◦ an array of plots in each figure with optional headers
◦ configurable axes and ticks
◦ configurable ranges
◦ linear, log, semilog ranges
◦ plot vectors or (Double -> Double) functions
◦ line/point/linepoint/impulse/step/area plots
◦ bar/histogram plots
◦ optional error bars
◦ mix and match data series types and formatting
◦ fully configurable text elements
◦ greyscale matrix visualisation
The plot/plot-gtk packages have just had their ini-
tial release and are available from Hackage.
Work is being done to:
◦ improve tick labelling and formatting
◦ reduce burden on the user for bar chart layout
◦ give elements layout tags for improved customisation
◦ extend the Simple interface
3D plots are planned for a future release.

Further reading

◦ http://hackage.haskell.org/package/plot
◦ http://hackage.haskell.org/package/plot-gtk

6.7.3 Craftwerk

Report by: Malte Harder
Participants: Jannis Harder
Status: active development

Craftwerk is a 2D vector graphic library. The motiva-
tion was to have a graphic library that is able to gener-
ate output which can be embedded into LATEX as well
as support for rendering with Cairo. Thus the library
separates the graphic’s data structure from any context
dependency and the aim is to support various drivers.
Currently a driver for output with the TikZ pack-
age (http://sourceforge.net/projects/pgf/) for LATEX is
available. Using the additional craftwerk-cairo and
craftwerk-gtk packages, direct rendering into PDF
files or GTK widgets is possible. The craftwerk-gtk
package also provides functions to generate simple user
interfaces for interactive graphics.

48

http://trac.haskell.org/haskeline
http://hackage.haskell.org/package/haskeline
http://www.haskell.org/communities/05-2010/html/report.html#sect5.9.2
http://www.haskell.org/communities/05-2010/html/report.html#sect5.9.2
https://github.com/joelburget/assimp
http://assimp.sourceforge.net
http://hackage.haskell.org/package/plot
http://hackage.haskell.org/package/plot-gtk
http://sourceforge.net/projects/pgf/

Above, two examples are shown. In the first, you can
see a screenshot of the GTK interface for interactive
graphics showing a Sierpiński triangle, and the second
is a simple example of a tree rendered with the Cairo
driver. Graphics or figures can be created in a hier-
archical fashion including the application of styles and
decorations to subnodes. The current functionality in-
cludes almost the complete Cairo function set extended
by arrow tips and a few primitives. The same function
set is supported for TikZ output, and graphics gener-
ated with the two drivers match closely. Immediate
development tasks are:
◦ Improvement of rendering speed in the Cairo driver.
◦ Better and unified text rendering capabilities.
◦ Refactoring of the UI module towards better usabil-

ity.
Besides additional functionality, a long term goal is

to support other drivers like Wumpus, Haha (ASCII
rendering) or OpenGL. Craftwerk could also serve as
an intermediate layer for libraries like plot or chart
to enable LATEX export. At the moment the library
is still at a preliminary stage and the next step is a
consolidation of a basic feature set. Any contributions
or ideas are welcome and the latest code as well as
experiments with other drivers are available on GitHub.

Further reading

◦ http://hackage.haskell.org/package/craftwerk-0.1
◦ http://mahrz.github.com/craftwerk

6.7.4 LambdaCube

Report by: Csaba Hruska
Status: experimental, active development

LambdaCube is a 3D rendering engine entirely written
in Haskell.
The main goal of this project is to provide a modern

and feature rich graphical backend for various Haskell
projects, and in the long run it is intended to be a
practical solution even for serious purposes. The en-
gine uses Ogre3D’s (http://www.ogre3d.org) mesh and
material file format, therefore it should be easy to find
or create new content for it. The code sits between the
low-level C API (raw OpenGL, DirectX or anything

equivalent; the engine core is graphics backend agnos-
tic) and the application, and gives the user a high-level
API to work with.
The most important features are the following:
◦ loading and displaying Ogre3D models
◦ resource management
◦ modular architecture
If your system has OpenGL and GLUT installed,

the lambdacube-examples package should work out of
the box. The engine is also integrated with the Bullet
physics engine (→ 7.8.5), and you can find a running
example in the lambdacube-bullet package.

Since the last update, there was another wave of
refactoring and expansion. The most significant de-
velopments are the following:
◦ removed dependency on the high-level OpenGL bind-

ings: from now on, the library only builds on
OpenGLRaw, and the OpenGL specific code is limited
to the GL render system module, which we plan to
move into a separate package;

◦ switched to the vect library (from Vec), which was
created for 3D applications from the get-go;

◦ simplified support for procedurally created content
through vector vertex buffers, which subsumes user-
supplied loaders for any format as a special case;

◦ introduced the LCM (LambdaCube Monad) abstrac-
tion, which hides the management of the world state
and generally simplifies the engine code;

◦ more efficient scene management with frustum
culling;

◦ finally added support for light sources.
Another major step forward is the creation of a com-

plex example, which serves multiple purposes: it pro-
vides a test bed for the engine and the physics bindings,
and it is also aimed to be a well-documented tutorial
for future users of the library. The example will be an
enhanced remake of the old racing game Stunts.
Finally, it is worth mentioning that we expect to get

farther from the Ogre3D roots in the future, as the
engine is evolving into a more compact and extensible
architecture.
Everyone is invited to contribute! You can help

the project by playing around with the code, thinking
about API design, finding bugs (well, there are a lot of
them anyway), creating more content to display, and

49

http://hackage.haskell.org/package/craftwerk-0.1
http://mahrz.github.com/craftwerk
http://www.ogre3d.org

generally stress testing the library as much as possible
by using it in your own projects.

Further reading

◦ http://www.haskell.org/haskellwiki/
LambdaCubeEngine

◦ http://en.wikipedia.org/wiki/Stunts_(video_game)

6.7.5 diagrams

Report by: Brent Yorgey
Participants: Ryan Yates
Status: alpha, active development

The diagrams library provides an embedded domain-
specific language for declarative drawing. The overall
vision is for diagrams to become a viable alternative
to DSLs like MetaPost or Asymptote, but with the ad-
vantages of being declarative, describing what to draw,
not how to draw it, and embedded, putting the entire
power of Haskell (and Hackage) at the service of dia-
gram creation.

Since the last HCAR, the library has undergone a
complete rewrite, and now features an elegant founda-
tional model, pluggable rendering backends, and sup-
port for arbitrary vector spaces.

Future plans

A preview release is imminent, with a full-featured re-
lease including extensive documentation and tutorials
planned by the end of the summer. Now that the core
library has mostly stabilized, we hope to attract many
contributors to expand the standard library and build
higher-level drawing modules on top of the flexible core.

Further reading

http://code.google.com/p/diagrams

6.7.6 ChalkBoard

Report by: Andy Gill
Participants: Kevin Matlage
Status: ongoing

ChalkBoard is a domain specific language for describing
images. The language is uncompromisingly functional
and encourages the use of modern functional idioms.
The novel contribution of ChalkBoard is that it uses
off-the-shelf graphics cards to speed up rendering of
our functional description. We always intended to use
ChalkBoard to animate educational videos, as well as
for processing streaming videos. Since the last HCAR
report, we have added a new animation language, based
round a new applicative functor, Active. It has been
called Functional Reactive Programming, without the
reactive part! The paper “Every Animation Should
Have a Beginning, a Middle, and an End” talks about
this addition.
A release was scheduled for November 2010.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard

6.8 Text and Markup Languages

6.8.1 HaTeX

Report by: Daniel Díaz
Status: active development

HATEX is a library with the purpose of providing the
possibility of integrating the script of a LATEX file in a
program written in Haskell. The integration takes place
through the well known monadic transformer WriterT,
which stores in its state the LATEX code. The library
provides a set of functions for adding the code, and
you can include your monadic computations making
use of a lifting function. HATEX is really easy to use
if you know LATEX already, and only a little effort is
enough otherwise. The documentation will help to
learn to utilize and understand this library, with the
initial guide (to be found in HaskellWiki), the extended
guide “HATEX, a monadic perspective of LATEX”, or the
API documentation. The latter is not completed yet,
due to the large number of entities. But, if you know
LATEX, you can help to solve this.

Further reading

http://ddiaz.asofilak.es/packages/HaTeX

6.8.2 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 9.1)

50

http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://en.wikipedia.org/wiki/Stunts_(video_game)
http://code.google.com/p/diagrams
http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard
http://ddiaz.asofilak.es/packages/HaTeX

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml and HXML, but introduces a more general ap-
proach for processing XML with Haskell. The process-
ing model is based on arrows. The arrow interface is
more flexible than the filter approach taken in the ear-
lier HXT versions and in HaXml. It is also safer; type
checking of combinators becomes possible with the ar-
row approach.
HXT is partitioned into a collection of smaller pack-

ages: The core package is hxt. It contains a validating
XML parser, an HTML parser, filters for manipulating
XML/HTML and so called XML pickler for converting
XML to and from native Haskell data.
Basic functionality for character handling

and decoding is separated into the packages
hxt-charproperties and hxt-unicode. These
packages may be generally useful even for non XML
projects.
HTTP access can be done with the help of the pack-

ages hxt-http for native Haskell HTTP access and
hxt-curl via a libcurl binding. An alternative lazy non
validating parser for XML and HTML can be found in
hxt-tagsoup.
The XPath interpreter is in package hxt-xpath, the

XSLT part in hxt-xslt and the Relax NG valida-
tor in hxt-relaxng. For checking the XML Schema
Datatype definitions, also used with Relax NG, there
is a separate and generally useful regex package
hxt-regex-xmlschema.
The old HXT approach working with filter

hxt-filter is still available, but currently only with
hxt-8. It has not (yet) been updated to the hxt-9 mayor
version.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based on

Tagsoup (→ 6.8.3)
◦ Binding to the expat parser via hexpat package
◦ Easy de-/serialization between native Haskell data

and XML by pickler and pickler combinators
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC

◦ HTTP access via Haskell bindings to libcurl and via
Haskell HTTP package

◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ Lightweight regex library with full support of Uni-

code and XML Schema Datatype regular expression
syntax

◦ An HXT Cookbook for using the toolbox and the
arrow interface

◦ Basic XSLT support
◦ GitHub repository with current development ver-

sions of all packages http://github.com/UweSchmidt/
hxt

Current Work

Besides maintenance work, there were some activities
for better IO and parser performance. The native XML
as well as the HTML parser have been optimized for
speed and space. The input and output routines now
work with bytestrings instead of native Haskell IO. Fur-
thermore the XPath component has internally been
changed for better performance, especially for the han-
dling of XPath node sets.
There are some plans to further develop the Re-

lax NG validator for full XML Schema Datatype sup-
port and for the native Relax NG schema notation. An-
other topic in this field is the (semi-)automatic Haskell
datatype derivation out of Relax NG schemas and the
generation of picklers between the schema and the
Haskell types.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes links to downloads, documentation, and
further information.
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT). The conversion between XML
and native Haskell data types is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

6.8.3 tagsoup

Report by: Neil Mitchell

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect5.11.3.

51

http://github.com/UweSchmidt/hxt
http://github.com/UweSchmidt/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3

7 Applications and Projects

7.1 Education

7.1.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made
by Brian Vermeer under supervision of Jurriaan
Hage, in order to determine which heuristics work
well. This implementation could deal only with
Helium (http://www.haskell.org/communities/05-2009/
html/report.html#sect2.3) programs. We found that a
token stream based comparison and Moss style finger-
printing work well enough, if you remove template code
and dead code before the comparison. Since we com-
pute the control flow graphs anyway, we decided to
also keep some form of similarity checking of control-
flow graphs (particularly, to be able to deal with certain
refactorings).
In November, Gerben Verburg started to reim-

plement Holmes keeping only the heuristics we fig-
ured were useful, basing that implementation on
haskell-src-exts. I am now busy evaluating the tool
on a large collection of Haskell programs, on which I
aim to report at the Haskell Symposium. The tool will
not be made available through Hackage, but will be
available to lecturers on request.
We do have another control-flow graph based heuris-

tics that seems to perform quite well in this case,
and, as a sideline, we have a student in our depart-
ment who has developed an algorithm for near graph-
isomorphism that seems to work really well in compar-
ing control-flow graphs in an inexact fashion.

7.1.2 Interactive Domain Reasoners (previously:
Exercise Assistants)

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder
Status: experimental, active development

The Ideas project (at Open Universiteit Nederland
and Universiteit Utrecht) aims at developing interac-
tive domain reasoners on various topics. These reason-
ers assist students in solving exercises incrementally by
checking intermediate steps, providing feedback on how
to continue, and detecting common mistakes. The rea-
soners are based on a strategy language, from which
all feedback is derived automatically. The calculation
of feedback is offered as a set of web services, enabling
external (mathematical) learning environments to use

our work. We currently have a binding with the Digital
Mathematics Environment (DWO) of the Freudenthal
Institute, the ActiveMath learning system (DFKI and
Saarland University), and our own online exercise as-
sistant that supports rewriting logical expressions into
disjunctive normal form.

We are adding support for more exercise types,
mainly at the level of high school mathematics. For
example, our tool now covers simplifying expressions
with exponents, rational equations, and derivatives.
We have investigated how users can adapt mathemat-
ical domain reasoners to their own needs, such as the
level of expertise. Recently, we have focused on de-
signing a functional programming tutor. This tool lets
you practice introductory functional programming ex-
ercises. We are also formalizing our strategy specifica-
tion language, and the services that are derived from
this language. This is ongoing research.
The feedback services are available as a Cabal source

package.

52

http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas

Further reading

◦ Online exercise assistant (for logic), accessible from
our project page.

◦ Bastiaan Heeren, Johan Jeuring and Alex Gerdes.
Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science, 3(3):349–
370, 2010.

◦ Bastiaan Heeren, Johan Jeuring. Adapting Math-
ematical Domain Reasoners. International Con-
ference on Mathematical Knowledge Management
(MKM 2010).

7.1.3 Yahc

Report by: Miguel Pagano
Participants: Renato Cherini
Status: testing, maintained

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect6.2.3.

7.1.4 Sifflet

Report by: Gregory D. Weber
Status: experimental, actively developed

Sifflet is a visual, functional programming language.
Sifflet programmers define functions by drawing dia-
grams. Sifflet shows how a function call is evaluated
on the diagram. It is intended as an aid for learning
about recursion.
Here is Sifflet showing the first two levels of evaluat-

ing 4!:

Features

◦ Visual editor.

◦ Visual tracer/debugger which shows how function
calls are evaluated, supporting an active learning
process: Sifflet does not overwhelm students with a
huge trace of function calls; it provides only as much
expansion as the student requests.

◦ Extensive tutorial with 6,940 words and 31 pictures.
◦ Number, string, and list data types.
◦ A function “palette” with a small number of primi-

tive functions.
◦ Runnable examples of compound functions.
◦ New feature (version 1.0, August 24, 2010): exports

Haskell, Python 3, and Scheme code.
◦ New feature (version 1.2, October 29, 2010): Sif-

flet no longer indirectly depends on curl, which may
make it easier for Windows users to install.

Availability

Sifflet made its public debut in May, 2010. It is
available from Hackage: http://hackage.haskell.org/
package/sifflet For Arch Linux, an AUR package is
also available: http://aur.archlinux.org/packages.php?
ID=39876

Future plans

In future releases, I hope to add these features:
◦ Type inference, and type declarations for exported

Haskell code.
◦ Higher-order functions.
◦ Tree data and/or user-defined data types.

Further reading

◦ http://mypage.iu.edu/~gdweber/software/sifflet/
home.html

◦ http://mypage.iu.edu/~gdweber/software/sifflet/doc/
tutorial.html

7.2 Data Management and Visualization

7.2.1 HaskellDB

Report by: Justin Bailey
Status: active development

Scrap your SQL strings! The HaskellDB library pro-
vides a set of combinators based on the “relational alge-
bra” for expressing queries, inserts, and updates. It lets
you abstract over every part of your query, from con-
ditions, to tables, to the columns returned. HaskellDB
uses the HDBC family of database drivers to talk to a
wide variety of databases.

Further reading

http://trac.haskell.org/haskelldb

53

http://ideas.cs.uu.nl/www
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://people.cs.uu.nl/bastiaan/AdaptingDomainReasoners.html
http://people.cs.uu.nl/bastiaan/AdaptingDomainReasoners.html
http://www.haskell.org/communities/05-2010/html/report.html#sect6.2.3
http://www.haskell.org/communities/05-2010/html/report.html#sect6.2.3
http://hackage.haskell.org/package/sifflet
http://hackage.haskell.org/package/sifflet
http://aur.archlinux.org/packages.php?ID=39876
http://aur.archlinux.org/packages.php?ID=39876
http://mypage.iu.edu/~gdweber/software/sifflet/home.html
http://mypage.iu.edu/~gdweber/software/sifflet/home.html
http://mypage.iu.edu/~gdweber/software/sifflet/doc/tutorial.html
http://mypage.iu.edu/~gdweber/software/sifflet/doc/tutorial.html
http://trac.haskell.org/haskelldb

7.2.2 lhae

Report by: Alexander Bau
Status: in development, but stable

lhae is a simple spreadsheet application. It helps to
manage your data in two-dimensional grids. Each cell
in the grid contains a formula representing the stored
information. Therefor lhae features a simple formula
language: it supports various kinds of cell references,
function calls, and conditional expressions. In order to
provide automatic cell recalculation lhae keeps track of
all cell dependencies.
lhae offers some table management operations like

adding, deleting, inserting, transposing, and filtering
of rows and columns. There are also some basic statis-
tical methods like calculating frequency distributions,
descriptive statistics, and pivot tables.
To integrate lhae in your flow of work you can im-

port csv (character seperated values) files and export
diagrams (using gnuplot).

If you want to install lhae, you can use
cabal-install by entering cabal install lhae.
The future development plans are mainly related to

more advanced export features by supporting more of
gnuplot’s plotting qualities. But there also will be a
more comprehensive set of functions the user can use
in the formula language.

Further reading

http://www.imn.htwk-leipzig.de/~abau/lhae/

7.2.3 Pandoc

Report by: John MacFarlane
Participants: Andrea Rossato, Peter Wang, Paulo

Tanimoto, Eric Kow, Luke Plant, Justin
Bogner, Paul Rivier, Nathan Gass,

Puneeth Chaganti, Josef Svenningsson,
Etienne Millon, Joost Kremers

Status: active development

Pandoc aspires to be the swiss army knife of text
markup formats: it can read markdown and (with some
limitations) HTML, LaTeX, Textile, and reStructured-
Text, and it can write markdown, reStructuredText,
HTML, DocBook XML, OpenDocument XML, ODT,
RTF, groff man, MediaWiki markup, GNU Texinfo,
LaTeX, ConTeXt, EPUB, Textile, Emacs org-mode,
Slidy, and S5. Pandoc’s markdown syntax includes ex-
tensions for LaTeX math, tables, definition lists, foot-
notes, and more.
Since the last report, many new features have been

added and improvements made. Some highlights:
◦ Support for Textile input and output.
◦ Support for Emacs org-mode output.
◦ A new “builder” module for constructing Pandoc

documents programatically.
◦ Support for LATEXmath macros in markdown docu-
ments.

◦ Support for automatic citations and bibliographies
using Andrea Rossato’s citeproc-hs library.
These last two changes bring two of the most pow-

erful features of LATEXto pandoc.

Further reading

http://johnmacfarlane.net/pandoc/

7.2.4 Ferry (Database-Supported Program
Execution)

Report by: Torsten Grust
Participants: George Giorgidze, Tom Schreiber, Jeroen

Weĳers
Status: active development

With project Ferry we try to establish a connection
between two somewhat distant shores: programming
languages and database technology. Ferry explores how
far we can push the idea of relational database en-
gines that directly and seamlessly participate in pro-
gram evaluation to support the super-fast execution of
data-intensive programs written in a variety of (func-
tional) programming languages. Relational database
systems (RDBMSs) provide the best understood and
most carefully engineered query processing infrastruc-
ture available today. Notwithstanding these data pro-
cessing capabilities, RDBMSs are often operated as
plain stores that do little more than reproduce stored
data items for further processing outside the database
host. With Ferry, instead, we aim to turn the database
system into an efficient, capable, and highly scalable

54

http://www.imn.htwk-leipzig.de/~abau/lhae/
http://johnmacfarlane.net/pandoc/

co-processor for your programming language’s runtime.
To this end, we search for, design, and implement new
compilation strategies that map data types (e.g., nested
and ordered lists, arrays, dictionaries), control struc-
tures (e.g., nested iteration, conditionals, variable as-
signment and reference), and idioms prevalent in func-
tional programming and scripting languages into effi-
cient database queries. Here, we try to push the lim-
its of what has been considered possible (this includes
algebraic data types, pattern matching, higher-order
functions, and closures, to name a few).
Variants of the Ferry technology have been used

◦ to enhance the SQL code generator in Philip
Wadler’s Links, such that a significantly larger class
of Links programs may be considered databaseable
now, and

◦ to create a capable and efficient version of LINQ
to SQL provider (plugging into the Microsoft .NET
Language Integrated Query framework),

◦ to create a deep embedding of queries, nick-
named Switch, into the object-oriented language
Ruby, effectively turning Ruby programs over arrays
into relational queries, and

◦ to create an integrated query facility for Haskell,
called Database supported Haskell (DSH).

We have re-implemented the Ferry compiler in
Haskell (using GHC). The Ferry compiler is used as
part of the embedded query language DSH for Haskell.
DSH is suited to handle large scale data (e.g., social
networks) in Haskell programs with familiar Haskell
syntax. The DSH library and the FerryCore package it
uses are available on Hackage (http://hackage.haskell.
org/package/DSH).
Bring Back Monad Comprehensions. We are cur-
rently working on a new, monad-based, version of DSH
which can be used to write queries using Monad Com-
prehensions. An effort of our research team will reintro-
duce support for Monad Comprehensions in the next
release of GHC (version 7.2). The progress of this
work is tracked at http://hackage.haskell.org/trac/ghc/
ticket/4370.

Future plans

Ferry employs a compilation strategy revolving around
the concept of loop lifting that appears to have quite
close and interesting connections to the flattening
transformation employed by Data Parallel Haskell. In-
deed, Ferry understands the relational query engine as

being a specific kind of data-parallel machine. The ex-
act connection between Ferry and Data Parallel Haskell
remains to be explored.

Further reading

http://www.ferry-lang.org

7.2.5 The Proxima 2.0 Generic Editor

Report by: Martĳn Schrage
Participants: Lambert Meertens, Doaitse Swierstra
Status: actively developed

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5.

7.3 Functional Reactive Programming

7.3.1 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a small library for functional reac-
tive programming (FRP).
The goal is to create a solid foundation for anything

FRP-related.

◦ Users can finally start experimenting with graphical
user interfaces based on FRP since the library can
be hooked into any existing event-based framework
and comes with ample documentation.

◦ FRP implementors will have a reference for a simple
semantics with a working implementation.

◦ No more spooky time leaks and efficiency concerns.
Predicting space & time usage should be straightfor-
ward.

Version 0.2 of the reactive-banana library has been
released on Hackage. It provides a solid push-based
implementation of a subset of the semantics for FRP
pioneered by Conal Elliott.
Current development focuses on providing tutorials,

documentation and examples for the library. Further-
more, the author is writing an example application to
test and refine the FRP approach to GUI programming.

Further reading

◦ Cabal package and link to source code: http://
hackage.haskell.org/package/reactive

◦ Developer blog: http://apfelmus.nfshost.com/blog.
html

55

http://hackage.haskell.org/package/DSH
http://hackage.haskell.org/package/DSH
http://hackage.haskell.org/trac/ghc/ticket/4370
http://hackage.haskell.org/trac/ghc/ticket/4370
http://www.ferry-lang.org
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://hackage.haskell.org/package/reactive
http://hackage.haskell.org/package/reactive
http://apfelmus.nfshost.com/blog.html
http://apfelmus.nfshost.com/blog.html

7.3.2 Functional Hybrid Modelling

Report by: George Giorgidze
Participants: Joey Capper, Henrik Nilsson
Status: active research and development

The goal of the FHM project is to gain a better foun-
dational understanding of non-causal, hybrid modelling
and simulation languages for physical systems and ul-
timately to improve on their capabilities. At present,
our central research vehicle to this end is the design and
implementation of a new such language centred around
a small set of core notions that capture the essence of
the domain.
Causal modelling languages are closely related to

synchronous data-flow languages. They model system
behaviour using ordinary differential equations (ODEs)
in explicit form. That is, cause-effect relationship be-
tween variables must be explicitly specified by the mod-
eller. In contrast, non-causal languages model system
behaviour using differential algebraic equations (DAEs)
in implicit form, without specifying their causality. In-
ferring causality from usage context for simulation pur-
poses is left to the compiler. The fact that the causal-
ity can be left implicit makes modelling in a non-causal
language more declarative (the focus is on expressing
the equations in a natural way, not on how to express
them to enable simulation) and also makes the models
much more reusable.
FHM is an approach to modelling which combines

functional programming and non-causal modelling. In
particular, the FHM approach proposes modelling with
first class models (defined by continuous DAEs) using
combinators for their composition and discrete switch-
ing. The discrete switching combinators enable mod-
elling of hybrid systems (i.e., systems that exhibit both
continuous and discrete dynamic behaviour). The key
concepts of FHM originate from work on Functional
Reactive Programming (FRP).
We are implementing Hydra, an FHM language, as

a domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting and en-
ables modellers to use the domain specific syntax in
their models. The present prototype implementation
of Hydra enables modelling with first class models and
supports combinators for their composition and dis-
crete switching.
We implemented support for dynamic switching

among models that are computed at the point when
they are being “switched in”. Models that are com-
puted at run-time are just-in-time (JIT) compiled to
efficient machine code. This allows efficient simula-
tion of highly structurally dynamic systems (i.e., sys-
tems where the number of structural configurations is
large, unbounded or impossible to determine in ad-
vance). This goes beyond to what current state-of-the-
art non-causal modelling languages can model. The im-
plementation techniques that we developed should ben-
efit other modelling and simulation languages as well.

We are also exploring ways of utilising the type sys-
tem to provide stronger correctness guarantees and to
provide more compile time reassurances that our sys-
tem of equations is not unsolvable. Properties such as
equational balance (ensuring that the number of equa-
tions and unknowns are balance) and ensuring the solv-
ability of locally scoped variables are among our goals.
Dependent types have been adopted as the tool for ex-
pressing these static guarantees. However, we believe
that more practical type systems (such as system F)
could be conservatively extended to make FHM safer
without compromising their usability.
Recently, in an effort to showcase FHM and Hydra

to the wider modelling and simulation community, we
have modelled and simulated a number of challenging
physical systems that current non-causal modelling lan-
guages can not handle (see the papers linked below).

Further reading

The implementation of Hydra and related papers are
available from http://www.cs.nott.ac.uk/~ggg/.

7.3.3 Elerea

Report by: Patai Gergely
Status: experimental, active

Elerea (Eventless reactivity) is a tiny discrete time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialised monad, while stateless combina-
tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. The library comes in three major
variants, which all have precise denotational semantics:
◦ Simple: signals are plain discrete streams isomorphic

to functions over natural numbers;
◦ Param: adds a globally accessible input signal for

convenience;
◦ Clocked: adds the ability to freeze whole subnet-

works at will.
The code is readily available via cabal-install

in the elerea package. You are advised to in-
stall elerea-examples as well to get an idea how
to build non-trivial systems with it. The exam-
ples are separated in order to minimize the de-
pendencies of the core library. The experimental
branch is showcased by Dungeons of Wor, found in
the dow package (http://www.haskell.org/communities/
05-2010/html/report.html#sect6.11.2). Additionally,
the basic idea behind the experimental branch is laid

56

http://www.cs.nott.ac.uk/~ggg/
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2

out in the WFLP 2010 article Efficient and Composi-
tional Higher-Order Streams.
Since the last report, the Delayed variant of the li-

brary was deprecated, because it proved to be more
trouble than worth (mostly because automatic delays
break referential transparency). Also, the Clocked
branch needs some overhaul due to the trickiness of
clock semantics. This is ongoing work.

Further reading

◦ http://hackage.haskell.org/package/elerea
◦ http://hackage.haskell.org/package/elerea-examples
◦ http://hackage.haskell.org/package/dow
◦ http://sgate.emt.bme.hu/documents/patai/

publications/PataiWFLP2010.pdf
◦ http://babel.ls.fi.upm.es/events/wflp2010/video/

video-08.html (WFLP talk)

7.4 Audio and Graphics

7.4.1 Audio Signal Processing

Report by: Henning Thielemann
Status: experimental, active development

In this project, audio signal algorithms are written in
Haskell, that is, no binding to existing sound synthesis
systems like SuperCollider. The highlights are:
◦ based on the Numeric Prelude framework
(http://haskell.org/communities/05-2009/html/
report.html#sect5.6.2).

◦ support for physical units while maintaining effi-
ciency,

◦ frameworks for abstraction from sample rate, that is,
the sampling rate can be omitted in most parts of a
signal processing expression.

◦ We checked several low-level implementations in or-
der to achieve reasonable speed. We complement
the standard list type with a lazy StorableVector
structure and a StateT s Maybe a generator, like in
stream-fusion. Now, both our custom signal genera-
tor type and the Stream type from stream-fusion can
be fused to work directly on storable vectors.

◦ support for causal processes. Causal signal processes
only depend on current and past data and thus are
suitable for real-time processing (in contrast to a
function like time reversal). These processes are
modeled as mapAccumL like functions. Many impor-
tant operations like function composition maintain
the causality property. They are important for shar-
ing on a per sample basis and in feedback loops where
they statically warrant that no future data is ac-
cessed.

◦ Type class framework for unifying lazy time values
and signals expressed by lists, storable vectors or sig-
nal generators.

◦ Connection to ALSA bindings, in order to provide
real-time sound synthesis controlled by MIDI events
from keyboards or sequencers.

◦ A real-time software synthesizer that employs Just-
In-Time-compilation and vector instructions pro-
vided by the Low-Level Virtual Machine (http://
llvm.org/)

Recent advances are:
◦ Implementation of the Fast Fourier Transform for all

signal lengths, that can be used both for complex
numbers and integer residue class fields.

◦ Novel algorithm for white noise generation that
adapts to the sampling rate.

Further reading

◦ http://www.haskell.org/haskellwiki/Synthesizer
◦ http://arxiv.org/abs/1103.4118

7.4.2 Tidal, Texture and Live Music with Haskell

Report by: Alex McLean
Status: experimental

For a number of years, I have been improvising live mu-
sic with Haskell. I have made a pattern library called
Tidal and have most recently been working on an ex-
perimental visual language on front of that called Tex-
ture (formerly known as Text, and I am still in the
process of renaming it). There are various videos and
some more information on my homepage.
I have been using Tidal and its predecessors in

live performance for some years, as shown this video
of a performance in Norway: http://piksel.blip.tv/file/
4521577/. The quality of the recording is not perfect,
but it does show people dancing to Haskell. This per-
formance was with Dave Griffiths (who used his own
visual Scheme language SchemeBricks), we perform to-
gether (usually as a trio with Adrian Ward) as Slub,
and are available for bookings.
Texture is rather experimental, but I recently ran a

workshop with it, and got six non-programmers writing
Haskell code to improvised music of the acid techno
genre together over a few hours.
The code is available at http://darcs.slab.org/, but

is undocumented and difficult to get running. Those
interested in dabbling in this area would probably be
better off looking at hsc3 or haskore. Conductive is
another new and interesting library.
At the moment I am finishing off my PhD thesis on

a related topic, after that I intend to spend some time
packaging Tidal and Texture properly.
Folks interested in Haskell and music, as well as other

artforms should consider signing up to the haskell art
mailing list.

Further reading

http://yaxu.org/

57

http://hackage.haskell.org/package/elerea
http://hackage.haskell.org/package/elerea-examples
http://hackage.haskell.org/package/dow
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://llvm.org/
http://llvm.org/
http://www.haskell.org/haskellwiki/Synthesizer
http://arxiv.org/abs/1103.4118
http://yaxu.org/
http://piksel.blip.tv/file/4521577/
http://piksel.blip.tv/file/4521577/
http://pawfal.org/dave/
http://slub.org/
http://darcs.slab.org/
http://hackage.haskell.org/package/hsc3
http://hackage.haskell.org/package/haskore
http://hackage.haskell.org/package/conductive-base
http://www.haskell.org/haskellwiki/Haskell_art
http://www.haskell.org/haskellwiki/Haskell_art
http://yaxu.org/

7.4.3 Hemkay

Report by: Patai Gergely
Status: experimental, active

Hemkay (An M.K. Player Whose Name Starts with
an H) is a simple music module player that performs
all the mixing in Haskell. It supports the popular Pro-
Tracker format and some of its variations with different
numbers of channels. The device independent mixing
functionality can be found in the hemkay-core pack-
age.
The current version of the player uses the list-based

PortAudio bindings for playback, which is highly inef-
ficient.
Since the last update, the mixer went through

some performance optimisations. However, the im-
proved mixing performance can only be exploited either
through the alternative callback interface of PortAudio
(check the hemkay/callback branch on GitHub), or
through the OpenAL version (hemkay/openal branch).
Out of the two, the PortAudio version is significantly
more efficient, but it is prone to random crashes. Note
that this alternative PortAudio binding is only avail-
able on GitHub.

Further reading

◦ http://hackage.haskell.org/package/hemkay-core
◦ http://hackage.haskell.org/package/hemkay
◦ http://en.wikipedia.org/wiki/MOD_(file_format)
◦ https://github.com/cobbpg/hemkay
◦ https://github.com/mietek/portaudio

7.4.4 Functional Modelling of Musical Harmony

Report by: José Pedro Magalhães
Participants: W. Bas de Haas
Status: actively developed

Music theory has been essential in composing and per-
forming music for centuries. Within Western tonal mu-
sic, from the early Baroque on to modern-day jazz and
pop music, the function of chords within a chord se-
quence can be explained by harmony theory. Although
Western tonal harmony theory is a thoroughly studied
area, formalising this theory is a hard problem.
We have developed a formalisation of the rules

of tonal harmony as a Haskell (generalized) alge-
braic datatype. Given a sequence of chord labels,
the harmonic function of a chord in its tonal con-
text is automatically derived. For this, we use sev-
eral advanced functional programming techniques, such
as type-level computations, datatype-generic program-
ming, and error-correcting parsers. Our functional
model of harmony offers various benefits: it can be
used to define harmonic similarity measures and fa-
cilitate music retrieval, or it can help musicologists in

batch-analysing large corpora of digitised scores, for in-
stance. We have a draft version of a report detailing
this project.
As an example, we show a tree representation of the

harmony analysis of a short music fragment:
Piece

T
T
I

I:maj

D
D

D
V7
V:7

V /V
II7

II:7

S
IV

IV:maj

V / IV
I7
I:7

V / I
Vmin
V:min

S
IV
ins

V / IV
I7
I:7

V / I
Vmin
V:min

This tree is a visual representation of a value of a
Haskell datatype encoding musical harmony, with com-
mon notions such as tonic, dominant, etc. Such trees
are generated from input sequences of chord labels such
as C:maj F:maj G:7 C:Maj.
We hope to release our code on Hackage soon.

Further reading

http://dreixel.net/research/pdf/fmmh_draft.pdf

7.4.5 Cologne

Report by: Joel Burget
Status: actively developed

Cologne is a ray tracer being developed in Haskell. The
goal is to produce a fun and relatively performant ray
tracer. The project has been slowed down recently as
my main focus has been on importing more complex
models through the Assimp project (→ 6.7.1), but de-
velopment should pick up this summer. Check out this
render of the smallpt scene:

Further reading

https://github.com/joelburget/Cologne

58

http://hackage.haskell.org/package/hemkay-core
http://hackage.haskell.org/package/hemkay
http://en.wikipedia.org/wiki/MOD_(file_format)
https://github.com/cobbpg/hemkay
https://github.com/mietek/portaudio
http://dreixel.net/research/pdf/fmmh_draft.pdf
http://dreixel.net/research/pdf/fmmh_draft.pdf
https://github.com/joelburget/Cologne

7.4.6 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of experimental
libraries for computer vision and image processing. The
low level computations are internally implemented by
optimized libraries (IPP, HOpenGL, hmatrix (→ 6.3.4),
etc.). Once appropriate geometric primitives have been
extracted by the image processing wrappers we can de-
fine interesting computations using high level combina-
tors.

Further reading

http://perception.inf.um.es/easyVision

7.5 Hardware Design

7.5.1 CλaSH

Report by: Christiaan Baaĳ
Participants: Arjan Boeĳink, Jan Kuper, Anja

Niedermeier, Matthĳs Kooĳman, Marco
Gerards

Status: experimental

CλaSH (CAES Language for Synchronous Hardware)
is a functional hardware description language that bor-
rows both its syntax and semantics from Haskell. The
clock is implicit for the descriptions made in CλaSH:
the behaviour of the circuit is described as transition
from the current state to the next, which occurs ev-
ery clock cycle. The current state is an input of such
a transition function, and the updated state part of
its result tuple. As descriptions are also valid Haskell,
simulations can simply be performed by a Haskell com-
piler/interpreter (GHC only, due to the use of type
families).
Instead of being an embedded language such as

ForSyDe (→ 7.5.2) and Lava (→ 2.6)(→ 7.5.3)(→ 9.9),
CλaSH has a compiler which can translate Haskell
to synthesizable VHDL. The compiler has support
for, amongst others: polymorphism, higher-order func-
tions, user-defined algebraic datatypes, and all of
Haskell’s choice mechanisms. The CλaSH compiler
uses GHC for parsing, de-sugaring, and type-checking.
The resulting Core-language description is then trans-
formed into a normal form, from which a translation
to VHDL is direct. The transformation system uses a
set of rewrite rules which are exhaustively applied un-
til a description is in normal form. Examples of these
rewrite rules are β-reduction and η-expansion, but also
transformations to transform higher-order functions to
first-order functions, and transformation for the spe-
cialization of polymorphic functions.
The CλaSH compiler was first presented to the com-

munity, after 7 months of work, at the Haskell 2009

symposium in Edinburgh, Scotland. Support for ar-
rows and the corresponding syntax, which eases the
composition of transition functions, was added in July
2010 and was subsequently presented at IFL 2010 in
Alphen a/d Rĳn, The Netherlands.
The CλaSH compiler, available as a library, can

be found both on Hackage (http://hackage.haskell.
org/package/clash, stable) and github (http://github.
com/christiaanb/clash/, development). The com-
piler/interpreter is also available as an executable,
which is basically the GHC binary extended with the
CλaSH library, on the CλaSH website (http://clash.ewi.
utwente.nl).

What is new?

There is now simulation and synthesis support
for hardware descriptions that have multiple
clock domains, starting with version 0.1.3.0 of
CλaSH. Example usage of multiple clock do-
mains is explained here: http://www.haskell.org/
pipermail/haskell-cafe/2011-March/090471.html. The
code for the demo (which uses multiple clock
domains) we did at the DATE’11 conference
is available here: http://github.com/christiaanb/
DE1-Cyclone-II-FPGA-Board-Support-Package.

Further reading

http://clash.ewi.utwente.nl

7.5.2 ForSyDe

Report by: Ingo Sander
Participants: Hosein Attarzadeh, Alfonso Acosta, Axel

Jantsch, Jun Zhu
Status: experimental

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect6.8.1.

7.5.3 Kansas Lava

Report by: Andy Gill
Participants: Tristan Bull, Andrew Farmer, Ed Komp
Status: ongoing

Kansas Lava is a modern implementation of a hard-
ware description language that uses functions to ex-
press hardware components, and leverages the abstrac-
tions in Haskell to build complex circuits. Lava, the
given name for a family of Haskell based hardware de-
scription libraries (→ 2.6)(→ 9.9), is an idiomatic way
of expressing hardware in Haskell which allows for sim-
ulation and synthesis to hardware.
Though there has been no public release (yet), we

have made considerable progress with Kansas Lava. We
have generated several large telemetry circuits, which
have been synthesized and tested on real hardware,
running at speeds comparable to other implementation

59

http://perception.inf.um.es/easyVision
http://hackage.haskell.org/package/clash
http://hackage.haskell.org/package/clash
http://github.com/christiaanb/clash/
http://github.com/christiaanb/clash/
http://clash.ewi.utwente.nl
http://clash.ewi.utwente.nl
http://www.haskell.org/pipermail/haskell-cafe/2011-March/090471.html
http://www.haskell.org/pipermail/haskell-cafe/2011-March/090471.html
http://github.com/christiaanb/DE1-Cyclone-II-FPGA-Board-Support-Package
http://github.com/christiaanb/DE1-Cyclone-II-FPGA-Board-Support-Package
http://clash.ewi.utwente.nl
http://www.haskell.org/communities/05-2010/html/report.html#sect6.8.1
http://www.haskell.org/communities/05-2010/html/report.html#sect6.8.1

techniques. A talk about internals of Kansas Lava was
presented by Andrew Farmer at the Haskell implemen-
tors workshop in October, and the talk and slides are
available online.
Jun Inoue from Rice University visited CSDL for

October and November, to help connect his “staging”
work with the Kansas Lava work. A release of Kansas
Lava release was planned for the end of 2010.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

7.6 Proof Assistants and Reasoning

7.6.1 Automated Termination Analyzer for Haskell

Report by: Jürgen Giesl
Participants: Matthias Raffelsieper, Peter

Schneider-Kamp, Stephan Swiderski, René
Thiemann

Status: actively developed

There are many powerful techniques for automated ter-
mination analysis of term rewriting. However, up to
now they have hardly been used for real programming
languages. We developed an approach which permits
the application of existing techniques from term rewrit-
ing to prove termination of most functions defined in
Haskell programs. In particular, we show how termi-
nation techniques for ordinary rewriting can be used
to handle those features of Haskell which are miss-
ing in term rewriting (e.g., lazy evaluation, polymor-
phic types, and higher-order functions). We imple-
mented our results in the termination prover AProVE.
When testing it on existing standard Haskell-libraries,
it turned out that AProVE can fully automatically
prove termination of the vast majority of the functions
in the libraries.

Further reading

◦ For details on our approach:
J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S.
Swiderski, and R. Thiemann. Automated Ter-
mination Proofs for Haskell by Term Rewriting.
ACM Transactions on Programming Languages and
Systems, 33(2), 2011. http://dx.doi.org/10.1145/
1890028.1890030

◦ To access the implementation via a web interface and
for further information on our experiments:
http://aprove.informatik.rwth-aachen.de/eval/
Haskell/

7.6.2 Zeno — Inductive Theorem Proving for
Haskell Programs

Report by: Will Sonnex
Participants: Sophia Drossopoulou, Susan Eisenbach
Status: Alpha 0.1.1

Zeno is a fully automated inductive theorem prov-
ing tool for proving properties of Haskell func-
tions. You can express a property such as
takeWhile p xs ++ dropWhile p xs === xs and it
will prove it to be true for all values of p :: a -> Bool
and xs :: [a], over all types a, using only the func-
tion definitions.
After its most recent update Zeno can now reason

about polymorphic types/functions, and you express
the properties to be proven in Haskell itself (thanks
to SPJ for the suggestion). It still cannot use all of
Haskell’s syntax: you cannot have internal functions
(let/where can only assign values), and you cannot use
type-classed polymorphic variables in function defini-
tions — you will have to create a monomorphic in-
stance of the function — but I hope to have these
added reasonably soon. It is also still missing primitive-
types/IO/imports so it still cannot be used with any
real-world Haskell code, it is more a bit of theorem
proving "fun".
Another feature is that Zeno lists all

the sub-properties it has proven within
each proof. When it verifies insertion-sort
(sorted (insertsort xs) === True) it also proves
the antisymmetry of <= and that the insert function
preserves the sorted property.
You can try Zeno out at http://www.doc.ic.ac.uk/

~ws506/tryzeno, the example code file given there has
some provable properties about a few Prelude functions
among other things. If you want the source code, it is
available at http://code.google.com/p/zeno but I would
advise you to use one of the branched versions, I make
no guarantee that the trunk will even compile.

Further reading

http://www.doc.ic.ac.uk/~ws506/tryzeno

7.6.3 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Daniel Seidel, Matthias Bartsch

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin
is the polymorphic lambda-calculus, but they have
also been applied to programs in more realistic lan-
guages like Haskell. Since there is a semantic gap
between the original calculus and modern functional
languages, the underlying theory (of relational para-
metricity) needs to be refined and extended. We aim
to provide such new theoretical foundations, as well

60

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
http://dx.doi.org/10.1145/1890028.1890030
http://dx.doi.org/10.1145/1890028.1890030
http://aprove.informatik.rwth-aachen.de/eval/Haskell/
http://aprove.informatik.rwth-aachen.de/eval/Haskell/
http://www.doc.ic.ac.uk/~ws506/tryzeno
http://www.doc.ic.ac.uk/~ws506/tryzeno
http://code.google.com/p/zeno
http://www.doc.ic.ac.uk/~ws506/tryzeno

as to apply the theoretical results to practical prob-
lems. A journal version of our earlier “Taming Se-
lective Strictness” paper has now appeared (http://
www.iai.uni-bonn.de/~jv/acta.pdf). Also, we have been
looking at the quantitative content of free theorems
(http://www.iai.uni-bonn.de/~jv/qapl11.pdf).
On the practical side, we maintain a library and tools

for generating free theorems from Haskell types, orig-
inally implemented by Sascha Böhme and with con-
tributions from Joachim Breitner and now Matthias
Bartsch. Both the library and a shell-based tool are
available from Hackage (as free-theorems and ftshell,
respectively). There is also a web-based tool at http:
//www-ps.iai.uni-bonn.de/ft/. Features include:
◦ three different language subsets to choose from
◦ equational as well as inequational free theorems
◦ relational free theorems as well as specializations

down to function level
◦ support for algebraic data types, type synonyms and

renamings, type classes
◦ plain text, LATEX source, PDF, and inline graphics

output with nicely typeset theorems
Matthias is still working on refactoring the internals of
the generator, opening up possibilities for better con-
trol by the user, as well as for generating new forms of
free theorems.

Further reading

http://www.iai.uni-bonn.de/~jv/project/

7.6.4 Streaming Component Combinators

Report by: Mario Blažević
Status: experimental, actively developed

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect9.6.5.

7.6.5 CSP-M Animator and Model Checker

Report by: Marc Fontaine
Status: active development, download available

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect6.7.5.

7.6.6 Swish

Report by: Douglas Burke
Participants: Graham Klyne, Vasili I Galchin
Status: experimental

Swish is a framework for performing deductions in
RDF data using a variety of techniques. Swish is con-
ceived as a toolkit for experimenting with RDF infer-
ence, and for implementing stand-alone RDF file pro-
cessors (usable in similar style to CWM, but with a
view to being extensible in declarative style through
added Haskell function and data value declarations).

It explores Haskell as “a scripting language for the Se-
mantic Web”, is a work-in-progress, and currently in-
corporates:
◦ Support for both Notation3 and NTriples formats.
◦ RDF graph isomorphism testing and merging.
◦ Display of differences between RDF graphs.
◦ Inference operations in forward chaining, backward

chaining and proof-checking modes.
◦ Simple Horn-style rule implementations, extendable

through variable binding modifiers and filters.
◦ Class restriction rule implementation, primarily for

datatype inferences.
◦ RDF formal semantics entailment rule implementa-

tion.
◦ Complete, ready-to-run, command-line and script-

driven programs.

Current Work

The version on Hackage has recently been updated
from 0.2.1 to the 0.3 series; the main changes were to
make the package build with recent Haskell Platform
releases, updates to match the latest N3 specification,
and addition of the NTriples format. Minor bug fixes
and improvements have been made to this series.

Future plans

The major planned changes are a move to using the
Data.Text module, addition of an RDF/XML parser,
profiling and further clean up of the code. Community
input — whether it be patches, new code or just feature
requests — are more than welcome.

Further reading

◦ https://bitbucket.org/doug_burke/swish/
◦ http://www.ninebynine.org/RDFNotes/Swish/Intro.

html

7.7 Natural Language Processing

7.7.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell. Since the last report, there
have been a couple of new releases in the community:

61

http://www.iai.uni-bonn.de/~jv/acta.pdf
http://www.iai.uni-bonn.de/~jv/acta.pdf
http://www.iai.uni-bonn.de/~jv/qapl11.pdf
http://www-ps.iai.uni-bonn.de/ft/
http://www-ps.iai.uni-bonn.de/ft/
http://www.iai.uni-bonn.de/~jv/project/
http://www.haskell.org/communities/11-2010/html/report.html#sect9.6.5
http://www.haskell.org/communities/11-2010/html/report.html#sect9.6.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.7.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.7.5
https://bitbucket.org/doug_burke/swish/
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://www.ninebynine.org/RDFNotes/Swish/Intro.html

◦ Haskell for the Working Programmer : Two members
of the Haskell NLP community started work on a
book that aims to provide an introduction to Haskell
and Natural Language Processing. This work-in-
progress is freely available from http://nlpwp.org/

◦ CLT toolkit: A set of mutually and externally com-
patible state-of-the-art open source language tech-
nology tools and accompanying linguistic resource.
This put work by Chalmers and Gothenburg Univer-
sity around Haskell and NLP into a single package,
including Grammatical Framework and Functional
Morphology. http://www.clt.gu.se/clt-toolkit

◦ alpino-tools: A package for processing training data
of the Alpino parse disambiguation and fluency
ranking components. Alpino is a wide-coverage
parser/generator for Dutch. The training data uses
a simple format, which may make it useful for other
systems.

At the present, the mailing list is mainly used to
make announcements to the Haskell NLP community.
We hope in the future that it will expand to include
broader discussions on creating libraries and bindings
that would be most useful to us and ways of spreading
awareness about Haskell in the NLP world.

Further reading

http://projects.haskell.org/nlp

7.7.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.
Work on GenI has begun anew. Since May 2011, Eric

is working with Computational Linguistics Ltd and SRI
international to develop new features for GenI and im-
prove its scalability and performance for use in an in-
teractive tutoring application. We are excited to see
GenI potentially being used in the real world!

GenI is available on Hackage, and can be installed via
cabal-install. Our most recent release of GenI was ver-
sion 0.20.2 (2009-12-02), with some bugfixes and sim-
plifications. For more information, please contact us
on the geni-users mailing list.

Further reading

◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

7.7.3 Grammatical Framework

Report by: Krasimir Angelov
Participants: Olga Caprotti, Grégoire Détrez, Ramona

Enache, Thomas Hallgren, Aarne Ranta

Grammatical Framework (GF) is a programming lan-
guage for multilingual grammar applications. It can
be used as a more powerful alternative to Happy but
in fact its main usage is to describe natural language
grammars instead of programming languages. The lan-
guage itself will look familiar for most Haskell or ML
users. It is a dependently typed functional language
based on Per Martin-Löf’s type theory.
An important objective in the language development

was to make it possible to develop modular grammars.
The language provides modular system inspired from
ML but adapted to the specific requirements in GF.
The modules system was exploited to a large extent in
the Resource Libraries project. The library provides

62

http://nlpwp.org/
http://www.clt.gu.se/clt-toolkit
http://projects.haskell.org/nlp
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users

large linguistically motivated grammars for a number
of languages. When the languages are closely related
the common parts in the grammar could be shared
using the modules system. Currently there are com-
plete grammars for Amharic, Bulgarian, Catalan, Dan-
ish, Dutch, English, Finnish, French, German, Interlin-
gua, Italian, Norwegian, Russian, Spanish, Swedish and
Urdu. There are also incomplete grammars for Ara-
bic, Latin, Thai, Turkish, and Hindi. On top of these
grammars a user with limited linguistic background can
build application grammars for a particular domain.
We are planning the release of GF 3.2 before the

end of this year. The latest development around GF
is mostly driven by the new research project MOLTO
(http://www.molto-project.eu/) which focuses on tools
for multilingual online translation. This are some of
the features that can be expected in the new release:

◦ We improve our web front-end so the users (trans-
lators, content authors, etc.) will work in a more
comfortable environment. There are some demos on
the GF home page.

◦ There is work in progress on a new editor which com-
bines free text authoring with structural editing.

◦ Now there is a web based browser which the gram-
marians can use to explore the content of the gram-
mars. The functionality is similar to what you would
expect from tools like Haddock for Haskell.

◦ The support for dependent types is becoming stable.
All abstract syntax trees are type checked before they
are used. We use the same type checking algorithm
as in Agda and we support the Agda style of implicit
arguments. If the abstract syntax in some grammar
uses dependent types then the parser checks whether
the parsed sentence is semantically consistent. When
GF is used for parsing formal languages like C/C++
then the concrete syntax of the grammar describes
the syntax of the language while the dependent types
in the abstract syntax can be used to specify which
programs are well-typed.

◦ We also support random and exhaustive generation
of lambda terms of a given type. Since the type sys-
tem supports dependent types, the generation is ac-
tually equivalent to proving a theorem in first-order
logic. In fact, we build our own in-house theorem
prover.

◦ Previously the parser in GF either produced some re-
sult or just failed. Now it is much more friendly and
could detect where exactly is the problem. If there
is a syntax error then the token position is reported.
If the parsing is successful but none of the possible
parse trees is semantically consistent then the incon-
sistent phrase is located and a detailed error message
is reported. In some cases semantic inconsistencies
can be detected even before the sentence is complete.

In formal languages, this corresponds to type check-
ing of incomplete programs.

◦ There is an alternative implementation of the GF
interpreter in Java which makes it possible to run
applications on platforms where Haskell is not well
supported. For instance we developed a user inter-
face which works on Android phones.

Further reading

http://www.grammaticalframework.org/

7.8 Others

7.8.1 GenProg — Genetic Programming Library

Report by: Jan Šnajder
Status: experimental

The GenProg library is a framework for genetic pro-
gramming. Genetic programming is an evolutionary
technique, inspired by biological evolution, to evolve
programs for solving specific problems. A genetic pro-
gram is represented as an abstract syntax tree and as-
sociated with a custom-defined fitness value indicating
the quality of the solution. Starting from a randomly
generated initial population of genetic programs, the
genetic operators of selection, crossover, and (occasion-
ally) mutation are used to evolve programs of increas-
ingly better quality. Standard reference is John Koza’s
Genetic programming: On the Programming of Com-
puters by Means of Natural Selection.
In GenProg, a genetic program is represented by a

value of an algebraic datatype. To use a datatype as a
genetic program, it suffices to define it as an instance
of the GenProg typeclass. Any custom datatype can be
made an instance of the GenProg typeclass. In partic-
ular, to use instances of the Data typeclass as genetic
programs it suffices to define two simple functions: one
for the generation of random terminal nodes and an-
other for the generation of random nonterminal nodes.
The evolution is governed by several user defined pa-
rameters, such as population size, crossover and muta-
tion probabilities, termination criterion, and mutation
function. The package is available on Hackage.

Further reading

http://hackage.haskell.org/package/genprog

7.8.2 Manatee

Report by: Andy Stewart
Status: active development

Manatee’s aim is to build a Haskell Operating System.

63

http://www.molto-project.eu/
http://www.grammaticalframework.org/
http://hackage.haskell.org/package/genprog

I am an Emacs fan (http://www.emacswiki.org/
emacs/AndyStewart) that uses Emacs everyday for ev-
erything. But Emacs does not support multi-thread
and is not safe enough. So I am building my own
Haskell integrated environment — Manatee.
You can write any application in it, and the Manatee

framework will mix your application with the current
environment. And, most importantly, it gives you a
uniform experience with different applications.

Framework

Manatee uses a multi-process framework that makes
the extension and the core running in separate pro-
cesses to protect the application. It will minimize your
losses when some unexpected exception happens in the
current application; you just need to close/reload the
current tab, any other application and the core are still
running safely.
Manatee uses a Model-View split design; you can

split the current window to get different views for the
same buffer (a bit like Emacs’s buffers and windows).
Then you can mix any applications together with this
design for working efficiently.

Future plans

I have written the below applications in Manatee:
◦ Web Browser
◦ Download Manager
◦ Editor
◦ File Manager
◦ Image Viewer
◦ IRC Client
◦ Multimedia Player
◦ PDF Viewer
◦ Process Manager
◦ News Reader
◦ Terminal
More applications are in development, you are welcome
to join us!

Further reading

◦ Screenshots: http://goo.gl/MkVw
◦ Videos: http://www.youtube.com/watch?v=

weS6zys3U8k, http://www.youtube.com/watch?
v=A3DgKDVkyeM

◦ Wiki page: http://haskell.org/haskellwiki/Manatee

Contact

◦ Mailing lists: 〈manatee-user@googlegroups.com〉,
〈manatee-develop@googlegroups.com〉

◦ IRC channel: irc.freenode.net, 6667, ##manatee

7.8.3 xmonad

Report by: Gwern Branwen
Status: active development

XMonad is a tiling window manager for X. Windows
are arranged automatically to tile the screen without
gaps or overlap, maximizing screen use. Window man-
ager features are accessible from the keyboard; a mouse
is optional. XMonad is written, configured, and exten-
sible in Haskell. Custom layout algorithms, key bind-
ings, and other extensions may be written by the user
in config files. Layouts are applied dynamically, and
different layouts may be used on each workspace. Xin-
erama is fully supported, allowing windows to be tiled
on several physical screens.
Development since the last report has continued

apace, with versions 0.8, 0.8.1, 0.9 and 0.9.1 released,
with simultaneous releases of the XMonadContrib li-
brary of customizations and extensions, which has now
grown to no less than 205 modules encompassing a
dizzying array of features.
Details of changes between releases can be found in

the release notes:
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.7
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.8
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.9
◦ XMonad.Config.PlainConfig allows writing configs in

a more ’normal’ style, and not raw Haskell

64

http://www.emacswiki.org/emacs/AndyStewart
http://www.emacswiki.org/emacs/AndyStewart
http://goo.gl/MkVw
http://www.youtube.com/watch?v=weS6zys3U8k
http://www.youtube.com/watch?v=weS6zys3U8k
http://www.youtube.com/watch?v=A3DgKDVkyeM
http://www.youtube.com/watch?v=A3DgKDVkyeM
http://haskell.org/haskellwiki/Manatee
mailto: manatee-user at googlegroups.com
mailto: manatee-develop at googlegroups.com
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.7
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.7
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9

◦ Supports using local modules in xmonad.hs;
for example: to use definitions from
/̃.xmonad/lib/XMonad/Stack/MyAdditions.hs

◦ xmonad –restart CLI option
◦ xmonad –replace CLI option
◦ XMonad.Prompt now has customizable keymaps
◦ Actions.GridSelect - a GUI menu for selecting win-

dows or workspaces & substring search on window
names

◦ Actions.OnScreen
◦ Extensions now can have state
◦ Actions.SpawnOn - uses state to spawn applications

on the workspace the user was originally on, and not
where the user happens to be

◦ Markdown manpages and not man/troff
◦ XMonad.Layout.ImageButtonDecoration &

XMonad.Util.Image
◦ XMonad.Layout.Groups
◦ XMonad.Layout.ZoomRow
◦ XMonad.Layout.Renamed
◦ XMonad.Layout.Drawer
◦ XMonad.Layout.FullScreen
◦ XMonad.Hooks.ScreenCorners
◦ XMonad.Actions.DynamicWorkspaceOrder
◦ XMonad.Actions.WorkspaceNames
◦ XMonad.Actions.DynamicWorkspaceGroups
Binary packages of XMonad and XMonadContrib

are available for all major Linux distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:

darcs get http://code.haskell.org/xmonad
◦ IRC channel: #xmonad @@ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

7.8.4 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen, Nick

Ignolia

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now sports several li-
braries and applications. In the past year, we have
started to accumulate information related to biohaskell

on the biohaskell web site and encourage anyone inter-
ested to contribute, and also to sign up to the mailing
list.
There are now several libraries for bioinformatics in

Haskell, each covering different aspects of the field.
These include the biolib library that supports various
sequence and alignment-oriented file formats and oper-
ations, seqloc providing functionality for manipulating
sequence locations and annotation, Biobase for working
with RNA secondary structure, and samtools wrapping
the samtools C library for accessing and manipulating
BAM alignment files.

Further reading

◦ http://biohaskell.org
◦ http://blog.malde.org/
◦ http://www.tbi.univie.ac.at/~choener/Haskell/

7.8.5 Bullet

Report by: Csaba Hruska
Status: experimental, active development

Bullet is a professional open source multi-threaded 3D
Collision Detection and Rigid Body Dynamics Library
written in C++. It is free for commercial use under
the zlib license. The Haskell bindings ship their own
(auto-generated) C compatibility layer, so the library
can be used without modifications. The Haskell bind-
ing provides a low level API to access Bullet C++ class
methods. Some bullet classes (Vector, Quaternion, Ma-
trix, Transform) have their own Haskell representation,
others are binded as class pointers. The Haskell API
provides access to some advanced features, like con-
straints, vehicle and more.
At the current state of the project most common

services are accessible from Haskell, i.e., you can load
collision shapes and step the simulation, define con-
straints, create raycast vehicle, etc. More advanced
Bullet features (soft body simulation, Multithread and
GPU constaint solver, etc.) will be added later.

Further reading

http://www.haskell.org/haskellwiki/Bullet

7.8.6 Sloth2D

Report by: Patai Gergely
Status: experimental, active

Sloth2D is a purely functional 2D physics library with
composable high-level abstractions. The primary in-
tent behind this initiative is not to compete with ex-
isting engines, but rather to experiment with novel,
composable abstractions for physics. This might even-
tually lead to better high-level interfaces for exist-
ing engines, e.g., the Chipmunk and Bullet bindings

65

http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org
http://biohaskell.org/cgi-bin/mailman/listinfo/biohaskell
http://biohaskell.org/cgi-bin/mailman/listinfo/biohaskell
http://biohaskell.org/Libraries
http://biohaskell.org/Libraries/Bio
http://hackage.haskell.org/package/seqloc
http://biohaskell.org/Libraries/Biobase
http://www.ingolia-lab.org/software/samtools/
http://biohaskell.org
http://blog.malde.org/
http://www.tbi.univie.ac.at/~choener/Haskell/
http://www.haskell.org/haskellwiki/Bullet

(→ 7.8.5). However, in the long run it might grow into
something that is usable in practice by itself.
The cabalised source is available on GitHub.

Current features:
◦ 100% pure implementation
◦ deterministic simulation (replayable regardless of

sampling rate)
◦ convex colliders
Planned features:
◦ other collider shapes: concave, round, half-plane
◦ collision layers
◦ spatial hashing for more efficient collision detection
◦ object deactivation
◦ support for raycasting
◦ serialisation of physics state
◦ combinators on dynamic worlds
◦ constraints
◦ friction
◦ stacking
◦ a scene graph-based interface to define the world in

a compact manner

Further reading

https://github.com/cobbpg/sloth2d

7.8.7 hledger

Report by: Simon Michael
Status: ongoing development; suitable for daily use

hledger is a Haskell port and friendly fork of JohnWieg-
ley’s ledger. It is a robust command-line accounting
tool with a simple human-editable data format. Given
a plain text file describing transactions, of money or
any other commodity, hledger will print the chart of
accounts, account balances, or transactions you are in-
terested in. It can also help you record transactions,
or convert CSV data from your bank. There are also
curses and web interfaces. The project aims to provide
a reliable, practical day-to-day financial reporting tool,
and also a useful library for building financial apps in
Haskell.
Since hledger’s last HCAR entry in 2009, hledger be-

came cabalised, had 10 non-bugfix releases on Hackage,
split into multiple packages, acquired a public mailing
list, bug tracker, fairly comprehensive manual, cross-
platform binaries, and has grown to 5k lines of code
and 15 committers. 0.14 has just been released, with 5
code committers.
The project is available under the GNU GPLv3 or

later, at http://hledger.org.
Current plans are to continue development at a

steady pace, to attract more developers, and to become
more useful to a wider range of users, e.g., by building
in more awareness of standard accounting procedures

and by improving the web and other interfaces.

Further reading

http://hledger.org

7.8.8 arbtt

Report by: Joachim Breitner
Status: working

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect9.8.5.

7.8.9 uacpid (Userspace ACPI Daemon)

Report by: Dino Morelli
Status: experimental, actively developed

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect6.13.5.

7.8.10 epub-tools (Command-line epub Utilities)

Report by: Dino Morelli
Status: stable, actively developed

A suite of command-line utilities for creating and ma-
nipulating epub book files. Included are: epubmeta,
epubname, epubzip.
epub-tools is available from Hackage, the Darcs

repository below, and also in binary form for Arch
Linux through the AUR.

Further reading

◦ Project page: http://ui3.info/d/proj/epub-tools.html
◦ Source repository: darcs get http://ui3.info/darcs/

epub-tools

66

https://github.com/cobbpg/sloth2d
http://hledger.org
http://hledger.org
http://www.haskell.org/communities/11-2010/html/report.html#sect9.8.5
http://www.haskell.org/communities/11-2010/html/report.html#sect9.8.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.13.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.13.5
http://ui3.info/d/proj/epub-tools.html
http://ui3.info/darcs/epub-tools
http://ui3.info/darcs/epub-tools

8 Commercial Users

8.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Duncan Coutts, Andres Löh, Spencer

Janssen, Eric Kow, Bernie Pope

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
Following our second recruiting effort we are de-

lighted that Spencer Janssen is now working full-time
for Well-Typed, and Eric Kow and Bernie Pope are also
working part-time for us.
On the GHC support contract we have been pleased

to be part of the three GHC 7.0 releases since the
last HCAR, and are now working towards the up-
coming 7.2.1 release. Meanwhile the Parallel GHC
Project (→ 4.1.5) is starting to gather momentum, and
the Industrial Haskell Group (→ 8.3) is taking a look
at making some improvements to Cabal. Of course, we
also have an amount of proprietary work that is not
so visible, and an encouraging number of interesting
possibilities on the horizon.

Further reading

◦ http://www.well-typed.com/
◦ Blog: http://blog.well-typed.com/

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: commercial product

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect7.2.

8.3 Industrial Haskell Group

Report by: Andres Löh
Participants: Duncan Coutts, Ian Lynagh, Spencer

Janssen

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.

In the past six months, the collaborative develop-
ment scheme funded work on a library “safeint” for in-
tegers that throw an exception once an overflow occurs.
Currently, we are making some changes to the Cabal
dependency solver, in order to increase the success rate
and improve error messages. Details of the tasks un-
dertaken are appearing on the Well-Typed (→ 8.1) blog
and on the IHG status page.
The collaborative development scheme is now run-

ning continuously, so if you are interested in joining as
a member, please get in touch. Details of the different
membership options (full, associate, or academic) can
be found on the website.
If you are interested in joining the IHG, or if you

just have any comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

◦ http://industry.haskell.org/
◦ http://industry.haskell.org/status
◦ http://hackage.haskell.org/package/safeint

8.4 Tsuru Capital

Report by: Bryan Buecking

Tsuru Capital is engaged in high-frequency market-
making on options markets. Tsuru is a private com-
pany, and trades with its own capital. Tsuru Capi-
tal currently runs arbitrage based liquidity provision
strategies on the Kospi 200 index and plans to expand
to Nikkei 225 index, and other electronic markets, over
the next year.
The trading software has been developed entirely in

Haskell, and is one of the few systems in the world
written completely in a functional language.
Since 2010 we have opened our doors to students,

post graduates, and anyone looking for real world ex-

67

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/
http://www.haskell.org/communities/05-2010/html/report.html#sect7.2
http://www.haskell.org/communities/05-2010/html/report.html#sect7.2
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://industry.haskell.org/status
http://hackage.haskell.org/package/safeint

perience. And continue to do so by offering paid 3
month internship positions every quarter.
Over the past year we have spent a good deal of time

building GUIs for our trading system, and tools for log-
ging and playback. As a result we have contributed bits
and pieces of our work to Hackage, and will continue
to do so as we flesh out our framework.

Further reading

http://www.tsurucapital.com/

8.5 Oblomov Systems

Report by: Martĳn Schrage

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect7.7.

68

http://www.tsurucapital.com/
http://www.haskell.org/communities/05-2010/html/report.html#sect7.7
http://www.haskell.org/communities/05-2010/html/report.html#sect7.7

9 Research and User Groups

9.1 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: Péter Diviánszky
Status: ongoing

Haskell and Agda courses:

◦ Since 2006 Haskell is an option to implement the ex-
ercises for the course “Programming Language Con-
cepts of Functional Programming” (the other option
is Clean).

◦ Since 2008 first semester BSc students may learn
Haskell (30–40 students per year).

◦ Since 2009 Haskell is in the curriculum of BSc stu-
dents specialized in software development. This year
more then two hundred BSc students are taught
Haskell in their second semester. We have an on-
line evaluation and testing system with a collection of
several hundred systematized exercises. I experiment
with online graphical exercises with SVG graphics
too; I plan to write a blog entry about it soon.

◦ Since 2009 advanced Haskell is tought for 5–30 mas-
ter students per semester. Ongoing work is to extend
the online interpreter and testing environment with
safe emulation of IO values.

◦ This spring there is an English Haskell course also.
I began to translate our course materials to English.

◦ This spring an Agda course is held for approximately
10 master students for the first time.

◦ Other Haskell related courses are Lambda Calculus,
Type Theory and Implementation of Functional Lan-
guages.

Ongoing projects using Haskell:

◦ Feldspar, a high-level domain-specific language for
digital signal processing developed for Ericsson in co-
operation with Chalmers University of Technology.
Our task is to implement an efficient multi-platform
ISO C99 code generator for the language.

◦ Software Technologies for Distributed and Manycore
Systems started in 2010. The Project is supported
by the European Union and co-financed by the Eu-
ropean Social Fund.

Further reading

◦ Haskell and Agda course materials (in Hungarian):
http://pnyf.inf.elte.hu/fp/

◦ Parts of course materials in English: http://pnyf.inf.
elte.hu/fp/Index_en.xml#course-material

◦ Feldspar project homepage: http://feldspar.inf.elte.
hu

9.2 Functional Programming at UFMG
and UFOP

Report by: Carlos Camarão
Participants: Marco Gontĳo, Rafael Alcântara de Paula,

Lucília Figueiredo, Rodrigo Ribeiro,
Cristiano Vasconcellos, Elton Ribeiro

Status: active development

The Functional Programming groups at Universidade
Federal de Minas Gerais and Universidade Federal de
Ouro Preto work on several projects:

Proposal for a Solution to Haskell’s Multi-parameter
Type Class Dilemma The introduction of multi-
parameter type classes in Haskell has been hindered
because of problems associated to ambiguity and in-
ference of uninformative types. We propose a sim-
ple solution to this problem, which does not require
the use of functional dependencies between type class
parameters nor any other extra mechanism, such as
type families. A relatively small change to the lan-
guage is proposed, in order to deal with the problem
of inference of uninformative types, and a small change
to the type inference algorithm and to what has been
considered ambiguity in Haskell is suggested, in order
to tackle problems associated to ambiguity. The pro-
posal is described in our SBLP’2009 paper (see below).
A related message has been sent to Haskell-cafe and
Haskell-prime. We are currently working on an im-
plementation of Haskell’s front-end that can type all
existing Haskell libraries, including those that require
GHC’s extensions related to overloading.

Decidable type inference for Haskell overloading
We have designed what we consider to be a nice ter-
mination criterion for Haskell’s type inference algo-
rithm, with respect to overloading (that deals with
all the “complicated cases” given in the PPDP’04 and
ACM TOPLAS 2005 references below). When types
have constraints, decidability of type inference is based
mainly on decidability of constraint-set satisfiability.
We have designed a constraint-set satisfiability algo-
rithm that uses a simple and in practice unrestrictive

69

http://pnyf.inf.elte.hu/fp/
http://pnyf.inf.elte.hu/fp/Index_en.xml#course-material
http://pnyf.inf.elte.hu/fp/Index_en.xml#course-material
http://feldspar.inf.elte.hu
http://feldspar.inf.elte.hu

criterion in order to guarantee termination. A paper
is currently being written, and an implementation is
available at https://github.com/rodrigogribeiro/core.

First Class Overloading and Intersection Types The
Hindley-Milner type system imposes the restriction
that function parameters must have monomorphic
types. Lifting this restriction and providing system
F “first class” polymorphism is clearly desirable, but
comes with the difficulty that complete type infer-
ence for higher-ranked type systems is undecidable.
More practical higher-ranked type systems have been
recently proposed, which rely on system F, and re-
quire appropriate type annotations for the definition
of functions with polymorphic type parameters. How-
ever, these type annotations may, in several cases, in-
evitably disallow some possible uses of defined higher-
rank functions. To avoid this problem and to pro-
mote code reuse, we propose the use of intersection
types for specifying the types of function parameters
used polymorphically inside a function body, allow-
ing a flexible use of such functions, on applications
to both polymorphic or overloaded arguments. A pa-
per has been submitted and the work is currently be-
ing implemented in our compiler front-end, available at
https://github.com/rodrigogribeiro/core.

Controlling the scope of instances in Haskell Marco
Gontĳo is working on a language extension for Haskell,
as part of his MSc research, oriented by Carlos Ca-
marão, to allow control over the import and export of
type class instances between modules. The goals of
this extension are: i) allow alternative instances of a
class for the same type to be defined and used in dif-
ferent module scopes of a program; ii) eliminate prob-
lems associated with orphan instances; iii) avoid pollu-
tion of the global scope. An article is currently being
written, and Rafael Alcântara de Paula is implement-
ing the proposal in a Haskell compiler prototype. The
prototype, written by Rodrigo Ribeiro, is available at
https://github.com/rodrigogribeiro/core.

Further reading

◦ A Solution to Haskell’s Multi-paramemeter
Type Class Dilemma, Carlos Camarão, Rodrigo
Ribeiro, Lucília Figueiredo, Cristiano Vasconcellos,
SBLP’2009 (13th Brazilian Symposium on Pro-
gramming Languages). http://www.dcc.ufmg.br/
~camarao/CT/solution-to-mptc-dilemma.pdf

◦ Constraint-set satisfiability for Overloading, Carlos
Camarão, Lucília Figueiredo, Cristiano Vasconcellos,
ACM Press Conf. Proceedings of PPDP’04 , 67–77,
2004. http://www.dcc.ufmg.br/~camarao/CT/cs-sat/
cssat.pdf

◦ A theory of overloading, Peter J. Stuckey, Martin
Sulzmann, ACM TOPLAS 2005, 27(6), 1216–1269.

http://portal.acm.org/citation.cfm?id=1108974

9.3 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Altug Anis, Conrad Rau, Manfred

Schmidt-Schauß

Programming language semantics. One of our re-
search topics focuses on programming language seman-
tics, especially on contextual equivalence which is usu-
ally based on the operational semantics of the language.
Deterministic call-by-need lambda calculi with letrec

provide a semantics for the core language of Haskell.
For such an extended lambda calculus we proved cor-
rectness of strictness analysis using abstract reduction,
and we proved equivalence of the call-by-name and call-
by-need semantics.
We also explored several nondeterministic extensions

of call-by-need lambda calculi and their applications. A
recent result is that for calculi with letrec and non-
determinism usual definitions of similarity are unsound
w.r.t. contextual equivalence.
Most recently we analyzed the semantics of a higher-

order functional language with concurrent threads,
monadic IO and synchronizing variables as in Concur-
rent Haskell. To assure declarativeness of concurrent
programming we extended the language by implicit,
monadic, and concurrent futures. Using contextual
equivalence based on may- and should-convergence,
we established a context lemma and have shown that
various transformations preserve program equivalence,
e.g. the monad laws hold in our calculus. We also
proved that call-by-need and call-by-name evaluation
are equivalent, since they induce the same program
equivalence.
All these investigations on contextual equivalence

have in common that they require to analyze the over-
lappings between reductions of the operational seman-
tics and transformation steps. In a recent research
project we try to automatize correctness proofs of pro-
gram transformations. A main step for this goal is the
computation of overlappings between reductions of the
operational semantics and transformations steps. This
computation requires the combination of several unifi-
cation algorithms. We implemented a prototype of this
combined algorithm in Haskell.
Grammar based compression. Another research

topic of our group focuses on algorithms on grammar
compressed strings and trees. One goal is to recon-
struct known algorithms on strings and terms (unifica-
tion, matching, rewriting etc.) for their use on gram-
mars without prior decompression. We recently devel-

70

https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
http://www.dcc.ufmg.br/~camarao/CT/solution-to-mptc-dilemma.pdf
http://www.dcc.ufmg.br/~camarao/CT/solution-to-mptc-dilemma.pdf
http://www.dcc.ufmg.br/~camarao/CT/cs-sat/cssat.pdf
http://www.dcc.ufmg.br/~camarao/CT/cs-sat/cssat.pdf
http://portal.acm.org/citation.cfm?id=1108974

oped an algorithm for computing the congruence clo-
sure on grammar compressed terms. We implemented
several algorithms in Haskell and currently prepare a
Cabal package containing these algorithms.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.4 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell
— in particular our interest in Erlang has been grow-
ing — Haskell provides a major focus and common lan-
guage for teaching and research.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sec-
tions of this report. Simon Thompson completed a
third edition of his Haskell text book, to appear in
June 2011. The Haskell Refactorer Hare (→ 5.1.5) has
been cabal-ised, and now features clone detection and
elimination facilities. Thomas Schilling is developing
ideas for improving type error messages for GHC and
on trace-based dynamic optimisations for Haskell pro-
grams. Olaf Chitil is working on better lazy assertions
for Haskell. Neil Brown presented his Combinators for
Message-Passing in Haskell at PADL 2011 and Olaf
Chitil presented a Semantics for Lazy Assertions at
PEPM 2011.

Further reading

◦ PLAS group: http://www.cs.kent.ac.uk/research/
groups/plas/

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/research/groups/plas/hare.html

◦ Tracing and debugging with Hat: http://www.
haskell.org/hat

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/

◦ Scion: http://code.google.com/p/scion-lib/

9.5 Formal Methods at DFKI and
University Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Dietrich,

Christoph Lüth, Till Mossakowski, Lutz
Schröder, Ewaryst Schulz

Status: active development

The activities of our group center on formal methods,
covering a variety of formal languages and also trans-
lations and heterogeneous combinations of these.
We are using the Glasgow Haskell Compiler and

many of its extensions to develop the Heterogeneous
tool set (Hets). Hets consists of parsers, static ana-
lyzers, and proof tools for languages from the CASL
family, such as the Common Algebraic Specification
Language (CASL) itself (which provides many-sorted
first-order logic with partiality, subsorting and in-
duction), HasCASL, CoCASL, CspCASL, and Modal-
CASL. Other languages supported include Haskell (via
Programatica), QBF, Maude, VSE, TPTP (THF is on
the way), OWL, Common Logic, FPL (logic of func-
tional programs) and LF type theory. The Hets im-
plementation is also based on some old Haskell sources
such as bindings to uDrawGraph (formerly Davinci)
and Tcl/TK that we maintain. Apart from a gtk2hs
user interface hets also provides many functionalities
as a web server based on wai (wai-extra-0.2.x).
HasCASL is a general-purpose higher-order language

which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL.
The Coalgebraic Logic Satisfiability Solver CoLoSS

is being implemented jointly at DFKI Bremen and at
the Department of Computing, Imperial College Lon-
don. The tool is generic over representations of the syn-
tax and semantics of certain modal logics; it uses the
Haskell class mechanism, including multi-parameter
type classes with functional dependencies, extensively
to handle the generic aspects.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ Heterogeneous tool set:
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

◦ The Coalgebraic Logic Satisfiability Solver CoLoSS:
http://www.informatik.uni-bremen.de/~lschrode/

71

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.haskell.org/hat
http://www.haskell.org/hat
http://www.cs.kent.ac.uk/projects/heat/
http://code.google.com/p/scion-lib/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod

projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/

9.6 Haskell at Universiteit Gent, Belgium

Report by: Tom Schrĳvers

Haskell is one of the main research topics of the new
Programming Languages Group at the Department of
Applied Mathematics and Computer Science at the
University of Ghent, Belgium.
Haskell-related projects of the group members and

collaborators are:

◦ Search Combinators: Search heuristics often make all
the difference between effectively solving a combina-
torial problem and utter failure. Hence, the ability to
swiftly design search heuristics that are tailored to-
wards a problem domain is essential to performance
improvement. In other words, this calls for a high-
level domain-specific language (DSL).
The tough technical challenge we face when design-
ing a DSL for search heuristics, is to bridge the gap
between a conceptually simple specification language
(high-level, purely functional and naturally compo-
sitional) and an effecient implementation (typically
low-level, imperative and highly non-modular). We
overcome this challenge with a systematic approach
in Haskell that disentangles different primitive con-
cepts into separate monadic modular mixin compo-
nents, each of which corresponds to a feature in the
high-level DSL. The great advantage of mixin com-
ponents to provide a semantics for our DSL is its
modular extensibility.
This is joint work with Guido Tack, Pieter Wuille,
Horst Samulowitz and Peter Stuckey, following up on
Monadic Constraint Programming, a monadic DSL
for Constraint Programming in Haskell.

◦ Monads, Zippers and Views: Virtualizing the Monad
Stack: We make monadic components more reusable
and robust to changes by employing two new tech-
niques for virtualizing the monad stack: the monad
zipper and monad views. The monad zipper is a
higher-order monad transformer that creates virtual
monad stacks by ignoring particular layers in a con-
crete stack. Monad views provide a general frame-
work for monad stack virtualization: they take the
monad zipper one step further and integrate it with
a wide range of other virtualizations. For instance,
particular views allow restricted access to monads
in the stack. Furthermore, monad views provide
components with a call-by-reference-like mechanism
for accessing particular layers of the monad stack.
With our two new mechanisms, the monadic effects
required by components no longer need to be lit-
erally reflected in the concrete monad stack. This

makes these components more reusable and robust
to changes.

This is joint work with Bruno Oliveira, part of
which is available together with Mauro Jaskelioff’s
monad transformer library in the Monatron package
on Hackage.

◦ Type Checking: The latest result is OutsideIn(X),
a framework for modular type inference with local
assumptions. Earlier results are on type inference
for GADTs, type invariants, and type checking for
type families. Ongoing work concerns the simplifica-
tion of type checking for Haskell’s extensive type sys-
tem, and adding new extensions. This is joint work
with Martin Sulzmann, Simon Peyton Jones, Manuel
Chakravarty, Dimitrios Vytiniotis, Stefan Monnier,
Louis-Julien Guillemette, and Dominic Orchard.

◦ EffectiveAdvice: EffectiveAdvice is a disciplined
model of (AOP-style) advice, inspired by Aldrich’s
Open Modules, that has full support for effects in
both base components and advice. EffectiveAdvice
is implemented as a Haskell library. Advice is mod-
eled by mixin inheritance and effects are modeled
by monads. Interference patterns previously identi-
fied in the literature are expressed as combinators.
Equivalence of advice, as well as base components,
can be checked by equational reasoning. Parametric-
ity, together with the combinators, is used to prove
two harmless advice theorems. The result is an ef-
fective model of advice that supports effects in both
advice and base components, and allows these effects
to be separated with strong non-interference guaran-
tees, or merged as needed. This is joint work with
Bruno Oliveira and William Cook.

We are also involved in the organization of the Ghent
Functional Programming Group (→ 9.13).

Further reading

◦ http://users.ugent.be/~tschrĳv/haskell.html
◦ http://users.ugent.be/~tschrĳv/SearchCombinators/
◦ http://hackage.haskell.org/package/Monatron
◦ http://hackage.haskell.org/package/monadiccp

9.7 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
Group. The Ro/Haskell page becomes more and more
known as time goes. Actually, the Ro/Haskell Group is
officially a project of the Faculty of Sciences, “V. Alec-
sandri” Univ. of Bacãu, România (http://stiinte.ub.ro)
based by volunteers.

72

http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/
http://users.ugent.be/~tschrijv/haskell.html
http://users.ugent.be/~tschrijv/SearchCombinators/
http://hackage.haskell.org/package/Monatron
http://hackage.haskell.org/package/monadiccp
http://stiinte.ub.ro

Website:

On the 9th of May 2011, the main Ro/Haskell’s web
page counter recorded the total of 36,500 times ac-
cessed. The movement of the website from one server
to another had broken a set of links. Even one from
Wikipedia was broken, leading to the rejection of a
page concerning Haskell as undocumented. The page
was rebuilt. Also, after some arguments, the Roma-
nian Wikipedia Site hosted a page concerning Haskell,
even if some Universities and results was deleted. On
the other side we are in the process of tracking papers
of Romanian authors and link them to the Ro/Haskell
website. Some of them was on the servers of their co-
authors, outside of Romania, being difficult to find.

Books:

The book “The Practice Of Monadic Interpretation”
by Dan Popa had been published in November 2008.
The book had developed into a full PhD. thesis which
was successfully defended in public in September 2010.
Also notice that the page of the book was in the top
ten, based on access rate: 12,225 times. No English ver-
sion is available so far. Any editor interested? Actually
the Official Publishing House of the Ro/Haskell Group
is MatrixRom (www.matrixrom.ro). Speaking of books,
the “Gentle introduction to Haskell” is prepairing to
be released in a Romanian translation. The introduc-
tory chapter (http://www.haskell.org/wikiupload/3/38/
Gentle_1-19-v06-3Aprilie.pdf.zip) can be downloaded
from http://www.haskell.org/haskellwiki/Gentle where
two other versions are available, too: French and of
course English. “An Introduction to Haskell by Exam-
ples” is now out of print but if you need, a special pack
can be provided based on the agreement of the author
〈popavdan@yahoo.com〉.

Products:

Haskell products like Rodin (a small DSL a bit like
C but written in Romanian) begin to spread, proving
the power of the Haskell language. The Pseudocode
Language Rodin is used as a tool for teaching basics
of Computer Science in some high-schools from vari-
ous cities. Rodin was asked to become a FOSS (Free
& Open Source Software) and will be. To have a sort
of C using native keywords was a success in teaching
basics of Computer Science: algorithms and structured
programming. As a consequence of having such a DSL
and its website, a course in Fundamentals of Comput-
ers Science was reduced to 4 hours instead of an en-
tire semester. As a consequence, The Web Page of the
Rodin DSL had 10,009 hits this mounth (May 2011).

Linguists:

A group of researchers from the field of linguistics lo-
cated at the State Univ. from Bacãu (The LOGOS

Group) is declaring the intention of bridging the gap
between semiotics, high level linguistics, structural-
ism, nonverbal communication, dance semiotics (and
some other intercultural subjects) and Computational
Linguistics (meaning Pragmatics, Semantics, Syntax,
Lexicology, etc.) using Haskell as a tool for real
projects. Probably the situation from Romania is not
well known: Romania is probably one of those coun-
tries where computational linguistics is studied by com-
puter scientists less than linguists. We had begun by
publishing an article about Parser Combinators in a
volume (Studii si Cercetari Stiintifice — Seria Filolo-
gie 23/2010, Ed. Alma Mater, Bacãu — the volume is
ready for print, after a year of work.) and provide in-
formation that Haskell can be used for e-learning and
e-manuals of foreign languages.

At Bacãu “V. Alecsandri” University

We have teaching Haskell at two Faculties: Sciences
(The Computers Science being included) and we hope
we will work with Haskell with the TI students from
the Fac. of Engineering, where a course on Formal Lan-
guages was requested. Editors seem to be interested by
the Ro/Haskell movement, and some of them have al-
ready declared the intention of helping us by investing
capital in the Haskell books production.

Notions:

We are promoting new notions: pseudoconstructors
over monadic values (which act both as semantic repre-
sentations and syntactic structure), modular trees (ex-
panding trees beyound the fixity of the data declara-
tions) and ADFA — adaptive/adaptable determinist
finite automata. A dictionary of new notions and con-
cepts is not made, making difficult to launch new ideas
and also to track work of the authors.

Unsolved problems:

PhD. advisors (specialized in monads, language engi-
neering, and Haskell) are almost impossible to find.
This fact seems to block somehow the hiring of good
specialists in Haskell. Also it is difficult to track the
Haskell related activity from various universities, like
those from: Sibiu, Baia Mare, Timisoara. Please report
them using the below address.

Contact

〈popavdan@yahoo.com〉

Further reading

◦ Ro/Haskell: http://www.haskell.org/haskellwiki/Ro/
Haskell

◦ Rodin: http://www.haskell.org/haskellwiki/Rodin

73

www.matrixrom.ro
http://www.haskell.org/wikiupload/3/38/Gentle_1-19-v06-3Aprilie.pdf.zip
http://www.haskell.org/wikiupload/3/38/Gentle_1-19-v06-3Aprilie.pdf.zip
http://www.haskell.org/haskellwiki/Gentle
mailto: popavdan at yahoo.com
mailto: popavdan at yahoo.com
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Rodin

◦ Gentle introduction to Haskell (Ro): http://www.
haskell.org/haskellwiki/Gentle

◦ ADFA: http://www.haskell.org/haskellwiki/ADFA
◦ Report from: http://stiinte.ub.ro (the Faculty I be-

long to)

9.8 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. Members of the group include users
of Haskell, Ocaml, LISP, Scala, F#, Scheme and oth-
ers. We have 10 meetings per year (Feb–Nov) and meet
on the third Thursday of each month. We regularly get
20–30 attendees, with a 70/30 industry/research split.
Talks this year have included material on Category
Theory, theorem proving in Coq, Template Haskell and
a couple of different Haskell libraries. We usually have
about 90 mins of talks, starting at 6:30pm, then go for
drinks afterwards. All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/

9.9 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component of
the Department of Computer Science and Engineering
at Chalmers. In particular, Haskell has a very impor-
tant place, as it is used as the vehicle for teaching and
numerous projects. Besides functional programming,
language technology, and in particular domain specific
languages is a common aspect in our projects.

Property-based testing QuickCheck is the basis for
a European Union project on Property Based Test-
ing (www.protest-project.eu). We are applying the
QuickCheck approach to Erlang software, together
with Ericsson, Quviq, and others. Much recent work
has focused on PULSE, the ProTest User-Level Sched-
uler for Erlang, which has been used to find race
conditions in industrial software — see our ICFP
2009 paper for details. A new tool, QuickSpec, gen-
erates algebraic specifications for an API automati-
cally, in the form of equations verified by random
testing. We have published about it at TAP 2010;
an earlier paper can be found here: http://www.cse.

chalmers.se/~nicsma/quickspec.pdf. Lastly, we have de-
vised a technique to speed up testing of polymor-
phic properties: http://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=99387.

Natural language technology Grammatical Frame-
work (→ 7.7.3) is a declarative language for describing
natural language grammars. It is useful in various ap-
plications ranging from natural language generation,
parsing and translation to software localization. The
framework provides a library of large coverage gram-
mars for currently fifteen languages from which the de-
velopers could derive smaller grammars specific for the
semantics of a particular application.

Parser generator and template-haskell BNFC-meta
is a parser generator. Like the BNF Converter, it gen-
erates a compiler front end in Haskell. Two things sep-
arate BNFC-meta from BNFC and other parser gener-
ators:
◦ BNFC-meta is not a program but a library (the

parser description is embedded in a quasi-quote).
◦ BNFC-meta automatically provides quasi-quotes for

the specified language. This includes a powerful and
flexible facility for antiquotation.

More info: http://hackage.haskell.org/package/
BNFC-meta.

Generic Programming Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic
programming research at Chalmers. Recent develop-
ments include fundamental work on parametricity &
dependent types (ICFP 2010), a survey paper “Generic
programming with C++ concepts and Haskell type
classes” (JFP 2010) and two new PhD students. Pa-
trik Jansson leads a work-package on DSLs within the
EU project “Global Systems Dynamics and Policy”
(http://www.gsdp.eu/, started Oct. 2010). If you want
to apply DSLs, Haskell, and Agda to help modelling
global sustainability challenges, please get in touch!

Language-based security SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda

74

http://www.haskell.org/haskellwiki/Gentle
http://www.haskell.org/haskellwiki/Gentle
http://www.haskell.org/haskellwiki/ADFA
http://stiinte.ub.ro
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
www.protest-project.eu
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://www.gsdp.eu/

system (→ 3.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

DSP programming Feldspar is a domain-specific lan-
guage for digital signal processing (DSP), developed
in co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest. The
motivating application is telecom processing, but the
language is intended to be more general. As a first
stage, we have focused on the data-intensive numeric
algorithms which are at the core of any DSP applica-
tion. More recently, we have started to work on ex-
tending the language to deal with more system-level
aspects. The data processing language is purely func-
tional and highly inspired by Haskell. Currently the
language is implemented as an embedded language in
Haskell.
The implementation is available from Hackage:

http://hackage.haskell.org/package/feldspar-language.
There is also a code generator, developed at ELTE
University: http://hackage.haskell.org/package/
feldspar-compiler.
See also the official project page: http://feldspar.inf.

elte.hu.

Hardware design/verification The functional pro-
gramming group has developed three different hard-
ware description languages — Lava, Wired, and Chalk
(chronological order) — implemented in Haskell. Each
language targets a different abstraction level. The basic
idea behind all three is to model circuits as functions
from inputs to outputs. This allows structural hard-
ware description in standard functional programming
style.
Chalk is a new language for architecture design.

Once you have defined a Chalk circuit, you can sim-
ulate it, or explore it further using non-standard in-
terpretations. This is particularly useful if you want
to perform high-level power and performance analysis
early on in the design process.
More info: http://www.cse.chalmers.se/~wouter/

Publications/DCC2010.pdf.
In Lava, circuits are described at the gate level

(with some RTL support). The version developed at
Chalmers has a particular aim to support formal veri-
fication in a convenient way.
Wired is an extension to Lava, targeting (not exclu-

sively) semi-custom VLSI design. A particular aim of
Wired is to give the designer more control over on-chip
wires’ effects on performance. Some features of Wired
are:

◦ Initial description can be purely functional (a la
Lava).

◦ Incremental specification of physical aspects.

◦ Accurate, wire-aware timing/power analysis within
the system.

◦ Support for an academic 45nm cell library.

Wired is not actively developed at the moment, but
the system has recently been used to explore the layout
of multipliers (Kasyab P. Subramaniyan, Emil Axels-
son, Mary Sheeran and Per Larsson-Edefors. Layout
Exploration of Geometrically Accurate Arithmetic Cir-
cuits. Proceedings of IEEE International Conference of
Electronics, Circuits and Systems. 2009).
Home page: http://www.cse.chalmers.se/~emax/

wired/.

Automated reasoning Equinox is an automated the-
orem prover for pure first-order logic with equality.
Equinox actually implements a hierarchy of logics, re-
alized as a stack of theorem provers that use abstrac-
tion refinement to talk with each other. In the bottom
sits an efficient SAT solver. Paradox is a finite-domain
model finder for pure first-order logic with equality.
Paradox is a MACE-style model finder, which means
that it translates a first-order problem into a sequence
of SAT problems, which are solved by a SAT solver.
Infinox is an automated tool for analyzing first-order
logic problems, aimed at showing finite unsatisfiabil-
ity, i.e., the absence of models with finite domains. All
three tools are developed in Haskell.

Teaching Haskell is present in the curriculum as early
as the first year of the Bachelors program. We have
three courses solely dedicated to functional program-
ming (of which two are Masters-level courses), but
we also provide courses which use Haskell for teach-
ing other aspects of computer science, such as pro-
gramming languages, compiler construction, hardware
description and verification, data structures and pro-
gramming paradigms.

9.10 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming remains active at KU and
the Computer Systems Design Laboratory in ITTC.
The System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by

75

http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
http://hackage.haskell.org/package/feldspar-compiler
http://feldspar.inf.elte.hu
http://feldspar.inf.elte.hu
http://www.cse.chalmers.se/~wouter/Publications/DCC2010.pdf
http://www.cse.chalmers.se/~wouter/Publications/DCC2010.pdf
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~emax/wired/

Andy Gill) together form the core functional program-
ming initiative at KU. Apart from Kansas Lava (→
7.5.3) and ChalkBoard (→ 6.7.6), there are many other
FP and Haskell related things going on.

◦ We are developing a Haskell version of HOL. Tradi-
tionally, members of the higher-order logic theorem
(HOL) proving family have been implemented in the
Standard ML programming language or one of its
derivatives. HaskHOL aims to break with tradition
by implementing a lightweight HOL theorem prover
library as a Haskell hosted domain specific language.
Based on the HOL Light logical system, HaskHOL
aims to provide the ability for Haskell users to reason
about their code directly without having to trans-
form it or otherwise export it to an external tool.
For details talk to Evan Austin.

◦ We are actively working on enabling Type-Directed
Specification Refinement in Rosetta. Rosetta is a
specification language that focuses on the interac-
tion between different domains, such as state-based
and signal-based domains. With dependent types,
first-class types, and reflection, there are many ar-
eas where a traditional all-or-nothing typing analysis
would be impractical — especially when considering
that specifications are likely written at first in a high-
level, incomplete fashion. This project uses Inter-
preterLib (http://haskell.org/communities/11-2008/
html/report.html#sect5.5.6) and various Rosetta
analysis tools to define a typing analysis that at-
tempts to extract typing information, constraints,
and errors to present to the user, in order to guide
the specification refinement process. It is in the early
stages of development, but may eventually link up
with HaskHOL to discharge some TCC’s. For de-
tails talk to Mark Snyder.

◦ We are developing a library in Haskell for processing
Rosetta specifications. A current focus is the mod-
ularity and re-use of distinct processing elements,
such as type-checking, partial evaluation, and rea-
soning assistants. Mutually defined elements that
are more convenient to consider as distinct interact
via a reactive monadic computation, so the two el-
ements’ code can be managed as separate packages.
Also, our principal specification representation use
functors and type-level fixed points to achieve exten-
sibility and generic programming. The goal of the
library is to provide to a tight and graduated in-
terface to the basic processing elements, so that the
users may incorporate the most appropriate basic el-
ements when implementing their own, more domain-
specific Rosetta processors. For details talk to Nick
Frisby.

◦ We are working with other functional programming
groups (University of Iowa, St. Andrews, Heriot-
Watt, Halmstad University, and of course Chalmers)

to share our common experiences with using FPGA
boards, and generating VHDL. So far, we have cho-
sen and purchased common Xilinx boards, and have
a design for a so called “λ-bridge” between our UNIX
invocation infrastructures and our FPGA boards.
The idea is we can share experiences, for the sake of
being able to spend more time working on FP issues,
and bringing FP ideas to hardware related problems.

Further reading

◦ The Functional Programming Group: http://www.
ittc.ku.edu/csdl/fpg

◦ CSDL website: https://wiki.ittc.ku.edu/csdl/Main_
Page

9.11 Dutch Haskell User Group

Report by: Tom Lokhorst

The Dutch Haskell User Group is a diverse group of
people interested in Haskell and functional program-
ming.
Our group was founded in April of 2009, at the 5th

Haskell Hackathon in Utrecht. Since then, we have
had monthly meetings and an afternoon symposium.
Our meetings alternate between pure socializing and
evenings that include talks by members.
We cater to the hobbyist, the academic, and the pro-

fessional crowds. Anyone is welcome to join, from be-
ginners to advanced users. Do join us!

Further reading

http://dutchhug.nl/

9.12 San Simón Haskell Community

Report by: Antonio M. Quispe

The San Simón Haskell Community from San Simón
University Cochabamba-Bolivia, is an informal Spanish
group that aspire to learn, share information, knowl-
edge and experience related to the functional paradigm.
Our main activity is the development of projects,

we have some projects in our Web Page (http://
comunidadhaskell.org) that serves us as a medium of
communication and work environment.

76

http://haskell.org/communities/11-2008/html/report.html#sect5.5.6
http://haskell.org/communities/11-2008/html/report.html#sect5.5.6
http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
https://wiki.ittc.ku.edu/csdl/Main_Page
http://dutchhug.nl/
http://comunidadhaskell.org
http://comunidadhaskell.org

Our last activity was the Local Haskell Hackathon
that was held on April 8, 9 and 10 in our University.
There were 15 participants of different levels in func-
tional programming. We have been working on projects
idbjava (decompiler bytecode java), lexer and parser for
Ruby, emulator for CNC machine, and some Haskell
games. We have had a wonderful time of 2 days of pro-
gramming, and I want to thank Vladimir Costas and
Pablo Azero for their assistence in the realization of
this event.
The next thing we are waiting on is the 2nd Open

House Haskell community where we will show some of
the projects we are working on.
I want to encourage all Spanish Haskell programmers

to meet us on Facebook.

Further reading

http://comunidadhaskell.org

9.13 Ghent Functional Programming
Group

Report by: Jeroen Janssen
Participants: Bart Coppens, Jasper Van der Jeugt, Tom

Schrĳvers, Andy Georges, Kenneth Hoste
Status: active

The Ghent Functional Programming Group is a new
user group aiming to bring together programmers, aca-
demics, and others interested in functional program-
ming located in the area of Ghent, Belgium. Our goal
is to have regular meetings with talks on functional pro-
gramming, organize functional programming related
events such as hackathons, and to promote functional
programming in Ghent by giving after-hours tutorials.
The first five GhentFPG meetings and BelHac were

reported on in the previous HCARs. Since then we
have held two other GhentFPG meetings. GhentFPG
#6, held in February 2011, was a problem-solving
night where we tackled some hard problems in Haskell.
GhentFPG #7 was a regular meeting with the follow-
ing three talks:

1. Tom Van Custem — Experiments with MapReduce
in Erlang. MapReduce is a programming model for
large data processing popularized by, and in daily use
at Google. The MapReduce model builds strongly on

key tenets of functional programming such as higher-
order functions and side-effect free execution. In this
talk, we summarize this programming model and de-
scribe a didactic implementation in Erlang. Invented
at Ericsson’s research labs, Erlang is known for its
massively concurrent programming model, and itself
builds on a functional core language. The talk will
not focus on Erlang as such, but we will describe its
key features as needed to understand the MapReduce
abstraction.

2. Tom Schrĳvers — How you could have won the
VPW 2011 contest with Haskell. We all know that
Functional Programming is great for writing con-
cise solutions for programming problems. With some
skill this can even be done quickly! Yet, there was lit-
tle evidence of this at the 3rd edition of the Flemish
Programming Contest (VPW 2011) that took place
on March 23. Not so before the contest: The jury
stress-tested all questions by writing various solu-
tions in different languages. Haskell was used to solve
most problems and invariably produced short solu-
tions.
In this talk I present my own Haskell solutions to
several of this year’s problems and discuss alternative
solution strategies with the audience. After the talk
you will be all set for winning next year’s edition —
or at least enjoying it — using Haskell.

3. Pieter Audenaert — Functional Geometry and a
Graphical Language. We will discuss a simple lan-
guage for drawing images. During the presentation
we will illustrate the power of data abstraction and
algebraic closure, meanwhile using higher order pro-
cedures in an essential manner. The language has
been designed to easy experimenting with patterns
such as those appearing in typical M.C. Escher draw-
ings where the artist repeats the pattern both moving
it across the drawing and scaling it when applicable.
In the language we use procedures to represent the
data objects that will be combined in the final draw-
ing and we make sure that all operations conducted
on these procedures are algebraically closed. These
features allow generating patterns of any complexity.
For our implementation, we use the LISP func-
tional programming language —more accurately, the
Scheme dialect. The presentation is based on “Struc-
ture and Interpretation of Computer Programs”,
Abelson & Sussman

If you want more information on GhentFPG you can
follow us on twitter (@ghentfpg), via Google Groups
(http://groups.google.com/group/ghent-fpg), or by vis-
iting us at irc.freenode.net in channel #ghentfpg.

Further reading

http://groups.google.com/group/ghent-fpg

77

http://comunidadhaskell.org
http://groups.google.com/group/ghent-fpg
http://groups.google.com/group/ghent-fpg

	Community, Articles/Tutorials
	Haskellers
	Haskell Wikibook
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects
	Haskell Cheat Sheet
	A Tutorial on the Enumerator Library
	Practice of Functional Programming

	Implementations
	Haskell Platform
	The Glasgow Haskell Compiler
	Immix Garbage Collector on GHC
	UHC, Utrecht Haskell Compiler
	Exchanging Sources between Clean and Haskell
	The Reduceron
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Haskell in Gentoo Linux
	Fedora Haskell SIG

	Fibon Benchmark Tools & Suite

	Related Languages
	Agda
	MiniAgda
	Clean
	Timber
	Disciple

	Haskell and …
	Haskell and Parallelism
	TwilightSTM
	Haskell-MPI
	Eden
	GpH --- Glasgow Parallel Haskell
	Parallel GHC Project

	Haskell and the Web
	GHCJS: Haskell to Javascript compiler
	WAI
	Warp
	Holumbus Search Engine Framework
	gitit
	Happstack
	Mighttpd2 --- Yet another Web Server
	Yesod
	Snap Framework
	rss2irc

	Haskell and Games
	FunGEn
	Nikki and the Robots
	Freekick2

	Haskell and Compiler Writing
	UUAG
	AspectAG
	Berp
	LQPL --- A Quantum Programming Language Compiler and Emulator

	Development Tools
	Environments
	EclipseFP
	ghc-mod --- Happy Haskell Programming on Emacs
	Leksah --- The Haskell IDE in Haskell
	HEAT: The Haskell Educational Advancement Tool
	HaRe --- The Haskell Refactorer

	Documentation
	Haddock
	Hoogle
	lhs2TeX

	Testing and Analysis
	shelltestrunner
	HLint
	hp2any

	Optimization
	HFusion
	Optimizing Generic Functions

	Boilerplate Removal
	A Generic Deriving Mechanism for Haskell
	Derive

	Code Management
	Darcs
	ipatch
	DarcsWatch
	darcsden
	darcsum
	Improvements to Cabal's Test Support
	cab --- A Maintenance Command of Haskell Cabal Packages
	Hackage-Debian

	Interfacing to other Languages
	HSFFIG

	Deployment
	Cabal and Hackage
	Hackage 2.0
	Capri
	Shaker

	Libraries
	Processing Haskell
	The Neon Library
	mueval

	Parsing and Transforming
	The grammar-combinators Parser Library
	language-python
	Loker
	epub-metadata
	ChristmasTree
	First Class Syntax Macros
	Utrecht Parser Combinator Library: uu-parsinglib
	Regular Expression Matching with Partial Derivatives

	Mathematical Objects
	normaldistribution: Minimum Fuss Normally Distributed Random Values
	dimensional: Statically Checked Physical Dimensions
	AERN-Real and Friends
	hmatrix

	Data Types and Data Structures
	HList --- A Library for Typed Heterogeneous Collections
	Persistent

	Generic and Type-Level Programming
	Unbound
	FlexiWrap
	uniplate
	Generic Programming at Utrecht University

	User Interfaces
	Gtk2Hs
	Haskeline
	CmdArgs

	Graphics
	Assimp
	plot/plot-gtk
	Craftwerk
	LambdaCube
	diagrams
	ChalkBoard

	Text and Markup Languages
	HaTeX
	Haskell XML Toolbox
	tagsoup

	Applications and Projects
	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners (previously: Exercise Assistants)
	Yahc
	Sifflet

	Data Management and Visualization
	HaskellDB
	lhae
	Pandoc
	Ferry (Database-Supported Program Execution)
	The Proxima 2.0 Generic Editor

	Functional Reactive Programming
	reactive-banana
	Functional Hybrid Modelling
	Elerea

	Audio and Graphics
	Audio Signal Processing
	Tidal, Texture and Live Music with Haskell
	Hemkay
	Functional Modelling of Musical Harmony
	Cologne
	easyVision

	Hardware Design
	CaSH
	ForSyDe
	Kansas Lava

	Proof Assistants and Reasoning
	Automated Termination Analyzer for Haskell
	Zeno --- Inductive Theorem Proving for Haskell Programs
	Free Theorems for Haskell
	Streaming Component Combinators
	CSP-M Animator and Model Checker
	Swish

	Natural Language Processing
	NLP
	GenI
	Grammatical Framework

	Others
	GenProg --- Genetic Programming Library
	Manatee
	xmonad
	Biohaskell
	Bullet
	Sloth2D
	hledger
	arbtt
	uacpid (Userspace ACPI Daemon)
	epub-tools (Command-line epub Utilities)

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Industrial Haskell Group
	Tsuru Capital
	Oblomov Systems

	Research and User Groups
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Functional Programming at UFMG and UFOP
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI and University Bremen
	Haskell at Universiteit Gent, Belgium
	Haskell in Romania
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	Dutch Haskell User Group
	San Simón Haskell Community
	Ghent Functional Programming Group

