
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Twenty-Fourth Edition — May 2013

Janis Voigtländer (ed.)
Andreas Abel Heinrich Apfelmus Emil Axelsson
Doug Beardsley Jean-Philippe Bernardy Jeroen Bransen
Joachim Breitner Erik de Castro Lopo Olaf Chitil
Duncan Coutts Nils Anders Danielsson Atze Dĳkstra
Péter Diviánszky Sebastian Erdweg Dennis Felsing
Julian Fleischer Ben Gamari Andy Georges
Patai Gergely Brett G. Giles Andy Gill
Torsten Grust Jurriaan Hage Bastiaan Heeren
Mike Izbicki PÁLI Gábor János Csaba Hruska
Paul Hudak Oleg Kiselyov Michal Konečný
Eric Kow Ben Lippmeier Andres Löh

Hans-Wolfgang Loidl Rita Loogen Ian Lynagh
Christian Maeder José Pedro Magalhães Ketil Malde
Mihai Maruseac Kazutaka Matsuda Dino Morelli
JP Moresmau Ben Moseley Takayuki Muranushi

Jürgen Nicklisch-Franken Tom Nielsen Rishiyur Nikhil
Jens Petersen Simon Peyton Jones David Sabel
Uwe Schmidt Martĳn Schrage Tom Schrĳvers

Andrew G. Seniuk Jeremy Shaw Christian Höner zu Siederdissen
Michael Snoyman Doaitse Swierstra Henning Thielemann
Sergei Trofimovich Bernhard Urban Marcos Viera
Daniel Wagner Kazu Yamamoto Edward Z. Yang

Brent Yorgey

http://tinyurl.com/haskcar

Preface

This is the 24th edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a
blue background. Entries for which I received a liveness ping, but which have seen no essential
update for a while, have been replaced with online pointers to previous versions. Other entries
on which no new activity has been reported for a year or longer have been dropped completely.
Please do revive such entries next time if you do have news on them.

A call for new entries and updates to existing ones will be issued on the Haskell mailing list
in October. Now enjoy the current report and see what other Haskellers have been up to lately.
Any feedback is very welcome, as always.

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

mailto: hcar at haskell.org

Contents

1 Community 6
1.1 Haskell’ — Haskell 2014 . 6
1.2 Haskellers . 6

2 Books, Articles, Tutorials 7
2.1 The Monad.Reader . 7
2.2 Oleg’s Mini Tutorials and Assorted Small Projects . 7
2.3 Agda Tutorial . 8

3 Implementations 9
3.1 Haskell Platform . 9
3.2 The Glasgow Haskell Compiler . 9
3.3 UHC, Utrecht Haskell Compiler . 12
3.4 Specific Platforms . 12
3.4.1 Haskell on FreeBSD . 12
3.4.2 Debian Haskell Group . 12
3.4.3 Haskell in Gentoo Linux . 13
3.4.4 Fedora Haskell SIG . 13

4 Related Languages and Language Design 14
4.1 Agda . 14
4.2 MiniAgda . 14
4.3 Disciple . 14
4.4 SugarHaskell . 14

5 Haskell and . . . 16
5.1 Haskell and Parallelism . 16
5.1.1 Eden . 16
5.1.2 GpH — Glasgow Parallel Haskell . 17
5.1.3 Parallel GHC project . 17
5.2 Haskell and the Web . 18
5.2.1 WAI . 18
5.2.2 Warp . 19
5.2.3 Holumbus Search Engine Framework . 19
5.2.4 Happstack . 20
5.2.5 Mighttpd2 — Yet another Web Server . 21
5.2.6 Yesod . 21
5.2.7 Snap Framework . 22
5.2.8 Sunroof . 22
5.3 Haskell and Compiler Writing . 23
5.3.1 MateVM . 23
5.3.2 CoCoCo . 23
5.3.3 UUAG . 24
5.3.4 LQPL — A Quantum Programming Language Compiler and Emulator 25

6 Development Tools 26
6.1 Environments . 26
6.1.1 EclipseFP . 26
6.1.2 ghc-mod — Happy Haskell Programming . 26
6.1.3 HEAT: The Haskell Educational Advancement Tool . 27
6.2 Code Management . 27
6.2.1 Darcs . 27

3

6.2.2 DarcsWatch . 28
6.2.3 cab — A Maintenance Command of Haskell Cabal Packages . 28
6.3 Deployment . 28
6.3.1 Cabal and Hackage . 28
6.3.2 Portackage — A Hackage Portal . 29
6.4 Others . 30
6.4.1 lhs2TEX . 30
6.4.2 ghc-heap-view . 30
6.4.3 ghc-vis . 30
6.4.4 Hat — the Haskell Tracer . 31

7 Libraries, Applications, Projects 32
7.1 Language Features . 32
7.1.1 Conduit . 32
7.1.2 Free Sections . 32
7.2 Education . 33
7.2.1 Holmes, Plagiarism Detection for Haskell . 33
7.2.2 Interactive Domain Reasoners . 33
7.3 Parsing and Transforming . 34
7.3.1 FliPpr . 34
7.3.2 Utrecht Parser Combinator Library: uu-parsinglib . 34
7.3.3 HERMIT . 35
7.4 Generic and Type-Level Programming . 36
7.4.1 Unbound . 36
7.4.2 A Generic Deriving Mechanism for Haskell . 36
7.4.3 Optimising Generic Functions . 36
7.5 Mathematical Objects . 37
7.5.1 AERN . 37
7.5.2 Paraiso . 38
7.5.3 bed-and-breakfast . 38
7.6 Data Types and Data Structures . 38
7.6.1 HList — A Library for Typed Heterogeneous Collections . 38
7.6.2 Persistent . 38
7.6.3 DSH — Database Supported Haskell . 39
7.7 User Interfaces . 40
7.7.1 LGtk: Lens-based Gtk API . 40
7.7.2 Gtk2Hs . 40
7.8 Functional Reactive Programming . 41
7.8.1 reactive-banana . 41
7.8.2 Elerea . 41
7.9 Graphics . 42
7.9.1 LambdaCube . 42
7.9.2 diagrams . 42
7.10 Audio . 44
7.10.1 Audio Signal Processing . 44
7.10.2 Live-Sequencer . 44
7.10.3 Chordify . 44
7.10.4 Euterpea . 44
7.11 Text and Markup Languages . 45
7.11.1 Haskell XML Toolbox . 45
7.11.2 epub-tools (Command-line epub Utilities) . 46
7.12 Natural Language Processing . 46
7.12.1 NLP . 46
7.12.2 GenI . 47
7.13 Machine Learning . 47
7.13.1 Bayes-stack . 47
7.13.2 Homomorphic Machine Learning . 48
7.14 Bioinformatics . 48

4

7.14.1 ADPfusion . 48
7.14.2 Biohaskell . 49
7.15 Embedding DSLs for Low-Level Processing . 49
7.15.1 Feldspar . 49
7.15.2 Kansas Lava . 49
7.16 Others . 50
7.16.1 Clckwrks . 50
7.16.2 arbtt . 50
7.16.3 hMollom — Haskell implementation of the Mollom API . 50
7.16.4 hGelf — Haskell implementation of the Graylog extended logging format 50

8 Commercial Users 52
8.1 Well-Typed LLP . 52
8.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 52
8.3 Industrial Haskell Group . 53
8.4 Barclays Capital . 53
8.5 Oblomov Systems . 54
8.6 OpenBrain Ltd. 54

9 Research and User Groups 55
9.1 Haskell at Eötvös Loránd University (ELTE), Budapest . 55
9.2 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 55
9.3 Functional Programming at the University of Kent . 56
9.4 Formal Methods at DFKI and University Bremen . 56
9.5 Haskell at Universiteit Gent, Belgium . 57
9.6 Haskell in Romania . 58
9.7 fp-syd: Functional Programming in Sydney, Australia . 59
9.8 Functional Programming at Chalmers . 59
9.9 Functional Programming at KU . 61
9.10 Ghent Functional Programming Group . 61

5

1 Community

1.1 Haskell’ — Haskell 2014

Report by: Ian Lynagh
Participants: Carlos Camarão, Iavor Diatchki, Bas van

Dĳk, Ian Lynagh, John Meacham, Neil
Mitchell, Ganesh Sittampalam, David

Terei, Henk-Jan van Tuyl

Haskell’ is an ongoing process to produce revisions to
the Haskell standard, incorporating mature language
extensions and well-understood modifications to the
language. New revisions of the language are expected
once per year.
The Haskell 2014 committee has now formed, and

we would be delighted to receive your proposals for
changes to the language. Please see http://hackage.
haskell.org/trac/haskell-prime/wiki/Process for details
on the proposal process.
The committee will meet 4 times a year, to consider

proposals completed before:
◦ 1st August
◦ 1st November
◦ 1st February
◦ 1st May
So if you have been meaning to put the finishing
touches to a proposal, then we would encourage you
to do so by the end of July!
The source for the Haskell report will be updated as

proposals are accepted, but new versions of the stan-
dard will only be released once a year, during January.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Since the May 2011 HCAR, Haskellers has added

polls, which provides a convenient means of surveying
a large cross-section of the active Haskell community.
There are now over 1300 active accounts, versus 800
one year ago.
Haskellers remains a site intended for all members

of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

6

http://hackage.haskell.org/trac/haskell-prime/wiki/Process
http://hackage.haskell.org/trac/haskell-prime/wiki/Process
http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 The Monad.Reader

Report by: Edward Z. Yang

There are many academic papers about Haskell and
many informative pages on the HaskellWiki. Unfortu-
nately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a wiki page, but more casual than a journal
article.
There are plenty of interesting ideas that might not

warrant an academic publication—but that does not
mean these ideas are not worth writing about! Com-
municating ideas to a wide audience is much more im-
portant than concealing them in some esoteric journal.
Even if it has all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining
a neat idea about “warm fuzzy things” to the rest of
us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there has been one new is-

sue, featuring articles on neural networks and compu-
tational quantum chemistry.

Further reading

http://themonadreader.wordpress.com/

2.2 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received three additions:

Ordinary and one-pass CPS transformation in the
tagless-final style

We demonstrate ordinary and administrative-redex–
less call-by-value Continuation Passing Style (CPS)
transformation that assuredly produces well-typed
terms and is patently total. It is natural to require the
result of transforming a well-typed term be well-typed.

In the tagless-final approach that requirement is satis-
fied automatically: after all, only well-typed terms are
expressible. We impose a more stringent requirement
that a transformation be total. In particular, the fact
that the transformation handles all possible cases of
the source terms must be patently, syntactically clear.
The complete coverage must be so clear that the met-
alanguage compiler should be able to see that, without
the aid of extra tools.
What makes CPS transform interesting is that the

type of the result is different from the type of the source
term: the CPS transform translates not only terms but
also types. Moreover, the CPS type transform and the
arrow type constructor do not commute.
Since the only thing we can do with tagless-final

terms is to interpret them, the CPS transformer is writ-
ten in the form of an interpreter. It interprets source
terms yielding transformed terms, which can be inter-
preted in many ways. In particular, the terms can be
interpreted by the CPS transformer again, yielding 2-
CPS terms. CPS transformers are composable, as ex-
pected.
One particular interpretation of CPS-transformed

terms is displaying them, so we can see the result of the
transformation. We notice right away that the ordinary
(Fischer or Plotkin) CPS transform introduces many
administrative redices, which make the result too hard
to read. Therefore, we implement Danvy and Filinski’s
one-pass CPS transform, which relies on the metalan-
guage to get rid of the administrative redices.
http://okmĳ.org/ftp/tagless-final/course/course.html#
CPS

Embedding linear and affine lambda-calculi

One may think that only those domain-specific lan-
guages can be embedded in Haskell whose type sys-
tem is a subset of that of Haskell. To counter that
impression we show how to faithfully embed typed lin-
ear lambda calculus, so that only well-typed and well-
formed linear terms are representable. Any bound vari-
able must be referenced exactly once in the abstrac-
tion’s body. Haskell as the metalanguage will statically
reject as ill-typed the attempts to represent terms with
a bound variable referenced several times — or, as in
the K combinator, never.
A trivial modification turns the embedding into that

of the affine lambda calculus, which allows to ignore
the bound variable. K combinator becomes express-
ible. The tutorial code defines the typed linear lambda
calculus and its two interpreters, to evaluate and to
show linear lambda terms. Later we add general ab-
stractions imposing no constraints on the use of bound

7

http://themonadreader.wordpress.com/
http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/tagless-final/course/course.html#CPS
http://okmij.org/ftp/tagless-final/course/course.html#CPS

variables.
http://okmĳ.org/ftp/tagless-final/course/course.html#
linear

Polyvariadic functions and keyword arguments:
pattern-matching on the type of the context

Any function polymorphic in its return type is poly-
variadic: The type can always be instantiated to the
arrow type, letting the function accept one more argu-
ment. The identity function is hence polyvariadic, as
one can easily check. Functions in the continuation-
passing style are naturally polymorphic in the return,
that is, the answer-type. Danvy’s Functional Unpars-
ing (typed, polyvariadic printf) is the clearest demon-
stration of the technique.
The tutorial collects more elaborate applications.

The key idea is that the concrete type of a polymorphic
term is determined by the context into which the term
is placed. Pattern-matching on that concrete type lets
the term determine the context of its use: specifically,
the term can determine the number and the types of the
values it receives as arguments, and what is expected
in return. For example, given

class C a where
f :: String→ a

the term f "Hello, " has the polymorphic type C a ⇒
a. If the term appears in the context putStrLn $
f "Hello, " True " world" ’!’ the type variable a
is instantiated to the concrete type Bool → String →
Char → String. Hopefully, there is an instance of C
with this type, defining the required operation. Such
instances can be built inductively:

instance C x ⇒ C (Char→ x) where
f a x = f (a ++ [x])

instance C x ⇒ C (Bool→ x) where
f a x = f (a ++ show x)

The class C thus lets f pattern-match on its continu-
ation. This type class is the unifying pattern for pre-
viously described polyvariadic functions. The tutorial
includes a new one: a generic transformation on a type-
indexed collection (TIP).
TIP is a heterogeneous array whose elements have

distinct types. Therefore, an element can be located
based solely on its type. Given a function t1 → t2 →
... → tn → tr we would like to apply it to a given
TIP: locating the arguments in the TIP by their types
t1 ... tn and replacing the TIP element indexed by tr
with the function’s result. The number of arguments
can be arbitrary, even zero. The types t1 . . tn, tr do not
have to be distinct – but they all must be in the domain
of the TIP. Otherwise, a type error should be reported.
The problem is a variation of the keyword argument
problem, where the ‘keyword’ is the argument type.
http://okmĳ.org/ftp/Haskell/polyvariadic.html

2.3 Agda Tutorial

Report by: Péter Diviánszky
Participants: Ambrus Kaposi, students at ELTE IK
Status: experimental

Agda may be the next programming language to learn
after Haskell. Learning Agda gives more insight into
the various type system extensions of Haskell, for ex-
ample.
The main goal of the tutorial is to let people ex-

plore programming in Agda without learning theoret-
ical background in advance. Only secondary school
mathematics is required for the tutorial.
I currently work on the correction and completion of

the existing material.

Further reading

http://people.inf.elte.hu/divip/AgdaTutorial/Index.html

8

http://okmij.org/ftp/tagless-final/course/course.html#linear
http://okmij.org/ftp/tagless-final/course/course.html#linear
http://okmij.org/ftp/Haskell/polyvariadic.html
http://people.inf.elte.hu/divip/AgdaTutorial/Index.html

3 Implementations

3.1 Haskell Platform

Report by: Duncan Coutts

At the time of preparing this HCAR, everybody was
poised for the 2013.2.0.0 release of the platform, but
it did not appear in time to be included in the re-
port. For the previous entry, see: http://www.haskell.
org/communities/11-2012/html/report.html#sect3.1.

3.2 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

The big event in late 2012 was the news of Simon Mar-
low’s move to Facebook. Simon is the absolute mas-
ter of huge tracts of GHC, including especially its run-
time system, garbage collection, code generation, and
support for parallelism. His contribution to GHC is a
massive one, and this makes a good occasion for us to
acknowledge it: thank you Simon!
Simon isn’t going to disappear, of course, but he’ll

have less time to work on GHC than before. That
means that everyone else, including you, gentle reader,
has new opportunities to contribute to the huge shared
community endeavour that we call GHC.
As planned, we made another minor release 7.6.2

from the 7.6 branch in January 2013. This included
only bug and performance fixes; no new features were
added. We plan to put out a new major release
7.8.1 soon after ICFP 2013, including some significant
changes described below.
There remains more to do than we will ever have

time for, so please do come and join in the fun!

Source language and type system:

Simon and Dimitrios overhauled the solver for type con-
straints, once more. No new functionality, but the re-
sult is smaller, faster, and lacks many of the bugs of its
predecessor. You don’t want to know all the details,
but it reminded us again of how valuable it is that the
constraint solver is now one coherent piece of code, with
a well-defined task, rather than being spread out in bits
and pieces across the type checker.
Meanwhile others have been adding new features.

Poly-kinded Typeable. The Typeable class is now
kind-polymorphic, meaning we can finally drop the
boilerplate TypeableN classes. The new definition of
Typeable is as follows:

class Typeable (a :: k) where
typeRep :: proxy a → TypeRep

With this change comes the ability to derive Typeable
instances for every user datatype, and even for
type classes. This means user defined instances of
Typeable are unnecessary. Furthermore, since ill-
defined user instances can lead to runtime errors,
they are now forbidden; the only way to get Typeable
instances is by using the deriving mechanism. User-
defined instances will be ignored, with a warning.
Migrating to this new Typeable is easy. Code that
only derived Typeable instances, and did not mention
any of the TypeableN classes, should work as before.
Code that mentioned the TypeableN classes should be
adapted to replace these by the poly-kinded Typeable
class. User-defined instances of Typeable should be
replaced by derived instances.
Additionally, a new compiler pragma
AutoDeriveTypeable triggers automatic derivation
of Typeable instances for all datatypes and classes
defined in the module.

Type holes. A GHC extension called “type holes”
[TYH] was added by Thĳs Alkemade, under super-
vision of Sean Leather and with help from Simon
Peyton Jones. When GHC encounters a hole in an
expression, written as “_”, it will generate an er-
ror message describing the type that is needed in
place of that hole. It gives some helpful additional
information, such as the origins of the type vari-
ables in the hole’s type and the local bindings that
can be used. Together with -fdefer-type-errors
this should make it easier to write code step-by-step,
using hints from the compiler about the unfinished
parts.

Rebindable list syntax. A GHC extension called
“overloaded lists” [OL] was added by Achim Krause,
George Giorgidze, and colleagues. When this is
turned on, the way GHC desugars explicit lists and
lists in arithmetic sequence notation is changed.
Instead of directly desugaring to built-in lists, a
polymorphic witness function is used, similar to the
desugaring of numeric literals. This allows for a
more flexible use of list notations, supporting many
different list-like types. In addition, the functions
used in this desugaring process are completely
rebindable.

Type level natural numbers. Iavor S. Diatchki has
been working on a solver for equations involving
type-level natural numbers. This allows simplifying

9

http://www.haskell.org/communities/11-2012/html/report.html#sect3.1
http://www.haskell.org/communities/11-2012/html/report.html#sect3.1

and reasoning about type-level terms involving arith-
metic. Currently, the solver can evaluate equations
and inequalities mentioning the type functions (+),
(∗), (↑), and (6). The solver works pretty well when
it can use evaluation to prove equalities (e.g., exam-
ples like 2 + 5 = x, 2 + x = 5). There is also some
support for taking advantage of the commutativity
and associativity of (+), (∗). More experimental fea-
tures include: support for (−), which currently is im-
plemented by desugaring to (+); the type-level func-
tion FromNat1, which has special support for working
with natural number literals, and thus can be used to
expose some of their inductive structure. This work
is currently on the type-nats branch, and the plan
is to merge it into HEAD in the next few months.

Kinds without data. Trevor Elliott, Eric Mertens, and
Iavor Diatchki have begun implementing support for
“data kind” declarations, described in more detail on
the GHC wiki [KD]. The idea is to allow a new form
of declaration that introduces a new kind, whose
members are described by the (type) constructors
in the declaration. This is similar to promoting
data declarations, except that no new value-level-
constructors are declared, and it also allows the con-
structors to mention other kinds that do not have a
corresponding type-level representation (e.g., ∗).

Ordered overlapping type family instances. Richard
Eisenberg has implemented support for ordered
overlapping type family instances, called branched
instances. This allows type-level functions to use
patterns in a similar way to term-level functions.
For example:

type family Equals (x :: ∗) (y :: ∗) :: Bool
type instance where

Equals x x = True
Equals x y = False

Details can be found on the wiki page [OTF].

Back end and code generation:

The new code generator. Several years since this
project was started, the new code generator is finally
working [14], and is now switched on by default in
master. It will be in GHC 7.8.1. From a user’s per-
spective there should be very little difference, though
some programs will be faster.
There are three important improvements in the gen-
erated code. One is that let-no-escape functions are
now compiled much more efficiently: a recursive let-
no-escape now turns into a real loop in C--. The
second improvement is that global registers (R1, R2,
etc.) are now available for the register allocator to
use within a function, provided they aren’t in use for
argument passing. This means that there are more
registers available for complex code sequences. The

third improvement is that we have a new sinking pass
that replaces the old “mini-inliner” from the native
code generator, and is capable of optimisations that
the old pass couldn’t do.
Hand-written C-- code can now be written in a
higher-level style with real function calls, and most
of the hand-written C-- code in the RTS has been
converted into the new style. High-level C-- does
not mention global registers such as R1 explicitly,
nor does it manipulate the stack; all this is handled
by the C-- code generator in GHC. This is more ro-
bust and simpler, and means that we no longer need
a special calling-convention for primops — they now
use the same calling convention as ordinary Haskell
functions.
We’re interested in hearing about both performance
improvements and regressions due to the new code
generator.

Support for vector (SSE/AVX) instructions.
Support for SSE vector instructions, which permit
128-bit vectors, is now in HEAD. As part of this
work, up to 6 arguments of type Double, Float, or
vector can be passed in registers. Previously only
4 Float and 2 Double arguments could be passed in
registers. AVX support will be added soon pending
a refactoring of the code that implements vector
primops.

Data Parallel Haskell:

Vectorisation Avoidance. Gabriele Keller and Manuel
Chakravarty have extended the DPH vectoriser with
an analysis that determines when expressions cannot
profitably be vectorised. Vectorisation avoidance im-
proves compile times for DPH programs, as well as
simplifying the handling of vectorised primitive op-
erations. This work is now complete and will be in
GHC 7.8.

New Fusion Framework. Ben Lippmeier has been
waging a protracted battle with the problem of array
fusion. Absolute performance in DPH is critically de-
pendent on a good array fusion system, but existing
methods cannot properly fuse the code produced by
the DPH vectoriser. An important case is when a
produced array is consumed by multiple consumers.
In vectorised code this is very common, but none of
the “short cut” array fusion approaches can handle
it — e.g. stream fusion used in Data.Vector, delayed
array fusion in Repa, foldr/build fusion etc. The
good news is that we’ve found a solution that han-
dles this case and others, based on Richard Waters’s
series expressions, and are now working on an imple-
mentation. The new fusion system is embodied by
a GHC plugin that performs a custom core-to-core
transformation, and some added support to the ex-
isting Repa library. We’re pushing to get the first

10

version working for a paper at the upcoming Haskell
Symposium.

A faster I/O manager:

Andreas Voellmy performed a significant reworking of
the IO manager to improve multicore scaling and se-
quential speed. The most significant problems of the
old IO manager were (1) severe contention (under some
workloads) on a single MVar holding the table of call-
backs, (2) invoking a callback typically requires messag-
ing across capabilities, (3) polling for ready files per-
forms an OS context switch, causing excessive context
switching. These problems contribute greatly to the
response time of servers written in Haskell.
The redesigned IO manager addresses these prob-

lems in the following ways. We replace the single MVar
for the callback table with a simple concurrent hash ta-
ble, allowing for more concurrent registrations and call-
backs. We use one IO manager service thread per ca-
pability, each with its own callback table and with the
service thread for a given capability serving the waiting
Haskell threads that were running (and will be woken
up) on that capability. This further reduces contention
on callback tables, ensures that notifying a thread is
typically done without cross-capability messaging and
allows the work of polling and notifying threads to be
parallelized across cores. To reduce context switch-
ing, we modify the service loops to first poll without
waiting, which can be done without releasing the HEC
(which would typically incur an OS context switch).
The new IO manager also takes advantage of the

edge-triggered and one-shot modes of epoll on Linux to
achieve further performance improvements on Linux.
These changes result in substantial performance im-

provements in some applications. In particular, we im-
plemented a minimal web server and found that perfor-
mance with the new “parallel” IO manager improved by
a factor of 19 versus the old IO manager; with the old
IO manager, our server achieved a peak performance of
roughly 45,000 http requests per second using 8 cores
(performance degraded after 8 cores), while the same
server using the parallel IO manager serves 860,000 re-
quests/sec using 18 cores [PIO]. We have measured sim-
ilar improvements in the response time of servers writ-
ten in Haskell.
Kazu Yamamoto contributed greatly to the project

by implementing the redesign for BSD-based systems
using kqueue and by improving the code in order to
bring it up to GHC’s standards. In addition, Bryan
O’Sullivan and Johan Tibell provided critical guidance
and reviews.

Dynamic linking:

Ian Lynagh has changed GHCi to use dynamic libraries
rather than static libraries. This means that we are
now able to use the system linker to load packages,

rather than having to implement our own linker. From
the user’s point of view, that means that a number
of long-standing bugs in GHCi will be fixed, and it
also reduces the amount of work needed to get a fully
functional GHC port to a new platform. Currently, on
Windows GHCi still uses static libraries, but we hope
to have dynamic libraries working on Windows too by
the time we release.

Cross compilation:

Three connected projects concerned cross-compilation

Registerised ARM support added using David Terei’s
LLVM compiler back end with Stephen Blackheath
doing an initial ARMv5 version and LLVM patch
and Karel Gardas working on floating point support,
ARMv7 compatibility and LLVM headaches. Ben
Gamari did work on the runtime linker for ARM.

General cross-compiling with much work by Stephen
Blackheath and Gabor Greif (though many others
have worked on this as well).

A cross-compiler for Apple iOS. iOS-specific parts
[IOS] were mostly done by Stephen Blackheath
with Luke Iannini on the Cabal patch, testing and
supporting infrastructure, also with assistance and
testing by Miëtek Bak and Jonathan Fischoff, and
thanks to many others for testing; The iOS cross
compiler was started back in 2009 by Stephen
Blackheath with funding from Ryan Trinkle of iPwn
Studios.

Thanks to Ian Lynagh for making it easy for us with
integration, makefile refactoring and patience, and to
David Terei for LLVM assistance.

Links:

◦ [TYH], http://www.haskell.org/haskellwiki/GHC/
TypeHoles

◦ [OL], http://hackage.haskell.org/trac/ghc/wiki/
OverloadedLists

◦ [KD], http://hackage.haskell.org/trac/ghc/wiki/
GhcKinds/KindsWithoutData

◦ [OTF], Overlapping type family instances, http://
hackage.haskell.org/trac/ghc/wiki/NewAxioms

◦ [CG], The new codegen is nearly ready to
go live, http://hackage.haskell.org/trac/ghc/blog/
newcg-update

◦ [PIO], The results are amazing, https://twitter.com/
bos31337/status/284701554458640384

◦ [IOS], Building for Apple iOS targets,
http://hackage.haskell.org/trac/ghc/wiki/Building/
CrossCompiling/iOS

11

http://www.haskell.org/haskellwiki/GHC/TypeHoles
http://www.haskell.org/haskellwiki/GHC/TypeHoles
http://hackage.haskell.org/trac/ghc/wiki/OverloadedLists
http://hackage.haskell.org/trac/ghc/wiki/OverloadedLists
http://hackage.haskell.org/trac/ghc/wiki/GhcKinds/KindsWithoutData
http://hackage.haskell.org/trac/ghc/wiki/GhcKinds/KindsWithoutData
http://hackage.haskell.org/trac/ghc/wiki/NewAxioms
http://hackage.haskell.org/trac/ghc/wiki/NewAxioms
http://hackage.haskell.org/trac/ghc/blog/newcg-update
http://hackage.haskell.org/trac/ghc/blog/newcg-update
https://twitter.com/bos31337/status/284701554458640384
https://twitter.com/bos31337/status/284701554458640384
http://hackage.haskell.org/trac/ghc/wiki/Building/CrossCompiling/iOS
http://hackage.haskell.org/trac/ghc/wiki/Building/CrossCompiling/iOS

3.3 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: many others
Status: active development

What is new? UHC is the Utrecht Haskell Compiler,
supporting almost all Haskell98 features and most of
Haskell2010, plus experimental extensions. The cur-
rent focus is on the Javascript backend.

What do we currently do and/or has recently been
completed? As part of the UHC project, the follow-
ing (student) projects and other activities are underway
(in arbitrary order):

◦ (completed) Jurriën Stutterheim and others: build-
ing web applications with the Javascript backend.
See the below UHC Javascript url for more info.

◦ (ongoing) Jeroen Bransen (PhD): “Incremental
Global Analysis”.

◦ (ongoing) Jan Rochel (PhD): “Realising Optimal
Sharing”, based on work by Vincent van Oostrum
and Clemens Grabmayer.

◦ (ongoing) Atze Dĳkstra: overall architecture, type
system, bytecode interpreter + java + javascript
backend, garbage collector.

Background. UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.3.3).

Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ UHC Github repository: https://github.com/
UU-ComputerScience/uhc

◦ UHC Javascript backend: http://
uu-computerscience.github.com/uhc-js/

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

3.4 Specific Platforms

3.4.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of contrib-
utors who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both i386 and amd64) start-
ing from GHC 6.12.1, hence one can always download
vanilla binary distributions for each recent release.
We have a developer repository for Haskell ports

that features around 460 ports of many popular Ca-
bal packages. The updates committed to this repos-
itory are continuously integrated to the official ports
tree on a regular basis. However, the FreeBSD Ports
Collection already includes many popular and impor-
tant Haskell software: GHC 7.4.2, Haskell Platform
2012.4.0.0, Gtk2Hs, wxHaskell, XMonad, Pandoc, Gi-
tit, Yesod, Happstack, Snap, Agda, git-annex, and so
on – all of them will be available as part of the upcom-
ing FreeBSD 8.4-RELEASE.
Note that Haskell ports are now built with dynamic

linking on by default, and the GHC port uses the latest
available version of GCC and binutils from the Ports
Collection as GCC in base is obsolete and soon replaced
with Clang. We have just started the preparations for
Haskell Platform 2013.2.0.0, which will bring us GHC
7.6.3 to the Ports Collection soon. We also learned
that our Haskell ports have been successfully imported
to DPorts, an effort to use FreeBSD ports on Dragon-
Fly. In addition to this, there was some support added
for LLVM-based code generation in our development
repository.
If you find yourself interested in helping us or simply

want to use the latest versions of Haskell programs on
FreeBSD, check out our page at the FreeBSD wiki (see
below) where you can find all important pointers and
information required for use, contact, or contribution.

Further reading

http://wiki.FreeBSD.org/Haskell

3.4.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux

12

http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
https://github.com/UU-ComputerScience/uhc
https://github.com/UU-ComputerScience/uhc
http://uu-computerscience.github.com/uhc-js/
http://uu-computerscience.github.com/uhc-js/
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://wiki.FreeBSD.org/Haskell

distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 628 source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.
The just released stable Debian release (“wheezy”)

provides the Haskell Platform 2012.3.0.0 and GHC
7.4.1. We are already working on new features for the
next release. Full support for running hoogle to search
all installed Haskell documentation is in the making,
and Debian “experimental” already ships GHC 7.6.3
and up-to-date versions of the libraries.
Debian users benefit from the Haskell ecosystem

on 13 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.4.3 Haskell in Gentoo Linux

Report by: Sergei Trofimovich

Gentoo Linux currently officially supports GHC 7.4.1,
GHC 7.0.4 and GHC 6.12.3 on x86, amd64, sparc, al-
pha, ppc, ppc64 and some arm platforms.
The full list of packages available through the offi-

cial repository can be viewed at http://packages.gentoo.
org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at http://bugs.gentoo.org.
There is also an overlay which contains almost 800

extra unofficial and testing packages. Thanks to the
Haskell developers using Cabal and Hackage (→ 6.3.1),
we have been able to write a tool called “hackport” (ini-
tiated by Henning Günther) to generate Gentoo pack-
ages with minimal user intervention. Notable packages
in the overlay include the latest version of the Haskell
Platform (→ 3.1) as well as the latest 7.4.1 release of
GHC, as well as popular Haskell packages such as pan-
doc, gitit, yesod (→ 5.2.6) and others.
As usual GHC 7.4 branch required some packages to

be patched. For a 6 months period we have got about
150 patches waiting for upstream inclusion.
Over the time more and more people get involved

in gentoo-haskell project which reflects positively on
haskell ecosystem health status.
More information about the Gentoo Haskell Overlay

can be found at http://haskell.org/haskellwiki/Gentoo.

It is available via the Gentoo overlay manager “lay-
man”. If you choose to use the overlay, then any prob-
lems should be reported on IRC (#gentoo-haskell
on freenode), where we coordinate development, or
via email 〈haskell@gentoo.org〉 (as we have more peo-
ple with the ability to fix the overlay packages that
are contactable in the IRC channel than via the bug
tracker).
As always we are more than happy for (and in fact

encourage) Gentoo users to get involved and help us
maintain our tools and packages, even if it is as simple
as reporting packages that do not always work or need
updating: with such a wide range of GHC and package
versions to co-ordinate, it is hard to keep up! Please
contact us on IRC or email if you are interested!
For concrete tasks see our perpetual TODO

list: https://github.com/gentoo-haskell/gentoo-haskell/
blob/master/projects/doc/TODO.rst

3.4.4 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Lakshmi Narasimhan, Shakthi Kannan,

Michel Salim, Ben Boeckel, and others
Status: ongoing

The Fedora Haskell SIG works on providing good
Haskell support in the Fedora Project Linux distribu-
tion.
Fedora 18 will ship in December with ghc-7.4.1 and

haskell-platform-2012.2.0.0, and version updates also
to many other packages. New packages added since
the release of Fedora 17 include cabal-rpm, happstack-
server, hledger, and a bunch of libraries. Cabal-rpm
has been revamped to replace the previously used ca-
bal2spec packaging shell-script.
At the time of writing there are now 205 Haskell

source packages in Fedora. The Fedora package ver-
sion numbers listed on the Hackage website refer to
the latest branched version of Fedora (currently 18).
Fedora 19 work is starting now with ghc-7.4.2,

haskell-platform-2012.4 and plans finally to package up
Yesod.
If you want to help with package reviews and Fe-

dora Haskell packaging, please join us on Freenode irc
#fedora-haskell and our low-traffic mailing-list, or fol-
low @fedorahaskell.

Further reading

◦ Homepage: http://fedoraproject.org/wiki/SIGs/
Haskell

◦ Mailing-list: https://admin.fedoraproject.org/
mailman/listinfo/haskell

◦ Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig

◦ Package changes: http://git.fedorahosted.org/cgit/
haskell-sig.git/tree/packages/diffs/f17-f18.compare

13

http://wiki.debian.org/Haskell
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
http://bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/SIGs/Haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f17-f18.compare
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f17-f18.compare

4 Related Languages and Language Design

4.1 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell, Andreas Abel, and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
In November Agda 2.3.2 was released, with the fol-

lowing changes (among others):

◦ Pattern synonyms (Stevan Andjelkovic and Adam
Gundry).

◦ Modifications to the constraint solver (Andreas
Abel).

◦ A LATEX backend, with the aim to support both
precise, Agda-style highlighting, and lhs2TeX-style
alignment of code (Stevan Andjelkovic).

◦ The Emacs mode no longer depends on GHCi and
haskell-mode (Peter Divianszky).

◦ The Emacs mode is more interactive: type-checking
no longer blocks Emacs, and there is an option to
highlight the expression that is currently being type-
checked (Guilhem Moulin and Nils Anders Daniels-
son).

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda

Report by: Andreas Abel
Status: experimental

See: http://www.haskell.org/communities/05-2012/
html/report.html#sect4.2.

4.3 Disciple

Report by: Ben Lippmeier
Status: experimental, active development

Disciple Core is an explicitly typed language based on
System-F2, intended as an intermediate representation
for a compiler. In addition to the polymorphism of
System-F2 it supports region, effect and closure typ-
ing. Evaluation order is left-to-right call-by-value by
default, but explicit lazy evaluation is also supported.
The language includes a capability system to track
whether objects are mutable or constant, and to ensure
that computations that perform visible side effects are
not suspended with lazy evaluation.
The Disciplined Disciple Compiler (DDC) is being

rewritten to use the redesigned Disciple Core language.
This new DDC is at a stage where it will parse and
type-check core programs, and compile first-order func-
tions over lists to executables via C or LLVM backends.
There is also an interpreter that supports the full lan-
guage.

What is new?

◦ Over the last month we’ve been working on a new
core language fragment, Disciple Core Flow, to sup-
port work on array fusion for Data Parallel Haskell
(DPH). We’re writing a GHC plugin that translates
GHC core programs to Disciple Core Flow, performs
array fusion, and translates back. We’re using Disci-
ple Core Flow instead of GHC Core directly because
it has a simple (and working) external core format,
which we use to test the fusion transform.

Further reading

http://disciple.ouroborus.net

4.4 SugarHaskell

Report by: Sebastian Erdweg
Participants: Tillmann Rendel, Felix Rieger, Klaus

Ostermann
Status: active

SugarHaskell is a generic extension of Haskell that en-
ables programmers to define and use flexible syntactic
extensions of Haskell. SugarHaskell extensions are or-
ganized as regular libraries, which define an extended
syntax and a transformation of the extended syntax
into Haskell’s base syntax (or an extension thereof). To

14

http://wiki.portal.chalmers.se/agda/
http://www.haskell.org/communities/05-2012/html/report.html#sect4.2
http://www.haskell.org/communities/05-2012/html/report.html#sect4.2
http://disciple.ouroborus.net

activate an extension, a SugarHaskell programmer sim-
ply imports the library that defines the extension; the
extension is active in the remainder of the current file.
Our Haskell Symposium paper [4] contains numerous
examples, including arrow notation and, as illustrated
in the following, idiom brackets:

import Control.Applicative
import Control.Applicative.IdiomBrackets
instance Traversable Tree where

traverse f Leaf = (| Leaf |)
traverse f (Node l x r) =

(| Node (traverse f l) (f x) (traverse f r) |)

The library Control.Applicative.IdiomBrackets provides
a syntactic extension for programming with applica-
tives, using idiomatic brackets (| ... |). Uses of id-
iom brackets are desugared in-place to produce plain
Haskell code. Generally, the usage of syntactic exten-
sions in a program is transparent to its clients.
SugarHaskell provides both a compiler and an

Eclipse-based IDE. The SugarHaskell compiler is avail-
able as a Hackage package [2] and can be easily installed
using cabal-install. Since our system is implemented in
Java, the SugarHaskell package requires a preinstalled
Java runtime. Moreover, we distribute the source code
via github, and involvement of others is welcome. The
SugarHaskell IDE is available as an Eclipse plugin and
can be installed from our Eclipse update site [3]. The
IDE provides some standard editor services such as
code coloring or outlining for Haskell, and is also exten-
sible itself to accommodate user-defined editor services
for SugarHaskell extensions.

SugarHaskell is a research prototype that is under
active development. We work both on the implemen-
tation and the conceptional foundation of the system.
The feedback cycle is short and any feedback is appre-
ciated.

Further reading

[1] http://sugarj.org
[2] http://hackage.haskell.org/package/sugarhaskell
[3] Eclipse update site: http://sugarj.org/update
[4] Sebastian Erdweg, Felix Rieger, Tillmann Rendel,

and Klaus Ostermann. Layout-sensitive Lan-
guage Extensibility with SugarHaskell. In
Haskell Symposium, pages 149–160. ACM, 2012.

15

http://sugarj.org
http://hackage.haskell.org/package/sugarhaskell
http://sugarj.org/update

5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Oleg Lobachev,

Rita Loogen,
in Copenhagen: Jost Berthold

Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s primitive constructs are process abstractions

and process instantiations. The Eden logo

consists of four λ turned in such a way that they form
the Eden instantiation operator (#). Higher-level coor-
dination is achieved by defining skeletons, ranging from
a simple parallel map to sophisticated master-worker
schemes. They have been used to parallelize a set of
non-trivial programs.
Eden’s interface supports a simple definition of arbi-

trary communication topologies using Remote Data. A
PA-monad enables the eager execution of user defined
sequences of Parallel Actions in Eden.

Web Pages

http://www.mathematik.uni-marburg.de/~eden

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Tutorial

Rita Loogen: Eden - Parallel Functional Programming
in Haskell, in: V. Zsók, Z. Horváth, and R. Plasmeĳer

(Eds.): CEFP 2011, Springer LNCS 7241, 2012, pp.
142-206.
(see also: http://www.mathematik.uni-marburg.de/
~eden/?content=cefp)

Implementation

Eden is implemented by modifications to the Glasgow-
Haskell Compiler (extending its runtime system to use
multiple communicating instances). Apart from MPI
or PVM in cluster environments, Eden supports a
shared memory mode on multicore platforms, which
uses multiple independent heaps but does not depend
on any middleware. Building on this runtime support,
the Haskell package edenmodules defines the language,
and edenskels provides libraries of parallel skeletons.
The current stable release of the Eden compiler is

based on GHC 7.4.2. Binary packages and source
code are available on our web pages, the Eden libraries
(Haskell-level) are also available via Hackage.
A newer variant based on GHC-7.6.1 (and match-

ing Eden libraries) are available as source code via git
repositories at http://james.mathematik.uni-marburg.
de:8080/gitweb. We plan the next full release of Eden
with the next (minor or major) GHC release.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visual-
isation of Eden program runs on various levels. Activ-
ity profiles are produced for processing elements (ma-
chines), Eden processes and threads. In addition mes-
sage transfer can be shown between processes and ma-
chines. EdenTV is written in Haskell and is freely avail-
able on the Eden web pages and on hackage.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ Mischa Dieterle, Thomas Horstmeyer, Jost Berthold,
Rita Loogen: Iterating Skeletons — Structured Par-
allelism by Composition, Selected Papers of the Sym-
posium on the Implementation and Application of
Functional Languages (IFL 2012), LNCS, Springer
2013, to appear.

◦ M. KH. Aswad, P. W. Trinder, A. D. Al-Zain, G.
J. Michaelson, J. Berthold: Comparing Low-Pain
and No-Pain Multicore Haskells, revised and ex-
tended version of TFP 2009 paper, in Special Issue
of Higher-Order Symbol Computation (HOSC), to
appear.

16

http://www.mathematik.uni-marburg.de/~eden
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://james.mathematik.uni-marburg.de:8080/gitweb
http://james.mathematik.uni-marburg.de:8080/gitweb

◦ Thomas Horstmeyer and Rita Loogen: Graph-Based
Communication in Eden, revised and extended ver-
sion of TFP 2009 paper, in Special Issue of Higher-
Order Symbol Computation (HOSC), to appear.

◦ Oleg Lobachev, Michael Guthe, Rita Loogen: Esti-
mating parallel performance, Journal of Parallel and
Distributed Computing, Vol 73, No. 6, June 2013,
pp. 876 - 887.

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.1.2 GpH — Glasgow Parallel Haskell

Report by: Hans-Wolfgang Loidl
Participants: Phil Trinder, Patrick Maier, Mustafa

Aswad, Malak Aljabri, Evgenĳ Belikov,
Pantazis Deligianis, Robert Stewart,

Prabhat Totoo (Heriot-Watt University);
Kevin Hammond, Vladimir Janjic, Chris

Brown (St Andrews University)
Status: ongoing

Status

A distributed-memory, GHC-based implementation of
the parallel Haskell extension GpH and of a fundamen-
tally revised version of the evaluation strategies ab-
straction is available in a prototype version. In cur-
rent research an extended set of primitives, support-
ing hierarchical architectures of parallel machines, and
extensions of the runtime-system for supporting these
architectures are being developed.

Main activities

We have been extending the set of primitives for par-
allelism in GpH, to provide enhanced control of data
locality in GpH applications. Results from applica-
tions running on up to 256 cores of our Beowulf cluster
demonstrate significant improvements in performance
when using these extensions.
In the context of the SICSA MultiCore Challenge,

we are comparing the performance of several paral-
lel Haskell implementations (in GpH and Eden) with
other functional implementations (F#, Scala and SAC)
and with implementations produced by colleagues in
a wide range of other parallel languages. The latest
challenge application was the n-body problem. A sum-
mary of this effort is available on the following web
page, and sources of several parallel versions will be up-
loaded shortly: http://www.macs.hw.ac.uk/sicsawiki/
index.php/MultiCoreChallenge.
New work has been launched into the direction of

inherently parallel data structures for Haskell and us-
ing such data structures in symbolic applications. This
work aims to develop foundational building blocks in
composing parallel Haskell applications, taking a data-
centric point of view. Current work focuses on data

structures such as append-trees to represent lists and
quad-trees in an implementation of the n-body prob-
lem.
Another strand of development is the improvement

of the GUM runtime-system to better deal with hier-
archical and heterogeneous architectures, that are be-
coming increasingly important. We are revisiting basic
resource policies, such as those for load distribution,
and are exploring modifications that provide enhanced,
adaptive behaviour for these target platforms.

GpH Applications

As part of the SCIEnce EU FP6 I3 project (026133)
(April 2006 – December 2011) and the HPC-GAP
project (October 2009 – September 2013) we use Eden,
GpH and HdpH as middleware to provide access to
computational Grids from Computer Algebra (CA) sys-
tems, in particular GAP. We have developed and re-
leased SymGrid-Par, a Haskell-side infrastructure for
orchestrating heterogeneous computations across high-
performance computational Grids. Based on this in-
frastructure we have developed a range of domain-
specific parallel skeletons for parallelising representa-
tive symbolic computation applications. A Haskell-side
interface to this infrastructures is available in the form
of the Computer Algebra Shell CASH, which is down-
loadable from Hackage. We are currently extending
SymGrid-Par with support for fault-tolerance, target-
ing massively parallel high-performance architectures.

Implementations

The latest GUM implementation of GpH is built on
GHC 6.12, using either PVM or MPI as communica-
tions library. It implements a virtual shared memory
abstraction over a collection of physically distributed
machines. At the moment our main hardware plat-
forms are Intel-based Beowulf clusters of multicores.
We plan to connect several of these clusters into a wide-
area, hierarchical, heterogenous parallel architecture.

Further reading

http://www.macs.hw.ac.uk/~dsg/gph/

Contact

〈gph@macs.hw.ac.uk〉

5.1.3 Parallel GHC project

Report by: Duncan Coutts
Participants: Duncan Coutts, Andres Löh, Mikolaj

Konarski, Edsko de Vries
Status: active

Microsoft Research funded a 2-year project, which is
now coming to an end, to promote the real-world use of

17

http://www.mathematik.uni-marburg.de/~eden
http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge
http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge
http://www.macs.hw.ac.uk/~dsg/gph/
mailto: gph at macs.hw.ac.uk

parallel Haskell. The project involved industrial part-
ners working on their own tasks using parallel Haskell,
and consulting and engineering support from Well-
Typed (→ 8.1). The overall goal has been to demon-
strate successful serious use of parallel Haskell, and
along the way to apply engineering effort to any prob-
lems with the tools that the organisations might run
into. In addition we have put significant engineering
work into a new implementation of Cloud Haskell.
The participating organisations are working on a di-

verse set of complex real world problems:

◦ Dragonfly (New Zealand): Hierarchical Bayesian
Modeling

◦ Los Alamos National Laboratory (USA): high per-
formance Monte Carlo algorithms to model the flow
of radiation and other physical phenomena

◦ IĲ Innovation Institute Inc. (Japan): network
servers handling a massive number of concurrent con-
nections

◦ Telefonica I+D: processing large graphs representing
social networks

As the project winds down, we will be publishing
more details about the outcomes of these projects.
On the engineering side, the two main areas of fo-

cus in the project recently have been ThreadScope and
Cloud Haskell.

ThreadScope. The latest release of ThreadScope
(version 0.2.2) provides detailed statistics about heap
and GC behaviour. It is much like the output that can
be obtained by running your program with +RTS -s
but presented in a more friendly way and with the abil-
ity to see the same statistics for any period within the
program, not just the entire program run. This work
could be extended to show graphs of the heap size over
time. Compared to GHC’s traditional heap profiling
this does not require recompiling in profiling mode and
is very low overhead, but what is lost is the detailed
breakdown of the heap by type, cost centre or retainer.
In addition there is a new feature to emit phase mark-

ers from user code and have these visualised in the
ThreadScope timeline window.
These new features rely on the development version

of GHC, and so will become generally available with
GHC-7.8.
Finally, there is an alpha release of an ambitious new

feature to integrate data from Linux’s “perf” system
into ThreadScope. The Linux “perf” system lets us
see events in the OS such as system calls and other in-
ternal kernel trace points, and also to collect detailed
CPU performance counters. Our work has focused on
capturing and transforming this data source, and inte-
grating it with the existing RTS event tracing system

which we believe will enable many useful new visuali-
sations. Our initial new visualisation in ThreadScope
lets us see when system calls are occurring. We hope
that this and other future work in this area will help
developers who are trying to optimise the performance
of applications like network servers.

Cloud Haskell. For about the last year we have been
working on a new implementation of Cloud Haskell.
This is the same idea for concurrent distributed pro-
gramming in Haskell that Simon Peyton Jones has been
telling everyone about, but it’s a new implementation
designed to be robust and flexible.
The summary about the new implementation is that

it exists, it works, it’s on hackage, and we think it is
now ready for serious experiments.
Compared to the previous prototype:

◦ it is much faster;

◦ it can run on multiple kinds of network;

◦ has backends to support different environments (like
cluster or cloud);

◦ has a new system for dealing with node disconnect
and reconnect;

◦ has a more precisely defined semantics;

◦ supports composable, polymorphic serialisable clo-
sures;

◦ and internally the code is better structured and eas-
ier to work with.

By the time you read this, we will have also re-
leased a backend for the Windows Azure cloud plat-
form. Backends for other environments should be rela-
tively straightforward to develop.
Further details including papers, videos and blog

posts are on the Cloud Haskell homepage.

Further reading

◦ Parallel GHC project homepage: http://www.haskell.
org/haskellwiki/Parallel_GHC_Project

◦ Cloud Haskell homepage: http://www.haskell.org/
haskellwiki/Cloud_Haskell

◦ ThreadScope homepage: http://www.haskell.org/
haskellwiki/ThreadScope

5.2 Haskell and the Web

5.2.1 WAI

Report by: Michael Snoyman
Participants: Greg Weber
Status: stable

18

http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Cloud_Haskell
http://www.haskell.org/haskellwiki/Cloud_Haskell
http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/haskellwiki/ThreadScope

The Web Application Interface (WAI) is an inter-
face between Haskell web applications and Haskell web
servers. By targeting the WAI, a web framework or web
application gets access to multiple deployment plat-
forms. Platforms in use include CGI, the Warp web
server, and desktop webkit.
WAI has mostly been stable since the last HCAR,

with the exception of a newly added field to represent
the request body length. This avoids repeatedly doing
a costly integer parse, and correctly handling the case
of chunked bodies at the type level. WAI has also been
updated to allow the newest version of the conduit (→
7.1.1) package.
WAI is also a platform for re-using code between web

applications and web frameworks through WAI mid-
dleware and WAI applications. WAI middleware can
inspect and transform a request, for example by auto-
matically gzipping a response or logging a request. The
Yesod (→ 5.2.6) web framework provides the ability to
embed arbitrary WAI applications as subsites, making
them a part of a larger web application.
By targeting WAI, every web framework can share

WAI code instead of wasting effort re-implementing
the same functionality. There are also some new
web frameworks that take a completely different ap-
proach to web development that use WAI, such as web-
wire (FRP) and dingo (GUI). The Scotty web frame-
work also continues to be developed, and provides a
lighter-weight alternative to Yesod. Other frameworks-
whether existing or newcomers- are welcome to take
advantage of the existing WAI architecture to focus on
the more innovative features of web development.
WAI applications can send a response themselves.

For example, wai-app-static is used by Yesod to serve
static files. However, one does not need to use a web
framework, but can simply build a web application us-
ing the WAI interface alone. The Hoogle web service
targets WAI directly.
The WAI standard has proven itself capable for dif-

ferent users and there are no outstanding plans for
changes or improvements.

Further reading

http://www.yesodweb.com/book/wai

5.2.2 Warp

Report by: Michael Snoyman

Warp is a high performance, easy to deploy HTTP
server backend for WAI (→ 5.2.1). Since the last
HCAR, Warp has switched from enumerators to con-
duits (→ 7.1.1), added SSL support, and websockets
integration.
Due to the combined use of ByteStrings, blaze-

builder, conduit, and GHC’s improved I/O manager,
WAI+Warp has consistently proven to be Haskell’s
most performant web deployment option.

Warp is actively used to serve up most of the users
of WAI (and Yesod).
“Warp: A Haskell Web Server” by Michael Snoyman

was published in the May/June 2011 issue of IEEE In-
ternet Computing:
◦ Issue page: http://www.computer.org/portal/web/

csdl/abs/mags/ic/2011/03/mic201103toc.htm
◦ PDF: http://steve.vinoski.net/pdf/IC-Warp_a_

Haskell_Web_Server.pdf

5.2.3 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Kranz, Sebastian Gauck, Stefan

Schmidt
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.
◦ The Holumbus Search Engine
◦ The Holumbus Distribution Library
◦ The Holumbus Storage System
◦ The Holumbus MapReduce Framework
The search engine package includes the indexer and

search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customizable result ranking
◦ Index structure designed for distributed search

19

http://www.yesodweb.com/book/wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/

◦ Git repository containing the current development
version of all packages under https://github.com/
fortytools/holumbus

◦ Distributed building of search indexes

Current Work

Currently there are activities to optimize the index
structures of the framework. In the past there have
been problems with the space requirements during in-
dexing. The data structures and evaluation strategies
have been optimized to prevent space leaks. A sec-
ond index structure working with cryptographic keys
for document identifiers is under construction. This
will further simplify partial indexing and merging of
indexes.
There is a small project extracting the sources of the

data structure used for the index to build a separate
package. The search tree used in Holumbus is a space
optimised version of a radix tree, which enables fast
prefix and fuzzy search.
The second project, a specialized search engine for

the FH-Wedel web site, has been finished http://w3w.
fh-wedel.de/. The new aspect in this application is a
specialized free text search for appointments, deadlines,
announcements, meetings and other dates.
The Hayoo! and the FH-Wedel search engine have

been adopted to run on top of the Snap framework (→
5.2.7).

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Git web interface, cur-
rent status, requirements, and documentation. Timo
Kranz’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/
doc/thesis-searching.pdf. Sebastian Gauck’s thesis
dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the
Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf.

5.2.4 Happstack

Report by: Jeremy Shaw

Happstack is a fast, modern framework for creating web
applications. Happstack is well suited for MVC and
RESTful development practices. We aim to leverage
the unique characteristics of Haskell to create a highly-
scalable, robust, and expressive web framework.
Happstack pioneered type-safe Haskell web program-

ming, with the creation of technologies including web-
routes (type-safe URLS) and acid-state (native Haskell
database system). We also extended the concepts be-
hind formlets, a type-safe form generation and process-

ing library, to allow the separation of the presentation
and validation layers.
Some of Happstack’s unique advantages include:

◦ a large collection of flexible, modular, and well docu-
mented libraries which allow the developer to choose
the solution that best fits their needs for databases,
templating, routing, etc.

◦ the most flexible and powerful system for defining
type-safe URLs.

◦ a type-safe form generation and validation library
which allows the separation of validation and pre-
sentation without sacrificing type-safety

◦ a powerful, compile-time HTML templating system,
which allows the use of XML syntax

A recent addition to the Happstack family is the
happstack-foundation library. It combines what we
believe to be the best choices into a nicely integrated
solution. happstack-foundation uses:

◦ happstack-server for low-level HTTP functionality

◦ acid-state for type-safe database functionality

◦ web-routes for type-safe URL routing

◦ reform for type-safe form generation and processing

◦ HSP for compile-time, XML-based HTML templates

◦ JMacro for compile-time Javascript generation and
syntax checking

Future plans

Happstack is the oldest, actively developed Haskell web
framework. We are continually studying and applying
new ideas to keep Happstack fresh. By the time the
next release is complete, we expect very little of the
original code will remain. If you have not looked at
Happstack in a while, we encourage you to come take
a fresh look at what we have done.
Some of the projects we are currently working on

include:

◦ a fast pipes-based HTTP and websockets backend
with a high level of evidence for correctness

◦ a dynamic plugin loading system

◦ a more expressive system for weakly typed URL rout-
ing combinators

◦ a new system for processing form data which allows
fine grained enforcement of RAM and disk quotas
and avoids the use of temporary files

◦ a major refactoring of HSP (fewer packages, migra-
tion to Text/Builder, a QuasiQuoter, and more).

20

https://github.com/fortytools/holumbus
https://github.com/fortytools/holumbus
http://w3w.fh-wedel.de/
http://w3w.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf

One focus of Happstack development is to create in-
dependent libraries that can be easily reused. For ex-
ample, the core web-routes and reform libraries are in
no way Happstack specific and can be used with other
Haskell web frameworks. Additionally, libraries that
used to be bundled with Happstack, such as IxSet, Safe-
Copy, and acid-state, are now independent libraries.
The new backend will also be available as an indepen-
dent library.
When possible, we prefer to contribute to existing

libraries rather than reinvent the wheel. For example,
our preferred templating library, HSP, was created by
and is still maintained by Niklas Broberg. However, a
significant portion of HSP development in the recent
years has been fueled by the Happstack team.
We are also working directly with the Fay team to

bring an improved type-safety to client-side web pro-
gramming. In addition to the new happstack-fay inte-
gration library, we are also contributing directly to Fay
itself.
For more information check out the happstack.com

website — especially the “Happstack Philosophy” and
“Happstack 8 Roadmap”.

Further reading

◦ http://www.happstack.com/
◦ http://www.happstack.com/docs/crashcourse/index.

html

5.2.5 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 2 is a simple but
practical Web server in Haskell. It is now working on
Mew.org serving static files, CGI (mailman and con-
tents search) and reverse proxy for back-end Yesod ap-
plications.
Mighttpd is based on Warp providing performance

on par with nginx. You can use the mightyctl com-
mand to reload configuration files dynamically and
shutdown Mighttpd gracefully.
You can install Mighttpd 2 (mighttpd2) from Hack-

ageDB.

Further reading

◦ http://www.mew.org/~kazu/proj/mighttpd/en/
◦ http://www.iĳ.ad.jp/en/company/development/tech/

mighttpd/
◦ https://github.com/snoyberg/posa-chapter/blob/

master/warp.md

5.2.6 Yesod

Report by: Michael Snoyman
Participants: Greg Weber, Luite Stegeman, Felipe Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, Yesod
helps users create highly scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO.
But Yesod is even more focused on scalable develop-

ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.

◦ declarative routing with type-safe urls — say good-
bye to broken links

◦ no XSS attacks — form submissions are automati-
cally sanitized

◦ database safety through the Persistent library (→
7.6.2) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.

When type safety conflicts with programmer produc-
tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 7.6.2). Views
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing and
can return different representations of a resource (html,
json, etc).
Yesod is broken up into many smaller projects

and leverages Wai (→ 5.2.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks that use WAI such as Scotty.
The new 1.2 release of Yesod, introduces a number of

simplifications, especially to the subsite handling. Most
applications should be able to upgrade easily. Some of
the notable features are:

21

http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://www.mew.org/~kazu/proj/mighttpd/en/
http://www.iij.ad.jp/en/company/development/tech/mighttpd/
http://www.iij.ad.jp/en/company/development/tech/mighttpd/
https://github.com/snoyberg/posa-chapter/blob/master/warp.md
https://github.com/snoyberg/posa-chapter/blob/master/warp.md

◦ Much more powerful multi-representation support
via the selectRep/provideRep API.

◦ More efficient session handling.

◦ All Handler functions live in a typeclass, providing
you with auto-lifting.

◦ Type-based caching of responses via the cached func-
tion.

◦ More sensible subsite handling, switch to Han-
dlerT/WidgetT transformers.

◦ Simplified dispatch system, including a lighter-
weight Yesod.

◦ Simplified streaming data mechanism, for both
database and non-database responses.

◦ Completely overhauled yesod-test, making it easier
to use and providing cleaner integration with hspec.

◦ yesod-auth’s email plugin now supports logging in
via username in addition to email address.

◦ Refactored persistent module structure for clarity
and ease-of-use.

◦ Easy asset combining for static javascript and css
files

◦ Faster shakespeare template reloading and support
for TypeScript templates.

Since the 1.0 release, Yesod has maintained a high
level of API stability, and we intend to continue this
tradition. The 1.2 release introduces a lot of poten-
tial code breakage, but most of the required updates
should be very straightforward. Future directions for
Yesod are now largely driven by community input and
patches. We’ve been making progress on the goal of
easier client-side interaction, and have high-level inter-
action with languages like Fay, TypeScript, and Coffe-
Script.
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.
To see an example site with source code available,

you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

5.2.7 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, Gabriel Gonzalez, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.
The Snap Framework continues to have a lot of activ-

ity since the last HCAR. We released Snap 0.10 which
included a major redesign of the Heist template system
with a huge performance improvement. That was fol-
lowed by 0.11 as we continued to develop a higher level
API on top of the new compiled Heist functionality
that was introduced in 0.10.
The Snap team also released a new package called

io-streams that provides a streaming I/O solution fo-
cused on simplicity and ease of use. The io-streams
library includes a comprehensive test suite with 100%
code coverage. The io-streams release was accompa-
nied by a package providing OpenSSL support and a
third-party HTTP client library called http-streams.
All in all, we are very happy with the continued

growth of the Snap ecosystem. Going forward, we are
working on a new Snap server built on io-streams.
Also, several of the core Snap developers have full-time
employment working with Snap in production systems
and are continuing to develop new higher-level libraries
and tools for commercial Haskell deployments. Join the
team in the #snapframework IRC channel on Freenode
to keep up with all the latest developments.

Further reading

◦ io-streams release announcement: http:
//snapframework.com/blog/2013/03/05/
announcing-io-streams

◦ Snaplet Directory: http://snapframework.com/
snaplets

◦ http://snapframework.com

5.2.8 Sunroof

Report by: Andy Gill
Participants: Jan Bracker
Status: active

Sunroof is a Domain Specific Language (DSL) for gen-
erating JavaScript. It is built on top of the JS-monad,
which, like the Haskell IO-monad, allows read and write
access to external resources, but specifically JavaScript

22

http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/
http://snapframework.com/blog/2013/03/05/announcing-io-streams
http://snapframework.com/blog/2013/03/05/announcing-io-streams
http://snapframework.com/blog/2013/03/05/announcing-io-streams
http://snapframework.com/snaplets
http://snapframework.com/snaplets
http://snapframework.com

resources. As such, Sunroof is primarily a feature-
rich foreign function API to the browser’s JavaScript
engine, and all the browser-specific functionality, like
HTML-based rendering, event handling, and drawing
to the HTML5 canvas.
Furthermore, Sunroof offers two threading models

for building on top of JavaScript, atomic and block-
ing threads. This allows full access to JavaScript APIs,
but using Haskell concurrency abstractions, like MVars
and Channels. In combination with the push mecha-
nism Kansas-Comet, Sunroof offers a great platform
to build interactive web applications, giving the ability
to interleave Haskell and JavaScript computations with
each other as needed.

It has successfully been used to write smaller appli-
cations. These applications range from 2D rendering
using the HTML5 canvas element, over small GUIs, up
to executing the QuickCheck tests of Sunroof and dis-
playing the results in a neat fashion. The development
has been active over the past 6 months and there is a
drafted paper submitted to TFP 2013.

Further reading

◦ Homepage: http://www.ittc.ku.edu/csdl/fpg/
software/sunroof.html

◦ Tutorial: https://github.com/ku-fpg/
sunroof-compiler/wiki/Tutorial

◦ Main Repository: https://github.com/ku-fpg/
sunroof-compiler

5.3 Haskell and Compiler Writing

5.3.1 MateVM

Report by: Bernhard Urban
Participants: Harald Steinlechner
Status: active development

MateVM is a method-based Java Just-In-Time Com-
piler. That is, it compiles a method to native code on

demand (i.e. on the first invocation of a method). We
use existing libraries:

hs-java for proccessing Java Classfiles according to
The Java Virtual Machine Specification.

harpy enables runtime code generation for i686 ma-
chines in Haskell, in a domain specific language style.

We think that Haskell is suitable for compiler chal-
lenges, as already many times proven. However, we
have to jump between “Haskell world” and “native
code world”, due to the requirements of a Just-In-Time
Compiler. This poses some special challenges when it
comes to signal handling and other interesing rather
low level operations. Not immediately visible, the task
turns out to be well suited for Haskell although we
experienced some tensions with signal handling and
GHCi. We are looking forward to sharing our expe-
rience on this.
In the current state we are able to execute simple

Java programs. The compiler eliminates the JavaVM
stack via abstract interpretation, does a liveness analy-
sis, linear scan register allocation and finally code emis-
sion. The architecture enables easy addition of further
optimization passes on an intermediate representation.
Future plans are, to add an interpreter to gather pro-

file information for the compiler and also do more ag-
gressive optimizations (e.g. method inlining or stack
allocation) , using the interpreter as fallback path via
deoptimization if a assumption is violated.
Apart from that, many features are missing for a full

JavaVM, most noteable are the concept of Classloaders,
Floating Point or Threads. We would like to use GNU
Classpath as base library some day. Other hot topics
are Hoopl and Garbage Collection.
If you are interested in this project, do not hestiate

to join us on IRC (#MateVM @ OFTC) or contact us on
Github.

Further reading

◦ https://github.com/MateVM
◦ http://docs.oracle.com/javase/specs/jvms/se7/html/
◦ http://hackage.haskell.org/package/hs-java
◦ http://hackage.haskell.org/package/harpy
◦ http://www.gnu.org/software/classpath/
◦ http://hackage.haskell.org/package/hoopl-3.8.7.4
◦ http://en.wikipedia.org/wiki/Club-Mate

5.3.2 CoCoCo

Report by: Marcos Viera
Participants: Doaitse Swierstra, Arthur Baars, Arie

Middelkoop, Atze Dĳkstra, Wouter
Swierstra

Status: experimental

CoCoCo (Compositional Compiler Construction) is a
set of libraries and tools in the form of a collection of

23

http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler
https://github.com/ku-fpg/sunroof-compiler
https://github.com/MateVM
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://hackage.haskell.org/package/hs-java
http://hackage.haskell.org/package/harpy
http://www.gnu.org/software/classpath/
http://hackage.haskell.org/package/hoopl-3.8.7.4
http://en.wikipedia.org/wiki/Club-Mate

embedded domain specific languages (EDSL) in Haskell
for constructing extensible compilers, where compilers
can be composed out of separately compiled and stati-
cally type checked language-definition fragments.
Our approach builds on:

◦ the introduction of a naming structure which makes
it possible to represent mutually dependent struc-
tures and the possibility to inspect and manipulate
such structures in a type-safe way

◦ the description of typed grammar fragments as first
class Haskell values, and the typed Left-Corner
Transform to remove left-recursion

◦ the possibility to construct a self-analysing, error cor-
recting parser on the fly

◦ the possibility to deal with attribute grammars as
first class Haskell values, which can be transformed,
composed and finally evaluated.

As a case study we have implemented an Oberon0
compiler, which is available as a Hackage package:

◦ http://hackage.haskell.org/package/oberon0.

Its implementation is described in a technical report:

◦ Viera, M., Swierstra, S.D.: Compositional Compil-
ers Construction: Oberon0. UU-CS 2012-016, Insti-
tute of Information and Computing Science (October
2012).

Related Libraries

◦ murder: The murder library is an EDSL for gram-
mar fragments as first-class values. It provides com-
binators to define and extend grammars, and pro-
duce compilers out of them.
http://hackage.haskell.org/package/murder

◦ AspectAG: Library of strongly typed Attribute
Grammars implemented using type-level program-
ming.
http://hackage.haskell.org/package/AspectAG

◦ TTTAS: Library for Typed Transformations of
Typed Abstract Syntax.
http://hackage.haskell.org/package/TTTAS

◦ uulib: Fast Parser Combinators and Pretty Printing
Combinators .
http://hackage.haskell.org/package/uulib

◦ uu-parsinglib: New version of the Utrecht Univer-
sity parser combinator library, which provides online,
error correction, annotation free, applicative style
parser combinators.
http://hackage.haskell.org/package/uu-parsinglib

Further reading

http://www.cs.uu.nl/wiki/Center/CoCoCo

5.3.3 UUAG

Report by: Jeroen Bransen
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are
defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.3), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects. The
current version is 0.9.42.3 (April 2013), is extensively
tested, and is available on Hackage. There is also
a Cabal plugin for easy use of AG files in Haskell
projects.
Some of the recent changes to the UUAG system are:

OCaml support. We have added OCaml code gener-
ation such that UUAG can also be used in OCaml
projects.

Improved build system. We have improved the build-
ing procedure to make sure that the UUAGC can
both be built from source as well as from the in-
cluded generated Haskell sources, without the need
of an external bootstrap program.

First-class AGs. We provide a translation from UUAG
to AspectAG (http://www.haskell.org/communities/
11-2011/html/report.html#sect5.4.2). AspectAG is

24

http://hackage.haskell.org/package/oberon0
http://hackage.haskell.org/package/murder
http://hackage.haskell.org/package/AspectAG
http://hackage.haskell.org/package/TTTAS
http://hackage.haskell.org/package/uulib
http://hackage.haskell.org/package/uu-parsinglib
http://www.cs.uu.nl/wiki/Center/CoCoCo
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2

a library of strongly typed Attribute Grammars im-
plemented using type-level programming. With this
extension, we can write the main part of an AG con-
veniently with UUAG, and use AspectAG for (dy-
namic) extensions. Our goal is to have an extensible
version of the UHC.

Ordered evaluation. We have implemented a variant
of Kennedy and Warren (1976) for ordered AGs. For
any absolutely non-circular AGs, this algorithm finds
a static evaluation order, which solves some of the
problems we had with an earlier approach for ordered
AGs. A static evaluation order allows the generated
code to be strict, which is important to reduce the
memory usage when dealing with large ASTs. The
generated code is purely functional, does not require
type annotations for local attributes, and the Haskell
compiler proves that the static evaluation order is
correct.

We are currently working on the following enhance-
ments:

Incremental evaluation. We are currently also run-
ning a Ph.D. project that investigates incremental
evaluation of AGs. In this ongoing work we hope
to improve the UUAG compiler by adding support
for incremental evaluation, for example by stati-
cally generating different evaluation orders based on
changes in the input.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

5.3.4 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett and Rajika Kumarasiri
Status: v 0.9.0 experimental released in July 2012

LQPL (Linear Quantum Programming Language) is a
functional quantum programming language inspired by
Peter Selinger’s paper “Towards a Quantum Program-
ming Language”.
The LQPL system consists of a compiler, a GUI

based front end and an emulator. Compiled programs
are loaded to the emulator by the front end. LQPL
incorporates a simple module / include system (more
like C’s include than Haskell’s import), predefined uni-
tary transforms, quantum control and classical control,
algebraic data types, and operations on purely classical
data.
The largest difference since the previous release of

the package is that LQPL is now split into separate
components. These consist of:

◦ The compiler (written in Haskell) — available at the
command line and via a TCP/IP interface.

◦ The emulator (written in Haskell) — available as a
server via a TCP/IP interface.

◦ The front end (Java/Swing)— with version 0.9, the
front end was rewritten as a Java/Swing application,
which connects to both the compiler and the emula-
tor via TCP/IP. A text based / command line inter-
face is being considered.

A screenshot of the new interface (showing a proba-
bilistic list) is included below.

Quantum programming allows us to provide a fair
coin toss, as shown in the code example below.

qdata Coin = {Heads | Tails}‚
toss ::(; c:Coin) =‚
{ q = |0>; Had q;‚

measure q of ‚
|0> => {c = Heads}‚
|1> => {c = Tails}‚

}‚

This allows programming of probabilistic algorithms,
such as leader election.
Separation into modules was a preparatory step for

improving the performance of the emulator and adding
optimization features to the language.

Further reading

Documentation and executable downloads may be
found at http://pll.cpsc.ucalgary.ca/lqpl/index.html.
The source code, along with a wiki and bug tracker, is
available at https://bitbucket.org/BrettGilesUofC/lqpl.

25

http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc
http://pll.cpsc.ucalgary.ca/lqpl/index.html
https://bitbucket.org/BrettGilesUofC/lqpl

6 Development Tools

6.1 Environments

6.1.1 EclipseFP

Report by: JP Moresmau
Participants: building on code from B. Scott Michel,

Alejandro Serrano, Thiago Arrais, Leif
Frenzel, Thomas ten Cate, Martĳn
Schrage, Adam Foltzer and others

Status: stable, maintained, and actively developed

EclipseFP is a set of Eclipse plugins to allow work-
ing on Haskell code projects. Its goal is to offer a fully
featured Haskell IDE in a platform developers coming
from other languages may already be familiar with. It
features Cabal integration (.cabal file editor, uses Ca-
bal settings for compilation, allows the user to install
Cabal packages from within the IDE), and GHC inte-
gration. Compilation is done via the GHC API, syntax
coloring uses the GHC Lexer. Other standard Eclipse
features like code outline, folding, and quick fixes for
common errors are also provided. HLint suggestions
can be applied in one click, and imports can be or-
ganized automatically. EclipseFP also allows launch-
ing GHCi sessions on any module including extensive
debugging facilities: the management of breakpoints
and the evaluation of variables and expressions uses the
Eclipse debugging framework, and requires no knowl-
edge of GHCi syntax. It uses the BuildWrapper Haskell
tool to bridge between the Java code for Eclipse and the
Haskell APIs. It also provides a full package and mod-
ule browser to navigate the Haskell packages installed
on your system, integrated with Hackage. EclipseFP
integrates with Haskell test frameworks, most notably
HTF, to provide UI feedback on test failures. It can
also use cabal-dev to provide sandboxing and project
dependencies inside an Eclipse workspace. The source
code is fully open source (Eclipse License) on github

and anyone can contribute. Current version is 2.5.2,
released in March 2013, and more versions with ad-
ditional features are planned and actively worked on.
Feedback on what is needed is welcome! The website
has information on downloading binary releases and
getting a copy of the source code. Support and bug
tracking is handled through Sourceforge forums and
github issues.

Further reading

◦ http://eclipsefp.github.com/
◦ http://jpmoresmau.blogspot.com/

6.1.2 ghc-mod — Happy Haskell Programming

Report by: Kazu Yamamoto
Status: open source, actively developed

ghc-mod is a backend command to enrich Haskell pro-
gramming on editors including Emacs and Vim. The
ghc-mod package on Hackage includes the ghc-mod
command and Emacs front-end.
Emacs front-end provides the following features:

Completion You can complete a name of keyword,
module, class, function, types, language extensions,
etc.

Code template You can insert a code template ac-
cording to the position of the cursor. For instance,
“module Foo where” is inserted in the beginning of
a buffer.

Syntax check Code lines with error messages are au-
tomatically highlighted thanks to flymake. You can
display the error message of the current line in an-
other window. hlint can be used instead of GHC to
check Haskell syntax.

Document browsing You can browse the module doc-
ument of the current line either locally or on Hack-
age.

Expression type You can display the type/information
of the expression on the cursor.

There are two Vim plugins:

◦ ghcmod-vim

◦ syntastic

Here are new features:

26

http://eclipsefp.github.com/
http://jpmoresmau.blogspot.com/

◦ ghc-mod now analyses library dependencies from a
cabal file.

◦ The “check” subcommand became faster than before
unless Template Haskell is used.

◦ The “debug” subcommand is provided.

◦ The “browse” subcommand displays more informa-
tion on functions etc if the “-d” option is specified.

Further reading

http://www.mew.org/~kazu/proj/ghc-mod/en/

6.1.3 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Heat was designed
for novice students learning the functional program-
ming language Haskell. Heat provides a small number
of supporting features and is easy to use. Heat is dis-
tributed as a single, portable Java jar-file and works on
top of GHCi.
Version 5.05, with small improvements and bug-fixes,

was released end of April 2013.
Heat provides the following features:

◦ Editor for a single module with syntax-highlighting
and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the relevant
source line is highlighted and no further expression
can be evaluated in the console until the source has
been changed and successfully recompiled.

◦ A tree structure provides a program summary, giving
definitions of types and types of functions.

◦ Automatic checking of either Boolean or QuickCheck
properties of a program; results shown in summary.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

6.2 Code Management

6.2.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent release, Darcs 2.8.4 (with GHC 7.6

support), was in Februrary 2013. Some key changes
in Darcs 2.8 include a faster and more readable darcs
annotate, a darcs obliterate -O which can be used
to conveniently “stash” patches, and hunk editing for
the darcs revert command.
Our work on the next Darcs release continues. In our

sights are the new ‘darcs rebase‘ command (for merging
and amending patches that would be hard to do with
patch theory alone), the patch index optimisation (for
faster local lookups on repositories with long histories),
and the packs optimisation (for faster darcs get).
To accompany this work are some very interesting

lines of development being contributed by Sebastian
Fischer on behalf of factis research. The work is aimed
at improving the patch management experience for
teams of Darcs users, first with a mechanism to track
the history of patches (who pulled them into the reposi-
tory, or removed them, when) and second with possible
commands that would allow patches to be easily split
apart and merged together. We’re very grateful to fac-
tis for funding this development work and look forward
to using it ourselves.
Meanwhile, the Darcs hub at http://hub.darcs.net

continues to grow in robustness and usage (at the time
of this writing, 254 accounts, 294 repos). The Darcs
hub is based on work by Simon Michael improving the
original Darcsden by Alex Suraci, resulting in a 1.0
release earlier last year. Feedback and help pushing
forward this new Darcs hosting option will be greatly
appreciated!
Darcs is free software licensed under the GNU GPL

(version 2 or greater). Darcs is a proud member of
the Software Freedom Conservancy, a US tax-exempt
501(c)(3) organization. We accept donations at http:
//darcs.net/donations.html.

27

http://www.mew.org/~kazu/proj/ghc-mod/en/
http://www.cs.kent.ac.uk/projects/heat/
http://hub.darcs.net
http://darcs.net/donations.html
http://darcs.net/donations.html

Further reading

◦ http://darcs.net

◦ http://wiki.darcs.net/Development/Priorities

6.2.2 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.2.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
DarcsWatch continues to be used by the xmonad

project, the Darcs project itself, and a few developers.
At the time of writing (April 2013), it was tracking 39
repositories and 4579 patches submitted by 244 users.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

6.2.3 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg, cabal, and cabal-dev.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.
cab now provides the benchmark option (“-b”) for

the “conf” subcommand

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.3 Deployment

6.3.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell

libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
Hackage is a distribution point for Cabal packages.

It is an online archive of Cabal packages which can
be used via the website and client-side software such
as cabal-install. Hackage enables users to find, browse
and download Cabal packages, plus view their API doc-
umentation.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

The Cabal packaging system has always faced grow-
ing pains. We have been through several cycles where
we’ve faced chronic problems, made major improve-
ments which bought us a year or two’s breathing space
while package authors and users become ever more am-
bitious and start to bump up against the limits again.
In the last few years we have gone from a situation
where 10 dependencies might be considered a lot, to a
situation now where the major web frameworks have
a 100+ dependencies and we are again facing chronic
problems.
The Cabal/Hackage maintainers and contributors

have been pursuing a number of projects to address
these problems:
The IHG sponsored Well-Typed (→ 8.1) to work on

cabal-install resulting in a new package dependency
constraint solver. This was incorporated into the cabal-
install-0.14 release in the spring, and which is now
in the latest Haskell Platform release. The new de-
pendency solver does a much better job of finding
install plans. In addition the cabal-install tool now
warns when installing new packages would break exist-
ing packages, which is a useful partial solution to the
problem of breaking packages.
We had two Google Summer of Code projects on Ca-

bal this year, focusing on solutions to other aspects of
our current problems. The first is a project by Mikhail
Glushenkov (and supervised by Johan Tibell) to incor-
porate sandboxing into cabal-install. In this context
sandboxing means that we can have independent sets
of installed packages for different projects. This goes
a long way towards alleviating the problem of differ-
ent projects needing incompatible versions of common
dependencies. There are several existing tools, most
notably cabal-dev, that provide some sandboxing fa-
cility. Mikhail’s project was to take some of the ex-
perience from these existing tools (most of which are
implemented as wrappers around the cabal-install pro-
gram) and to implement the same general idea, but
properly integrated into cabal-install itself. We expect
the results of this project will be incorporated into a

28

http://darcs.net
http://wiki.darcs.net/Development/Priorities
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://www.mew.org/~kazu/proj/cab/en/

cabal-install release within the next few months.
The other Google Summer of Code project this year,

by Philipp Schuster (and supervised by Andres Löh), is
also aimed at the same problem: that of different pack-
ages needing inconsistent versions of the same common
dependencies, or equivalently the current problem that
installing new packages can break existing installed
packages. The solution is to take ideas from the Nix
package manager for a persistent non-destructive pack-
age store. In particular it lifts an obscure-sounding but
critical limitation: that of being able to install multi-
ple instances of the same version of a package, built
against different versions of their dependencies. This
is a big long-term project. We have been making steps
towards it for several years now. Philipp’s project has
made another big step, but there’s still more work be-
fore it is ready to incorporate into ghc, ghc-pkg and
cabal.

Looking forward

Johan Tibell and Bryan O’Sullivan have volunteered
as new release managers for Cabal. Bryan moved all
the tickets from our previous trac instance into github,
allowing us to move all the code to github. Johan man-
aged the latest release and has been helping with man-
aging the inflow of patches. Our hope is that these
changes will increase the amount of contributions and
give us more maintainer time for reviewing and inte-
grating those contributions. Initial indications are pos-
itive. Now is a good time to get involved.
The IHG is currently sponsoring Well-Typed to work

on getting the new Hackage server ready for switchover,
and helping to make the switchover actually happen.
We have recruited a few volunteer administrators for
the new site. The remaining work is mundane but im-
portant tasks like making sure all the old data can be
imported, and making sure the data backup system is
comprehensive. Initially the new site will have just a
few extra features compared to the old one. Once we
get past the deployment hurdle we hope to start get-
ting more contributions for new features. The code is
structured so that features can be developed relatively
independently, and we intend to follow Cabal and move
the code to github.
We would like to encourage people considering con-

tributing to take a look at the bug tracker on github,
take part in discussions on tickets and pull requests, or
submit their own. The bug tracker is reasonably well
maintained and it should be relatively clear to new con-
tributors what is in need of attention and which tasks
are considered relatively easy. For more in-depth dis-
cussion there is also the cabal-devel mailing list.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal

◦ Hackage package collection: http://hackage.haskell.
org/

◦ Bug tracker: https://github.com/haskell/cabal/

6.3.2 Portackage — A Hackage Portal

Report by: Andrew G. Seniuk

Portackage (http://fremissant.net/portackage) is a web
interface to all of http://hackage.haskell.org, which at
the time of writing includes some 4000 packages expos-
ing over 17000 modules. There are package and module
views, as seen in the screenshots.

The package view includes links to the package, home-
page, and bug tracker when available. Each name in
the module tree view links to the Haddock API page.
Control-hovering will show the fully-qualified name in
a tooltip.
Portackage is only a few days old; imminent further

work includes
◦ Tree branches will be collapsed by default.
◦ Cookies (as well as server DB) will maintain persis-

tent state of which nodes you have open, since this
information carries value, both in terms of cost to re-
construct manually, and of personal mnemonics — if
nodes were collapsed, you would forget where things
were, instead of having them right there filtered out.

◦ A flat list of modules with the filtering text input
field would be good, but the full list of modules is
too large for the present naïve JavaScript.

The code itself is mostly Haskell, but is still too green
to expose on Hackage.

29

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
https://github.com/haskell/cabal/
http://fremissant.net/portackage
http://hackage.haskell.org

6.4 Others

6.4.1 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.18 and has been released

in September 2012. The main change is compatibil-
ity with GHC 7.6. Development repository and bug
tracker are on GitHub. There are still plans for a
rewrite of lhs2TEX with the goal of cleaning up the in-
ternals and making the functionality of lhs2TEX avail-
able as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

6.4.2 ghc-heap-view

Report by: Joachim Breitner
Participants: Dennis Felsing
Status: active development

The library ghc-heap-view provides means to inspect
the GHC’s heap and analyze the actual layout of
Haskell objects in memory. This allows you to inves-
tigate memory consumption, sharing and lazy evalua-
tion.
This means that the actual layout of Haskell objects

in memory can be analyzed. You can investigate shar-
ing as well as lazy evaluation using ghc-heap-view.
The package also provides the GHCi command

:printHeap, which is similar to the debuggers’ :print
command but is able to show more closures and their
sharing behaviour:

> let x = cycle [True, False]‚
> :printHeap x‚
_bco‚
> head x‚
True‚
> :printHeap x‚
let x1 = True : _thunk x1 [False]‚
in x1‚
> take 3 x‚

[True,False,True]‚
> :printHeap x‚
let x1 = True : False : x1‚
in x1‚

The graphical tool ghc-vis (→ 6.4.3) builds on ghc-
heap-view.

Further reading

◦ http://www.joachim-breitner.de/blog/archives/
548-ghc-heap-view-Complete-referential-opacity.html

◦ http://www.joachim-breitner.de/blog/archives/
580-GHCi-integration-for-GHC.HeapView.html

◦ http://www.joachim-breitner.de/blog/archives/
590-Evaluation-State-Assertions-in-Haskell.html

6.4.3 ghc-vis

Report by: Dennis Felsing
Participants: Joachim Breitner
Status: active development

The tool ghc-vis visualizes live Haskell data structures
in GHCi. Since it does not force the evaluation of the
values under inspection it is possible to see Haskell’s
lazy evaluation and sharing in action while you interact
with the data.
Ghc-vis supports two styles: A linear rendering sim-

ilar to GHCi’s :print, and a graph-based view where
closures in memory are nodes and pointers between
them are edges. In the following GHCi session a par-
tially evaluated list of fibonacci numbers is visualized:

> let f = 0 : 1 : zipWith (+) f (tail f)‚
> f !! 2‚
> :view f‚

30

http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html

At this point the visualization can be used interac-
tively: To evaluate a thunk, simply click on it and im-
mediately see the effects. You can even evaluate thunks
which are normally not reachable by regular Haskell
code.
Ghc-vis can also be used as a library and in combi-

nation with GHCi’s debugger.

Further reading

http://felsin9.de/nnis/ghc-vis

6.4.4 Hat — the Haskell Tracer

Report by: Olaf Chitil

Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.
Hat helps locating errors in programs. Furthermore,

it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.
Tracing a program with Hat consists of two phases:

First the program needs to be run such that it addi-
tionally writes a trace to file. To add trace-writing,
hat-trans translates all the source modules Module of
a Haskell program into tracing versions Hat.Module.
These are compiled as normal and when run the pro-
gram does exactly the same as the original program
except for additionally writing a trace to file. Second,
after the program has terminated, you view the trace
with a tool. Hat comes with several tools for selec-
tively viewing fragments of the trace in different ways:
hat-observe for Hood-like observations, hat-trail for ex-
ploring a computation backwards, hat-explore for freely
stepping through a computation, hat-detect for algo-
rithmic debugging, . . .
Hat is distributed as a package on Hackage that

contains all Hat tools and tracing versions of stan-
dard libraries. Currently Hat supports Haskell 98 plus
some language extensions such as multi-parameter type
classes and functional dependencies. For portability all
viewing tools have a textual interface; however, many
tools use some Unix-specific features and thus run on
Unix / Linux / OS X, but not on Windows.
Hat was mostly built around 2000–2004 and then

disappeared because of lack of maintenance. Now it is
back and new developments have started.
Currently the source-to-source transformation of

hat-trans is being rewritten to use the haskell-src-exts
parser. Thus small bugs of the current parser will dis-
appear and in the future it will be easier to cover more

Haskell language extensions. This work is nearly fin-
ished and a new version of Hat will be released soon.
When a traced program uses any libraries besides

the standard Haskell 98 / 2010 ones, these libraries
currently have to be manually transformed (in trusted
mode). A new tool will be built to easily wrap any
existing libraries such that they can be used by a traced
program (without tracing the computations inside the
libraries).
Feedback on Hat is welcome.

Further reading

◦ Initial website: http://projects.haskell.org/hat
◦ Hackage package: http://hackage.haskell.org/

package/hat

31

http://felsin9.de/nnis/ghc-vis
http://projects.haskell.org/hat
http://hackage.haskell.org/package/hat
http://hackage.haskell.org/package/hat

7 Libraries, Applications, Projects

7.1 Language Features

7.1.1 Conduit

Report by: Michael Snoyman
Status: stable

While lazy I/O has served the Haskell community well
for many purposes in the past, it is not a panacea.
The inherent non-determinism with regard to resource
management can cause problems in such situations as
file serving from a high traffic web server, where the
bottleneck is the number of file descriptors available to
a process.
Left fold enumerators have been the most common

approach to dealing with streaming data without us-
ing lazy I/O. While it is certainly a workable solution,
it requires a certain inversion of control to be applied
to code. Additionally, many people have found the
concept daunting. Most importantly for our purposes,
certain kinds of operations, such as interleaving data
sources and sinks, are prohibitively difficult under that
model.
The conduit package was designed as an alternate

approach to the same problem. The root of our simplifi-
cation is removing one of the constraints in the enumer-
ator approach. In order to guarantee proper resource
finalization, the data source must always maintain the
flow of execution in a program. This can lead to con-
fusing code in many cases. In conduit, we separate out
guaranteed resource finalization as its own component,
namely the ResourceT transformer.
Once this transformation is in place, data produc-

ers, consumers, and transformers (known as Sources,
Sinks, and Conduits, respectively) can each maintain
control of their own execution, and pass off control via
coroutines. The user need not deal directly with any
of this low-level plumbing; a simple monadic interface
(inspired greatly by the pipes package) is sufficient for
almost all use cases.
Since its initial release, conduit has been through

many design iterations, all the while keeping to its ini-
tial core principles. Since the last HCAR, we’ve re-
leased version 1.0. This release introduces a simpli-
fication of the public facing API, optimizing for the
common use cases. This was a minor change, and the
conduit ecosystem has already caught up. The pack-
age has been in a mature state for quite some time now,
and can be relied upon for most streaming data needs.
There is a rich ecosystem of libraries available to

be used with conduit, including cryptography, network
communications, serialization, XML processing, and

more. The Web Application Interface was the origi-
nal motivator for creating the library, and continues
to use it for expressing request and response bodies be-
tween servers and applications. As such, conduit is also
a major player in the Yesod ecosystem.
The library is available on Hackage. There is an in-

teractive tutorial available on the FP Complete School
of Haskell. You can find many conduit-based packages
in the Conduit category on Hackage as well.

Further reading

◦ http://hackage.haskell.org/package/conduit
◦ https://www.fpcomplete.com/user/snoyberg/

library-documentation/conduit-overview
◦ http://hackage.haskell.org/packages/archive/pkg-list.

html#cat:conduit

7.1.2 Free Sections

Report by: Andrew G. Seniuk

Free sections (package freesect) extend Haskell (or
other languages) to better support partial function ap-
plication. The package can be installed from Hackage
and runs as a preprocessor. Free sections can be explic-
itly bracketed, or usually the groupings can be inferred
automatically.

zipWith (f _ $ g _ z) xs ys‚
-- context inferred‚

= zipWith _[f _ $ g _ z]_ xs ys‚
-- explicit bracketing‚

= zipWith (\ x y -> f x $ g y z) xs ys‚
-- after the rewrite‚

Free sections can be understood by their place in
a tower of generalisations, ranging from simple func-
tion application, through usual partial application, to
free sections, and to named free sections. The latter
(where _ wildcards include identifier suffixes) have the
same expressivity as a lambda function wrapper, but
the syntax is more compact and semiotic.
Although the rewrite provided by the extension is

simple, there are advantages of free sections relative to
explicitly written lambdas:
◦ lambda forces the programmer to invent fresh names

for the wildcards
◦ lambda forces the programmer to repeat those

names, and place them correctly
◦ freesect wildcards stand out vividly, indicating where

the awaited expressions will go
◦ reading the lambda requires visual pattern-matching

between left and right sides

32

http://hackage.haskell.org/package/conduit
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit

◦ lambda is longer overall, and prefaces the expression
of interest with boilerplate

On the other hand, the lambda (or named free section)
is more powerful than the anonymous free section:
◦ it can achieve arbitrary permutations without further

ado; but anonymous wildcards preserve their lexical
order

◦ it is more expressive when nesting is involved, be-
cause the variables are not anonymous
Free sections (like function wrappers generally) are

especially useful in refactoring and retrofitting exisitng
code, although once familiar they can also be useful
from the ground up. Philosophically, use of this sort
of syntax promotes “higher-order programming”, since
any expression can so easily be made into a function,
in numerous ways, simply by replacing parts of it with
freesect wildcards. That this is worthwhile is demon-
strated by the frequent usefulness of sections.
The notion of free sections emanated from an en-

compassing research agenda around vagaries of lexical
syntax. Immediate plans specific to free sections in-
clude:
◦ possibly something could be prepared for academic
publication

◦ implementing the named free sections extension-
extension for completeness

◦ attempting to get it accepted into some project
(maybe some Haskell compiler) which handles pars-
ing (my code uses a fork of HSE, and divergence is
accruing)
Otherwise, pretty much a one-off which will be

deemed stable in a few months. Maybe I’ll try extend-
ing some language which lacks lambdas (or where its
lambda syntax is especially unpleasant).

Further reading

http://fremissant.net/freesect

7.2 Education

7.2.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).

In November 2010, Gerben Verburg started to
reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, which has been presented at
CSERC’13, and should become available in the ACM
Digital Library.
The tool will be made available through Hackage at

some point, but before that happens it can already be
obtained on request from Jurriaan Hage.

Contact

〈J.Hage@uu.nl〉

7.2.2 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Johan Jeuring, Alex Gerdes, Josje Lodder
Status: experimental, active development

The Ideas project at Open Universiteit Nederland and
Utrecht University aims at developing domain reason-
ers for stepwise exercises on various topics. These rea-
soners assist students in solving exercises incrementally
by checking intermediate steps, providing feedback on
how to continue, and detecting common mistakes. The
reasoners are based on a strategy language, from which
feedback is derived automatically. The calculation of
feedback is offered as a set of web services, enabling
external (mathematical) learning environments to use
our work. We currently have a binding with the Digital
Mathematics Environment of the Freudenthal Institute
(first/left screenshot), the ActiveMath learning system
of the DFKI and Saarland University (second/right
screenshot), and our own online exercise assistant that
supports rewriting logical expressions into disjunctive
normal form.

We have continued working on the Ask-Elle func-
tional programming tutor. This tool lets you prac-
tice introductory functional programming exercises in
Haskell. The tutor can both guide a student towards
developing a correct program, as well as analyze inter-
mediate, incomplete programs and check whether or
not certain properties are satisfied. We are currently
extending the tutor with QuickCheck properties for

33

http://fremissant.net/freesect
mailto: J.Hage at uu.nl
http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/ProgTutor/

testing the correctness of student programs, and for
the generation of counterexamples. Normalization of
functional programs is used for dealing with all kinds
of variations in programs; this is ongoing research. We
also want to make it as easy as possible for teachers to
add programming exercises to the tutor, and to adapt
the behavior of the tutor by disallowing or enforcing
particular solutions. Teachers can adapt feedback by
annotating the model solutions of an exercise. The tu-
tor has an improved web-interface and is used in an
introductory FP course at Utrecht University.

We have modeled the artificial intelligence of a real-
time video game on top of the strategy combinator lan-
guage used in the domain reasoners. In the future we
expect to develop a serious game for communication
skills using a similar approach.
The feedback services are available as a Cabal source

package. The latest release is version 1.0 from Septem-
ber 1, 2011. In the near future we will release a new
version of the feedback services.

Further reading

◦ Online exercise assistant (for logic), accessible from
our project page.

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science, 3(3):349–
370, 2010.

◦ Johan Jeuring, Alex Gerdes, and Bastiaan Heeren. A
Programming Tutor for Haskell. Lecture Notes Cen-
tral European School on Functional Programming,
(CEFP 2011). Try our tutor at http://ideas.cs.uu.nl/
ProgTutor/.

◦ Tom Hastjarjanto, Johan Jeuring, and Sean Leather.
A DSL for describing the artificial intelligence in real-
time video games. Third International Workshop on
Games and Software Engineering (GAS 2013).

7.3 Parsing and Transforming

7.3.1 FliPpr

Report by: Kazutaka Matsuda
Participants: Meng Wang
Status: experimental, prototype

FliPpr (“flip” + “ppr” (pretty-printer)) is a program
transformation tool that takes a pretty-printing pro-
gram and returns a parser consistent with the pretty-
printer. It is common that, when we implement a pro-
gramming language, we have to write a pair of pro-
grams: a pretty-printer and a parser, and it is expected
that, especially early in the development, the syntax of
the language changes frequently. In such a case, we
have to update both the pretty-printer and the parser
so that they continue to work with each other. FliPpr
removes this maintenance burden from the program-
mers through program inversion techniques such that a
consistent parser (in the sense that pretty-printed code
is always correctly parsed) is automatically generated.
Pretty-printers in FliPpr are written with Wadler’s

pretty-printing combinators as recursive functions on
an AST datatype, which is very similar to what we nor-
mally do in Haskell. The differences are that there is a
new combinator for embedding additional information
for effective parsing, and there are syntactic restrictions
in place. For details, please see our ESOP paper (doi:
10.1007/978-3-642-37036-6_6).
Currently, the implementation is an experimental

prototype. So bugs and unhelpful error messages are
expected. However, you shall be able to play with the
system by using the examples from the implementation
page below.

Further reading

http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/

7.3.2 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

With respect to the previous version the code for build-
ing interleaved parsers was split off into a separate
package uu-interleaved, such that it can be used
by other parsing libraries too. Based on this an-
other small package uu-options was constructed which
can be used to parse command line options and files
with preferences. The internals of these are described
in a technical report: http://www.cs.uu.nl/research/
techreps/UU-CS-2013-005.html.
As an example of its use we show how to fill a record

from the command line. We start out by defining the

34

http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/genexas/
http://ideas.cs.uu.nl/www
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/CEFP/
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/CEFP/
http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/ProgTutor/
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/gas2013.pdf
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/gas2013.pdf
http://www-kb.is.s.u-tokyo.ac.jp/~kztk/FliPpr/
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html

record which is to hold the options to be possibly set:

data Prefers = Agda | Haskell deriving Show
data Address = Address {city_ :: String

, street_ :: String}
deriving Show

data Name = Name { name_ :: String
, prefers_ :: Prefers
, ints_ :: [Int]
, address_ :: Address}

deriving Show
$ (deriveLenses ’’ Name)
$ (deriveLenses ’’ Address)

The next thing to do is to specify a default record con-
taining the default values:

defaults = Name "Doaitse" Haskell []
(Address "Utrecht"

"Princetonplein")

Next we define the parser for the options, by specifying
each option:

oName =
name ‘option‘ ("name", pString)

<> ints ‘options‘ ("int", pNatural)
<> prefers ‘flags‘ [("agda", Agda)

, ("haskell",Haskell)]
<> address ‘field‘

(city ‘option‘ ("city"
, pString)

<> street ‘option‘ ("street"
, pString)

)

Finally when running this parser by the command
run (($defaults) <$> mkP oName) on the string
("–int=7 –city=Tynaarlo -i 5 –agda -i3 " ++
"-street=Zandlust") the result is

Name {name_ = Doaitse
, prefers_ = Agda
, ints_ = [7, 5, 3]
, address_ = Address

{city_ = Tynaarlo
, street_ = Zandlust}

}

Features

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the in-
put and provide excellent error messages. As such
they are “surprise free” when used by people not fully
aware of their internal workings.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library basically provides the to be preferred ap-
plicative interface and a monadic interface where this
is really needed (which is hardly ever).

◦ No need for try-like constructs which make writing
Parsec based parsers tricky.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative interface. This makes it e.g. pos-
sible to deal with white space or comments in the
input in a completely separate way, without having
to think about this in the parser for the language
at hand (provided of course that white space is not
syntactically relevant).

Future plans

Future versions will contain a check for grammars being
not left-recursive, thus taking away the only remaining
source of surprises when using parser combinator li-
braries. This makes the library even greater for use in
teaching environments. Future versions of the library,
using even more abstract interpretation, will make use
of computed look-ahead information to speed up the
parsing process further.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list which was moved
to 〈parsing@lists.science.uu.nl〉 (see also http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators).

7.3.3 HERMIT

Report by: Andy Gill
Participants: Andy Gill, Andrew Farmer, Ed Komp, Neil

Sculthorpe, Adam Howell, Robert Blair,
Ryan Scott, Patrick Flor, Michael Tabone

Status: active

The Haskell Equational Reasoning Model-to-
Implementation Tunnel (HERMIT) is an NSF-funded
project being run at KU (→ 9.9), which aims to im-
prove the applicability of Haskell-hosted Semi-Formal
Models to High Assurance Development. Specifically,
HERMIT uses a Haskell-hosted DSL and a new
refinement user interface to perform rewrites directly
on Haskell Core, the GHC internal representation.
This project is a substantial case study of the ap-

plication of Worker/Wrapper on larger examples. In
particular, we want to demonstrate the equivalences

35

mailto: doaitse at swierstra.net
mailto: parsing at lists.science.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators

between efficient Haskell programs, and their clear
specification-style Haskell counterparts. In doing so
there are several open problems, including refinement
scripting and managing scaling issues, data represen-
tation and presentation challenges, and understand-
ing the theoretical boundaries of the worker/wrapper
transformation.
We have reworked KURE (http://www.haskell.org/

communities/11-2008/html/report.html#sect5.5.7), a
Haskell-hosted DSL for strategic programming, as
the basis of our rewrite capabilities, and constructed
the rewrite kernel making use of the GHC Plugins
architecture. A journal writeup of the KURE internals
has been submitted to JFP, and is available on the
group webpage. As for interfaces to the kernel, we
currently have a command-line REPL, and an Android
version is under development. Thus far, we have used
HERMIT to successfully mechanize many smaller
examples of program transformations, drawn from the
literature on techniques such as concatenate vanishes,
tupling transformation, and worker/wrapper. We
are scaling up our capabilities, working on larger
examples, and hope to submit a paper to the Haskell
Symposium this summer.
HERMIT was also used in a large case study, led

by Michael Adams from Portland State University in
Oregon. Adams used HERMIT to mechanize the opti-
mization of scrap your boilerplate generics, leading to
execution speeds that were as fast as hand-optimized
code (→ 7.4.3).

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT

7.4 Generic and Type-Level Programming

7.4.1 Unbound

Report by: Brent Yorgey
Participants: Stephanie Weirich, Tim Sheard
Status: actively maintained

See: http://www.haskell.org/communities/05-2012/
html/report.html#sect7.4.1.

7.4.2 A Generic Deriving Mechanism for Haskell

Report by: José Pedro Magalhães
Participants: Atze Dĳkstra, Johan Jeuring, Andres Löh,

Simon Peyton Jones
Status: actively developed

Haskell’s deriving mechanism supports the automatic
generation of instances for a number of functions. The
Haskell 98 Report only specifies how to generate in-
stances for the Eq, Ord, Enum, Bounded, Show, and
Read classes. The description of how to generate in-
stances is largely informal. As a consequence, the
portability of instances across different compilers is not

guaranteed. Additionally, the generation of instances
imposes restrictions on the shape of datatypes, depend-
ing on the particular class to derive.
We have developed a new approach to Haskell’s

deriving mechanism, which allows users to specify
how to derive arbitrary class instances using standard
datatype-generic programming techniques. Generic
functions, including the methods from six standard
Haskell 98 derivable classes, can be specified entirely
within Haskell, making them more lightweight and
portable.
We have implemented our deriving mechanism to-

gether with many new derivable classes in UHC (→ 3.3)
and GHC. The implementation in GHC has a more con-
venient syntax; consider enumeration:

class GEnum a where
genum :: [a]
default genum :: (Representable a,

Enum′ (Rep a))⇒ [a]
genum = map to enum′

The Enum′ and GEnum classes are defined by the
generic library writer. The end user can then give in-
stances for his/her datatypes without defining an im-
plementation:

instance (GEnum a)⇒ GEnum (Maybe a)
instance (GEnum a)⇒ GEnum [a]

These instances are empty, and therefore use the
(generic) default implementation. This is as convenient
as writing deriving clauses, but allows defining more
generic classes. This implementation relies on the new
functionality of default signatures, like in genum above,
which are like standard default methods but allow for
a different type signature.
GHC 7.6.1 brings support for automatic derivation

of Generic1 instances, meaning that generic functions
that abstract over type containers (such as fmap) are
now also supported.

Further reading

http://www.haskell.org/haskellwiki/GHC.Generics

7.4.3 Optimising Generic Functions

Report by: José Pedro Magalhães
Participants: Michael D. Adams, Andrew Farmer
Status: actively developed

Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. However, it is known that
datatype-generic programs often run slower than type-
specific variants, and this factor can prevent adoption
of generic programming altogether. There can be mul-
tiple reasons for the performance penalty, but often it is

36

http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT
http://www.haskell.org/communities/05-2012/html/report.html#sect7.4.1
http://www.haskell.org/communities/05-2012/html/report.html#sect7.4.1
http://www.haskell.org/ghc/docs/latest/html/users_guide/generic-programming.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#class-default-signatures
http://www.haskell.org/haskellwiki/GHC.Generics

caused by conversions to and from representation types
that do not get eliminated during compilation.
Fortunately, it is also known that generic functions

can be specialised to concrete datatypes, removing any
overhead from the use of generic programming. We
have investigated compilation techniques to specialise
generic functions and remove the performance over-
head of generic programs in Haskell. We used a rep-
resentative generic programming library and inspected
the generated code for a number of example generic
functions. After understanding the necessary com-
piler optimisations for producing efficient generic code,
we benchmarked the runtime of our generic functions
against handwritten variants, and concluded that all
the overhead can indeed be removed automatically by
the compiler. More details can be found in the IFL’12
paper linked below.
We have also investigated how to optimise the pop-

ular Scrap Your Boilerplate (SYB) generic program-
ming library. Using a HERMIT (→ 7.3.3) script for
implementing an optimisation pass in the compiler, we
have removed all runtime overhead from SYB func-
tions. More details can be found in the draft paper
linked below.

Further reading

◦ Optimisation of Generic Programs through Inlining
◦ Optimizing SYB Is Easy!

7.5 Mathematical Objects

7.5.1 AERN

Report by: Michal Konečný
Participants: Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of libraries that will provide:

◦ A reliable arbitrary-precision correctly rounded in-
terval arithmetic, including both standard inter-
vals and inverted intervals with Kaucher arithmetic.
Reliability is achieved using extensive QuickCheck
testing against a nearly-complete formalisation of the
real numbers.

◦ Arbitrary-precision arithmetic of polynomial in-
tervals (similar to but more general than Taylor
Models). This is useful for example for:
– Automatically reducing overestimations in in-

terval computations.
– Efficiently supporting validated numerical in-

tegration, specifically in the simulation of or-
dinary differential equation (ODE) and hybrid
system initial value problems (IVPs).

– Automatically deciding many inequalities and
interval inclusions with non-linear and elemen-
tary functions that occur in numerical theorem

proving and, specifically, in the verification of
numerical programs.

◦ A type class hierarchy for validated and exact com-
putation, featuring:
– Standard mathematical structures such as

posets and lattices extended to take account of
rounding errors and partially decided relations
such as equality.

– Both numerical order and interval refinement
order.

– An ability to increase computational effort with
the view to reduce the negative effects of round-
ing and of the partial ability to decide equality.
The approximate operations and partially de-
cided relations converge to exact operations and
totally decided relations as effort approaches in-
finity.

– Extensive set of QuickCheck properties for each
type class, enabling automatic checking of, e.g.,
algebraic properties such as associativity, ex-
tended to take account of rounding.

– Benchmarks for comparing the efficiency of var-
ious versions of validated approximate arith-
metic, e.g., various interval arithmetics and var-
ious function enclosure arithmetics.

◦ Tools for interactive plotting of univariate function
enclosures (see figure below for a screenshot of an
early prototype).

◦ A framework for distributed query-driven lazy
dataflow validated numerical computation with de-
notational exact semantics based on Domain Theory.

There are stable older versions of the libraries on
Hackage but these lack the type classes described
above.
We are still in the process of redesigning and rewrit-

ing the libraries. Out of the newly designed code, we
have so far released libraries featuring:

37

http://dreixel.net/research/pdf/ogpi.pdf
http://dreixel.net/research/pdf/osiedraft.pdf

◦ The type classes for approximate real number oper-
ations.

◦ Correctly rounded real interval arithmetic with Dou-
ble endpoints.

A release of interval arithmetic with MPFR end-
points is planned in before the end of 2012 despite the
fact that currently one has to recompile GHC to use
MPFR safely.
We have made progress on implementing polynomial

intervals and plan to release them by the end of 2012.
The development files include demos that solve selected
ODE and hybrid system IVPs using polynomial inter-
vals.
All AERN development is open and we welcome con-

tributions and new developers.

Further reading

http://code.google.com/p/aern/

7.5.2 Paraiso

Report by: Takayuki Muranushi
Status: active development

See: http://www.haskell.org/communities/05-2012/
html/report.html#sect7.6.4.

7.5.3 bed-and-breakfast

Report by: Julian Fleischer
Status: active development

Bed and breakfast is a pure Haskell linear algebra li-
brary that I built between getting out of the bed and
having breakfast — thus the name. It features basic op-
erations on matrices, for which it makes use of boxed
and unboxed mutable arrays as necessary to improve
performance — everything is pure though, as stateful
computations happen in the ST monad. It currently
excels in inverting matrices and finding determinants.
Bed and breakfast is published under the MIT license

and available via hackage as bed-and-breakfast. You
are more than welcome to suggest improvements.
Development happens at http://hub.darcs.net/scravy/
bed-and-breakfast.

7.6 Data Types and Data Structures

7.6.1 HList — A Library for Typed Heterogeneous
Collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host

of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).
An immediate application of HLists is the im-

plementation of open, extensible records with first-
class, reusable, and compile-time only labels. The
dual application is extensible polymorphic variants
(open unions). HList contains several implementa-
tions of open records, including records as sequences
of field values, where the type of each field is an-
notated with its phantom label. We and others
have also used HList for type-safe database access
in Haskell. HList-based Records form the basis of
OOHaskell. The HList library relies on common
extensions of Haskell 2010. HList is being used
in AspectAG (http://www.haskell.org/communities/
11-2011/html/report.html#sect5.4.2), typed EDSL of
attribute grammars, and in HaskellDB.
The October 2012 version of HList library marks

the significant re-write to take advantage of the fancier
types offered by GHC 7.4+. HList now relies on type-
level booleans, natural numbers and lists, and on kind
polymorphism. A number of operations are imple-
mented as type functions. Another notable addition is
unfold for heterogeneous lists. Many operations (pro-
jection, splitting) are now implemented in terms of un-
fold. Such a refactoring moved more computations to
type-level, with no run-time overhead.
Currently the core of HList has been re-written:

HList, HArray, TIP – up to records. In the near fu-
ture, we will finish the re-writing and take advantage
of the better kind polymorphism supported by GHC
7.6+.

Further reading

◦ HList: http://okmĳ.org/ftp/Haskell/types.html#
HList

◦ OOHaskell: http://homepages.cwi.nl/~ralf/
OOHaskell/

7.6.2 Persistent

Report by: Michael Snoyman
Participants: Greg Weber, Felipe Lessa
Status: stable

Persistent is a type-safe data store interface for Haskell.
Haskell has many different database bindings available,
but they provide few usefeul static guarantees. Persis-
tent uses knowledge of the data schema to provide a
type-safe interface that re-uses existing database bind-
ing libraries. Persistent is designed to work across
different databases, and works on Sqlite, PostgreSQL,

38

http://code.google.com/p/aern/
http://www.haskell.org/communities/05-2012/html/report.html#sect7.6.4
http://www.haskell.org/communities/05-2012/html/report.html#sect7.6.4
http://hub.darcs.net/scravy/bed-and-breakfast
http://hub.darcs.net/scravy/bed-and-breakfast
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://okmij.org/ftp/Haskell/types.html#HList
http://okmij.org/ftp/Haskell/types.html#HList
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/

MongoDB, and MySQL, with an experimental backend
for CouchDB.
The 1.2 release features a refactoring of the module

hierarchy. We’re taking this opporunity to clean up a
few idiosyncracies in the API and make the documen-
tation a bit more helpful, but otherwise the library is
remaining unchanged.
The MongoDB backend features new helpers, query

operators, and bug fixes for working with embed-
ded/nested models. One can store a list of Maps or
records inside a column/field. This is required for
proper usage of MongoDB. In SQL an embedded object
is stored as JSON, which is convenient as long as the
column is not queried.
In order to accomodate various different backend

types, Persistent is broken up into multiple compo-
nents (separated by type classes). There is one for
storage/serialization, one for uniqueness, and one for
querying. This means that anyone wanting to create
database abstractions can re-use the battle-tested per-
sistent storage/serialization layer without having to im-
plement the full query interface.
Persistent’s query layer is the same for any backend

that implement the query interface, although backends
can define their own additional operators. The inter-
face is a straightforward usage of combinators:

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones"] []

There are some drawbacks to the query layer: it
doesn’t cover every use case. Persistent has built-in
some very good support for raw SQL. One can run ar-
bitrary SQL queries and get back Haskell records or
types for single columns. In addition, Felipe Lessa
has created a library called esqueleto for having com-
plete control over generating SQL but with type safety.
persistent-MongoDB also has helpers for working with
raw queries.

Future plans

Possible future directions for Persistent:
◦ Adding key-value databases such as Redis without a
query layer.

◦ Full CouchDB support
Persistent users may also be interested in Ground-

hog, a similar project.
Most of Persistent development occurs within the

Yesod (→ 5.2.6) community. However, there is nothing
specific to Yesod about it. You can have a type-safe,
productive way to store data, even on a project that
has nothing to do with web development.

Further reading

◦ http://www.yesodweb.com/book/persistent
◦ http://hackage.haskell.org/package/esqueleto

7.6.3 DSH — Database Supported Haskell

Report by: Torsten Grust
Participants: George Giorgidze, Tom Schreiber,

Alexander Ulrich, Jeroen Weĳers
Status: active development

Database-Supported Haskell, DSH for short, is a
Haskell library for database-supported program execu-
tion. Using the DSH library, a relational database man-
agement system (RDBMS) can be used as a coprocessor
for the Haskell programming language, especially for
those program fragments that carry out data-intensive
and data-parallel computations. Rather than embed-
ding a relational language into Haskell, DSH turns id-
iomatic Haskell programs into SQL queries. The DSH
library and the FerryCore package it uses are available
on Hackage (http://hackage.haskell.org/package/DSH).
Support for algebraic data types. Algebraic data
types (ADTs) are the essential data modelling tool of
a number of functional programming languages like
Haskell, OCaml and F#. In recent work we added sup-
port for ADTs to DSH. ADTs may be freely constructed
and deconstructed in queries and may show up in the
result type. The number of relational queries gener-
ated is small and statically determined by the type of
the query.
DSH in the Real World. We have used DSH for
large scale data analysis. Specifically, in collaboration
with researchers working in social and economic sci-
ences, we used DSH to analyse the entire history of
Wikipedia (terabytes of data) and a number of online
forum discussions (gigabytes of data).
Because of the scale of the data, it would be unthink-

able to conduct the data analysis in Haskell without
using the database-supported program execution tech-
nology featured in DSH. We have formulated several
DSH queries directly in SQL as well and found that
the equivalent DSH queries were much more concise,
easier to write and maintain (mostly due to DSH’s sup-
port for nesting, Haskell’s abstraction facilities and the
monad comprehension notation, see below).
One long-term goal is to allow researchers who are

not necessarily expert programmers or database engi-
neers to conduct large scale data analysis themselves.
Towards a New Compilation Strategy. As of to-
day, DSH relies on a query compilation strategy coined
loop-lifting. Loop-lifting comes with important and de-
sirable properties (e.g., the number of SQL queries is-
sued for a given DSH program only depends on the
static type of the program’s result). The strategy, how-
ever, relies on a rather complex and monolithic map-
ping of programs to the relational algebra. To remedy
this, we are currently exploring a new strategy based
on the flattening transformation as conceived by Guy

39

http://www.yesodweb.com/book/persistent
http://hackage.haskell.org/package/esqueleto

Blelloch. Originally designed to implement the data-
parallel declarative language NESL, we revisit flatten-
ing in the context of query compilation (which targets
database kernels, one particular kind of data-parallel
execution environment). Initial results are promising
and DSH might switch over in the not too far future.
We hope to further improve query quality and also
address the formal correctness of DSH’s program-to-
queries mapping.
Related Work. Motivated by DSH we reintroduced
the monad comprehension notation into GHC and also
extended it for parallel and SQL-like comprehensions.
The extension is available in GHC 7.2. We have also
implemented a Haskell extension for overloading the list
notation. This extension will be available in GHC in
the near future.

Further reading

http://db.inf.uni-tuebingen.de/research/dsh

7.7 User Interfaces

7.7.1 LGtk: Lens-based Gtk API

Report by: Péter Diviánszky
Status: first release, experimental, actively developed

Most Haskellers would like to use a mature FRP-based
API for creating graphical user interfaces. But FRP
may not be the best tool for special user interfaces,
like interfaces which consist mainly of buttons, check-
boxes, combo boxes, text entries, tabs and menus. The
goal of the LGtk project is to give a lens-based API
which better fits these user interfaces. LGtk is built on
Gtk2Hs.
The first release of LGtk was announced on 15 April

2013. Currently the first version of the API is available
with a demo application.

LGtk is being actively developed. I currently work
on the following items:

◦ Give an approximation of the semantics of LGtk and
adjust the API to the given semantics.

◦ Support for asynchronous effects.

◦ Make a tutorial for developers with lots of small ex-
amples.

Further reading

http://people.inf.elte.hu/divip/LGtk/index.html

7.7.2 Gtk2Hs

Report by: Daniel Wagner
Participants: Axel Simon, Duncan Coutts, Andy

Stewart, and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ High quality vector graphics using Cairo

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

Since the last release, there have been many bug-
fixes, and Peter Davies and Hamish Mackenzie have
begun adding experimental Gtk3 support, enabled by
the “gtk3” cabal flag.

Further reading

◦ News and downloads: http://haskell.org/gtk2hs/
◦ Development version: darcs get http://code.

haskell.org/gtk2hs/

40

http://people.inf.elte.hu/divip/LGtk/index.html
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/

7.8 Functional Reactive Programming

7.8.1 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a practical library for functional
reactive programming (FRP).
FRP offers an elegant and concise way to express

interactive programs such as graphical user interfaces,
animations, computer music or robot controllers. It
promises to avoid the spaghetti code that is all too com-
mon in traditional approaches to GUI programming.
The goal of the library is to provide a solid founda-

tion.

◦ Writing graphical user interfaces with FRP is made
easy. The library can be hooked into any existing
event-based framework like wxHaskell or Gtk2Hs. A
plethora of example code helps with getting started.
You can mix FRP and imperative style. If you don’t
know how to express functionality in terms of FRP,
just temporarily switch back to the imperative style.

◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ It features an efficient implementation. No more
spooky time leaks, predicting space & time usage
should be straightforward.

Status. The latest version of the reactive-banana li-
brary is 0.7.1.1. Compared to the previous report,
there has been no new public release as the API and
its semantics have reached a stable plateau.
It turned out that the library suffered from a large

class of space leaks concerning accumulated behaviors.
The space semantics have been refined and the current
development version eliminates these issues.
Current development. Programming graphical user

interfaces has always been the driving force behind my
efforts to implement an FRP library. Unfortunately, it
appears that current Haskell GUI libraries, like Gtk2Hs
and wxHaskell, are mostly dormant these days and not
widely accessible due to installation woes on different
platforms.

Moreover, in recent years, the web browser has
emerged as an important platform for programming
user interfaces. I would be happy to make reactive-
banana available in this context as well, but unfortu-
nately, efforts to compile Haskell to JavaScript are still
in early stages of development.
To move forward, I have decided to work

on implementing a small GUI framework, called
threepenny-gui, which uses the web browser to dis-
play user interfaces written in Haskell. It is derived
from Christopher Done’s former ji project. While not
directly related to FRP, I hope that this effort will make
reactive-banana more widely accessible and help test its
mettle in real-world tasks.
Concerning the development of reactive-banana it-

self, there are still some efficiency problems remaining,
in particular concerning garbage collection of dynamic
events. However, I feel that work on these remaining
efficiency issues needs to be informed by practical ap-
plications and I wish to focus on the aforementioned
GUI framework to lay a foundation for that first.
Notable use cases. In his reactive-balsa library, Hen-

ning Thielemann uses reactive-banana to control digital
musical instruments with MIDI in real-time.

Further reading

◦ Project homepage: http://haskell.org/haskellwiki/
Reactive-banana

◦ Example code: http://haskell.org/haskellwiki/
Reactive-banana/Examples

◦ BarTab example: http://haskell.org/haskellwiki/
Reactive-banana/Examples#bartab

◦ reactive-balsa: http://www.haskell.org/haskellwiki/
Reactive-balsa

◦ threepenny-gui: https://github.com/
HeinrichApfelmus/threepenny-gui

7.8.2 Elerea

Report by: Patai Gergely
Status: experimental, active

Elerea (Eventless reactivity) is a tiny discrete time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialised monad, while stateless combina-
tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. The library comes in three major
variants, which all have precise denotational semantics:
◦ Simple: signals are plain discrete streams isomorphic

to functions over natural numbers;

41

http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Reactive-banana/Examples#bartab
http://haskell.org/haskellwiki/Reactive-banana/Examples#bartab
http://www.haskell.org/haskellwiki/Reactive-balsa
http://www.haskell.org/haskellwiki/Reactive-balsa
https://github.com/HeinrichApfelmus/threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui

◦ Param: adds a globally accessible input signal for
convenience;

◦ Clocked: adds the ability to freeze whole subnet-
works at will.
The code is readily available via cabal-install

in the elerea package. You are advised to in-
stall elerea-examples as well to get an idea how
to build non-trivial systems with it. The exam-
ples are separated in order to minimize the de-
pendencies of the core library. The experimental
branch is showcased by Dungeons of Wor, found in
the dow package (http://www.haskell.org/communities/
05-2010/html/report.html#sect6.11.2). Additionally,
the basic idea behind the experimental branch is laid
out in the WFLP 2010 article Efficient and Composi-
tional Higher-Order Streams.
Since the last report, the API was extended with

effectful combinators that allow IO computations to be
used in the definitions of the signals. The primary use
for this functionality is to provide FRP-style bindings
on top of imperative libraries. At the moment, a high-
level Elerea based API for the Bullet physics library is
under development.

Further reading

◦ http://hackage.haskell.org/package/elerea
◦ http://hackage.haskell.org/package/elerea-examples
◦ http://hackage.haskell.org/package/dow
◦ http://sgate.emt.bme.hu/documents/patai/

publications/PataiWFLP2010.pdf
◦ http://babel.ls.fi.upm.es/events/wflp2010/video/

video-08.html (WFLP talk)

7.9 Graphics

7.9.1 LambdaCube

Report by: Csaba Hruska
Participants: Gergely Patai
Status: experimental, active development

LambdaCube 3D is a domain specific language and li-
brary that makes it possible to program GPUs in a
purely functional style.
Programming with LambdaCube constitutes of com-

posing a pure data-flow description, which is compiled
into an executable module and accessed through a high-
level API. The language provides a uniform way to de-
fine shaders and compositor chains by treating both
streams and framebuffers as first-class values.
In its current state, LambdaCube is already func-

tional, but still in its infancy. The current API is a
rudimentary EDSL that is not intended for direct use
in the long run. It is essentially the internal phase of
a compiler backend exposed for testing purposes. To
exercise the library, we have created two small proof
of concept examples: a port of the old LambdaCube
Stunts example, and a Quake III level viewer.

Over the last few months, we extended the imple-
mentation with some essential major features:

◦ texture support

◦ multi-pass rendering

◦ sharing detection and CSE in the shaders (through
hash-consing)

We also improved the existing examples and created
new ones: a showcase for variance shadow mapping and
another for integration with the Bullet physics engine.
Last but not least, we finally started a new blog ded-

icated to LambdaCube. The blog is intended to be
the primary source of information and updates on the
project from now on.
Everyone is invited to contribute! You can help

the project by playing around with the code, thinking
about API design, finding bugs (well, there are a lot of
them anyway), creating more content to display, and
generally stress testing the library as much as possible
by using it in your own projects.

Further reading

◦ https://lambdacube3d.wordpress.com/
◦ https://github.com/csabahruska/lc-dsl
◦ http://www.haskell.org/haskellwiki/

LambdaCubeEngine
◦ http://www.youtube.com/watch?v=kDu5aCGc8l4

7.9.2 diagrams

Report by: Brent Yorgey
Participants: Daniel Bergey, Jan Bracker, Andy Gill,

Chris Mears, Michael Sloan, Ryan Yates
Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is still much more to

42

http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://hackage.haskell.org/package/elerea
http://hackage.haskell.org/package/elerea-examples
http://hackage.haskell.org/package/dow
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
https://lambdacube3d.wordpress.com/
https://github.com/csabahruska/lc-dsl
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.youtube.com/watch?v=kDu5aCGc8l4

be done, but diagrams is already quite fully-featured,
with a comprehensive user manual, a large collection of
primitive shapes and attributes, many different modes
of composition, paths, cubic splines, images, text, arbi-
trary monoidal annotations, named subdiagrams, and
more.

What’s new

Since the last HCAR edition, version 0.6 was released
in December. New features in 0.6 include:

◦ A new Haskell-native SVG backend now comes “out
of the box”—making installation of diagrams far eas-
ier for many users, since it no longer depends on any
external libraries via the FFI. There is also a new
official Postscript backend. The cairo backend is still
supported, but is no longer required to use diagrams.

◦ “Traces”, which give an easy way to find arbitrary
points on the boundary of a diagram (useful for, e.g.
drawing connecting lines between diagrams).

Perhaps the most exciting news since the last HCAR
edition is the release of the diagrams-haddock pack-
age, which enables embedding diagrams code directly
in Haddock documentation, with images automatically
compiled and inserted into the Haddock output. This
is an easy way to spruce up your documentation with
declaratively constructed graphics. diagrams-haddock
is already in use in a few packages on Hackage, most
notably diagrams-contrib.

In conjunction with diagrams-haddock, there have
also been significant improvements to the underlying
diagrams-builder package, which renders diagrams
dynamically at run time. The caching and condi-
tional rebuilding of diagrams is now much smarter, so

that it “does the right thing” in most situations (re-
building a diagram when it has changed, and avoid-
ing a rebuilt when it hasn’t). This directly improves
the experience of using diagrams-haddock as well
as BlogLiterately-diagrams (for writing blog posts
with embedded diagrams) and diagrams-latex (for
LATEX documents with embedded diagrams).
There have been many improvements and changes to

the core diagrams libraries as well, with an 0.7 release
planned for the not-too-distant future. Features slated
for the upcoming release include:

◦ A nice API for drawing arrows between arbitrary
points or diagrams.

◦ Additions to the diagrams-contrib library, includ-
ing a symmetric layout algorithm for binary trees,
circle packing layout, a generalized turtle drawing
interface, factorization diagrams, and iterated sub-
set fractals.

◦ Computing the curvature of path segments at a given
point.

◦ Generating paths as a constant offset from another
path.

◦ A generalized color API, allowing backends to use
whatever color space they want.

◦ Many documentation improvements, using
diagrams-haddock to generate example images.

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of its
size, generality, and enthusiastic embrace of advanced
type system features, diagrams can be intimidating to
would-be users and contributors; however, we are ac-
tively working on new documentation and resources
to help combat this. For more information on ways
to contribute and how to get started, see the Con-
tributing page on the diagrams wiki: http://haskell.org/

43

http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing

haskellwiki/Diagrams/Contributing, or come hang out in
the #diagrams IRC channel on freenode.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://haskell.org/haskellwiki/Diagrams
◦ http://github.com/diagrams
◦ https://byorgey.wordpress.com/2012/08/28/

creating-documents-with-embedded-diagrams/
◦ http://www.cis.upenn.edu/~byorgey/pub/

monoid-pearl.pdf
◦ http://www.youtube.com/watch?v=X-8NCkD2vOw

7.10 Audio

7.10.1 Audio Signal Processing

Report by: Henning Thielemann
Status: experimental, active development

See: http://www.haskell.org/communities/05-2012/
html/report.html#sect7.11.1.

7.10.2 Live-Sequencer

Report by: Henning Thielemann
Participants: Johannes Waldmann
Status: experimental, active

See: http://www.haskell.org/communities/05-2012/
html/report.html#sect7.11.2.

7.10.3 Chordify

Report by: José Pedro Magalhães
Participants: W. Bas de Haas, Dion ten Heggeler, Gĳs

Bekenkamp, Tĳmen Ruizendaal
Status: actively developed

Chordify is a music player that extracts chords from
musical sources like Soundcloud, Youtube, or your own
files, and shows you which chord to play when. The
aim of Chordify is to make state-of-the-art music tech-
nology accessible to a broader audience. Our interface
is designed to be simple: everyone who can hold a mu-
sical instrument should be able to use it.
Behind the scenes, we use the sonic annotator for

extraction of audio features. These features consist
of the downbeat positions and the tonal content of a
piece of music. Next, the Haskell program HarmTrace
takes these features and computes the chords. Harm-
Trace uses a model of Western tonal harmony to aid
in the chord selection. At beat positions where the au-
dio matches a particular chord well, this chord is used
in final transcription. However, in case there is uncer-
tainty about the sounding chords at a specific position
in the song, the HarmTrace harmony model will select
the correct chords based on the rules of tonal harmony.
Chordify is free for everyone to use. We have recently

implemented a user account system, and keep adding
new features on a regular basis. The code for Harm-
Trace is available on Hackage, and we have ICFP’11
and ISMIR’12 publications describing some of the tech-
nology behind Chordify.

Further reading

http://chordify.net

7.10.4 Euterpea

Report by: Paul Hudak
Participants: Donya Quick, Daniel Winograd-Cort
Status: prototype release, active development

Overview

Euterpea is a Haskell library for computer music appli-
cations. It is a descendent of Haskore and HasSound,
and is intended for both educational purposes as well
as serious computer music development. Euterpea can
be thought of as a “wide-spectrum” DSL, suitable for
high-level music representation, algorithmic composi-
tion, and analysis; mid-level concepts such as MIDI;
and low-level audio processing, sound synthesis, and

44

http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw
http://www.haskell.org/communities/05-2012/html/report.html#sect7.11.1
http://www.haskell.org/communities/05-2012/html/report.html#sect7.11.1
http://www.haskell.org/communities/05-2012/html/report.html#sect7.11.2
http://www.haskell.org/communities/05-2012/html/report.html#sect7.11.2
http://www.omras2.org/SonicAnnotator
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
http://chordify.net

instrument design. It also includes a musical user in-
terface (MUI), a set of GUI widgets such as sliders,
buttons, and so on.
The audio and MIDI-stream processing aspects of

Euterpea are based on arrows, which makes programs
analogous to signal processing diagrams. Using arrows
prevents certain kinds of space leaks, and facilitates sig-
nificant optimization strategies (in particular, the use
of causal commutative arrows.
Euterpea is being developed at Yale in Paul Hudak’s

research group, where it has become a key component
of Yale’s new Computing and the Arts major. Hudak is
teaching a two-term sequence in computer music using
Euterpea, and is developing considerable pedagogical
material, including a new textbook tentatively titled
The Haskell School of Music — From Signals to Sym-
phonies (HSoM). The name “Euterpea” is derived from
“Euterpe”, who was one of the nine Greek Muses (god-
desses of the arts), specifically the Muse of Music.

Status

The system is stable enough for experimental computer
music applications, and for use in coursework either to
teach Haskell programming or to teach computer music
concepts.
All source code, papers, and a draft of the HSoM

textbook can be found on the Yale Haskell Group web-
site at: http://haskell.cs.yale.edu/.

History

Haskore is a Haskell library developed over 15 years ago
by Paul Hudak and his students at Yale for high-level
computer music applications. HasSound was a later
development that served as a functional front-end to
csound’s sound synthesis capabilities. Euterpea com-
bines Haskore with a native Haskell realization of Has-
Sound (i.e. no csound dependencies).

Future Plans

Euterpea is a work in progress, as is the HSoM text-
book. Computer-music specific MUI widgets (such
as keyboards and guitar frets), further optimization
strategies, better support for real-time MIDI and audio
processing, and a parallel (multicore) implementation
are amongst the planned future goals.
Anyone who would like to contribute to the project,

please contact Paul Hudak at 〈paul.hudak@yale.edu〉.

FurtherReading

Please visit http://haskell.cs.yale.edu/. Click on “Eu-
terpea” to learn more about the library, “Publica-
tions” to find our papers on computer music (including
HSoM), and “CS431” or “CS432” to see the course ma-
terial used in two computer music classes at Yale that
use Euterpea.

7.11 Text and Markup Languages

7.11.1 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: eighth major release (current release: 9.3)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml and HXML, but introduces a more general ap-
proach for processing XML with Haskell. The process-
ing model is based on arrows. The arrow interface is
more flexible than the filter approach taken in the ear-
lier HXT versions and in HaXml. It is also safer; type
checking of combinators becomes possible with the ar-
row approach.
HXT is partitioned into a collection of smaller pack-

ages: The core package is hxt. It contains a validating
XML parser, an HTML parser, filters for manipulating
XML/HTML and so called XML pickler for converting
XML to and from native Haskell data.
Basic functionality for character handling

and decoding is separated into the packages
hxt-charproperties and hxt-unicode. These
packages may be generally useful even for non XML
projects.
HTTP access can be done with the help of the pack-

ages hxt-http for native Haskell HTTP access and
hxt-curl via a libcurl binding. An alternative lazy non
validating parser for XML and HTML can be found in
hxt-tagsoup.
The XPath interpreter is in package hxt-xpath, the

XSLT part in hxt-xslt and the Relax NG valida-
tor in hxt-relaxng. For checking the XML Schema
Datatype definitions, also used with Relax NG, there
is a separate and generally useful regex package
hxt-regex-xmlschema.
The old HXT approach working with filter

hxt-filter is still available, but currently only with
hxt-8. It has not (yet) been updated to the hxt-9 mayor
version.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based

on Tagsoup (http://www.haskell.org/communities/
05-2010/html/report.html#sect5.11.3)

◦ Binding to the expat parser via hexpat package

45

http://haskell.cs.yale.edu/
mailto: paul.hudak at yale.edu
http://haskell.cs.yale.edu/
http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3

◦ Easy de-/serialization between native Haskell data
and XML by pickler and pickler combinators

◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ HTTP access via Haskell bindings to libcurl and via

Haskell HTTP package
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ XML Schema validator (next release)
◦ Lightweight regex library with full support of Uni-

code and XML Schema Datatype regular expression
syntax

◦ An HXT Cookbook for using the toolbox and the
arrow interface

◦ Basic XSLT support
◦ GitHub repository with current development ver-

sions of all packages http://github.com/UweSchmidt/
hxt

Current Work

The master thesis and project implementing an XML
Schema validator started in October 2011 has been fin-
ished. The validator will be released in a separate mod-
ule hxt-xmlschema. Integration with hxt has been pre-
pared in hxt-9.3. The XML Schema datatype library
has also been completed, all datatypes including date
and time types are implemented. But there is still a
need for testing the validator, especially with the W3C
test suite. Hopefully testing will be done in the next
few months. With the release of the schema validator
the the master thesis will also be published on the HXT
homepage. The current state of the validator can be
found in the HXT repository on github.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes links to downloads, documentation, and
further information.
The latest development version of HXT can be found

on github under (https://github.com/UweSchmidt/hxt).
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT). The conversion between XML
and native Haskell data types is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

7.11.2 epub-tools (Command-line epub Utilities)

Report by: Dino Morelli
Status: stable, actively developed

A suite of command-line utilities for creating and ma-
nipulating epub book files. Included are: epubmeta,
epubname, epubzip.
epubmeta is a command-line utility for examining

and editing epub book metadata. With it you can ex-
port, import and edit the raw OPF Package XML doc-
ument for a given book. Or simply dump the metadata
to stdout for viewing in a friendly format.
epubname is a command-line utility for renaming

epub ebook files based on their OPF Package meta-
data. It tries to use author names and title info to
construct a sensible name. epubname has recently un-
dergone extensive redesign:

◦ Major change of the formatting rules system. Re-
naming machinery is now described in a domain-
specific language, NOT in statically compiled code.
Users are able to extend the functionality with cus-
tom naming rules in conf files.

◦ Added interactive mode to ask about each file rename
as they happen, this is like darcs now!

◦ Added ability to specify target directory for books to
be moved to as part of renaming.

epubzip is a handy utility for zipping up the files
that comprise an epub into an .epub zip file. Using
the same technology as epubname, it can try to make
a meaningful filename for the book.
epub-tools is available from Hackage and the Darcs

repository below.

Further reading

◦ Project page: http://ui3.info/d/proj/epub-tools.html
◦ Source repository: darcs get http://ui3.info/darcs/

epub-tools

7.12 Natural Language Processing

7.12.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell.

46

http://github.com/UweSchmidt/hxt
http://github.com/UweSchmidt/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
https://github.com/UweSchmidt/hxt
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://ui3.info/d/proj/epub-tools.html
http://ui3.info/darcs/epub-tools
http://ui3.info/darcs/epub-tools

New packages and projects in development

◦ approx-rand-test 0.1 This version of the approxi-
mate randomization test package adds charting using
Cairo. Charts show the outcomes of the test statis-
tic for the original samples and randomized samples,
as well as significance boundaries. If Cairo is not
available, it can also draw ASCII charts.

At the present, the mailing list is mainly used to
make announcements to the Haskell NLP community.
We hope that we will continue to expand the list and
expand our ways of making it useful to people poten-
tially using Haskell in the NLP world.

Further reading

http://projects.haskell.org/nlp

7.12.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.
GenI is now mirrored on GitHub, with its issue

tracker and wiki and homepage also hosted there. We
are working on a new release (GenI 0.24) that allows
for custom semantic inputs, making it simpler to use
GenI in a wider variety for applications.

GenI is available on Hackage, and can be installed
via cabal-install. Our most recent release of GenI was
version 0.24 (2012-10-19). For more information, please
contact us on the geni-users mailing list.

Further reading

◦ http://github.com/kowey/GenI
◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

7.13 Machine Learning

7.13.1 Bayes-stack

Report by: Ben Gamari
Participants: Laura Dietz
Status: stable, actively developed

Bayes-stack is a framework for inference on probabilis-
tic graphical models. It supports hierarchical latent
variable models, including Latent Dirichlet allocation
and even more complex topic model derivatives. We
focus on inference using blocked collapsed Gibbs sam-
pling, but the framework is also suitable for other iter-
ative update methods.
Bayes-stack is written for parallel environments run-

ning on multi-core machines. While many researchers
see collapsed Gibbs sampling as a hindrance for paral-
lelism, we embrace its robustness against mildly out-
of-date state. In bayes-stack, a model is represented
as blocks of jointly updated random variables. Each
inference worker thread will repeatedly pick a block,
fetch the current model state, and compute a new set-
ting for its variables. It then pushes an update function
to a thread responsible for updating the global state.
This thread will accumulate state updates, committing
them only periodically to manage memory bandwidth
and cache pressure.
Unlike other approaches where sets of variables are

evolved independently for several iterations, bayes-
stack synchronizes the model state after only a few

47

http://projects.haskell.org/nlp
http://github.com/kowey/GenI
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users

variables have been processed. This improves conver-
gence properties while incurring minimal performance
costs.
The project provides two packages. The core of

the framework is contained in the bayes-stack pack-
age while network-topic-models demonstrates use of
the framework, providing several topic model imple-
mentations. These include Latent Dirichlet Allocation
(LDA), the shared taste model for social network analy-
sis, and the citation influence model for citation graphs.
Haskell’s ability to capture abstraction without com-

promising performance has enabled us to preserve the
purity of the model definition while safely utilizing con-
currency. Tools like GHC’s event log and Threadscope
have been extremely helpful in evaluating the perfor-
mance characteristics of the parallel sampler.
Currently our focus is on improving scalability of the

inference. While our inference approach should allow
us to find a reasonable trade-off between data-sharing
and performance, much work still remains to realize
this potential.
We thank Simon Marlow for both his discussions con-

cerning parallel performance tuning with GHC as well
as his continuing work in pushing forward the state
of high-performance concurrency in Haskell. Further-
more, we are excited about work surrounding Thread-
scope by Duncan Coutts, Peter Wortmann, and others.

Further reading

◦ http://www.github.com/bgamari/bayes-stack
◦ http://www.cs.umass.edu/~dietz/delayer/

7.13.2 Homomorphic Machine Learning

Report by: Mike Izbicki
Status: preliminary

I have been exploring the algebraic properties of ma-
chine learning algorithms using Haskell. For example,
the training of a Naive Bayes classifier turns out to
be a semigroup homomorphism. This algebraic inter-
pretation has two main advantages: First, all semi-
group homomorphisms can be converted into an online
and/or parallel algorithm for free using specially de-
signed higher-order functions. Second, we can perform
cross-validation on homomorphisms much faster than
we can on non-homomorphic functions.
I am in the process of writing a prototype library

for homomorphic learning called HLearn. Haskell was
the natural choice for implementing the project due to
its emphasis on algebra and its high performance. My
goal is to have an initial release sometime in 2012. I
can be contacted at 〈mike@izbicki.me〉.

7.14 Bioinformatics

7.14.1 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion provides a domain-specific language (DSL)
for the formulation of dynamic programs with a special
emphasis on computational biology. Following ideas
established in Algebraic dynamic programming (ADP)
a problem is separated into a grammar defining the
search space and one or more algebras that score and
select elements of the search space. The DSL has been
designed with performance and a high level of abstrac-
tion in mind.
As an example, consider a grammar that recognizes

palindromes. Given the non-terminal p, as well as
parsers for single characters c and the empty input ε,
the production rule for palindromes can be formulated
as p→ c p c | ε.
The corresponding ADPfusion code is similar:

(p, f <<< c % p % c ||| g <<< e ... h)‚

We need a number of combinators as “glue” and
additional evaluation functions f , g, and h. With
f c1 p c2 = p && (c1 ≡ c2) scoring a candidate,
g e = True, and h xs = or xs determining if the
current substring is palindromic.
As of now, code written in ADPfusion achieves per-

formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

Starting with ADPfusion 0.2, dynamic programs on
more than one input sequence can be written. This
allows efficient dynamic programs that compute, say,
the alignment of two or more inputs. More compli-
cated algorithms of coupled context-free grammars also
become possible with this new, multi-dimensional ex-
pansion. Together with generalised index spaces, more
algorithms can be implemented efficiently, while at the
same time reducing the effort required to implement
these more complicated algorithms correctly.

48

http://www.github.com/bgamari/bayes-stack
http://www.cs.umass.edu/~dietz/delayer/
mailto: mike at izbicki.me

Further reading

◦ http://www.tbi.univie.ac.at/~choener/adpfusion
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://dx.doi.org/10.1145/2364527.2364559

7.14.2 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen, Nick

Ignolia, Felipe Almeida Lessa, Dan
Fornika, Maik Riechert, Ashish Agarwal,

Grant Rotskoff

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now contains 53 li-
braries and applications. The biohaskell web site co-
ordinates this effort, and provides documentation and
related information. Anybody interested in the combi-
nation of Haskell and bioinformatics is encouraged to
sign up to the mailing list, and to register and docu-
ment their contributions on the http://biohaskell.org
wiki.

Further reading

◦ http://biohaskell.org
◦ http://blog.malde.org
◦ http://www.tbi.univie.ac.at/~choener/haskell/
◦ http://adp-multi.ruhoh.com

7.15 Embedding DSLs for Low-Level
Processing

7.15.1 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and developed in co-operation by Ericsson,
Chalmers University of Technology (Göteborg, Swe-
den) and Eötvös Loránd (ELTE) University (Budapest,
Hungary).
The motivating application of Feldspar is telecoms

processing, but the language is intended to be useful
for DSP in general. The aim is to allow DSP functions
to be written in pure functional style in order to raise
the abstraction level of the code and to enable more

high-level optimizations. The current version consists
of an extensive library of numeric and array processing
operations as well as a code generator producing C code
for running on embedded targets.
The current version deals with the data-intensive nu-

meric algorithms which are at the core of any DSP
application. We have recently added support for the
expression and compilation of parallel algorithms. As
future work remains to extend the language to deal
with interaction with the environment (e.g., process-
ing of streaming data) and to support compilation to
heterogeneous multi-core targets.

Further reading

◦ https://github.com/Feldspar/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-compiler

7.15.2 Kansas Lava

Report by: Andy Gill
Participants: Andy Gill, Bowe Neuenschwander
Status: ongoing

Kansas Lava is a Domain Specific Language (DSL) for
expressing hardware descriptions of computations, and
is hosted inside the language Haskell. Kansas Lava pro-
grams are descriptions of specific hardware entities, the
connections between them, and other computational
abstractions that can compile down to these entities.
Large circuits have been successfully expressed using
Kansas Lava, and Haskell’s powerful abstraction mech-
anisms, as well as generic generative techniques, can be
applied to good effect to provide descriptions of highly
efficient circuits.
◦ The Fabric monad is now a Monad transformer. The

Fabric monad historically provided access to named
input/output ports, and now also provides named
variables, implemented by ports that loop back on
themselves. This additional primitive capability al-
lows for a typed state machine monad. This design
gives an elegant stratospheric pattern: purely func-
tional circuits using streams; a monad for layout over
space; and a monad for state generation, that acts
over time.

◦ On top of Kansas Lava, we are developing Kansas
Lava Cores. In hardware, a core is a component that
can be realized as a circuit, typically on an FPGA.
Kansas Lava Cores contains about a dozen cores, and
basic board support for Spartan3e, as well as a high-
fidelity emulator for the Spartan3e. The cores and
the simulator has been rewritten to use the new Fab-
ric and new state-machine generation monad.

◦ Using various components provided as Kansas Lava
Cores, we continue developing the λ-bridge with im-
plementations (in Haskell and Kansas Lava) of a

49

http://www.tbi.univie.ac.at/~choener/adpfusion
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org
http://biohaskell.org/cgi-bin/mailman/listinfo/biohaskell
http://biohaskell.org
http://biohaskell.org
http://blog.malde.org
http://www.tbi.univie.ac.at/~choener/haskell/
http://adp-multi.ruhoh.com
https://github.com/Feldspar/feldspar-language
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler

simple protocol stack for communicating with FP-
GAs. This bridge is based on the best-effort, unreli-
able, but acknowledgment-centric access to an 8-bit
WISHBONE-compliant hardware bus, and idempo-
tent transaction requests.

◦ Finally, with Iavor Diatchki (Galois), we have re-
worked our sized-types library to use the new kind
Nat provided in GHC 7.6.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

7.16 Others

7.16.1 Clckwrks

Report by: Jeremy Shaw

clckwrks (pronounced “clockworks”) is a blogging and
content management system (CMS). It is intended to
compete directly with popular PHP-based systems.
Pages and posts are written in markdown and can be
edited directly in the browser. The system can be ex-
tended via plugins and themes packages.
At present, clckwrks is still alpha, and requires

Haskell knowledge to install and configure. However,
the goal is to create an end user system that requires
zero Haskell knowledge. It will be possible to one-click
install plugins and themes and perform all other ad-
ministrative functions via the browser.

Future plans

We are currently focused on four tasks:

1. Overhaul of the plugin system to support one-click
installation of plugins and themes

2. Improvements to the user experience in the core
blogging and page editing functionality

3. Simplifying installation

4. Improved documentation

Once the core is solid, we will focus development efforts
on creating plugins to extend the core functionality.

Further reading

http://www.clckwrks.com/

7.16.2 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are

doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
By now, the data collected by some arbtt users has

become quite large. This awoke the dormant devel-
opment and the newly released version 0.6.4 sports
processing in constant memory and faster time-related
functions.

Further reading

◦ http://www.joachim-breitner.de/projects#arbtt
◦ http://www.joachim-breitner.de/blog/archives/

336-The-Automatic-Rule-Based-Time-Tracker.html
◦ http://darcs.nomeata.de/arbtt/doc/users_guide/

7.16.3 hMollom — Haskell implementation of the
Mollom API

Report by: Andy Georges
Status: active

Mollom (http://mollom.com) is a anti-comment-spam
service, running in the cloud. The service can be used
for free (limited number of requests per day) or paid,
with full support. The service offers a REST based
API (http://mollom.com/api/rest). Several libraries are
offered freely on the Mollom website, for various lan-
guages and web frameworks – PHP, Python, Drupal,
etc.
hMollom is an implementation of this API, commu-

nicating with the Mollom service for each API call that
is made and returning the response as a Haskell data
type, along with some error checking.
hMollom is currently under active development. The

current release targets the Mollom REST API. We
carefully track new developments in the Mollom API.
The development happens on GitHub, see http:

//github.com/itkovian/hMollom, packages are put on
Hackage.

Further reading

http://github.com/itkovian/hMollom

7.16.4 hGelf — Haskell implementation of the
Graylog extended logging format

Report by: Andy Georges
Status: active

Graylog (http://graylog2.org) is a log management
framework that allows setting up event log monitoring
and anlysis through various tools. The logging format
used is GELF — The GrayLog Extended Logging For-
mat.
At the moment of writing hGelf, there was no Haskell

package available on Hackage that allows wrapping log
messages in this format. hGelf aimed to fill this void.

50

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
http://www.clckwrks.com/
http://www.joachim-breitner.de/projects#arbtt
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://darcs.nomeata.de/arbtt/doc/users_guide/
http://mollom.com
http://mollom.com/api/rest
http://github.com/itkovian/hMollom
http://github.com/itkovian/hMollom
http://github.com/itkovian/hMollom
http://graylog2.org

The development of hGelf happens on GitHub, see
https://github.com/itkovian/hGelf, packages are put on
Hackage.

Further reading

http://github.com/itkovian/hGelf

51

https://github.com/itkovian/hGelf
http://github.com/itkovian/hGelf

8 Commercial Users

8.1 Well-Typed LLP

Report by: Andres Löh
Participants: Ian Lynagh, Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
We are working for a variety of commercial clients,

but naturally, only some of our projects are publically
visible.
We continue to be involved in the development and

maintenance of GHC (→ 3.2). Since the last HCAR,
we have put out the 7.6.2 and 7.6.3 patch releases. The
May 2013 release of the Haskell Platform will be based
on 7.6.3. We are expecting a release of 7.8.1 for au-
tumn.
On behalf of the Industrial Haskell Group (IHG) (→

8.3), we are making good progress on getting Hack-
age 2 ready. We have already entered the transition
period. Both Hackage and Hackage 2 are currently
running in parallel, with Hackage 2 currently being in
alpha-testing.
We continue to be involved in the community, main-

taining several packages on Hackage and giving talks at
a number of conferences. Some of our recent appear-
ances are available online, such as Duncan’s talk on
Cloud Haskell at the Haskell eXchange, Duncan’s inter-
view with InfoQ on Parallelism, Concurrency and Dis-
tributed Programming in Haskell, and Andres’s talk on
Datatype-Generic Programming at Skills Matter (links
below).
We are in the process of expanding our training ac-

tivities. Please see the “Training” section of our website
for more details and feel free to contact us if you are
interested in Haskell training courses.
We are of course always looking for new clients and

projects, so if you have something we could help you
with, just drop us an e-mail.

Further reading

◦ Company page: http://www.well-typed.com
◦ Blog: http://blog.well-typed.com/
◦ Training page: http://www.well-typed.com/services_
training

◦ Duncan’s Cloud Haskell talk: http://skillsmatter.
com/podcast/home/cloud-haskell

◦ Duncan’s InfoQ interview: http://www.infoq.com/
interviews/coutts-haskell

◦ Andres’s Datatype-Generic Programming
talk: http://skillsmatter.com/podcast/haskell/
a-haskell-lecture-with-leading-expert-andres-loh

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.
BSV is used for all aspects of ASIC and FPGA de-

sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universally applicable, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality Verilog, which can be further synthe-
sized into netlists for ASICs and FPGAs using third-
party tools. Atomic transactions enable design-by-
refinement, where an initial executable approximate
design is systematically transformed into a quality im-
plementation by successively adding functionality and
architectural detail. The synthesis tool is implemented
in Haskell (well over 100K lines).
Bluesim is a fast simulation tool for BSV. There are

extensive libraries and infrastructure to make it easy to
build FPGA-based accelerators for compute-intensive
software, including for the Xilinx XUPv6 board popu-
lar in universities, and the Convey HC-1 high perfor-
mance computer.
BSV is also enabling the next generation of com-

puter architecture education and research. Students
implement and explore architectural models on FP-
GAs, whose speed permits evaluation using whole-
system software.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor and electronic equipment compa-
nies, and universities. The tools are free for academic
teaching and research.

52

mailto: info at well-typed.com
http://www.well-typed.com
http://blog.well-typed.com/
http://www.well-typed.com/services_training
http://www.well-typed.com/services_training
http://skillsmatter.com/podcast/home/cloud-haskell
http://skillsmatter.com/podcast/home/cloud-haskell
http://www.infoq.com/interviews/coutts-haskell
http://www.infoq.com/interviews/coutts-haskell
http://skillsmatter.com/podcast/haskell/a-haskell-lecture-with-leading-expert-andres-loh
http://skillsmatter.com/podcast/haskell/a-haskell-lecture-with-leading-expert-andres-loh

Further reading

◦ Abstraction in Hardware System Design, R.S. Nikhil,
in Communications of the ACM, 54:10, October
2011, pp. 36-44.

◦ Bluespec, a General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions,
R.S. Nikhil, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com.

◦ http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

◦ http://www.cl.cam.ac.uk/~swm11/examples/
bluespec/: Simon Moore’s BSV examples (U.
Cambridge).

◦ http://csg.csail.mit.edu/6.375: Complex Digital Sys-
tems, MIT courseware.

◦ http://www.bluespec.com/products/BluDACu.htm: A
fun example with many functional programming fea-
tures — BluDACu, a parameterized Bluespec hard-
ware implementation of Sudoku.

8.3 Industrial Haskell Group

Report by: Andres Löh
Participants: Duncan Coutts, Ian Lynagh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
The main activity of the IHG is to fund work on the

Haskell development platform. It currently operates
two schemes:

◦ The collaborative development scheme pools re-
sources from full members in order to fund specific
development projects to their mutual benefit.

◦ Associate and academic members contribute to a
separate fund which is used for maintenance and de-
velopment work that benefits the members and com-
munity in general.

In the past six months, the collaborative devel-
opment scheme funded work on the new Hackage
server (→ 6.3.1).
As an important milestone, the new Hackage server

is currently in alpha testing: it is continuously running
side-by-side with the old Hackage server, packages are
mirrored every 30 minutes from the old server, user
accounts have been ported from the old server. So it
is in principle possible to use the new Hackage server
right now and to play with it. You are invited to try it
and provide feedback.
The new server (as well as any future updates) are

for now available at http://new-hackage.haskell.org.
Details of the tasks undertaken are appearing on

the Well-Typed (→ 8.1) blog, on the IHG status page

and on standard communication channels such as the
Haskell mailing list.
The collaborative development scheme is running

continuously, so if you are interested in joining as a
member, please get in touch. Details of the different
membership options (full, associate, or academic) can
be found on the website.
We are very interested in new members, in particular

if they might be willing to fund further efforts on Cabal
and Hackage.
If you are interested in joining the IHG, or if you

just have any questions or comments, please drop us
an e-mail at 〈info@industry.haskell.org〉.

Further reading

◦ http://industry.haskell.org/
◦ http://industry.haskell.org/status/

8.4 Barclays Capital

Report by: Ben Moseley

Barclays Capital has been using Haskell as the basis
for our FPF (Functional Payout Framework) project
for about seven years now. The project develops a
DSL and associated tools for describing and process-
ing exotic equity options. FPF is much more than just
a payoff language — a major objective of the project
is not just pricing but “zero-touch” management of the
entire trade lifecycle through automated processing and
analytic tools.
For the first half of its life the project focused only on

the most exotic options — those which were too com-
plicated for the legacy systems to handle. Over the
past few years however, FPF has expanded to provide
the trade representation and tooling for the vast major-
ity of our equity exotics trades and with that the team
has grown significantly in both size and geographical
distribution. We now have eight permanent full-time
Haskell developers spread between Hong Kong, Kiev
and London (with the latter being the biggest develop-
ment hub).
Our main front-end language is currently a deeply

embedded DSL which has proved very successful, but
we have recently been working on a new non-embedded
implementation. This will allow us to bypass some
of the traditional DSEL limitations (e.g., error mes-
sages and syntactical restrictions) whilst addressing
some business areas which have historically been prob-
lematic. The new language is based heavily on arrows,
but has a custom (restrictive but hopefully easier-to-
use than raw arrow-notation) syntax. We are using
a compiler from our custom DSL syntax into Haskell
source (with standard transformers from Ross Pater-
son’s “arrows” package) to provide the semantics for
the language but plan to develop a number of indepen-
dent backends. Our hope is that, over time, this will

53

http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://new-hackage.haskell.org
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://industry.haskell.org/status/

gradually replace our embedded DSL as the front end
for all our tools. For the parsing part of this work we
have been very impressed by Doaitse Swierstra’s uu-
parsinglib (→ 7.3.2).
We have been and remain very satisfied GHC users

and feel that it would have been significantly harder to
develop our systems in any other current language.

8.5 Oblomov Systems

Report by: Martĳn Schrage

Oblomov Systems is a one-person software company
based in Utrecht, The Netherlands. Founded in 2009
for the Proxima 2.0 project (http://www.haskell.org/
communities/05-2010/html/report.html#sect6.4.5),
Oblomov has since then been working on a number
of Haskell-related projects. The main focus lies on
web-applications and (web-based) editors. Haskell has
turned out to be extremely useful for implementing
web servers that communicate with JavaScript clients
or iPhone apps.
Awaiting the acceptance of Haskell by the world

at large, Oblomov Systems also offers software solu-
tions in Java, Objective C, and C#, as well as on the
iPhone/iPad. Last year, Oblomov Systems has worked
together with Ordina NV on a substantial Haskell
project for the Council for the Judiciary in The Nether-
lands.

Further reading

http://www.oblomov.com

8.6 OpenBrain Ltd.

Report by: Tom Nielsen

OpenBrain Ltd. is developing a new platform for sta-
tistical computing that enables optimal decisions tak-
ing into account all the available information. We
have developed a new statistical programming lan-
guage (BAYSIG) that augments a Haskell-like func-
tional programming language with Bayesian inference
and first-class ordinary and stochastic differential equa-
tions. BAYSIG is designed to support a declarative
style of programming where almost all the work con-
sists in building probabilistic models of observed data.
Data analysis, risk assessment, decision, hypothesis
testing and optimal control procedures are all derived
mechanically from the definition of these models. We
are targeting a range of application areas, including fi-
nancial, clinical and life sciences data.

We are building a web application (http://BayesHive.
com) to make this platform accessible to a wide range
of users. Users can upload and analyse varied types
of data using a point-and-click interface. Models and
analyses are collected in literate programming-like doc-
uments that can be published by users as blogs.
We use Haskell for almost all aspects of implement-

ing this platform. The BAYSIG compiler is written
in Haskell, which is particularly well suited for imple-
menting the recursive syntactical transformations un-
derlying statistical inference. BayesHive.com is being
developed in Yesod.

Contact

〈tomn@openbrain.org〉

Further reading

http://BayesHive.com

54

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.oblomov.com
http://BayesHive.com
http://BayesHive.com
mailto: tomn at openbrain.org
http://BayesHive.com

9 Research and User Groups

9.1 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on Haskell and Agda
that run at Eötvös Loránd University, Faculty of Infor-
matics.

◦ Programming for first-year BSc students using
Haskell, it is officially in the curriculum. It is also
taught for foreign language students as part of their
program.

◦ Advanced functional programming using Haskell, it
is an optional course for BSc and MSc students.

◦ Programming in Agda as an optional course for BSc
and MSc students.

◦ Other Haskell-related courses on Lambda Calculus,
Type Theory and Implementation of Functional Lan-
guages.

There is an interactive online evaluation and test-
ing system, called ActiveHs. It contains several hun-
dred systematized exercises and it may be also used
as a teaching aid, and it is now also avaiable on Hack-
age. We also have an associated FreeBSD port available
(www/hs-activehs) to make deployment and mainte-
nance at our department server easier.
We have been translating our course materials to En-

glish, some of the materials is already available.

Further reading

◦ Haskell course materials (in English): http://pnyf.
inf.elte.hu/fp/Overview_en.xml

◦ Agda course materials (in English): http://people.
inf.elte.hu/divip/AgdaTutorial/Index.html (→ 2.3)

◦ ActiveHs: http://hackage.haskell.org/package/
activehs

9.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Conrad Rau, Manfred Schmidt-Schauß

Semantics of programming languages. Extended
call-by-need lambda calculi with letrec model the
core language of Haskell. In several investigations
we analyzed such calculi. Our obtained results in-
clude correctness of strictness analysis using abstract
reduction, equivalence of the call-by-name and call-by-
need semantics, completeness of applicative bisimilar-
ity w.r.t. contextual equivalence, and unsoundness of
applicative bisimilarity in nondeterminstic languages
with letrec. Most recently, we showed that any se-
mantic investigation of Haskell should include the seq-
operator, since extending the lazy lambda calculus by
seq (and also by data constructors and case, unless
the core language is typed) is not conservative, i.e. the
semantics changes.
Another recent result is that deciding (extended) α-

equivalence in languages with bindings (like let) is
graph isomorphism complete. However, if the expres-
sions are free of garbage (i.e. have no unused bindings)
the problem can be solved in polynomial time.
Recently, we analyzed a higher-order functional lan-

guage with concurrent threads, monadic IO, synchro-
nizing variables and concurrent futures which models
Concurrent Haskell. We proved correctness of program
transformations, correctness of an abstract machine,
and we have shown that this language conservatively
extends the pure core language of Haskell, i.e. all pro-
gram equivalences for the pure part also hold in the
concurrent language. Most recently, we proved correct-
ness of a highly concurrent implementation of Software
Transactional Memory (STM) in a similar program cal-
culus. We also prototypically implemented a library of
our STM-approach in Haskell.
An ongoing project aims at automating correct-

ness proofs of program transformations. To compute
so-called forking and commuting diagrams we imple-
mented an algorithm as a combination of several unifi-
cation algorithms in Haskell. To conclude the correct-
ness proofs we automated the corresponding induction
proofs (which use the diagrams) using automated ter-
mination provers for term rewriting systems.
Parallelization. Recently, we compared several ap-

proaches to parallelize the Davis-Putnam-Logemann-
Loveland algorithm in Haskell using Parallel and Con-
current Haskell.

55

http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://people.inf.elte.hu/divip/AgdaTutorial/Index.html
http://people.inf.elte.hu/divip/AgdaTutorial/Index.html
http://hackage.haskell.org/package/activehs
http://hackage.haskell.org/package/activehs

Grammar based compression. This research
topic focuses on algorithms on grammar compressed
strings and trees and to reconstruct known algorithms
on strings and terms (unification, matching, rewriting
etc.) for their use on grammars without prior decom-
pression. We implemented several of those algorithms
in Haskell.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell,
we use for example also Erlang and ML, Haskell pro-
vides a major focus and common language for teaching
and research.
Our members pursue a variety of Haskell-related

projects, several of which are reported in other sections
of this report. Thomas Schilling is writing up his PhD
work on trace-based dynamic optimisations for Haskell
programs. Olaf Chitil leads new developments of the
Haskell tracer Hat.
We are expecting several new PhD students in our

group in September, who will be working on refac-
toring, types and tracing, but we are always looking
for more PhD students. We are particularly keen to
recruit students interested in programming tools for
tracing, refactoring, type checking and any useful feed-
back for a programmer. The school and university
have support for strong candidates: more details at
http://www.cs.kent.ac.uk/pg or contact any of us indi-
vidually by email.

Further reading

◦ PLAS group: http://www.cs.kent.ac.uk/research/
groups/plas/

◦ Haskell: the craft of functional programming: http:
//www.haskellcraft.com

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/research/groups/plas/hare.html

◦ A trace-based just-in-time compiler for Haskell: http:
//www.youtube.com/watch?v=PtEcLs2t9Ws

◦ Scion, a library for building IDEs for Haskell: http:
//code.google.com/p/scion-lib/

◦ Hat, the Haskell Tracer: http://projects.haskell.org/
hat/

◦ Practial Lazy Typed Contracts for Haskell: http://
www.cs.kent.ac.uk/~oc/contracts.html

◦ Heat, an IDE for learning Haskell: http://www.cs.
kent.ac.uk/projects/heat/

9.4 Formal Methods at DFKI and
University Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Christoph Lüth, Till

Mossakowski
Status: active development

The activities of our group center on formal methods,
covering a variety of formal languages and also trans-
lations and heterogeneous combinations of these.
We are using the Glasgow Haskell Compiler and

many of its extensions to develop the Heterogeneous
tool set (Hets). Hets is a parsing, static analysis and
proof management tool incorporating various provers
and different specification languages, thus providing
a tool for heterogeneous specifications. Logic trans-
lations are first-class citizens.
The languages supported by Hets include the CASL

family, such as the Common Algebraic Specification
Language (CASL) itself (which provides many-sorted
first-order logic with partiality, subsorting and in-
duction), HasCASL, CoCASL, CspCASL, and an ex-
tended modal logic based on CASL. Other languages
supported include propositional logic, QBF, Isabelle,
Maude, VSE, TPTP, THF, FPL (logic of functional
programs), LF type theory and still Haskell (via Pro-
gramatica). More recently, ontology languages like
OWL, RDF, Common Logic, and DOL (the Dis-
tributed Ontology Language) have been integrated.
Hets can speak to the following provers:
◦ minisat, zChaff (SAT solvers),
◦ SPASS, Vampire, Darwin, KRHyper and MathServe

(automated first-order theorem provers),
◦ Pellet and Fact++ (description logic tableau

provers),
◦ Leo-II and Satallax (automated higher-order theo-

rem provers),
◦ Isabelle (an interactive higher-order theorem prover),
◦ CSPCASL-prover (an Isabelle-based prover for Csp-

CASL),
◦ VSE (an interactive prover for dynamic logic).
The user interface of the Hets implementation (about

200K lines of Haskell code) is based on some Haskell
sources such as bindings to uDrawGraph (formerly
Davinci) and Tcl/TK that we maintain and also
gtk2hs (→ 7.7.2). Additionally we have a command
line interface and a prototypcial web interface based
on warp (→ 5.2.2) with a RESTful API.
HasCASL is a general-purpose higher-order language

which is in particular suited for the specification and
development of functional programs; Hets also contains

56

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/pg
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.youtube.com/watch?v=PtEcLs2t9Ws
http://www.youtube.com/watch?v=PtEcLs2t9Ws
http://code.google.com/p/scion-lib/
http://code.google.com/p/scion-lib/
http://projects.haskell.org/hat/
http://projects.haskell.org/hat/
http://www.cs.kent.ac.uk/~oc/contracts.html
http://www.cs.kent.ac.uk/~oc/contracts.html
http://www.cs.kent.ac.uk/projects/heat/
http://www.cs.kent.ac.uk/projects/heat/

a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ distributed ontology language DOL:
http://www.ontoiop.org

◦ Heterogeneous tool set:
http://hets.dfki.de
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

9.5 Haskell at Universiteit Gent, Belgium

Report by: Tom Schrĳvers
Participants: Steven Keuchel

Haskell is one of the main research topics of the new
Programming Languages Group at the Department of
Applied Mathematics and Computer Science at the
University of Ghent, Belgium.

Teaching. UGent is a great place for Haskell-
aficionados:

◦ Make Haskell part of your studies with the elec-
tive course Functional and Logic Programming Lan-
guages.

◦ Explore the theory behind Haskell in the new master
course on Programming Language Fundamentals.

◦ Explore Haskell in depth with one of our Haskell mas-
ter thesis topics.

◦ Attend the thriving Ghent Functional Programming
Group (→ 9.10).

Research. Haskell-related projects of the group mem-
bers and collaborators are:

◦ Meta-Theory à la Carte:
Formalizing meta-theory, or proofs about program-
ming languages, in a proof assistant has many well-
known benefits. However, the considerable effort in-
volved in mechanizing proofs has prevented it from
becoming standard practice. This cost can be amor-
tized by reusing as much of an existing formalization
as possible when building a new language or extend-
ing an existing one. Unfortunately reuse of compo-
nents is typically ad-hoc, with the language designer
cutting and pasting existing definitions and proofs,
and expending considerable effort to patch up the
results.

This work presents a more structured approach to
the reuse of formalizations of programming language
semantics through the composition of modular defi-
nitions and proofs. The key contribution is the de-
velopment of an approach to induction for extensible
Church encodings which uses a novel reinterpretation
of the universal property of folds. These encodings
provide the foundation for a framework, formalized
in Coq, which uses type classes to automate the com-
position of proofs from modular components.

Several interesting language features, including
binders and general recursion, illustrate the capa-
bilities of our framework. We reuse these features
to build fully mechanized definitions and proofs for
a number of languages, including a version of mini-
ML. Bounded induction enables proofs of properties
for non-inductive semantic functions, and mediat-
ing type classes enable proof adaptation for more
feature-rich languages.

This is joint work with Ben Delaware and Bruno
Oliveira.

◦ Generic Conversions of Abstract Syntax Representa-
tions:

This work presents a datatype-generic approach to
syntax with variable binding. A universe specifies the
binding and scoping structure of object languages,
including binders that bind multiple variables as well
as sequential and recursive scoping. Two interpreta-
tions of the universe are given: one based on para-
metric higher-order abstract syntax and one on well-
typed de Bruĳn indices. The former provides con-
venient interfaces to embedded domain-specific lan-
guages, but is awkward to analyse and manipulate
directly, while the latter is a convenient representa-
tion in implementations, but is unusable as a surface
language. We show how to generically convert from
the parametric HOAS interpretation to the de Bruĳn
interpretation thereby taking the pain from DSL de-
veloper to write the conversion themselves.

This is joint work with Johan Jeuring.

◦ Modular Reasoning about Incremental Programming:

Incremental Programming (IP) is a programming
style in which new program components are defined
as increments of other components. Examples of
IP mechanisms include: Object-oriented program-
ming (OOP) inheritance, aspect-oriented program-
ming (AOP) advice and feature-oriented program-
ming (FOP). A characteristic of IP mechanisms is
that, while individual components can be indepen-
dently defined, the composition of components makes
those components become tightly coupled, sharing
both control and data flows. This makes reasoning
about IP mechanisms a notoriously hard problem:
modular reasoning about a component becomes very

57

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.ontoiop.org
http://hets.dfki.de
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

difficult; and it is very hard to tell if two tightly cou-
pled components interfere with each other’s control
and data flows.

This work presents modular reasoning about interfer-
ence (MRI), a purely functional model of IP embed-
ded in Haskell. MRI models inheritance with mixins
and side-effects with monads. It comes with a range
of powerful reasoning techniques: equational reason-
ing, parametricity and reasoning with algebraic laws
about effectful operations. These techniques enable
modular reasoning about interference in the presence
of side-effects.

MRI formally captures harmlessness, a hard-to-
formalize notion in the interference literature, in two
theorems. We prove these theorems with a non-
trivial combination of all three reasoning techniques.

This is joint work with Bruno Oliveira and William
Cook.

◦ Search Combinators:

Search heuristics often make all the difference be-
tween effectively solving a combinatorial problem
and utter failure. Hence, the ability to swiftly design
search heuristics that are tailored towards a problem
domain is essential to performance improvement. In
other words, this calls for a high-level domain-specific
language (DSL).

The tough technical challenge we face when design-
ing a DSL for search heuristics, is to bridge the gap
between a conceptually simple specification language
(high-level, purely functional and naturally compo-
sitional) and an efficient implementation (typically
low-level, imperative and highly non-modular). We
overcome this challenge with a systematic approach
in Haskell that disentangles different primitive con-
cepts into separate monadic modular mixin compo-
nents, each of which corresponds to a feature in the
high-level DSL. The great advantage of mixin com-
ponents to provide a semantics for our DSL is its
modular extensibility.

This is joint work with Guido Tack, Pieter Wuille,
Horst Samulowitz and Peter Stuckey, following up on
Monadic Constraint Programming, a monadic DSL
for Constraint Programming in Haskell.

Further reading

◦ http://users.ugent.be/~tschrĳv/haskell.html
◦ http://users.ugent.be/~tschrĳv/SearchCombinators/
◦ http://hackage.haskell.org/package/Monatron
◦ http://hackage.haskell.org/package/monadiccp

9.6 Haskell in Romania

Report by: Mihai Maruseac
Participants: Dan Popa

In Romania, Haskell is taught at several universities
across the country: in Bucharest at both Univer-
sity POLITEHNICA of Bucharest and University of
Bucharest, in Bacãu at “Vasile Alecsandri” University,
in Braşov at “Transilvania” University, However,
everywhere the courses are only centered on the theo-
retical aspects of functional programming and (some-
times) type systems. As a result, very few students will
use this language after the exam is taken.
However, small communities are created to promote

the language. That was the case of the Ro/Haskell
group from Bacãu or FPBucharest group. Right now,
almost all of these groups have stopped being active.
The main reason behind these failures is that the

point of view in presenting the language is too deeply
concerned with presenting its features and the purely
functional aspect while hiding away the fact that you
have to do some IO in real world applications. Ba-
sically, every activity of the previous groups and the
subjects taught at universities regard Haskell only as a
laboratory language.
A small group of people from Faculty of Automatic

Control and Computers, University POLITEHNICA of
Bucharest, decided last year to change that. The new
teachers and teaching assistants from the Programming
Paradigm course organised the first “Functional Pro-
gramming Summer School” in June 2012 where a few
real-world topics were presented among more theoreti-
cal aspects.
This year, a small subgroup of the ROSEdu (http:

//rosedu.org/) community developed on the feedback
from the summer school and created a plan towards
making Haskell a known and usable language with a
community around it. There were talks on Yesod and
GHC at different events (OSOM, Talks by Softbinator)
or companies (IXIA), there are some projects ready
to be launched and there is a workshop called “Pro-
gramming Haskell from N00b to Real World Program-
mer” to be organized in June, during ROSEdu Summer
Workshops. Not to mention the possibility of the sec-
ond edition of the “Functional Programming Summer
School”. Lastly, a ROSEdu member agreed to pub-
lish each month an article about real-world Haskell
programming in the Today Software Magazine (http:
//www.todaysoftmag.com/tsm/en/).

58

http://users.ugent.be/~tschrijv/haskell.html
http://users.ugent.be/~tschrijv/SearchCombinators/
http://hackage.haskell.org/package/Monatron
http://hackage.haskell.org/package/monadiccp
http://rosedu.org/
http://rosedu.org/
http://www.todaysoftmag.com/tsm/en/
http://www.todaysoftmag.com/tsm/en/

9.7 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Sydney,
Australia, interested in Functional Programming and
related fields. Members of the group include users of
Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb–Nov) and meet
on the third (usually, sometimes fourth) Wednesday of
each month. We regularly get 20–30 attendees, with
a 70/30 industry/research split. Talks this year have
included material on compilers, theorem proving, type
systems, Haskell web programming, Haskell database
libraries, Scala and the Free Monad. We usually have
about 90 mins of talks, starting at 6:30pm, then go for
drinks afterwards. All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/
◦ http://fp-syd.ouroborus.net/wiki/Past/2013

9.8 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy
Participants: John Hughes, Mary Sheeran, Aarne Ranta,

Patrik Jansson, Koen Claessen, Björn von
Sydow, Johan Nordlander, Nils Anders

Danielsson, Alejandro Russo, Ulf Norell,
Meng Wang, Josef Svenningsson, Emil

Axelsson, Moa Johansson, . . .

Functional Programming is an important component
of the CSE department at Chalmers and U. of Gothen-
burg. In particular, Haskell has a very important place,
as it is used as the vehicle for teaching and numerous
projects. Besides functional programming, language
technology, and in particular domain specific languages
is a common aspect in our projects. The last year FP
research at Chalmers has been further strengthened by
recruitment of four Ass. Prof. and several PhD students
and a few more recruitments are in the pipeline. We
also hope to see all HCAR readers at ICFP 2014 in
Gothenburg — welcome!

Property-based testing. QuickCheck, developed at
Chalmers, is one of the standard tools for testing
Haskell programs. It has been ported to Erlang and
used by Ericsson, Quviq, and others. QuickCheck con-
tinues to be improved and tools and related techniques
are developed:

◦ PULSE, the ProTest User-Level Scheduler for Er-
lang, which has been used to find race conditions in
industrial software.

◦ We have shown how to successfully apply
QuickCheck to test polymorphic properties.

◦ A new exhaustive testing tool (testing-feat on Hack-
age) has been developed. It is especially suited to
generate test cases from large groups of mutually re-
cursive syntax tree types. A paper describing it was
presented at the Haskell Symposium 2012.

◦ Testing Type Class Laws: the specification of a class
in Haskell often starts with stating, in comments, the
laws that should be satisfied by methods defined in
instances of the class, followed by the type of the
methods of the class. We have developed a library
(ClassLaws) that supports testing such class laws us-
ing QuickCheck.

Natural language technology. Grammatical Frame-
work (http://www.haskell.org/communities/11-2010/
html/report.html#sect9.7.3) is a declarative language
for describing natural language grammars. It is useful
in various applications ranging from natural language
generation, parsing and translation to software local-
ization. The framework provides a library of large
coverage grammars for currently fifteen languages from
which the developers could derive smaller grammars
specific for the semantics of a particular application.

BNFC. The BNF Converter (BNFC) is a frontend for
various parser generators in various languages. BNFC
is written in Haskell and is commonly used as a fron-
tend for the Haskell tools Alex and Happy. BNFC has
recently been extended in two directions:

◦ A Haskell backend, which offers incremental and
parallel parsing capabilities, has been added to
BNFC. The underlying concepts are described in this
draft paper: http://www.cse.chalmers.se/~bernardy/
PP.pdf.

◦ BNFC has been embedded in a library (called BNFC-
meta on Hackage) using Template-Haskell. An im-
portant aspect of BNFC-meta is that it automat-
ically provides quasi-quotes for the specified lan-
guage. This includes a powerful and flexible facility
for anti-quotation.

Generic Programming. Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic pro-
gramming research at Chalmers. Recent developments
include fundamental work on parametricity. This work
has led to the development of a new kind of abstrac-
tion, to generalize notions of erasure. This means that
a new kind of generic programming is available to the

59

http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2013
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/FP
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://hackage.haskell.org/package/testing-feat
http://dl.acm.org/citation.cfm?id=2364515&CFID=114228077&CFTOKEN=91363922
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://hackage.haskell.org/package/ClassLaws
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://www.cse.chalmers.se/~bernardy/PP.pdf
http://www.cse.chalmers.se/~bernardy/PP.pdf
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ParaDep

programmer. A draft paper describing the idea is avail-
able.
Jansson and Bernardy are also working on a project

called “Strongly Typed Libraries for Programs and
Proofs”. This has led to publications and libraries for
Testing Type Class Laws, Functional Enumeration of
Algebraic Types (FEAT), Testing versus proving in cli-
mate impact research and Dependently-typed program-
ming in scientific computing — examples from eco-
nomic modelling. The last two are part of our effort
to contribute to the emerging research programme in
Global Systems Science (as part of the 2014–2020 Eu-
ropean Union research funding scheme Horizon 2020).

Program Inversion. FliPpr (→ 7.3.1) is a program
transformation system that through program inver-
sion generates a consistent parser from a pretty-printer
(written with Wadler’s pretty-printing combinators),
so that pretty-printed code is always correctly parsed.
The work is done in collaboration with University of
Tokyo, and a paper on it was presented at ESOP 2013.

Language-based security. SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory. Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

Embedded domain-specific languages. The func-
tional programming group has developed several dif-
ferent domain-specific languages embedded in Haskell.
The active ones are:

◦ Feldspar (→ 7.15.1) is a domain-specific language
for digital signal processing (DSP), developed in
co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest.

◦ Obsidian is a language for data-parallel program-
ming targeting GPGPUs.

Furthermore we are currently developing a frame-
work for convenient definitions of DSLs (essentially a

DSL for DSLs). A first result in this area is the syn-
tactic library, whose core was presented at ICFP 2012.
The paper presents a generic model of typed abstract
syntax trees in Haskell, which can serve as a basis for
a library supporting the implementation of deeply em-
bedded DSLs.

◦ Lava is a language for structural hardware descrip-
tion. Circuits are modeled as ordinary Haskell func-
tions, and many of Haskell’s advantages (such as
higher-order functions and polymorphism) are also
available for Lava descriptions. There are several
versions of Lava around. The version developed at
Chalmers aims particularly at supporting formal ver-
ification in a convenient way.

◦ Wired is an extension to Lava, targeting (not exclu-
sively) semi-custom VLSI design. A particular aim
of Wired is to give the designer more control over on-
chip wires’ effects on performance. The most recent
activity was to use Wired to explore the layout of
multipliers (Kasyab P. Subramaniyan, Emil Axels-
son, Mary Sheeran and Per Larsson-Edefors. Layout
Exploration of Geometrically Accurate Arithmetic
Circuits. Proceedings of IEEE International Confer-
ence of Electronics, Circuits and Systems. 2009).
Home page: http://www.cse.chalmers.se/~emax/
wired/.

Automated reasoning. We are responsible for a suite
of automated-reasoning tools:

◦ Equinox is an automated theorem prover for pure
first-order logic with equality. Equinox actually im-
plements a hierarchy of logics, realized as a stack
of theorem provers that use abstraction refinement
to talk with each other. In the bottom sits an effi-
cient SAT solver. Paradox is a finite-domain model
finder for pure first-order logic with equality. Para-
dox is a MACE-style model finder, which means that
it translates a first-order problem into a sequence of
SAT problems, which are solved by a SAT solver.

◦ Infinox is an automated tool for analyzing first-
order logic problems, aimed at showing finite un-
satisfiability, i.e., the absence of models with finite
domains. All three tools are developed in Haskell.

◦ QuickSpec generates algebraic specifications for an
API automatically, in the form of equations veri-
fied by random testing. http://www.cse.chalmers.se/
~nicsma/quickspec.pdf

◦ Hip (the Haskell Inductive Prover) is a new tool
to automatically prove properties about Haskell pro-
grams by using induction or co-induction. The ap-
proach taken is to compile Haskell programs to first
order theories. Induction is applied on the meta
level, and proof search is carried out by automated
theorem provers for first order logic with equality.

60

http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/StronglyTypedLibrariesForProgramsAndProofs
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/StronglyTypedLibrariesForProgramsAndProofs
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://blog.global-systems-science.eu/?author=45
http://ec.europa.eu/research/horizon2020/index_en.cfm
http://hackage.haskell.org/package/syntactic
http://hackage.haskell.org/package/syntactic
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf

◦ On top of Hip we built HipSpec, which automat-
ically tries to find appropriate background lemmas
for properties where only doing induction is too
weak. It uses the translation and structural induc-
tion from Hip. The background lemmas are from
the equational theories built by QuickSpec. Both
the user-stated properties and those from QuickSpec
are now tried to be proven with induction. Con-
jectures proved to be theorems are added to the
theory as lemmas, to aid proving later properties
which may require them. For more information,
see the draft paper http://web.student.chalmers.se/
~danr/hipspec-atx.pdf

Teaching. Haskell is present in the curriculum as
early as the first year of the BSc programme. We have
four courses solely dedicated to functional program-
ming (of which three are MSc-level courses), but we also
provide courses which use Haskell for teaching other
aspects of computer science, such as programming lan-
guages, compiler construction, data structures, parallel
programming and programming paradigms.

9.9 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming continues at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andy Gill) together form the core functional program-
ming initiative at KU. There are three major Haskell
projects at KU (as well as numerous smaller ones): the
GHC rewrite plugin HERMIT (→ 7.3.3), the VHDL
generator Kansas Lava (→ 7.15.2) and the JavaScript
generator Sunroof (→ 5.2.8).
Nicolas Frisby, who defended his PhD from KU last

summer, spent the spring at MSR Cambridge, work-
ing on optimizations inside the Glasgow Haskell com-
piler. Andrew Farmer spent the spring in Portland,
OR, working with functional programmers at Portland
State.

Further reading

◦ The Functional Programming Group: http://www.
ittc.ku.edu/csdl/fpg

◦ CSDL website: https://wiki.ittc.ku.edu/csdl/Main_
Page

9.10 Ghent Functional Programming
Group

Report by: Andy Georges
Participants: Jeroen Janssen, Tom Schrĳvers, Jasper

Van der Jeugt
Status: active

The Ghent Functional Programming Group is a user
group aiming to bring together programmers, aca-
demics, and others interested in functional program-
ming located in the area of Ghent, Belgium. Our goal
is to have regular meetings with talks on functional pro-
gramming, organize functional programming related
events such as hackathons, and to promote functional
programming in Ghent by giving after-hours tutorials.
While we are open to all functional languages, quite
frequently, the focus is on Haskell, since most atten-
dees are familiar with this language. The group has
been active for two and a half years, holding meetings
on a regular basis.
We have reported in previous HCARs on the first

eleven meetings. Since May 2012, we had a single meet-
ing. The GhentFPG #12 meeting took place on May
8, 2012 and involved two talks.
◦ Tom Schrĳvers — Discussion on the Flemish Pro-

gramming Contest 2012, with a focus on using the
right Haskell data types for solving several of the
given problems.

◦ Jasper Van der Jeugt — Tutorial on parallelisation
in Haskell.

The attendance at the meetings usually varies between
10 to 15 people. We do have a number of Ghent Uni-
versity students attending. However, due to a shift in
venue, the attendence has dropped slighty.
The plans for the fall 2012 Hackathon have shifted

due to busy schedules of the GhentFPG organisers. In
this academic year, we do plan to review the approach
used during the meetings, because talks seem to attract
more attendees compared to problem solving or coding
events.
If you want more information on GhentFPG you can

follow us on twitter (@ghentfpg), via Google Groups
(http://groups.google.com/group/ghent-fpg), or by vis-
iting us at irc.freenode.net in channel #ghentfpg.

Further reading

◦ http://www.haskell.org/haskellwiki/Ghent_
Functional_Programming_Group

◦ http://groups.google.com/group/ghent-fpg

61

http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
https://wiki.ittc.ku.edu/csdl/Main_Page
http://groups.google.com/group/ghent-fpg
http://www.haskell.org/haskellwiki/Ghent_Functional_Programming_Group
http://www.haskell.org/haskellwiki/Ghent_Functional_Programming_Group
http://groups.google.com/group/ghent-fpg

	Community
	Haskell' --- Haskell 2014
	Haskellers

	Books, Articles, Tutorials
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects
	Agda Tutorial

	Implementations
	Haskell Platform
	The Glasgow Haskell Compiler
	UHC, Utrecht Haskell Compiler
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Haskell in Gentoo Linux
	Fedora Haskell SIG

	Related Languages and Language Design
	Agda
	MiniAgda
	Disciple
	SugarHaskell

	Haskell and …
	Haskell and Parallelism
	Eden
	GpH --- Glasgow Parallel Haskell
	Parallel GHC project

	Haskell and the Web
	WAI
	Warp
	Holumbus Search Engine Framework
	Happstack
	Mighttpd2 --- Yet another Web Server
	Yesod
	Snap Framework
	Sunroof

	Haskell and Compiler Writing
	MateVM
	CoCoCo
	UUAG
	LQPL --- A Quantum Programming Language Compiler and Emulator

	Development Tools
	Environments
	EclipseFP
	ghc-mod --- Happy Haskell Programming
	HEAT: The Haskell Educational Advancement Tool

	Code Management
	Darcs
	DarcsWatch
	cab --- A Maintenance Command of Haskell Cabal Packages

	Deployment
	Cabal and Hackage
	Portackage --- A Hackage Portal

	Others
	lhs2TeX
	ghc-heap-view
	ghc-vis
	Hat --- the Haskell Tracer

	Libraries, Applications, Projects
	Language Features
	Conduit
	Free Sections

	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners

	Parsing and Transforming
	FliPpr
	Utrecht Parser Combinator Library: uu-parsinglib
	HERMIT

	Generic and Type-Level Programming
	Unbound
	A Generic Deriving Mechanism for Haskell
	Optimising Generic Functions

	Mathematical Objects
	AERN
	Paraiso
	bed-and-breakfast

	Data Types and Data Structures
	HList --- A Library for Typed Heterogeneous Collections
	Persistent
	DSH --- Database Supported Haskell

	User Interfaces
	LGtk: Lens-based Gtk API
	Gtk2Hs

	Functional Reactive Programming
	reactive-banana
	Elerea

	Graphics
	LambdaCube
	diagrams

	Audio
	Audio Signal Processing
	Live-Sequencer
	Chordify
	Euterpea

	Text and Markup Languages
	Haskell XML Toolbox
	epub-tools (Command-line epub Utilities)

	Natural Language Processing
	NLP
	GenI

	Machine Learning
	Bayes-stack
	Homomorphic Machine Learning

	Bioinformatics
	ADPfusion
	Biohaskell

	Embedding DSLs for Low-Level Processing
	Feldspar
	Kansas Lava

	Others
	Clckwrks
	arbtt
	hMollom --- Haskell implementation of the Mollom API
	hGelf --- Haskell implementation of the Graylog extended logging format

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Industrial Haskell Group
	Barclays Capital
	Oblomov Systems
	OpenBrain Ltd.

	Research and User Groups
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI and University Bremen
	Haskell at Universiteit Gent, Belgium
	Haskell in Romania
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	Ghent Functional Programming Group

