
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Twenty-Sixth Edition — May 2014

Mihai Maruseac, Alejandro Serrano Mena (eds.)

Andreas Abel Alexander Granin Heinrich Apfelmus
Daniel Austin Emil Axelsson Doug Beardsley

Jean-Philippe Bernardy Jeroen Bransen Joachim Breitner
Erik de Castro Lopo Lucas DiCioccio Roman Cheplyaka

Olaf Chitil Alberto Gómez Corona Duncan Coutts
Atze Dijkstra Péter Diviánszky Richard Eisenberg
Andrew Farmer Dennis Felsing Julian Fleischer

Andrew Gibiansky Brett G. Giles Andy Gill
Jurriaan Hage Greg Hale Bastiaan Heeren
Sylvain Henry PÁLI Gábor János Bob Ippolito
Philipp Kant Robin KAY Anton Kholomiov
Ian-Woo Kim Oleg Kiselyov Edward Kmett
Eric Kow Nickolay Kudasov Ben Lippmeier

Andres Löh Rita Loogen Boris Lykah
Ian Lynagh Christian Maeder José Pedro Magalhães
Ketil Malde Mihai Maruseac Dino Morelli
JP Moresmau Ben Moseley Tom Nielsen
Rishiyur Nikhil Kiwamu Okabe Jens Petersen

Haskell Consultancy Munich Simon Peyton Jones Ian Ross
David Sabel Martijn Schrage Carter Tazio Schonwald
Jeremy Shaw Christian Höner zu Siederdissen Jim Snow

Michael Snoyman Andrei Soare Doaitse Swierstra
Bernhard Urban Alessio Valentini Adam Vogt
Daniel Wagner Kazu Yamamoto Edward Z. Yang
Brent Yorgey Alan Zimmerman

http://tinyurl.com/haskcar

Preface

This is the 26th edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a blue
background. Entries on which no new activity has been reported for a year or longer have been
dropped completely. Please do revive such entries next time if you do have news on them.
This edition is the first one in which the people behind HCAR are new. Because of that, the

development of this edition started a little slower but will improve in time as we get used with
the process.
We want to thank Janis for keeping HCAR going so far and for helping us in taking over on

this edition.
A call for new HCAR entries and updates to existing ones will be issued on the Haskell mailing

lists in October. Now enjoy the current report and see what other Haskellers have been up to
lately. Any feedback is very welcome, as always.

Mihai Maruseac, University of Massachusetts Boston, US
Alejandro Serrano Mena, Utrecht University, Netherlands
〈hcar@haskell.org〉

2

mailto: hcar at haskell.org

Contents

1 Community 7
1.1 Haskell’ — Haskell 2014 . 7
1.2 Haskellers . 7

2 Books, Articles, Tutorials 8
2.1 The Monad.Reader . 8
2.2 Oleg’s Mini Tutorials and Assorted Small Projects . 8
2.3 Agda Tutorial . 9
2.4 School of Haskell . 9

3 Implementations 10
3.1 The Glasgow Haskell Compiler . 10
3.2 Ajhc Haskell Compiler . 13
3.3 UHC, Utrecht Haskell Compiler . 14
3.4 Specific Platforms . 15
3.4.1 Haskell on FreeBSD . 15
3.4.2 Debian Haskell Group . 15
3.4.3 Fedora Haskell SIG . 15

4 Related Languages and Language Design 17
4.1 Agda . 17
4.2 MiniAgda . 17
4.3 Disciple . 17
4.4 Ermine . 18

5 Haskell and . . . 19
5.1 Haskell and Parallelism . 19
5.1.1 Eden . 19
5.1.2 speculation . 20
5.2 Haskell and the Web . 20
5.2.1 WAI . 20
5.2.2 Warp . 20
5.2.3 Happstack . 20
5.2.4 Mighttpd2 — Yet another Web Server . 21
5.2.5 Yesod . 22
5.2.6 Snap Framework . 23
5.2.7 Sunroof . 23
5.2.8 MFlow . 23
5.2.9 Scotty . 24
5.3 Haskell and Compiler Writing . 24
5.3.1 MateVM . 24
5.3.2 UUAG . 25
5.3.3 LQPL — A Quantum Programming Language Compiler and Emulator 26
5.3.4 free — Free Monads . 26
5.3.5 bound — Making De Bruijn Succ Less . 27

6 Development Tools 28
6.1 Environments . 28
6.1.1 Haskell IDE From FP Complete . 28
6.1.2 EclipseFP . 28
6.1.3 Ariadne . 29
6.1.4 ghc-mod — Happy Haskell Programming . 29

3

6.1.5 HaRe — The Haskell Refactorer . 30
6.1.6 IHaskell: Haskell for Interactive Computing . 30
6.2 Code Management . 31
6.2.1 Darcs . 31
6.2.2 DarcsWatch . 32
6.2.3 cab — A Maintenance Command of Haskell Cabal Packages . 32
6.3 Interfacing to other Languages . 32
6.3.1 java-bridge . 32
6.3.2 fficxx . 32
6.4 Deployment . 33
6.4.1 Cabal and Hackage . 33
6.4.2 Stackage: the Library Dependency Solution . 34
6.4.3 standalone-haddock . 35
6.5 Others . 35
6.5.1 lhs2TEX . 35
6.5.2 ghc-heap-view . 35
6.5.3 ghc-vis . 36
6.5.4 Hat — the Haskell Tracer . 36
6.5.5 Tasty . 37

7 Libraries, Applications, Projects 38
7.1 Language Features . 38
7.1.1 Conduit . 38
7.1.2 lens . 38
7.1.3 folds . 39
7.1.4 machines . 39
7.1.5 exceptions . 39
7.1.6 tables . 39
7.1.7 Faking even more dependent types! . 40
7.1.8 Type checking units-of-measure . 40
7.2 Education . 40
7.2.1 Exercism: crowd-sourced code reviews on daily practice problems 40
7.2.2 Talentbuddy . 41
7.2.3 Holmes, Plagiarism Detection for Haskell . 41
7.2.4 Interactive Domain Reasoners . 41
7.3 Parsing and Transforming . 42
7.3.1 epub-metadata . 42
7.3.2 Utrecht Parser Combinator Library: uu-parsinglib . 42
7.3.3 Grammar Products . 43
7.3.4 HERMIT . 44
7.3.5 haskell-names . 44
7.3.6 haskell-packages . 45
7.3.7 parsers . 45
7.3.8 trifecta . 45
7.4 Generic and Type-Level Programming . 45
7.4.1 Optimising Generic Functions . 45
7.4.2 traverse-with-class . 46
7.4.3 constraints . 46
7.5 Mathematics . 46
7.5.1 Rlang-QQ . 46
7.5.2 order-statistics . 46
7.5.3 Eliminating Redundancies in Linear Systems . 47
7.5.4 linear . 47
7.5.5 algebra . 47
7.5.6 semigroups and semigroupoids . 47
7.5.7 Arithmetics packages (Edward Kmett) . 48
7.5.8 ad . 48
7.5.9 integration . 48

4

7.5.10 categories . 49
7.5.11 contravariant . 49
7.5.12 bifunctors . 49
7.5.13 profunctors . 49
7.5.14 comonad . 49
7.5.15 recursion-schemes . 49
7.5.16 kan-extensions . 50
7.5.17 arb-fft . 50
7.5.18 hblas . 50
7.5.19 HROOT . 51
7.5.20 Numerical . 51
7.6 Data Types and Data Structures . 52
7.6.1 HList — A Library for Typed Heterogeneous Collections . 52
7.6.2 Persistent . 52
7.6.3 Groundhog . 53
7.6.4 reflection . 53
7.6.5 tag-bits . 53
7.6.6 hyperloglog . 54
7.6.7 concurrent-supply . 54
7.6.8 hybrid-vectors . 54
7.6.9 lca . 54
7.6.10 heaps . 54
7.6.11 sparse . 54
7.6.12 compressed . 55
7.6.13 charset . 55
7.6.14 Convenience types (Edward Kmett) . 55
7.7 User Interfaces . 55
7.7.1 HsQML . 55
7.7.2 LGtk: Lens GUI Toolkit . 56
7.7.3 Gtk2Hs . 56
7.7.4 Haskell-EFL binding . 57
7.7.5 threepenny-gui . 57
7.7.6 reactive-banana . 58
7.8 Graphics and Audio . 58
7.8.1 diagrams . 58
7.8.2 csound-expression . 60
7.8.3 Chordify . 60
7.8.4 Glome . 60
7.9 Text and Markup Languages . 61
7.9.1 epub-tools (Command-line epub Utilities) . 61
7.9.2 lens-aeson . 62
7.9.3 hyphenation . 62
7.10 Natural Language Processing . 62
7.10.1 NLP . 62
7.10.2 GenI . 63
7.11 Bioinformatics . 63
7.11.1 ADPfusion . 63
7.11.2 Ab-initio electronic structure in Haskell . 64
7.11.3 Semi-Classical Molecular Dynamics in Haskell . 65
7.11.4 Biohaskell . 66
7.11.5 arte-ephys: Real-time electrophysiology . 66
7.12 Embedding DSLs for Low-Level Processing . 67
7.12.1 Feldspar . 67
7.12.2 Kansas Lava . 67
7.13 Others . 67
7.13.1 General framework for multi-agent systems . 67
7.13.2 ersatz . 67
7.13.3 FNIStash . 68

5

7.13.4 arbtt . 68
7.13.5 Hoodle . 68
7.13.6 Reffit . 69
7.13.7 Laborantin . 69
7.13.8 The Amoeba-World game project . 70

8 Commercial Users 71
8.1 Well-Typed LLP . 71
8.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 71
8.3 Industrial Haskell Group . 72
8.4 Barclays Capital . 72
8.5 Oblomov Systems . 73
8.6 OpenBrain Ltd. 73
8.7 Pariah Reputation System . 73
8.8 Haskell in the industry in Munich . 74

9 Research and User Groups 76
9.1 Haskell at Eötvös Loránd University (ELTE), Budapest . 76
9.2 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 76
9.3 Functional Programming at the University of Kent . 77
9.4 Formal Methods at DFKI and University Bremen and University Magdeburg 77
9.5 Haskell in Romania . 78
9.6 fp-syd: Functional Programming in Sydney, Australia . 79
9.7 Functional Programming at Chalmers . 79
9.8 Functional Programming at KU . 81
9.9 Odessa Haskell User Group . 81
9.10 Regensburg Haskell Meetup . 81
9.11 Haskell in the Munich Area . 81

6

1 Community

1.1 Haskell’ — Haskell 2014

Report by: Ian Lynagh
Participants: Carlos Camarão, Iavor Diatchki, Bas van

Dijk, Ian Lynagh, John Meacham, Neil
Mitchell, Ganesh Sittampalam, David

Terei, Henk-Jan van Tuyl

Haskell’ is an ongoing process to produce revisions to
the Haskell standard, incorporating mature language
extensions and well-understood modifications to the
language. New revisions of the language are expected
once per year.
The Haskell 2014 committee has now formed, and

we would be delighted to receive your proposals for
changes to the language. Please see http://hackage.
haskell.org/trac/haskell-prime/wiki/Process for details
on the proposal process.
The committee will meet 4 times a year, to consider

proposals completed before:
◦ 1st August
◦ 1st November
◦ 1st February
◦ 1st May
So if you have been meaning to put the finishing
touches to a proposal, then we would encourage you
to do so by the end of July!
The source for the Haskell report will be updated as

proposals are accepted, but new versions of the stan-
dard will only be released once a year, during January.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Since the May 2011 HCAR, Haskellers has added

polls, which provides a convenient means of surveying
a large cross-section of the active Haskell community.
There are now over 1300 active accounts, versus 800
one year ago.
Haskellers remains a site intended for all members

of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

7

http://hackage.haskell.org/trac/haskell-prime/wiki/Process
http://hackage.haskell.org/trac/haskell-prime/wiki/Process
http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 The Monad.Reader

Report by: Edward Z. Yang

There are many academic papers about Haskell and
many informative pages on the HaskellWiki. Unfortu-
nately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a wiki page, but more casual than a journal
article.
There are plenty of interesting ideas that might not

warrant an academic publication—but that does not
mean these ideas are not worth writing about! Com-
municating ideas to a wide audience is much more im-
portant than concealing them in some esoteric journal.
Even if it has all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining
a neat idea about “warm fuzzy things” to the rest of
us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there has been one new issue,

featuring tutorials on generalized algebraic data types,
monad transformers, and approximating NP-complete
problems with monoids.

Further reading

http://themonadreader.wordpress.com/

2.2 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmij.org/ftp/Haskell/)
has received two additions:

Translucent applicative functors in Haskell

ML is known for its sophisticated, higher-order module
system, one of the most interesting examples of which is
a translucent applicative functor such as SET parame-
terized by the element-comparison function. If we make
two instances of the SET with the same (>) compar-
ison on integers, we can take an element from one set
and put in in the other: the element types are ‘trans-
parent’ and the compiler can clearly see they are both
integers. We can also take a union of the two sets.

The type of the set itself is opaque – set values can
only be manipulated by the operations of SET. Now
the compiler cannot see the concrete representations of
the set types and verify they are the same. The com-
piler knows however that instantiations of SETs with
the identical element comparisons are type-compatible.

It turns out translucent functors can be implemented
in Haskell idiomatically, taking the full use of type
classes. We also show that type sharing constraints can
be expressed in a scalable manner, so that the whole
translation is practically usable. Thus we demonstrate
that Haskell already has a higher-order module lan-
guage. No new extensions are required; furthermore,
we avoid even undecidable let alone overlapping in-
stances.

The article concludes with correspondences between
OCaml modules, signatures and functors on one hand
and Haskell type classes and instances on the other.
The correspondences proved useful as a guideline for
translating OCaml code with modules to idiomatic
Haskell – or type-class–rich Haskell code to OCaml.

http://okmij.org/ftp/Haskell/types.html#
translucent-functor

ML-style modules with type sharing by name in
Haskell

This second mini-tutorial in the series on higher-
order module programming in Haskell deals with type-
equality, or sharing constraints. The naive implemen-
tation of sharing constraints (sharing by position) leads
to the exponential explosion of type parameters, as was
shown by Harper and Pierce in 2003. It has been often
suggested that records at the type level be introduced
to address this issue.

In the joint article with Chung-chieh Shan, we trans-
late Harper and Pierce’s example into Haskell, using
only the most common Haskell extensions to give type-
equality constraints by name and avoid the exponential
blowup. We can indeed refer to type parameters ‘by
name’ without any type-level records, taking advan-
tage of the ability of a Haskell compiler to unify type
expressions and bind type variables. We hope this mes-
sage helps clarify the difference between the two sharing
styles, and relate the ML and Haskell orthodoxies.

http://okmij.org/ftp/Haskell/types.html#fibration

8

http://themonadreader.wordpress.com/
http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Haskell/types.html#translucent-functor
http://okmij.org/ftp/Haskell/types.html#translucent-functor
http://okmij.org/ftp/Haskell/types.html#fibration

2.3 Agda Tutorial

Report by: Péter Diviánszky
Participants: Ambrus Kaposi, students at ELTE IK
Status: experimental

Agda may be the next programming language to learn
after Haskell. Learning Agda gives more insight into
the various type system extensions of Haskell, for ex-
ample.
The main goal of the tutorial is to let people ex-

plore programming in Agda without learning theoret-
ical background in advance. Only secondary school
mathematics is required for the tutorial.

Further reading

http://people.inf.elte.hu/divip/AgdaTutorial/Index.html

2.4 School of Haskell

Report by: Michael Snoyman
Participants: Edward Kmett, Simon Peyton Jones and

others
Status: active

Strides are being made to drive greater Haskell adop-
tion. One resource helping with this push is the School
of Haskell at FP Complete. The School of Haskell con-
tains tutorials, courses, and articles created by both
the Haskell community and the developers at FP Com-
plete. Courses for all levels of developers are available
and since going live in early 2013, it has benefited im-
mensely from a lot of excellent content provided by the
Haskell community.
The School of Haskell is an excellent resource for

Haskell developers looking to share their projects and
to become more proficient with Haskell. So far 1400
tutorials have been created and 288 have been offi-
cially published. Some very notable authors including,
Edward Kmett, Michael Snoyman, and Simon Peyton
Jones have contributed tutorials. To date, the school
of Haskell has had nearly 25k unique visitors.
All Haskell programmers are encouraged to visit the

School of Haskell and to contribute their ideas and
projects. This is another opportunity to showcase the
virtues of Haskell and the sophistication and high level
thinking of the Haskell community.

Further reading

https://www.fpcomplete.com/school

9

http://people.inf.elte.hu/divip/AgdaTutorial/Index.html
https://www.fpcomplete.com/school

3 Implementations

3.1 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

In early April 2014, GHC 7.8 was finally released, af-
ter nearly 18 months of development. This was one of
the longest development periods in recent memory, and
there was a lot of grumbling near the end. Ultimately,
the reason for this was scope creep - we kept getting
bugs dripping in here and there, and fixing them, and
putting things in.
Meanwhile, HEAD steams onward, with some pre-

liminary work for the 7.10 milestone laid down. We’ve
already got some plans as to what we’ll be doing - and
if you want something done, you should join in as well!

GHC 7.8

We released GHC 7.8.1 in early April, and immedi-
ately discovered a disastrous bug (https://ghc.haskell.
org/trac/ghc/ticket/8978) that had slipped in between
the release candidates. That led to an immediate
follow-up release of 7.8.2, which seems pretty stable.
We will continue to fix bugs on the 7.8 branch, and re-
lease 7.8.3 later this year, when (and if) pressure builds
up from users to get the fixes into the field.
However, now that 7.8 is out, there is a lot there

for users to play with: the release was one of the most
feature-packed ones we’ve done, with a lot of changes
touching almost every part of the compiler. To recap a
few of them:

Dynamic GHC GHC and GHCi are now dynamically
linked - this means any time you ask them to load ob-
ject code (for example, loading a library in GHCi, or
using TemplateHaskell when you compile something)
GHC will now use the system linker. The upshot of
this is that a lot of nasty bugs in our own linker have
been fixed - there are a few catches for users how-
ever. To that end, we’ve put together a GHC 7.8
FAQ [GHC78FAQ] to help people who might expe-
rience problems, dynamic GHC being one of them.

New and improved I/O manager Earlier this year,
Andreas Voellmy and Kazu Yamamoto worked on
a host of improvements to our I/O manager, mak-
ing it scale significantly better on multicore ma-
chines. Since then, it’s seen some other performance
tweaks, and many bugfixes. As a result, the new I/O
manager should scale linearly up to about 40 cores.

Andreas reports their McNettle Software-defined-
network (SDN) implementation can now achieve over
twenty million connections per second, making it the
fastest SDN implementation around - an incredible
feat! [McNettle]

MINIMAL pragma Twan van Laarhoven implemented
a new pragma, {-# MINIMAL #-} , allowing you
to explicitly declare the minimal complete definition
of a class [Minimal].

Typed Holes Thijs Alkemade and Simon PJ got an
implementation of TypeHoles in GHC, meaning it’s
possible to tell GHC there is a ‘hole’ in a program,
and have the compiler spit out an error stating what
types are in scope. As a trivial example

Prelude> :set -XTypeHoles
Prelude> let f :: a -> a; f x = _

<interactive>:6:24:
Found hole ’_’ with type: a
Where: ’a’ is a rigid type variable

bound by the type signature for
f :: a -> a at <interactive>:6:10

Relevant bindings include
x :: a (bound at <interactive>:6:20)
f :: a -> a (bound at
<interactive>:6:18)

In the expression: _
In an equation for ’f’: f x = _

GHC now tells us that the term f has a hole of type a,
and there is a term x :: a in scope. So the definition
is clear: f x = x. Holes are originally a concept
borrowed from Agda, and we hope they will be useful
to Haskell programmers too!

Pattern synonyms Gergö Érdi worked on an imple-
mentation of pattern synonyms for GHC, and it ac-
tually landed in the 7.8 release. While there’s still
more work to do, it represents a real improvement in
GHC’s support for abstraction. More detail on the
wiki page [PatSyn].

New Template Haskell. Geoff Mainland did the
heavy lifting to implement the new Template
Haskell story, more or less as described in Simon’s
blog post [THBlog]. Template Haskell now has two
flavours, which can inter-operate. Typed TH is
fully typed in the style of Meta ML, but works
for expressions only. Untyped TH is much more
expressive, allowing splices in patterns, types, and
declarations, as well as expressions, but is completely

10

https://ghc.haskell.org/trac/ghc/ticket/8978
https://ghc.haskell.org/trac/ghc/ticket/8978

untyped. Gergely Risko added support for creating
and reifying annotations from Template Haskell.
The API for this feature may change in 7.10, but
not drastically, probably only will be extended. The
overview of the feature with examples is detailed on
the TemplateHaskell/Annotations [THAnnotations)
page.

Closed type families are a major extension to the
type-family feature, implemented by Richard Eisen-
berg. A closed type family allows you to declare all
the equations for a type family in one place, with
top-to-bottom matching; for example

type family Or a b where
Or False False = False
Or a b = True

We thought this was going to be fairly easy, but it
turned out to be much more interesting than we ex-
pected, and led to a POPL paper [ClosedFam].

Safe coercions extend the power of newtypes, one of
Haskell’s main data-abstraction features. For exam-
ple, given

newtype Age = MkAge Int

you can convert betwen Age and Int by using the
MkAge constructor, knowing that the conversion is
free at runtime. But to convert betwen Maybe Age
and Maybe Int you have to write code that unpacks
and packs the Maybe type, and GHC cannot reason-
ably eliminate the cost. Safe coercions let you do just
that. But (and this is not obvious) to be type-safe,
in the presence of type families, we have to extend
the type system with so-called type roles. Moreover,
using roles finally solves the notorious, seven-year-
old Generalised Newtype Deriving bug. Safe conver-
sions were implemented by Joachim Breitner with
help from Richard Eisenberg; there is a full descrip-
tion in our ICFP submission [SafeCo].

New code generator As previously reported, the New
Code Generator is live and switched on by default.
There have been a host of bugfixes and stability im-
provements, meaning it should be solid for the 7.8
release.

Parallel --make as part of the haskell.org 2013 GSoC,
Patrick Palka implemented a new parallel compila-
tion driver, a long-requested feature. This allows
GHC to build multiple modules in parallel when us-
ing --make by adding a -j flag, while having almost
no overhead in the single-threaded case.

iOS support After many years of work by Ian, Stephen
Blackheath, Gabor Greif and friends Luke Iannini
and Maxwell Swadling, GHC now has full support

for iOS cross-compilation. As of GHC 7.8, you’ll
really be able to write iOS apps in your favorite pro-
gramming language!

That’s just a fraction of what we did in the 7.8 time-
line - there were at least a dozen other significant im-
provements, as you can see from the release notes [Re-
leaseNotes]

Future plans:

There’s still a lot planned for GHC 7.10, however.
While we haven’t quite decided when we’ll release it,
it will very likely be a short release cycle compared to
the last one - which was the longest one we’ve had!

Libraries, source language, type system:

Applicative-Monad GHC 7.10 will (finally) make
Applicative a superclass of Monad. This is an API-
breaking change for base, and users are encouraged
to begin fixing their code now. To that end, GHC
7.8 now emits warnings for code that would violate
the Applicative-Monad proposal [AMP].

ApplicativeDo Now that Applicative is a superclass of
Monad, Simon Marlow has plans to implement a new
extension for GHC, which will allow do notation to
be used in the context of Applicative, not just Monad.

Overloaded record fields In 2013, Adam Gundry im-
plemented the new −XOverloadedRecordFields exten-
sion for GHC, described on the wiki [ORF]. This will
finally be available in GHC 7.10.

Kinds without Data Trevor Elliott, Eric Mertens, and
Iavor Diatchki have began implementing support for
"data kind" declarations, described in more detail on
the GHC wiki [KD]. The idea is to allow a new form
of declaration that introduces a new kind, whose
members are described by the (type) constructors
in the declaration. This is similar to promoting
data declarations, except that no new value-level-
constructors are declared, and it also allows the con-
structors to mention other kinds that do not have
corresponding type-level representation (e.g., *).

Explicit type application Stephanie Weirich, Richard
Eisenberg and Hamidhasan Ahmed have been work-
ing on adding explicit type applications to GHC.
This allows the programmer to specify the types that
should be instantiated for arguments to a function
application, where normally they would be inferred.
While this capability already exists in GHC’s inter-
nal language, System FC – indeed, every FC-pro pro-
gram has function application with explicitly applied
types – it has not been available in Haskell itself.
While a lot of the syntax and design is not quite fi-
nal, there are some details about the design available
on the wiki [TA].

11

Using an SMT Solver in the type-checker Iavor Di-
atchki is working on utilizing an off-the-shelf SMT
solver in GHC’s constraint solver. Currently, the
main focus for this is improved support for reason-
ing with type-level natural numbers, but it opens
the doors to other interesting functionality, such as
supported for lifted (i.e., type-level) (&&), and ({ }),
type-level bit-vectors (perhaps this could be used to
implement type-level sets of fixed size), and others.
This work is happening on branch wip / ext− solver .

Kind equality and kind coercions Richard Eisenberg
(with support from Simon PJ and Stephanie Weirich,
among others) is implementing a change to the Core
language, as described in a recent paper [FC]. When
this work is complete, all types will be promotable to
kinds, and all data constructors will be promotable
to types. This will include promoting type syn-
onyms and type families. As the details come to-
gether, there may be other source language effects,
such as the ability to make kind variables explicit.
It is not expected for this to be a breaking change
– the change should allow strictly more programs to
be accepted.

Partial type signatures Thomas Winant and Do-
minique Devriese are working on partial type sig-
natures for GHC. A partial type signature is a type
signature that can contain wildcards, written as un-
derscores. These wildcards can be types unknown to
the programmer or types he doesn’t care to anno-
tate. The type checker will use the annotated parts
of the partial type signature to type check the pro-
gram, and infer the types for the wildcards. A wild-
card can also occur at the end of the constraints part
of a type signature, which indicates that an arbi-
trary number of extra constraints may be inferred.
Whereas −XTypedHoles allow holes in your terms,
−XPartialTypeSignatures allow holes in your types.
The design as well as a working implementation are
currently being simplified [PTS].

Back end and runtime system

Dynamic space limits Edward has been working on
dynamic space limits for Haskell, whereby you can
run some code in a container with a maximum
space limit associated with it. There’s working code
[RLIMITS] but there are some barriers to getting it
deployable in GHC (it requires a new compilation
mode ala prof, and it doesn’t yet work with GHCi
or 32-bit). We’re not yet sure if this will make it for
7.10, but look out!

CPU-specific optimizations Austin is currently inves-
tigating the implementation of CPU-specific optimi-
sations for GHC, including new -march and -mcpu
flags to adjust tuning for a particular processor.
Right now, there is some preliminary work towards

optimizing copies on later Intel machines. There’s
interest in expanding this further as well.

Changes to static closures for faster garbage collection
Edward is working on an overhaul of how static
closures represented at runtime to eliminate some
expensive memory dereferences in the GC hotpath.
The initial results are encouraging: these changes
can result in an up to 8% in the runtime of some
GC heavy benchmarks [HEAPALLOCED].

Coverity Austin & friends have began running the
Coverity static analyzer over the GHC runtime sys-
tem in an attempt to weed out bugs [Coverity]. This
has luckily reported several very useful issues to us,
and identified some possible cleanup. These fixes are
also going into the 7.8 branch, and GHC and its asso-
ciated code will be scanned by Coverity continuously
in the future.

New, smaller array type Johan Tibell has recently
added a new array type, SmallArray#, which uses
less memory (2 words) than the Array# type, at the
cost of being more expensive to garbage collect for
array sizes large than 128 elements.

DWARF-based stack tracing Peter Wortmann and
Arash Rouhani (with support from the Simons)
are working on enabling GHC to generate and use
DWARF debugging information. This should allow
us to obtain stack traces and do profiling without the
need for instrumentation.

Frontend, build-system, and miscellaneous changes

Repo reorganization One big thing that Herbert Va-
lerio Riedel has been tackling has been the problem-
atic situation with GHC’s current usage of git sub-
modules and ./sync-all. This is one of our most
common complaints from newcomers and people at-
tempting to help with development (with good rea-
son), and we’re hoping within the 7.10 timeframe,
GHC will be far easier to clone and work on.
To this end, we’ve already done some massive
simplification - in HEAD, the repositories for
base, testsuite, template-haskell, ghc-prim,
integer-gmp and integer-simple are now part
of GHC’s repository itself. These repositories are
commonly developed in lockstep with GHC, and it
greatly helps in many workflows, including bisection
of bugs.
Moreover, the remaining packages officially main-
tained by the core library committee that are cur-
rently managed via GHC’s Trac will be relocated
to the Haskell GitHub organization in order to have
GHC Trac focus on developing GHC proper as well
as reduce the overhead for casual contributors to file
issues and submit simple fixes for those packages.

12

Continuous integration improvements Work on new
CI systems for GHC has been slow, but thanks to
the work of Joachim Breitner and Gábor Páli,
GHC is now built on http://travis-ci.org [TravisCI]
as well as nightly builders of a variety of flavors and
machines [Builders]. We’re also hoping to investigate
using a Continuous Integration system to help build
against a stable set of selected Hackage packages, to
help find issues with the releases more easily.

Debian builds of GHC Thanks to Joachim Breit-
ner and Herbert Valerio Riedel, GHC now has
greatly improved support for Debian packaging -
there is now an official Ubuntu PPA for GHC [PPA],
as well as a dedicated Debian repository for GHC
nightly builds [DEB].

Development updates, joining in and a big Thank
You!

In the past several months, GHC has seen a surge of
community involvement, and a great deal of new con-
tributors.
As ever, there is a ton of stuff in the future for us to

do. If you want something done — don’t wait, it might
take a while. You should join us instead!

Links:

◦ [GHC78FAQ],
https://ghc.haskell.org/trac/ghc/wiki/GHC-7.8-FAQ

◦ [ClosedFam], POPL 2014 http://research.microsoft.
com/en-us/um/people/simonpj/papers/ext-f/

◦ [Minimal], MINIMAL pragma http:
//www.haskell.org/ghc/docs/7.8.1/html/users_
guide/pragmas.html#minimal-pragma

◦ [PatSyn], Pattern synonyms http:
//ghc.haskell.org/trac/ghc/wiki/PatternSynonyms

◦ [ReleaseNotes],
GHC 7.8.1 release notes http://www.haskell.org/ghc/
docs/7.8.1/html/users_guide/release-7-8-1.html

◦ [SafeCo],
Safe Coercions, submitted to ICFP 2014 http:
//research.microsoft.com/en-us/um/people/simonpj/
papers/ext-f/

◦ [THBlog],
Major revision of Template Haskell https://ghc.haskell.
org/trac/ghc/wiki/TemplateHaskell/BlogPostChanges

◦ [AMP], https://github.com/quchen/articles/blob/
master/applicative_monad.md

◦ [KD], Kinds without Data - http://ghc.haskell.org/
trac/ghc/wiki/GhcKinds/KindsWithoutData

◦ [ORF], https://ghc.haskell.org/trac/ghc/wiki/
Records/OverloadedRecordFields

◦ [TA], Explicit type application - http://ghc.haskell.
org/trac/ghc/wiki/ExplicitTypeApplication

◦ [FC], System FC with Explicit Kind Equality - http:
//www.seas.upenn.edu/~eir/papers/2013/fckinds/
fckinds-extended.pdf

◦ [PTS], https://ghc.haskell.org/trac/ghc/wiki/
PartialTypeSignatures

◦ [Coverity], https://scan.coverity.com
◦ [McNettle], http:

//haskell.cs.yale.edu/?post_type=publication&p=821
◦ [PPA], https://launchpad.net/~hvr/+archive/ghc/
◦ [DEB], http://deb.haskell.org
◦ [TravisCI],

https://github.com/nomeata/ghc-complete
◦ [Builders],

https://ghc.haskell.org/trac/ghc/wiki/Builder
◦ [HEAPALLOCED],

https://ghc.haskell.org/trac/ghc/ticket/8199
◦ [RLIMITS], http://ezyang.com/rlimits.html
◦ [ReleaseNotes], http://www.haskell.org/ghc/docs/7.

8.1/html/users_guide/release-7-8-1.html

3.2 Ajhc Haskell Compiler

Report by: Kiwamu Okabe
Participants: John Meacham, Hiroki Mizuno, Hidekazu

Segawa, Takayuki Muranushi
Status: experimental

What is it?

Ajhc is a Haskell compiler, and acronym for “A fork of
jhc”.
Jhc (http://repetae.net/computer/jhc/) converts

Haskell code into pure C language code running with
jhc’s runtime. And the runtime is written with 3000
lines (include comments) pure C code. It’s a magic!
Ajhc’s mission is to keep contribution to jhc in

the repository. Because the upstream author of jhc,
John Meacham, can’t pull the contribution speedily.
(I think he is too busy to do it.) We should feed-
back jhc any changes. Also Ajhc aims to provide the
Metasepi project with a method to rewrite NetBSD
kernel using Haskell. The method is called Snatch-
driven development http://www.slideshare.net/master_
q/20131020-osc-tokyoajhc.
Ajhc is, so to speak, an accelerator to develop jhc.

Demonstrations

https://www.youtube.com/watch?v=XEYcR5RG5cA
NetBSD kernel’s HD Audio sound driver has inter-

rupt handler. The interrupt handler of the demo is
re-written by Haskell language using Ajhc.
At the demo, run following operations. First, set

breakpoint at the interrupt of finding headphone, and
see Haskell function names on backtrace. Second, set
breakpoint s_alloc() function, that allocate area in
Haskell heap. Make sure of calling the function while
anytime running kernel. Nevertheless, playing wav file
does not break up.

13

http://travis-ci.org
https://ghc.haskell.org/trac/ghc/wiki/GHC-7.8-FAQ
POPL 2014 http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
POPL 2014 http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
MINIMAL pragma http://www.haskell.org/ghc/docs/7.8.1/html/users_guide/pragmas.html#minimal-pragma
MINIMAL pragma http://www.haskell.org/ghc/docs/7.8.1/html/users_guide/pragmas.html#minimal-pragma
MINIMAL pragma http://www.haskell.org/ghc/docs/7.8.1/html/users_guide/pragmas.html#minimal-pragma
Pattern synonyms http://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms
Pattern synonyms http://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms
GHC 7.8.1 release notes http://www.haskell.org/ghc/docs/7.8.1/html/users_guide/release-7-8-1.html
GHC 7.8.1 release notes http://www.haskell.org/ghc/docs/7.8.1/html/users_guide/release-7-8-1.html
Safe Coercions, submitted to ICFP 2014 http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
Safe Coercions, submitted to ICFP 2014 http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
Safe Coercions, submitted to ICFP 2014 http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
Major revision of Template Haskell https://ghc.haskell.org/trac/ghc/wiki/TemplateHaskell/BlogPostChanges
Major revision of Template Haskell https://ghc.haskell.org/trac/ghc/wiki/TemplateHaskell/BlogPostChanges
https://github.com/quchen/articles/blob/master/applicative_monad.md
https://github.com/quchen/articles/blob/master/applicative_monad.md
Kinds without Data - http://ghc.haskell.org/trac/ghc/wiki/GhcKinds/KindsWithoutData
Kinds without Data - http://ghc.haskell.org/trac/ghc/wiki/GhcKinds/KindsWithoutData
https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields
https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields
Explicit type application - http://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication
Explicit type application - http://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication
System FC with Explicit Kind Equality - http://www.seas.upenn.edu/~eir/papers/2013/fckinds/fckinds-extended.pdf
System FC with Explicit Kind Equality - http://www.seas.upenn.edu/~eir/papers/2013/fckinds/fckinds-extended.pdf
System FC with Explicit Kind Equality - http://www.seas.upenn.edu/~eir/papers/2013/fckinds/fckinds-extended.pdf
https://ghc.haskell.org/trac/ghc/wiki/PartialTypeSignatures
https://ghc.haskell.org/trac/ghc/wiki/PartialTypeSignatures
https://scan.coverity.com
http://haskell.cs.yale.edu/?post_type=publication&p=821
http://haskell.cs.yale.edu/?post_type=publication&p=821
https://launchpad.net/~hvr/+archive/ghc/
http://deb.haskell.org
https://github.com/nomeata/ghc-complete
https://ghc.haskell.org/trac/ghc/wiki/Builder
https://ghc.haskell.org/trac/ghc/ticket/8199
http://ezyang.com/rlimits.html
http://www.haskell.org/ghc/docs/7.8.1/html/users_guide/release-7-8-1.html
http://www.haskell.org/ghc/docs/7.8.1/html/users_guide/release-7-8-1.html
http://repetae.net/computer/jhc/
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
https://www.youtube.com/watch?v=XEYcR5RG5cA

The source code is found at https:
//github.com/metasepi/netbsd-arafura-s1 The
interrupt handler source code at https:
//github.com/metasepi/netbsd-arafura-s1/blob/
fabd5d64f15058c198ba722058c3fb89f84d08a5/
metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15.
Discussion on mailing list: http://www.haskell.org/

pipermail/haskell-cafe/2014-February/112802.html
http://www.youtube.com/watch?v=n6cepTfnFoo
The touchable cube application is written with

Haskell and compiled by Ajhc. In the demo, the ap-
plication is breaked by ndk-gdb debugger when run-
ning GC. You could watch the demo source code at
https://github.com/ajhc/demo-android-ndk.

http://www.youtube.com/watch?v=C9JsJXWyajQ
The demo is running code that compiled with Ajhc

on Cortex-M3 board, mbed. It’s a simple RSS reader
for reddit.com, showing the RSS titles on Text LCD
panel. You could watch the demo detail and source
code at https://github.com/ajhc/demo-cortex-m3.

http://www.youtube.com/watch?v=zkSy0ZroRIs
The demo is running Haskell code without any

OS. Also the clock exception handler is written with
Haskell.

Usage

You can install Ajhc from Hackage.

$ cabal install ajhc
$ ajhc --version
ajhc 0.8.0.9 (9c264872105597700e2ba403851cf3b
236cb1646)
compiled by ghc-7.6 on a x86_64 running linux
$ echo ’main = print "hoge"’ > Hoge.hs
$ ajhc Hoge.hs
$./hs.out
"hoge"

Please read “Ajhc User’s Manual” to know more de-
tail. (http://ajhc.metasepi.org/manual.html)

Future plans

Maintain Ajhc as compilable with latast GHC.

License

◦ Runtime: MIT License https://github.com/ajhc/
ajhc/blob/master/rts/LICENSE

◦ Haskell libraries: MIT License https://github.com/
ajhc/ajhc/blob/master/lib/LICENSE

◦ The others: GPLv2 or Later https://github.com/
ajhc/ajhc/blob/arafura/COPYING

Contact

◦ Mailing list:
http://groups.google.com/group/metasepi

◦ Bug tracker: https://github.com/ajhc/ajhc/issues
◦ Metasepi team:

https://github.com/ajhc?tab=members

Further reading

◦ Ajhc – Haskell everywhere:
http://ajhc.metasepi.org/

◦ jhc: http://repetae.net/computer/jhc/
◦ Metasepi: Project http://metasepi.org/
◦ Snatch-driven-development: http://www.slideshare.

net/master_q/20131020-osc-tokyoajhc

3.3 UHC, Utrecht Haskell Compiler

Report by: Atze Dijkstra
Participants: many others
Status: active development

UHC is the Utrecht Haskell Compiler, supporting al-
most all Haskell98 features and most of Haskell2010,
plus experimental extensions.

Status Current work is on incrementality of analysis
via the Attribute Grammar system used to construct
UHC (Jeroen Bransen).
Intended work is on (1) rewriting the type system

combining ideas from the constrained-based approach
in GHC and type error improvements found in Helium
(Alejandro Serrano), and (2) incorporating theoretical
work on static analyses (TBD).

Background. UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.3.2).

Further reading

◦ UHC Homepage:
http://www.cs.uu.nl/wiki/UHC/WebHome

◦ UHC Github repository:
https://github.com/UU-ComputerScience/uhc

◦ UHC Javascript backend:
http://uu-computerscience.github.com/uhc-js/

14

https://github.com/metasepi/netbsd-arafura-s1
https://github.com/metasepi/netbsd-arafura-s1
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
http://www.haskell.org/pipermail/haskell-cafe/2014-February/112802.html
http://www.haskell.org/pipermail/haskell-cafe/2014-February/112802.html
http://www.youtube.com/watch?v=n6cepTfnFoo
https://github.com/ajhc/demo-android-ndk
http://www.youtube.com/watch?v=C9JsJXWyajQ
https://github.com/ajhc/demo-cortex-m3
http://www.youtube.com/watch?v=zkSy0ZroRIs
http://ajhc.metasepi.org/manual.html
https://github.com/ajhc/ajhc/blob/master/rts/LICENSE
https://github.com/ajhc/ajhc/blob/master/rts/LICENSE
https://github.com/ajhc/ajhc/blob/master/lib/LICENSE
https://github.com/ajhc/ajhc/blob/master/lib/LICENSE
https://github.com/ajhc/ajhc/blob/arafura/COPYING
https://github.com/ajhc/ajhc/blob/arafura/COPYING
http://groups.google.com/group/metasepi
https://github.com/ajhc/ajhc/issues
https://github.com/ajhc?tab=members
http://ajhc.metasepi.org/
http://repetae.net/computer/jhc/
http://metasepi.org/
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.cs.uu.nl/wiki/UHC/WebHome
https://github.com/UU-ComputerScience/uhc
http://uu-computerscience.github.com/uhc-js/

◦ Attribute grammar system: http:
//www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

3.4 Specific Platforms

3.4.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of contrib-
utors who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both i386 and amd64) start-
ing from GHC 6.12.1, hence one can always download
vanilla binary distributions for each recent release.
We have a developer repository for Haskell ports

that features around 486 ports of many popular Ca-
bal packages. The updates committed to this repos-
itory are continuously integrated to the official ports
tree on a regular basis. However, the FreeBSD Ports
Collection already includes many popular and impor-
tant Haskell software: GHC 7.6.3, Haskell Platform
2013.2.0.0, Gtk2Hs, wxHaskell, XMonad, Pandoc, Gi-
tit, Yesod, Happstack, Snap, Agda, git-annex, and so
on – all of them have been incorporated into the recent
9.2-RELEASE.
In cooperation with fellow developers, Konstantin

Belousov and Dimitry Andric, we have managed to re-
store the ability to build GHC on 32-bit 10.x FreeBSD
systems, so now it is ready to be included in the up-
coming 10.0-RELEASE. In addition, it turned out that
this bug (in thread signal delivery) can also affect the
building process for other platforms as well, which ex-
plains some of the strange build breakages our users
might have experienced in the past.
If you find yourself interested in helping us or simply

want to use the latest versions of Haskell programs on
FreeBSD, check out our page at the FreeBSD wiki (see
below) where you can find all important pointers and
information required for use, contact, or contribution.

Further reading

http://wiki.FreeBSD.org/Haskell

3.4.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux

distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 741 source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.
The recently released stable Debian release

(“wheezy”) provides the Haskell Platform 2012.3.0.0
and GHC 7.4.1, while in Debian unstable, we provide
the platform 2013.2.0.0 and GHC 7.6.3. GHC 7.8.2 is
available in Debian experimental.
Debian users benefit from the Haskell ecosystem

on 13 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.4.3 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Ricky Elrod, Ben Boeckel, Shakthi

Kannan, and others
Status: ongoing

The Fedora Haskell SIG works to provide good Haskell
support in the Fedora Project Linux distribution.
Fedora 20 shipped in December with ghc-7.6.3,

haskell-platform-2013.2.0.0, and version updates to
many other packages. New packages added included
shake and 30 libraries. We also spent some effort split-
ting out packages from haskell-platform into their own
separate source packages again.
Fedora 21 development is now underway: we plan to

update ghc to 7.8, refresh many packages to their latest
versions, and are also actively adding new libraries.
EPEL 7 is currently in Beta with ghc-7.6.3, haskell-

platform-2013.2.0.0 and many other packages already
built. EPEL 5 was updated to ghc-7.0.4 in February
and it is planned to update EPEL 6 to ghc-7.4.2 later
this year.
At the time of writing we now have around 280

Haskell source packages in Fedora. The cabal-rpm
packaging tool has been improved further: with new
prep, install and dependency commands, and it now
refers .spec files when no .cabal file is around.
If you want to help with Fedora Haskell packaging,

please join our low-traffic mailing-list and the Freenode
#fedora-haskell channel. You can also follow @fedora-
haskell for irregular updates.

15

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://wiki.FreeBSD.org/Haskell
http://wiki.debian.org/Haskell

Further reading

◦ Homepage:
http://fedoraproject.org/wiki/Haskell_SIG

◦ Mailing-list: https:
//admin.fedoraproject.org/mailman/listinfo/haskell

◦ Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig

◦ Package changes: http://git.fedorahosted.org/cgit/
haskell-sig.git/tree/packages/diffs/

16

http://fedoraproject.org/wiki/Haskell_SIG
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/

4 Related Languages and Language Design

4.1 Agda

Report by: Andreas Abel
Participants: Nils Anders Danielsson, Ulf Norell,

Makoto Takeyama, Stevan Andjelkovic,
Jean-Philippe Bernardy, James Chapman,

Dominique Devriese, Péter Diviánszky
Fredrik Nordvall Forsberg,

Olle Fredriksson, Daniel Gustafsson,
Alan Jeffrey, Fredrik Lindblad,

Guilhem Moulin, Nicolas Pouillard,
Andrés Sicard-Ramírez and many more

Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e., GADTs which can
be indexed by values and not just types. The lan-
guage also supports coinductive types, parameterized
modules, and mixfix operators, and comes with an in-
teractive interface—the type checker can assist you in
the development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
Since the release of Agda 2.3.2 in November 2012

the following has happened in the Agda project and
community:

◦ Ulf Norell gave a keynote speech at ICFP 2013 on
dependently typed programming in Agda.

◦ Agda has attracted new users, the traffic on the mail-
ing list (and bug tracker) is increasing.

◦ Agda has seen several enhancements in its type
checker, termination checker, interactive editor, and
LaTeX-backend.

◦ Copatterns are being added to Agda as a new way
to define record and coinductive values.

◦ Agda’s pattern matching can be restricted to not use
Streicher’s Axiom K; which makes it more compati-
ble with Homotopy Type Theory.

Release of Agda 2.3.4 is planned to happen in the sec-
ond quartal of 2014.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda

Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (→ 4.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Bounded size quantification
and destructor patterns for a more general handling
of coinduction. Equality incorporates eta-expansion at
record and singleton types. Function arguments can be
declared as static; such arguments are discarded during
equality checking and compilation.
MiniAgda is now hosted on http://hub.darcs.net/

abel/miniagda.
MiniAgda is available as Haskell source code on hack-

age and compiles with GHC 6.12.x – 7.8.2.

Further reading

http://www.cse.chalmers.se/~abela/miniagda/

4.3 Disciple

Report by: Ben Lippmeier
Participants: Ben Lippmeier, Amos Robinson, Erik de

Castro Lopo, Kyle van Berendonck
Status: experimental, active development

The Disciplined Disciple Compiler (DDC) is a research
compiler used to investigate program transformation
in the presence of computational effects. It compiles a
family of strict functional core languages and supports
region, effect and closure typing. This extra informa-
tion provides a handle on the operational behaviour of
code that isn’t available in other languages. Programs
can be written in either a pure/functional or effect-
ful/imperative style, and one of our goals is to provide
both styles coherently in the same language.

What is new?

DDC is in an experimental, pre-alpha state, though
parts of it do work. In March this year we released

17

http://wiki.portal.chalmers.se/agda/
http://hub.darcs.net/abel/miniagda
http://hub.darcs.net/abel/miniagda
http://www.cse.chalmers.se/~abela/miniagda/

DDC 0.4.1, with the following new features:

◦ Added a bi-directional type inferencer based on
Joshua DunïňĄeld and Neelakantan Krishnaswami’s
recent ICFP paper.

◦ Added a region extension language construct, and
coeffect system.

◦ Added the Disciple Tetra language which includes
infix operators and desugars into Disciple Core Tetra.

◦ Compilation of Tetra and Core Tetra programs to C
and LLVM.

◦ Early support for rate inference in Core Flow.

◦ Flow fusion now generates vector primops for maps
and folds.

◦ Support for user-defined algebraic data types.

◦ Civilized error messages for unsupported or incom-
plete features.

◦ Most type error messages now give source locations.

◦ Building on Windows platforms.

◦ Better support for foreign imported types and values.

◦ Changed to Git for version control.

Further reading

http://disciple.ouroborus.net

4.4 Ermine

Report by: Edward Kmett
Participants: Dan Doel, Josh Cough, Elliot Stern,

Stephen Compall, Runar Oli Bjarnason,
Paul Chiusano

Status: actively developed, experimental

Ermine is a Haskell-like programming language, ex-
tended with rank-N types, kind and row polymorphism
that runs on the JVM designed at McGraw Hill Finan-
cial.
The language currently has two implementations, a

legacy implementation that was written in Scala, and a
newer, more extensible, implementation that is actively
being developed in Haskell.
The Scala implementation is designed more or less

as a straight interpreter, while the Haskell version is
designed to be able to compile down to a smaller, rel-
atively portable core. Neither backend generates Java
bytecode directly to avoid leaking “Permgen” space.
In July, we were able to obtain corporate approval

to open source the existing Scala-based compiler and
the nascent Haskell implementation. The Scala version
of the language is being actively used to generate a

number of financial reports within the S&P Capital IQ
web platform.
An introduction to Ermine has been given at Boston

Haskell and at CUFP 2013. Stephen Compall has been
putting together a documentation project.

Further reading

◦ Ermine Github: http://github.com/ermine-language
◦ Boston Haskell Presentation:

http://www.youtube.com/watch?v=QCvXlOCBe5A
◦ A Taste of Ermine:

https://launchpad.net/ermine-user-guide
◦ CUFP Slides: http://tinyurl.com/qem8phk

18

http://disciple.ouroborus.net
http://github.com/ermine-language
http://www.youtube.com/watch?v=QCvXlOCBe5A
https://launchpad.net/ermine-user-guide
http://tinyurl.com/qem8phk

5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Rita Loogen,

in Copenhagen: Jost Berthold
Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s primitive constructs are process abstractions

and process instantiations. The Eden logo

consists of four λ turned in such a way that they form
the Eden instantiation operator (#). Higher-level coor-
dination is achieved by defining skeletons, ranging from
a simple parallel map to sophisticated master-worker
schemes. They have been used to parallelize a set of
non-trivial programs.
Eden’s interface supports a simple definition of arbi-

trary communication topologies using Remote Data. A
PA-monad enables the eager execution of user defined
sequences of Parallel Actions in Eden.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Tutorial

Rita Loogen: Eden - Parallel Functional Programming
in Haskell, in: V. Zsók, Z. Horváth, and R. Plasmeijer
(Eds.): CEFP 2011, Springer LNCS 7241, 2012, pp.
142-206.
(see also: http://www.mathematik.uni-marburg.de/
~eden/?content=cefp)

Implementation

Eden is implemented by modifications to the Glasgow-
Haskell Compiler (extending its runtime system to use
multiple communicating instances). Apart from MPI
or PVM in cluster environments, Eden supports a
shared memory mode on multicore platforms, which
uses multiple independent heaps but does not depend
on any middleware. Building on this runtime support,
the Haskell package edenmodules defines the language,
and edenskels provides a library of parallel skeletons.
A new version based on GHC-7.8.2 (including binary

packages and prepared source bundles) has been re-
leased in April 2014. The new version fixes a number
of issues related to error shut-down and recovery, and
features extended support for serialising Haskell data
structures. Previous stable releases with binary pack-
ages and bundles are still available on the Eden web
pages.
The source code repository for Eden releases is

http://james.mathematik.uni-marburg.de:8080/gitweb,
the Eden libraries (Haskell-level) are also available via
Hackage.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visual-
isation of Eden program runs on various levels. Activ-
ity profiles are produced for processing elements (ma-
chines), Eden processes and threads. In addition mes-
sage transfer can be shown between processes and ma-
chines. EdenTV is written in Haskell and is freely avail-
able on the Eden web pages and on hackage.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ Thomas Horstmeyer and Rita Loogen: Graph-Based
Communication in Eden, revised and extended ver-
sion of TFP 2009 paper, in Special Issue of Higher-
Order Symbol Computation (HOSC), published on-
line 9 March 2014, Springer US, http://link.springer.
com/article/10.1007/s10990-014-9101-y.

◦ M. KH. Aswad, P. W. Trinder, A. D. Al-Zain, G.
J. Michaelson, J. Berthold: Comparing Low-Pain
and No-Pain Multicore Haskells, revised and ex-
tended version of TFP 2009 paper, in Special Issue
of Higher-Order Symbol Computation (HOSC), to
appear, Springer US.

19

http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://james.mathematik.uni-marburg.de:8080/gitweb
http://link.springer.com/article/10.1007/s10990-014-9101-y
http://link.springer.com/article/10.1007/s10990-014-9101-y

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.1.2 speculation

Report by: Edward Kmett
Participants: Jake McArthur
Status: stable

This package provides speculative function application
and speculative folds based on

◦ Prakash Prabhu, G. Ramalingam, and Kapil
Vaswani, “Safe Programmable Speculative Paral-
lelism”, In the proceedings of Programming Lan-
guage Design and Implementation (PLDI) Vol 45,
Issue 6 (June 2010) pp 50-61.

Unlike the original paper, we can take advantage of im-
mutability and the spark queue in Haskell to ensure we
never worsen the asymptotics of a single-threaded algo-
rithm. Speculative STM transactions take the place of
the transactional rollback machinery from the paper.

Further reading

◦ http://hackage.haskell.org/package/speculation
◦ http://research.microsoft.com/pubs/118795/

pldi026-vaswani.pdf

5.2 Haskell and the Web

5.2.1 WAI

Report by: Michael Snoyman
Participants: Greg Weber
Status: stable

The Web Application Interface (WAI) is an inter-
face between Haskell web applications and Haskell web
servers. By targeting the WAI, a web framework or web
application gets access to multiple deployment plat-
forms. Platforms in use include CGI, the Warp web
server, and desktop webkit.
WAI is also a platform for re-using code between web

applications and web frameworks through WAI mid-
dleware and WAI applications. WAI middleware can
inspect and transform a request, for example by auto-
matically gzipping a response or logging a request. The
Yesod (→ 5.2.5) web framework provides the ability to
embed arbitrary WAI applications as subsites, making
them a part of a larger web application.
By targeting WAI, every web framework can share

WAI code instead of wasting effort re-implementing
the same functionality. There are also some new web
frameworks that take a completely different approach
to web development that use WAI, such as webwire
(FRP), MFlow (continuation-based) and dingo (GUI).
The Scotty (→ 5.2.9) web framework also continues to

be developed, and provides a lighter-weight alterna-
tive to Yesod. Other frameworks- whether existing or
newcomers- are welcome to take advantage of the exist-
ing WAI architecture to focus on the more innovative
features of web development.
WAI applications can send a response themselves.

For example, wai-app-static is used by Yesod to serve
static files. However, one does not need to use a web
framework, but can simply build a web application us-
ing the WAI interface alone. The Hoogle web service
targets WAI directly.
Until now, WAI has always selected some streaming

data framework, either enumerator or conduit. Based
on the success of the http-client/http-conduit split, the
WAI community is going to be removing the streaming
data library aspect from WAI in its next release. This
will open up the web application realm to people look-
ing to experiment with other streaming data libraries.

Further reading

http://www.yesodweb.com/book/wai

5.2.2 Warp

Report by: Michael Snoyman

Warp is a high performance, easy to deploy HTTP
server backend for WAI (→ 5.2.1). Since the last
HCAR, Warp has switched from enumerators to con-
duits (→ 7.1.1), added SSL support, and websockets
integration.
Due to the combined use of ByteStrings, blaze-

builder, conduit, and GHC’s improved I/O manager,
WAI+Warp has consistently proven to be Haskell’s
most performant web deployment option.
Warp is actively used to serve up most of the users

of WAI (and Yesod).
“Warp: A Haskell Web Server” by Michael Snoyman

was published in the May/June 2011 issue of IEEE In-
ternet Computing:
◦ Issue page: http://www.computer.org/portal/web/

csdl/abs/mags/ic/2011/03/mic201103toc.htm
◦ PDF: http://steve.vinoski.net/pdf/IC-Warp_a_

Haskell_Web_Server.pdf

5.2.3 Happstack

Report by: Jeremy Shaw

Happstack is a fast, modern framework for creating web
applications. Happstack is well suited for MVC and
RESTful development practices. We aim to leverage
the unique characteristics of Haskell to create a highly-
scalable, robust, and expressive web framework.
Happstack pioneered type-safe Haskell web program-

ming, with the creation of technologies including web-
routes (type-safe URLS) and acid-state (native Haskell

20

http://www.mathematik.uni-marburg.de/~eden
http://hackage.haskell.org/package/speculation
http://research.microsoft.com/pubs/118795/pldi026-vaswani.pdf
http://research.microsoft.com/pubs/118795/pldi026-vaswani.pdf
http://www.yesodweb.com/book/wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf

database system). We also extended the concepts be-
hind formlets, a type-safe form generation and process-
ing library, to allow the separation of the presentation
and validation layers.
Some of Happstack’s unique advantages include:

◦ a large collection of flexible, modular, and well docu-
mented libraries which allow the developer to choose
the solution that best fits their needs for databases,
templating, routing, etc.

◦ the most flexible and powerful system for defining
type-safe URLs.

◦ a type-safe form generation and validation library
which allows the separation of validation and pre-
sentation without sacrificing type-safety

◦ a powerful, compile-time HTML templating system,
which allows the use of XML syntax

A recent addition to the Happstack family is the
happstack-foundation library. It combines what we
believe to be the best choices into a nicely integrated
solution. happstack-foundation uses:

◦ happstack-server for low-level HTTP functionality

◦ acid-state for type-safe database functionality

◦ web-routes for type-safe URL routing

◦ reform for type-safe form generation and processing

◦ HSP for compile-time, XML-based HTML templates

◦ JMacro for compile-time Javascript generation and
syntax checking

Future plans

Happstack is the oldest, actively developed Haskell web
framework. We are continually studying and applying
new ideas to keep Happstack fresh. By the time the
next release is complete, we expect very little of the
original code will remain. If you have not looked at
Happstack in a while, we encourage you to come take
a fresh look at what we have done.
Some of the projects we are currently working on

include:

◦ a fast pipes-based HTTP and websockets backend
with a high level of evidence for correctness

◦ a dynamic plugin loading system

◦ a more expressive system for weakly typed URL rout-
ing combinators

◦ a new system for processing form data which allows
fine grained enforcement of RAM and disk quotas
and avoids the use of temporary files

◦ a major refactoring of HSP (fewer packages, migra-
tion to Text/Builder, a QuasiQuoter, and more).

One focus of Happstack development is to create in-
dependent libraries that can be easily reused. For ex-
ample, the core web-routes and reform libraries are in
no way Happstack specific and can be used with other
Haskell web frameworks. Additionally, libraries that
used to be bundled with Happstack, such as IxSet, Safe-
Copy, and acid-state, are now independent libraries.
The new backend will also be available as an indepen-
dent library.
When possible, we prefer to contribute to existing

libraries rather than reinvent the wheel. For example,
our preferred templating library, HSP, was created by
and is still maintained by Niklas Broberg. However, a
significant portion of HSP development in the recent
years has been fueled by the Happstack team.
We are also working directly with the Fay team to

bring an improved type-safety to client-side web pro-
gramming. In addition to the new happstack-fay inte-
gration library, we are also contributing directly to Fay
itself.
For more information check out the happstack.com

website — especially the “Happstack Philosophy” and
“Happstack 8 Roadmap”.

Further reading

◦ http://www.happstack.com/
◦ http:

//www.happstack.com/docs/crashcourse/index.html

5.2.4 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 3 is a simple but prac-
tical Web server in Haskell. It provides features to han-
dle static files, redirection, CGI, reverse proxy, reload-
ing configuration files and graceful shutdown. Also
TLS is experimentally supported.
Mighttpd 3 is now based on WAI 2.0 or later and

uses new warp and new �fast-logger. This results in
much improvement of its peformance if Mighttpd 3 is
compiled by GHC 7.8.2 or later.
You can install Mighttpd 3 (mighttpd2) from Hack-

ageDB. Note that the package name is mighttpd2, not
mighttpd3, for historical reasons

Further reading

◦ http://www.mew.org/~kazu/proj/mighttpd/en/
◦ http:

//www.yesodweb.com/blog/2014/01/new-fast-logger
◦ http://www.yesodweb.com/blog/2014/02/new-warp

21

http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://www.mew.org/~kazu/proj/mighttpd/en/
http://www.yesodweb.com/blog/2014/01/new-fast-logger
http://www.yesodweb.com/blog/2014/01/new-fast-logger
http://www.yesodweb.com/blog/2014/02/new-warp

5.2.5 Yesod

Report by: Michael Snoyman
Participants: Greg Weber, Luite Stegeman, Felipe Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, Yesod
helps users create highly scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO.
But Yesod is even more focused on scalable develop-

ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.

◦ declarative routing with type-safe urls — say good-
bye to broken links

◦ no XSS attacks — form submissions are automati-
cally sanitized

◦ database safety through the Persistent library (→
7.6.2) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.

When type safety conflicts with programmer produc-
tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 7.6.2). Views
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing and
can return different representations of a resource (html,
json, etc).
Yesod is broken up into many smaller projects

and leverages Wai (→ 5.2.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks that use WAI such as Scotty (→ 5.2.9).
The new 1.2 release of Yesod, introduces a number of

simplifications, especially to the subsite handling. Most
applications should be able to upgrade easily. Some of
the notable features are:

◦ Much more powerful multi-representation support
via the selectRep/provideRep API.

◦ More efficient session handling.

◦ All Handler functions live in a typeclass, providing
you with auto-lifting.

◦ Type-based caching of responses via the cached func-
tion.

◦ More sensible subsite handling, switch to Han-
dlerT/WidgetT transformers.

◦ Simplified dispatch system, including a lighter-
weight Yesod.

◦ Simplified streaming data mechanism, for both
database and non-database responses.

◦ Completely overhauled yesod-test, making it easier
to use and providing cleaner integration with hspec.

◦ yesod-auth’s email plugin now supports logging in
via username in addition to email address.

◦ Refactored persistent module structure for clarity
and ease-of-use.

◦ Easy asset combining for static javascript and css
files

◦ Faster shakespeare template reloading and support
for TypeScript templates.

Since the 1.0 release, Yesod has maintained a high
level of API stability, and we intend to continue this
tradition. The 1.2 release introduces a lot of poten-
tial code breakage, but most of the required updates
should be very straightforward. Future directions for
Yesod are now largely driven by community input and
patches. We’ve been making progress on the goal of
easier client-side interaction, and have high-level inter-
action with languages like Fay, TypeScript, and Coffe-
Script.
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.
To see an example site with source code available,

you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

22

http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/

5.2.6 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, Gabriel Gonzalez, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.
Snap has been continuing to make progress towards

the 1.0 release. We now have 100% test coverage in the
core API and web server. The Snap community has
also been continuing to grow. We’ve seen the intro-
duction of a new package for type safe routing called
snap-web-routes. Also a new book on Snap called
"Snap for Beginners" was announced.
If you would like to contribute, stop by the

#snapframework IRC channel on Freenode to keep up
with the latest activity.

Further reading

◦ Type-safe routing for snap using web-routes
http://hackage.haskell.org/package/snap-web-routes

◦ Snap for Beginners (a new book)
http://snapforbeginners.com/

◦ Snaplet Directory:
http://snapframework.com/snaplets

◦ http://snapframework.com

5.2.7 Sunroof

Report by: Andy Gill
Participants: Jan Bracker
Status: active

Sunroof is a Domain Specific Language (DSL) for gen-
erating JavaScript. It is built on top of the JS-monad,
which, like the Haskell IO-monad, allows read and write
access to external resources, but specifically JavaScript
resources. As such, Sunroof is primarily a feature-
rich foreign function API to the browser’s JavaScript
engine, and all the browser-specific functionality, like
HTML-based rendering, event handling, and drawing
to the HTML5 canvas.
Furthermore, Sunroof offers two threading models

for building on top of JavaScript, atomic and block-
ing threads. This allows full access to JavaScript APIs,
but using Haskell concurrency abstractions, like MVars
and Channels. In combination with the push mecha-
nism Kansas-Comet, Sunroof offers a great platform
to build interactive web applications, giving the ability

to interleave Haskell and JavaScript computations with
each other as needed.

It has successfully been used to write smaller appli-
cations. These applications range from 2D rendering
using the HTML5 canvas element, over small GUIs, up
to executing the QuickCheck tests of Sunroof and dis-
playing the results in a neat fashion. The development
has been active over the past 6 months and there is a
drafted paper submitted to TFP 2013.

Further reading

◦ Homepage: http:
//www.ittc.ku.edu/csdl/fpg/software/sunroof.html

◦ Tutorial: https:
//github.com/ku-fpg/sunroof-compiler/wiki/Tutorial

◦ Main Repository:
https://github.com/ku-fpg/sunroof-compiler

5.2.8 MFlow

Report by: Alberto Gómez Corona
Status: active development

MFlow is an innovative Web framework of the kind of
other functional, stateful frameworks like WASH, Sea-
side, Ocsigen or Racket. MFlow does not use continu-
ation passing, but a backtracking monad that permits
the synchronization of browser and server and error
tracing. This monad is on top of another “Workflow”
monad that adds effects for logging and recovery of
process/session state. In addition, MFlow is RESTful.
Any GET page in the flow can be pointed to with a
REST URL. The navigation as well as the page results
are type safe. It also implements monadic formlets:
They can have their own flow within a page.
MFlow hides the heterogeneous elements of a web ap-

plication and expose a clear, modular, type safe DSL
of applicative and monadic combinators to create from
multipage to single page applications. These combina-
tors, called widgets or enhanced formlets, pack together
javascript, HTML, CSS and the server code. [1]

23

http://hackage.haskell.org/package/snap-web-routes
http://snapforbeginners.com/
http://snapframework.com/snaplets
http://snapframework.com
http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler

A paper describing the MFlow internals has been
published in The Monad Reader issue 23 [2]
In adition to templates editable at runtime, con-

tainer widgets, ajax refreshed widgets, push and ex-
ecution traces, MFlow now incorporates web services
by programming the page monad as the combination
of a parser and a writer without additional ad-hoc con-
structions . That is described in the TMR paper [2]
Additionally a ”lazy” modifier has been added. It

delay the load of the widget when it becomes visible in
the window.
Composable caching is one benefit of deep integra-

tion. It permits HTTP caching even in the context of
highly interactive applications. Some examples have
been added to the demo site (see below).
The power of a monad with backtracking to solve

”the integration problem”. It happens when the loose
coupling produce exceptional conditions that may trig-
ger the rollback of actions in the context of long running
processes. That has been demonstrated using MFlow
in [3].
A web application can be considered as an special

case of integration. MFlow pack the elements of a web
aplication within composable widgets. This ”deep inte-
gration” is the path followed by the software industry
to create from higher level framewors to operating sys-
tems [4]
Future work:
The exploration of the formlets/widgets running in

pure javascript in the browser. Pure javascript form-
lets, compiled using a Haskell-Javascript translator
would solve the callback hell in the browser, and would
make dynamic programming in javascript much more
intuitive and in a continuum with server programming.
widgets in the server can run in the client when no ob-
ject in the server is necessary by means of a modifier
with the appropriate signature.

Further reading

◦ MFlow as a DSL for web applications: https://
www.fpcomplete.com/school/to-infinity-and-beyond/
older-but-still-interesting/MFlowDSL1

◦ MFlow, a continuation-based web framework
without continuations http://themonadreader.
wordpress.com/2014/04/23/issue-23

◦ How Haskell can solve the integration problem
https://www.fpcomplete.com/school/
to-infinity-and-beyond/pick-of-the-week/
how-haskell-can-solve-the-integration-problem

◦ Towards a deeper integration: A Web language:
http://haskell-web.blogspot.com.es/2014/04/
towards-deeper-integration-web-language.html

There is a site, made using MFlow, which includes de-
mos at: http://mflowdemo.herokuapp.com

5.2.9 Scotty

Report by: Andrew Farmer
Participants: Andrew Farmer
Status: active

Scotty is a Haskell web framework inspired by Ruby’s
Sinatra, using WAI (→ 5.2.1) and Warp (→ 5.2.2), and
is designed to be a cheap and cheerful way to write
RESTful, declarative web applications.

◦ A page is as simple as defining the verb, url pattern,
and Text content.

◦ It is template-language agnostic. Anything that re-
turns a Text value will do.

◦ Conforms to WAI Application interface.

◦ Uses very fast Warp webserver by default.

The goal of Scotty is to enable the development of
simple HTTP/JSON interfaces to Haskell applications.
Implemented as a monad transformer stack, Scotty ap-
plications can be embedded in arbitrary MonadIOs.
The Scotty API is minimal, and fully documented via
haddock. The API has recently remained stable, with
a steady stream of improvements contributed by the
community.

Further reading

◦ Hackage: http://hackage.haskell.org/package/scotty
◦ Github: https://github.com/scotty-web/scotty

5.3 Haskell and Compiler Writing

5.3.1 MateVM

Report by: Bernhard Urban
Participants: Harald Steinlechner
Status: active development

MateVM is a method-based Java Just-In-Time Com-
piler. That is, it compiles a method to native code on
demand (i.e. on the first invocation of a method). We
use existing libraries:

hs-java for proccessing Java Classfiles according to
The Java Virtual Machine Specification.

harpy enables runtime code generation for i686 ma-
chines in Haskell, in a domain specific language style.

We think that Haskell is suitable for compiler chal-
lenges, as already many times proven. However, we
have to jump between “Haskell world” and “native
code world”, due to the requirements of a Just-In-Time
Compiler. This poses some special challenges when it
comes to signal handling and other interesing rather

24

https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
http://themonadreader.wordpress.com/2014/04/23/issue-23
http://themonadreader.wordpress.com/2014/04/23/issue-23
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
http://mflowdemo.herokuapp.com
http://hackage.haskell.org/package/scotty
https://github.com/scotty-web/scotty

low level operations. Not immediately visible, the task
turns out to be well suited for Haskell although we
experienced some tensions with signal handling and
GHCi. We are looking forward to sharing our expe-
rience on this.
In the current state we are able to execute simple

Java programs. The compiler eliminates the JavaVM
stack via abstract interpretation, does a liveness analy-
sis, linear scan register allocation and finally code emis-
sion. The architecture enables easy addition of further
optimization passes on an intermediate representation.
Future plans are, to add an interpreter to gather pro-

file information for the compiler and also do more ag-
gressive optimizations (e.g. method inlining or stack
allocation) , using the interpreter as fallback path via
deoptimization if a assumption is violated.
Apart from that, many features are missing for a full

JavaVM, most noteable are the concept of Classloaders,
Floating Point or Threads. We would like to use GNU
Classpath as base library some day. Other hot topics
are Hoopl and Garbage Collection.
If you are interested in this project, do not hesitate

to join us on IRC (#MateVM @ OFTC) or contact us on
Github.

Further reading

◦ https://github.com/MateVM
◦ http://docs.oracle.com/javase/specs/jvms/se7/html/
◦ http://hackage.haskell.org/package/hs-java
◦ http://hackage.haskell.org/package/harpy
◦ http://www.gnu.org/software/classpath/
◦ http://hackage.haskell.org/package/hoopl-3.8.7.4
◦ http://en.wikipedia.org/wiki/Club-Mate

5.3.2 UUAG

Report by: Jeroen Bransen
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are
defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.

Nonterminals (data types), productions (data con-
structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.3), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects. The
current version is 0.9.50.2 (May 2014), is extensively
tested, and is available on Hackage. There is also
a Cabal plugin for easy use of AG files in Haskell
projects.
We are currently working on the following enhance-

ments:

Evaluation scheduling. We are running a project to
improve the scheduling algorithms for AGs. The
currently implemented algorithms for scheduling AG
computations do not fully satisfy our needs; the code
we write goes beyond the class of OAGs, but the al-
gorithm by Kennedy and Warren (1976) results in
an undesired increase of generated code due to non-
linear evaluation orders. However, because we know
that our code belongs to the class of linear orderable
AGs, we would like to find and algorithm that can
find this linear order, and thus lies in between the two
existing approaches. We have created a backtrack-
ing algorithm for this and are currently implementing
this in the UUAG.

Another approach to this scheduling problem that we
are currently investigating is the use of SAT-solvers.
The scheduling problem can be reduced to a SAT-
formula and efficiently solved by existing solvers.
The advantage is that this opens up possibilities for
the user to influence the resulting schedule, for ex-
ample by providing a cost-function that should be
minimized. This is also ongoing research but the
first results in this area look promising.

Incremental evaluation. We are currently also run-
ning a Ph.D. project that investigates incremental
evaluation of AGs. In this ongoing work we hope
to improve the UUAG compiler by adding support
for incremental evaluation, for example by stati-
cally generating different evaluation orders based on
changes in the input.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

25

https://github.com/MateVM
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://hackage.haskell.org/package/hs-java
http://hackage.haskell.org/package/harpy
http://www.gnu.org/software/classpath/
http://hackage.haskell.org/package/hoopl-3.8.7.4
http://en.wikipedia.org/wiki/Club-Mate
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc

5.3.3 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.9.1 experimental released in November

2013

LQPL (Linear Quantum Programming Language) is a
functional quantum programming language inspired by
Peter Selinger’s paper “Towards a Quantum Program-
ming Language”.
The LQPL system consists of a compiler, a GUI

based front end and an emulator. LQPL incorporates a
simple module / include system (more like C’s include
than Haskell’s import), predefined unitary transforms,
quantum control and classical control, algebraic data
types, and operations on purely classical data.
Starting with the 0.9 series, LQPL is now split into

separate components:

◦ The compiler (Haskell) — available at the command
line and via a TCP/IP interface;

◦ The emulator (which emulates a virtual quantum
machine) (Haskell) — available as a server via a
TCP/IP interface;

◦ The front end (JRuby/Swing) — which connects to
both the compiler and the emulator via TCP/IP.

Version 0.9.1 was a bugfix release.
A screenshot of the interface (showing a probabilistic

list) is included below.

Quantum programming allows us to provide a fair
coin toss:

qdata Coin = {Heads | Tails}
toss ::(; c:Coin) =
{ q = |0>; Had q;

measure q of |0> => {c = Heads}
|1> => {c = Tails}

}

This allows programming of probabilistic algorithms,
such as leader election.
The next major items on the road map are:

◦ Change the TCP/IP data format to something less
verbose;

◦ Implementing a translation of the virtual machine
code into quantum circuits.

Further reading

Documentation and executable downloads may be
found at http://pll.cpsc.ucalgary.ca/lqpl/index.html.
The source code, along with a wiki and bug tracker, is
available at https://bitbucket.org/BrettGilesUofC/lqpl.

5.3.4 free — Free Monads

Report by: Edward Kmett
Participants: Gabriel Gonzalez, Aristid Breitkreuz,

Nickolay Kudasov, Ben Gamari, Matvey
Aksenov, Mihaly Barasz, Twan van

Laarhoven
Status: actively developed

This package provides common definitions for working
with free monads and free applicatives. These are very
useful when it comes to defining EDSLs.
This package also supports cofree comonads, which

are useful for tracking attributes through a syntax tree.
Recently support was added for the free completely-

iterative monad of a monad as well. This can be used
as part of a scheme to deamortize calculations in the
ST s monad.

Further reading

◦ http://hackage.haskell.org/package/free
◦ http://www.haskellforall.com/2012/06/

you-could-have-invented-free-monads.html
◦ http://www.iai.uni-bonn.de/~jv/mpc08.pdf
◦ http:

//comonad.com/reader/2011/free-monads-for-less/
◦ http:

//comonad.com/reader/2011/free-monads-for-less-2/
◦ http:

//comonad.com/reader/2011/free-monads-for-less-3/
◦ http://paolocapriotti.com/assets/applicative.pdf
◦ http:

//skillsmatter.com/podcast/scala/monads-for-free
◦ http://comonad.com/reader/2009/incremental-folds/
◦ http://www.ioc.ee/~tarmo/tday-veskisilla/

uustalu-slides.pdf
◦ https://www.fpcomplete.com/user/edwardk/

oblivious/deamortized-st

26

http://pll.cpsc.ucalgary.ca/lqpl/index.html
https://bitbucket.org/BrettGilesUofC/lqpl
http://hackage.haskell.org/package/free
http://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
http://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
http://www.iai.uni-bonn.de/~jv/mpc08.pdf
http://comonad.com/reader/2011/free-monads-for-less/
http://comonad.com/reader/2011/free-monads-for-less/
http://comonad.com/reader/2011/free-monads-for-less-2/
http://comonad.com/reader/2011/free-monads-for-less-2/
http://comonad.com/reader/2011/free-monads-for-less-3/
http://comonad.com/reader/2011/free-monads-for-less-3/
http://paolocapriotti.com/assets/applicative.pdf
http://skillsmatter.com/podcast/scala/monads-for-free
http://skillsmatter.com/podcast/scala/monads-for-free
http://comonad.com/reader/2009/incremental-folds/
http://www.ioc.ee/~tarmo/tday-veskisilla/uustalu-slides.pdf
http://www.ioc.ee/~tarmo/tday-veskisilla/uustalu-slides.pdf
https://www.fpcomplete.com/user/edwardk/oblivious/deamortized-st
https://www.fpcomplete.com/user/edwardk/oblivious/deamortized-st

5.3.5 bound — Making De Bruijn Succ Less

Report by: Edward Kmett
Participants: Nicolas Pouillard, Jean-Philippe Bernardy,

Andrea Vezzosi, Gabor Greif, Matvey B.
Aksenov

Status: actively developed

This library provides convenient combinators for work-
ing with “locally-nameless” terms. These can be use-
ful when writing a type checker, evaluator, parser, or
pretty printer for terms that contain binders like forall
or lambda, as they ease the task of avoiding variable
capture and testing for alpha-equivalence.
Notably, it uses a representation based on type-safe

generalized De Bruijn indices that lets you naturally
make your expression type into a Monad that permits
capture-avoiding substitution, and the use of Foldable’s
toList and Traversable’s traverse to find free variables.
This makes it much easier to manipulate your syntax
tree with tools you already know how to use, while still
safely avoiding issues with name capture.
The generalized De Bruijn encoding permits asymp-

totic improvement in the running time of many cal-
culations, enabling simultaneous substitution of every-
thing within a complex binder, O(1) lifting, and avoid-
ing paying for the traversal of lifted trees, but the com-
plexity of the encoding is hidden behind a monad trans-
former that provides you with variable capture.

Further reading

◦ http://fpcomplete.com/user/edwardk/bound
◦ http://hackage.haskell.org/package/bound
◦ http://www.slideshare.net/ekmett/

bound-making-de-bruijn-succ-less

27

http://fpcomplete.com/user/edwardk/bound
http://hackage.haskell.org/package/bound
http://www.slideshare.net/ekmett/bound-making-de-bruijn-succ-less
http://www.slideshare.net/ekmett/bound-making-de-bruijn-succ-less

6 Development Tools

6.1 Environments

6.1.1 Haskell IDE From FP Complete

Report by: Michael Snoyman
Status: available, stable

This past September, FP CompleteTM officially
launched the world’s first commercial Haskell IDE and
Development Platform, FP Haskell CenterTM. The
IDE includes a Haskell compiler and a continually up-
dated set of vetted, tested and supported libraries and
code templates. There is no need to run Cabal or other
installers to use it.
Key features include:

◦ Continuous compile with real-time type information
and error messaging

◦ Haddocks documentation and Hoogle search

◦ Syntax highlighting

◦ Git/GitHub integration

◦ Team management tools

◦ Remote version control

◦ An integrated web deployment platform

◦ Subscriptions include continuous refresh releases on
new features, updates, bug fixes and free community
support

FP Complete started this project by researching ex-
isting solutions to determine what to include in the
IDE. They looked at Haskell editor extensions, espe-
cially Vim and Emacs, and at existing Haskell IDEs
like Eclipse FP, Leksah, and Yi as well as looking
at what supporting functionality was readily available:
the GHC API, Hoogle, Haddock, Hlint, and many oth-
ers. From there, FP Complete focused on creating an
intuitive interface to make programing within the IDE
a seamless experience. To ensure FP Haskell Center is
meeting the demands of the Haskell community, FP
complete is constantly seeking feedback and sugges-
tions from users and the Haskell community.
Based on the Beta period and the two months the

IDE has officially been on the market, the feedback and
activity on the IDE has been very positive. One Beta
user, Armando Blancas, a Tools Engineer at Carrier IQ,
Inc., commented, “My first impression of FP Haskell
IDE is it has a well-designed and polished user interface

that feels very intuitive and easy to explore. As a user,
I like having things done for me. For example within
the IDE, the platform is just there, auto-save, auto-
compile, and a push-button program execution lets me
just get on with my work.”
Three levels of subscription are available. The first is

the commercial Haskell platform, FP Haskell Center –
Professional. The second is FP Haskell Center – Per-
sonal, which is designed for non-commercial program-
mers. Lastly, there is a free academic version for all
current students and professors.

Further reading

http://www.fpcomplete.com/

6.1.2 EclipseFP

Report by: JP Moresmau
Participants: building on code from Alejandro Serrano

Mena, Thomas ten Cate, B. Scott Michel,
Thiago Arrais, Leif Frenzel, Martijn
Schrage, Adam Foltzer and others

Status: stable, maintained, and actively developed

EclipseFP is a set of Eclipse plugins to allow working
on Haskell code projects. Its goal is to offer a fully
featured Haskell IDE in a platform developers coming
from other languages may already be familiar with. It
provides the following features, among others:

Cabal Integration
Provides a .cabal file editor, uses Cabal settings for
compilation, allows the user to install Cabal pack-
ages from within the IDE. Can also use cabal-dev to
provide sandboxing and project dependencies inside
an Eclipse workspace.

28

http://www.fpcomplete.com/

GHC Integration
Compilation is done via the GHC API, syntax color-
ing uses the GHC Lexer.

Productive Coding
Quick fixes for common errors, warnings, and HLint
suggestions. Automatic organization of imports. Au-
tocompletion. Find and rename across modules and
projects. Stylish-haskell integration for consistent
code formatting.

Debugging
Easy to launch GHCi sessions on any module with
proper parameters. Manages breakpoints, the eval-
uation of variables and expressions uses the Eclipse
debugging framework, and requires no knowledge of
GHCi syntax. Also integrates with Yesod (launch
the web application from EclipseFP). Running a pro-
gram with profiling options results in profiling graphs
being displayed in the UI for easy analysis.

Browsing
The Haskell Browser perspective allows the user to
navigate the list of packages and their documenta-
tion. It integrates seamlessly with Hackage. The
Haskell module editor provides code folding, outline
view of the module, popup of types and documenta-
tion mouse hovers, etc.

Testing
EclipseFP integrates with Haskell test frameworks,
most notably HTF, to provide UI feedback on test
failures.

The source code is fully open source (Eclipse Li-
cense) on github and anyone can contribute. Current
version is 2.5.6, released in December 2013, and more
versions with additional features are planned and ac-
tively worked on. Most notably, version 2.6 should in-
clude support for Cabal 1.18 sandboxes. Feedback on
what is needed is welcome! The website has informa-
tion on downloading binary releases and getting a copy
of the source code. Support and bug tracking is han-
dled through Sourceforge forums and github issues. We
welcome contributors!

Further reading

◦ http://eclipsefp.github.com/
◦ http://jpmoresmau.blogspot.com/

6.1.3 Ariadne

Report by: Roman Cheplyaka
Participants: Oleksandr Manzyuk
Status: early development

Ariadne is a new tool to provide the go-to-definition
functionality for Haskell code. It is designed as a server

which responds to queries from IDEs and text editor
plugins.
Editor plugins are available for vim and emacs. We

are looking forward to more editors and IDEs getting
Ariadne support.
The server uses the haskell-names name resolution

library (→ 7.3.5). So it is fully Haskell-aware and can
properly locate prefixed names (such as T.head) and lo-
cally bound names, which makes it much smarter than
TAGS.
Some of the future work directions are:
◦ finding definitions in other files (as of 0.1.2, Ariadne

can only find definitions in the current file)
◦ getting information from .cabal files (such as the lan-

guage extensions and dependency information)
◦ working with unsaved buffers

Further reading

◦ Ariadne homepage:
https://github.com/feuerbach/ariadne

◦ Video demonstration: http://youtu.be/-sbGijbhxAc
◦ Ariadne plugin for vim:

https://github.com/feuerbach/ariadne-vim
◦ Ariadne plugin for emacs:

https://github.com/manzyuk/ariadne-el

6.1.4 ghc-mod — Happy Haskell Programming

Report by: Kazu Yamamoto
Status: open source, actively developed

ghc-mod is a package to enrich Haskell programming
on editors including Emacs, Vim and Sublime. The
ghc-mod package on Hackage includes the ghc-mod
command, new ghc-modi command and Emacs front-
end.
Emacs front-end provides the following features:

Completion You can complete a name of keyword,
module, class, function, types, language extensions,
etc.

Code template You can insert a code template ac-
cording to the position of the cursor. For instance,
import Foo (bar) is inserted if bar is missing.

Syntax check Code lines with error messages are au-
tomatically highlighted. You can display the error
message of the current line in another window. hlint
can be used instead of GHC to check Haskell syntax.

Document browsing You can browse the module doc-
ument of the current line either locally or on Hack-
age.

Expression type You can display the type/information
of the expression on the cursor.

29

http://eclipsefp.github.com/
http://jpmoresmau.blogspot.com/
https://github.com/feuerbach/ariadne
http://youtu.be/-sbGijbhxAc
https://github.com/feuerbach/ariadne-vim
https://github.com/manzyuk/ariadne-el

There are two Vim plugins:

◦ ghcmod-vim

◦ syntastic

Here are new features:

◦ New ghc-modi command provides a persistent ses-
sion to make response time drastically faster. So,
now you can use Emacs front-end without stress.

◦ Emacs front-end provides a way to solve the import
hell.

◦ GHC 7.8 is supported.

Further reading

http://www.mew.org/~kazu/proj/ghc-mod/en/

6.1.5 HaRe — The Haskell Refactorer

Report by: Alan Zimmerman
Participants: Francisco Soares, Chris Brown, Stephen

Adams, Huiqing Li

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactor-
ings in Haskell. The HaRe tool is now in its seventh
major release. HaRe supports full Haskell 2010, and
is integrated with (X)Emacs. All the refactorings that
HaRe supports, including renaming, scope change, gen-
eralization and a number of others, are module-aware,
so that a change will be reflected in all the modules
in a project, rather than just in the module where the
change is initiated.
Snapshots of HaRe are available from our GitHub

repository (see below) and Hackage. There are re-
lated presentations and publications from the group
(including LDTA’05, TFP’05, SCAM’06, PEPM’08,
PEPM’10, TFP’10, Huiqing’s PhD thesis and Chris’s
PhD thesis). The final report for the project appears
on the University of Kent Refactoring Functional Pro-
grams page (see below).
There is also a Google+ community called HaRe, and

an IRC channel on freenode called #haskell-refactorer.

Recent developments

◦ HaRe 0.7, which is a major change from 0.6 as it
makes use of the GHC library for analysis, has been

released; HaRe 0.7 is available on Hackage, and also
downloadable from our GitHub page

◦ HaRe 0.7 is alpha software, and comes with a limited
number of refactorings, as the work so far has con-
centrated on getting the new architecture in place
to make use of the GHC AST. The new architecture
has stabilised and the token management while ma-
nipulating the AST is able to preserve layout, thus
maintaining the original layout as well as syntacti-
cally correct alignment as new elements are added or
have their size changed.

◦ There is plenty to do, so anyone who has an interest
is welcome to fork the repo and get stuck in.

◦ Stephen Adams is starting his PhD at the University
of Kent and will be working on data refactoring in
Haskell.

Further reading

◦ http://www.cs.kent.ac.uk/projects/refactor-fp/
◦ https://github.com/alanz/HaRe

6.1.6 IHaskell: Haskell for Interactive Computing

Report by: Andrew Gibiansky
Status: very alpha (but usable!)

IHaskell is an interactive interface for Haskell devel-
opment, designed with the goal of replacing GHCi in
some contexts. In addition to a simple REPL, it pro-
vides a notebook interface (in the style of Mathematica
or Maple). The notebook interface runs in a browser
and provides the user with editable cells in which they
can create and execute code. The output of this code
is displayed in a rich format right below, and if it’s
not quite right, the user can go back, edit the cell, and
re-execute. This rich format defaults to the same bor-
ing plain-text output as GHCi would give you; how-
ever, library authors will be able to define their own
formats for displaying their data structures in a useful
way, with the only limit being that the display output
must be viewable in a browser (images, HTML, CSS,
Javascript). For instance, integration with graphing li-
braries could produce in-browser data visualizations,
while integration with Aeson’s JSON could produce
a syntax-highlighted JSON output for complex data
structures.

30

http://www.mew.org/~kazu/proj/ghc-mod/en/
http://www.cs.kent.ac.uk/projects/refactor-fp/
https://github.com/alanz/HaRe

Implementation-wise, IHaskell is a language kernel
backend for the project known as IPython. Although it
has the name “Python” in the name, IPython provides
a language-agnostic protocol by which interactive code
environments such as REPLs and notebooks can com-
municate with a language evaluator backend. IHaskell
is a language kernel which uses ZeroMQ to commu-
nicate with IPython frontends and the GHC API to
evaluate code.

Although IHaskell is in very early stages, the fu-
ture looks incredibly bright. Integration with popu-
lar Haskell libraries can give us beautiful and poten-
tially interactive visualizations of Haskell data struc-
tures. On one hand, this could range from simple things
such as foldable record structures — imagine being able
to explore complex nested records by folding and un-
folding bits and pieces at a time, instead of trying to
mentally parse them from the GHCi output. On the
other end, we could have interactive outputs, such as
Parsec parsers which generate small input boxes that
run the parser on any input they’re given. And these
things are just the beginning — tight integration with

IPython may eventually be able to provide things such
as code-folding in your REPL or an integrated debug-
ger interface.
If this sounds good to you: contribute! We’re in

dire need of developers to make this beautiful dream
a reality, and I would be happy to help you get up to
speed quickly.

Further reading

https://github.com/gibiansky/IHaskell

6.2 Code Management

6.2.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent release, Darcs 2.8.4 (with GHC 7.6

support), was in Februrary 2013. Some key changes
in Darcs 2.8 include a faster and more readable darcs
annotate, a darcs obliterate -O which can be used
to conveniently “stash” patches, and hunk editing for
the darcs revert command.
Our work on the next Darcs release continues. In our

sights are the new ‘darcs rebase‘ command (for merging
and amending patches that would be hard to do with
patch theory alone), the patch index optimisation (for
faster local lookups on repositories with long histories),
and the packs optimisation (for faster darcs get).
This summer, we will be participating in the Google

Summer of Code with two exciting new projects:
Marcio Diaz will be helping us to make better use of

our hashed file storage mechanism. His work will start
with long term performance improvements (garbage
collection mechanism, bucketed local cache) and move
on to new some new darcs undelete and undo oper-
ations that will bring us even closer to the dream of
universal undoability.
Ale Gadea will be looking how we can squeeze more

performance and usability out of Darcs’s patch reorder-
ing mechanism. He will speed up the ‘darcs optimize –
reorder‘ command used to tidy up repository, and move

31

https://github.com/gibiansky/IHaskell

on to a big usabaility improvement for darcs send, us-
ing minimal contexts to ensure that patch bundles can
always be applied in repositories that could theoreti-
cally accept them. Finally, he will investigate one of
our long standing wishes for a patch dependency graph
mechanism.
Darcs is free software licensed under the GNU GPL

(version 2 or greater). Darcs is a proud member of
the Software Freedom Conservancy, a US tax-exempt
501(c)(3) organization. We accept donations at http:
//darcs.net/donations.html.

Further reading

◦ http://darcs.net
◦ http://darcs.net/Development/Priorities
◦ Post GSoC 2013 hub.darcs.net update

http://joyful.com/blog/
2013-09-26-darcsden-darcs-hub-gsoc-complete.html

6.2.2 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.2.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
DarcsWatch continues to be used by the xmonad

project, the Darcs project itself, and a few developers.
At the time of writing (April 2014), it was tracking 39
repositories and 4620 patches submitted by 254 users.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http:

//darcs.nomeata.de/darcswatch/documentation.html

6.2.3 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg and cabal.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.
cab delete now actually removes a package and its

documentation as well as unregistering the package.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.3 Interfacing to other Languages

6.3.1 java-bridge

Report by: Julian Fleischer
Status: active development

The Java Bridge is a library for interfacing the Java
Virtual Machine with Haskell code and vice versa. It
comes with a rich DSL for discovering and invoking
Java methods and allows to set up callbacks into the
Haskell runtime. If exported via the FFI it is also pos-
sible to use Haskell libraries from within the JVM na-
tively.
The package also offers a bindings generator which

translates the API of a Java class or package into a
Haskell API. Using the bindings generator it is possible
to generate a Haskell module with a clean Haskell API
that invokes Java behind the scenes. Typical conver-
sions, for example byte arrays to lists or Java maps to
lists of key value pairs, are taken care of. The generated
bindings and predefined conversions are extensible by
defining appropriate type class instances accordingly.
While the documentation for the bindings generator

still needs improvement, the overall library is in a quite
usable state.
The java bridge is published under the MIT license

and available via hackage as java-bridge.

Further reading

If you want to know more about the inner workings:
The Java Bridge has been created as part of a
bachelor thesis which you can access at
http://page.mi.fu-berlin.de/scravy/
bridging-the-gap-between-haskell-and-java.pdf.

6.3.2 fficxx

Report by: Ian-Woo Kim
Participants: Ryan Feng
Status: Actively Developing

fficxx (“eff fix”) is an automatic haskell Foreign Func-
tion Interface (FFI) generator to C++. While haskell
has a well-specified standard for C FFI, interfacing
C++ library to haskell is notoriously hard. The goal
of fficxx is to ease making haskell-C++ binding and
to provide relatively nice mapping between two com-
pletely different programming paradigms.
To make a C++ binding, one write a haskell model

of the C++ public interfaces, and then fficxx auto-
matically generates necessary boilerplate codes in sev-

32

http://darcs.net/donations.html
http://darcs.net/donations.html
http://darcs.net
http://darcs.net/Development/Priorities
http://joyful.com/blog/2013-09-26-darcsden-darcs-hub-gsoc-complete.html
http://joyful.com/blog/2013-09-26-darcsden-darcs-hub-gsoc-complete.html
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://www.mew.org/~kazu/proj/cab/en/
http://page.mi.fu-berlin.de/scravy/bridging-the-gap-between-haskell-and-java.pdf
http://page.mi.fu-berlin.de/scravy/bridging-the-gap-between-haskell-and-java.pdf

eral levels: C++-C shims, C-haskell FFI, low level
haskell type representation for C++ class/object and
high level haskell type and typeclass representation and
some casting functions. The generated codes are orga-
nized into proper haskell modules to minimize name
space collision and packaged up as cabal packages.
The tool is designed to adapt different configurations

and unique needs, such as splitting bindings into multi-
ple cabal packages and renaming classes and functions
to resolve some obstacles that are originated from nam-
ing collision, which is quite inevitable in making an FFI
library.
The information of a C++ library can be written

in terms of simple haskell expressions, aiming at good
usability for ordinary haskell users. For example, if we
have a C++ library which has the following interface:

class A {
public:

A();
virtual void Foo();

};
class B : public A {
public:
B();
virtual void Bar();

};

one provide the model in terms of haskell data type
defined in fficxx library:

a = myclass "A" [] mempty Nothing
[Constructor [] Nothing
, Virtual void_ "Foo" [] Nothing]

b = myclass "B" [a] mempty Nothing
[Constructor [] Nothing
, Virtual void_ "Bar" [] Nothing]

One of the projects that successfully uses fficxx is
HROOT which is a haskell binding to the ROOT li-
brary. ROOT is a big C++ histogramming and statis-
tical analysis framework. Due to fficxx, the HROOT
package faithfully reflects the ROOT C++ class hier-
archy, and the user from C++ can use the package
relatively easily.
fficxx is available on hackage and being developed

on the author’s github (http://github.com/wavewave/
fficxx). In 2013, with Ryan Feng, we tried to make
fficxx more modernized with more transparent sup-
port of various C/C++ data types, including consis-
tent multiple pointer/reference operations and function
pointers. fficxx is still being in progress in incorporat-
ing the new pointer operations. C++ template support
is now planned.

Further reading

◦ http://ianwookim.org/fficxx

6.4 Deployment

6.4.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
Hackage is a distribution point for Cabal packages.

It is an online archive of Cabal packages which can
be used via the website and client-side software such
as cabal-install. Hackage enables users to find, browse
and download Cabal packages, plus view their API doc-
umentation.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

The Cabal packaging system has always faced grow-
ing pains. We have been through several cycles where
we’ve faced chronic problems, made major improve-
ments which bought us a year or two’s breathing space
while package authors and users become ever more am-
bitious and start to bump up against the limits again.
In the last few years we have gone from a situation
where 10 dependencies might be considered a lot, to a
situation now where the major web frameworks have
a 100+ dependencies and we are again facing chronic
problems.
The Cabal/Hackage maintainers and contributors

have been pursuing a number of projects to address
these problems:
The IHG sponsored Well-Typed (→ 8.1) to work on

cabal-install resulting in a new package dependency
constraint solver. This was incorporated into the cabal-
install-0.14 release in the spring, and which is now
in the latest Haskell Platform release. The new de-
pendency solver does a much better job of finding
install plans. In addition the cabal-install tool now
warns when installing new packages would break exist-
ing packages, which is a useful partial solution to the
problem of breaking packages.
We had two Google Summer of Code projects on Ca-

bal this year, focusing on solutions to other aspects of
our current problems. The first is a project by Mikhail
Glushenkov (and supervised by Johan Tibell) to incor-
porate sandboxing into cabal-install. In this context
sandboxing means that we can have independent sets
of installed packages for different projects. This goes
a long way towards alleviating the problem of differ-
ent projects needing incompatible versions of common

33

http://github.com/wavewave/fficxx
http://github.com/wavewave/fficxx
http://ianwookim.org/fficxx

dependencies. There are several existing tools, most
notably cabal-dev, that provide some sandboxing fa-
cility. Mikhail’s project was to take some of the ex-
perience from these existing tools (most of which are
implemented as wrappers around the cabal-install pro-
gram) and to implement the same general idea, but
properly integrated into cabal-install itself. We expect
the results of this project will be incorporated into a
cabal-install release within the next few months.
The other Google Summer of Code project this year,

by Philipp Schuster (and supervised by Andres Löh), is
also aimed at the same problem: that of different pack-
ages needing inconsistent versions of the same common
dependencies, or equivalently the current problem that
installing new packages can break existing installed
packages. The solution is to take ideas from the Nix
package manager for a persistent non-destructive pack-
age store. In particular it lifts an obscure-sounding but
critical limitation: that of being able to install multi-
ple instances of the same version of a package, built
against different versions of their dependencies. This
is a big long-term project. We have been making steps
towards it for several years now. Philipp’s project has
made another big step, but there’s still more work be-
fore it is ready to incorporate into ghc, ghc-pkg and
cabal.

Looking forward

Johan Tibell and Bryan O’Sullivan have volunteered
as new release managers for Cabal. Bryan moved all
the tickets from our previous trac instance into github,
allowing us to move all the code to github. Johan man-
aged the latest release and has been helping with man-
aging the inflow of patches. Our hope is that these
changes will increase the amount of contributions and
give us more maintainer time for reviewing and inte-
grating those contributions. Initial indications are pos-
itive. Now is a good time to get involved.
The IHG is currently sponsoring Well-Typed to work

on getting the new Hackage server ready for switchover,
and helping to make the switchover actually happen.
We have recruited a few volunteer administrators for
the new site. The remaining work is mundane but im-
portant tasks like making sure all the old data can be
imported, and making sure the data backup system is
comprehensive. Initially the new site will have just a
few extra features compared to the old one. Once we
get past the deployment hurdle we hope to start get-
ting more contributions for new features. The code is
structured so that features can be developed relatively
independently, and we intend to follow Cabal and move
the code to github.
We would like to encourage people considering con-

tributing to take a look at the bug tracker on github,
take part in discussions on tickets and pull requests, or
submit their own. The bug tracker is reasonably well
maintained and it should be relatively clear to new con-

tributors what is in need of attention and which tasks
are considered relatively easy. For more in-depth dis-
cussion there is also the cabal-devel mailing list.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection:

http://hackage.haskell.org/
◦ Bug tracker: https://github.com/haskell/cabal/

6.4.2 Stackage: the Library Dependency Solution

Report by: Michael Snoyman
Status: new

Stackage is a project that began in November 2012 with
the mission of making it possible to build stable, vetted
sets of packages. The overall goal was to make the Ca-
bal (→ 6.4.1) experience better. A year into the project
it’s exciting to share there has been a lot of activity by
FP Complete and greater Haskell community to make
Stackage a success. The contributions have been amaz-
ing, with a huge number of package authors signing up
to contribute and maintain their packages on Stackage.
Through Stackage, FP Complete monitors the pack-

age upload logs and signals alerts when a new uploader
uploads a package for the first time. For example, if
Alice uploads the package alice−package, and Bob up-
loads a new version a few days later, Stackage will get
a warning and contact Alice. Internally, FP Complete
won’t build any new library sets until the problem has
been resolved.
Each time FP Complete performs a Stackage build,

test suites are automatically run, which has uncov-
ered a number of regressions in upstream packages.
These reports are filed upstream as soon as possible,
and due to the wonderful nature of the Haskell com-
munity, bugs tend to be fixed very quickly. As the FP
Haskell Center user base grows, more bug reports are
coming from users. FP Complete is working with up-
stream providers to get these bugs triaged and fixed.
As part of our stable library mission, FP Complete
has the infrastructure in place to maintain patchsets
against older versions of packages, to simplify the task
of backporting fixes.
Since Stackage started, notifications for outdated de-

pendencies have drastically decreased. This is a sign
the Haskell ecosystem is beginning to stabilize. Pre-
viously, it was to be expected that breaking releases
would happen on a regular basis, but Stackage is chang-
ing that. To date, users have contributed roughly 200
separate packages to the Stackage package collection.
When all of the deep dependencies of these packages are
included, FP Complete is currently building about 480
total packages in a full Stackage build, or roughly 9%
of all Hackage packages. This is great news for anyone
using Stackage directly to build a package database, as
they gain direct access to a huge number of the most

34

http://www.haskell.org/cabal
http://hackage.haskell.org/
https://github.com/haskell/cabal/

popular Haskell packages, without worries of compati-
bility.
As part of regular Stackage maintenance, three sep-

arate daily Stackage builds are maintained, one using
the most recent Haskell Platform, one using the previ-
ous release, and one using vanilla GHC 7.4 (no Haskell
Platform constraints). Every day, these jobs run, try
to compile all of these packages, and run the full set of
test suites. The process has found a large number of
simple compilation issues, overly restrictive cabal ver-
sion bounds, and a number of actual bugs. Stackage
is living up to its goal of helping maintainers raise the
quality of their code.
This is an excellent opportunity for the Haskell com-

munity to get involved! If you’ve written some code
that you’re actively maintaining, get it in Stackage.
You’ll be widening the potential audience of users for
your code by getting your package into FP Haskell Cen-
ter, and you’ll get some helpful feedback from the au-
tomated builds so that users can more reliably build
your code.

Further reading

https://www.fpcomplete.com/blog/2013/09/
state-of-stackage

6.4.3 standalone-haddock

Report by: Roman Cheplyaka
Status: working

standalone-haddock solves the problem of publishing
haddock documentation on the web.
When you simply run cabal haddock, the result-

ing HTML documentation contains hyperlinks to other
packages on your system. As a result, you cannot pub-
lish it on the internet (well, you can, but the links will
be broken).
standalone-haddock takes several packages for

which you want to publish documentation. It gener-
ates documentation for them with proper links:
◦ links to identifiers inside this package set are relative
◦ links to identifiers from external packages lead to

hackage
Thus the resulting directory with HTML files is re-

locatable and publishable.

Further reading

◦ README: http:
//documentup.com/feuerbach/standalone-haddock

◦ An example of the generated documentation:
http://haskell-suite.github.io/docs/

6.5 Others

6.5.1 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.18 and has been released

in September 2012. Development repository and bug
tracker are on GitHub. There are still plans for a
rewrite of lhs2TEX with the goal of cleaning up the in-
ternals and making the functionality of lhs2TEX avail-
able as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

6.5.2 ghc-heap-view

Report by: Joachim Breitner
Participants: Dennis Felsing
Status: active development

The library ghc-heap-view provides means to inspect
the GHC’s heap and analyze the actual layout of
Haskell objects in memory. This allows you to inves-
tigate memory consumption, sharing and lazy evalua-
tion.
This means that the actual layout of Haskell objects

in memory can be analyzed. You can investigate shar-
ing as well as lazy evaluation using ghc-heap-view.
The package also provides the GHCi command

:printHeap, which is similar to the debuggers’ :print
command but is able to show more closures and their
sharing behaviour:

> let x = cycle [True, False]
> :printHeap x
_bco
> head x
True
> :printHeap x
let x1 = True : _thunk x1 [False]
in x1
> take 3 x
[True,False,True]

35

https://www.fpcomplete.com/blog/2013/09/state-of-stackage
https://www.fpcomplete.com/blog/2013/09/state-of-stackage
http://documentup.com/feuerbach/standalone-haddock
http://documentup.com/feuerbach/standalone-haddock
http://haskell-suite.github.io/docs/
http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex

> :printHeap x
let x1 = True : False : x1
in x1

The graphical tool ghc-vis (→ 6.5.3) builds on ghc-
heap-view.

Further reading

◦ http://www.joachim-breitner.de/blog/archives/
548-ghc-heap-view-Complete-referential-opacity.html

◦ http://www.joachim-breitner.de/blog/archives/
580-GHCi-integration-for-GHC.HeapView.html

◦ http://www.joachim-breitner.de/blog/archives/
590-Evaluation-State-Assertions-in-Haskell.html

6.5.3 ghc-vis

Report by: Dennis Felsing
Participants: Joachim Breitner
Status: active development

The tool ghc-vis visualizes live Haskell data structures
in GHCi. Since it does not force the evaluation of the
values under inspection it is possible to see Haskell’s
lazy evaluation and sharing in action while you interact
with the data.
Ghc-vis supports two styles: A linear rendering sim-

ilar to GHCi’s :print, and a graph-based view where
closures in memory are nodes and pointers between
them are edges. In the following GHCi session a par-
tially evaluated list of fibonacci numbers is visualized:

> let f = 0 : 1 : zipWith (+) f (tail f)
> f !! 2
> :view f

At this point the visualization can be used interac-
tively: To evaluate a thunk, simply click on it and im-
mediately see the effects. You can even evaluate thunks

which are normally not reachable by regular Haskell
code.
Ghc-vis can also be used as a library and in combi-

nation with GHCi’s debugger.

Further reading

http://felsin9.de/nnis/ghc-vis

6.5.4 Hat — the Haskell Tracer

Report by: Olaf Chitil

Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.
Hat helps locating errors in programs. Furthermore,

it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.
Tracing a program with Hat consists of two phases:

First the program needs to be run such that it addi-
tionally writes a trace to file. To add trace-writing,
hat-trans translates all the source modules Module of
a Haskell program into tracing versions Hat.Module.
These are compiled as normal and when run the pro-
gram does exactly the same as the original program
except for additionally writing a trace to file. Second,
after the program has terminated, you view the trace
with a tool. Hat comes with several tools for selec-
tively viewing fragments of the trace in different ways:
hat-observe for Hood-like observations, hat-trail for ex-
ploring a computation backwards, hat-explore for freely
stepping through a computation, hat-detect for algo-
rithmic debugging, . . .
Hat is distributed as a package on Hackage that

contains all Hat tools and tracing versions of stan-
dard libraries. Currently Hat supports Haskell 98 plus
some language extensions such as multi-parameter type
classes and functional dependencies. For portability all
viewing tools have a textual interface; however, many
tools use some Unix-specific features and thus run on
Unix / Linux / OS X, but not on Windows.
Hat was mostly built around 2000–2004 and then

disappeared because of lack of maintenance. Now it is
back and new developments have started.
The source-to-source transformation of hat-trans has

been completely rewritten to use the haskell-src-exts
parser. Thus small bugs of the old parser disappeared
and in the future it will be easier to cover more Haskell
language extensions. This work was released on Hack-
age as Hat 2.8.
When a traced program uses any libraries besides

the standard Haskell 98 / 2010 ones, these libraries
currently have to be transformed (in trusted mode). So

36

http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://felsin9.de/nnis/ghc-vis

the plan for the next release of Hat is to enable Hat to
use trusted libraries without having to transform them.
Feedback on Hat is welcome.

Further reading

◦ Initial website: http://projects.haskell.org/hat
◦ Hackage package:
http://hackage.haskell.org/package/hat

6.5.5 Tasty

Report by: Roman Cheplyaka
Participants: Oliver Charles, Danny Navarro and others
Status: active development; in use

Tasty is a new testing framework for Haskell that is
quickly gaining popularity in the Haskell community.
As of April 2014, 8 months after the initial release,
it has 88 reverse dependencies on hackage, of which 76
are packages using tasty for their tests, and 12 are tasty
add-on packages.
Its main selling points are:

Generality Tasty doesn’t force you to commit to any
particular testing methodology (such as BDD); it
should be possible to use any methodology with
tasty, as well as simply write tests without any
methodology.

Extensibility Whether you want to implement a new
way to write tests, or a new way to run tests, it
should be possible with tasty.

Tasty is easy to use and Just Works One of the most
common use cases is simply to organize multiple unit
tests into a single test suite, which is as simple as

import Test.Tasty
import Test.Tasty.HUnit

main =
defaultMain $
testGroup "Unit tests"
[testCase "Addition" $

1 + 2 @?= 3
, testCase "List indexing" $

[1,2,3] !! 1 @?= 2
, testCase "Power" $

assertBool "2^40 is positive" $
(2^40 :: Int) > 0

]

If you compile and run the above program, you’ll see
the following output, nicely colored:

Unit tests

Addition: OK
List indexing: OK
Power: FAIL
2^40 is positive

1 out of 3 tests failed

Tasty add-on packages generally fall into one of
the two categories: ones that add new kinds of tests
(“providers”), and ones that add new ways to run the
test suite (“ingredients”).
The existing providers let you embed unit tests,

golden tests, quickcheck and smallcheck properties into
your test suite.
The existing ingredients let you manage golden tests,

produce test results in HTML and XML formats, re-
run only tests that failed during the last run, and more.
Tasty itself can acquire and release shared resources

for groups of tests, run tests in parallel, include or ex-
clude tests by name using patterns, apply timeouts to
individual tests, and has several console running modes
(normal, hide successes, and quiet).
Tasty also has become more social: we now have a

mailing list http://bit.ly/tasty-ml and an IRC channel
(#tasty on FreeNode), where you can get help with
tasty.

Further reading

For more information about tasty and how to use
it, please consult the README at http://bit.ly/
tasty-home

37

http://projects.haskell.org/hat
http://hackage.haskell.org/package/hat
http://bit.ly/tasty-ml
http://bit.ly/tasty-home
http://bit.ly/tasty-home

7 Libraries, Applications, Projects

7.1 Language Features

7.1.1 Conduit

Report by: Michael Snoyman
Status: stable

While lazy I/O has served the Haskell community well
for many purposes in the past, it is not a panacea.
The inherent non-determinism with regard to resource
management can cause problems in such situations as
file serving from a high traffic web server, where the
bottleneck is the number of file descriptors available to
a process.
The left fold enumerator was one of the first ap-

proaches to dealing with streaming data without us-
ing lazy I/O. While it is certainly a workable solution,
it requires a certain inversion of control to be applied
to code. Additionally, many people have found the
concept daunting. Most importantly for our purposes,
certain kinds of operations, such as interleaving data
sources and sinks, are prohibitively difficult under that
model.
The conduit package was designed as an alternate

approach to the same problem. The root of our simplifi-
cation is removing one of the constraints in the enumer-
ator approach. In order to guarantee proper resource
finalization, the data source must always maintain the
flow of execution in a program. This can lead to con-
fusing code in many cases. In conduit, we separate out
guaranteed resource finalization as its own component,
namely the ResourceT transformer.
Once this transformation is in place, data produc-

ers, consumers, and transformers (known as Sources,
Sinks, and Conduits, respectively) can each maintain
control of their own execution, and pass off control via
coroutines. The user need not deal directly with any
of this low-level plumbing; a simple monadic interface
(inspired greatly by the pipes package) is sufficient for
almost all use cases.
Since its initial release, conduit has been through

many design iterations, all the while keeping to its ini-
tial core principles. Since the last HCAR, we’ve re-
leased version 1.1. This release introduces no real API
changes. Instead, code from various packages has been
consolidated into the simpler conduit and conduit-extra
hierarchy.
In addition, two new packages have been introduced.

conduit-combinators provides a complete set of con-
duit helper functions, working both on chunked data
(e.g., Text or ByteString) and unchunked. This pack-
age takes advantage of mono-traversable to abstract

over many common data types. In addition, streaming-
commons has been spawned, which is a common pack-
age for various streaming data libraries to share code
in.
There is a rich ecosystem of libraries available to

be used with conduit, including cryptography, network
communications, serialization, XML processing, and
more.
The library is available on Hackage. There is an in-

teractive tutorial available on the FP Complete School
of Haskell. You can find many conduit-based packages
in the Conduit category on Hackage as well.

Further reading

◦ http://hackage.haskell.org/package/conduit
◦ https://www.fpcomplete.com/user/snoyberg/

library-documentation/conduit-overview
◦ http://hackage.haskell.org/packages/archive/pkg-list.

html#cat:conduit

7.1.2 lens

Report by: Edward Kmett
Participants: many others
Status: very actively developed

The lens package provides families of lenses, isomor-
phisms, folds, traversals, getters and setters. That is
to say, it provides a rich, compositional vocabulary for
separating “what you want to do” from “what you want
to do it to” built upon rigorous foundations.
Compared to other libraries that provide lenses, key

distinguishing features for lens are that it comes “bat-
teries included” with many useful lenses for the types
commonly used from the Haskell Platform, and with
tools for automatically generating lenses and isomor-
phisms for user-supplied data types.
Also, included in this package is a variant of

Neil Mitchell’s uniplate generic programming library,
modified to provide a Traversal and with its combina-
tors modified to work with arbitrary traversals.
Moreover, you do not need to incur a dependency on

the lens package in order to supply (or consume) lenses
or most of the other lens-like constructions offered by
this package.

Further reading

◦ Simon Peyton Jones:
http://skillsmatter.com/podcast/scala/
lenses-compositional-data-access-and-manipulation

◦ Edward Kmett:
http://www.youtube.com/watch?v=cefnmjtAolY

38

http://hackage.haskell.org/package/conduit
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://skillsmatter.com/podcast/scala/lenses-compositional-data-access-and-manipulation
http://skillsmatter.com/podcast/scala/lenses-compositional-data-access-and-manipulation
http://www.youtube.com/watch?v=cefnmjtAolY

◦ Lens Development, Visualized:
http://www.youtube.com/watch?v=
ADAprOOgi-A&feature=youtu.be&hd=1

◦ http://hackage.haskell.org/package/lens
◦ http://lens.github.io/
◦ https://github.com/ekmett/lens/wiki
◦ https://github.com/ekmett/lens/issues
◦ http://statusfailed.com/blog/2013/01/26/

haskells-strength-generalising-with-lenses.html
◦ http://ocharles.org.uk/blog/posts/

2012-12-09-24-days-of-hackage-lens.html
◦ http://www.haskellforall.com/2013/05/

program-imperatively-using-haskell.html
◦ https://www.fpcomplete.com/school/

to-infinity-and-beyond/pick-of-the-week/
a-little-lens-starter-tutorial

◦ http://stackoverflow.com/questions/5767129/
lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/
5769285#5769285

◦ http://comonad.com/reader/2012/mirrored-lenses/
◦ http://r6.ca/blog/20121209T182914Z.html
◦ http://r6.ca/blog/20120623T104901Z.html

7.1.3 folds

Report by: Edward Kmett
Status: actively developed

This package provides a playground full of resumable
comonadic folds and folding homomorphisms between
them.

Further reading

◦ http://hackage.haskell.org/package/folds
◦ https://www.fpcomplete.com/user/edwardk/

cellular-automata/part-2
◦ http://squing.blogspot.com/2008/11/

beautiful-folding.html
◦ http://conal.net/blog/posts/

another-lovely-example-of-type-class-morphisms
◦ http:

//conal.net/blog/posts/more-beautiful-fold-zipping
◦ http://www.haskellforall.com/2013/08/

composable-streaming-folds.html

7.1.4 machines

Report by: Edward Kmett
Participants: Anthony Cowley, Shachaf Ben-Kiki, Paul

Chiusano, Nathan van Doorn
Status: actively developed

Ceci n’est pas une pipe
This package exists to explore the design space of

streaming calculations. Machines are demand-driven
input sources like pipes or conduits, but can support
multiple inputs.
You design a Machine by writing a Plan. You then

construct the machine from the plan.

Simple machines that take one input are called a Pro-
cess. More generally you can attach a Process to the
output of any type of Machine, yielding a new Ma-
chine. More complicated machines provide other ways
of connecting to them.
Typically the use of machines proceeds by using sim-

ple plans into machine Tees and Wyes, capping many
of the inputs to those with possibly monadic sources,
feeding the rest input (possibly repeatedly) and calling
run or runT to get the answers out.
There is a lot of flexibility when building a machine

in choosing between empowering the machine to run its
own monadic effects or delegating that responsibility to
a custom driver.

Further reading

◦ https://vimeo.com/77164337
◦ http://acowley.github.io/NYHUG/

FunctionalRoboticist.pdf
◦ https://github.com/runarorama/scala-machines
◦ https://dl.dropbox.com/u/4588997/Machines.pdf

7.1.5 exceptions

Report by: Edward Kmett
Participants: Gabriel Gonzales, Michael Snoyman, John

Weigley, Mark Lentczner, Alp
Mestanogullari, Fedor Gogolev, Merijn

Verstraaten, Matvey B. Aksenov
Status: actively developed

This package was begun as an effort to define a stan-
dard way to deal with exception handling in monad
transformer stacks that could scale to the needs of real
applications in terms of handling asynchronous excep-
tions, could support GHC now that block and unblock
have been removed from the compiler, and which we
could reason about the resulting behavior, and still sup-
port mocking on monad transformer stacks that are not
built atop IO.

Further reading

http://hackage.haskell.org/package/exceptions

7.1.6 tables

Report by: Edward Kmett
Participants: Nathan van Doorn, Tim Dixon, Niklas

Haas, Dag Odenhall, Petr Pilar, Austin
Seipp

Status: actively developed

The tables package provides a multiply-indexed
in-memory data store in the spirit of ixset or
data-store, but with a lens-based API.

39

http://www.youtube.com/watch?v=ADAprOOgi-A&feature=youtu.be&hd=1
http://www.youtube.com/watch?v=ADAprOOgi-A&feature=youtu.be&hd=1
http://hackage.haskell.org/package/lens
http://lens.github.io/
https://github.com/ekmett/lens/wiki
https://github.com/ekmett/lens/issues
http://statusfailed.com/blog/2013/01/26/haskells-strength-generalising-with-lenses.html
http://statusfailed.com/blog/2013/01/26/haskells-strength-generalising-with-lenses.html
http://ocharles.org.uk/blog/posts/2012-12-09-24-days-of-hackage-lens.html
http://ocharles.org.uk/blog/posts/2012-12-09-24-days-of-hackage-lens.html
http://www.haskellforall.com/2013/05/program-imperatively-using-haskell.html
http://www.haskellforall.com/2013/05/program-imperatively-using-haskell.html
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
http://stackoverflow.com/questions/5767129/lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/5769285#5769285
http://stackoverflow.com/questions/5767129/lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/5769285#5769285
http://stackoverflow.com/questions/5767129/lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/5769285#5769285
http://comonad.com/reader/2012/mirrored-lenses/
http://r6.ca/blog/20121209T182914Z.html
http://r6.ca/blog/20120623T104901Z.html
http://hackage.haskell.org/package/folds
https://www.fpcomplete.com/user/edwardk/cellular-automata/part-2
https://www.fpcomplete.com/user/edwardk/cellular-automata/part-2
http://squing.blogspot.com/2008/11/beautiful-folding.html
http://squing.blogspot.com/2008/11/beautiful-folding.html
http://conal.net/blog/posts/another-lovely-example-of-type-class-morphisms
http://conal.net/blog/posts/another-lovely-example-of-type-class-morphisms
http://conal.net/blog/posts/more-beautiful-fold-zipping
http://conal.net/blog/posts/more-beautiful-fold-zipping
http://www.haskellforall.com/2013/08/composable-streaming-folds.html
http://www.haskellforall.com/2013/08/composable-streaming-folds.html
https://vimeo.com/77164337
http://acowley.github.io/NYHUG/FunctionalRoboticist.pdf
http://acowley.github.io/NYHUG/FunctionalRoboticist.pdf
https://github.com/runarorama/scala-machines
https://dl.dropbox.com/u/4588997/Machines.pdf
http://hackage.haskell.org/package/exceptions

Further reading

◦ http://hackage.haskell.org/package/tables
◦ https://github.com/ekmett/tables#examples

7.1.7 Faking even more dependent types!

Report by: Richard Eisenberg
Participants: Jan Stolarek
Status: released; major update on the way

The singletons package enables users to fake dependent
types in Haskell via the technique of singletons. In
brief, a singleton type is a type with exactly one value;
by knowing the value, you also know the type, and
vice versa. See “Dependently typed programming with
singletons” (Haskell ’12) for more background.
Jan Stolarek and Richard Eisenberg are in the midst

of a major update to singletons, which will include pro-
cessing of a much larger subset of Haskell, including
case and let statements, where clauses, anonymous
functions, and classes.
Of particular interest, the library exports a promote

function that will take ordinary term-level function def-
initions and promote them to type family definitions.
After the update, this will allow users to write term-
level code in a familiar style and have that code work
on promoted datatypes at the type level.
We expect to release a polished version of this update

by mid-summer.

Further reading

◦ Dependently typed programming with singletons, by
Richard A. Eisenberg and Stephanie Weirich.
Haskell Symposium ’12. http://www.cis.upenn.edu/
~eir/papers/2012/singletons/paper.pdf

◦ Home page:
http://www.cis.upenn.edu/~eir/packages/singletons

◦ GitHub repo:
http://github.com/goldfirere/singletons

7.1.8 Type checking units-of-measure

Report by: Richard Eisenberg
Participants: Takayuki Muranushi
Status: early release available; large update on the

way

The units package, already available on Hackage, allows
you to type-check your Haskell code with respect to
units of measure. It prevents you from adding, say me-
ters to seconds while allowing you to add meters to feet
and dividing meters by seconds. A Double can be con-
verted into a dimensioned quantity only by specifying
its units, and a dimensioned quantity can be converted
to an ordinary Double only by specifying the desired
units of the output.
The set of units is fully extensible. The package ex-

ports definitions for the standard SI system, but this

only a matter of convenience – new units are meant
to be written in user code. Because of this, the pack-
age is suitable for use outside of physics applications,
such as finance or keeping your apples apart from your
bananas.
The magic under the hood uses lots of type families

and no functional dependencies. One upshot of this
design is that user code can generally be free of con-
straints on types. Here is some sample code:

kinetic_energy :: Mass→ Velocity→ Energy
kinetic_energy m v = dim $ 0.5 ∗.m .∗ v .∗ v
g_earth :: Acceleration
g_earth = dim $ 9.8 % (Meter : / (Second : ˆ pTwo))

Type annotations are not necessary – all types can
be inferred.
There is a major update under way. The intrepid

can check out the repo at http://github.com/goldfirere/
units. We hope to release in the next few weeks.

Further reading

http://www.cis.upenn.edu/~eir/packages/units

7.2 Education

7.2.1 Exercism: crowd-sourced code reviews on
daily practice problems

Report by: Bob Ippolito
Status: available

Exercism.io is an open source (AGPL) site that pro-
vides programming exercises suitable for new program-
mers, or programmers new to a programming language.
The feature that differentiates exercism from self-

study is that once a solution is submitted, others who
have completed that exercise have an opportunity to
provide code review. Anecdotally, this seems to put
programmers on the right track quickly, especially with
regard to the subtler points of Haskell style, non-strict
evaluation, and GHC-specific features.
Exercism fully supports Haskell as of August 2013,

with more than 50 exercises currently available. As of
this writing, 165 people have completed at least one
Haskell exercise.
I intend to continue actively participating in the code

review process and ensure that the Haskell exercise
path is well maintained.

Further reading

http://exercism.io/

40

http://hackage.haskell.org/package/tables
https://github.com/ekmett/tables#examples
http://www.cis.upenn.edu/~eir/papers/2012/singletons/paper.pdf
http://www.cis.upenn.edu/~eir/papers/2012/singletons/paper.pdf
http://www.cis.upenn.edu/~eir/packages/singletons
http://github.com/goldfirere/singletons
http://github.com/goldfirere/units
http://github.com/goldfirere/units
http://www.cis.upenn.edu/~eir/packages/units
http://exercism.io/

7.2.2 Talentbuddy

Report by: Andrei Soare
Status: available

Talentbuddy is a fun way for developers to practice
their skills.
It offers access to a diverse selection of problems and

it makes it easy to get feedback from your peers once
you solve them.
You can write code in multiple languages — includ-

ing Haskell — and if you get stuck, you can ask for help.
The members of the community that already solved the
challenge get to see your question and suggest ways to
make progress.
Once you solve a problem, you get access to every-

one else’s solutions. By comparing your solution with
the other ones you acquire knowledge about alterna-
tive strategies for solving the problem, or more elegant
ways to write the solution.
Another great way to learn on Talentbuddy is by ask-

ing your peers to review your solution. Their reviews
help increase your solution’s readability and elegance.

Further reading

http://www.talentbuddy.co/

7.2.3 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).
In November 2010, Gerben Verburg started to

reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, which has been presented at
CSERC’13, and should become available in the ACM
Digital Library.
The tool will be made available through Hackage at

some point, but before that happens it can already be
obtained on request from Jurriaan Hage.

Contact

〈J.Hage@uu.nl〉

7.2.4 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Johan Jeuring, Alex Gerdes, Josje Lodder
Status: experimental, active development

The Ideas project at the Open Universiteit and
Utrecht University aims at developing domain reason-
ers for stepwise exercises on various topics. These rea-
soners assist students in solving exercises incrementally
by checking intermediate steps, providing feedback on
how to continue, and detecting common mistakes. The
reasoners are based on a strategy language, from which
feedback is derived automatically. The calculation of
feedback is offered as a set of web services, enabling
external (mathematical) learning environments to use
our work. We currently have a binding with the Digital
Mathematics Environment of the Freudenthal Institute
(first/left screenshot), the ActiveMath learning system
of the DFKI and Saarland University (second/right
screenshot), and our own online exercise assistant that
supports rewriting logical expressions into disjunctive
normal form.

We have used our domain reasoners to model dia-
logues in Communicate!, which is a serious game for
training communication skills being developed by a
team of teachers and students at Utrecht University.
A group of bachelor students from the Open Univer-

siteit has developed a new web interface for our tutor
for logic, to which we have added exercises for proving
equivalences.
We have continued working on using our domain rea-

soners in the development of programming tutors. The
Ask-Elle functional programming tutor. lets you prac-
tice introductory functional programming exercises in
Haskell. We have extended the tutor with QuickCheck
properties for testing the correctness of student pro-
grams, and for the generation of counterexamples. We
have analysed the usage of the tutor to find out how
many student submissions are correctly diagnosed as
right or wrong. Tim Olmer has developed a tutor in
which a student can practice with evaluating Haskell
expressions. Finally, Hieke Keuning has developed a
programming tutor for imperative programming.

41

http://www.talentbuddy.co/
mailto: J.Hage at uu.nl
http://ideas.cs.uu.nl/www
http://www.projects.science.uu.nl/communicate/
http://ideas.cs.uu.nl/FPTutor/
http://ideas.cs.uu.nl/HEE/

The library for developing domain reasoners with
feedback services is available as a Cabal source pack-
age. We have written a tutorial on how to make your
own domain reasoner with this library. We have also
released our domain reasoner for mathematics and logic
as a separate package.

Further reading

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive
Exercises. Mathematics in Computer Science,
3(3):349–370, 2010.

◦ Bastiaan Heeren and Johan Jeuring. Feedback
services for stepwise exercises. Science of Computer
Programming, Special Issue on Software
Development Concerns in the e-Learning Domain,
volume 88, 110–129, 2014.

◦ Johan Jeuring, Alex Gerdes, and Bastiaan Heeren.
A Programming Tutor for Haskell. Lecture Notes
Central European School on Functional
Programming, (CEFP 2011). Try our tutor at
http://ideas.cs.uu.nl/FPTutor/.

◦ Online exercise assistant for logic.

7.3 Parsing and Transforming

7.3.1 epub-metadata

Report by: Dino Morelli
Status: experimental, actively developed

Library for parsing and manipulating epub OPF pack-
age data. Now with epub3 support.

◦ Added support for epub3 documents. This was done
using a single set of datatypes, not specific to either
epub2 or epub3.

◦ Redesigned the book file querying API to be an edsl.
Actions are to be combined together based on what
the developer needs from the document.

◦ Data structures to contain epub metadata “sections”
were redesigned to no longer be nested. Part of this
change includes a typeclass-based pretty-print API
for displaying this data.

◦ Documentation rewrites and additions, including a
working code example in the API docs.

epub-metadata is available from Hackage and the
Darcs repository below.
See also epub-tools (→ 7.9.1).

Further reading

◦ Project page:
http://ui3.info/d/proj/epub-metadata.html

◦ Source repository: darcs get
http://ui3.info/darcs/epub-metadata

7.3.2 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

With respect to the previous version the code for build-
ing interleaved parsers was split off into a separate
package uu-interleaved, such that it can be used
by other parsing libraries too. Based on this an-
other small package uu-options was constructed which
can be used to parse command line options and files
with preferences. The internals of these are described
in a technical report: http://www.cs.uu.nl/research/
techreps/UU-CS-2013-005.html.
As an example of its use we show how to fill a record

from the command line. We start out by defining the
record which is to hold the options to be possibly set:

data Prefers = Agda | Haskell deriving Show
data Address = Address {city_ :: String

, street_ :: String}
deriving Show

data Name = Name { name_ :: String
, prefers_ :: Prefers
, ints_ :: [Int]
, address_ :: Address}

deriving Show
$ (deriveLenses ” Name)
$ (deriveLenses ” Address)

The next thing to do is to specify a default record con-
taining the default values:

defaults = Name "Doaitse" Haskell []
(Address "Utrecht"

"Princetonplein")

Next we define the parser for the options, by specifying
each option:

42

http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/tutorial
http://hackage.haskell.org/package/ideas-math
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/CEFP/
http://ideas.cs.uu.nl/FPTutor/
http://ideas.cs.uu.nl/logex/
http://ui3.info/d/proj/epub-metadata.html
http://ui3.info/darcs/epub-metadata
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html

oName =
name ‘option‘ ("name", pString,

"Name")
<> ints ‘options‘ ("ints", pNaturalRaw,

"Some numbers")
<> prefers ‘choose‘ [("agda", Agda,

"Agda preferred")
, ("haskell",Haskell,
"Haskell preferred")

]
<> address ‘field‘

(city ‘option‘ ("city", pString,
"Home city")

<> street ‘option‘ ("street", pString,
"Home Street")

)

Finally when running this parser by the command
run (($defaults) <$> mkP oName) on the string
("–int=7 –city=Tynaarlo -i 5 –agda -i3 " ++
"-street=Zandlust") the result is

Name {name_ = Doaitse
, prefers_ = Agda
, ints_ = [7, 5, 3]
, address_ = Address

{city_ = Tynaarlo
, street_ = Zandlust}

}

If you make a mistake in the list of options, auto-
matic error reporting and correction steps in and you
get the following message:

./OptionsDemo --street=Zandlust -nDoaitse
-i3 --city=Tynaarlo
--name [Char] optional Name
--ints Int recurring Some numbers
Choose at least one from(
--agda required Agda preferred
--haskell required Haskell preferred

)
--city [Char] optional Home city
--street [Char] optional Home Street
--
-- Correcting steps:
-- Inserted "-a" at position 70
-- expecting one of

["--agda", "--agda=", "--haskell",
"--haskell=", "--ints=", "--ints",
"-i", "-h", "-a"]

-- Inserted EOT at position 70
-- expecting EOT

Features

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the in-
put and provide excellent error messages. As such

they are “surprise free” when used by people not fully
aware of their internal workings.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library basically provides the to be preferred ap-
plicative interface and a monadic interface where this
is really needed (which is hardly ever).

◦ No need for try-like constructs which make writing
Parsec based parsers tricky.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative interface. This makes it e.g. pos-
sible to deal with white space or comments in the
input in a completely separate way, without having
to think about this in the parser for the language
at hand (provided of course that white space is not
syntactically relevant).

Future plans

Future versions will contain a check for grammars being
not left-recursive, thus taking away the only remaining
source of surprises when using parser combinator li-
braries. This makes the library even greater for use in
teaching environments. Future versions of the library,
using even more abstract interpretation, will make use
of computed look-ahead information to speed up the
parsing process further.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list which was moved
to 〈parsing@lists.science.uu.nl〉 (see also http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators).

7.3.3 Grammar Products

Report by: Christian Höner zu Siederdissen
Status: usable, active development

We have developed a theory of algebraic operations
over linear and context-free grammars. This theory al-
lows us to combine simple “atomic” grammars to create
more complex ones.
With the compiler that accompanies our theory, we

make it easy to experiment with grammars and their
products. Atomic grammars are user-defined and the
algebraic operations on the atomic grammars are em-
bedded in a rigerous mathematical framework.

43

mailto: doaitse at swierstra.net
mailto: parsing at lists.science.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators

Our immediate applications are problems in compu-
tational biology and linguistics. In these domains, al-
gorithms that combine structural features on individ-
ual inputs (or tapes) with an alignment or structure
between tapes are becoming more commonplace. Our
theory will simplify building grammar-based applica-
tions by dealing with the intrinsic complexity of these
algorithms.
We provide multiple types of output. LATEX is avail-

able to those users who prefer to manually write the re-
sulting grammars. Alternatively, Haskell modules can
be created. TemplateHaskell and QuasiQuoting ma-
chinery is also available turning this framework into a
fully usable embedded domain-specific language. The
DSL or Haskell module use ADPfusion (→ 7.11.1) with
multitape extensions, delivering “close-to-C” perfor-
mance.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gramprod/
◦ http://dx.doi.org/10.1007/978-3-319-02624-4_8

7.3.4 HERMIT

Report by: Andy Gill
Participants: Andrew Farmer, Ed Komp, Neil

Sculthorpe, Adam Howell, Ryan Scott
Status: active

The Haskell Equational Reasoning Model-to-
Implementation Tunnel (HERMIT) is an NSF-funded
project being run at KU (→ 9.8), which aims to im-
prove the applicability of Haskell-hosted Semi-Formal
Models to High Assurance Development. Specifically,
HERMIT uses a Haskell-hosted DSL and a new
refinement user interface to perform rewrites directly
on Haskell Core, the GHC internal representation.
This project is a substantial case study of the appli-

cation of Worker/Wrapper. In particular, we want to
demonstrate the equivalences between efficient Haskell
programs, and their clear specification-style Haskell
counterparts. In doing so there are several open prob-
lems, including refinement scripting and managing scal-
ing issues, data representation and presentation chal-
lenges, and understanding the theoretical boundaries
of the worker/wrapper transformation.
We have reworked KURE (http://www.haskell.org/

communities/11-2008/html/report.html#sect5.5.7), a
Haskell-hosted DSL for strategic programming, as
the basis of our rewrite capabilities, and constructed
the rewrite kernel making use of the GHC Plugins
architecture. A journal writeup of the KURE internals
has been submitted to JFP, and is available on the
group webpage. As for interfaces to the kernel, we
currently have a command-line REPL, and an Android
version is under development. We have used HERMIT

to successfully mechanize many smaller examples of
program transformations, drawn from the literature
on techniques such as concatenate vanishes, tupling
transformation, and worker/wrapper.
We are scaling up our capabilities, and working on

larger examples, including the mechanization of im-
provements to the classical game of life. We also sub-
mitted a paper to the Haskell Symposium 2014 with a
description of our support for equational reasoning in
HERMIT, including a mechanization of Bird’s “Making
a Century”.
HERMIT is also being used in three projects.

◦ Michael Adams used HERMIT to mechanize the op-
timization of scrap your boilerplate generics, lead-
ing to execution speeds that were as fast as hand-
optimized code (→ 7.4.1). The result was published
in PEPM, where it was awarded a best paper award.

◦ Andrew Farmer has used HERMIT to implement a
custom GHC optimization pass which enables fusion
of nested streams within the Stream Fusion frame-
work. This work was also published in PEPM.

◦ Finally, Conal Elliott is working on typed reification
of Core using HERMIT.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT

7.3.5 haskell-names

Report by: Roman Cheplyaka
Status: active development; in use

haskell-src-exts has long been used for Haskell anal-
ysis tools. Unfortunately, without proper semantic in-
formation about the names, these tools are either very
imprecise, or have to perform the tricky name resolu-
tion process themselves.
haskell-names solves exactly this problem. It is

a Haskell name resolution library built on top of
haskell-src-exts.
In the simplest case, you give it an AST produced by

haskell-src-ext’s parser, and it gives you back the
same AST annotated with the name binding informa-
tion.
Besides that, there’s a more powerful interface to

name resolution, using open recursion. It’s essentially
a generic traversal of the AST, where at each node the
algebra has access to the global and lexical name envi-
ronments. This is described in more detail in the article
“Open your name resolution”.
haskell-names is also integrated with cabal, thanks

to the haskell-packages library (→ 7.3.6). You can
install packages using the special hs-gen-iface com-
piler, and haskell-names will be aware of them.
Some of the missing features are detection of certain

kinds of scoping errors, recording and applying fixities,

44

http://www.bioinf.uni-leipzig.de/Software/gramprod/
http://dx.doi.org/10.1007/978-3-319-02624-4_8
http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT

and resolution of type variables. Some language exten-
sions are not yet fully supported.
Still, haskell-names can correctly resolve most of

the valid Haskell code and is being successfully used by
the Fay and Ariadne (→ 6.1.3) projects.

Further reading

For further directions, please see the README at
http://documentup.com/haskell-suite/haskell-names
To learn more about “open name res-
olution”, see http://ro-che.info/articles/
2013-03-04-open-name-resolution

7.3.6 haskell-packages

Report by: Roman Cheplyaka
Status: active development; in use

If you are writing a Haskell compiler, you typically want
to integrate it with Cabal (→ 6.4.1), to be able to build
ordinary Haskell packages.
If you go the hard way, this involves:

1. Parsing command line parameters

2. Teaching Cabal how to call your compiler (which
typically involves patching Cabal)

3. Package management

haskell-packages solves most of these problems for
you. All you need to do is to provide the function to
do actual compilation and tell a couple of other things
about your compiler.
haskell-packages is fully supported by Cabal 1.20.

Further reading

http://documentup.com/haskell-suite/haskell-packages

7.3.7 parsers

Report by: Edward Kmett
Participants: Nathan Filardo, Dag Odenall, Mario

Blazevic, Tony Morris, Tim Dixon, Greg
Fitzgerald

Status: actively developed

This package provides a common lingua franca for
working with parsec-like parsing combinator libraries,
such that the combinators support being lifted over
monad transformers. Instances are provided for use
with the parsec Parser and base’s ReadP, and it is
used by trifecta (→ 7.3.8) to provide its suite of pars-
ing combinators.
Notably, many of the combinators have been modi-

fied to only require the use of Alternative rather than
MonadPlus, enabling some base Parser instances to op-
erate more efficiently.

Further reading

http://hackage.haskell.org/package/parsers

7.3.8 trifecta

Report by: Edward Kmett
Participants: Austin Seipp, Nathan Filardo, John

Weigley
Status: actively developed

This package is designed to explore the space of “hu-
man scale” parsers for programming languages. That is
to say, it isn’t optimized for parsing protocols or other
huge streaming datasets, but rather to provide nice er-
ror messages for files that are usually written by hand
by human beings.
Trifecta supports clang-style colored diagnostics

with markup denoting locations, spans and fixits for
user code. It builds on top of the parsers (→ 7.3.7)
framework for most of its parsing combinators.
Much of the focus of trifecta is on supporting func-

tionality beyond basic parsing, such as syntax high-
lighting, that arise once you have a programming lan-
guage.
In the long term, we plan to support built-in CPP,

auto-completion and parser transformers to support
Haskell-style layout.

Further reading

http://hackage.haskell.org/package/trifecta

7.4 Generic and Type-Level Programming

7.4.1 Optimising Generic Functions

Report by: José Pedro Magalhães
Participants: Michael D. Adams, Andrew Farmer
Status: actively developed

Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. However, it is known that
datatype-generic programs often run slower than type-
specific variants, and this factor can prevent adoption
of generic programming altogether. There can be mul-
tiple reasons for the performance penalty, but often it is
caused by conversions to and from representation types
that do not get eliminated during compilation.
Fortunately, it is also known that generic functions

can be specialised to concrete datatypes, removing any
overhead from the use of generic programming. We
have investigated compilation techniques to specialise
generic functions and remove the performance over-
head of generic programs in Haskell. We used a rep-
resentative generic programming library and inspected
the generated code for a number of example generic
functions. After understanding the necessary com-
piler optimisations for producing efficient generic code,

45

http://documentup.com/haskell-suite/haskell-names
http://ro-che.info/articles/2013-03-04-open-name-resolution
http://ro-che.info/articles/2013-03-04-open-name-resolution
http://documentup.com/haskell-suite/haskell-packages
http://hackage.haskell.org/package/parsers
http://hackage.haskell.org/package/trifecta

we benchmarked the runtime of our generic functions
against handwritten variants, and concluded that all
the overhead can indeed be removed automatically by
the compiler. More details can be found in the IFL’12
paper linked below.
We have also investigated how to optimise the pop-

ular Scrap Your Boilerplate (SYB) generic program-
ming library. Using a HERMIT (→ 7.3.4) script for
implementing an optimisation pass in the compiler, we
have removed all runtime overhead from SYB func-
tions. More details can be found in the draft paper
linked below.

Further reading

◦ Optimisation of Generic Programs through Inlining
◦ Optimizing SYB Is Easy!

7.4.2 traverse-with-class

Report by: Roman Cheplyaka
Participants: Sjoerd Visscher
Status: experimental

traverse-with-class is an advanced generic pro-
gramming library.
It is most closely related to syb-with-class (“Scrap

your boilerplate with class”). The main difference is
using gtraverse instead of gfoldl:

class GTraversable (c :: Constraint) a where
gtraverse

:: (Applicative f , ?c :: proxy c)
⇒ (∀d.c d ⇒ d → f d)
→ a → f a

This is based on the insight that gtraverse is in the-
ory equivalent in power to gfoldl, but many instances
can be encoded in a more direct way using gtraverse.
For example, the uniform instance for lists — one

that treats all the list elements as being on the same
level — is trivial to encode using gtraverse, and is
very tricky to encode using gfoldl.
Another difference compared to syb-with-class is us-

age of modern Haskell extensions to simplify the API.
We use constraint kinds instead of explicit dictionary
types, and implicit parameters to simulate type lambda
application.
traverse-with-class is the base of open recursive

name resolution in haskell-names (→ 7.3.5).

Further reading

◦ traverse-with-class on hackage http:
//hackage.haskell.org/package/traverse-with-class

◦ Generalizing generic fold http://ro-che.info/articles/
2013-03-11-generalizing-gfoldl.html

◦ gtraverse vs gfoldl http://ro-che.info/articles/
2013-03-29-gtraverse-vs-gfoldl.html

7.4.3 constraints

Report by: Edward Kmett
Participants: Sjoerd Visscher, Austin Seipp
Status: actively developed

This package provides data types and classes for ma-
nipulating values of kind Constraint as exposed by GHC
since 7.4.

Further reading

◦ http://hackage.haskell.org/package/constraints
◦ http://comonad.com/reader/2011/

what-constraints-entail-part-1/
◦ http://comonad.com/reader/2011/

what-constraints-entail-part-2/

7.5 Mathematics

7.5.1 Rlang-QQ

Report by: Adam Vogt
Status: active development

Rlang-QQ is intended to make it easier to call R from
Haskell programs. This allows access to a large num-
ber of R packages for graphing, statistics or other uses.
Rlang-QQ provides a quasiquoter which runs the R in-
terpreter and tries to translate values between the two
languages.
Haskell expressions can be referenced from R using

syntax like $(take 10 [1.0 ..]). Haskell variables
can also be passed in by prefixing them with hs_: hs_x
refers to x. Values that can be taken out of a Haskell
x :: Chan t are accessible using ch_x. When the
R code has an assignment such as hs_x <- f(), the
quasiquote evaluates to an HList record which contains
the result from f().
Future work may include supporting the serialization

of more data types between the two languages, passing
data between the two runtimes in-memory instead of
through files, and doing inference when possible on the
R-code to restrict the types of the Haskell values that
are serialized or deserialized.

Further reading

◦ http://hackage.haskell.org/package/Rlang-QQ
◦ http://www.r-project.org/
◦ http://www.haskell.org/haskellwiki/Quasiquotation

7.5.2 order-statistics

Report by: Edward Kmett
Status: stable

This package extends Bryan O’Sullivan’s statistics
package with support for order statistics and L-

46

http://dreixel.net/research/pdf/ogpi.pdf
http://dreixel.net/research/pdf/osiedraft.pdf
http://hackage.haskell.org/package/traverse-with-class
http://hackage.haskell.org/package/traverse-with-class
http://ro-che.info/articles/2013-03-11-generalizing-gfoldl.html
http://ro-che.info/articles/2013-03-11-generalizing-gfoldl.html
http://ro-che.info/articles/2013-03-29-gtraverse-vs-gfoldl.html
http://ro-che.info/articles/2013-03-29-gtraverse-vs-gfoldl.html
http://hackage.haskell.org/package/constraints
http://comonad.com/reader/2011/what-constraints-entail-part-1/
http://comonad.com/reader/2011/what-constraints-entail-part-1/
http://comonad.com/reader/2011/what-constraints-entail-part-2/
http://comonad.com/reader/2011/what-constraints-entail-part-2/
http://hackage.haskell.org/package/Rlang-QQ
http://www.r-project.org/
http://www.haskell.org/haskellwiki/Quasiquotation

estimators.
An order statistic is simply a position in the sorted

list of samples given just the size of the sample. L-
estimators are linear combinations of order-statistics.
L-estimators are used in robust statistics to collect

statistics that are robust in the presence of outliers, and
have the benefit that you can jackknife them without
changing their asymptotics.
This package provides a compositional vocabulary

for describing order statistics.

Further reading

◦ http://hackage.haskell.org/package/order-statistics
◦ http://en.wikipedia.org/wiki/Order_statistic
◦ http://en.wikipedia.org/wiki/L-estimator

7.5.3 Eliminating Redundancies in Linear Systems

Report by: Philipp Kant
Status: active

A recurring task in perturbative quantum field theory is
the exact solution of very large systems of linear equa-
tions, where the coefficients are multivariate polynomi-
als. The systems can contain hundreds of thousands of
equations, where many of those equations are linearly
dependent. In complicated cases, solving the system
requires several months of CPU time.
ICE is a small Haskell program that detects which

equations in a given set are linearly independent, so
that the rest can be safely discarded before an attempt
to solve the system. Thus, the time that would be spent
processing redundant information can be saved.
The algorithm works by mapping the whole system

homomorphically from the ring of multivariate polyno-
mials to a finite field Fp, where computations are cheap
and the system can be solved fast using standard Gaus-
sian elimination. By keeping track of the required row
permutations, the linearly independent equations are
identified.
Future plans include to use multiple images in Fp to

solve the original system via rational function recon-
struction. This would avoid the intermediate expres-
sion swell that is encountered when a linear system
over multivariate polynomials is solved directly.

Further reading

http://arxiv.org/abs/1309.7287

7.5.4 linear

Report by: Edward Kmett
Participants: Anthony Cowley, Ben Gamari, Jake

McArthur, John Weigley, Elliott Hird, Eric
Mertens, Niklas Haas, Casey McCann

Status: actively developed

This package provides ‘low-dimensional’ linear algebra
primitives that are based explicitly on the notion that

all vector spaces are free vector spaces, and so are iso-
morphic to functions from some basis to an underlying
field. This lets us use representable functors, which are
represented by such a basis to encode all of our linear
algebra operations, and provides a natural encoding for
dense vector spaces.
A nice lens-based API is provided that permits pun-

ning of basis vector names between different vector
types.

Further reading

http://hackage.haskell.org/package/linear

7.5.5 algebra

Report by: Edward Kmett
Status: experimental

This package provides a large cross section of construc-
tive abstract algebra.
Notable theoretical niceties include the fact that cov-

ectors form a Monad, linear maps form an Arrow, and
this package bundles a rather novel notion of geometric
coalgebra alongside the more traditional algebras and
coalgebras.

Further reading

http://hackage.haskell.org/package/algebra

7.5.6 semigroups and semigroupoids

Report by: Edward Kmett
Participants: Nathan van Doorn, Mark Wright, Adam

Curtis
Status: stable

The semigroups package provides a standard location
to obtain the notion of Semigroup.
The semigroupoids package provides the notion of

a Semigroupoid, which is a Category that does not nec-
essarily provide id. These arise in practice for many
reasons in Haskell.
Notably, we cannot express a product category with

the existing implementation of Data Kinds.
But more simply, there are many types for which

their Kleisli category or Cokleisli category lacks iden-
tity arrows, because they lack return or extract, but
could otherwise pass muster.
With semigroupoids 4.0, this package has now

come to subsume the previous groupoids and
semigroupoid-extras packages.

Further reading

◦ http://hackage.haskell.org/package/semigroups
◦ http://hackage.haskell.org/package/semigroupoids

47

http://hackage.haskell.org/package/order-statistics
http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/L-estimator
http://arxiv.org/abs/1309.7287
http://hackage.haskell.org/package/linear
http://hackage.haskell.org/package/algebra
http://hackage.haskell.org/package/semigroups
http://hackage.haskell.org/package/semigroupoids

7.5.7 Arithmetics packages (Edward Kmett)

Report by: Edward Kmett
Participants: Sjoerd Visscher, Austin Seipp, Daniel

Bergey, Chris Schneider, Ben Gamari
Status: actively developed

◦ The compensated package provides compensated
arithmetic for when you need greater precision than
the native floating point representation can provide.
A Compensated Double has over 100 bits worth of
effective significand. Unlike other “double double”
variants in other languages, this construction can
be iterated. A Compensated (Compensated Double)
gives over 200 bits worth of precision.
However, not all RealFloat operations have yet been
upgraded to work in full precision.

◦ The approximate package (with Sjoerd Visscher
and Austin Seipp) provides a notion of approximate
result values and intervals with log-domain lower
bounds on confidence. It also provides fast piecewise-
rational, but monotone increasing approximate ver-
sions of log and exp that execute many times faster
than the native machine instructions that are suit-
able for use in machine learning.

◦ The intervals package (with Daniel Bergey and
Chris Schneider) provides basic interval arithmetic.
An Interval is a closed, convex set of floating point
values.
We do not control the rounding mode of the end
points of the interval when using floating point arith-
metic, so be aware that in order to get precise con-
tainment of the result, you will need to use an un-
derlying type with both lower and upper bounds like
CReal.

◦ The log-domain package (with Ben Gamari) pro-
vides log domain floats, doubles and complex num-
bers with an emphasis on supporting probabilities
biased towards conservative lower bounds.

Further reading

◦ http://hackage.haskell.org/package/compensated
◦ http://hackage.haskell.org/package/approximate
◦ http://hackage.haskell.org/package/intervals
◦ http://hackage.haskell.org/package/log-domain

7.5.8 ad

Report by: Edward Kmett
Participants: Alex Lang, Takayuki Muranushi, Chad

Scherrer, Lennart Augustsson, Ben
Gamari, Christopher White

Status: actively developed

This package provides an intuitive API for Automatic
Differentiation (AD) in Haskell. Automatic differenti-
ation provides a means to calculate the derivatives of

a function while evaluating it. Unlike numerical meth-
ods based on running the program with multiple inputs
or symbolic approaches, automatic differentiation typi-
cally only decreases performance by a small multiplier.
AD employs the fact that any program y = F (x) that

computes one or more values does so by composing mul-
tiple primitive operations. If the (partial) derivatives
of each of those operations is known, then they can be
composed to derive the answer for the derivative of the
entire program at a point.
This library contains at its core a single implementa-

tion that describes how to compute the partial deriva-
tives of a wide array of primitive operations. It then
exposes an API that enables a user to safely combine
them using standard higher-order functions, just as you
would with any other Haskell numerical type.
There are several ways to compose these individual

Jacobian matrices. We hide the choice used by the
API behind an explicit “Mode” type-class and universal
quantification. This prevents the end user from exploit-
ing the properties of an individual mode, and thereby
potentially violating invariants or confusing infinitesi-
mals.
We are actively seeking ways to better support un-

boxed vectors, new modes, new primitives, and better-
optimized forms for gradient descent.
Features:
◦ Provides many variants on forward- and reverse-

mode AD combinators with a common API.
◦ Type-level “branding” is used to both prevent the

end user from confusing infinitesimals and to limit
unsafe access to the implementation details of each
mode.

◦ Each mode has a separate module full of combina-
tors, with a consistent look and feel.

Further reading

◦ http://hackage.haskell.org/package/ad
◦ http:

//en.wikipedia.org/wiki/Automatic_differentiation
◦ http://www.autodiff.org/

7.5.9 integration

Report by: Edward Kmett
Participants: Adrian Keet
Status: actively developed

This package provides robust numeric integration via
tanh-sinh quadrature. “Tanh-Sinh quadrature scheme
is the fastest known high-precision quadrature scheme,
especially when the time for computing abscissas and
weights is considered. It has been successfully em-
ployed for quadrature calculations of up to 20,000-digit
precision. It works well for functions with blow-up sin-
gularities or infinite derivatives at endpoints.”

48

http://hackage.haskell.org/package/compensated
http://hackage.haskell.org/package/approximate
http://hackage.haskell.org/package/intervals
http://hackage.haskell.org/package/log-domain
http://hackage.haskell.org/package/ad
http://en.wikipedia.org/wiki/Automatic_differentiation
http://en.wikipedia.org/wiki/Automatic_differentiation
http://www.autodiff.org/

Further reading

◦ http://hackage.haskell.org/package/integration
◦ http://en.wikipedia.org/wiki/Tanh-sinh_quadrature
◦ http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/

dhb-tanh-sinh.pdf

7.5.10 categories

Report by: Edward Kmett
Participants: Gwern Branwen
Status: stable

This package provides a number of classes for working
with Category instances with more structure in Haskell.
In many ways this package can be viewed as an alter-
native to working with Arrows, as working with a CCC
can provide you with much more fuel for optimization.

Further reading

http://hackage.haskell.org/package/categories

7.5.11 contravariant

Report by: Edward Kmett
Participants: Dag Odenhall, Merijn Verstraaten
Status: stable

This package provides the notion of a contravariant
functor, along with various forms of composition for
contravariant functors and Day convolution.

Further reading

◦ http://hackage.haskell.org/package/contravariant
◦ http://ncatlab.org/nlab/show/Day+convolution

7.5.12 bifunctors

Report by: Edward Kmett
Status: stable

This package provides a standard location to retrieve
the notion of a Bifunctor, Bifoldable or Bitraversable
data type.

Further reading

◦ http://hackage.haskell.org/package/bifunctors
◦ http://ncatlab.org/nlab/show/bifunctor

7.5.13 profunctors

Report by: Edward Kmett
Participants: Shachaf Ben-Kiki, Elliott Hird
Status: stable

This package provides profunctors, which act like an
Arrow you don’t necessarily know how to put together.
These form the bedrock upon which lens (→ 7.1.2)

is built.

With profunctors 4.0 we’ve merged together the con-
tents of the older profunctors, profunctor-extras
and representable-profunctors packages.
In addition to the basic notion of a profunctor, we

also provide the category of collages for a profunctor,
notions of representable and corepresentable profunc-
tors, along with weaker notions of Strong and Choice
that correspond to various Arrow classes, profunctor
composition.

Further reading

◦ http://hackage.haskell.org/package/profunctors
◦ http://blog.sigfpe.com/2011/07/

profunctors-in-haskell.html
◦ https://www.fpcomplete.com/school/

to-infinity-and-beyond/pick-of-the-week/profunctors
◦ http://ncatlab.org/nlab/show/profunctor

7.5.14 comonad

Report by: Edward Kmett
Participants: Dave Menendez, Gabor Greif, David

Luposchainsky, Sjoerd Visscher, Luke
Palmer, Nathan van Doorn

Status: stable

This package provides the comonads, the categorical
dual of monads, along with comonad transformers, and
the comonadic equivalent of the mtl.
With comonad 4.0 we’ve merged together the con-

tents of the older comonad, comonad-transformers,
and comonads-fd packages.
You can work with this package using Dominic Or-

chard’s codo-notation, or use them directly.
The kan-extensions (→ 7.5.16) package also pro-

vides a transformer that can turn a comonad into a
monad.

Further reading

◦ http://hackage.haskell.org/package/comonad
◦ http://comonad.com/haskell/Comonads_1.pdf
◦ http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/

Comonad.pdf
◦ http://www.cl.cam.ac.uk/~dao29/publ/

codo-notation-orchard-ifl12.pdf
◦ http://www.ioc.ee/~tarmo/papers/cmcs08.pdf
◦ http://cs.ioc.ee/~tarmo/papers/essence.pdf

7.5.15 recursion-schemes

Report by: Edward Kmett
Status: stable

This package provides generalized bananas, lenses and
barbed wire based on the recursion schemes that came
out of the constructive algorithmics community over
the years.

49

http://hackage.haskell.org/package/integration
http://en.wikipedia.org/wiki/Tanh-sinh_quadrature
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
http://hackage.haskell.org/package/categories
http://hackage.haskell.org/package/contravariant
http://ncatlab.org/nlab/show/Day+convolution
http://hackage.haskell.org/package/bifunctors
http://ncatlab.org/nlab/show/bifunctor
http://hackage.haskell.org/package/profunctors
http://blog.sigfpe.com/2011/07/profunctors-in-haskell.html
http://blog.sigfpe.com/2011/07/profunctors-in-haskell.html
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/profunctors
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/profunctors
http://ncatlab.org/nlab/show/profunctor
http://hackage.haskell.org/package/comonad
http://comonad.com/haskell/Comonads_1.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/Comonad.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/Comonad.pdf
http://www.cl.cam.ac.uk/~dao29/publ/codo-notation-orchard-ifl12.pdf
http://www.cl.cam.ac.uk/~dao29/publ/codo-notation-orchard-ifl12.pdf
http://www.ioc.ee/~tarmo/papers/cmcs08.pdf
http://cs.ioc.ee/~tarmo/papers/essence.pdf

In addition to the standard recursion schemes, all of
their distributive laws can be made compositional, en-
abling the creation of such interesting and impractical
beasts as the zygohistomorphic prepromorphism.

Further reading

◦ http:
//hackage.haskell.org/package/recursion-schemes

◦ http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.174.8068&rep=rep1&type=pdf

◦ http:
//math.ut.ee/~eugene/kabanov-vene-mpc-06.pdf

◦ http://www.ioc.ee/~tarmo/tday-viinistu/
kabanov-slides.pdf

◦ http://www.ioc.ee/~tarmo/papers/msfp08.pdf
◦ http://www.cs.uu.nl/wiki/pub/GP/Schedule/

JoaoAlpuim.pdf
◦ http://eprints.eemcs.utwente.nl/7281/01/

db-utwente-40501F46.pdf
◦ http://www.mii.lt/informatica/pdf/INFO141.pdf
◦ http:

//wwwhome.ewi.utwente.nl/~fokkinga/mmfphd.pdf
◦ http://comonad.com/reader/2008/elgot-coalgebras/
◦ http://comonad.com/reader/2008/

time-for-chronomorphisms/
◦ http://comonad.com/reader/2008/

dynamorphisms-as-chronomorphisms/
◦ http://comonad.com/reader/2008/

generalized-hylomorphisms/
◦ http://web.engr.oregonstate.edu/~erwig/meta/
◦ http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.4.9706&rep=rep1&type=pdf
◦ http://www.cs.ox.ac.uk/people/jeremy.gibbons/

publications/metamorphisms-scp.pdf

7.5.16 kan-extensions

Report by: Edward Kmett
Status: stable

This package provides Kan extensions, Kan lifts, var-
ious forms of the Yoneda lemma, and (co)density
(co)monads.
These constructions have proven useful for many pur-

poses:
◦ Codensity can be used to accelerate the performance
of code written for free monads or to correct the as-
socativity of an “almost-monad” that fails the asso-
ciativity law, as it performs a sort of fusion on (>>=)
operations.

◦ CoT can be used to turn any Comonad into a Monad
transformer.

◦ Various forms of the Yoneda lemma give rise to ways
to enforce “Functor fusion”.

Further reading

◦ http://hackage.haskell.org/package/kan-extensions

◦ http://blog.sigfpe.com/2006/11/yoneda-lemma.html
◦ http:

//blog.sigfpe.com/2006/12/yonedic-addendum.html
◦ http://comonad.com/reader/2008/kan-extensions/
◦ http://comonad.com/reader/2008/kan-extensions-ii/
◦ http://comonad.com/reader/2008/kan-extension-iii/
◦ http://blog.ezyang.com/2012/01/

problem-set-the-codensity-transformation/
◦ http://www.iai.uni-bonn.de/~jv/mpc08.pdf
◦ http://www.cs.ox.ac.uk/ralf.hinze/Kan.pdf
◦ http://ncatlab.org/nlab/show/Kan+lift
◦ http://hackage.haskell.org/package/monad-ran

7.5.17 arb-fft

Report by: Ian Ross
Status: actively developed

This package started as an experiment to see how
close a pure Haskell FFT implementation could get to
FFTW (“the Fastest Fourier Transform in the West”).
The result is a library that can do fast Fourier trans-
forms for arbitrarily sized vectors with performance
within a factor of about five of FFTW.
Future plans mostly revolve around making things

go faster! In particular, the next thing to do is to write
an equivalent of FFTW’s genfft, a metaprogramming
tool to generate fast straight-line code for transforms of
specialised sizes. Other planned work includes imple-
menting real-to-complex and real-to-real transforms,
multi-dimensional transforms, and some low-level op-
timisation.

Further reading

◦ http://hackage.haskell.org/package/arb-fft
◦ http://www.skybluetrades.net/haskell-fft-index.html

7.5.18 hblas

Report by: Carter Tazio Schonwald
Participants: Stephen Diehl and Csernik Flaviu Andrei
Status: Actively Developed

hblas is high level, easy to extend BLAS/LAPACK
FFI Binding for Haskell.
hblas has several attributes that in aggregate distin-

guish it from alternative BLAS/LAPACK bindings for
Haskell.

1. Zero configuration install

2. FFI wrappers are written in Haskell

3. Provides the fully generality of each supported
BLAS/LAPACK routine, in a type safe wrapper that
still follows the naming conventions of BLAS and
LAPACK.

50

http://hackage.haskell.org/package/recursion-schemes
http://hackage.haskell.org/package/recursion-schemes
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8068&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8068&rep=rep1&type=pdf
http://math.ut.ee/~eugene/kabanov-vene-mpc-06.pdf
http://math.ut.ee/~eugene/kabanov-vene-mpc-06.pdf
http://www.ioc.ee/~tarmo/tday-viinistu/kabanov-slides.pdf
http://www.ioc.ee/~tarmo/tday-viinistu/kabanov-slides.pdf
http://www.ioc.ee/~tarmo/papers/msfp08.pdf
http://www.cs.uu.nl/wiki/pub/GP/Schedule/JoaoAlpuim.pdf
http://www.cs.uu.nl/wiki/pub/GP/Schedule/JoaoAlpuim.pdf
http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf
http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf
http://www.mii.lt/informatica/pdf/INFO141.pdf
http://wwwhome.ewi.utwente.nl/~fokkinga/mmfphd.pdf
http://wwwhome.ewi.utwente.nl/~fokkinga/mmfphd.pdf
http://comonad.com/reader/2008/elgot-coalgebras/
http://comonad.com/reader/2008/time-for-chronomorphisms/
http://comonad.com/reader/2008/time-for-chronomorphisms/
http://comonad.com/reader/2008/dynamorphisms-as-chronomorphisms/
http://comonad.com/reader/2008/dynamorphisms-as-chronomorphisms/
http://comonad.com/reader/2008/generalized-hylomorphisms/
http://comonad.com/reader/2008/generalized-hylomorphisms/
http://web.engr.oregonstate.edu/~erwig/meta/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.9706&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.9706&rep=rep1&type=pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/metamorphisms-scp.pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/metamorphisms-scp.pdf
http://hackage.haskell.org/package/kan-extensions
http://blog.sigfpe.com/2006/11/yoneda-lemma.html
http://blog.sigfpe.com/2006/12/yonedic-addendum.html
http://blog.sigfpe.com/2006/12/yonedic-addendum.html
http://comonad.com/reader/2008/kan-extensions/
http://comonad.com/reader/2008/kan-extensions-ii/
http://comonad.com/reader/2008/kan-extension-iii/
http://blog.ezyang.com/2012/01/problem-set-the-codensity-transformation/
http://blog.ezyang.com/2012/01/problem-set-the-codensity-transformation/
http://www.iai.uni-bonn.de/~jv/mpc08.pdf
http://www.cs.ox.ac.uk/ralf.hinze/Kan.pdf
http://ncatlab.org/nlab/show/Kan+lift
http://hackage.haskell.org/package/monad-ran
http://hackage.haskell.org/package/arb-fft
http://www.skybluetrades.net/haskell-fft-index.html

4. Designed to be easy to extend with further bindings
to BLAS/LAPACK routines (because there are many
many specialized routines!)

5. Adaptively choses between unsafe vs safe foreign
calls based upon estimated runtime of a computa-
tion, to ensure that long running hblas ffi calls in-
teract safely with the GHC runtime and the rest of
an application.

6. hblas is not an end user library, but is designed to
easily interop with any array library that supports
storable vectors.

Further reading

◦ http://www.wellposed.com
◦ http://www.github.com/wellposed/hblas
◦ http://hackage.haskell.org/package/hblas

7.5.19 HROOT

Report by: Ian-Woo Kim
Status: Actively Developing

HROOT is a haskell binding to ROOT framework by
fficxx, a haskell-C++ binding generator tool. ROOT
(http://root.cern.ch) is an OOP framework for data
analysis and statistics, which is developed at CERN.
The ROOT system provides a set of OO frameworks
with all the functionality needed to handle and analyze
large amounts of data in a very efficient way. ROOT is
a de facto standard physics analysis tool in high energy
physics experiments.
This haskell binding to ROOT provides an

industrial-strength statistical analysis libraries to the
haskell community. The haskell code for using HROOT
is very straightforward to both haskell and C++ pro-
grammers thanks to the fficxx binding generator tool.
The following is a sample code and a resultant his-
togram for histogramming a 2D gaussian distribution:

import Data.Random.Distribution.Normal
import HROOT

main :: IO ()
main = do

tcanvas <- newTCanvas "Test" "Test" 640 480
h2 <- newTH2F "test" "test"

100 (-5.0) 5.0 100 (-5.0) 5.0
let dist1 = Normal (0 :: Double)

(2 :: Double)
let go n | n < 0 = return ()

| otherwise = do
histfill dist1 dist2 h2
go (n-1)

go 1000000

draw h2 "lego"
saveAs tcanvas "random2d.pdf" ""

histfill :: Normal Double -> TH2F -> IO ()
histfill dist1 hist = do
x <- sample dist1
y <- sample dist1
fill2 hist x y
return ()

Until ghc 7.6, HROOT cannot be used in interpreter
mode of ghc, due to the linker problem. Now with ghc
7.8, ghci now uses the standard system linker for dy-
namically loaded library. Thus, our current focus is to
have full ghc interpreter support for making HROOT a
really useful analysis framework. In addition, we keep
importing features from ROOT to available haskell
functions.

Further reading

http://ianwookim.org/HROOT

7.5.20 Numerical

Report by: Carter Tazio Schonwald
Status: actively developed

The Numerical project, starting with the
numerical-core package, has the goal of provid-
ing a general purpose numerical computing substrate
for Haskell.
To start with, the numerical-core provides an ex-

tensible set of type classes suitable for both dense and
sparse multi dimensional arrays, high level combina-
tors for writing good locality code, and some basic ma-
trix computation routines that work on both dense and
sparse matrix formats.
The core Numerical packages, including

numerical-core, are now in public alpha release
as of mid May 2014.

51

http://www.wellposed.com
http://www.github.com/wellposed/hblas
http://hackage.haskell.org/package/hblas
http://root.cern.ch
http://ianwookim.org/HROOT

Development of the numerical packages is public on
github, and as they stabilize, alpha releases are being
made available on hackage.

Further reading

◦ http://www.wellposed.com
◦ http://www.github.com/wellposed/numerical-core
◦ http://hackage.haskell.org/package/numerical

7.6 Data Types and Data Structures

7.6.1 HList — A Library for Typed Heterogeneous
Collections

Report by: Adam Vogt
Participants: Oleg Kiselyov, Ralf Lämmel, Keean

Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).
An immediate application of HLists is the im-

plementation of open, extensible records with first-
class, reusable, and compile-time only labels. The
dual application is extensible polymorphic variants
(open unions). HList contains several implementa-
tions of open records, including records as sequences
of field values, where the type of each field is an-
notated with its phantom label. We and others
have also used HList for type-safe database access
in Haskell. HList-based Records form the basis of
OOHaskell. The HList library relies on common
extensions of Haskell 2010. HList is being used
in AspectAG (http://www.haskell.org/communities/
11-2011/html/report.html#sect5.4.2), typed EDSL of
attribute grammars, and in Rlang-QQ.
The October 2012 version of HList library marks

the significant re-write to take advantage of the fancier
types offered by GHC 7.4 and 7.6. HList now relies on
promoted data types and on kind polymorphism.
Since the last update, there have been several mi-

nor releases. These include features such as support
for ghc-7.8 as well as additional syntax for the pun
quasiquote.

Further reading

◦ HList repository: http://code.haskell.org/HList/
◦ HList:

http://okmij.org/ftp/Haskell/types.html#HList
◦ OOHaskell:

https://web.archive.org/web/20130129031410/http:
//homepages.cwi.nl/~ralf/OOHaskell

7.6.2 Persistent

Report by: Michael Snoyman
Participants: Greg Weber, Felipe Lessa
Status: stable

Persistent is a type-safe data store interface for Haskell.
Haskell has many different database bindings available,
but they provide few usefeul static guarantees. Persis-
tent uses knowledge of the data schema to provide a
type-safe interface that re-uses existing database bind-
ing libraries. Persistent is designed to work across
different databases, and works on Sqlite, PostgreSQL,
MongoDB, and MySQL, with an experimental backend
for CouchDB.
The 1.2 release features a refactoring of the module

hierarchy. We’re taking this opporunity to clean up a
few idiosyncracies in the API and make the documen-
tation a bit more helpful, but otherwise the library is
remaining unchanged.
The MongoDB backend features new helpers, query

operators, and bug fixes for working with embed-
ded/nested models. One can store a list of Maps or
records inside a column/field. This is required for
proper usage of MongoDB. In SQL an embedded object
is stored as JSON, which is convenient as long as the
column is not queried.
In order to accomodate various different backend

types, Persistent is broken up into multiple compo-
nents (separated by type classes). There is one for
storage/serialization, one for uniqueness, and one for
querying. This means that anyone wanting to create
database abstractions can re-use the battle-tested per-
sistent storage/serialization layer without having to im-
plement the full query interface.
Persistent’s query layer is the same for any backend

that implement the query interface, although backends
can define their own additional operators. The inter-
face is a straightforward usage of combinators:
selectList [PersonFirstName == . "Simon",

PersonLastName == . "Jones"] []
There are some drawbacks to the query layer: it

doesn’t cover every use case. Persistent has built-in
some very good support for raw SQL. One can run ar-
bitrary SQL queries and get back Haskell records or
types for single columns. In addition, Felipe Lessa
has created a library called esqueleto for having com-
plete control over generating SQL but with type safety.
persistent-MongoDB also has helpers for working with
raw queries.

52

http://www.wellposed.com
http://www.github.com/wellposed/numerical-core
http://hackage.haskell.org/package/numerical
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://code.haskell.org/HList/
http://okmij.org/ftp/Haskell/types.html#HList
https://web.archive.org/web/20130129031410/http://homepages.cwi.nl/~ralf/OOHaskell
https://web.archive.org/web/20130129031410/http://homepages.cwi.nl/~ralf/OOHaskell

Future plans

Possible future directions for Persistent:
◦ Adding key-value databases such as Redis without a
query layer.

◦ Full CouchDB support
Persistent users may also be interested in Groundhog

(→ 7.6.3), a similar project.
Most of Persistent development occurs within the

Yesod (→ 5.2.5) community. However, there is nothing
specific to Yesod about it. You can have a type-safe,
productive way to store data, even on a project that
has nothing to do with web development.

Further reading

◦ http://www.yesodweb.com/book/persistent
◦ http://hackage.haskell.org/package/esqueleto

7.6.3 Groundhog

Report by: Boris Lykah
Status: stable

Groundhog is a library for mapping user defined
datatypes to the database and manipulating them in a
high-level typesafe manner. It is easy to plug Ground-
hog into an existing project since it does not need mod-
ifying a datatype or providing detailed settings. The
schema can be configured flexibly which facilitates inte-
gration with existing databases. It supports composite
keys, indexes, references across several schemas. Just
one line is enough to analyze the type and map it to
the table. The migration mechanism can automati-
cally check, initialize, and migrate database schema.
Groundhog has backends for Sqlite, PostgreSQL, and
MySQL.
Unlike Persistent (→ 7.6.2) it maps the datatypes in-

stead of creating new ones. The types can be poly-
morphic and contain multiple constructors. It al-
lows creating sophisticated queries which might include
arithmetic expressions, functions, and operators. The
database-specific operators, for example, array-related
in PostgreSQL are statically guaranteed to run only
for PostgreSQL connection. Its support for the natu-
ral and composite keys is implemented using generic
embedded datatype mechanism.
Groundhog has got several commercial users which

have positive feedback. Most of the recent changes were
done to meet their needs. The new features include
PostgreSQL geometric operators, Fractional, Floating,
and Integral instances for lifted expressions, logging
queries, references to tables not mapped to Haskell
datatype, default column values, and several utility
functions.

Further reading

◦ Tutorial,
http://www.fpcomplete.com/user/lykahb/groundhog

◦ Homepage, http://github.com/lykahb/groundhog
◦ Hackage package,

http://hackage.haskell.org/package/groundhog

7.6.4 reflection

Report by: Edward Kmett
Participants: Elliott Hird, Oliver Charles, Carter

Schonwald
Status: stable

This package provides a mechanism to dynamically
construct a type from a term that you can reflect back
down to a term based on the ideas from “Functional
Pearl: Implicit Configurations” by Oleg Kiselyov and
Chung-Chieh Shan. However, the API has been imple-
mented in a much more efficient manner.
This is useful when you need to make a typeclass

instance that depends on a particular value in scope,
such as a modulus or a graph.

Further reading

◦ http://hackage.haskell.org/package/reflection
◦ http:

//www.cs.rutgers.edu/~ccshan/prepose/prepose.pdf
◦ http://comonad.com/reader/2009/incremental-folds/
◦ http://comonad.com/reader/2009/clearer-reflection/
◦ https://www.fpcomplete.com/user/thoughtpolice/

using-reflection

7.6.5 tag-bits

Report by: Edward Kmett
Status: stable

This package provides access to the dynamic pointer
tagging bits used by GHC, and can peek into infotables
to determine (unsafely) whether or not a thunk has
already been evaluated.

Further reading

◦ http://hackage.haskell.org/package/tag-bits
◦ http://research.microsoft.com/en-us/um/people/

simonpj/papers/ptr-tag/
◦ http://ghc.haskell.org/trac/ghc/wiki/Commentary/

Rts/HaskellExecution/PointerTagging
◦ http://ghc.haskell.org/trac/ghc/wiki/Commentary/

Rts/Storage/HeapObjects

53

http://www.yesodweb.com/book/persistent
http://hackage.haskell.org/package/esqueleto
http://www.fpcomplete.com/user/lykahb/groundhog
http://github.com/lykahb/groundhog
http://hackage.haskell.org/package/groundhog
http://hackage.haskell.org/package/reflection
http://www.cs.rutgers.edu/~ccshan/prepose/prepose.pdf
http://www.cs.rutgers.edu/~ccshan/prepose/prepose.pdf
http://comonad.com/reader/2009/incremental-folds/
http://comonad.com/reader/2009/clearer-reflection/
https://www.fpcomplete.com/user/thoughtpolice/using-reflection
https://www.fpcomplete.com/user/thoughtpolice/using-reflection
http://hackage.haskell.org/package/tag-bits
http://research.microsoft.com/en-us/um/people/simonpj/papers/ptr-tag/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ptr-tag/
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects

7.6.6 hyperloglog

Report by: Edward Kmett
Participants: Ozgun Ataman
Status: actively developed

This package provides an approximate streaming (con-
stant space) unique object counter.
Notably it can be used to approximate a set of several

billion elements with 1-2% inaccuracy in around 1.5k
of memory.

Further reading

◦ http://hackage.haskell.org/package/hyperloglog
◦ http:

//algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

7.6.7 concurrent-supply

Report by: Edward Kmett
Participants: Andrew Cowie, Christiaan Baaij
Status: stable

This package provides a fast supply of concurrent
unique identifiers suitable for use within a single pro-
cess. This benefits from greatly reduced locking over-
head compared to Data.Unique as it only contents for
the common pool every thousand or so identifiers.
One often has a desire to generate a bunch of inte-

ger identifiers within a single process that are unique
within that process. You could use UUIDs, but they
can be expensive to generate; you don’t want to have
your threads contending for a single external counter if
the identifier is not going to be used outside the pro-
cess.
concurrent-supply builds a rose-tree-like structure

which can be split; you can make smaller unique sup-
plies and then you allocate from your supplies locally.
Internally it pulls from a unique supply one block at
a time as you walk into parts of the tree that haven’t
been explored. This ensures that computations are al-
ways replayable within a process, and that the result
appears purely functional to an outside observer.

Further reading

http://hackage.haskell.org/package/concurrent-supply

7.6.8 hybrid-vectors

Report by: Edward Kmett
Status: actively developed

This package provides various ways in which you can
mix the different types of Vector from Roman Leschin-
skiy’s vector package to work with partially unboxed
structures.

Further reading

◦ http://hackage.haskell.org/package/hybrid-vectors
◦ https://www.fpcomplete.com/user/edwardk/

revisiting-matrix-multiplication/part-3

7.6.9 lca

Report by: Edward Kmett
Participants: Daniel Peebles, Andy Sonnenburg
Status: actively developed

This package improves the previous known complexity
bound of online lowest common ancestor search from
O(h) to O(log h) persistently, and without preprocess-
ing by using skew-binary random-access lists to store
the paths.

Further reading

◦ http://hackage.haskell.org/package/lca
◦ https:

//www.fpcomplete.com/user/edwardk/online-lca
◦ http://www.slideshare.net/ekmett/

skewbinary-online-lowest-common-ancestor-search

7.6.10 heaps

Report by: Edward Kmett
Status: actively developed

This package provides asymptotically optimal purely
functional Brodal-Okasaki heaps with a “Haskelly”
API.

Further reading

◦ http://hackage.haskell.org/package/heaps
◦ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.48.973

7.6.11 sparse

Report by: Edward Kmett
Participants: Carter Schonwald
Status: actively developed

This package provides sparse implicitly Morton-
ordered matrices based on the series ‘revisiting matrix
multiplication’ on the School of Haskell. It is efficient
for sufficiently sparse matrices.

Further reading

◦ http://hackage.haskell.org/package/sparse
◦ https://www.fpcomplete.com/user/edwardk/

revisiting-matrix-multiplication

54

http://hackage.haskell.org/package/hyperloglog
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
http://hackage.haskell.org/package/concurrent-supply
http://hackage.haskell.org/package/hybrid-vectors
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication/part-3
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication/part-3
http://hackage.haskell.org/package/lca
https://www.fpcomplete.com/user/edwardk/online-lca
https://www.fpcomplete.com/user/edwardk/online-lca
http://www.slideshare.net/ekmett/skewbinary-online-lowest-common-ancestor-search
http://www.slideshare.net/ekmett/skewbinary-online-lowest-common-ancestor-search
http://hackage.haskell.org/package/heaps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.973
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.973
http://hackage.haskell.org/package/sparse
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication

7.6.12 compressed

Report by: Edward Kmett
Status: stable

This package provides an LZ78-compressed stream as
a data type in Haskell. Compression isn’t used directly
for data compression, but rather to allow for the reuse
of intermediate monoidal results when folding over the
data set. LZ78 is rather distinctive among LZ-variants
in that it doesn’t require exhaustively enumerating the
token set or searching a window. By using conservative
approximations of what possible values the stream may
take, it is also possible to work with this LZ78 stream
as an Applicative or Monad without sacrificing too much
compression on the resulting unfolding.
A similar structure is provided for decompressing

run-length encoded data efficiently by peasant expo-
nentiation.

Further reading

◦ http://hackage.haskell.org/package/compressed
◦ http://oldwww.rasip.fer.hr/research/compress/

algorithms/fund/lz/lz78.html
◦ http://www.binaryessence.com/dct/en000140.htm

7.6.13 charset

Report by: Edward Kmett
Status: stable

This package provides fast unicode character sets based
on complemented PATRICIA tries along with common
charsets for variations on the posix standard and stan-
dard unicode blocks. This encoding has the benefit that
a CharSet and its complement take the same amount of
space. This package is used as a building block by
parsers (→ 7.3.7) and trifecta (→ 7.3.8).

Further reading

http://hackage.haskell.org/package/charset

7.6.14 Convenience types (Edward Kmett)

Report by: Edward Kmett
Participants: several others
Status: stable

◦ The either package provides an EitherT monad
transformer, that unlike ErrorT does not carry the
unnecessary class constraint. Removing this limita-
tion is necessary for many operations.
EitherT is also used extensively by Gabriel Gonzales’
errors package.
With either 4.0, we consolidated many of the ex-
isting combinators from Chris Done’s eithers pack-
age and Gregory Crosswhite’s either-unwrap pack-
age, both of which are now deprecated.

◦ The tagged package provides a simple Tagged new-
type that carries an extra phantom type parameter,
and a Proxy data type that has since been merged
into base with GHC 7.8.
These are useful as safer ways to plumb type argu-
ments than by passing undefined values around.

◦ Th void package provides a single “uninhabited”
data type in a canonical location along with all of
the appropriate instances.
The need for such a data type arises in shockingly
many situations as it serves as an initial object for
the category of Haskell data types.

Further reading

◦ http://hackage.haskell.org/package/either
◦ http://hackage.haskell.org/package/errors
◦ http://hackage.haskell.org/package/tagged
◦ http://hackage.haskell.org/package/void

7.7 User Interfaces

7.7.1 HsQML

Report by: Robin KAY
Status: active development

HsQML provides access to a modern graphical user
interface toolkit by way of a binding to the cross-
platform Qt Quick framework.
The library focuses on mechanisms for marshalling

data between Haskell and Qt’s domain-specific QML
language. The intention is that QML, which incorpo-
rates both a declarative syntax and JavaScript code,
can be used to design and animate the front-end of
an application while being able to easily interface with
Haskell code for functionality.

Status The latest version at time of press is 0.3.0.0.
This is the first release to support Qt 5.x (and Qt Quick
2). Other significant new features in this release include
the ability to marshall list types and to signal property
changes from Haskell. It has been tested on the major
desktop platforms: Linux, Windows, and MacOS.

Further reading

http://www.gekkou.co.uk/software/hsqml/

55

http://hackage.haskell.org/package/compressed
http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html
http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html
http://www.binaryessence.com/dct/en000140.htm
http://hackage.haskell.org/package/charset
http://hackage.haskell.org/package/either
http://hackage.haskell.org/package/errors
http://hackage.haskell.org/package/tagged
http://hackage.haskell.org/package/void
http://www.gekkou.co.uk/software/hsqml/

7.7.2 LGtk: Lens GUI Toolkit

Report by: Péter Diviánszky
Participants: Csaba Hruska
Status: experimental, actively developed

LGtk is a GUI Toolkit with the following goals:

◦ Provide a Haskell EDSL for declarative description
of interactive graphical applications

◦ Provide an API for custom widget design

◦ Provide a playground for high-level declarative fea-
tures like derived state-save and undo-redo opera-
tions and type-driven GUI generation

There is a demo application which presents the cur-
rent features of LGtk.

Changes in lgtk-0.8 since the last official announce-
ment:

◦ New features
– New GLFW backend. One consequence is that

the dependency on Gtk is not strict any more.

– Canvas widgets rendering diagrams composed
with the diagrams library. Mouse and keyboard
events are also supported.

– Widget toolkit generated with the diagrams li-
brary.

– Slider widgets

◦ Architectural changes
– Updated demo application
– Switch from data-lens to Edward Kmett’s lens

library
– Upgrade to work with GHC 8.2
– Repository moved to GitHub

◦ Inner changes
– Generalized and cleaned up interface of refer-

ences
– Cleaned up widget interface
– More efficient reference implementation

Further reading

◦ haskell.org wiki page:
http://www.haskell.org/haskellwiki/LGtk

◦ Haddock documentation on HackageDB:
http://hackage.haskell.org/package/lgtk

◦ Wordpress blog: http://lgtk.wordpress.com/

◦ GitHub repository: https://github.com/divipp/lgtk

7.7.3 Gtk2Hs

Report by: Daniel Wagner
Participants: Hamish Mackenzie, Axel Simon, Duncan

Coutts, Andy Stewart, and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:
◦ Automatic memory management (unlike some other

C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ High quality vector graphics using Cairo

56

http://www.haskell.org/haskellwiki/LGtk
http://hackage.haskell.org/package/lgtk
http://lgtk.wordpress.com/
https://github.com/divipp/lgtk

◦ Extensive reference documentation
◦ An implementation of the “Haskell School of Expres-

sion” graphics API
◦ Bindings to many other libraries that build on Gtk:

gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit
Recent efforts include increasing the coverage of the

gtk3 bindings, as well as myriad miscellaneous bugfixes.
Thanks to all who contributed!

Further reading

◦ News and downloads: http://haskell.org/gtk2hs/
◦ Development version: darcs get
http://code.haskell.org/gtk2hs/

7.7.4 Haskell-EFL binding

Report by: Sylvain Henry
Status: Experimental

The Enlightenment Foundation Libraries (EFL) [1]
provide a stateful canvas with many rendering backends
(X11, Windows, OpenGL, framebuffer, . . .) as well as a
unified interface to low-level OS dependent functionali-
ties: user input (keyboard, mouse, multi-point, unicode
texts with several input methods, . . .), formatted text
rendering, threads, timers, etc. Haskell-EFL is a bind-
ing to these C libraries whose aim is to provide a solid
foundation to develop native Haskell widget toolkits.
In its current state, the binding is close to be com-

plete for the modules we are interested in (namely
Ecore and Evas). However it still needs some polishing
and testing. Source code is currently available on [2]
and will be made available on Hackage as soon as it is
considered complete and stable enough.
In the short term, we plan to release a stable version

on Hackage. In the medium term, we would like to
develop a native replacement for the Edje library, that
is an EDSL to create UI elements with themes, anima-
tions, data-binding (FRP), etc. Finally, the long term
and more demanding goal is to develop a comprehen-
sive set of reusable UI components.

Further reading

[1] http://www.enlightenment.org/p.php?p=docs&l=en
[2] https://github.com/hsyl20/graphics-efl

7.7.5 threepenny-gui

Report by: Heinrich Apfelmus
Status: active development

Threepenny-gui is a framework for writing graphical
user interfaces (GUI) that uses the web browser as a
display. Features include:

◦ Easy installation. Everyone has a reasonably mod-
ern web browser installed. Just install the library
from Hackage and you are ready to go. The library
is cross-platform.

◦ HTML. You have all capabilities of HTML at your
disposal when creating user interfaces. This is a
blessing, but it can also be a curse, so the library
includes a few layout combinators to quickly create
user interfaces without the need to deal with the mess
that is CSS. A small JavaScript FFI allows you to in-
clude JS client libraries.

◦ Functional Reactive Programming (FRP) promises
to eliminate the spaghetti code that you usually
get when using the traditional imperative style for
programming user interactions. Threepenny has an
FRP library built-in, but its use is completely op-
tional. Employ FRP when it is convenient and fall
back to the traditional style when you hit an impasse.

Status

The project is alive and kicking, version 0.3.0.1 is
the latest release. You can download the library from
Hackage and use it right away to write that cheap GUI
you need for your project. Here a screenshot from the
example code:

For a collection of real world applications that use
the library, have a look at the gallery on the homepage.
Daniel Austin’s FNIStash program is also featured in
this report (→ 7.13.3).

Current development

The library is still very much in flux, significant API
changes are likely in future versions. The goal is to
make GUI programming as simple as possible, and that
just needs some experimentation.
The next version of threepenny-gui will include

automatic garbage collection for HTML elements and
it will (re-)introduce a UI monad that simplifies the
JavaScript FFI and supports recursive uses of FRP.

57

http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://www.enlightenment.org/p.php?p=docs&l=en
https://github.com/hsyl20/graphics-efl

Further reading

◦ Project homepage:
http://haskell.org/haskellwiki/Threepenny-gui

◦ Example code: https://github.com/
HeinrichApfelmus/threepenny-gui#examples

◦ Application gallery: http:
//haskell.org/haskellwiki/Threepenny-gui#Gallery

7.7.6 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a practical library for functional
reactive programming (FRP).
FRP offers an elegant and concise way to express

interactive programs such as graphical user interfaces,
animations, computer music or robot controllers. It
promises to avoid the spaghetti code that is all too com-
mon in traditional approaches to GUI programming.
The goal of the library is to provide a solid founda-

tion.

◦ Writing graphical user interfaces with FRP is made
easy. The library can be hooked into any existing
event-based framework like wxHaskell or Gtk2Hs. A
plethora of example code helps with getting started.
You can mix FRP and imperative style. If you don’t
know how to express functionality in terms of FRP,
just temporarily switch back to the imperative style.

◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ It features an efficient implementation. No more
spooky time leaks, predicting space & time usage
should be straightforward.

Status. The latest version of the reactive-banana li-
brary is 0.7.1.3. Compared to the previous report,
there has been no new public release as the API and
its semantics have reached a stable plateau.
It turned out that the library suffered from a large

class of space leaks concerning accumulated behaviors.
This has been fixed in the development version, but not
yet incorporated into a new release.
Current development. As foreshadowed in the last

report, not much development has occurred on the

reactive-banana library itself. Most of my efforts have
been spent on the threepenny-gui project, which is a
library for writing graphical user interfaces in Haskell
(→ 7.7.5).
Fortunately, these development efforts are directly

relevant to reactive-banana; graphical user interfaces
have always been my main motivation for FRP in
the first place. In particular, I have implemented a
new FRP module specifically for the threepenny-gui
project, and this reimplementation has taught me
many valuable lessons, which I hope to reintegrate into
reactive-banana soon. The most important lesson is
that the current API for reactive-banana is too com-
plex — the type parameter t that indicates starting
times just isn’t worth it. I have also learned that recur-
sion is best implemented differently from how I did it
before, which leads to a fix for certain situations where
reactive-banana couldn’t handle recursion.

Further reading

◦ Project homepage:
http://haskell.org/haskellwiki/Reactive-banana

◦ Example code: http:
//haskell.org/haskellwiki/Reactive-banana/Examples

◦ threepenny-gui:
http://haskell.org/haskellwiki/Threepenny-gui

7.8 Graphics and Audio

7.8.1 diagrams

Report by: Brent Yorgey
Participants: Daniel Bergey, Jan Bracker, Daniil Frumin,

Andy Gill, John Lato, Chris Mears, Jeff
Rosenbluth, Michael Sloan, Ryan Yates

Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is still much more to
be done, but diagrams is already quite fully-featured,
with a comprehensive user manual, a large collection of
primitive shapes and attributes, many different modes
of composition, paths, cubic splines, images, text, arbi-
trary monoidal annotations, named subdiagrams, and
more.

58

http://haskell.org/haskellwiki/Threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui#examples
https://github.com/HeinrichApfelmus/threepenny-gui#examples
http://haskell.org/haskellwiki/Threepenny-gui#Gallery
http://haskell.org/haskellwiki/Threepenny-gui#Gallery
http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Threepenny-gui

What’s new

Since the last HCAR edition, version 0.7 was released
in August 2013. New features in 0.7 include:

◦ A big refactoring of the way segments, trails, and
paths are represented; the new API is more powerful
and semantically consistent.

◦ Functions to compute the curvature of path segments
at a given point.

◦ Segment offsets (paths lying a constant distance
away from a given segment). A fuller implementation
with offsets for entire trails will be in the upcoming
1.0 release.

◦ A generalized color API, allowing backends to use
whatever color space they want.

◦ Additions to the diagrams-contrib library, includ-
ing a symmetric layout algorithm for binary trees,
circle packing layout, a generalized turtle drawing
interface, factorization diagrams, and iterated sub-
set fractals.

◦ Many documentation improvements, using
diagrams-haddock to generate example images.

◦ Big improvements to diagrams-builder, including
much smarter rebuilding and hsenv support.

◦ Official support for the SVGFonts package, provid-
ing Haskell-native code for handling font data and
converting strings into diagrams paths.

There have been many improvements and changes
to the core diagrams libraries as well. A 1.0 release is
planned for on or around November 20, to coincide with
Brent’s presentation at the New York Haskell Users’
Group. Features slated for the 1.0 release include:

◦ A nice API for drawing arrows between arbitrary
points or diagrams.

◦ Convenient integration with the lens (→ 7.1.2) pack-
age.

◦ Path offsets and expansions: for example, the oper-
ation of “stroking” a path can now be internalized
within diagrams, returning a closed path represent-
ing the outline of the stroke.

◦ Performance improvements: across-the-board im-
provements of around 30%, and more optimized SVG
output.

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of its
size, generality, and enthusiastic embrace of advanced
type system features, diagrams can be intimidating to
would-be users and contributors; however, we are ac-
tively working on new documentation and resources
to help combat this. For more information on ways
to contribute and how to get started, see the Con-
tributing page on the diagrams wiki: http://haskell.org/
haskellwiki/Diagrams/Contributing, or come hang out in
the #diagrams IRC channel on freenode.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://haskell.org/haskellwiki/Diagrams
◦ http://github.com/diagrams
◦ https://byorgey.wordpress.com/2012/08/28/

creating-documents-with-embedded-diagrams/
◦ http://www.cis.upenn.edu/~byorgey/pub/

monoid-pearl.pdf
◦ http://www.youtube.com/watch?v=X-8NCkD2vOw

59

http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw

7.8.2 csound-expression

Report by: Anton Kholomiov
Status: active, experimental

The csound-expression is a library for making electronic
music with text. It can render a high level description
of the music to Csound files. The Csound is used as an
assembler for computer music.
The key aspect of the library is simplicity. A line of

code should be enough to define the instrument, con-
nect it to the midi-device and send the output to speak-
ers. There are sensible defaults that allow the user of
the library to express the musical ideas with very short
sentences. As much as possible is derived from the con-
text. There is a functional model that hides a low level
wiring of the instruments. The FRP is used in the
interface of the event streams.
There is a library of the cool instruments im-

plemented in terms of the csound-expression primi-
tives. It’s called the csound-catalog (https://github.
com/anton-k/csound-catalog).
The library is available on Hackage (http://hackage.

haskell.org/package/csound-expression) and github
(https://github.com/anton-k/csound-expression).
The future plans include the implementation of the

Csound’s GUI and testing of the library in the music
applications.

Further reading

https://github.com/anton-k/csound-expression

7.8.3 Chordify

Report by: José Pedro Magalhães
Participants: W. Bas de Haas, Dion ten Heggeler, Gijs

Bekenkamp, Tijmen Ruizendaal
Status: actively developed

Chordify is a music player that extracts chords from
musical sources like Soundcloud, Youtube, or your own
files, and shows you which chord to play when. The

aim of Chordify is to make state-of-the-art music tech-
nology accessible to a broader audience. Our interface
is designed to be simple: everyone who can hold a mu-
sical instrument should be able to use it.
Behind the scenes, we use the sonic annotator for

extraction of audio features. These features consist
of the downbeat positions and the tonal content of a
piece of music. Next, the Haskell program HarmTrace
takes these features and computes the chords. Harm-
Trace uses a model of Western tonal harmony to aid
in the chord selection. At beat positions where the au-
dio matches a particular chord well, this chord is used
in final transcription. However, in case there is uncer-
tainty about the sounding chords at a specific position
in the song, the HarmTrace harmony model will select
the correct chords based on the rules of tonal harmony.
The basic functionality of Chordify is free for every-

one to use. PDF and MIDI transcriptions of the chords
can be obtained for a small fee. As of January 2014, we
also have monthly and yearly Premium accounts that
add functionality such as organising a library, transpos-
ing chords, chord playback, etc. The code for Harm-
Trace is available on Hackage, and we have ICFP’11
and ISMIR’12 publications describing some of the tech-
nology behind Chordify.

Further reading

http://chordify.net

7.8.4 Glome

Report by: Jim Snow
Status: New Version of Glome Raytracer

Glome is a ray tracer I wrote quite some time ago. The
project had been dormant for about five years until
a few months ago when I decided to fix some long-
standing bugs and get it back into a state that compiles
with recent versions of GHC. I got a little carried away,
and ended up adding some major new features.
First, some background. Glome is a ray tracer, which

renders 3d images by tracing rays from the camera into
the scene and testing them for intersection with scene
objects. Glome supports a handful of basic primitive
types including planes, spheres, boxes, triangles, cones,
and cylinders. It also has a number of composite primi-
tives that modify the behavior of other primitives, such
as CSG difference and intersection.
One of the more interesting composite primitives is

a BIH-based accelleration structure, which sorts primi-
tives into a hierarchy of bounding volumes. This allows
for scenes with a very large number of primitives to be
rendered efficiently.
Major new changes to Glome are a re-factoring of

the shader code so that it is now possible to define
textures in terms of user-defined types and write your
own shader (though the default should be fine for most

60

https://github.com/anton-k/csound-catalog
https://github.com/anton-k/csound-catalog
http://hackage.haskell.org/package/csound-expression
http://hackage.haskell.org/package/csound-expression
https://github.com/anton-k/csound-expression
https://github.com/anton-k/csound-expression
http://www.omras2.org/SonicAnnotator
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
http://chordify.net

uses), a new tagging system, some changes to the front-
end viewer application (which uses SDL now instead of
OpenGL), and a new triangle mesh primitive type.

Tagging requires a bit of explanation. When a ray
intersects with something in the scene, Glome returns
a lot of information about the properties of the loca-
tion where the ray hit, but until recently it didn’t give
much of a clue as to what exactly the ray hit. For 3D
rendering applications, you don’t usually care, but for
many computational geometry tasks you do very much
care.

The new tagging system makes it possible to asso-
ciate any 3D primitive with a tag, such that the tag is
returned along with any ray intersection that hit the
wrapped primitive. Tags are returned in a list, so that
it’s possible to have a heirarchy of tagged objects.

As an example of tags in action, I tagged some of the
objects in Glome’s default test scene, and instrumented
the viewer so that clicking on the image causes a ray
to be traced into the scene from the cursor’s location,
and then we print any tags returned by the ray inter-
section test. (Tags can be any type, but for illustrative
purposes, the test scene uses strings.)

An interesting feature of the tagging system is that
you don’t necessarily have to click directly on the object
to get back the tag; you could also click on the image
of the object reflected off of some other shiny object in
the scene.

Even though Glome is still a bit too slow for practi-
cal interactive 3D applications (I’ve been able to get
around 2-3 FPS at 720x480 for reasonably complex
scenes on a fairly fast machine), tags should at least
make it easier to write interactive applications when
Moore’s law catches up.

Glome is split into three packages: GloveVec, a vec-
tor library, GlomeTrace, the ray-tracing engine, and
GlomeView, a simple front-end viewer application. All
are available on hackage or via github under a GPLv2
license.

Further reading

◦ https://github.com/jimsnow/glome
◦ http://www.haskell.org/haskellwiki/Glome

7.9 Text and Markup Languages

7.9.1 epub-tools (Command-line epub Utilities)

Report by: Dino Morelli
Status: stable, actively developed

A suite of command-line utilities for creating and ma-
nipulating epub book files. Included are: epubmeta,
epubname, epubzip.
epubmeta is a command-line utility for examining

and editing epub book metadata. With it you can ex-
port, import and edit the raw OPF Package XML doc-
ument for a given book. Or simply dump the metadata
to stdout for viewing in a friendly format.
epubname is a command-line utility for renaming

epub ebook files based on the metadata. It tries to
use author names and title info to construct a sensible
name.
epubzip is a handy utility for zipping up the files

that comprise an epub into an .epub zip file. Using
the same technology as epubname, it can try to make
a meaningful filename for the book.
This project is built on the latest epub-metadata li-

brary and so supports epub3 for the first time.
See also epub-metadata (→ 7.3.1).
epub-tools is available from Hackage and the Darcs

repository below.

Further reading

◦ Project page: http://ui3.info/d/proj/epub-tools.html
◦ Source repository: darcs get

http://ui3.info/darcs/epub-tools

61

https://github.com/jimsnow/glome
http://www.haskell.org/haskellwiki/Glome
http://ui3.info/d/proj/epub-tools.html
http://ui3.info/darcs/epub-tools

7.9.2 lens-aeson

Report by: Edward Kmett
Participants: Paul Wilson, Benno FÃĳnfstÃĳck, Michael

Sloan, Adrian Keet
Status: actively developed

This package provides a suite of combinators that wrap
around Bryan O’Sullivan’s aeson library using the lens
library (→ 7.1.2) to make many data access and ma-
nipulation problems much more succinctly expressable.
We provide lenses, traversals, isomorphisms and prisms
that conspire to make it easy to manipulate complex
JSON objects.

Further reading

◦ http://hackage.haskell.org/package/lens-aeson
◦ https://www.fpcomplete.com/user/tel/

lens-aeson-traversals-prisms

7.9.3 hyphenation

Report by: Edward Kmett
Status: stable

This package provides configurable Knuth-Liang hy-
phenation using the UTF-8 encoded hyphenation pat-
terns for 69 languages, based on the patterns provided
by the hyph-utf8 project for LATEX. It can be mixed
with a pretty-printer to provide proper break-points
within words.

Further reading

◦ http://hackage.haskell.org/package/hyphenation
◦ http://www.ctan.org/tex-archive/language/hyph-utf8

7.10 Natural Language Processing

7.10.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell.

New packages

◦ multext-east-msd 0.1.0.4 (Jan Snajder)
This package is an implementation of the
MULTEXT-East morphosyntactic descriptors.
It could be useful for work with Eastern European
languages.

◦ concraft 0.8 (Jakub Waszczuk)
Concraft is a morphological disambiguation library
designed for highly-inflectional languages. It is based
on conditional random fields extended with addi-
tional, position-wise restrictions on the output do-
main, which are used to impose consistency between
the modeled label sequences and morphosyntactic
analysis results (Waszczuk 2012; see further read-
ing).
See also the package concraft-pl, a morphosyntactic
tagging tool for the Polish language which relies on
the Concraft library.

◦ nerf 0.5.0 (Jakub Waszczuk)
The package provides a named entity (NE) recogni-
tion tool which can be used to model tree-like struc-
tures of NEs. It combines the IOB encoding method
(used to translate between the original, forest repre-
sentation of NEs and the sequence of atomic labels)
with the sequence labeler based on linear-chain con-
ditional random fields.

◦ dawg 0.11 (Jakub Waszczuk)
The library implements directed acyclic word graphs
internally represented as minimal acyclic determinis-
tic finite-state automata. It provides fast insert and
delete operations which can be used to build the au-
tomaton on-the-fly and a static hashing functionality.
The library can be particularly useful to store lan-
guage dictionaries (e.g. morphological dictionaries
or resources of named entities). The implementation
is not very efficient at the moment, but it provides a
convenient map-like interface and should be easy to
use.

Updated packages
◦ GenI 0.24.1 (Eric Kow)

GenI is a surface realiser (part of a natural language
generation system) using Feature Based Tree Adjoin-
ing Grammar. This latest version can be customised
to work with alternative semantic inputs, making it
easier to integrate with wider applications.

◦ sequor 0.4.2 (Grzegorz Chrupala)
Sequor is a sequence labeler based on Collins’s (2002)
perceptron. Sequor has a flexible feature template
language and is meant mainly for NLP applications
such as Named Entity labeling, Part of Speech tag-
ging or syntactic chunking. This release includes the
SemiNER named entity recognizer, with pre-trained
models for German and English.
https://bitbucket.org/gchrupala/sequor

◦ hiera 0.1.0.0 (Grzegorz Chrupala)
Hiera implements the algorithm for hierarchical clus-
tering of word-class probability distributions de-
scribed in Chrupala 2012 (see Further Reading): it

62

http://hackage.haskell.org/package/lens-aeson
https://www.fpcomplete.com/user/tel/lens-aeson-traversals-prisms
https://www.fpcomplete.com/user/tel/lens-aeson-traversals-prisms
http://hackage.haskell.org/package/hyphenation
http://www.ctan.org/tex-archive/language/hyph-utf8
https://bitbucket.org/gchrupala/sequor

is an agglomerative clustering algorithm where the
distance between clusters is defined as the Jensen-
Shannon divergence between the probability distri-
butions over classes associated with each word-type.

https://bitbucket.org/gchrupala/hiera

At the present, the mailing list is mainly used to
make announcements to the Haskell NLP community.
We hope that we will continue to expand the list and
expand our ways of making it useful to people poten-
tially using Haskell in the NLP world.

Further reading

◦ The Haskell NLP page http://projects.haskell.org/nlp
◦ Grzegorz Chrupala. 2012. Hierarchical clustering of
word class distributions. NAACL-HLT 2012
Workshop on the Induction of Linguistic Structure.

◦ Jakub Waszczuk. 2012. Harnessing the CRF
complexity with domain-specific constraints. The
case of morphosyntactic tagging of a highly inflected
language. In Proceedings of the 24th International
Conference on Computational Linguistics
(COLING 2012).

7.10.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.
GenI is now mirrored on GitHub, with its issue

tracker and wiki and homepage also hosted there. The
most recent release, GenI 0.24 (2013-09-18), allows for
custom semantic inputs, making it simpler to use GenI
in a wider variety for applications. This has recently
been joined by a companion geni-util package which
offers a rudimentary geniserver client and a reporting
tool for grammar debugging.

GenI is available on Hackage, and can be installed
via cabal-install, along with its GUI and HTTP server
user interfaces. For more information, please contact
us on the geni-users mailing list.

Further reading

◦ http://github.com/kowey/GenI
◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

7.11 Bioinformatics

7.11.1 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion provides a domain-specific language (DSL)
for the formulation of dynamic programs with a special
emphasis on computational biology. Following ideas
established in Algebraic dynamic programming (ADP)
a problem is separated into a grammar defining the
search space and one or more algebras that score and
select elements of the search space. The DSL has been
designed with performance and a high level of abstrac-
tion in mind.
As an example, consider a grammar that recognizes

palindromes. Given the non-terminal p, as well as
parsers for single characters c and the empty input ε,

63

https://bitbucket.org/gchrupala/hiera
http://projects.haskell.org/nlp
http://github.com/kowey/GenI
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users

the production rule for palindromes can be formulated
as p→ c p c | ε.
The corresponding ADPfusion code is similar:

(p, f <<< c % p % c ||| g <<< e ... h)

We need a number of combinators as “glue” and
additional evaluation functions f , g, and h. With
f c1 p c2 = p && (c1 ≡ c2) scoring a candidate,
g e = True, and h xs = or xs determining if the
current substring is palindromic.
As of now, code written in ADPfusion achieves per-

formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

Starting with ADPfusion 0.2, dynamic programs on
more than one input sequence can be written. This
allows efficient dynamic programs that compute, say,
the alignment of two or more inputs. More compli-
cated algorithms of coupled context-free grammars also
become possible with this new, multi-dimensional ex-
pansion. Together with generalised index spaces, more
algorithms can be implemented efficiently, while at the
same time reducing the effort required to implement
these more complicated algorithms correctly.

Further reading

◦ http://www.tbi.univie.ac.at/~choener/adpfusion
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://dx.doi.org/10.1145/2364527.2364559

7.11.2 Ab-initio electronic structure in Haskell

Report by: Alessio Valentini
Participants: Felipe Zapata, Angel Alvarez
Status: Active

We are three friends from Alcalá de Henares (Spain),
two PhD students in computational chemistry from
ResMol group and one sysadmin working at Alcalá Uni-
versity computer center. We all share the same passion
in programming and after some adventures in Fortran,
Bash, Python and Erlang we are now fully committed
to Haskell. As PhD students working in this area, every

day we face codes that are both difficult to read and
improve, with no guidelines and poor documentation.
The set of problems inherent in computational chem-

istry are mainly due to the theoretical models complex-
ity and the need of reducing as much as possible the
computational time, leading to a demand of extremely
solid and efficient software. What is happening in the
actual context is the result of a poor interface between
the two adjoining worlds of chemist and computer sci-
ence and the necessity of publishing papers and sci-
entific material to raise funds. This usually leads to
software hastily developed by a few chemists with only
a side-interest in programming and therefore a limited
skill set.
The very few software that can be deemed remark-

able are usually the result of massive funding, and even
those packages are now facing huge problems in terms
of parallelization, concurrency and stability of the code.
Most of the efforts are spent trying to fix these issues
instead of being addressed at developing better code
(improve modularity and intelligibility) or new features
and new algorithms.
We witness the proliferation of projects that serve no

other purpose than to provide a bridge between differ-
ent software, while the main core of molecular model-
ing codes, in most cases written in Fortran 77, remains
untouched since the eighties.
Our first purpose in this project is to become bet-

ter at Haskell programming and having fun managing
a package that is every day becoming bigger. But
we kind of dream of a molecular modeling software
that can fully express the great upsides of functional
programming. Fewer lines of code, better readability,
great parallelization, embedded domain specific lan-
guages (EDSL) ... and maybe more efficiency, too !
Ab-initio molecular modeling is a branch of com-

putational chemistry that, for a set of given atoms,
solves the Schrödinger equation (the analogous of New-
ton’s equation in quantum mechanics), with no inclu-
sion of parameters derived from experimental data. In
such systems it is quite easy to calculate forces be-
tween nuclei but things get tricky when we calculate
the potential energy contribution of forces related to
electrons. In this case we can adopt a first approxi-
mation, the so called Hartree-Fock, that considers the
electron-electron repulsion as an average between each
electron and the mean field of all the others. This the-
ory is right now the cornerstone of more sophisticated
methods, such Multiconfigurational Methods, Møller-
Plesset Perturbation Theory or Coupled Cluster, and
the mathematical models behind its implementation
are vastly used throughout the world of computational
chemistry.
This package can calculate the Hartree Fock energy

of a given molecule geometry and a basis set solving the
Roothaan Hall equations through a self consistent field
procedure. It uses the Harris Functional as an initial
density guess and the DIIS method to greatly improve

64

http://www.tbi.univie.ac.at/~choener/adpfusion
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559
http://www2.uah.es/resmol/
http://www.uah.es/
http://www.uah.es/
http://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry_methods
http://tinyurl.com/yc6j5l
http://en.wikipedia.org/wiki/CASSCF
http://tinyurl.com/qgkuhz5
http://tinyurl.com/qgkuhz5
http://en.wikipedia.org/wiki/Coupled_cluster
http://en.wikipedia.org/wiki/XYZ_file_format
https://bse.pnl.gov/bse/portal
http://en.wikipedia.org/wiki/Roothaan_equations
http://prb.aps.org/abstract/PRB/v31/i4/p1770_1
http://onlinelibrary.wiley.com/doi/10.1002/jcc.540030413/abstract

the convergence.
The entire code is written using the Repa library and

focusing our efforts on efficiency, parallelism (speedups
vs cores: 2,3 on 4 and 3.5 on 8) and code readabil-
ity. Using Haskell’s higher order abstraction we are
trying to develop an EDSL appropriate for quantum
mechanics problems, creating code operators able to
fairly mimic the physical ones.
The code is available for download in Felipe’s gitHub

page.
A Hartree Fock π orbital in PSB3:

We are currently developing this code in our spare
time, working on analytical gradients, on the Prisma al-
gorithm and on a solid eigenvalue problem solver. The
aims of this projects are a full Haskell implementation
of Multiconfigurational Methods and possibly an inte-
gration with our molecular dynamics project.

Further reading

◦ https://github.com/felipeZ/Haskell-abinitio.git
◦ http://themonadreader.files.wordpress.com/2013/03/

issue214.pdf

7.11.3 Semi-Classical Molecular Dynamics in
Haskell

Report by: Alessio Valentini
Participants: Felipe Zapata, Angel Alvarez
Status: Active

As a first approximation, we can split the world of
Molecular Dynamics into three branches: Force Fields,
Classical (Semi-Classical) and Quantum Molecular Dy-
namics. The first approach completely ignores the de-
scription of the electrons, and the system is described
by a "Balls and Springs" model leading to very cheap
calculations that can be performed in big systems.
From a chemical point of view, anyway, this approach

often suffers severe drawbacks, since every time an ac-
curate description of electrons is needed (i.e. when
studying the formation or breaking of bonds, reations
involving excited states, or heavily polarized systems)
we cannot rely on pure Classical Mechanics.

On the other side, even if the Quantum Dynamics ap-
proach is capable of describing the real quantum behav-
ior of every single electron and nucleus, it comes with
a huge increase in computational cost. It is basically
unaffordable for systems with more than 5-6 atoms.
That’s why we need to take in consideration the Clas-
sical and Semi Classical Dynamics, where the system’s
forces are calculated using a Quantum method, while
the geometry is updated with Classical Mechanics and
some ad-hoc formulae to take into account quantum
effects.
As PhD students in computational chemistry we of-

ten found ourselves in this situation: we have a chemi-
cal problem that might appear simple at first, but then
it is usually quite difficult to find all the features nec-
essary to tackle it in the same package. It is often
the case where software "X" is lacking feature "Z" while
software "Y" is missing feature "W".
The possible solutions to this impasse are:

1. to encode the missing features in the software of
choice, a task that can reveal itself as very difficult
and time consuming, since most of the time we are
dealing with monolithic software written in Fortran,
usually quite old and poorly maintained.

2. to write an external software (i.e. parser/launcher)
capable of interact concurrently with several soft-
ware, which is currently the approach employed in
most cases. So much that the vast majority of com-
putational chemists keeps a personal folder that con-
tains just collections of parsers and scripts.

Energies vs time for a two electronic states system:

Our project takes advantage of the exceptional mod-
ularity that Haskell offers, and represents our effort to
unify in a comprehensive tool all those routines that
are needed in our research group to perform Classical
and Semi Classical Molecular Dynamics. Our current
goal is to keep a robust code and to minimize the need
to use external software, limiting their application to
the computation of the gradient.
Given some initial conditions and an external pro-

gram (currently Molcas and Gaussian are supported)
capable of calculating the energy gradient, our code is

65

http://hackage.haskell.org/package/repa
https://github.com/felipeZ/Haskell-abinitio.git
https://github.com/felipeZ/Haskell-abinitio.git
http://onlinelibrary.wiley.com/doi/10.1002/qua.560400605/abstract;jsessionid=EE5A6D653572ABB326136C9319CA63E5.f04t02?deniedAccessCustomisedMessage=&userIsAuthenticated=false
http://onlinelibrary.wiley.com/doi/10.1002/qua.560400605/abstract;jsessionid=EE5A6D653572ABB326136C9319CA63E5.f04t02?deniedAccessCustomisedMessage=&userIsAuthenticated=false
http://prb.aps.org/abstract/PRB/v79/i11/e115112
https://github.com/AngelitoJ/HsDynamics
https://github.com/felipeZ/Haskell-abinitio.git
http://themonadreader.files.wordpress.com/2013/03/issue214.pdf
http://themonadreader.files.wordpress.com/2013/03/issue214.pdf
http://www.molcas.org/
http://www.gaussian.com/

able to parse its log file and perform the whole "Semi-
Classical part" of the Molecular Dynamics.
The code employs the Velocity Verlet algorithm to

propagate the geometries, the Nosé Hoover thermostate
for a constant temperature bath and the Tully Hammes
Schiffer hopping algorithm (along with correction of
Persico-Granucci) to take in consideration hops be-
tween different electronic states. It also features the
possibility to add external forces to the molecule, to
simulate constrained conditions that can be found, for
example, in a protein binding pocket.
This is still a small project, but we are using it con-

stantly in our research group as a flexible tool for molec-
ular dynamics, waiting for our other project to calcu-
late the ab-initio gradient for us.

Further reading

https://github.com/AngelitoJ/HsDynamics

7.11.4 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen, Michal J.

Gajda, Nick Ignolia, Felipe Almeida Lessa,
Dan Fornika, Maik Riechert, Ashish

Agarwal, Grant Rotskoff, Florian
Eggenhofer

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now contains 66 li-
braries and applications. The biohaskell web site co-
ordinates this effort, and provides documentation and
related information. Anybody interested in the com-
bination of Haskell and bioinformatics is encouraged
to sign up to the mailing list (currently by emailing
〈ketil@malde.org〉Ketil), and to register and document
their contributions on the http://biohaskell.org wiki.
This year, we have seen many new develop-

ments, including libraries for parsing MEME XML,
http://hackage.haskell.org/package/RNAdesign,
working with EEG data, and a client library to run
NCBI’s BLAST services. We have also been lucky to
recieve one slot in Google’s Summer of Code, where
Sarah will work on optimizing the transalign program.

Further reading

◦ http://biohaskell.org
◦ http://blog.malde.org
◦ http://www.tbi.univie.ac.at/~choener/haskell/
◦ http://adp-multi.ruhoh.com
◦ https://bioinf.eva.mpg.de/biohazard/

7.11.5 arte-ephys: Real-time electrophysiology

Report by: Greg Hale
Participants: Alex Chen
Status: work in progress

Arte-ephys is a soft real-time neural recording system
for experimental systems neuroscientists.
Our lab uses electrode arrays for brain recording in

freely moving animals, to determine how these neurons
build, remember, and use spatial maps.
We previously recorded and analyzed our data in two

separate stages. We are now building a recording sys-
tem focused on streaming instead of offline analysis,
for real-time feedback experiments. For example, we
found that activity in the brain of resting rats often
wanders back to representations of specific parts of a
recently-learned maze, and we would now like to au-
tomatically detect these events and reward the rat im-
mediately for expressing them, to see if this influences
either the speed of learning of a specific part of the
maze or the nature of later spatial information coding.
We now have a proof-of-concept that streams

recorded data from disk, performs the necessary pre-
processing, and accurately decodes neural signals in re-
altime, while drawing the results with gloss. Our next
goal is to integrate this into a sytem that streams raw
neural data during the experiment.

Further reading

◦ http://github.com/ImAlsoGreg/arte-ephys
◦ http://github.com/ImAlsoGreg/haskell-tetrode-ephys
◦ http://web.mit.edu/wilsonlab/html/research.html

66

http://en.wikipedia.org/wiki/Verlet_integration
http://tinyurl.com/qxog7ha
http://scitation.aip.org/content/aip/journal/jcp/101/6/10.1063/1.467455
http://scitation.aip.org/content/aip/journal/jcp/101/6/10.1063/1.467455
http://www.ncbi.nlm.nih.gov/pubmed/17430023
https://github.com/felipeZ/Haskell-abinitio.git
https://github.com/AngelitoJ/HsDynamics
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org
mailto: ketil at malde.org
http://biohaskell.org
http://biohaskell.org/Libraries/memexml
https://github.com/nh2/hemokit
http://biohaskell.org/Libraries/blastHTTP
http://www.biohaskell.org/GSoC_blog
http://blog.malde.org/posts/transitive-alignments.html
http://biohaskell.org
http://blog.malde.org
http://www.tbi.univie.ac.at/~choener/haskell/
http://adp-multi.ruhoh.com
https://bioinf.eva.mpg.de/biohazard/
http://github.com/ImAlsoGreg/arte-ephys
http://github.com/ImAlsoGreg/haskell-tetrode-ephys
http://web.mit.edu/wilsonlab/html/research.html

7.12 Embedding DSLs for Low-Level
Processing

7.12.1 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and is currently being developed by projects
at Chalmers University of Technology (→ 9.7), SICS
Swedish ICT AB and Ericsson AB.
The motivating application of Feldspar is telecoms

processing, but the language is intended to be useful
for DSP in general. The aim is to allow DSP functions
to be written in pure functional style in order to raise
the abstraction level of the code and to enable more
high-level optimizations. The current version consists
of an extensive library of numeric and array processing
operations as well as a code generator producing C code
for running on embedded targets.
At present, Feldspar can express the data-intensive

numeric algorithms which are at the core of any DSP
application. There is also support for the expression
and compilation of parallel algorithms. As future work
remains to extend the language to deal with interac-
tion with the environment (e.g., processing of stream-
ing data) and to support compilation to heterogeneous
multi-core targets.

Further reading

◦ http://feldspar.github.io
◦ http://hackage.haskell.org/package/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-compiler

7.12.2 Kansas Lava

Report by: Andy Gill
Participants: Bowe Neuenschwander
Status: ongoing

Kansas Lava is a Domain Specific Language (DSL) for
expressing hardware descriptions of computations, and
is hosted inside the language Haskell. Kansas Lava pro-
grams are descriptions of specific hardware entities, the
connections between them, and other computational
abstractions that can compile down to these entities.
Large circuits have been successfully expressed using
Kansas Lava, and Haskell’s powerful abstraction mech-
anisms, as well as generic generative techniques, can be
applied to good effect to provide descriptions of highly
efficient circuits.

◦ The Fabric monad is now a Monad transformer. The
Fabric monad historically provided access to named
input/output ports, and now also provides named
variables, implemented by ports that loop back on
themselves. This additional primitive capability al-
lows for a typed state machine monad. This design

gives an elegant stratospheric pattern: purely func-
tional circuits using streams; a monad for layout over
space; and a monad for state generation, that acts
over time.

◦ On top of the Fabric monad, we are implementing an
atomic transaction layer, which provides a BSV-like
interface, but in Haskell. An initial implementation
has been completed, and this is being reworked to
include BSV’s Ephemeral History Registers.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

7.13 Others

7.13.1 General framework for multi-agent systems

Report by: Nickolay Kudasov
Status: experimental

The goal is to create a general framework for developing
and testing of multi-agent systems. That includes gen-
eral representation for multi-agent systems as well as
library implementations for well-known agent models,
distributed algorithms and communication and coordi-
nation patterns.
Notions of agent and environment are separated with

the help of free monads. Agent-environment interface
is defined by an underlying functor.
The basic representation of agent and environment

has been chosen and tested for an agent-based dis-
tributed graph coloring problem.
The concrete implementation is being revised fre-

quiently and thus is not very stable.
Implementations for some general distributed algo-

rithms (ABT, DBA, etc.) will be available shortly.

Further reading

https://github.com/fizruk/free-agent

7.13.2 ersatz

Report by: Edward Kmett
Participants: Johan Kiviniemi, Iain Lane
Status: stable

Ersatz is a library for generating QSAT (CNF/QBF)
problems using a monad. It takes care of generating the
normal form, encoding your problem, marshaling the
data to an external solver, and parsing and interpreting
the result into Haskell types.
What differentiates Ersatz from other SAT bindings

is the use of observable sharing in the API.
This enables you to use the a much richer subset of

Haskell than the purely monadic meta-language, and it
becomes much easier to see that the resulting encoding
is correct.

67

http://feldspar.github.io
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
https://github.com/fizruk/free-agent

Support is offered for decoding various Haskell
datatypes from the solution provided by the SAT
solver.
A couple of examples are included with the distri-

bution. Neither are as fast as a dedicated solver for
their respective domains, but they showcase how you
can solve real world problems involving 10s or 100s of
thousands of variables and constraints.

Further reading

http://hackage.haskell.org/package/ersatz

7.13.3 FNIStash

Report by: Daniel Austin

FNIStash is a utility application for the PC game
Torchlight 2 (TL2). It presents a graphical interface
to allow the user to manipulate the game’s inventory
stash files, store/retrieve items in a database external
to the game, search the item database by key phrase(s),
and generates reports identifying which items have yet
to be found. The project began at the end of 2012
and first release was in Sept 2013. Several subsequent
releases have been made to fix bugs and implement re-
quests from users.
FNIStash is configured by modifying a file to point

to TL2’s game asset pack and save files. At first time
start up, many of the game’s graphical and interface as-
sets are decompressed from the asset pack and written
to disk using the DevIL bindings. The save files are de-
scrambled and parsed using logic that was backwards-
engineered by the author, and each item is registered
in an SQLite3 database file for efficient searching and
storage. The GUI presented to the user utilizes the
threepenny-gui package (→ 7.7.5). A web backend
runs in a console window and users interact with the
GUI through their web browser. The decision to use
threepenny-gui was motivated by the need to easily
set up, build, and deploy a GUI on the Windows plat-
form. A video demo of the first release is available on
the homepage.
FNIStash was originally conceived as an exercise to

learn Haskell by building a program that is actually
useful instead of fruitlessly reading journal papers and
reddit posts. The experience was highly challenging,
educational, and enjoyable.

Further reading

http://fluffynukeit.com/?page_id=535 (with demo)

7.13.4 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
Since the last report, version 0.8 was released, with

many improvements to getting machine-readable data
out of arbtt. Also, the community on the mailinglist
list has grown noticable. Arbtt now has a proper is-
sue tracker (on bitbucket) and a test suite (tested on
Travis-CI).

Further reading

◦ http://arbtt.nomeata.de/
◦ http://www.joachim-breitner.de/blog/archives/

336-The-Automatic-Rule-Based-Time-Tracker.html
◦ http://arbtt.nomeata.de/doc/users_guide/

7.13.5 Hoodle

Report by: Ian-Woo Kim
Status: Actively Developing

Hoodle is a pen-notetaking programing written in
haskell using Gtk2hs. The name Hoodle is from Haskell
+ doodle.

This project first started as making a haskell clone
of Xournal, a notetaking program developed in C. But
now Hoodle has more unique features, as well as basic
pen notetaking function. Pen input is directly fed into
from X11 events, which has sub-pixel level accuracy
for the case of wacom tablets. Therefore, the resultant
pen strokes are much smoother than other similar open-
source programs such as Jarnal and Gournal.
Hoodle can be used for annotation on PDF files, and

also supports importing images of PNG, JPG and SVG
types, and exporting Hoodle documents to PDF. One
of the most interesting features is “linking”: each Hoo-
dle document can be linked with each other by simple
drag-and-drop operations. Then, the user can navi-
gate linked Hoodle documents as we do in web browser.

68

http://hackage.haskell.org/package/ersatz
http://fluffynukeit.com/?page_id=535
http://arbtt.nomeata.de/
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://arbtt.nomeata.de/doc/users_guide/

Another interesting feature is that one can edit a doc-
ument in split views, so that a long Hoodle document
can be easily edited. Hoodle can embed LATEXtexts and
the embedded text can be edited via network.
GUI programming is in general tightly tied into a

GUI framework. Since most frameworks rely on call-
backs for event processing, program logic is likely to be
scattered in many callback functions. We cure this sit-
uation by using coroutines. In haskell, coroutine can be
implemented in a straightforward way without relying
on specific language feature. This abstraction enable us
to reason through the program logic itself, not through
an inverted logic in a GUI framework.
Hoodle is being very actively developed as an open-

source project hosted on Github. The released versions
are located on Hackage, and it can be installed by sim-
ple cabal install. On Linux, OS X, and Windows sys-
tems with Gtk2hs and Poppler, Hoodle can be installed
without problems. Recently, it is packaged for NixOS.
Making a Hoodle binary package for other linux distri-
butions, OS X and window is planned.
The development focus as of now is to have more flex-

ible link features (link to arbitrary position of a doc-
ument) and an internal database for document man-
agement. Hoodle manages documents with a unique
UUID, but it does not have a good internal database
yet. This feature can also be extended to saving Hoo-
dle documents in cloud storage in a consistent way.
Refining rendering with appropriate GPU acceleration
is also planned. In the long run, we plan to support
mobile platforms.

Further reading

http://ianwookim.org/hoodle

7.13.6 Reffit

Report by: Greg Hale
Status: work in progress

Reffit is a Snap website for collecting and organizing
short comments on peer reviewed papers, blog posts,

and videotaped talks. We hope to attract a community
and foster a culture of open discussion of papers, with
a lighthearted attitude, informality, and gamification.

Further reading

◦ http://reffit.com
◦ http://github.com/ImAlsoGreg/reffit

7.13.7 Laborantin

Report by: Lucas DiCioccio
Status: Working, development for new features

Conducting scientific experiments is hard. Laborantin
is a DSL to run and analyze scientific experiments.
Laborantin is well-suited for experiments that you can
run offline such as benchmarks with many parameters.
Laborantin encourages users to express experiments

parameters, experiment results, as well as execution,
startup, and teardown procedures in a methodical man-
ner. For instance, the following snippet defines a net-
work ‘ping’ experiment with a destination and packet-
size parameters.
ping = scenario "ping" $ do

describe "ping to a remote server"
parameter "destination" $ do

describe "a destination server (host or ip)"
values [str "example.com", str "dicioccio.fr"]

parameter "packet-size" $ do
describe "packet size in bytes"
values [num 50, num 1500]

run $ do
(StringParam srv) <- param "destination"
(NumberParam ps) <- param "packet-size"
liftIO (execPing srv ps) >>= writeResult "ping.out"

execPing :: Text -> Rational -> IO (Text)
execPing host pktSz =

let args = ["-c", "10"
, "-s" , show (round pktSz) , T.unpack host]

in fmap T.pack (readProcess "ping" args "")

Laborantin also lets users express dependencies be-
tween experiments. Laborantin is designed to allow
multiple backend (where to run and store experiments)
and multiple frontends (how a user interacts with Lab-
orantin). The current backend stores experiment re-
sults on the filesystem and provides a command line
frontend.
Contributions are welcome. In the future, we plan

to enrich Laborantin with helper modules for common
tasks such as starting and collecting outputs of remote
processes, reformatting results, and generating plots
(e.g., with Diagrams). Laborantin would also bene-
fit from new backends (e.g., to store results in an SQL
database or HDFS) and new frontends (e.g., an inte-
gration in IHaskell).

Further reading

◦ Hackage page:
http://hackage.haskell.org/package/laborantin-hs

69

http://ianwookim.org/hoodle
http://reffit.com
http://github.com/ImAlsoGreg/reffit
http://hackage.haskell.org/package/laborantin-hs

◦ Example of web-benchmarks: https:
//github.com/lucasdicioccio/laborantin-bench-web

7.13.8 The Amoeba-World game project

Report by: Alexander Granin
Status: work in progress

In functional programming, there is a serious problem:
there are no materials for the development of large
applications. As we know, this field is well studied
for imperative and object-oriented languages. There
are books on design, architecture, design patterns and
modeling practices. But we have no idea how this big
knowledge can be adapted to functional languages.
I’m working on a game called “The Amoeba World”.

The goal of this project is to explore approaches to
the development of large applications on Haskell. The
results of my research are some articles which will be
used to compose a book about functional design and
architecture. Currently two articles are written out of
the planned four (in Russian, but the articles will be
translated to English soon). The first highlights the is-
sue of whether the mainstream knowledge of architec-
ture is applicable to the functional paradigm and what
tools can be used for designing of architecture. It shows
that the UML is ill-suited for the functional paradigm
and the architecture is constructed using mind maps
and concept cards. The second article talks about a
low-level design of the application using the language
Haskell. It has a theoretical part named what makes a
good design, but there is also practical part describing
of the some anti-patterns in Haskell. The third article
is under development now. In it, the application design
based on properties and scenarios is researched. The
fourth article will be discussing the use of FRP.
Code of the game “The Amoeba World” should be

written well to be a good example of the design con-
cepts. These concepts are: using DSL, parsing, layer-
ing, using lenses, Inversion of Control, testing, FRP,
SDL, usefulness of monads. The overall architecture of
the game looks as follows:

At the moment, the game logic has been rewritten
twice. The draft of game logic is ready. A special file
format ’ARF’ (Amoeba Raw File) for the game objects
is done. Parsec is used for parsing, and a custom safe

translator is written, which works on rules. Now I’m
are working on a Application Layer. Settings loading
is done. A primitive renderer for the game world is
created. A draft game cycle and IO event handler from
SDL subsystem is done by using Netwire FRP library.
The next objectives are to add an interaction within the
game world and then move to the execution of scenarios
on game objects.

Further reading

◦ https://github.com/graninas/The-Amoeba-World
◦ http://bit.ly/ArchitectureAndDesingInFP (in Russian)

70

https://github.com/lucasdicioccio/laborantin-bench-web
https://github.com/lucasdicioccio/laborantin-bench-web
https://github.com/graninas/The-Amoeba-World
http://bit.ly/ArchitectureAndDesingInFP

8 Commercial Users

8.1 Well-Typed LLP

Report by: Andres Löh
Participants: Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
We are working for a variety of commercial clients,

but naturally, only some of our projects are publicly
visible.
Austin has been working hard to help get GHC-7.8

released.
On behalf of the Industrial Haskell Group (IHG) (→

8.3), we are currently working on tasks related to Hack-
age 2 and Cabal.
We continue to be involved in the community, main-

taining several packages on Hackage and giving talks
at a number of conferences. Some of our recent
projects are available online, such as for example Ed-
sko’s ghc-events-analyze tool, or Adam’s talk about
overloaded record fields in Haskell (links below).
We are continuing to offer training services. We offer

regular courses in London (the next course dates are in
July and in October), and on-demand on-site training
courses elsewhere as well.
We are of course always looking for new clients and

projects, so if you have something we could help you
with, just drop us an e-mail.

Further reading

◦ Company page: http://www.well-typed.com
◦ Blog: http://blog.well-typed.com/
◦ Training page:
http://www.well-typed.com/services_training

◦ Skills Matter Haskell course overview:
https://skillsmatter.com/explore?content=
courses&location=&q=Haskell

◦ ghc-events-analyze:
http://www.well-typed.com/blog/86/

◦ Adam’s records talk:
http://www.well-typed.com/blog/93/

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.
BSV is used for all aspects of ASIC and FPGA de-

sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universally applicable, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality Verilog, which can be further synthe-
sized into netlists for ASICs and FPGAs using third-
party tools. Atomic transactions enable design-by-
refinement, where an initial executable approximate
design is systematically transformed into a quality im-
plementation by successively adding functionality and
architectural detail. The synthesis tool is implemented
in Haskell (well over 100K lines).
Bluesim is a fast simulation tool for BSV. There are

extensive libraries and infrastructure to make it easy to
build FPGA-based accelerators for compute-intensive
software, including for the Xilinx XUPv6 board popu-
lar in universities, and the Convey HC-1 high perfor-
mance computer.
BSV is also enabling the next generation of com-

puter architecture education and research. Students
implement and explore architectural models on FP-
GAs, whose speed permits evaluation using whole-
system software.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor and electronic equipment compa-
nies, and universities. The tools are free for academic
teaching and research.

Further reading

◦ Abstraction in Hardware System Design, R.S.
Nikhil, in Communications of the ACM, 54:10,
October 2011, pp. 36-44.

71

mailto: info at well-typed.com
http://www.well-typed.com
http://blog.well-typed.com/
http://www.well-typed.com/services_training
https://skillsmatter.com/explore?content=courses&location=&q=Haskell
https://skillsmatter.com/explore?content=courses&location=&q=Haskell
http://www.well-typed.com/blog/86/
http://www.well-typed.com/blog/93/

◦ Bluespec, a General-Purpose Approach to
High-Level Synthesis Based on Parallel Atomic
Transactions, R.S. Nikhil, in High Level Synthesis:
from Algorithm to Digital Circuit, Philippe Coussy
and Adam Morawiec (editors), Springer, 2008, pp.
129-146.

◦ BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com.

◦ http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

◦ http:
//www.cl.cam.ac.uk/~swm11/examples/bluespec/:
Simon Moore’s BSV examples (U. Cambridge).

◦ http://csg.csail.mit.edu/6.375: Complex Digital
Systems, MIT courseware.

◦ http://www.bluespec.com/products/BluDACu.htm:
A fun example with many functional programming
features — BluDACu, a parameterized Bluespec
hardware implementation of Sudoku.

8.3 Industrial Haskell Group

Report by: Andres Löh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
The main activity of the IHG is to fund work on the

Haskell development platform. It currently operates
two schemes:
◦ The collaborative development scheme pools re-
sources from full members in order to fund specific
development projects to their mutual benefit.

◦ Associate and academic members contribute to a
separate fund which is used for maintenance and de-
velopment work that benefits the members and com-
munity in general.
Projects the IHG has funded in the past years include

work on Hackage 2, Cabal and cabal-install, and GHC
itself.
Details of the tasks undertaken by the IHG are ap-

pearing on the Well-Typed (→ 8.1) blog, on the IHG
status page and on standard communication channels
such as the Haskell mailing list.
In the past six months, three new associate members

have joined the IHG: Jon Kristensen, alephcloud and
OTAS Technologies.
The collaborative development scheme is running

continuously, so if you are interested in joining as a
member, please get in touch. Details of the different
membership options (full, associate, or academic) can
be found on the website.
We are very interested in new members. If you are

interested in joining the IHG, or if you just have any
questions or comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

◦ http://industry.haskell.org/
◦ http://industry.haskell.org/status/

8.4 Barclays Capital

Report by: Ben Moseley

Barclays Capital has been using Haskell as the basis
for our FPF (Functional Payout Framework) project
for about seven years now. The project develops a
DSL and associated tools for describing and process-
ing exotic equity options. FPF is much more than just
a payoff language — a major objective of the project
is not just pricing but “zero-touch” management of the
entire trade lifecycle through automated processing and
analytic tools.

For the first half of its life the project focused only on
the most exotic options — those which were too com-
plicated for the legacy systems to handle. Over the
past few years however, FPF has expanded to provide
the trade representation and tooling for the vast major-
ity of our equity exotics trades and with that the team
has grown significantly in both size and geographical
distribution. We now have eight permanent full-time
Haskell developers spread between Hong Kong, Kiev
and London (with the latter being the biggest develop-
ment hub).

Our main front-end language is currently a deeply
embedded DSL which has proved very successful, but
we have recently been working on a new non-embedded
implementation. This will allow us to bypass some
of the traditional DSEL limitations (e.g., error mes-
sages and syntactical restrictions) whilst addressing
some business areas which have historically been prob-
lematic. The new language is based heavily on arrows,
but has a custom (restrictive but hopefully easier-to-
use than raw arrow-notation) syntax. We are using
a compiler from our custom DSL syntax into Haskell
source (with standard transformers from Ross Pater-
son’s “arrows” package) to provide the semantics for
the language but plan to develop a number of indepen-
dent backends. Our hope is that, over time, this will
gradually replace our embedded DSL as the front end
for all our tools. For the parsing part of this work we
have been very impressed by Doaitse Swierstra’s uu-
parsinglib (→ 7.3.2).

We have been and remain very satisfied GHC users
and feel that it would have been significantly harder to
develop our systems in any other current language.

72

http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://industry.haskell.org/status/

8.5 Oblomov Systems

Report by: Martijn Schrage

Oblomov Systems is a one-person software company
based in Utrecht, The Netherlands. Founded in 2009
for the Proxima 2.0 project (http://www.haskell.org/
communities/05-2010/html/report.html#sect6.4.5),
Oblomov has since then been working on a number
of Haskell-related projects. The main focus lies on
web-applications and (web-based) editors. Haskell has
turned out to be extremely useful for implementing
web servers that communicate with JavaScript clients
or iPhone apps.
Awaiting the acceptance of Haskell by the world

at large, Oblomov Systems also offers software solu-
tions in Java, Objective C, and C#, as well as on the
iPhone/iPad. Last year, Oblomov Systems has worked
together with Ordina NV on a substantial Haskell
project for the Council for the Judiciary in The Nether-
lands.

Further reading

http://www.oblomov.com

8.6 OpenBrain Ltd.

Report by: Tom Nielsen

OpenBrain Ltd. is developing a new platform for sta-
tistical computing that enables optimal decisions tak-
ing into account all the available information. We
have developed a new statistical programming lan-
guage (BAYSIG) that augments a Haskell-like func-
tional programming language with Bayesian inference
and first-class ordinary and stochastic differential equa-
tions. BAYSIG is designed to support a declarative
style of programming where almost all the work con-
sists in building probabilistic models of observed data.
Data analysis, risk assessment, decision, hypothesis
testing and optimal control procedures are all derived
mechanically from the definition of these models. We
are targeting a range of application areas, including fi-
nancial, clinical and life sciences data.
We are building a web application (http://BayesHive.

com) to make this platform accessible to a wide range
of users. Users can upload and analyse varied types
of data using a point-and-click interface. Models and
analyses are collected in literate programming-like doc-
uments that can be published by users as blogs.
We use Haskell for almost all aspects of implement-

ing this platform. The BAYSIG compiler is written

in Haskell, which is particularly well suited for imple-
menting the recursive syntactical transformations un-
derlying statistical inference. BayesHive.com is being
developed in Yesod.

Contact

〈tomn@openbrain.org〉

Further reading

http://BayesHive.com

8.7 Pariah Reputation System

Report by: Jim Snow
Participants: Jim Snow, Daniel Connor
Status: A new kind of reputation system for online

communities

Metamocracy LLC is develping social network analysis
tools to be used in online communities.
Our main product is Pariah, a reputation system.

It takes as input a signed directed graph where the
links represent trust or distrust relationships between
users, and analyzes the graph structure to compute a
reputation for any user from the point of view of any
other user.
There are a few interesting things about Pariah; we

treat reputation as inherently subjective (you can have
a good reputation from one user’s point of view, and a
bad reputation from someone elses), we have a sensible
interpretation of negative reputation, and our system
is resistant to ballot-stuffing attacks.
Pariah is written in Haskell, and has a REST inter-

face implemented using Yesod.
An interesting offshoot of our reputation system

work is a demo site called Polink.org, which is a collab-
orative tool for documenting all the little connections
(whether positive or negative) between public figures,
organizations, corporations, etc. . . It is built on top of
Acid-state and Yesod, with a little bit of javascript to
query Pariah and visually display reputations of enti-
ties.
Pariah is commercial software. The software behind

Polink.org is available under the GPLv2 license, and is
available on github.
Currently, we’re trying to put together a paper de-

scribing the algorithm we use.

Further reading

◦ http://metamocracy.com
◦ http://polink.org

73

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.oblomov.com
http://BayesHive.com
http://BayesHive.com
mailto: tomn at openbrain.org
http://BayesHive.com
http://metamocracy.com
http://polink.org

8.8 Haskell in the industry in Munich

Report by: Haskell Consultancy Munich

Haskell is used by several companies specializing in
the development of reliable software and hardware, for
example for the automotive industry in Munich. It
is also in use by the developers of medical software
which needs assure the integrity of data processing al-
gorithms. It is also used by new media and internet
companies. You may contact the author of this report
(〈haskell.consultancy@gmail.com〉) for details.

Haskell at Google Munich

Google is using Haskell in Ganeti (http://code.
google.com/p/ganeti/), a tool for managing clusters of
virtual servers built on top of Xen and KVM. There is
a mailing list (http://groups.google.com/group/ganeti)
which is the official contact to the team.
There are lots of presentations about Ganeti online

(http://downloads.ganeti.org/presentations/), and some
of them are accompanied by videos to be found with a
quick search on the internet.

Energy Flow Analysis – Ingenieurbüro Guttenberg
& Hördegen

The Engineering Office provides services and tools
to companies designing and operating smart systems
with energy management: Smart Grids, Smart Houses,
Smart Production, and so on. Smart systems are com-
plex: efficiency is only one aspect in a challenging sys-

tem design. We want to make measurement and opti-
misation of overall system efficiency as comfortable and
easy as possible. The objective is to provide support
in choosing between system functionality, performance,
safety, and reliability as well as energy efficiency. We
provide a support service for the whole development
chain, starting with specification, through system de-
sign and simulation to system implementation and val-
idation. The advantage of our approach is that we
can directly model, investigate and optimise energy
flow. This opens new possibilities, such as better op-
timisation of efficiency, operation, and design for local
grids containing electrochemical storage, thermal stor-
age, heat pumps, block heat and power units and so
on.
Since it combines good performance and paralleliza-

tion features while providing a very high level of assur-
ance, we have chosen to execute our technology with
Haskell.
For more information, please visit http://www.

energiefluss.info. There is an introductory document
to the services provided (http://energiefluss.info/img/
profile_gh.pdf).

Informatik Consulting Systems AG

ICS AG (http://ics-ag.de), with 11 offices in Germany,
use Haskell for their software, as it is a good fit for
their domain, which is simulation, safety, and business-
critical systems. It affords ICS a competitive edge
over the market. Industries ICS work with include ad-
vanced technologies, automotive, industrial solutions,
and transportation and they have an impressive list of
customers (http://ics-ag.de/kunden.html).

Haskell Consultancy Munich

The author of this report runs a Haskell consultancy.
Established in 2008, the business provides full-stack
support for industries ranging from finance and me-
dia to medical and electronics design and automation,
with a permanent focus on functional programming.
We have a strong background in statistics and oper-
ations research. The current trend in the industry is
the migration of monolithic legacy software in C, C#,
Python, Java, or PHP towards a functional, service-
oriented architecture, with on-site training of person-
nel in the new programming paradigm. Another trend
is design of hard realtime applications for industrial
use. Further information can be requested via email
(〈haskell.consultancy@gmail.com〉).

74

mailto: haskell.consultancy at gmail.com
http://code.google.com/p/ganeti/
http://code.google.com/p/ganeti/
http://groups.google.com/group/ganeti
http://downloads.ganeti.org/presentations/
http://www.energiefluss.info
http://www.energiefluss.info
http://energiefluss.info/img/profile_gh.pdf
http://energiefluss.info/img/profile_gh.pdf
http://ics-ag.de
http://ics-ag.de/kunden.html
mailto: haskell.consultancy at gmail.com

Funktionale Programmierung – Dr. Heinrich
Hördegen

Funktionale Programmierung - Dr. Heinrich Hörde-
gen (http://funktional.info) is a Haskell and functional
programming software consultancy located in Munich.
Dr. Hördegen has a lot of experience in software en-

gineering and has been an advocate of functional pro-
gramming since 2005. It follows that during his doc-
toral thesis at the LORIA (http://www.loria.fr) he was
able to design and implement compiler modules for the
AVISPA project (http://www.avispa-project.org/) using
OCaml.
Dr. Hördegen has been using Haskell as his main

technology to implement robust and reliable soft-
ware since 2009. In his role co-founder and CTO of
Ingenieurbüro Guttenberg & Hördegen (http://www.
energiefluss.info) he leads the development of propri-
etary software for energy flow analysis. This complex
system is comprised of 50000 lines of code, distributed
into 130 modules.
Some of Dr. Hördegen’s favourite things about

Haskell are algebraic data types, which simplify sym-
bolic computation, the amazing speed Haskell can pro-
vide during number crunching, the powerful paralleliza-
tion capabilities Haskell provides, and finally Cloud
Haskell, which lets you easily distribute computations
onto whole clusters.
Dr. Hördegen’s consultancy sponsors and organizes

the Haskell Meetup (http://www.haskell-munich.de/)
and supports the Haskell community as a whole.

codecentric AG

Here at codecentric (https://www.codecentric.de/),
we believe that more than ever it’s important to keep
our tools sharp in order to provide real value to our
customers. The best way to do this is to provide soft-
ware expertise and an environment in which people can
freely express their ideas and develop their skills. One
of the results is codecentric Data Lab, where mathe-
maticians, data scientists and software developers join
forces to live up to the big data hype. Another is
the Functional Institute (http://clojureworkshop.com/),
which helps to spread the word about functional pro-
gramming with Clojure and Haskell.
We provide services in functional programming in

Clojure and Haskell as well as services for Big Data
projects, ranging from project support and knowledge

sharing to bespoke software development and project
management. We are over 200 employees strong in 10
offices around Germany and Europe. You may contact
Alex Petrov (〈alex.petrov@codecentric.de〉) with any en-
quiries.

75

http://funktional.info
http://www.loria.fr
http://www.avispa-project.org/
http://www.energiefluss.info
http://www.energiefluss.info
http://www.haskell-munich.de/
https://www.codecentric.de/
http://clojureworkshop.com/
mailto: alex.petrov at codecentric.de

9 Research and User Groups

9.1 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on Haskell that run
at Eötvös Loránd University, Faculty of Informatics.
We are also happy to add that Jeff Epstein (known for
Cloud Haskell) has recently joined our team.
Currently, we are offering the following courses using

Haskell:

◦ Functional programming for first-year Hungarian
BSc students as part of the official curriculum. It
is also taught for foreign-language students in their
program.

◦ Two additional semesters on functional program-
ming, as optional courses for Hungarian BSc stu-
dents, supported by the Eötvös József Collegium.

◦ Advanced functional programming for Hungarian
and foreign-language MSc students in Software Tech-
nology, supported by the fund TÁMOP-4.1.2.A/1-
11/1-2011-0052. The curriculum features discussion
of parallel and concurrent programming, property-
based testing, purely functional data structures,
efficient I/O implementations, embedded domain-
specific languages.

Other Haskell-related courses on Lambda Calculus,
Type Theory and Implementation of Functional Lan-
guages, taught for Hungarian MSc students in Software
Technology.
There is an interactive online evaluation and testing

system, called ActiveHs. It contains several dozens of
systematized exercises and it may be also used as a
teaching aid. Some of our course materials are available
there in English as well.
In February, we have also launched a new online as-

signment management system, called bead, which is
implemented almost entirely in Haskell, using the Snap
web framework and Fay. It helps the lecturers to sched-
ule course assignments and tests, and automatically
check the submitted solutions as an option. This is
currently in a work-in-progress stage so it is not avail-
able on Hackage yet, only on GitHub, but so far it
performs well in combination with ActiveHs.

Further reading

◦ Haskell course materials (in English):
http://pnyf.inf.elte.hu/fp/Overview_en.xml

◦ ActiveHs:
http://hackage.haskell.org/package/activehs

◦ bead: http://github.com/andorp/bead

9.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Conrad Rau, Manfred Schmidt-Schauß

Semantics of Functional Programming Lan-
guages. Extended call-by-need lambda calculi model
the semantics of Haskell. Our investigations of those
calculi include correctness of strictness analysis us-
ing abstract reduction, equivalence of the call-by-name
and call-by-need semantics, completeness of applica-
tive bisimilarity w.r.t. contextual equivalence, and un-
soundness of applicative bisimilarity in nondetermin-
stic languages with letrec. We also have shown that
any semantic investigation of Haskell should include
the seq-operator, since extending the lazy lambda cal-
culus by seq is not conservative, i.e. the semantics
changes. A recent result is an analysis of a polymorphi-
cally typed core language of Haskell which uses System
F-polymorphism.
Another result is that deciding (extended) α-

equivalence in languages with bindings (like letrec) is
graph isomorphism complete. However, if the expres-
sions are free of garbage (i.e. have no unused bindings)
the problem can be solved efficiently.
Concurrency. We analyzed a higher-order func-

tional language with concurrent threads, monadic IO,
synchronizing variables and concurrent futures which
models Concurrent Haskell. We proved correctness of
program transformations, correctness of an abstract
machine, and we have shown that this language con-
servatively extends the pure core language of Haskell,
i.e. all program equivalences for the pure part also hold
in the concurrent language. Recently, we proved cor-
rectness of a highly concurrent implementation of Soft-
ware Transactional Memory (STM) in a similar pro-
gram calculus. Based on these result we recently de-
veloped an alternative implementation of STM Haskell
which performs quite early conflict detection.
Correctness of Program Transformations. An

ongoing project aims at automating correctness proofs

76

http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://hackage.haskell.org/package/activehs
http://github.com/andorp/bead

of program transformations. To compute so-called
forking and commuting diagrams we implemented a
sound and complete algorithm as a combination of sev-
eral unification algorithms in Haskell. To conclude the
correctness proofs we automated the corresponding in-
duction proofs (which use the diagrams) using auto-
mated termination provers for term rewriting systems.
Grammar based compression. This research

topic focuses on algorithms on grammar compressed
data like strings, matrices, trees, Our goal is to
reconstruct known algorithms on uncompressed data
(e.g. unification, matching, matrix operations, etc.) for
their use on grammars without prior decompression.
We implemented several of those algorithms in Haskell.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell,
we use for example also Erlang and ML, Haskell pro-
vides a major focus and common language for teaching
and research.
Our members pursue a variety of Haskell-related

projects, several of which are reported in other sec-
tions of this report. Three new PhD students joined
the group last September. Stephen Adams is work-
ing on advanced refactoring of Haskell programs. An-
dreas Reuleaux is working on refactoring dependently
typed functional programs. Maarten Faddegon is work-
ing on making tracing for Haskell practical and easy
to use. Currently he is looking into extending the
Haskell object observation debugger Hood. He talks at
TFP 2014 about Type Generic Observing (http://www.
cs.uu.nl/wiki/TFP2014/PresentationSchedule). Kanae
Tsushima, research fellow of the Japan Society for the
Promotion of Science, visited from September 2013 to
February 2014. She worked with Olaf Chitil on type er-
ror debugging and Kanae presented a joint paper “Enu-
merating Counter-Factual Type Error Messages with
an Existing Type Checker” at PPL 2014. Earlier Olaf
Chitil refactored/reimplemented Hat to use standard
Hackage libraries. Scott Owens is working on verified
compilers for the (strict) functional language CakeML.
We are always looking for more PhD students. We

are particularly keen to recruit students interested in

programming tools for verification, tracing, refactoring,
type checking and any useful feedback for a program-
mer. The school and university have support for strong
candidates: more details at http://www.cs.kent.ac.uk/
pg or contact any of us individually by email.
We are also keen to attract researchers to Kent

to work with us. There are many opportunities
for research funding that could be taken up at
Kent, as shown in the website http://www.kent.ac.uk/
researchservices/sciences/fellowships/index.html. Please
let us know if you’re interested in applying for one of
these, and we’ll be happy to work with you on this.
Finally, if you would like to visit Kent, either to give

a seminar if you’re passing through London or the UK,
or to stay for a longer period, please let us know.

Further reading

◦ PLAS group:
http://www.cs.kent.ac.uk/research/groups/plas/

◦ Haskell: the craft of functional programming:
http://www.haskellcraft.com

◦ Refactoring Functional Programs: http:
//www.cs.kent.ac.uk/research/groups/plas/hare.html

◦ A trace-based just-in-time compiler for Haskell:
http://www.youtube.com/watch?v=PtEcLs2t9Ws

◦ Scion, a library for building IDEs for Haskell:
http://code.google.com/p/scion-lib/

◦ Hat, the Haskell Tracer:
http://projects.haskell.org/hat/

◦ CakeML, a verification friendly dialect of SML:
https://cakeml.org

◦ Practical Lazy Typed Contracts for Haskell:
http://www.cs.kent.ac.uk/~oc/contracts.html

◦ Heat, an IDE for learning Haskell:
http://www.cs.kent.ac.uk/projects/heat/

9.4 Formal Methods at DFKI and
University Bremen and University
Magdeburg

Report by: Christian Maeder
Participants: Mihai Codescu, Christoph Lüth, Till

Mossakowski
Status: active development

The activities of our groups center on formal methods,
covering a variety of formal languages and also trans-
lations and heterogeneous combinations of these.
We are using the Glasgow Haskell Compiler and

many of its extensions to develop the Heterogeneous
tool set (Hets). Hets is a parsing, static analysis and
proof management tool incorporating various provers
and different specification languages, thus providing
a tool for heterogeneous specifications. Logic trans-
lations are first-class citizens.
The languages supported by Hets include the CASL

family, such as the Common Algebraic Specification

77

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.uu.nl/wiki/TFP2014/PresentationSchedule
http://www.cs.uu.nl/wiki/TFP2014/PresentationSchedule
http://www.cs.kent.ac.uk/pg
http://www.cs.kent.ac.uk/pg
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.youtube.com/watch?v=PtEcLs2t9Ws
http://code.google.com/p/scion-lib/
http://projects.haskell.org/hat/
https://cakeml.org
http://www.cs.kent.ac.uk/~oc/contracts.html
http://www.cs.kent.ac.uk/projects/heat/

Language (CASL) itself (which provides many-sorted
first-order logic with partiality, subsorting and in-
duction), HasCASL, CoCASL, CspCASL, and an ex-
tended modal logic based on CASL. Other languages
supported include propositional logic, QBF, Isabelle,
Maude, VSE, TPTP, THF, FPL (logic of functional
programs), LF type theory and still Haskell (via Pro-
gramatica). More recently, ontology languages like
OWL, RDF, Common Logic, and DOL (the distributed
Ontology, Model and Specification language) have been
integrated.
Hets can speak to the following provers:
◦ minisat, zChaff (SAT solvers),
◦ SPASS, Vampire, Darwin, KRHyper and MathServe

(automated first-order theorem provers),
◦ Pellet and Fact++ (description logic tableau

provers),
◦ Leo-II and Satallax (automated higher-order theo-

rem provers),
◦ Isabelle (an interactive higher-order theorem prover),
◦ CSPCASL-prover (an Isabelle-based prover for Csp-

CASL),
◦ VSE (an interactive prover for dynamic logic).
The user interface of the Hets implementation (about

200K lines of Haskell code) is based on some Haskell
sources such as bindings to uDrawGraph (formerly
Davinci) and Tcl/TK that we maintain and also
gtk2hs (→ 7.7.3). Additionally we have a command
line interface and a prototypcial web interface based
on warp (→ 5.2.2) with a RESTful API.
HasCASL is a general-purpose higher-order language

which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ DOL: the distributed Ontology, Model and
Specification language
http://www.ontoiop.org

◦ Heterogeneous tool set:
http://hets.dfki.de
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

9.5 Haskell in Romania

Report by: Mihai Maruseac

In Romania, Haskell is taught at several universities
across the country: in Bucharest at both Univer-

sity POLITEHNICA of Bucharest and University of
Bucharest, in Bacău at “Vasile Alecsandri” University,
in Braşov at “Transilvania” University, However,
everywhere the courses are only centered on the theo-
retical aspects of functional programming and (some-
times) type systems. As a result, very few students will
use this language after the exam is taken.

However, small communities are created to promote
the language. That was the case of the Ro/Haskell
group from Bacău or FPBucharest group. Right now,
almost all of these groups have stopped being active.

The main reason behind these failures is that the
point of view in presenting the language is too deeply
concerned with presenting its features and the purely
functional aspect while hiding away the fact that you
have to do some IO in real world applications. Ba-
sically, every activity of the previous groups and the
subjects taught at universities regard Haskell only as a
laboratory language.

A small group of people from Faculty of Automatic
Control and Computers, University POLITEHNICA of
Bucharest, decided last year to change that. The new
teachers and teaching assistants from the Programming
Paradigm course organised the first “Functional Pro-
gramming Summer School” in June 2012 where a few
real-world topics were presented among more theoreti-
cal aspects.

This year, a small subgroup of the ROSEdu (http:
//rosedu.org/) community developed on the feedback
from the summer school and created a plan towards
making Haskell a known and usable language with
a community around it. There were talks on Yesod
and GHC at different events (OSOM, Talks by Softbi-
nator) or companies (IXIA), some new projects were
launched – some of them being turned into bache-
lor or masters diploma projects – and an workshop
called “Programming Haskell from N00b to Real World
Programmer” was organized in June, during ROSEdu
Summer Workshops (http://workshop.rosedu.org/2013/
sesiuni/haskell). At the end of the workshop the stu-
dents implemented IRC bots and Pacman-like games
with a graphical interface and some dummy AI. Fi-
nally, some articles were published in the "Today Soft-
ware Magazine" (http://www.todaysoftmag.com/tsm/
en/) monthly magazine. This has prompted some
Haskell-related hackathons at an byweekly Agile event
called "Code and Beer".

But one of the major results of these activities is that
the awareness of Haskell in Romanian communities has
increased, leading to the launch of three small startup
companies in Romanian towns.

78

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.ontoiop.org
http://hets.dfki.de
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://rosedu.org/
http://rosedu.org/
http://workshop.rosedu.org/2013/sesiuni/haskell
http://workshop.rosedu.org/2013/sesiuni/haskell
http://www.todaysoftmag.com/tsm/en/
http://www.todaysoftmag.com/tsm/en/

9.6 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Sydney,
Australia, interested in Functional Programming and
related fields. Members of the group include users of
Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb–Nov) and meet
on the third (usually, sometimes fourth) Wednesday of
each month. We regularly get 20–30 attendees, with
a 70/30 industry/research split. Talks this year have
included material on compilers, theorem proving, type
systems, Haskell web programming, Haskell database
libraries, Scala and the Free Monad. We usually have
about 90 mins of talks, starting at 6:30pm, then go for
drinks afterwards. All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/
◦ http://fp-syd.ouroborus.net/wiki/Past/2013

9.7 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component
of the CSE department at Chalmers and University
of Gothenburg. In particular, Haskell has a very im-
portant place, as it is used as the vehicle for teaching
and numerous research projects. Besides functional
programming, language technology, and in particular
domain specific languages is a common aspect in our
projects. We also hope to see all HCAR readers at
ICFP 2014 in Gothenburg the first week of September!
(Paper submissions due Saturday, 1 March 2014.)

Property-based testing. QuickCheck, developed at
Chalmers, is one of the standard tools for testing
Haskell programs. It has been ported to Erlang and
used by Ericsson, Quviq, and others. QuickCheck con-
tinues to be improved and tools and related techniques
are developed:

◦ We have shown how to successfully apply
QuickCheck to test polymorphic properties.

◦ A new exhaustive testing tool (testing-feat on Hack-
age) has been developed. It is especially suited to
generate test cases from large groups of mutually re-
cursive syntax tree types. A paper describing it was
presented at the Haskell Symposium 2012.

◦ Testing Type Class Laws: the specification of a class
in Haskell often starts with stating, in comments, the
laws that should be satisfied by methods defined in
instances of the class, followed by the type of the
methods of the class. We have developed a library
(ClassLaws) that supports testing such class laws us-
ing QuickCheck.

Parsing: BNFC. The BNF Converter (BNFC) is a
frontend for various parser generators in various lan-
guages. BNFC is written in Haskell and is commonly
used as a frontend for the Haskell tools Alex and Happy.
BNFC has recently been extended in two directions:

◦ A Haskell backend, which offers incremental and par-
allel parsing capabilities, as well as the ability to
parse context-free grammars in full generality, has
been added to BNFC. The underlying concepts are
described in a paper published at ICFP 2013.

◦ BNFC has been embedded in a library (called BNFC-
meta on Hackage) using Template-Haskell. An im-
portant aspect of BNFC-meta is that it automat-
ically provides quasi-quotes for the specified lan-
guage. This includes a powerful and flexible facility
for anti-quotation.

Parsing: Combinators. A new package for
combinator-based parsing has been released on
Hackage. The combinators are based on the paper
Parallel Parsing Processes. The technique is based on
parsing in parallel all the possibly valid alternatives.
This means that the parser never “hold onto” old
input. A try combinator is also superfluous.

Parsing: Natural languages. Grammatical Frame-
work is a declarative language for describing natural
language grammars. It is useful in various applica-
tions ranging from natural language generation, pars-
ing and translation to software localization. The frame-
work provides a library of large coverage grammars for
currently fifteen languages from which the developers
could derive smaller grammars specific for the seman-
tics of a particular application.

Generic Programming. Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic pro-
gramming research at Chalmers. Recent developments
include fundamental work on parametricity. This work
has led to the development of a new kind of abstraction,
to generalize notions of erasure. This means that a new
kind of generic programming is available to the pro-
grammer. A paper describing the idea was presented
in ICFP 2013.
Our research on generic-programming is lively, as

witnessed by a constant stream of publications: Testing
Type Class Laws, Functional Enumeration of Algebraic

79

http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2013
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/FP
http://icfpconference.org/icfp2014/
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://hackage.haskell.org/package/testing-feat
http://dl.acm.org/citation.cfm?id=2364515&CFID=114228077&CFTOKEN=91363922
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://hackage.haskell.org/package/ClassLaws
http://www.cse.chalmers.se/~bernardy/PP.pdf
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/parsek-1.0.0
http://hackage.haskell.org/package/parsek-1.0.0
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=254719
http://www.grammaticalframework.org/
http://www.grammaticalframework.org/
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ParaDep
http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat

Types (FEAT), Testing versus proving in climate im-
pact research and Dependently-typed programming in
scientific computing — examples from economic mod-
elling. The last two are part of our effort to contribute
to the emerging research programme in Global Systems
Science.

Program Inversion/bidirectionalization. Program
transformation systems that generate pairs of pro-
grams that are some sort of inverses of each other. The
pairs are guaranteed to be consistent by construction
with respect to certain laws. Applications include
pretty-printing/parsing (→ ??), XML transformation
etc. The work is done in collaboration with University
of Tokyo and University of Bonn.

Language-based security. SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory. Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

Embedded domain-specific languages. The func-
tional programming group has developed several dif-
ferent domain-specific languages embedded in Haskell.
The active ones are:

◦ Feldspar (→ 7.12.1) is a domain-specific language
for digital signal processing (DSP).

◦ Obsidian is a language for data-parallel program-
ming targeting GPUs.
Most recently we used Obsidian to implement an
interesting variation of counting sort that also re-
moves duplicate elements. This work was presented
at FHPC 2013.

We are also working on general methods for EDSL
development:

◦ Syntactic is a library that aims to support the def-
inition of EDSLs. The core of the library was pre-
sented at ICFP 2012. The paper presents a generic
model of typed abstract syntax trees in Haskell,

which can serve as a basis for a library supporting
the implementation of deeply embedded DSLs.

◦ Names For Free. A new technique for represent-
ing names and bindings of object languages repre-
sented as Haskell data types has been developed.
The essence of the technique is to represent names
using typed de Bruijn indices. The type captures ex-
actly the context where the index is valid, and hence
is as safe to use as a name. The technique was pre-
sented at Haskell Symposium 2013.

◦ Circular Higher-Order Syntax We have also de-
veloped a light-weight method for generating names
while building an expression with binders. The
method lends itself to be used in the front end of
EDSLs based on higher-order syntax. The technique
was presented at ICFP 2013.

◦ Simple and Compositional Monad Reification
A method for reification of monads (compilation of
monadic embedded languages) that is both simple
and composable. The method was presented at ICFP
2013.

Automated reasoning. We are responsible for a suite
of automated-reasoning tools:

◦ Equinox is an automated theorem prover for pure
first-order logic with equality. Equinox actually im-
plements a hierarchy of logics, realized as a stack
of theorem provers that use abstraction refinement
to talk with each other. In the bottom sits an effi-
cient SAT solver. Paradox is a finite-domain model
finder for pure first-order logic with equality. Para-
dox is a MACE-style model finder, which means that
it translates a first-order problem into a sequence of
SAT problems, which are solved by a SAT solver.

◦ Infinox is an automated tool for analysing first-
order logic problems, aimed at showing finite un-
satisfiability, i.e., the absence of models with finite
domains. All three tools are developed in Haskell.

◦ QuickSpec generates algebraic specifications for an
API automatically, in the form of equations veri-
fied by random testing. http://www.cse.chalmers.se/
~nicsma/quickspec.pdf

◦ Hip (the Haskell Inductive Prover) is a new tool
to automatically prove properties about Haskell pro-
grams by using induction or co-induction. The ap-
proach taken is to compile Haskell programs to first
order theories. Induction is applied on the meta
level, and proof search is carried out by automated
theorem provers for first order logic with equality.

◦ On top of Hip we built HipSpec, which automat-
ically tries to find appropriate background lemmas
for properties where only doing induction is too

80

http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://blog.global-systems-science.eu/?author=45
http://blog.global-systems-science.eu/?author=45
http://www.cse.chalmers.se/~joels/writing/csort.pdf
http://www.cse.chalmers.se/~joels/writing/csort.pdf
http://hackage.haskell.org/package/syntactic
http://www.cse.chalmers.se/~bernardy/NamesForFree.pdf
http://www.cse.chalmers.se/~bernardy/NamesForFree.pdf
http://www.cse.chalmers.se/~emax/documents/axelsson2013using.pdf
http://www.cse.chalmers.se/~emax/documents/axelsson2013using.pdf
http://www.cse.chalmers.se/~joels/writing/bb.pdf
http://www.cse.chalmers.se/~joels/writing/bb.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf

weak. It uses the translation and structural induc-
tion from Hip. The background lemmas are from
the equational theories built by QuickSpec. Both
the user-stated properties and those from Quick-
Spec are now tried to be proven with induction.
Conjectures proved to be theorems are added to
the theory as lemmas, to aid proving later prop-
erties which may require them. For more in-
formation, see http://web.student.chalmers.se/~danr/
hipspec-atx.pdfthe draft paper.

Teaching. Haskell is present in the curriculum as
early as the first year of the BSc programme. We have
four courses solely dedicated to functional program-
ming (of which three are MSc-level courses), but we also
provide courses which use Haskell for teaching other as-
pects of computer science, such the syntax and seman-
tics of programming languages, compiler construction,
data structures and parallel programming.

9.8 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming continues at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andy Gill) together form the core functional program-
ming initiative at KU. There are three major Haskell
projects at KU (as well as numerous smaller ones): the
GHC rewrite plugin HERMIT (→ 7.3.4), the VHDL
generator Kansas Lava (→ 7.12.2) and the JavaScript
generator Sunroof (→ 5.2.7).

Further reading

◦ The Functional Programming Group:
http://www.ittc.ku.edu/csdl/fpg

◦ CSDL website:
https://wiki.ittc.ku.edu/csdl/Main_Page

9.9 Odessa Haskell User Group

Report by: Roman Cheplyaka

Odessa Haskell User Group was founded in May 2012.
Since October 2013 we’ve had a series of monthly

meetups hosted by DataArt (http://dataart.ua/), with
lectures on different aspects of Haskell programming.
In January 2014 it was decided to suspend our reg-

ular meetups due to the complicated and dangerous
situation in Ukraine.
With Russia still threatening Ukraine, our country

hasn’t quite returned to the peaceful state of 2013, but
we’re looking forward to resuming the meetings.

Further reading

http://odhug.github.io/ (in Russian)

9.10 Regensburg Haskell Meetup

Report by: Andres Löh

Since autumn 2014 Haskellers in Regensburg, Bavaria,
Germany have been meeting roughly once per month
to socialize and discuss Haskell-related topics.
Haskell beginners and experts are equally welcome.

Meetings are announced on our meetup page: http://
www.meetup.com/Regensburg-Haskell-Meetup/.

9.11 Haskell in the Munich Area

Report by: Haskell Consultancy Munich

Haskell in education

Haskell is widely used as an educational tool for both
teaching students in computer science as well as for
teaching industry programmers transitioning to func-
tional programming. It is very well suited for that and
there is a huge educational body present in Munich.

Haskell at the Technische Universität München
(Technical University Munich)

81

http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
http://dataart.ua/
http://odhug.github.io/
http://www.meetup.com/Regensburg-Haskell-Meetup/
http://www.meetup.com/Regensburg-Haskell-Meetup/

Haskell is taught at the Fakultät für Informatik (De-
partment of Computer Science). Functional program-
ming is mandatory in the second year of the Bache-
lor degree for Computer Science as well as Information
Systems. During this and last winter semester, Prof.
Nipkow used Haskell for the course, called Introduc-
tion to Computer Science 2 (http://www21.in.tum.de/
teaching/info2/WS1314/), which was previously taught
using ML; the next semester will be Haskell as well. It
is attended by about 500 students. The lecture is given
by Prof. Tobias Nipkow, the tutorial is given by Lars
Noschinski, Lars Hupel, and Jasmin Blanchette. The
staff (〈fp@fp.informatik.tu-muenchen.de〉) may be con-
tacted with any questions. There are several smaller
courses where Haskell shows up, such as Programming
Languages and various seminars. Jasmin Blanchette
organizes an extracurricular programming competition
which uses Haskell and receives notable attendance
from the students (http://www21.in.tum.de/teaching/
info2/WS1314/wettbewerb.html).
Notably, Lars Hupel is known as the maintainer of

scalaz (http://github.com/scalaz/scalaz).

Haskell at the Ludwig-Maximilians-Universität,
Munich

Following a limited test run last year which in-
cluded 12 people, the Institut für Informatik (Insti-
tute for Computer Science) has switched their Program-
ming and Modelling (http://www.tcs.ifi.lmu.de/lehre/
ss-2014/promo) course fromML to Haskell. It runs dur-
ing the summer semester and is frequented by 688 stu-
dents. It is a mandatory course for Computer Science
and Media Information Technology students as well as
many students going for degrees related to computer
science, e.g. Computer Linguistics (where lambda cal-
culus is very important) or Mathematics. The course
consists of a lecture and tutorial and is led by Prof.
Dr. Martin Hofmann and Dr. Steffen Jost. It started
on the 7th April, 2014. It is expected that 450 stu-
dents will complete the course. Notably, the course is
televised and is accessible at the LMU portal for Pro-
gramming and Modelling (https://videoonline.edu.lmu.
de/de/sommersemester-2014/5032).
Haskell is also used in Advanced Functional Program-

ming (https://www.tcs.ifi.lmu.de/lehre/ss-2012/fun)
which runs during the winter semester and is attended

by 20-30 students. It is mandatory for Computer
Science as well as Media Information Technology
students.
Neither of these courses has any entry requirements,

and you may enter the university during the summer
semester, which makes them very accessible.
Any questions may be directed to Dr. Steffen Jost

(〈jost@tcs.ifi.lmu.de〉).

Haskell at the Hochschule für angewandte
Wissenschaften München (Academy for applied
sciences Munich)

Haskell is taught in two courses at the College:
Functional Programming and Compiler Design. Both
courses consist of lectures and labs. Prof. Dr. Oliver
Braun has brought Haskell to the school and has been
using it during the last year for both courses; before
that he taught Haskell at FH Schmalkalden Thüringen
(http://www.fh-schmalkalden.de/) for 3.5 years.
Compiler Design (http://ob.cs.hm.edu/lectures/

compiler) is a compulsory course taught, depending
on the group, using Haskell, Scheme, or Java. The
Haskell version is frequented by over 40 students. Part
of the note depends on a compiler authored in Haskell.
Functional Programming (http://ob.cs.hm.edu/

lectures/fun) is a new, non-compulsory course attended
by 20 students, taught with Haskell. The grade de-
pends among others on an exam in Haskell knowledge
and a project authored in Haskell with the Yesod web
framework. It is taught with Learn You a Haskell
and teaches practical skills such as Cabal, Haddock,
QuickCheck, HUnit, Git, and Yesod. The school
department’s website itself is in Snap.
Dr. Oliver Braun has started using Haskell in 1997,

when it became the first programming language he’s
used during his studies. He has later used Haskell dur-
ing his thesis and afterwards his dissertation. He finds
Haskell great for teaching. Oliver Braun can be reached
via email (〈ob@cs.hm.edu〉).

Haskell as a teaching tool in the industry

Haskell is used in Munich to teach functional program-
ming to industrial programmers. Since it uses the same
basic programming model, it can also be used as a sim-
ple learning tool to introduce people to Scala. That is
because both are based on System F and Haskell has a

82

http://www21.in.tum.de/teaching/info2/WS1314/
http://www21.in.tum.de/teaching/info2/WS1314/
mailto: fp at fp.informatik.tu-muenchen.de
http://www21.in.tum.de/teaching/info2/WS1314/wettbewerb.html
http://www21.in.tum.de/teaching/info2/WS1314/wettbewerb.html
http://github.com/scalaz/scalaz
http://www.tcs.ifi.lmu.de/lehre/ss-2014/promo
http://www.tcs.ifi.lmu.de/lehre/ss-2014/promo
https://videoonline.edu.lmu.de/de/sommersemester-2014/5032
https://videoonline.edu.lmu.de/de/sommersemester-2014/5032
https://www.tcs.ifi.lmu.de/lehre/ss-2012/fun
mailto: jost at tcs.ifi.lmu.de
http://www.fh-schmalkalden.de/
http://ob.cs.hm.edu/lectures/compiler
http://ob.cs.hm.edu/lectures/compiler
http://ob.cs.hm.edu/lectures/fun
http://ob.cs.hm.edu/lectures/fun
mailto: ob at cs.hm.edu

very clean, minimal implementation of it. It has been
successfully used to teach a team of 10 PHP program-
mers the basics of functional programming and Scala
and, together with other educational tools, get them
up and running within a couple months, during which
time the team remained productive. This approach
makes it easy for companies to switch from the likes of
PHP, Java, .NET, or C# to functional programming
(Haskell, Scala, Clojure). At the same time the project
switched to SOA (service oriented architecture) using
the Twitter scala libraries. Having understood the ba-
sics of FP in Haskell, the team could easily move onto
the more complicated task of understanding the more
unique and intricate parts of Scala that correspond to
extensions to System F while being able to understand
Scala’s syntax. You may contact the author of this
report (〈haskell.consultancy@gmail.com〉) for details.

Haskell community

There are several meetups dedicated to Haskell in Mu-
nich. The organizers have initiated cooperation in or-
der to build and support the local community, as well
as the community in Germany. There is something re-
lated to Haskell happening every week.
The organizers would like to establish contact with

other Haskell communities in Germany as well as the
whole world. You may write to the Haskell Hackathon
organizer (〈haskell.hackathon@gmail.com〉). As of 2014,
it is known that there is Haskell activity in Berlin,
Cologne (Köln), Düsseldorf, Frankfurt am Main, Halle,
Hamburg, and Stuttgart, as well as in Austria, Switzer-
land and the Czech Republic. If you’re from one of
those communities, please write us! The Munich com-
munity welcomes any new connections from other lo-
cations.
The community receives notable guests, such as:
◦ Reinhard Zumkeller, one of the regular contributors
to the OEIS. Reinhard likes to use Haskell for work
with integer sequences.

◦ Lars R. Hupel, the maintainer of scalaz. Lars teaches
with Haskell at the local university and enjoys ad-
vanced topics in type systems and category theory.

◦ Andres Löh, co-founder of Well-Typed LLP. Andres
always brings up very practical discussions on the
use of Haskell. For example, he has recently held a
presentation on the Par monad.

◦ Heiko Seeberger from . Heiko is interested in all sorts
of functional programming and loves Haskell for its
simplicity and consistency.

◦ many others which the author of this report could
not reach for comment before the publication due to
time constraints.
The community is very lively and there are many ini-

tiatives being worked on. For example, actively popu-
larizing Haskell in the local industry, creating a network

of companies, programmers, and informational events.
The author of this report may be reached for more in-
formation (〈haskell.consultancy@gmail.com〉).

Haskell Hackathon

The Haskell Hackathon is a small meeting for people
who would like to build their Haskell skillset. People
bring their laptops and work on one of the proposed
topics together, sharing experience and teaching each
other. Topics range from very easy (if you don’t know
Haskell, you may come and the organizer will teach
you the basics one on one) through intermediate (how
to best set up the dev env, how to read the papers, how
to use important libraries) to very advanced (free ap-
plicatives, comonads). Defocus is discouraged (subjects
not related to Haskell are limited). The operating lan-
guage is German but if you speak any other language
you are welcome to join us.
The Hackathon is organized by the author of this re-

port (〈haskell.consultancy@gmail.com〉) and is currently
in its second year. It is frequented by the staff
and students of the local universities, industry pro-
grammers, as well as Haskell enthusiasts. You may
contact the Hackathon with any questions via email
(〈haskell.hackathon@gmail.com〉).
We keep track of ideas we would like to explore dur-

ing the Haskell Hackathon (http://haskell-hackathon.
no-ip.org/ideen.html). Any and all new questions are
welcome!

Haskell Meetup

The Haskell Meetup, also called Haskell Stammtisch
(which directly translates to: Haskell regulars table)
is a social event for the Haskell community. It is the
original Haskell event in Munich. Everyone is welcome
(even non-Haskell programmers!). It happens once a
month, usually at Cafe Puck which is a pub in one of
the cooler parts of Munich, where the members can eat
schnitzel and drink beer while chatting about topics
ranging from Haskell itself to abstract mathematics,
industrial programming, and so on. The group is very
welcoming and they make you feel right at home. The
Meetup attracts between 15 and 20 guests and there’s
a large proportion of regulars. Attendance ranges from
students, through mathematicians (notably the OEIS
has a presence), industry programmers, physicists, and
engineers. The Meetup receives international guests
and sometimes we hold lectures.
The Haskell Meetup, established 29th September

2011 by Heinrich Hördegen. It is sponsored by
Funktionale Programmierung Dr. Heinrich Hördegen
(http://funktional.info) and Energy Flow Analysis –
Ingenieurbüro Guttenberg & Hördegen (http://www.
energiefluss.info).

83

mailto: haskell.consultancy at gmail.com
mailto: haskell.hackathon at gmail.com
mailto: haskell.consultancy at gmail.com
mailto: haskell.consultancy at gmail.com
mailto: haskell.hackathon at gmail.com
http://haskell-hackathon.no-ip.org/ideen.html
http://haskell-hackathon.no-ip.org/ideen.html
http://funktional.info
http://www.energiefluss.info
http://www.energiefluss.info

Munich Lambda

Munich Lambda (http://www.meetup.com/
Munich-Lambda/) was founded on Jun 28, 2013
by Alex Petrov. There have been 12 events so far,
on topics including Haskell, Clojure, and generally
functional programming, as well as Emacs. Meetups
on the topic of Haskell occur every month to two
months.
Typically, the meetup begins with a short introduc-

tory round where the visitors can talk about their work
or hobbies and grab some food (provided by sponsors),
followed by couple of presentations, and topped off by
an informal discussion of relevant topics and getting
to know each other. It is a great opportunity to meet
other likeminded people who like Haskell or would like
to start out with it.
Munich Lambda is sponsored by codecentric (http:

//www.codecentric.de/) and StyleFruits (http://www.
stylefruits.de).

Mailing lists in Munich

There are two mailing lists in use: https:
//lists.fs.lmu.de/mailman/listinfo/high-order-munich
and http://mailman.common-lisp.net/cgi-bin/mailman/
listinfo/munich-lisp.
The lists are used for event announcements as well

as to continue discussions stemming from recent events.
It is usually expected that anyone subscribed to one is
also on the other, but conversations normally happen
only on one or the other. There are 59 subscribers to
high-order-munich.
There is a mail distributor for the Haskell Hackathon

(http://haskell-hackathon.no-ip.org). In order to receive
emails, send mail to the Haskell Hackathon organizer
(〈haskell.hackathon@gmail.com〉).

ZuriHac 2014, Budapest Hackathon 2014, and the
Munich Hackathon

There is a group of people going to ZuriHac 2014
(http://www.haskell.org/haskellwiki/ZuriHac2014). We
are currently planning the logistics. If you would
like to join us, you may write to the high-order-
munich mailing list (https://lists.fs.lmu.de/mailman/
listinfo/high-order-munich). Some people going to Zuri-
Hac want to visit Munich first and will be received by
the Munich community. There will be events during
the week before ZuriHac. Boarding in Munich is inex-
pensive; the bus to Zurich is only 15 Euro and you may
travel with a group of Haskell enthusiasts. There is a
lot to see and visit in Munich. It is an easy travel des-
tination as the Munich Airport has direct connections
with most large airports in the world. Zurich is 312
kilometers (194 miles) away and no passport is neces-
sary to travel from Munich to Zurich.

In addition, there is a group going to the Bu-
dapest Hackathon (http://www.haskell.org/haskellwiki/
BudapestHackathon2014), which is a week before Zuri-
Hac. To connect those two together, both geographi-
cally and in time, a Munich Lambda event is planned
for the 4th of June in Munich. The travel is very cheap
(the bus tickets from Budapest to Munich and from
Munich to Zurich are on the order of 30 Euro). This
way people can attend all three, completing what has
been nicknamed the Haskell World Tour 2014. For
more information you may contact the organizer of
the Haskell Hackathon in Munich (〈haskell.hackathon@
gmail.com〉). You may have fun, meet people from three
huge Haskell communities, travel together, and see the
world, all in one week!

Halle

There is a group of Haskell members going to HaL-
9 in Halle (http://www.haskell.org/pipermail/haskell/
2014-March/024115.html), which is 439 kilometers (273
miles) away. Henning Thielemann (〈schlepptop@
henning-thielemann.de〉), the event organizer, is in
charge of car pooling for visitors coming from all lo-
cations.

84

http://www.meetup.com/Munich-Lambda/
http://www.meetup.com/Munich-Lambda/
http://www.codecentric.de/
http://www.codecentric.de/
http://www.stylefruits.de
http://www.stylefruits.de
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
http://mailman.common-lisp.net/cgi-bin/mailman/listinfo/munich-lisp
http://mailman.common-lisp.net/cgi-bin/mailman/listinfo/munich-lisp
http://haskell-hackathon.no-ip.org
mailto: haskell.hackathon at gmail.com
http://www.haskell.org/haskellwiki/ZuriHac2014
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
http://www.haskell.org/haskellwiki/BudapestHackathon2014
http://www.haskell.org/haskellwiki/BudapestHackathon2014
mailto: haskell.hackathon at gmail.com
mailto: haskell.hackathon at gmail.com
http://www.haskell.org/pipermail/haskell/2014-March/024115.html
http://www.haskell.org/pipermail/haskell/2014-March/024115.html
mailto: schlepptop at henning-thielemann.de
mailto: schlepptop at henning-thielemann.de

	Community
	Haskell' — Haskell 2014
	Haskellers

	Books, Articles, Tutorials
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects
	Agda Tutorial
	School of Haskell

	Implementations
	The Glasgow Haskell Compiler
	Ajhc Haskell Compiler
	UHC, Utrecht Haskell Compiler
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Fedora Haskell SIG

	Related Languages and Language Design
	Agda
	MiniAgda
	Disciple
	Ermine

	Haskell and …
	Haskell and Parallelism
	Eden
	speculation

	Haskell and the Web
	WAI
	Warp
	Happstack
	Mighttpd2 — Yet another Web Server
	Yesod
	Snap Framework
	Sunroof
	MFlow
	Scotty

	Haskell and Compiler Writing
	MateVM
	UUAG
	LQPL — A Quantum Programming Language Compiler and Emulator
	free — Free Monads
	bound — Making De Bruijn Succ Less

	Development Tools
	Environments
	Haskell IDE From FP Complete
	EclipseFP
	Ariadne
	ghc-mod — Happy Haskell Programming
	HaRe — The Haskell Refactorer
	IHaskell: Haskell for Interactive Computing

	Code Management
	Darcs
	DarcsWatch
	cab — A Maintenance Command of Haskell Cabal Packages

	Interfacing to other Languages
	java-bridge
	fficxx

	Deployment
	Cabal and Hackage
	Stackage: the Library Dependency Solution
	standalone-haddock

	Others
	lhs2TeX
	ghc-heap-view
	ghc-vis
	Hat — the Haskell Tracer
	Tasty

	Libraries, Applications, Projects
	Language Features
	Conduit
	lens
	folds
	machines
	exceptions
	tables
	Faking even more dependent types!
	Type checking units-of-measure

	Education
	Exercism: crowd-sourced code reviews on daily practice problems
	Talentbuddy
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners

	Parsing and Transforming
	epub-metadata
	Utrecht Parser Combinator Library: uu-parsinglib
	Grammar Products
	HERMIT
	haskell-names
	haskell-packages
	parsers
	trifecta

	Generic and Type-Level Programming
	Optimising Generic Functions
	traverse-with-class
	constraints

	Mathematics
	Rlang-QQ
	order-statistics
	Eliminating Redundancies in Linear Systems
	linear
	algebra
	semigroups and semigroupoids
	Arithmetics packages (Edward Kmett)
	ad
	integration
	categories
	contravariant
	bifunctors
	profunctors
	comonad
	recursion-schemes
	kan-extensions
	arb-fft
	hblas
	HROOT
	Numerical

	Data Types and Data Structures
	HList — A Library for Typed Heterogeneous Collections
	Persistent
	Groundhog
	reflection
	tag-bits
	hyperloglog
	concurrent-supply
	hybrid-vectors
	lca
	heaps
	sparse
	compressed
	charset
	Convenience types (Edward Kmett)

	User Interfaces
	HsQML
	LGtk: Lens GUI Toolkit
	Gtk2Hs
	Haskell-EFL binding
	threepenny-gui
	reactive-banana

	Graphics and Audio
	diagrams
	csound-expression
	Chordify
	Glome

	Text and Markup Languages
	epub-tools (Command-line epub Utilities)
	lens-aeson
	hyphenation

	Natural Language Processing
	NLP
	GenI

	Bioinformatics
	ADPfusion
	Ab-initio electronic structure in Haskell
	Semi-Classical Molecular Dynamics in Haskell
	Biohaskell
	arte-ephys: Real-time electrophysiology

	Embedding DSLs for Low-Level Processing
	Feldspar
	Kansas Lava

	Others
	General framework for multi-agent systems
	ersatz
	FNIStash
	arbtt
	Hoodle
	Reffit
	Laborantin
	The Amoeba-World game project

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Industrial Haskell Group
	Barclays Capital
	Oblomov Systems
	OpenBrain Ltd.
	Pariah Reputation System
	Haskell in the industry in Munich

	Research and User Groups
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI and University Bremen and University Magdeburg
	Haskell in Romania
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	Odessa Haskell User Group
	Regensburg Haskell Meetup
	Haskell in the Munich Area

