
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Thirtieth Edition — May 2016

Mihai Maruseac (ed.)
Chris Allen Christopher Anand Francesco Ariis

Heinrich Apfelmus Emil Axelsson Christiaan Baaij
Carl Baatz Doug Beardsley Ingo Blechschmidt

Emanuel Borsboom Jeroen Bransen Joachim Breitner
Björn Buckwalter Erik de Castro Lopo Manuel M. T. Chakravarty
Roman Cheplyaka Olaf Chitil Alberto Gómez Corona
Duncan Coutts Tobias Dammers Kei Davis
Atze Dijkstra Corentin Dupont Richard Eisenberg
Tom Ellis Maarten Faddegon Dennis Felsing

Julian Fleischer Phil Freeman Ben Gamari
PÁLI Gábor János Michal J. Gajda Andrew Gibiansky
Brett G. Giles Andrew Gill Mikhail Glushenkov
Mark Grebe Daniel Gröber Jurriaan Hage

Bastiaan Heeren Joey Hess Guillaume Hoffmann
Nicu Ionita Bob Ippolito Patrik Jansson
Robin KAY Anton Kholomiov Oleg Kiselyov

Edward Kmett Balázs Kőműves Eric Kow
Nickolay Kudasov Rob Leslie Ben Lippmeier

Andres Löh Rita Loogen Ian Lynagh
Douglas McClean Gilberto Melfe Simon Michael

Mantas Markevicius Dino Morelli Rishiyur Nikhil
Antonio Nikishaev Ulf Norell Ivan Perez

Jens Petersen Simon Peyton Jones Matthew Pickering
Gracjan Polak Bryan Richter Herbert Valerio Riedel

Jeffrey Rosenbluth David Sabel Martijn Schrage
Carter Tazio Schonwald Tom Schrijvers Michael Schröder

Austin Seipp Jeremy Shaw Christian Höner zu Siederdissen
Aditya Siram Gideon Sireling Michael Snoyman

Kyle Marek-Spartz Lennart Spitzner Henk-Jan van Tuyl
Bernhard Urban Alessio Valentini Daniel Wagner
Michael Walker Greg Weber Ingo Wechsung

Li-yao Xia Kazu Yamamoto Edward Z. Yang
Brent Yorgey Alan Zimmerman Marco Zocca

http://tinyurl.com/haskcar

Preface

This is the 30th edition of the Haskell Communities and Activities Report.
Highlights of the edition include the announcement for the new Haskell’ committee, plans for

Haskell 2020 and GHC 8.0, and the first mention of the Stack tool.
Since the previous report, some new interesting entries were submitted but, sadly, we also

had to remove old, stale items that were not updated in the last two years. Please send reports
for them for the next edition to revive them. For this edition, we had around 10 entries which
resurfaced and a large number received updates. We hope to see more entries revived and
updated in the next edition.
As usual, fresh entries – either completely new or old entries which have been revived after

a short temporarily disappearance – are formatted using a blue background, while updated
entries have a header with a blue background.
A call for new HCAR entries and updates to existing ones will be issued on the Haskell mailing

lists in late September/early October. As a simple statistic, for the last 7 editions, the average
time between the call for updates for the HCAR and the day the new edition has been released
was 42.2 days. That means that if the next call will arrive at start of October then the next
edition of the report is due to appear mid November.
Now enjoy the current report and see what other Haskellers have been up to lately. Any

feedback is very welcome, as always.

Mihai Maruseac, University of Massachusetts Boston, US
〈hcar@haskell.org〉

2

mailto: hcar at haskell.org

Contents

1 Community 6
1.1 Haskell’ — Haskell 2020 . 6
1.2 Haskellers . 6

2 Books, Articles, Tutorials 7
2.1 Oleg’s Mini Tutorials and Assorted Small Projects . 7
2.2 School of Haskell . 7
2.3 Haskell Programming from first principles, a book forall . 8
2.4 Learning Haskell . 8

3 Implementations 9
3.1 The Glasgow Haskell Compiler . 9
3.2 The Helium Compiler . 12
3.3 UHC, Utrecht Haskell Compiler . 12
3.4 Frege . 13
3.5 Specific Platforms . 13
3.5.1 Haskell on FreeBSD . 13
3.5.2 Debian Haskell Group . 13
3.5.3 Fedora Haskell SIG . 14

4 Related Languages and Language Design 15
4.1 Agda . 15
4.2 Disciple . 15

5 Haskell and . . . 16
5.1 Haskell and Parallelism . 16
5.1.1 Eden . 16
5.1.2 Auto-parallelizing Pure Functional Language System . 17
5.2 Haskell and the Web . 17
5.2.1 WAI . 17
5.2.2 Yesod . 18
5.2.3 Warp . 19
5.2.4 Mighttpd2 — Yet another Web Server . 19
5.2.5 Happstack . 19
5.2.6 Snap Framework . 19
5.2.7 MFlow . 19
5.2.8 JS Bridge . 20
5.2.9 PureScript . 21
5.3 Haskell and Compiler Writing . 21
5.3.1 MateVM . 21
5.3.2 UUAG . 21

6 Development Tools 23
6.1 Environments . 23
6.1.1 ghc-mod — Happy Haskell Programming . 23
6.1.2 haskell-ide-engine, a project for unifying IDE functionality . 23
6.1.3 Haskell IDE From FP Complete . 24
6.1.4 HaRe — The Haskell Refactorer . 24
6.1.5 ghc-exactprint . 24
6.1.6 Haskino . 25
6.1.7 IHaskell: Haskell for Interactive Computing . 26
6.1.8 Haskell for Mac . 27

3

6.2 Code Management . 27
6.2.1 Darcs . 27
6.2.2 cab — A Maintenance Command of Haskell Cabal Packages . 28
6.3 Deployment . 28
6.3.1 Cabal . 28
6.3.2 The Stack build tool . 29
6.3.3 Stackage: the Library Dependency Solution . 29
6.3.4 Haskell Cloud . 30
6.4 Others . 30
6.4.1 ghc-heap-view . 30
6.4.2 ghc-vis . 30
6.4.3 Hat — the Haskell Tracer . 31
6.4.4 Tasty . 31
6.4.5 Generic random generators . 32
6.4.6 Automatic type inference from JSON . 32
6.4.7 Exference . 32
6.4.8 Lentil . 33
6.4.9 Hoed – The Lightweight Algorithmic Debugger for Haskell . 33
6.4.10 Déjà Fu: Concurrency Testing . 34
6.4.11 The Remote Monad Design Pattern . 35

7 Libraries, Applications, Projects 36
7.1 Language Features . 36
7.1.1 Conduit . 36
7.1.2 GHC type-checker plugin for kind Nat . 36
7.1.3 Dependent Haskell . 37
7.1.4 Yampa . 37
7.2 Education . 38
7.2.1 Holmes, Plagiarism Detection for Haskell . 38
7.2.2 Interactive Domain Reasoners . 39
7.2.3 The Incredible Proof Machine . 40
7.3 Mathematics, Numerical Packages and High Performance Computing 40
7.3.1 hblas . 40
7.3.2 Numerical . 40
7.3.3 combinat . 41
7.3.4 petsc-hs . 41
7.4 Data Types and Data Structures . 41
7.4.1 Transactional Trie . 41
7.4.2 fixplate . 41
7.4.3 generics-sop . 42
7.5 Databases and Related Tools . 42
7.5.1 Persistent . 42
7.5.2 Riak bindings . 42
7.5.3 Opaleye . 43
7.5.4 HLINQ - LINQ for Haskell . 43
7.5.5 YeshQL . 43
7.6 User Interfaces . 44
7.6.1 HsQML . 44
7.6.2 threepenny-gui . 44
7.6.3 reactive-banana . 45
7.6.4 fltkhs - GUI bindings to the FLTK library . 45
7.6.5 wxHaskell . 46
7.7 Graphics and Audio . 46
7.7.1 vect . 46
7.7.2 diagrams . 47
7.7.3 Chordify . 48
7.7.4 csound-expression . 48
7.7.5 hmidi . 49

4

7.8 Text and Markup Languages . 49
7.8.1 lhs2TEX . 49
7.8.2 pulp . 50
7.8.3 Unicode things . 50
7.8.4 Ginger . 50
7.9 Natural Language Processing . 51
7.9.1 NLP . 51
7.9.2 GenI . 51
7.10 Embedding DSLs for Low-Level Processing . 52
7.10.1 CλaSH . 52
7.10.2 Feldspar . 52
7.11 Games . 53
7.11.1 EtaMOO . 53
7.11.2 scroll . 53
7.11.3 Nomyx . 54
7.11.4 Barbarossa . 54
7.12 Others . 55
7.12.1 ADPfusion . 55
7.12.2 Generalized Algebraic Dynamic Programming . 55
7.12.3 leapseconds-announced . 57
7.12.4 hledger . 57
7.12.5 arbtt . 58
7.12.6 Transient . 58
7.12.7 tttool . 58
7.12.8 gipeda . 59
7.12.9 Octohat (Stack Builders) . 59
7.12.10 git-annex . 59
7.12.11 openssh-github-keys (Stack Builders) . 59
7.12.12 propellor . 60
7.12.13 dimensional: Statically Checked Physical Dimensions . 60
7.12.14 igrf: The International Geomagnetic Reference Field . 61
7.12.15 Haskell in Green Land . 61
7.12.16 Kitchen Snitch server . 62
7.12.17 DSLsofMath . 62

8 Commercial Users 63
8.1 Well-Typed LLP . 63
8.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 63
8.3 Better . 64
8.4 Keera Studios LTD . 64
8.5 Stack Builders . 65
8.6 Optimal Computational Algorithms, Inc. 66
8.7 Snowdrift.coop . 66
8.8 McMaster Computing and Software Outreach . 67

9 Research and User Groups 68
9.1 Haskell at Eötvös Loránd University (ELTE), Budapest . 68
9.2 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 68
9.3 Functional Programming at the University of Kent . 69
9.4 Haskell at KU Leuven, Belgium . 69
9.5 HaskellMN . 70
9.6 Functional Programming at KU . 70
9.7 fp-syd: Functional Programming in Sydney, Australia . 70
9.8 Regensburg Haskell Meetup . 71
9.9 Curry Club Augsburg . 71
9.10 Italian Haskell Group . 71

5

1 Community

1.1 Haskell’ — Haskell 2020

Report by: Herbert Valerio Riedel
Participants: Andres Löh, Antonio Nikishaev, Austin

Seipp, Carlos Camarao de Figueiredo,
Carter Schonwald, David Luposchainsky,

Henk-Jan van Tuyl, Henrik Nilsson,
Herbert Valerio Riedel, Iavor Diatchki,
John Wiegley, José Manuel Calderón

Trilla, Jurriaan Hage, Lennart Augustsson,
M Farkas-Dyck, Mario Blaz̆ević, Nicolas

Wu, Richard Eisenberg, Vitaly Bragilevsky,
Wren Romano

Haskell’ is an ongoing process to produce revisions to
the Haskell standard, incorporating mature language
extensions and well-understood modifications to the
language. New revisions of the language are expected
once per year.
The goal of the Haskell Language committee together

with the Core Libraries Committee is to work towards a
new Haskell 2020 Language Report. The Haskell Prime
Process relies on everyone in the community to help by
contributing proposals which the committee will then
evaluate and, if suitable, help formalise for inclusion.
Everyone interested in participating is also invited to
join the haskell-prime mailing list.
Four years (or rather ~3.5 years) from now may seem

like a long time. However, given the magnitude of the
task at hand, to discuss, formalise, and implement pro-
posed extensions (taking into account the recently en-
acted three-release-policy) to the Haskell Report, the
process shouldn’t be rushed. Consequently, this may
even turn out to be a tight schedule after all. However,
it’s not excluded there may be an interim revision of
the Haskell Report before 2020.
Based on this schedule, GHC 8.8 (likely to be re-

leased early 2020) would be the first GHC release to
feature Haskell 2020 compliance. Prior GHC releases
may be able to provide varying degree of conformance
to drafts of the upcoming Haskell 2020 Report.
The Haskell Language 2020 committee starts out

with 20 members which contribute a diversified skill-
set. These initial members also represent the Haskell
community from the perspective of practitioners, im-
plementers, educators, and researchers.
The Haskell 2020 committee is a language commit-

tee; it will focus its efforts on specifying the Haskell
language itself. Responsibility for the libraries laid out
in the Report is left to the Core Libraries Committee
(CLC). Incidentally, the CLC still has an available seat;
if you would like to contribute to the Haskell 2020 Core
Libraries you are encouraged to apply for this opening.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Haskellers is a web site in maintenance mode. No

new features are being added, though the site remains
active with many new accounts and job postings con-
tinuing. If you have specific feature requests, feel free
to send them in (especially with pull requests!).
Haskellers remains a site intended for all members

of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

6

http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmij.org/ftp/Haskell/)
has received three additions:

IO monad realized in 1965

The unabated debate about exactly how much category
theory one needs to know to understand that strange
beast of IO prompts a thought if monads, like related
continuations,“are the things that are destined to be
rediscovered time and time again,” to borrow Reynolds
phrase.
A 1994 paper on category theory monads and func-

tional programming included an interesting historical
side-note. It turns out that the essence of monads has
been fully grasped back in 1965, by at least one per-
son. That person has also discovered that imperative,
control-flow-dependent computations can be embedded
into calculus by turning control flow into data flow.
That person is Peter Landin. His 1965 paper antici-
pated not only IO but also State and Writer monads,
call / cc, streams and delayed evaluations, the relation
of streams with co-routines, and even stream fusion.
We revisit that paper.
Read the tutorial online.

Model checking of Functional Dependencies

Given multi-parameter type-class declarations with
functional dependencies and a set of their instances,
we explain how to check if the instances conform to
a functional dependency. If the check fails we give a
counter-example, which is more helpful than the com-
piler error messages. Our checker, which is a simple
Prolog code, fills the real need nowadays: regrettably,
GHC no longer does the functional dependency confor-
mance check when the UndecidableInstances extension
is on. The unconformant instances are admitted and
cause problems, but at a later time and place and ac-
companied with even harder to understand error mes-
sages.
The method is model checking of the implication rep-

resented by the functional dependency. If the check
fails, it produces a counter-example of a concrete set of
instances that violate the dependency.
Read the tutorial online.

HSXML in tagless-final style

HSXML is a domain-specific language to write markup-
style documents like XML and HTML, in the syntax
closely resembling that of SXML:

(p "string" "string1" br "string3")

without unnecessary commas and other syntactic
distractions. (It truly takes polyvariadic functions to
the new level). Unlike SXML, HSXML is typed: it
is statically ensured that a ‘block-level element’ like p
cannot appear in the inline (i.e., character) content and
that a character-content entity cannot appear in a pure
element content. Context-polymorphism however lets
us define, e.g., title to be either a block-level element
or an attribute. The generated XML or HTML docu-
ment is certainly well-formed; moreover, it will satisfy
some validity constraints. HSXML is extensible: one
can add more tags, more validity constraints, and more
transformations. For example, the same ChangeLog.hs
document may be rendered either as a web page or an
rss.xml data feed.
The development of HSXML went through several

iterations. The earlier, 2006 version, represented semi-
structured data truly as a heterogeneous data struc-
ture: HList. Presently HSXML follows the ‘final tag-
less’ approach, and is reminiscent of the very first ver-
sion, in which semi-structured data are represented as a
monadic value polymorphic over the rendering monad.
Instead of monad however, we now use monoid.
Read the tutorial online.

2.2 School of Haskell

Report by: Michael Snoyman
Participants: Edward Kmett, Simon Peyton Jones

and others
Status: active

The School of Haskell has been available since early
2013. It’s main two functions are to be an education
resource for anyone looking to learn Haskell and as
a sharing resources for anyone who has built a valu-
able tutorial. The School of Haskell contains tutorials,
courses, and articles created by both the Haskell com-
munity and the developers at FP Complete. Courses
are available for all levels of developers.
Since the last HCAR, School of Haskell has been

open sourced, and is available from its own do-
main name (schoolofhaskell.com). In addition, the
underlying engine powering interactive code snippets,
ide-backend, has also been released as open source.

7

http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Computation/IO-monad-history.html
http://okmij.org/ftp/Haskell/TypeClass.html#FD-check
http://okmij.org/ftp/Scheme/xml.html#typed-SXML
schoolofhaskell.com

Currently 3150 tutorials have been created and 441
have been officially published. Some of the most visited
tutorials are Text Manipulation, Attoparsec, Learning
Haskell at the SOH, Introduction to Haskell - Haskell
Basics, and A Little Lens Starter Tutorial. Over the
past year the School of Haskell has averaged about 16k
visitors a month.
All Haskell programmers are encouraged to visit the

School of Haskell and to contribute their ideas and
projects. This is another opportunity to showcase the
virtues of Haskell and the sophistication and high level
thinking of the Haskell community.

Further reading

https://www.schoolofhaskell.com/

2.3 Haskell Programming from first
principles, a book forall

Report by: Chris Allen
Participants: Julie Moronuki
Status: In progress, content complete soon

Haskell Programming is a book that aims to get people
from the barest basics to being well-grounded in enough
intermediate Haskell concepts that they can self-learn
what would be typically required to use Haskell in pro-
duction or to begin investigating the theory and de-
sign of Haskell independently. We’re writing this book
because many have found learning Haskell to be diffi-
cult, but it doesn’t have to be. What particularly con-
tributes to the good results we’ve been getting has been
an aggressive focus on effective pedagogy and extensive
testing with reviewers as well as feedback from readers.
My coauthor Julie Moronuki is a linguist who’d never
programmed before learning Haskell and authoring the
book with me.
Haskell Programming is currently content complete

and is approximately 1,200 pages long in the v0.11.2
release. The book is available for sale during the early
access, which includes the 1.0 release of the book in
PDF. We’re still editing and testing the material. We
expect to release the book this summer.

Further reading

◦ http://haskellbook.com
◦ https://superginbaby.wordpress.com/2015/05/30/

learning-haskell-the-hard-way/
◦ http://bitemyapp.com/posts/

2015-08-23-why-we-dont-chuck-readers-into-web-apps.html

2.4 Learning Haskell

Report by: Manuel M. T. Chakravarty
Participants: Gabriele Keller
Status: Work in progress with six published

chapters

Learning Haskell is a new Haskell tutorial that inte-
grates text and screencasts to combine in-depth expla-
nations with the hands-on experience of live coding. It
is aimed at people who are new to Haskell and func-
tional programming. Learning Haskell does not assume
previous programming expertise, but it is structured
such that an experienced programmer who is new to
functional programming will also find it engaging.
Learning Haskell combines perfectly with the Haskell

for Mac programming environment, but it also includes
instructions on working with a conventional command-
line Haskell installation. It is a free resource that
should benefit anyone who wants to learn Haskell.
Learning Haskell is still work in progress with six

chapters already available. The current material cov-
ers all the basics including higher-order functions and
the fundamentals of algebraic data types. Learning
Haskell is approachable and fun - it includes topics
such as illustrating various recursive structures using
fractal graphics, such as this fractal tree.

Further chapters will be made available as we com-
plete them.

Further reading

◦ Learning Haskell is free at http://learn.hfm.io
◦ Blog post with some background:

http://blog.haskellformac.com/blog/learning-haskell

8

https://www.schoolofhaskell.com/
http://haskellbook.com
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
http://learn.hfm.io
http://blog.haskellformac.com/blog/learning-haskell

3 Implementations

3.1 The Glasgow Haskell Compiler

Report by: Ben Gamari
Participants: many others

GHC development churns onward — and GHC 8.0
is right around the corner! The final set of bugs
are being fixed, and we hope to have a final release
candidate, followed by the final release, in just a few
weeks. More exciting developments await for 8.2 and
beyond.

Major changes in GHC 8.0.1

GHC 8.0.1, the first release in the 8.0 series, will be
released in May 2016. While this is significantly later
than expected, we think that the features that this re-
lease brings should be well worth the wait. These in-
clude,
◦ Lightweight, implicit call-stacks1. Provides a
HasCallStack constraint that can be added to any
function to obtain a partial call-stack, with source lo-
cations, at that point in the program. HasCallStack
and all related API functions are provided by the
GHC.Stack module in base. The functions error
and undefined now have a HasCallStack constraint
and will print out the partial call-stack alongside the
given error message.

◦ Injective type families (Wiki2, paper3). Allows to
annotate type families with injectivity information.
Correctness of injectivity annotation is then verified
by the compiler. Once compiler knows the annota-
tion is correct it can us injectivity information during
type checking.

◦ Applicative do notation. With the new
-XApplicativeDo extension, GHC tries to desugar
do-notation to Applicative where possible, giv-
ing a more convenient sugar for many common
Applicative expressions. See the draft paper4 and
GHC Wiki5 for details.

1http://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack/
ImplicitLocations

2http://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies
3http://research.microsoft.com/en-us/um/people/simonpj/
papers/ext-f/injective-type-families-acm.pdf

4http://research.microsoft.com/en-us/um/people/simonpj/
papers/list-comp/applicativedo.pdf

5http://ghc.haskell.org/trac/ghc/wiki/ApplicativeDo

◦ A beautiful new users guide6. Now rewritten in
reStructured Text, and with significantly improved
output and documentation.

◦ Visible type application. This allows you to say,
for example, id @Bool to specialize id to Bool ->
Bool. With this feature, proxies are needed only
in data constructors for pattern matching. Visible
type patterns are due to be included sometime in
the indeterminate future. See the Wiki7 for details.

◦ Kind Equalities, which form the first step to build-
ing Dependent Haskell. This feature enables promo-
tion of GADTs to kinds, kind families, heterogeneous
equality (kind-indexed GADTs), and * :: *. See
the Wiki8 for more information.

◦ Record system enhancements. A new extension
DuplicateRecordFields will be available in GHC
8.0, allowing multiple uses of the same field name
with a very limited form of type-directed name reso-
lution. Support for polymorphism over record fields
is being worked on; another provisional new exten-
sion OverloadedLabels represents a first step in this
process. See the GHC Wiki9 for details.

◦ A huge improvement to pattern match checking
(including much better coverage of GADTs), based
on the work of Simon PJ and Georgios Karachalias.
For more details, see their paper 10 with Tom Schri-
jvers and Dimitrios Vytiniotis. More information can
be found in the GHC Wiki11.

◦ Custom type errors, allowing library authors to
offer more descriptive error messages than those of-
fered by GHC. See the proposal12 for more details.)

◦ Improved generics representation leveraging
type-level literals. This makes GHC.Generics more
expressive and uses new type system features to give
more natural types to its representations.

◦ A new DeriveLift language exten-
sion, allowing the Lift type class from
Language.Haskell.TH.Syntax to be derived
automatically. This was introduced in the spirit
of DeriveDataTypeable and DeriveGeneric to
allow easier metaprogramming, and to allow users
to easily define Lift instances without needing to
depend on the existence of Template Haskell itself
(see #1830).

6http://downloads.haskell.org/~ghc/8.0.1-rc4/docs/html/users_
guide/

7http://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication
8http://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase1
9http://ghc.haskell.org/trac/ghc/wiki/OverloadedRecordFields

10https://people.cs.kuleuven.be/~george.karachalias/papers/
p424-karachalias.pdf

11http://ghc.haskell.org/trac/ghc/wiki/PatternMatchCheck
12http://ghc.haskell.org/trac/ghc/wiki/Proposal/

CustomTypeErrors

9

http://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack/ImplicitLocations
http://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack/ImplicitLocations
http://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/injective-type-families-acm.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/injective-type-families-acm.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/list-comp/applicativedo.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/list-comp/applicativedo.pdf
http://ghc.haskell.org/trac/ghc/wiki/ApplicativeDo
http://downloads.haskell.org/~ghc/8.0.1-rc4/docs/html/users_guide/
http://downloads.haskell.org/~ghc/8.0.1-rc4/docs/html/users_guide/
http://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication
http://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase1
http://ghc.haskell.org/trac/ghc/wiki/OverloadedRecordFields
https://people.cs.kuleuven.be/~george.karachalias/papers/p424-karachalias.pdf
https://people.cs.kuleuven.be/~george.karachalias/papers/p424-karachalias.pdf
http://ghc.haskell.org/trac/ghc/wiki/PatternMatchCheck
http://ghc.haskell.org/trac/ghc/wiki/Proposal/CustomTypeErrors
http://ghc.haskell.org/trac/ghc/wiki/Proposal/CustomTypeErrors

◦ Support for DWARF-based stacktraces13.
Haskell has at long last gained the ability to collect
stack-traces of running programs. While still exper-
imental, base now includes an interface which user
code can use to request a representation of the cur-
rent execution stack when running on a supported
machine (currently Linux x86-64). Furthermore, the
runtime system will now provide a backtrace of the
currently running thread when thrown a SIGUSR2
signal. Note that this functionality is highly exper-
imental and there are some known issues which can
potentially threaten the stability of the program.

◦ Remote GHCi14. The -fexternal-interpreter
flag tells GHC to run interpreted code in a separate
process. This provides various benefits, including al-
lowing the interpreter to run profiled code (for ex-
ample), thereby gaining access to stack traces15 in
GHCi.

◦ GHC now supports environment files. This is not
any fundamental new capability but may prove to
be a useful convenience. Build systems like Cabal
call GHC with flags that define an (ephemeral)
package environment, such as -hide-all-packages
-package-db=... -package this -package
that. An environment file lets the same information
be stashed persistently in a file that GHC will pick
up and use automatically. In principle this allows
tools such as Cabal to generate an environment file
and then you can use ghc or ghci directly and get
the package environment of your project, rather
than the default global environment. In addition
to environments that live in a particular directory,
it is possible to make a default global environment,
or different global environments for different shell
sessions. See the “Package environments” section of
the GHC users manual16 for more information.

◦ A new Strict language extension17, allowing
modules to be compiled such that local bindings are
evaluated eagerly. Implemented by Adam Sandberg
Eriksson based on an proposal by Johan Tibell.

◦ Significant improvements in cross-platform support,
including a variety of fixes to Windows linker
support, great improvements in reliability on
ARM (GHC #1120618 and others), revived unreg-
isterised m68k support19, and new support for
AIX targets (Herbert) and Linux PowerPC 64-
bit big- and little-endian native code genera-
tion.

13http://ghc.haskell.org/trac/ghc/wiki/DWARF
14http://ghc.haskell.org/trac/ghc/wiki/RemoteGHCi
15http://simonmar.github.io/posts/

2016-02-12-Stack-traces-in-GHCi.html
16http://downloads.haskell.org/~ghc/8.0.1-rc4/docs/html/users_

guide//packages.html#package-environments
17http://ghc.haskell.org/trac/ghc/wiki/StrictPragma
18https://ghc.haskell.org/trac/ghc/ticket/11206
19https://trofi.github.io/posts/191-ghc-on-m68k.html

◦ Improved support for pattern synonyms, includ-
ing record syntax (GHC #858220) and the ability to
associate pattern synonyms with type constructors
on export, implemented by Matthew Pickering. See
Matthew’s blog21 for details.

Upcoming plans for GHC 8.2

With the super-major GHC 8.0 release out the door,
plans have begun to form for the next major release,
8.2. Given that 8.0 saw a remarkable amount of churn,
we hope to make the focus of 8.2 consolidation, stabi-
lization, and optimization. For this reason, we hope
you’ll note there are relatively few “new” features in
the lists below; instead we’d like to encourage contrib-
utors to polish, optimize, document, refactor, or finish
the features we already have.
Of course, GHC only evolves because of its contribu-

tors. Please let us know if you have a pet project that
you’d like to see merged!

Libraries, source language, type system
◦ Indexed Typeable representations (Ben Gamari,

Simon Peyton Jones, et al). While GHC has
long supported runtime type reflection through the
Typeable typeclass, its current incarnation requires
care to use, providing little in the way of type-
safety. For this reason the implementation of types
like Data.Dynamic must be implemented in terms of
unsafeCoerce with no compiler verification.
GHC 8.2 will address this by introducing indexed
type representations, leveraging the type-checker to
verify programs using type reflection. This allows
facilities like Data.Dynamic to be implemented in
a fully type-safe manner. See the paper 22 for an
description of the proposal and the Wiki23 for the
current status of the implementation.

◦ Backpack24 is targeting to be merged in GHC 8.2.
More information to come. (Edward Z. Yang)

◦ Merge Bifoldable and Bitraversable into base
(Edward Kmett, Ryan Scott)

◦ Generalize the deriving algorithms for Eq,
Functor, etc. to be able to derive the data
types in Data.Functor.Classes (Eq1, Eq2, etc.),
Bifunctor, Bifoldable, and Bitraversable (Ryan
Scott)

◦ Deriving strategies (Ryan Scott): grant users
the ability to choose explicitly how a class
should be derived (using a built-in algorithm,
GeneralizedNewtypeDeriving, DeriveAnyClass,
or otherwise), addressing #10598.

20https://ghc.haskell.org/trac/ghc/ticket/8582
21http://mpickering.github.io/posts/

2015-12-12-pattern-synonyms-8.html
22http://research.microsoft.com/en-us/um/people/simonpj/

papers/haskell-dynamic/
23https://ghc.haskell.org/trac/ghc/wiki/Typeable/BenGamari
24https://ghc.haskell.org/trac/ghc/wiki/Backpack

10

http://ghc.haskell.org/trac/ghc/wiki/DWARF
http://ghc.haskell.org/trac/ghc/wiki/RemoteGHCi
http://simonmar.github.io/posts/2016-02-12-Stack-traces-in-GHCi.html
http://simonmar.github.io/posts/2016-02-12-Stack-traces-in-GHCi.html
http://downloads.haskell.org/~ghc/8.0.1-rc4/docs/html/users_guide//packages.html#package-environments
http://downloads.haskell.org/~ghc/8.0.1-rc4/docs/html/users_guide//packages.html#package-environments
http://ghc.haskell.org/trac/ghc/wiki/StrictPragma
https://ghc.haskell.org/trac/ghc/ticket/11206
https://trofi.github.io/posts/191-ghc-on-m68k.html
https://ghc.haskell.org/trac/ghc/ticket/8582
http://mpickering.github.io/posts/2015-12-12-pattern-synonyms-8.html
http://mpickering.github.io/posts/2015-12-12-pattern-synonyms-8.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/haskell-dynamic/
http://research.microsoft.com/en-us/um/people/simonpj/papers/haskell-dynamic/
https://ghc.haskell.org/trac/ghc/wiki/Typeable/BenGamari
https://ghc.haskell.org/trac/ghc/wiki/Backpack

◦ Exhaustiveness checking for EmptyCases, addressing
#10746.

Back-end and runtime system
◦ Compact regions (Giovanni Campagna, Edward

Yang, This runtime system feature allows a referen-
tially “closed” set of heap objects to be collected into
a “compact region”, allowing cheaper garbage col-
lection, heap-object sharing between processes, and
the possibility of inexpensive serialization. See the
patch25 and paper26 for more information.

◦ Refactoring and improvements to the cost-center
profiler (Ben Gamari): Allow heap profiler samples
to be directed to the GHC eventlog, allowing cor-
relation with other program events, enabling easier
analysis by tooling and eventual removal of the old,
rather crufty .hp profile format.

◦ Further improvements to debugging information
(Ben Gamari): There are still a number of out-
standing issues with GHC’s DWARF implementa-
tion, some of which even carry the potential to
crash the runtime system during stacktrace collec-
tion. GHC 8.2 will hopefully have these issues re-
solved, allowing debugging information to be used
by end-user code in production.
With stable stack unwinding support comes a num-
ber of opportunities for new serial and parallel per-
formance analysis tools (e.g. statistical profiling) and
debugging. As GHC’s debugging information im-
proves, we expect to see tooling developed to support
these applications. See the DWARF status page27

for futher information.
◦ Support for NUMA systems (Simon Marlow, in

progress28). The aim is to reduce the number of re-
mote memory accesses for multi-socket systems that
have a mixture of local and remote memory.

◦ Experimental changes to the scheduler (Simon Mar-
low, in progress29) that enable the number of threads
used for GC to be lower than the -N setting.

Frontend, build system and miscellaneous changes
◦ New Shake-based build system, hadrian, will be
merged. (Andrey Mokhov)

◦ The improved LLVM backend plan plan didn’t make
the cut for 8.0, but will for 8.2. See the GHC Wiki30

for details. (Austin Seipp)
◦ Deterministic builds 31. Given the same environ-

ment, file and flags produce ABI compatible binaries.
(Bartosz Nitka, in-progress)

25https://phabricator.haskell.org/D1264
26http://ezyang.com/papers/ezyang15-cnf.pdf
27https://ghc.haskell.org/trac/ghc/wiki/DWARF/80Status
28https://github.com/simonmar/ghc/tree/numa
29https://github.com/simonmar/ghc/commit/

7e05ec18b4eda8d97e37015d415e627353de6b50
30http://ghc.haskell.org/trac/ghc/wiki/ImprovedLLVMBackend
31http://ghc.haskell.org/trac/ghc/wiki/DeterministicBuilds

Development updates and acknowledgments

2015 has been a remarkable year for GHC develop-
ment. Over the last twelve months the GHC reposi-
tory gained nearly 2500 commits by over one hundred
authors. Of these authors, nearly half are first-time
contributors. At the time of writing alone alone there
is over one dozen open and actively updated differen-
tials on Phabricator. It seems fair to say that GHC’s
development community is stronger than ever.
We have been very lucky to have Thomas Miedema,

who has devoted countless hours triaging bugs, cleaning
up the build system, advising new contributors, and
generally helping out in a multitude of ways which often
go un-noticed. We all have benefited immensely from
Thomas’ hard work and generosity; thanks Thomas!
Another contributor deserving of recognition is Her-

bert Valerio Riedel, who meticulously handles many of
the finer details of GHC development: over the past
year Herbert has spent numerous weekends thinking
through compatibility considerations for library and
warning changes, managing GHC’s interaction with its
external core libraries, cleaning up GHC’s build sys-
tem, and maintaining his invaluable PPA repository
for Ubuntu and Debian-based systems. Our releases
wouldn’t be nearly as smooth without Herbert’s atten-
tion to detail.
On the Windows front, Tamar Christina has been

doing amazing work cleaning up the many nooks that
have gone unattended until now. His work on the run-
time linker should mean that GHC 8.0 will be consider-
ably more reliable when linking against many Windows
libraries.
The past year has brought a number of new con-

tributors: Ryan Scott and Michael Sloan have picked
up various generics and Template Haskell projects, An-
drew Farmer has contributed a number of fixes to the
cost-centre profiler, and Bartosz Nitka has made nu-
merous contributions improving compiler determinism.
We also also saw the beginnings of some very interest-
ing work from Ömer Sinan Ağacan, who is looking at
teaching GHC to unpack sum types. Michael Walker,
David Lupochainsky and Herbert Valerio Riedel have
also started honing GHC’s warnings system by both
bringing consistency to the currently rather organic
flags and making the messages themselves more infor-
mative. George Karachalias merged his full rewrite of
the pattern match checker, which is now far more pre-
cise than GHC’s previous implementation.
In recent years the growth of the Haskell community

has required that we better develop our infrastructure
for change management. This lead to the formation
of the Core Libraries Committee, which is now in its
third year. As such, we are now beginning to see some
of the committee’s efforts come to fruition. With GHC
8.0 progress was made on all three active proposals:
◦ Semigroup-Monoid proposal: the Data.Semigroup

module is now available in base and there are now

11

https://phabricator.haskell.org/D1264
http://ezyang.com/papers/ezyang15-cnf.pdf
https://ghc.haskell.org/trac/ghc/wiki/DWARF/80Status
https://github.com/simonmar/ghc/tree/numa
https://github.com/simonmar/ghc/commit/7e05ec18b4eda8d97e37015d415e627353de6b50
https://github.com/simonmar/ghc/commit/7e05ec18b4eda8d97e37015d415e627353de6b50
http://ghc.haskell.org/trac/ghc/wiki/ImprovedLLVMBackend
http://ghc.haskell.org/trac/ghc/wiki/DeterministicBuilds

opt-in warnings for missing Semigroup instances in
preparation for the eventual addition of Semigroup
as a superclass of Monoid

◦ MonadFail proposal: the Control.Monad.Fail
module is available in base and a
-XMonadFailDesugaring language extension
has been introduced, allowing users to use the new
class in do desugaring

◦ ExpandFloating proposal: expm1, log1p, log1pexp,
log1mexp have been added to the Floating class
with defaults
We are also excited to see the revitalization of

the Haskell Prime process with the formation of the
Haskell 2020 committee. This committee will attempt
to formalize some of the better-understood GHC lan-
guage extensions and introduce them into the language
standard. We look forward to watching this process
progress.
Finally, GHC HQ would like to thank Futureice

GmbH for the donation of a Mac Mini to the project.
This machine will be used for continuous integration
and general testing on Mac OS X targets. Thanks Fu-
tureice!
Of course, GHC has also benefited from countless

more contributors who we don’t have room to acknowl-
edge here. We’d like to thank everyone who has con-
tributed patches, bug reports, code reviews, and discus-
sion to the GHC community over the last year. GHC
only improves through your efforts!

Further reading

◦ GHC website: http://haskell.org/ghc/
◦ GHC users guide: http:
//downloads.haskell.org/~ghc/master/users_guide/

◦ ghc-devs mailing list:
https://mail.haskell.org/mailman/listinfo/ghc-devs

3.2 The Helium Compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back, including domain specific type error diagnosis by
means of specialized type rules. Helium and its asso-
ciated packages are available from Hackage. Install it
by running cabal install helium. You should also
cabal install lvmrun on which it dynamically de-
pends for running the compiled code.
Currently Helium is at version 1.8.1. The major

change with respect to 1.8 is that Helium is again
well-integrated with the Hint programming environ-
ment that Arie Middelkoop wrote in Java. The jar-file

for Hint can be found on the Helium website, which is
located at http://www.cs.uu.nl/wiki/Helium. This web-
site also explains in detail what Helium is about, what
it offers, and what we plan to do in the near and far
future.
A student has added parsing and static checking for

type class and instance definitions to the language, but
type inferencing and code generating still need to be
added. Completing support for type classes is the sec-
ond thing on our agenda, the first thing being making
updates to the documentation of the workings of He-
lium on the website.

3.3 UHC, Utrecht Haskell Compiler

Report by: Atze Dijkstra
Participants: many others
Status: active development

UHC is the Utrecht Haskell Compiler, supporting al-
most all Haskell98 features and most of Haskell2010,
plus experimental extensions.

Status Current active development directly on UHC:
◦ Making intermediate Core language available as a

compilable language on its own, used by an experi-
mental Agda backend (Philipp Hausmann).

◦ The platform independent part of UHC has been
made available via Hackage, as package “uhc-light”
together with a small interpreter for Core files (Atze
Dijkstra, interpreter still under development).

◦ Implementing static analyses (Tibor Bremer, Jurri-
aan Hage, in progress).

◦ Rework of the type system (Alejandro Serrano, Jur-
riaan Hage, just started).

Background. UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.3.2).

Further reading

◦ UHC Homepage:
http://www.cs.uu.nl/wiki/UHC/WebHome

◦ UHC Github repository:
https://github.com/UU-ComputerScience/uhc

◦ Attribute grammar system: http:
//www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

12

http://haskell.org/ghc/
http://downloads.haskell.org/~ghc/master/users_guide/
http://downloads.haskell.org/~ghc/master/users_guide/
https://mail.haskell.org/mailman/listinfo/ghc-devs
http://www.cs.uu.nl/wiki/Helium
http://www.cs.uu.nl/wiki/UHC/WebHome
https://github.com/UU-ComputerScience/uhc
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

3.4 Frege

Report by: Ingo Wechsung
Participants: Dierk König, Mark Perry, Marimuthu

Madasami, Sean Corfield, Volker Steiss
and others

Status: actively maintained

Frege is a Haskell dialect for the Java Virtual Machine
(JVM). It covers essentially Haskell 2010, though there
are some mostly insubstantial differences. Several GHC
language extensions are supported, most prominently
higher rank types.
As Frege wants to be a practical JVM language, in-

teroperability with existing Java code is essential. To
achieve this, it is not enough to have a foreign function
interface as defined by Haskell 2010. We must also have
the means to inform the compiler about existing data
types (i.e. Java classes and interfaces). We have thus
replaced the FFI by a so called native interface which
is tailored for the purpose.
The compiler, standard library and associated tools

like Eclipse IDE plugin, REPL (interpreter) and several
build tools are in a usable state, and development is
actively ongoing. The compiler is self hosting and has
no dependencies except for the JDK.
In the growing, but still small community, a con-

sensus developed last summer that existing differences
to Haskell shall be eliminated. Ideally, Haskell source
code could be ported by just compiling it with the Frege
compiler. Thus, the ultimate goal is for Frege to be-
come the Haskell implementation on the JVM.
Already, in the last months, some of the most of-

fending differences have been removed: lambda syn-
tax, instance/class context syntax, recognition of True
and False as boolean literals, lexical syntax for variables
and layout-mode issues. Frege now also supports code
without module headers.
Frege is available under the BSD-3 license at the

GitHub project page. A ready to run JAR file can
be downloaded or retrieved through JVM-typical build
tools like Maven, Gradle or Leiningen.
All new users and contributors are welcome!
Currently, we have a new version of code generation

in alpha status. This will be the base for future inter-
operability with Java 8 and above.
In April, a community member submitted his mas-

ters thesis about implementation of a STM library for
Frege.

Further reading

https://github.com/Frege/frege

3.5 Specific Platforms

3.5.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of peo-
ple who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both x86 and x86_64) starting
from GHC 6.12.1, hence one can always download na-
tive vanilla binary distributions for each new release.
We have a developer (staging) repository for Haskell

ports that currently features around 600 of many of
the popular Cabal packages. Most of the updates com-
mitted to that repository are continuously integrated
to the official ports tree on a regular basis. In re-
sult, the FreeBSD Ports Collection still offers many
popular and important Haskell software: GHC 7.10.2,
Gtk2Hs, wxHaskell, XMonad, Pandoc, Gitit, Yesod,
Happstack, Snap, Agda (along with its standard li-
brary), git-annex, and so on – all of them are avail-
able on 9.3-RELEASE and 10.2-RELEASE. Note that
we decided to abandon tracking Haskell Platform (al-
though all its former components are still there as indi-
vidual packages), instead we updated the packages to
match their versions on Stackage (at end of August).
If you find yourself interested in helping us or sim-

ply want to use the latest versions of Haskell programs
on FreeBSD, check out our development repository on
GitHub (see below) where you can find the latest ver-
sions of the ports together with all the important point-
ers and information required for contacting or con-
tributing.

Further reading

https://github.com/freebsd-haskell/ports

3.5.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 905 source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system

13

https://github.com/Frege/frege
https://github.com/freebsd-haskell/ports

upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.
The current stable Debian release (“jessie”) provides

the Haskell Platform 2013.2.0.0 and GHC 7.6.3, while
in Debian unstable and testing we ship GHC 7.10.4.
A GHC 8.0 prerelease is staged in the experimental
distribution.
Debian users benefit from the Haskell ecosystem

on 17 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.5.3 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Ricky Elrod, Ben Boeckel, and others
Status: active

The Fedora Haskell SIG works to provide good Haskell
support in the Fedora Project Linux distribution.
The current stable Fedora 23 release still has GHC

7.8.4. The main change for Fedora 24 which should be
released in June is Pandoc 1.16. For Fedora 25 we want
to finally move to GHC 7.10.3. In the meantime there
is a ghc-7.10.3 Fedora Copr repo available for Fedora
and EPEL 7, and also one for GHC 8.0.1. There is also
a Fedora Copr repo for stack.
At the time of writing we have 312 Haskell source

packages in Fedora.
If you are interested in Fedora Haskell packaging,

please join our mailing-list and the Freenode #fedora-
haskell channel. You can also follow @fedorahaskell for
occasional updates.

Further reading

◦ Homepage:
http://fedoraproject.org/wiki/Haskell_SIG

◦ Mailing-list: https://lists.fedoraproject.org/archives/
list/haskell-devel@lists.fedoraproject.org/

◦ Package list: https://admin.fedoraproject.org/pkgdb/
packager/haskell-sig/

◦ Copr repos:
https://copr.fedorainfracloud.org/coprs/petersen/

14

http://wiki.debian.org/Haskell
http://fedoraproject.org/wiki/Haskell_SIG
https://lists.fedoraproject.org/archives/list/haskell-devel@lists.fedoraproject.org/
https://lists.fedoraproject.org/archives/list/haskell-devel@lists.fedoraproject.org/
https://admin.fedoraproject.org/pkgdb/packager/haskell-sig/
https://admin.fedoraproject.org/pkgdb/packager/haskell-sig/
https://copr.fedorainfracloud.org/coprs/petersen/

4 Related Languages and Language Design

4.1 Agda

Report by: Ulf Norell
Participants: Ulf Norell, Nils Anders Danielsson,

Andreas Abel, Jesper Cockx, Makoto
Takeyama, Stevan Andjelkovic,

Jean-Philippe Bernardy, James Chapman,
Dominique Devriese, Peter Divianszki,

Fredrik Nordvall Forsberg, Olle
Fredriksson, Daniel Gustafsson, Alan

Jeffrey, Fredrik Lindblad, Guilhem Moulin,
Nicolas Pouillard, Andrés Sicard-Ramírez

and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e., GADTs which can
be indexed by values and not just types. The lan-
guage also supports coinductive types, parameterized
modules, and mixfix operators, and comes with an in-
teractive interface—the type checker can assist you in
the development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
Since the release of Agda 2.4.0 in June 2014 a lot

has happened in the Agda project and community. For
instance:
◦ There have been two Agda courses at the Oregon
Programming Languages Summer School (OPLSS).
In 2014 by Ulf Norell, and in 2015 by Peter Dybjer.

◦ Agda has moved to github: https://github.com/
agda/agda.

◦ Agda 2.4.2 was released in September 2014, and
the latest stable version is Agda 2.4.2.4, released in
September 2015.

◦ The restriction of Agda to not use Streicher’s Axiom
K was proved correct by Jesper Cockx et al. in the
ICFP 2014 paper Pattern Matching without K.

◦ Instance arguments are now powerful enough to em-
ulate Haskell-style type classes.

◦ The reflection machinery has been extended, mak-
ing it possible to define convenient reflection based
tactics.

◦ Improved compiler performance, and a new backend
targeting the Utrecht Haskell Compiler (UHC).

Release of Agda 2.4.4 is planned for early 2016.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 Disciple

Report by: Ben Lippmeier
Participants: Amos Robinson, Max Swadling, Kyle Van

Berendonck, Jacob Stanley, Viktar
Basharymau, Erik de Castro Lopo, Ben

Lippmeier
Status: experimental, active development

The Disciplined Disciple Compiler (DDC) is a research
compiler used to investigate program transformation
in the presence of computational effects. It compiles
a family of strict functional core languages and sup-
ports region and effect typing. This extra informa-
tion provides a handle on the operational behaviour of
code that isn’t available in other languages. Programs
can be written in either a pure/functional or effect-
ful/imperative style, and one of our goals is to provide
both styles coherently in the same language.

What is new?

DDC is in an experimental, pre-alpha state, though
parts of it do work. In March this year we released
DDC 0.4.2, with the following new features:
◦ Added LLVM code generation for higher order func-

tions.
◦ Added automatic insert of run and box casts.
◦ Added multi-module compilation.
◦ Added desugaring of guards.
◦ Added primitive for working with arrays of boxed

values and vector of primitive unboxed values.
◦ Added first cut PHP code generator.
◦ Added case-of-known-constructor transform.
◦ Added clustering and rate inference for Core Flow

language.
◦ Source programs now accept unicode lambdas and

dumps of intermediate code use lambdas for both
term and type binders.

◦ Removed deprecated Eval and Lite language frag-
ments.

Further reading

http://disciple.ouroborus.net

15

https://github.com/agda/agda
https://github.com/agda/agda
http://wiki.portal.chalmers.se/agda/
http://disciple.ouroborus.net

5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Rita Loogen, Lukas Schiller,

in Sydney: Jost Berthold
Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.

Eden’s primitive constructs are process abstractions
and process instantiations. Higher-level coordination is
achieved by defining skeletons, ranging from a simple
parallel map to sophisticated master-worker schemes.
They have been used to parallelize a set of non-trivial
programs.
Eden’s interface supports a simple definition of ar-

bitrary communication topologies using Remote Data.
The remote data concept can also be used to compose
skeletons in an elegant and effective way, especially in
distributed settings. A PA-monad enables the eager
execution of user defined sequences of Parallel Actions
in Eden.

Survey and standard reference: Rita Loogen,
Yolanda Ortega-Mallén, and Ricardo Peña: Parallel
Functional Programming in Eden, Journal of Func-
tional Programming 15(3), 2005, pages 431–475.

Tutorial: Rita Loogen: Eden - Parallel Func-
tional Programming in Haskell, in: V. Zsók, Z.

Horváth, and R. Plasmeijer (Eds.): CEFP 2011,
Springer LNCS 7241, 2012, pp. 142-206. (see also:
www.mathematik.uni-marburg.de/~eden/?content=cefp)

Implementation

Eden is implemented by modifications to the Glasgow-
Haskell Compiler (extending its runtime system to use
multiple communicating instances). Apart from MPI
or PVM in cluster environments, Eden supports a
shared memory mode on multicore platforms, which
uses multiple independent heaps but does not depend
on any middleware. Building on this runtime support,
the Haskell package edenmodules defines the language,
and edenskels provides a library of parallel skeletons.
A version based on GHC-7.8.2 (including binary

packages and prepared source bundles) has been re-
leased in April 2014. This version fixed a number of
issues related to error shut-down and recovery, and
featured extended support for serialising Haskell data
structures. The release of a version based on GHC-7.10
is in preparation. Previous stable releases with binary
packages and bundles are still available on the Eden
web pages.
The source code repository for Eden releases

is james.mathematik.uni-marburg.de:8080/gitweb, the
Eden libraries (Haskell-level) are also available via
Hackage. Please contact us if you need any support.

Tools and libraries

The Eden trace viewer tool EdenTV provides a vi-
sualisation of Eden program runs on various levels.
Activity profiles are produced for processing elements
(machines), Eden processes and threads. In addi-
tion message transfer can be shown between processes
and machines. EdenTV is written in Haskell and is
freely available on the Eden web pages and on hack-
age. Eden’s thread view can also be used to visualise
ghc eventlogs. Recently, in the course of his Bache-
lor thesis, Bastian Reitemeier developed another trace
viewer tool, Eden-Tracelab, which is capable of visual-
ising large trace files, without being constrained by the
available memory. Details can be found in his blogpost
brtmr.de/2015/10/17/introducing-eden-tracelab.html.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ M. Dieterle: Structured Parallelism by Composition
- Design and implementation of a framework sup-

16

www.mathematik.uni-marburg.de/~eden/?content=cefp
james.mathematik.uni-marburg.de:8080/gitweb
brtmr.de/2015/10/17/introducing-eden-tracelab.html

porting skeleton compositionality, Doctoral Thesis,
Philipps-Universität Marburg, February 2016,
http://archiv.ub.uni-marburg.de/diss/z2016/0107/
pdf/dmd.pdf.

◦ M. Dieterle, Th. Horstmeyer, R. Loogen, J.
Berthold: Skeleton Composition vs Stable Process
Systems in Eden, Journal of Functional Program-
ming, to appear.

◦ J. Berthold, H.-W. Loidl, K. Hammond: PAEAN:
Portable Runtime Support for Physically-Shared-
Nothing Architectures in Parallel Haskell Dialects,
Journal of Functional Programming, to appear.

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.1.2 Auto-parallelizing Pure Functional Language
System

Report by: Kei Davis
Participants: Dean Prichard, David Ringo, Loren

Anderson, Jacob Marks
Status: active

The main project goal is the demonstration of a light-
weight, higher-order, polymorphic, pure functional lan-
guage implementation in which we can experiment
with automatic parallelization strategies, varying de-
grees of default function and constructor strictness. A
secondary goal is to experiment with mechanisms for
transparent fault tolerance.
We do not consider speculative or eager evaluation,

or semantic strictness inferred by program analysis, so
potential parallelism is dictated by the specified degree
of default strictness and any strictness annotations.
Our approach is similar to that of the Intel Labs

Haskell Research Compiler: to use GHC as a front-end
to generate STG (or Core), then exit to our own back-
end compiler. As in their case we do not attempt to use
the GHC runtime. Our implementation is light-weight
in that we are not attempting to support or recreate
the vast functionality of GHC and its runtime. This
approach is also similar to Don Stewart’s except that
we generate C instead of Java.

Current Status

Currently we have a fully functioning serial implemen-
tation and a primitive proof-of-design parallel imple-
mentation.

Immediate Plans

We are currently developing a more realistic parallel
runtime. Bridging the gap between GHC STG (or
Core) to our STG representation will be undertaken
starting June 2016. An instrumentation framework will
be developed in summer 2016.

Undergraduate/post-graduate Internships

If you are a United States citizen or permanent resi-
dent alien studying computer science or mathematics
at the undergraduate level, or are a recent graduate,
with strong interests in Haskell programming, com-
piler/runtime development, and pursuing a spring, fall,
or summer internship at Los Alamos National Labora-
tory, this could be for you.
We don’t expect applicants to necessarily already

be highly accomplished Haskell programmers — such
an internship is expected to be a combination of fur-
ther developing your programming/Haskell skills and
putting them to good use. If you’re already a strong C
hacker we could use that too.

The application process requires a bit of
work so don’t leave enquiries until the last
day/month.

Term Application Deadline
Summer 2016 Closed
Fall 2016 May 31, 2016
Spring 2017 Approx. July 2016
Summer 2017 Approx. January 2017
Fall 2017 Approx. May 2017

Email me at kei (at) lanl (dot) gov if interested in
more information, and feel free to pass this along.

Further reading

A project web site is under construction.

5.2 Haskell and the Web

5.2.1 WAI

Report by: Kazu Yamamoto
Participants: Michael Snoyman, Greg Weber
Status: stable

WAI (Web Application Interface) is an application
interface between web applications and handlers in
Haskell. The Application data type is defined as fol-
lows:

type Application
= Request
-> (Response -> IO ResponseReceived)
-> IO ResponseReceived

That is, a WAI application takes two arguments: a
Request and a function to send a Response. So, the
typical behavior of WAI application is processing a re-
quest, generating a response and passing the response
to the function.

17

http://archiv.ub.uni-marburg.de/diss/z2016/0107/pdf/dmd.pdf
http://archiv.ub.uni-marburg.de/diss/z2016/0107/pdf/dmd.pdf
http://www.mathematik.uni-marburg.de/~eden
https://dl.acm.org/citation.cfm?id=2503779
https://dl.acm.org/citation.cfm?id=2503779
http://www.cse.unsw.edu.au/~pls/thesis/dons-thesis.ps.gz
https://github.com/losalamos/APPFL

Historically speaking, this interface made possible to
develop handlers other than HTTP. The WAI applica-
tions can run through FastCGI (wai-handler-fastcgi),
run as stand-alone (wai-handler-webkit), etc. But the
most popular handler is based on HTTP, of course. The
major HTTP handler for WAI is Warp which now pro-
vides both HTTP/1.1 and HTTP/2. TLS (warp-tls)
is also available. New transports such as WebSocket
(wai-websocket) and Event Source (wai-extra) can be
implemented, too.
It is possible to develop WAI applications directly.

For instance, Hoogle and Mighttpd2 take this way.
However, you may want to use web application frame-
works such as Apiary, MFlow, rest, Servant, Scotty,
Spock, Yesod, etc.
WAI also provides Middleware:

type Middleware = Application -> Application

WAI middleware can inspect and transform a re-
quest, for example by automatically gzipping a re-
sponse or logging a request (wai-extra).
Since the last HCAR, WAI has successfully released

version 3.2, which removes the experimental HTTP/2
module and some APIs. We bumped the version from
3.0 to 3.2 for consistency with Warp 3.2.

Further reading

◦ https://groups.google.com/d/forum/haskell-wai

5.2.2 Yesod

Report by: Michael Snoyman
Participants: Greg Weber, Luite Stegeman, Felipe Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, Yesod
helps users create highly scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO.
But Yesod is even more focused on scalable develop-

ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.
◦ declarative routing with type-safe urls — say good-
bye to broken links

◦ no XSS attacks — form submissions are automati-
cally sanitized

◦ database safety through the Persistent library (→
7.5.1) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.
When type safety conflicts with programmer produc-

tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 7.5.1). Views
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing and
can return different representations of a resource (html,
json, etc).
Yesod is broken up into many smaller projects

and leverages Wai (→ 5.2.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks that use WAI such as Scotty (→ 5.2.9) and Ser-
vant.
Yesod has been in API stability for some time. The

1.4 release was made in September of 2014, and we are
still backwards-compatible to that. Even then, the 1.4
release was almost a completely backwards-compatible
change. The version bump was mostly performed to
break compatibility with older versions of dependen-
cies, which allowed us to remove approximately 500
lines of conditionally compiled code. Notable changes
in 1.4 include:
◦ New routing system with more overlap checking con-

trol.
◦ yesod-auth works with your database and your

JSON.
◦ yesod-test sends HTTP/1.1 as the version.
◦ Type-based caching with keys.
The Yesod team is quite happy with the current level

of stability in Yesod. Since the 1.0 release, Yesod has
maintained a high level of API stability, and we in-
tend to continue this tradition. Future directions for
Yesod are now largely driven by community input and
patches. We’ve been making progress on the goal of
easier client-side interaction, and have high-level inter-
action with languages like Fay, TypeScript, and Coffe-
Script. GHCJS support is in the works.
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.
To see an example site with source code available,

you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).

18

https://groups.google.com/d/forum/haskell-wai
http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers

Further reading

http://www.yesodweb.com/

5.2.3 Warp

Report by: Kazu Yamamoto
Participants: Michael Snoyman
Status: stable

Warp is a high performance, easy to deploy HTTP han-
dler for WAI (→ 5.2.1). Its supports both HTTP/1.1
and HTTP/2.
Since the last HCAR, we have released Warp 3.2

which removes the experimental HTTP/2 APIs. The
performance of HTTP/2 was drastically improved. The
logic to handle static files such as If-Modified-Since
was imported from Mighttpd2 (→ 5.2.4).

Further reading

◦ “Warp: A Haskell Web Server”
– the May/June 2011 issue of IEEE Internet

Computing
– Issue page:

http://www.computer.org/portal/web/csdl/abs/
mags/ic/2011/03/mic201103toc.htm

– PDF: http://steve.vinoski.net/pdf/IC-Warp_a_
Haskell_Web_Server.pdf

◦ “Warp”
– The Performance of Open Source Applications
– HTML:

http://www.aosabook.org/en/posa/warp.html

5.2.4 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 3 is a simple but prac-
tical Web server in Haskell. It provides features to han-
dle static files, redirection, CGI, reverse proxy, reload-
ing configuration files and graceful shutdown. Also
TLS is supported.
The logic to handle static files has been transferred to

Warp, an HTTP server library. So, Mighttpd became
a simpler web application now.
You can install Mighttpd 3 (mighttpd2) from Hack-

ageDB. Note that the package name is mighttpd2, not
mighttpd3, for historical reasons.

Further reading

◦ http://www.mew.org/~kazu/proj/mighttpd/en/

5.2.5 Happstack

Report by: Jeremy Shaw

Happstack is a diverse collection of libraries for creating
web applications in Haskell. Libraries include support
for type-safe routing, HTML templating, form valida-
tion, authentication and more.
In the last six months we have added two

new experimental packages: happstack-servant and
happstack-websockets. happstack-servant makes
it easy to use Happstack with the new servant frame-
work. happstack-websockets provides support for us-
ing websockets.

Further reading

◦ http://www.happstack.com/
◦ http://www.happstack.com/docs/crashcourse/index.html

5.2.6 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, Gabriel Gonzalez, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, stability,
and ease of use. The project’s goal is to be a cohesive
high-level platform for web development that leverages
the power and expressiveness of Haskell to make build-
ing websites quick and easy.
If you would like to contribute, get a question an-

swered, or just keep up with the latest activity, stop by
the #snapframework IRC channel on Freenode.

Further reading

◦ Snaplet Directory:
http://snapframework.com/snaplets

◦ http://snapframework.com

5.2.7 MFlow

Report by: Alberto Gómez Corona
Status: active development

MFlow is a Web framework of the kind of other func-
tional, stateful frameworks like WASH, Seaside, Ocsi-
gen or Racket. MFlow does not use continuation pass-
ing properly, but a backtracking monad that permits
the synchronization of browser and server and error
tracing. This monad is on top of another “Workflow”

19

http://www.yesodweb.com/
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://www.aosabook.org/en/posa/warp.html
http://www.mew.org/~kazu/proj/mighttpd/en/
http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://snapframework.com/snaplets
http://snapframework.com

monad that adds effects for logging and recovery of
process/session state. In addition, MFlow is RESTful.
Any GET page in the flow can be pointed to with a
REST URL.
The navigation as well as the page results are type

safe. Internal links are safe and generate GET re-
quests. POST request are generated when formlets
with form fields are used and submitted. It also imple-
ments monadic formlets: They can modify themselves
within a page. If JavaScript is enabled, the widget re-
freshes itself within the page. If not, the whole page is
refreshed to reflect the change of the widget.
MFlow hides the heterogeneous elements of a web ap-

plication and expose a clear, modular, type safe DSL
of applicative and monadic combinators to create from
multipage to single page applications. These combina-
tors, called widgets or enhanced formlets, pack together
javascript, HTML, CSS and the server code.
A paper describing the MFlow internals has been

published in The Monad Reader issue 23.

Further reading

◦ MFlow as a DSL for web applications https://www.
fpcomplete.com/school/to-infinity-and-beyond/
older-but-still-interesting/MFlowDSL1

◦ MFlow, a continuation-based web framework
without continuations http://themonadreader.
wordpress.com/2014/04/23/issue-23

◦ How Haskell can solve the integration problem
https://www.fpcomplete.com/school/
to-infinity-and-beyond/pick-of-the-week/
how-haskell-can-solve-the-integration-problem

◦ Towards a deeper integration: A Web language:
http://haskell-web.blogspot.com.es/2014/04/
towards-deeper-integration-web-language.html

◦ Perch https://github.com/agocorona/haste-perch
◦ hplayground demos http://tryplayg.herokuapp.com
◦ haste-perch-hplaygroun tutorial
http://www.airpair.com/haskell/posts/
haskell-tutorial-introduction-to-web-apps

◦ react.js a solution for a problem that Haskell can
solve in better ways
http://haskell-web.blogspot.com.es/2014/11/
browser-programming-reactjs-as-solution.html

◦ MFlow demo site: http://mflowdemo.herokuapp.com

5.2.8 JS Bridge

Report by: Tobias Dammers
Status: Proprietary, with tentative plans for a free

rewrite

For a recent project, we implemented a Haskell-
JavaScript bridge that allows us to drive JavaScript
functions running in a "real" server-side execution en-
vironment (node.js, phantomjs, or similar) while con-

trolling the JavaScript code from within the Haskell
host application using a monadic EDSL.
The use case for this was to simulate user interaction

against arbitrary websites in the wild, in order to check
these for compliance with various legal and other reg-
ulations. We did this by scripting a PhantomJS head-
less browser; the first version used JavaScript as the
scripting language directly, but this soon proved to be
cumbersome and brittle, so for the rewrite, we moved
as much of the code as possible to Haskell.
The solution works as follows. First, the program-

mer defines a set of "calls", JavaScript functions to
be called on the JavaScript side, by writing them in
plain JavaScript, along with a pair of ‘Request‘ and
‘Response‘ types that represent the function’s inputs
and outputs. Then, a bit of boilerplate is added
which generates a complete JavaScript script to run
in the execution environment, such that it starts up an
HTTP server that routes requests to the user-defined
JavaScript functions. On the Haskell side, the execu-
tion environment is started in a subprocess, and func-
tion calls are delegated to HTTP requests. This has the
added benefit of decoupling JavaScript asynchronous
calls from Haskell parallelism, i.e., we can run things se-
rially or in parallel on the Haskell side on a per-request
basis without worrying about what is and is not asyn-
chronous on the JavaScript side.
The final effect is that, once the wiring is in place,

we can write code like the following:

withPhantom $ \p -> do
openURL "http://www.google.com/" p
waitForPageLoadComplete p
injectClientSideScript clientScript p
searchBox <- findSearchBox p
setValue searchBox "cat pictures" p
btn <- findSearchButton p
clickOn btn p
searchResults <- take 10 <$>
getSearchResults p

forM_ searchResults $ \result -> do
liftIO $ print $
searchResultTitle result

Needless to say, this is a lot nicer than the equivalent
promises-ridden JavaScript code.
Since the library was written in an employment sit-

uation, and my employer has not agreed to releasing
under a free software license, it is unfortunately not
available to others; I do plan, however, to rewrite it
from scratch in my own time, provided there is suffi-
cient interest and/or a good use case on my side.

20

https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
http://themonadreader.wordpress.com/2014/04/23/issue-23
http://themonadreader.wordpress.com/2014/04/23/issue-23
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
https://github.com/agocorona/haste-perch
http://tryplayg.herokuapp.com
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://mflowdemo.herokuapp.com

5.2.9 PureScript

Report by: Phil Freeman
Status: active, looking for contributors

PureScript is a small strongly typed programming lan-
guage that compiles to efficient, readable JavaScript.
The PureScript compiler is written in Haskell.
The PureScript language features Haskell-like syn-

tax, type classes, rank-n types, extensible records and
extensible effects.
PureScript features a comprehensive standard li-

brary, and a large number of other libraries and tools
under development, covering data structures, algo-
rithms, Javascript integration, web services, game de-
velopment, testing, asynchronous programming, FRP,
graphics, audio, UI implementation, and many other
areas. It is easy to wrap existing Javascript function-
ality for use in PureScript, making PureScript a great
way to get started with strongly-typed pure functional
programming on the web. PureScript is currently used
successfully in production in commercial code.
The PureScript compiler can be downloaded from

purescript.org, or compiled from source from Hackage
or Stackage.

Further reading

https://github.com/purescript/purescript/

5.3 Haskell and Compiler Writing

5.3.1 MateVM

Report by: Bernhard Urban
Participants: Harald Steinlechner
Status: looking for new contributors

MateVM is a method-based Java Just-In-Time Com-
piler. That is, it compiles a method to native code on
demand (i.e. on the first invocation of a method). We
use existing libraries:

hs-java for processing Java Classfiles according to The
Java Virtual Machine Specification.

harpy enables runtime code generation for i686 ma-
chines in Haskell, in a domain specific language style.

We believe that Haskell is suitable to implement com-
piler technologies. However, we have to jump between
“Haskell world” and “native code world”, due to the
low-level nature of Just-In-Time compiler in a virtual
machine. This poses some challenges when it comes to
signal handling and other interesting rather low level
operations. Not immediately visible, the task turns out
to be well suited for Haskell although we experienced
some tensions with signal handling and GHCi. We are
looking forward to sharing our experience on this.
In the current state we are able to execute simple

Java programs. The compiler eliminates the JavaVM

stack via abstract interpretation, does a liveness anal-
ysis, linear scan register allocation and finally machine
code emission. The software architecture enables easy
addition of further optimization passes based on an in-
termediate representation.
Future plans are, to add an interpreter to gather pro-

file information for the compiler and also do more ag-
gressive optimizations (e.g. method inlining or stack
allocation). An interpreter can also be used to enable
speculation during compilation and, if such a specula-
tion fails, compiled code can deoptimize to the inter-
preter.
Apart from that, features are still missing to com-

ply as a JavaVM, most noteable are proper support for
classloaders, floating point operations or threads. We
would like to see a real base library such as GNU Class-
path or the JDK running with MateVM some day.
Other hot topics are Hoopl and Garbage Collection.
We are looking for new contributors! If you are

interested in this project, do not hesitate to join us on
IRC (#MateVM @ OFTC) or contact us on Github.

Further reading

◦ https://github.com/MateVM
◦ http://docs.oracle.com/javase/specs/jvms/se7/html/
◦ http://hackage.haskell.org/package/hs-java
◦ http://hackage.haskell.org/package/harpy
◦ http://www.gnu.org/software/classpath/
◦ http://hackage.haskell.org/package/hoopl-3.8.7.4
◦ http://en.wikipedia.org/wiki/Club-Mate

5.3.2 UUAG

Report by: Atze Dijkstra
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are
defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-

21

purescript.org
https://github.com/purescript/purescript/
https://github.com/MateVM
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://hackage.haskell.org/package/hs-java
http://hackage.haskell.org/package/harpy
http://www.gnu.org/software/classpath/
http://hackage.haskell.org/package/hoopl-3.8.7.4
http://en.wikipedia.org/wiki/Club-Mate

matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.3), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects.
The current version is 0.9.52.1 (January 2015), is
extensively tested, and is available on Hackage. There
is also a Cabal plugin for easy use of AG files in
Haskell projects.
We recently implemented the following enhance-

ments:

Evaluation scheduling. We have done a project to im-
prove the scheduling algorithms for AGs. The pre-
viously implemented algorithms for scheduling AG
computations did not fully satisfy our needs; the code
we write goes beyond the class of OAGs, but the al-
gorithm by Kennedy and Warren (1976) results in
an undesired increase of generated code due to non-
linear evaluation orders. However, because we know
that our code belongs to the class of linear orderable
AGs, we wanted to find and algorithm that can find
this linear order, and thus lies in between the two ex-
isting approaches. We have created a backtracking
algorithm for this which is currently implemented in
the UUAG (–aoag flag).
Another approach to this scheduling problem that we
implemented is the use of SAT-solvers. The schedul-
ing problem can be reduced to a SAT-formula and
efficiently solved by existing solvers. The advantage
is that this opens up possibilities for the user to influ-
ence the resulting schedule, for example by providing
a cost-function that should be minimized. We have
also implemented this approach in the UUAG which
uses Minisat as external SAT-solver (–loag flag).

We have recently worked on the following enhance-
ments:

Incremental evaluation. We have just finished a Ph.D.
project that investigated incremental evaluation of
AGs. The target of this work was to improve the
UUAG compiler by adding support for incremental
evaluation, for example by statically generating dif-
ferent evaluation orders based on changes in the in-
put. The project has lead to several publications,
but the result has not yet been implemented into the
UUAG compiler.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

22

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc

6 Development Tools

6.1 Environments

6.1.1 ghc-mod — Happy Haskell Programming

Report by: Daniel Gröber
Status: open source, actively developed

ghc-mod is both a backend program for enhancing edi-
tors and other kinds of development environments with
support for Haskell, and an Emacs package providing
the user facing functionality, internally called ghc for
historical reasons. Other people have also developed
numerous front ends for Vim and there also exist some
for Atom and a few other proprietary editors.

This summer’s two month ghc-mod hacking session
was mostly spent (finally) getting a release supporting
GHC 7.10 out the door as well as fixing bugs and adding
full support for the Stack build tool.

Since the last report the haskell-ide-engine (→ 6.1.2)
project has seen the light of day. There we are plan-
ning to adopt ghc-mod as a core component to use its
environment abstraction.

The haskell-ide-engine project itself is aiming to be
the central component of a unified Haskell Tooling
landscape.

In the light of this ghc-mod’s mission statement re-
mains the same but in the future it will be but one,
important, component in a larger ecosystem of Haskell
Tools.

We are looking forward to haskell-ide-engine making
the Haskell Tooling landscape a lot less fragmented.
However until this project produces meaningful results
life goes on and ghc-mod’s ecosystem needs to be main-
tained.

Right now ghc-mod has only one core developer and
a handful of occasional contributors. If you want to
help make Haskell development even more fun come
and join us!

Further reading

https://github.com/kazu-yamamoto/ghc-mod

6.1.2 haskell-ide-engine, a project for unifying IDE
functionality

Report by: Chris Allen
Participants: Alan Zimmerman, Moritz Kiefer, Michael

Sloan, Gracjan Polak, Daniel Gröber,
others welcome

Status: Open source, just beginning

haskell-ide-engine is a backend for driving the sort of
features programmers expect out of IDE environments.
haskell-ide-engine is a project to unify tooling efforts
into something different text editors, and indeed IDEs
as well, could use to avoid duplication of effort.

There is basic support for getting type information
and refactoring, more features including type errors,
linting and reformatting are planned. People who are
familiar with a particular part of the chain can fo-
cus their efforts there, knowing that the other parts
will be handled by other components of the back-
end. Integration for Emacs and Leksah is available
and should support the current features of the back-
end. haskell-ide-engine also has a REST API with
Swagger UI. Inspiration is being taken from the work
the Idris community has done toward an interactive
editing environment as well.

Help is very much needed and wanted so if this is
a problem that interests you, please pitch in! This is
not a project just for a small inner circle. Anyone who
wants to will be added to the project on github, address
your request to @alanz.

Further reading

◦ https://github.com/haskell/haskell-ide-engine
◦ https://mail.haskell.org/pipermail/haskell-cafe/

2015-October/121875.html
◦ https://www.fpcomplete.com/blog/2015/10/

new-haskell-ide-repo
◦ https://www.reddit.com/r/haskell/comments/

3pt560/ann_haskellide_project/
◦ https://www.reddit.com/r/haskell/comments/

3qbgmo/fp_complete_the_new_haskellide_repo/

23

https://github.com/kazu-yamamoto/ghc-mod
https://github.com/haskell/haskell-ide-engine
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/

6.1.3 Haskell IDE From FP Complete

Report by: Michael Snoyman
Status: available, stable

As of January of 2016, FP CompleteTM has decomis-
sioned FP Haskell Center (FPHC) in favor of other
tooling. Specifically:
◦ School of Haskell (→ 2.2) continues to live on as an
independent, open source project

◦ The underlying package set which was available in
FP Haskell Center lives on via the Stackage project
(→ 6.3.3) as LTS Haskell

◦ For reliable and user-friendly builds, we have shifted
development focus towards the Stack build tool (→
6.3.2)

Further reading

◦ https://www.fpcomplete.com
◦ https://www.schoolofhaskell.com
◦ http://haskellstack.com
◦ https://www.stackage.org
◦ https://github.com/fpco/ide-backend

6.1.4 HaRe — The Haskell Refactorer

Report by: Alan Zimmerman
Participants: Francisco Soares, Chris Brown, Stephen

Adams, Huiqing Li, Matthew Pickering,
Gracjan Polak

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactor-
ings in Haskell. The HaRe tool is now in its seventh
major release. HaRe supports full Haskell 2010, and
is integrated with (X)Emacs. All the refactorings that
HaRe supports, including renaming, scope change, gen-
eralization and a number of others, are module-aware,
so that a change will be reflected in all the modules
in a project, rather than just in the module where the
change is initiated.
Snapshots of HaRe are available from our GitHub

repository (see below) and Hackage. There are re-
lated presentations and publications from the group
(including LDTA’05, TFP’05, SCAM’06, PEPM’08,
PEPM’10, TFP’10, Huiqing’s PhD thesis and Chris’s
PhD thesis). The final report for the project appears
on the University of Kent Refactoring Functional Pro-
grams page (see below).

There is also a Google+ community called HaRe, a
Google Group called https://groups.google.com/forum/
#!forum/hare and an IRC channel on freenode called
#haskell-refactorer. IRC is the preferred contact
method.
Current version of HaRe supports 7.10.2 and work is

continuing to support GHC version 8.x forward. The
new version makes use of ghc-exactprint (→ 6.1.5) li-
brary, which only has GHC support from GHC 7.10.2
onwards.
Development on the core HaRe is focusing is on mak-

ing sure that deficiencies identified in the API Anno-
tations in GHC used by ghc-exactprint are removed in
time for GHC 8.0.1, so that the identity refactoring can
cover more of the corner cases.
There is also a new haskell-ide project which will

allow HaRe to operate as a plugin and will ease its
integration into multiple IDEs.

Recent developments

◦ The current version is 8.2, which supports GHC
7.10.2 only, and was released in October 2015.

◦ Matthew Pickering has been deeply involved in the
ghc-exactprint development, and successfully com-
pleted his Google Summer of Code project which in-
volved bringing it up to standard, which has helped
tremendously for HaRe.

◦ There is plenty to do, so anyone who has an interest
is welcome to fork the repo and get stuck in.

◦ Stephen Adams is continuing his PhD at the Univer-
sity of Kent and will be working on data refactoring
in Haskell.

Further reading

◦ http://www.cs.kent.ac.uk/projects/refactor-fp/
◦ https://github.com/RefactoringTools/HaRe
◦ https://github.com/alanz/ghc-exactprint
◦ http://mpickering.github.io/gsoc2015.html
◦ https://github.com/haskell/haskell-ide

6.1.5 ghc-exactprint

Report by: Matthew Pickering
Participants: Alan Zimmerman
Status: Active, Experimental

ghc-exactprint aims to be a low-level foundation for
refactoring tools. Unlike most refactoring tools, it
works directly with the GHC API which means that
it can understand any legal Haskell source file.
The program works in two phases. The first phase

takes the output from the parser and converts all ab-
solute source positions into relative source positions.
This means that it is much easier to manipulate the
AST as you do not have to worry about updating ir-
relevant parts of your program. The second phase per-
forms the reverse process, it converts relative source

24

https://www.fpcomplete.com
https://www.schoolofhaskell.com
http://haskellstack.com
https://www.stackage.org
https://github.com/fpco/ide-backend
https://groups.google.com/forum/#!forum/hare
https://groups.google.com/forum/#!forum/hare
http://www.cs.kent.ac.uk/projects/refactor-fp/
https://github.com/RefactoringTools/HaRe
https://github.com/alanz/ghc-exactprint
http://mpickering.github.io/gsoc2015.html
https://github.com/haskell/haskell-ide

positions back into absolute positions before printing
the source file. The entire library is based around a free
monad which keeps track of which annotations should
be where. Each process is then a different interpreta-
tion of this structure.

In theory these two processes should be entirely sepa-
rate but at the moment they are not entirely decoupled
due to shortcomings we are addressing in GHC 8.0.

In order to verify our foundations, the program has
been run on every source file on Hackage. This testing
highlighted a number of bugs which have been fixed
for GHC 7.10.2. Apart from a few outstanding issues
with very rare cases, we can now confidently say that
ghc-exactprint is capable of processing any Haskell
source file.

Over the last few months Alan Zimmerman has in-
tegrated ghc-exactprint into HaRe(→ 6.1.4) whilst
Matthew Pickering participated in Google Summer of
Code to provide integration with HLint.

Both of these proceeded smoothly, and are now work-
ing.

ghc-exactprint has also been used for a proof of
concept tool to migrate code forward for AMP and
MRP, see link below.

Alan Zimmerman also presented ghc-exactprint at
HIW2015, and Matthew Pickering at SkillsMatter in
October. Links to the respective videos are provided
below.

Further reading

◦ https://github.com/alanz/ghc-exactprint
◦ https://github.com/hvr/Hs2010To201x
◦ https://www.youtube.com/watch?v=U5_9mfQAUBo

- HIW2015
◦ https://skillsmatter.com/skillscasts/

6539-a-new-foundation-for-refactoring-ghc-exactprint
- Skills Matter, (free) registration required

6.1.6 Haskino

Report by: Andrew Gill
Participants: Mark Grebe
Status: active

Haskino is a Haskell development environment for
programming the Arduino microcontroller boards in a
high level functional language instead of the low level
C language normally used.
This work started with Levent Erkök’s hArduino

package. The original version of Haskino, extended
hArduino by applying the concepts of the strong re-
mote monad design pattern to provide a more efficient
way of communicating, and generalizing the controls
over the remote execution. In addition, it added a deep
embedding, control structures, an expression language,
and a redesigned firmware interpreter to enable stan-
dalone software for the Arduino to be developed using
the full power of Haskell.
The current version of Haskino continues to build

on this work. Haskino is now able to directly gener-
ate C programs from our Arduino Monad. This allows
the same monadic program to be quickly developed
and prototyped with the interpreter, then compiled to
C for more efficient operation. In addition, we have
added scheduling capability with lightweight threads
and semaphores for inter-thread synchronization.
The development has been active over the past year.

A paper was published at PADL 2016 for original ver-
sion, and there is a paper accepted for presentation at
TFP 2016 for the new scheduled and compiled version.

Further reading

◦ https://github.com/ku-fpg/haskino
◦ https://github.com/ku-fpg/wiki

25

https://github.com/alanz/ghc-exactprint
https://github.com/hvr/Hs2010To201x
https://www.youtube.com/watch?v=U5_9mfQAUBo
https://skillsmatter.com/skillscasts/6539-a-new-foundation-for-refactoring-ghc-exactprint
https://skillsmatter.com/skillscasts/6539-a-new-foundation-for-refactoring-ghc-exactprint
https://github.com/ku-fpg/haskino
https://github.com/ku-fpg/wiki

6.1.7 IHaskell: Haskell for Interactive Computing

Report by: Andrew Gibiansky
Status: stable

IHaskell is an interactive interface for Haskell develop-
ment. It provides a notebook interface (in the style of
Mathematica or Maple). The notebook interface runs
in a browser and provides the user with editable cells
in which they can create and execute code. The output
of this code is displayed in a rich format right below,
and if it’s not quite right, the user can go back, edit the
cell, and re-execute. This rich format defaults to the
same boring plain-text output as GHCi would give you;
however, library authors will be able to define their own
formats for displaying their data structures in a useful
way, with the only limit being that the display output
must be viewable in a browser (images, HTML, CSS,
Javascript). For instance, integration with graphing li-
braries yields in-browser data visualizations, while inte-
gration with Aeson’s JSON yields a syntax-highlighted
JSON output for complex data structures.

Implementation-wise, IHaskell is a language kernel
backend for the Jupyter project, a language-agnostic
protocol and set of frontends by which interactive code
environments such as REPLs and notebooks can com-
municate with a language evaluator backend. IHaskell
also provides a generic library for writing Jupyter ker-
nels, which has been used successfully in the ICryptol
project.

Integration with popular Haskell libraries can give
us beautiful and potentially interactive visualizations
of Haskell data structures. On one hand, this could
range from simple things such as foldable record struc-
tures — imagine being able to explore complex nested
records by folding and unfolding bits and pieces at a
time, instead of trying to mentally parse them from the
GHCi output. On the other end, we have interactive
outputs, such as Parsec parsers which generate small
input boxes that run the parser on any input they’re
given. And these things are just the beginning — tight
integration with IPython may eventually be able to
provide things such as code-folding in your REPL or
an integrated debugger interface.

Further reading

https://github.com/gibiansky/IHaskell

26

https://github.com/gibiansky/IHaskell

6.1.8 Haskell for Mac

Report by: Manuel M. T. Chakravarty
Status: Available & actively developed

Haskell for Mac is an easy-to-use integrated program-
ming environment for Haskell on OS X. It includes its
own Haskell distribution and requires no further set up.
It features interactive Haskell playgrounds to explore
and experiment with code. Playground code is not
only type-checked, but also executed while you type,
which leads to a fast turn around during debugging or
experimenting with new code.
Integrated environment. Haskell for Mac inte-

grates everything needed to start writing Haskell code,
including an editor with syntax highlighting and smart
identifier completion. Haskell for Mac creates Haskell
projects based on standard Cabal specifications for
compatibility with the rest of the Haskell ecosystem.
It includes the Glasgow Haskell Compiler (GHC) and
over 200 of the most popular packages of LTS Haskell
package sets. Matching command line tools and extra
packages can be installed, too.
Type directed development. Haskell for Mac

uses GHC’s support for deferred type errors so that
you can still execute playground code in the face of
type errors. This is convenient during refactoring to
test changes, while some code still hasn’t been adapted
to new signatures. Moreover, you can use type holes to
stub out missing pieces of code, while still being able
to run code. The system will also report the types ex-
pected for holes and the types of the available bindings.
Interactive HTML, graphics & animation.

Haskell for Mac comes with support for web program-
ming, network programming, graphics programming,
animations, and much more. Interactively generate
web pages, charts, animations, or even games (with
the OS X SpriteKit support). Graphics are also live
and change as you modify the program code.
Haskell for Mac is made for beginners and experts

alike. The continuous feedback of interactive Haskell
playgrounds is ideal for learning functional program-
ming. At the same time, Haskell playgrounds provide

the ideal environment for experts to quickly experiment
with new ideas and to iterate on prototype code.

Haskell for Mac is available for purchase from the
Mac App Store. Just search for "Haskell", or visit our
website for a direct link. We are always available for
questions or feedback at support@haskellformac.com.
The current version of Haskell for Mac is based on

GHC 7.10.3 and LTS Haskell 5.9. Haskell for Mac
tracks new GHC and LTS Haskell releases with a bias
towards stability and ease of use.

Further reading

The Haskell for Mac website: http://haskellformac.com

6.2 Code Management

6.2.1 Darcs

Report by: Guillaume Hoffmann
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
One year, two sprints and 440 patches after the

2.10 release, we have released Darcs 2.12 (April
2016). This new major release includes the new
darcs show dependencies command (for exporting
the patch dependencies graph of a repository to the
Graphviz format), improvements for Git import, and
improvements to darcs whatsnew to facilitate support
of Darcs by third-party version control front ends.

27

support@haskellformac.com
http://haskellformac.com

SFC and donations Darcs is free software licensed un-
der the GNU GPL (version 2 or greater). Darcs is a
proud member of the Software Freedom Conservancy,
a US tax-exempt 501(c)(3) organization. We accept
donations at http://darcs.net/donations.html.

Further reading

◦ http://darcs.net
◦ http://darcs.net/Releases/2.12

6.2.2 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg and cabal.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.
cab now supports Cabal version 23 and cab delete

got safer on Windows.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.3 Deployment

6.3.1 Cabal

Report by: Mikhail Glushenkov
Status: Stable, actively developed

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent Progress

We’ve just released versions 1.24 of Cabal and
cabal-install. 1.24 incorporates more than a thou-
sand commits by 89 different contributors. Main user-
visible changes in this release are:

◦ Nix-style local builds in cabal-install (so far only
a technical preview). See this post by Edward Z.
Yang for more details.

◦ Integration of a new security scheme for Hackage
based on The Update Framework. So far this is
not enabled by default, pending some changes on
the Hackage side. See these three posts by Edsko
de Vries and Duncan Coutts for more information.

◦ Support for specifying setup script dependencies in
.cabal files. See this post by Duncan Coutts for
more information.

◦ Support for HTTPS downloads in cabal-install.
HTTPS is now used by default for downloads from
Hackage.

◦ cabal upload learned how to upload documentation
to Hackage (cabal upload --doc).

◦ In related news, cabal haddock now can generate
documentation intended for uploading to Hackage
(cabal haddock --for-hackage). cabal upload
--doc runs this command automatically if the docu-
mentation for current package wasn’t generated yet.

◦ New cabal-install command: gen-bounds. See
here for more information.

◦ It’s now possible to limit the scope of
--allow-newer to single packages in the in-
stall plan, both on the command line and in the
config file. See here for an example.

◦ New cabal user-config subcommand: init,
which creates a default ~/.cabal/config file.

◦ New config file field: extra-framework-dirs (extra
locations to find OS X frameworks in).

◦ cabal-install solver now takes information about
extensions and language flavours into account.

◦ New cabal-install option: --offline, which pre-
vents cabal-install from downloading anything
from the Internet.

◦ New cabal upload option -P/--password-command
for reading Hackage password from arbitrary pro-
gram output.

◦ Support for GHC 8 (NB: old versions of Cabal won’t
work with this version of GHC).

Full list of changes in Cabal 1.24 is available here;
full list of changes in cabal-install 1.24 is available
here.

28

http://darcs.net/donations.html
http://darcs.net
http://darcs.net/Releases/2.12
http://www.mew.org/~kazu/proj/cab/en/
https://gist.github.com/23Skidoo/62544d7e0352037749eec7344788831c
http://blog.ezyang.com/2016/05/announcing-cabal-new-build-nix-style-local-builds/
https://theupdateframework.github.io/
http://www.well-typed.com/blog/2015/08/hackage-security-beta/
http://www.well-typed.com/blog/2015/07/hackage-security-alpha/
http://www.well-typed.com/blog/2015/04/improving-hackage-security/
http://www.well-typed.com/blog/2015/07/cabal-setup-deps/
http://softwaresimply.blogspot.se/2015/08/cabal-gen-bounds-easy-generation-of.html
https://github.com/haskell/cabal/issues/2756
https://github.com/haskell/cabal/pull/2873
https://github.com/haskell/cabal/pull/2873
https://github.com/haskell/cabal/pull/2578
https://github.com/haskell/cabal/pull/2506
http://hackage.haskell.org/package/Cabal-1.24.0.0/changelog
http://hackage.haskell.org/package/cabal-install-1.24.0.0/changelog

Looking Forward

We plan to make a new release of Ca-
bal/cabal-install approximately 6 months after
1.24 – that is, in late October or early November 2016.
Main features that are currently targeted at 1.26 are:

◦ Further work on nix-style local builds, perhaps mak-
ing that code path the default.

◦ Enabling Hackage Security by default.

◦ Native suport for “foreign libraries”: Haskell libraries
that are intended to be used by non-Haskell code.

◦ New Parsec-based parser for .cabal files.

We would like to encourage people considering con-
tributing to take a look at the bug tracker on GitHub,
take part in discussions on tickets and pull requests, or
submit their own. The bug tracker is reasonably well
maintained and it should be relatively clear to new con-
tributors what is in need of attention and which tasks
are considered relatively easy. For more in-depth dis-
cussion there is also the cabal-devel mailing list.

Further reading

◦ Cabal homepage: https://www.haskell.org/cabal/
◦ Cabal on GitHub: https://github.com/haskell/cabal

6.3.2 The Stack build tool

Report by: Emanuel Borsboom
Status: stable

Stack is a modern, cross-platform build tool for Haskell
code. It is intended for Haskellers both new and expe-
rienced.
Stack handles the management of your toolchain (in-

cluding GHC - the Glasgow Haskell Compiler - and,
for Windows users, MSYS), building and registering
libraries, building build tool dependencies, and more.
While it can use existing tools on your system, Stack
has the capacity to be your one-stop shop for all Haskell
tooling you need.
The primary design point is reproducible builds. If

you run stack build today, you should get the same
result running stack build tomorrow. There are some
cases that can break that rule (changes in your oper-
ating system configuration, for example), but, overall,
Stack follows this design philosophy closely. To make
this a simple process, Stack uses curated package sets
called snapshots.
Stack has also been designed from the ground up to

be user friendly, with an intuitive, discoverable com-
mand line interface.

Since its first release in June 2015, many people are
using it as their primary Haskell build tool, both com-
mercially and as hobbyists. New features and refine-
ments are continually being added, with regular new
releases.
Binaries and installers/packages are available for

common operating systems to make it easy to get
started. Download it at http://haskellstack.org/.

Further reading

http://haskellstack.org/

6.3.3 Stackage: the Library Dependency Solution

Report by: Michael Snoyman
Status: new

Stackage began in November 2012 with the mission
of making it possible to build stable, vetted sets of
packages. The overall goal was to make the Cabal
experience better. Two years into the project, a lot
of progress has been made and now it includes both
Stackage and the Stackage Server. To date, there are
over 1900 packages available in Stackage. The official
site is https://www.stackage.org.
The Stackage project consists of many different com-

ponents, linked to from the Stackage Github reposi-
tory https://github.com/fpco/stackage#readme. These
include:
◦ Stackage Nightly, a daily build of the Stackage pack-

age set
◦ LTS Haskell, which provides major-version compati-

bility for a package set over a longer period of time
◦ Stackage Server, which runs on stackage.org and

provides browsable docs, reverse dependencies, and
other metadata on packages

◦ Stackage Curator, a tool for running the various
builds
The Stackage package set has first-class support in

the Stack build tool (→ 6.3.2). There is also support
for cabal-install via cabal.config files, e.g. https://www.
stackage.org/lts/cabal.config.
There are dozens of individual maintainers for pack-

ages in Stackage. Overall Stackage curation is han-
dled by the “Stackage curator” team, which consists of
Michael Snoyman, Adam Bergmark, Dan Burton, and
Jens Petersen.
Stackage provides a well-tested set of packages

for end users to develop on, a rigorous continuous-
integration system for the package ecosystem, some ba-
sic guidelines to package authors on minimal package
compatibility, and even a testing ground for new ver-
sions of GHC. Stackage has helped encourage package

29

https://github.com/haskell/cabal/pull/2540
https://github.com/haskell/cabal/issues/
https://mail.haskell.org/mailman/listinfo/cabal-devel
https://www.haskell.org/cabal/
https://github.com/haskell/cabal
http://haskellstack.org/
http://haskellstack.org/
https://www.stackage.org
https://github.com/fpco/stackage#readme
https://www.stackage.org/lts/cabal.config
https://www.stackage.org/lts/cabal.config

authors to keep compatibility with a wider range of de-
pendencies as well, benefiting not just Stackage users,
but Haskell developers in general.
If you’ve written some code that you’re actively

maintaining, don’t hesitate to get it in Stackage. You’ll
be widening the potential audience of users for your
code by getting your package into Stackage, and you’ll
get some helpful feedback from the automated builds
so that users can more reliably build your code.

6.3.4 Haskell Cloud

Report by: Gideon Sireling

Haskell Cloud is an OpenShift cartridge for deploy-
ing Haskell on Red Hat’s open source PaaS cloud. It
includes GHC 7.10, cabal-install, Gold linker, and a
choice of pre-installed frameworks - a full list can be
viewed on the Wiki.
Using a Haskell Cloud cartridge, existing Haskell

projects can be uploaded, build, and run from the cloud
with minimal changes. Ongoing development is focused
on OpenShift v3 and GCH 8.

Further reading
◦ https://bitbucket.org/accursoft/haskell-cloud
◦ http://www.haskell.org/haskellwiki/Web/Cloud#OpenShift
◦ https://blog.openshift.com/

functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/

6.4 Others

6.4.1 ghc-heap-view

Report by: Joachim Breitner
Participants: Dennis Felsing
Status: active development

The library ghc-heap-view provides means to inspect
the GHC’s heap and analyze the actual layout of
Haskell objects in memory. This allows you to inves-
tigate memory consumption, sharing and lazy evalua-
tion.
This means that the actual layout of Haskell objects

in memory can be analyzed. You can investigate shar-
ing as well as lazy evaluation using ghc-heap-view.
The package also provides the GHCi command

:printHeap, which is similar to the debuggers’ :print
command but is able to show more closures and their
sharing behaviour:

> let x = cycle [True, False]
> :printHeap x
_bco
> head x
True
> :printHeap x
let x1 = True : _thunk x1 [False]
in x1
> take 3 x

[True,False,True]
> :printHeap x
let x1 = True : False : x1
in x1

The graphical tool ghc-vis (→ 6.4.2) builds on ghc-
heap-view.
Since version 0.5.3, ghc-heap-view also supports

GHC 7.8.

Further reading

◦ http://www.joachim-breitner.de/blog/archives/
548-ghc-heap-view-Complete-referential-opacity.html

◦ http://www.joachim-breitner.de/blog/archives/
580-GHCi-integration-for-GHC.HeapView.html

◦ http://www.joachim-breitner.de/blog/archives/
590-Evaluation-State-Assertions-in-Haskell.html

6.4.2 ghc-vis

Report by: Joachim Breitner
Status: active development

The tool ghc-vis visualizes live Haskell data structures
in GHCi. Since it does not force the evaluation of the
values under inspection it is possible to see Haskell’s
lazy evaluation and sharing in action while you interact
with the data.
Ghc-vis supports two styles: A linear rendering sim-

ilar to GHCi’s :print, and a graph-based view where
closures in memory are nodes and pointers between
them are edges. In the following GHCi session a par-
tially evaluated list of fibonacci numbers is visualized:

> let f = 0 : 1 : zipWith (+) f (tail f)
> f !! 2
> :view f

30

https://bitbucket.org/accursoft/haskell-cloud
http://www.haskell.org/haskellwiki/Web/Cloud#OpenShift
https://blog.openshift.com/functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/
https://blog.openshift.com/functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html

At this point the visualization can be used interac-
tively: To evaluate a thunk, simply click on it and im-
mediately see the effects. You can even evaluate thunks
which are normally not reachable by regular Haskell
code.
Ghc-vis can also be used as a library and in combi-

nation with GHCi’s debugger.

Further reading

http://felsin9.de/nnis/ghc-vis

6.4.3 Hat — the Haskell Tracer

Report by: Olaf Chitil

Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.
Hat helps locating errors in programs. Furthermore,

it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.
You trace a program with Hat by following these

steps:

1. With hat-trans translate all the source modules of
your Haskell program into tracing versions. Compile
and link (including the Hat library) these tracing ver-
sions with ghc as normal.

2. Run the program. It does exactly the same as the
original program except for additionally writing a
trace to file.

3. After the program has terminated, view the trace
with a tool. Hat comes with several tools for se-
lectively viewing fragments of the trace in different
ways: hat-observe for Hood-like observations, hat-
trail for exploring a computation backwards, hat-
explore for freely stepping through a computation,
hat-detect for algorithmic debugging, . . .

Hat is distributed as a package on Hackage that con-
tains all Hat tools and tracing versions of standard li-
braries. Hat works with the Glasgow Haskell compiler
for Haskell programs that are written in Haskell 98 plus
a few language extensions such as multi-parameter type
classes and functional dependencies. Note that all mod-
ules of a traced program have to be transformed, in-
cluding trusted libraries (transformed in trusted mode).
For portability all viewing tools have a textual inter-
face; however, many tools require an ANSI terminal
and thus run on Unix / Linux / OS X, but not on
Windows.

In the longer term we intend to transfer the
lightweight tracing technology that we use in Hoed also
to Hat.

Further reading

◦ Initial website: http://projects.haskell.org/hat
◦ Hackage package:

http://hackage.haskell.org/package/hat

6.4.4 Tasty

Report by: Roman Cheplyaka
Participants: Michael LaCorte, Sergey Vinokurov, and

many others
Status: actively maintained

Tasty is a modern testing framework for Haskell. As
of May 2015, 230 hackage packages use Tasty for their
tests. We’ve heard from several companies that use
Tasty to test their Haskell software.

What’s new since the last HCAR?

◦ Tasty now sets the number of parallel running tests
equal to the number of available capabilities (i.e. the
number set by -N) by default. As always, that can
be changed with -j.

◦ Printing test results on Windows used to be slow,
but now it’s fast!

◦ Tasty-HUnit now has a new function,
testCaseSteps, which lets you annotate a multi-
step unit test. Here’s an example:
main =
defaultMain $
testCaseSteps "Multi-step test" $
\step -> do

step "Step 1"
-- do something

step "Step 2"
-- do something else

As a reminder from the last HCAR, Tasty-HUnit no
longer uses the original HUnit package; instead it
reimplements the relelvant subset of its API.

◦ The way Tasty-Golden works internally has
changed. There are a few consequences (see the
CHANGELOG for details); an interesting one is
that you can now update golden files in parallel.
Also, if a golden file doesn’t exist, it will be created
automatically. You’ll see a message like
UnboxedTuples: OK (0.04s)
Golden file did not exist; created

This is convenient when adding new tests.

Further reading

◦ For more information about Tasty and how to use
it, please consult the README at

31

http://felsin9.de/nnis/ghc-vis
http://projects.haskell.org/hat
http://hackage.haskell.org/package/hat

http://bit.ly/tasty-home
◦ Tasty has a mailing list http://bit.ly/tasty-ml and
an IRC channel (#tasty on FreeNode), where you
can get help with Tasty.

6.4.5 Generic random generators

Report by: Li-yao Xia
Status: Experimental, active development

The generic-random library automatically derives ran-
dom generators for most datatypes. It can be used in
testing for example, in particular to define instances of
QuickCheck’s Arbitrary.
These generators are called Boltzmann samplers, as

introduced by Duchon et al. (2004). They produce fi-
nite values of a given type and about a given size (the
number of constructors) in linear time. And the distri-
bution is uniform when conditioned to a fixed size: two
values with the same size occur with the same proba-
bility.

Future work

The implementation is currently focused on Haskell
datatypes, even though the theory of Boltzmann sam-
plers is much more general than that. I plan to gener-
alize the code to make it reusable in other frameworks
and applications, as well as to provide better customiz-
ability.
I may also look for solutions to handle types that do

not fit Boltzmann models.
The user experience is of course important, and I will

be thinking about ways to present and document the
library that can be understood by people who are not
combinatorics wizards.

Further reading

◦ Boltzmann Samplers for the Random Generation of
Combinatorial Structures P. Duchon, P. Flajolet, G.
Louchard, G. Schaeffer.
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf

◦ http://hackage.haskell.org/package/generic-random

6.4.6 Automatic type inference from JSON

Report by: Michal J. Gajda
Status: stable

This rapid software development tool json-autotype
interprets JSON data and converts them into Haskell
module with data type declarations.

$ json-autotype input.json -o JSONTypes.hs

The generated declarations use automatically de-
rived Aeson class instances to read and write data di-
rectly from/to JSON strings, and facilitate interaction
with growing number of large JSON APIs.

Generated parser can be immediately tested on an
input data:

$ runghc JSONTypes.hs input.json

The software can be installed directly from Hackage.
It uses sophisticated union type unification, and ro-

bustly interprets most ambiguities using clever typing.
The tool has reached maturity this year, and thanks

to automated testing procedures it seems to robustly
infer types for all JSON inputs considered valid by Ae-
son.
The author welcomes comments and suggestions at
〈mjgajda@gmail.com〉.

Further reading

http://hackage.haskell.org/packages/json-autotype

6.4.7 Exference

Report by: Lennart Spitzner
Status: experimental, active development

Exference is a tool aimed at supporting developers writ-
ing Haskell code by generating expressions from a type,
e.g.
Input:

(Show b) => (a -> b) -> [a] -> [String]

Output:

\ f1 -> fmap (show . f1)

Input:

(Monad m, Monad n)
=> ([a] -> b -> c) -> m [n a] -> m (n b)
-> m (n c)

Output:

\ f1 -> liftA2 (\ hs i ->
liftA2 (\ n os -> f1 os n) i (sequenceA hs))

The algorithm does a proof search specialized to the
Haskell type system. In contrast to Djinn, the well
known tool with the same general purpose, Exference
supports a larger subset of the Haskell type system -
most prominently type classes. The cost of this feature
is that Exference makes no promise regarding termi-
nation (because the problem becomes an undecidable
one; a draft of a proof can be found in the pdf below).
Of course the implementation applies a time-out.
There are two primary use-cases for Exference:
◦ In combination with typed holes: The programmer

can insert typed holes into the source code, retrieve
the expected type from ghc and forward this type to
Exference. If a solution, i.e. an expression, is found
and if it has the right semantics, it can be used to
fill the typed hole.

32

http://bit.ly/tasty-home
http://bit.ly/tasty-ml
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf
http://hackage.haskell.org/package/generic-random
https://github.com/mgajda/json-autotype
mailto: mjgajda at gmail.com
http://hackage.haskell.org/packages/json-autotype

◦ As a type-class-aware search engine. For example,
Exference is able to answer queries such as Int →
Float, where the common search engines like hoogle
or hayoo are not of much use.
Since the last HCAR, development has slowed down

but continued. Additions include minor optimizations,
support for type declarations, improvements to the in-
terface (simplifications of the expression, etc.) and ex-
pansion of the default environment.
Try it out by on IRC(freenode): exferenceBot is in

#haskell and #exference.

Further reading

◦ https://github.com/lspitzner/exference
◦ https://github.com/lspitzner/exference/raw/master/

exference.pdf

6.4.8 Lentil

Report by: Francesco Ariis
Status: working

Lentil helps the programmers who litter their code with
TODOs and FIXMEs.
Lentil goes through a project and outputs all issues

in a pretty format, referencing their file/line position.
As today it recognises Haskell, Javascript, C/C++,
Python, Ruby, Pascal, Perl, Shell and Nix source files,
plus plain .txt files.
Lentil syntax allows you to put [tag]s in your issues,

which can then be used to filter/extract/export data.
Current version is 0.1.12.0, which introduces new

flag-words, recognised languages (html, elm, coffee-
script, typescript) and export formats (xml).

Further reading
◦ manual: http://ariis.it/static/articles/lentil/page.html
◦ decentralised issue tracking:

http://ariis.it/static/articles/decentralised-lentil/page.html

6.4.9 Hoed – The Lightweight Algorithmic
Debugger for Haskell

Report by: Maarten Faddegon
Status: active

Hoed is a lightweight algorithmic debugger that is prac-
tical to use for real-world programs because it works
with any Haskell run-time system and does not require
trusted libraries to be transformed.
To locate a defect with Hoed you annotate suspected

functions and compile as usual. Then you run your
program, information about the annotated functions is
collected. Finally you connect to a debugging session
using a webbrowser.

Using Hoed

Let us consider the following program, a defective im-
plementation of a parity function with a test property.

isOdd :: Int -> Bool
isOdd n = isEven (plusOne n)

isEven :: Int -> Bool
isEven n = mod2 n == 0

plusOne :: Int -> Int
plusOne n = n + 1

mod2 :: Int -> Int
mod2 n = div n 2

prop_isOdd :: Int -> Bool
prop_isOdd x = isOdd (2*x+1)

main :: IO ()
main = printO (prop_isOdd 1)

main :: IO ()
main = quickcheck prop_isOdd

Using the property-based test tool QuickCheck we
find the counter example 1 for our property.

./MyProgram
*** Failed! Falsifiable (after 1 test): 1

Hoed can help us determine which function is de-
fective. We annotate the functions isOdd, isEven,
plusOne and mod2 as follows:

import Debug.Hoed.Pure

isOdd :: Int -> Bool
isOdd = observe "isOdd" isOdd’
isOdd’ n = isEven (plusOne n)

isEven :: Int -> Bool
isEven = observe "isEven" isEven’
isEven’ n = mod2 n == 0

plusOne :: Int -> Int
plusOne = observe "plusOne" plusOne’
plusOne’ n = n + 1

mod2 :: Int -> Int
mod2 = observe "mod2" mod2’
mod2’ n = div n 2

prop_isOdd :: Int -> Bool
prop_isOdd x = isOdd (2*x+1)

main :: IO ()
main = printO (prop_isOdd 1)

And run our program:

33

https://github.com/lspitzner/exference
https://github.com/lspitzner/exference/raw/master/exference.pdf
https://github.com/lspitzner/exference/raw/master/exference.pdf
http://ariis.it/static/articles/lentil/page.html
http://ariis.it/static/articles/decentralised-lentil/page.html

./MyProgram
False
Listening on http://127.0.0.1:10000/

Now you can use your webbrowser to interact with
Hoed.

There is a classic algorithmic debugging interface in
which you are shown computation statements, these are
function applications and their result, and are asked to
judge if these are correct. After judging enough com-
putation statements the algorithmic debugger tells you
where the defect is in your code.

In the explore mode, you can also freely browse the
tree of computation statements to get a better un-
derstanding of your program. The observe mode is
inspired by HOOD and gives a list of computation
statements. Using regular expressions this list can be
searched. Algorithmic debugging normally starts at
the top of the tree, e.g. the application of isOdd to
(2*x+1) in the program above, using explore or ob-
serve mode a different starting point can be chosen.

To reduce the number of questions the programmer
has to answer, we added a new mode Assisted Algo-
rithmic Debugging in version 0.3.5 of Hoed. In this
mode (QuickCheck) properties already present in pro-
gram code for property-based testing can be used to
automatically judge computation statements

Further reading

◦ http://wiki.haskell.org/Hoed
◦ http://hackage.haskell.org/package/Hoed

6.4.10 Déjà Fu: Concurrency Testing

Report by: Michael Walker
Status: actively developed

Déjà Fu is a concurrency testing tool for Haskell. It
provides a typeclass abstraction over a large subset of
the functionality in the Control.Concurrent module hi-
erarchy, and makes use of testing techniques pioneered
in the imperative and object-oriented worlds.
The testing trades completeness for speed, by bound-

ing the number of preemptions and yields in a single
execution, as well as the overall length. This also al-
lows testing of potentially non-terminating programs.
All of these bounds are optional, however, and can be
disabled, or changed.
A brief list of supported functionality:

◦ Threads: the forkIO* and forkOn* functions, al-
though bound threads are not supported.

◦ Getting and setting capablities (testing default is
two).

◦ Yielding and delaying.

◦ Mutable state: STM, MVar, and IORef.

◦ Relaxed memory for IORef operations: total store
order (the testing default) and partial store order.

◦ Atomic compare-and-swap for IORef.

◦ Exceptions.

◦ All of the data structures in Control.Concurrent.*
and Control.Concurrent.STM.* have typeclass-
abstracted equivalents.

This is quite a rich set of functionality, although it is
not complete. If there is something else you need, file
an issue!
A new release, dejafu-0.3, has recently been pushed

to Hackage. This fixes a number of bugs and greatly
improves the performance. The main remaining in-
efficiency is the handling of asynchronous exceptions,
which is likely to be a focus of work for the next release.
No large API changes are anticipated, however.

Further reading

◦ http://hackage.haskell.org/package/dejafu
◦ The 2015 Haskell Symposium paper is available at

http://bit.ly/1N2Lkw4; and a more up-to-date
technical report is available at
http://bit.ly/1SMHx4U.

◦ There are a number of blog posts on the
functionality and implementation at
https://www.barrucadu.co.uk.

34

http://wiki.haskell.org/Hoed
http://hackage.haskell.org/package/Hoed
http://hackage.haskell.org/package/dejafu
http://bit.ly/1N2Lkw4
http://bit.ly/1SMHx4U
https://www.barrucadu.co.uk

6.4.11 The Remote Monad Design Pattern

Report by: Andrew Gill
Participants: Justin Dawson, Mark Grebe, James

Stanton, David Young
Status: active

The remote monad design pattern is a way of mak-
ing Remote Procedure Calls (RPCs), and other calls
that leave the Haskell eco-system, considerably less ex-
pensive. The idea is that, rather than directly call a re-
mote procedure, we instead give the remote procedure
call a service-specific monadic type, and invoke the re-
mote procedure call using a monadic “send” function.
Specifically, a remote monad is a monad that has its
evaluation function in a remote location, outside the
local runtime system.
By factoring the RPC into sending invocation and

service name, we can group together procedure calls,
and amortize the cost of the remote call. To give an
example, Blank Canvas, our library for remotely access-
ing the JavaScript HTML5 Canvas, has a send func-
tion, lineWidth and strokeStyle services, and our
remote monad is called Canvas:

send :: Device -> Canvas a -> IO a
lineWidth :: Double -> Canvas ()
strokeStyle :: Text -> Canvas ()

If we wanted to change the (remote) line width, the
lineWidth RPC can be invoked by combining send and
lineWidth:

send device (lineWidth 10)

Likewise, if we wanted to change the (remote) stroke
color, the strokeStyle RPC can be invoked by com-
bining send and strokeStyle:

send device (strokeStyle "red")

The key idea is that remote monadic commands can
be locally combined before sending them to a remote
server. For example:

send device (lineWidth 10 >> strokeStyle "red")

The complication is that, in general, monadic com-
mands can return a result, which may be used by sub-
sequent commands. For example, if we add a monadic
command that returns a Boolean,

isPointInPath :: (Double,Double) -> Canvas Bool

we could use the result as follows:

send device $ do
inside <- isPointInPath (0,0)
lineWidth (if inside then 10 else 2)
...

The invocation of send can also return a value:

do res <- send device (isPointInPath (0,0))
...

Thus, while the monadic commands inside send are
executed in a remote location, the results of those ex-
ecutions need to be made available for use locally.
We had a paper in the 2015 Haskell Symposium that

discusses these ideas in more detail, and more recently,
we have improved the packet mechanism to include an
analog of the applicate monad structure, allowing for
even better bundling. We have also improved the error
handling capabilities. These ideas are implemented up
in the hackage package remote-monad, which captures
the pattern, and automatically bundled the monadic
requests.

Further reading

http://ku-fpg.github.io/practice/remotemonad

35

http://ku-fpg.github.io/practice/remotemonad

7 Libraries, Applications, Projects

7.1 Language Features

7.1.1 Conduit

Report by: Michael Snoyman
Status: stable

While lazy I/O has served the Haskell community well
for many purposes in the past, it is not a panacea.
The inherent non-determinism with regard to resource
management can cause problems in such situations as
file serving from a high traffic web server, where the
bottleneck is the number of file descriptors available to
a process.
The left fold enumerator was one of the first ap-

proaches to dealing with streaming data without us-
ing lazy I/O. While it is certainly a workable solution,
it requires a certain inversion of control to be applied
to code. Additionally, many people have found the
concept daunting. Most importantly for our purposes,
certain kinds of operations, such as interleaving data
sources and sinks, are prohibitively difficult under that
model.
The conduit package was designed as an alternate

approach to the same problem. The root of our simplifi-
cation is removing one of the constraints in the enumer-
ator approach. In order to guarantee proper resource
finalization, the data source must always maintain the
flow of execution in a program. This can lead to con-
fusing code in many cases. In conduit, we separate out
guaranteed resource finalization as its own component,
namely the ResourceT transformer.
Once this transformation is in place, data produc-

ers, consumers, and transformers (known as Sources,
Sinks, and Conduits, respectively) can each maintain
control of their own execution, and pass off control via
coroutines. The user need not deal directly with any
of this low-level plumbing; a simple monadic interface
(inspired greatly by the pipes package) is sufficient for
almost all use cases.
Since its initial release, conduit has been through

many design iterations, all the while keeping to its ini-
tial core principles. The conduit API has remained sta-
ble on version 1.2, which includes a lot of work around
performance optimizations, including a stream fusion
implementation to allow much more optimized runs for
some forms of pipelines, and the codensity transform
to provide better behavior of monadic bind.
Additionally, much work has gone into

conduit-combinators and streaming-commons.
The former provides a "batteries included" approach

to conduit, containing a wide array of common func-
tionality for both chunked data (like ByteString, Text,
and Vector) and unchunked data. The latter contains
common functionality useful to most streaming data
frameworks, made available so that other libraries in
this solution space can share a common code base.
There is a rich ecosystem of libraries available to

be used with conduit, including cryptography, network
communications, serialization, XML processing, and
more.
Many conduit libraries are available via Hackage,

Stackage Nightly, and LTS Haskell (just search for the
word conduit). The main repository includes a tutorial
on using the package.

Further reading

◦ https://www.stackage.org/package/conduit
◦ https://github.com/snoyberg/conduit#readme
◦ http://hackage.haskell.org/packages/archive/pkg-list.

html#cat:conduit

7.1.2 GHC type-checker plugin for kind Nat

Report by: Christiaan Baaij
Status: actively developed

As of GHC version 7.10, GHC’s type checking and in-
ference mechanisms can be enriched by plugins. This
particular plugin enriches GHC’s knowledge of arith-
metic on the type-level. Specifically it allows the
compiler to reason about equalities of types of kind
GHC.TypeLits.Nat.
GHC’s type-checker’s knowledge of arithmetic is vir-

tually non-existent: it doesn’t know addition is associa-
tive and commutative, that multiplication distributes
over addition, etc. In a dependently-typed language,
or in Haskell using singleton types, one can provide
proofs for these properties and use them to type-check
programs that depend on these properties in order to
be (type-)correct. However, most of these properties of
arithmetic over natural number are elementary school
level knowledge, and it is cumbersome and tiresome to
keep on providing and proving them manually. This
type-checker plugin adds the knowledge of these prop-
erties to GHC’s type-checker.
For example, using this plugin, GHC now knows

that:

(x + 2)^(y + 2)

is equal to:

4*x*(2 + x)^y + 4*(2 + x)^y + (2 + x)^y*x^2

36

https://www.stackage.org/package/conduit
https://github.com/snoyberg/conduit#readme
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit

The way that the plugin works, is that it nor-
malises arithmetic expressions to a normal form that
very much resembles Cantor normal form for ordi-
nals(http://en.wikipedia.org/wiki/Ordinal_arithmetic#
Cantor_normal_form). Subsequently, it perform a
simple syntactic equality of the two expressions.
Indeed, in the example above, the latter expression is
the normal form of the former expression.
The main test suite for the plugin can

be found at: https://github.com/christiaanb/
ghc-typelits-natnormalise/blob/master/tests/Tests.hs.
It demonstrates what kind of correct code can be
written without type equality annotations, or the use
of unsafeCoerce.
One important aspect of this plugin is that it only

enriches the type checker’s knowledge of equalities, but
not inequalities. That is, it does not allow GHC to
solve constraints such as:

CmpNat (x + 2) (x + 3) ~ ’LT

The plugin is available on hackage, for GHC version
7.10 and higher:

$ cabal update
$ cabal install ghc-typelits-natnormalise

What’s new since last HCAR:

◦ Support for interacting with other type-checker
plugins, the first being http://hackage.haskell.org/
package/ghc-typelits-extra.

◦ Prove more equalities (http://hackage.haskell.org/
package/ghc-typelits-natnormalise-0.3.2/changelog).

Development focus for the plugin is on: proving more
equalities, further testing, and improving its test suite.

Further reading

◦ http://hackage.haskell.org/package/
ghc-typelits-natnormalise

◦ http://hackage.haskell.org/package/base/docs/
GHC-TypeLits.html

7.1.3 Dependent Haskell

Report by: Richard Eisenberg
Status: work in progress

I am working on an ambitious update to GHC that will
bring full dependent types to the language. In GHC 8,
the Core language and type inference have already been
updated according to the description in our ICFP’13
paper [1]. Accordingly, all type-level constructs are
simultaneously kind-level constructs, as there is no dis-
tinction between types and kinds. Specifically, GADTs
and type families are promotable to kinds. At this

point, I conjecture that any construct writable in those
other dependently-typed languages will be expressible
in Haskell through the use of singletons.
After this phase, I will embark on working a proper

Π-binder into the language, much along the lines of
Adam Gundry’s thesis on the topic [2]. Having Π would
give us “proper” dependent types, and there would be
no more need for singletons. A sampling of what I
hope is possible when this work is done is online [3],
excerpted here:

data Vec :: ∗ → Integer→ ∗ where
Nil :: Vec a 0
(:::) :: a → Vec a n → Vec a (1 ’+ n)

replicate :: π n. ∀a. a → Vec a n
replicate @0 = Nil
replicate x = x ::: replicate x

Of course, the design here (especially for the proper de-
pendent types) is preliminary, and input is encouraged.

Further reading

◦ [1]: System FC with Explicit Kind Equality, by
Stephanie Weirich, Justin Hsu, and Richard
A. Eisenberg. ICFP ’13. http://www.cis.upenn.edu/
~eir/papers/2013/fckinds/fckinds.pdf

◦ [2]: Type Inference, Haskell and Dependent Types,
by Adam Gundry. PhD Thesis, 2013.
https://personal.cis.strath.ac.uk/adam.gundry/thesis/

◦ [3]: https://github.com/goldfirere/nyc-hug-oct2014/
blob/master/Tomorrow.hs

◦ Haskell Implementors’ Workshop 2014 presentation
on Dependent Haskell. Slides:
http://www.cis.upenn.edu/~eir/talks/2014/
hiw-dependent-haskell.pdf; Video:
https://www.youtube.com/watch?v=O805YjOsQjI

◦ Repo for presentation on Dependent Haskell at the
NYC Haskell Users’ Group:
https://github.com/goldfirere/nyc-hug-oct2014

◦ Wiki page with elements of the design: https:
//ghc.haskell.org/trac/ghc/wiki/DependentHaskell

7.1.4 Yampa

Report by: Ivan Perez

Yampa (Github: http://git.io/vTvxQ, Hackage:
http://goo.gl/JGwycF), is a Functional Reactive Pro-
gramming implementation in the form of a EDSL to de-
fine Signal Functions, that is, transformations of input
signals into output signals (aka. behaviours in other
FRP dialects).
Yampa systems are defined as combinations of Signal

Functions. The core of Yampa includes combinators to
create constant signals, apply pointwise (or time-wise)
functions to signals, access the running time of a signal

37

http://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
http://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
https://github.com/christiaanb/ghc-typelits-natnormalise/blob/master/tests/Tests.hs
https://github.com/christiaanb/ghc-typelits-natnormalise/blob/master/tests/Tests.hs
http://hackage.haskell.org/package/ghc-typelits-extra
http://hackage.haskell.org/package/ghc-typelits-extra
http://hackage.haskell.org/package/ghc-typelits-natnormalise-0.3.2/changelog
http://hackage.haskell.org/package/ghc-typelits-natnormalise-0.3.2/changelog
http://hackage.haskell.org/package/ghc-typelits-natnormalise
http://hackage.haskell.org/package/ghc-typelits-natnormalise
http://hackage.haskell.org/package/base/docs/GHC-TypeLits.html
http://hackage.haskell.org/package/base/docs/GHC-TypeLits.html
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
https://personal.cis.strath.ac.uk/adam.gundry/thesis/
https://github.com/goldfirere/nyc-hug-oct2014/blob/master/Tomorrow.hs
https://github.com/goldfirere/nyc-hug-oct2014/blob/master/Tomorrow.hs
http://www.cis.upenn.edu/~eir/talks/2014/hiw-dependent-haskell.pdf
http://www.cis.upenn.edu/~eir/talks/2014/hiw-dependent-haskell.pdf
https://www.youtube.com/watch?v=O805YjOsQjI
https://github.com/goldfirere/nyc-hug-oct2014
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell
http://git.io/vTvxQ
http://goo.gl/JGwycF

function, introduce delays and create loopbacks (car-
rying present output as future input). These systems
can also be dynamic: their structure can change by
using switching combinators, which enable the applica-
tion of a different signal function at some point in the
execution. Combined with combinators to deal with
signal function collections, this enables a form of dy-
namic FRP in which new signals can be introduced,
frozen, unfrozen, removed and altered at will.
Yampa is designed to guarantee causality: the value

of an output signal at a time t can only depend on
values of input signals at times [0, t]. Yampa restricts
access to other signals only to the immediate past, by
letting signals functions carry state for the future. FRP
signal functions implement the Arrow and ArrowLoop
typeclasses, making it possible to use both the arrow
notation and arrow combinators. A suitable thinking
model for FRP in Yampa is that of signal processing,
in which components (signal functions) transform sig-
nals based on their present value and the component’s
internal state. Components can be serialized, applied
in parallel, etc.
Unlike other implementations of FRP, Yampa en-

forces a strict separation of effects and pure transforma-
tions. All IO code must exist outside the Signal Func-
tions, making Yampa systems easier to reason about
and debug.
Yampa has been used to create both free/open-

source and commercial games. Examples of the former
include Frag (http://goo.gl/8bfSmz), a basic reimple-
mentation of the Quake III Arena engine in Haskell,
and Haskanoid (http://git.io/v8eq3), an arkanoid
game featuring SDL graphics and sound with Wiimote
& Kinect support. Examples of the latter include Keera
Studios’ Magic Cookies! (https://goo.gl/0A8z6i), a
board game for Android written in Haskell and avali-
able via Google Play for Android store.

Yampa is actively maitained. The last updates have
focused on introducing documentation, structuring the
code, eliminating legacy code superceeded by other
Haskell libraries, and increasing code quality in gen-
eral. Over the years, performance in FRP has been an
active topic of discussion and Yampa has been heav-
ily optimised (games like Haskanoid have been clocked

at over 700 frames per second on a standard PC).
Also, because Yampa is pure, the introduction of paral-
lelism is straightforward. In future versions, the bench-
marking package criterion will be used to evaluate
and increase performance. We encourage all Haskellers
to participate by opening issues on our Github page
(http://git.io/vTvxQ), adding improvements, creating
tutorials and examples, and using Yampa in their next
amazing Haskell games.
Extensions to Arrowized Functional Reactive Pro-

gramming are an active research topic. The Functional
Programming Laboratory at the University of Notting-
ham is working on several extensions to make Yampa
more general and modular, facilitate other uses cases,
increase performance and work around existing limita-
tions. To collaborate with our research on FRP, please
contact Ivan Perez at and Henrik Nilsson at .

7.2 Education

7.2.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).
In November 2010, Gerben Verburg started to

reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, which has been presented at
CSERC’13, and should become available in the ACM
Digital Library.
The tool will be made available through Hackage at

some point, but before that happens it can already be
obtained on request from Jurriaan Hage.

Contact

〈J.Hage@uu.nl〉

38

http://goo.gl/8bfSmz
http://git.io/v8eq3
https://goo.gl/0A8z6i
http://git.io/vTvxQ
mailto:ixp\protect \unhbox \voidb@x \hbox {\protect \protect \begingroup \def \MessageBreak {
(scrreprt) }\let \protect \immediate\write \@unused {
Class scrreprt Warning: Usage of deprecated font command `\tt'!\MessageBreak You should note, that in 1994 font command `\tt' has\MessageBreak been defined for compatiblitiy to Script 2.0 only.\MessageBreak Now, after two decades of LaTeX2e and NFSS2, you\MessageBreak shouldn't use such commands any longer and within\MessageBreak KOMA-Script usage of `\tt' is definitely deprecated.\MessageBreak See `fntguide.pdf' for more information about\MessageBreak recommended font commands.\MessageBreak Note also, that KOMA-Script will remove the definition\MessageBreak of `\tt' anytime until release of about version 3.20.\MessageBreak But for now, KOMA-Script will replace deprecated `\tt'\MessageBreak by `\normalfont \ttfamily ' on input line 8384.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}ixp}cs.nott.ac.uk
mailto:nhn\protect \unhbox \voidb@x \hbox {\protect \protect \begingroup \def \MessageBreak {
(scrreprt) }\let \protect \immediate\write \@unused {
Class scrreprt Warning: Usage of deprecated font command `\tt'!\MessageBreak You should note, that in 1994 font command `\tt' has\MessageBreak been defined for compatiblitiy to Script 2.0 only.\MessageBreak Now, after two decades of LaTeX2e and NFSS2, you\MessageBreak shouldn't use such commands any longer and within\MessageBreak KOMA-Script usage of `\tt' is definitely deprecated.\MessageBreak See `fntguide.pdf' for more information about\MessageBreak recommended font commands.\MessageBreak Note also, that KOMA-Script will remove the definition\MessageBreak of `\tt' anytime until release of about version 3.20.\MessageBreak But for now, KOMA-Script will replace deprecated `\tt'\MessageBreak by `\normalfont \ttfamily ' on input line 8385.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}nhn}cs.nott.ac.uk
mailto: J.Hage at uu.nl

7.2.2 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Johan Jeuring, Alex Gerdes, Josje Lodder,

Hieke Keuning, Ivica Milovanovic
Status: experimental, active development

Ideas (Interactive Domain-specific Exercise Assis-
tants) is a joint research project between the Open
University of the Netherlands and Utrecht University.
The project’s goal is to use software and compiler tech-
nology to build state-of-the-art components for intelli-
gent tutoring systems (ITS) and learning environments.
The ‘ideas’ software package provides a generic frame-
work for constructing the expert knowledge module
(also known as a domain reasoner) for an ITS or learn-
ing environment. Domain knowledge is offered as a
set of feedback services that are used by external tools
such as the digital mathematical environment (first/left
screenshot), MathDox, and the Math-Bridge system.
We have developed several domain reasoners based on
this framework, including reasoners for mathematics,
linear algebra, logic, learning Haskell (the Ask-Elle pro-
gramming tutor) and evaluating Haskell expressions,
and for practicing communication skills (the serious
game Communicate!, second/right screenshot).

We have continued working on the domain reason-
ers that are used by our programming tutors. The
Ask-Elle functional programming tutor lets you prac-
tice introductory functional programming exercises in
Haskell. We have extended this tutor with QuickCheck
properties for testing the correctness of student pro-
grams, and for the generation of counterexamples. We
have analysed the usage of the tutor to find out how
many student submissions are correctly diagnosed as
right or wrong. Tim Olmer has developed a tutor in
which a student can practice with evaluating Haskell
expressions. Finally, Hieke Keuning has developed a
programming tutor for imperative programming.

We are continuing our research in various directions.
We are investigating feedback generation for axiomatic
proofs for propositional logic, and are planning to add
this to our logic tutor. We have just started on a statis-
tics tutor. We also want to add student models to
our framework and use these to make the tutors more
adaptive, and develop authoring tools to simplify the
creation of domain reasoners.
The library for developing domain reasoners with

feedback services is available as a Cabal source pack-
age. In the near future we will update this package
to work for ghc-7.10. We have written a tutorial on
how to make your own domain reasoner with this li-
brary. We have also released our domain reasoner for
mathematics and logic as a separate package.

Further reading

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive
Exercises. Mathematics in Computer Science,
3(3):349–370, 2010.

◦ Bastiaan Heeren and Johan Jeuring. Feedback
services for stepwise exercises. Science of Computer
Programming, Special Issue on Software
Development Concerns in the e-Learning Domain,
volume 88, 110–129, 2014.

◦ Tim Olmer, Bastiaan Heeren, Johan Jeuring.
Evaluating Haskell expressions in a tutoring
environment. Trends in Functional Programming in
Education 2014.

◦ Hieke Keuning, Bastiaan Heeren, Johan Jeuring.
Strategy-based feedback in a programming tutor.
Computer Science Education Research Conference
(CSERC 2014).

◦ Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and
Thomas Binsbergen. Ask-Elle: an Adaptable

39

http://ideas.cs.uu.nl/www
http://hackage.haskell.org/package/ideas
http://www.projects.science.uu.nl/communicate/
http://ideas.cs.uu.nl/FPTutor/
http://ideas.cs.uu.nl/HEE/
http://ideas.cs.uu.nl/HEE/
http://ideas.cs.uu.nl/logex
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/tutorial
http://hackage.haskell.org/package/ideas-math
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/HEE.html
http://www.open.ou.nl/bhr/HEE.html
http://www.open.ou.nl/bhr/FeedbackIPTutor.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AskElle2016.html

Programming Tutor for Haskell Giving Automated
Feedback. Journal of Artificial Intelligence in
Education 2016.

7.2.3 The Incredible Proof Machine

Report by: Joachim Breitner
Status: active development

The Incredible Proof Machine is a visual interactive
theorem prover: Create proofs of theorems in proposi-
tional, predicate or other, custom defined logics simply
by placing blocks on a canvas and connecting them.
You can think of it as Simulink mangled by the Curry-
Howard isomorphism.
It is also an addictive and puzzling game, I have been

told.

The Incredible Proof Machine runs completely in
your browser. While the UI is (unfortunately) bor-
ing standard JavaScript code with a spagetthi flavor,
all the logical heavy lifting is done with Haskell, and
compiled using GHCJS.

Further reading

◦ http://incredible.nomeata.de The Incredible Proof
Machine

◦ https://github.com/nomeata/incredible Source Code
◦ http://www.joachim-breitner.de/blog/682-The_
Incredible_Proof_Machine Announcement blog post

7.3 Mathematics, Numerical Packages and
High Performance Computing

7.3.1 hblas

Report by: Carter Tazio Schonwald
Participants: Stephen Diehl and Csernik Flaviu Andrei
Status: Actively Developed

hblas is high level, easy to extend BLAS/LAPACK
FFI Binding for Haskell.
hblas has several attributes that in aggregate distin-

guish it from alternative BLAS/LAPACK bindings for
Haskell.

1. Zero configuration install

2. FFI wrappers are written in Haskell

3. Provides the fully generality of each supported
BLAS/LAPACK routine, in a type safe wrapper that
still follows the naming conventions of BLAS and
LAPACK.

4. Designed to be easy to extend with further bindings
to BLAS/LAPACK routines (because there are many
many specialized routines!)

5. Adaptively choses between unsafe vs safe foreign
calls based upon estimated runtime of a computa-
tion, to ensure that long running hblas ffi calls in-
teract safely with the GHC runtime and the rest of
an application.

6. hblas is not an end user library, but is designed to
easily interop with any array library that supports
storable vectors.

Further reading

◦ http://www.wellposed.com
◦ http://www.github.com/wellposed/hblas
◦ http://hackage.haskell.org/package/hblas

7.3.2 Numerical

Report by: Carter Tazio Schonwald
Status: actively developed

The Numerical project, starting with the numerical
package, has the goal of providing a general purpose
numerical computing substrate for Haskell.
To start with, the numerical provides an extensible

set of type classes suitable for both dense and sparse
multi dimensional arrays, high level combinators for
writing good locality code, and some basic matrix com-
putation routines that work on both dense and sparse
matrix formats.
The core Numerical packages, including numerical,

are now in public pre-alpha as of mid May 2014, with
on going active work as of November 2014.
Development of the numerical packages is public on

github, and as they stabilize, alpha releases are being
made available on hackage.

Further reading

◦ http://www.wellposed.com
◦ http://www.github.com/wellposed/numerical
◦ http://hackage.haskell.org/package/numerical

40

http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://incredible.nomeata.de
https://github.com/nomeata/incredible
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine
http://www.wellposed.com
http://www.github.com/wellposed/hblas
http://hackage.haskell.org/package/hblas
http://www.wellposed.com
http://www.github.com/wellposed/numerical
http://hackage.haskell.org/package/numerical

7.3.3 combinat

Report by: Balázs Kőműves
Status: actively developed

The combinat package is a broad-reaching combina-
torics library. It provides functions to generate, ma-
nipulate, count and visualize various combinatorial ob-
jects, for example: trees, partitions, compositions, lat-
tice paths, power series, permutations, braids, Young
tableaux, and so on.
There is ASCII visualization for most structures,

which makes it convenient to work in GHCi, and also
graphviz and/or diagrams for some of them (the lat-
ter ones in a separate package).
Development is mostly done in short bursts, based

mainly on the current (always changing) interests of
the author.

Further reading
◦ http://hackage.haskell.org/package/combinat
◦ http://hackage.haskell.org/package/combinat-diagrams

7.3.4 petsc-hs

Report by: Marco Zocca
Status: experimental, actively developed

PETSc (http://www.mcs.anl.gov/petsc/) is an exten-
sive C library for scientific computation. It provides a
unified interface to distributed datastructures and algo-
rithms for parallel solution of numerical problems, e.g.
(non-)linear equation systems, time integration of dy-
namical systems, nonlinear (constrained) optimization.
It is built upon MPI but abstracts it “out of sight”;
however the API lets advanced users interleave compu-
tation and communication in order to experiment with
resource usage and performance.
Many applications using PETSc are concerned with

the solution of discretized PDEs for modelling physical
phenomena, but the numerical primitives offered can
be applied in many other contexts as well.
The aim of petsc-hs is to provide a compositional,

type- and memory-safe way to interact with this library.
The bindings are based on inline-c (https://hackage.
haskell.org/package/inline-c) for quick experimentation
with the C side.
Development of petsc-hs is public on github as of

October 2015.
At present (November 2015), bindings for most of the

basic functionality are available, memory pointers have
been made lexically scoped and rudimentary exception
handling is in place; the library is dynamically linked
and can be tested with GHCi.
The immediate development plans are to move out of

the experimental phase: currently the effort is concen-
trated on representing distributed mutable array oper-
ations and overall giving the library a more declarative
interface while at the same time encapsulating the C

version’s best programming practices. Once this will
be in place, a number of example PETSc programs will
be provided and the API will be specialized to various
use cases. Due to the multidisciplinary nature of this
work, contributions, comments and test cases are more
than welcome.

Further reading

https://github.com/ocramz/petsc-hs

7.4 Data Types and Data Structures

7.4.1 Transactional Trie

Report by: Michael Schröder
Status: stable

The transactional trie is a contention-free hash map for
Software Transactional Memory (STM). It is based on
the lock-free concurrent hash trie.
“Contention-free” means that it will never cause spu-

rious conflicts between STM transactions operating on
different elements of the map at the same time. Com-
pared to simply putting a HashMap into a TVar, it is
up to 8x faster and uses 10x less memory.

Further reading

◦ http://hackage.haskell.org/package/ttrie
◦ http://github.com/mcschroeder/thesis, in particular

chapter 3, which includes a detailed discussion of
the transactional trie’s design and implementation,
its limitations, and an evaluation of its performance.

7.4.2 fixplate

Report by: Balázs Kőműves
Status: experimental

The fixplate package is a re-implementation of Neil
Mitchell’s uniplate generic programming library, to
work on data types realized as fixed points of functors
(as opposed to plain recursive data types). It turns
out that Functor, Foldable and Traversable instances are
enough for this style of generic programming.
The original motivation for this exercise was the abil-

ity to add extra data to the nodes of an existing tree,
motivated by attribute grammars. Recursion schemes
also fit here very well, though they are less powerful.
Apart from the standard traversals, the library also

provides a generic zipper, generic tries, generic tree
hashing, a generic expression pretty-printer and generic
tree visualization. The library itself is fully Haskell98-
compatible, though some GHC extensions can make it
more convenient to use.

Further reading

http://hackage.haskell.org/package/fixplate

41

http://hackage.haskell.org/package/combinat
http://hackage.haskell.org/package/combinat-diagrams
http://www.mcs.anl.gov/petsc/
https://hackage.haskell.org/package/inline-c
https://hackage.haskell.org/package/inline-c
https://github.com/ocramz/petsc-hs
http://hackage.haskell.org/package/ttrie
http://github.com/mcschroeder/thesis
http://hackage.haskell.org/package/fixplate

7.4.3 generics-sop

Report by: Andres Löh
Participants: Andres Löh, Edsko de Vries

The generics-sop (“sop” is for “sum of products”)
package is a library for datatype-generic program-
ming in Haskell, in the spirit of GHC’s built-in
DeriveGeneric construct and the generic-deriving
package.
Datatypes are represented using a structurally iso-

morphic representation that can be used to define
functions that work automatically for a large class of
datatypes (comparisons, traversals, translations, and
more). In contrast with the previously existing li-
braries, generics-sop does not use the full power
of current GHC type system extensions to model
datatypes as an n-ary sum (choice) between the con-
structors, and the arguments of each constructor as
an n-ary product (sequence, i. e., heterogeneous lists).
The library comes with several powerful combinators
that work on n-ary sums and products, allowing to de-
fine generic functions in a very concise and composi-
tional style.
The current release is 0.2.0.0.
A paper and a somewhat more recent, slightly longer,

tutorial covering type-level programming as well as the
use of this library, are available.

Further reading

◦ generics-sop package:
https://hackage.haskell.org/package/generics-sop/

◦ Tutorial (summer school lecture notes):
https://github.com/kosmikus/SSGEP/

◦ Paper:
http://www.andres-loeh.de/TrueSumsOfProducts/

7.5 Databases and Related Tools

7.5.1 Persistent

Report by: Greg Weber
Participants: Michael Snoyman, Felipe Lessa
Status: stable

The last HCAR announcement was for the release of
Persistent 2.0, featuring a flexible primary key type.
Since then, persistent has mostly experienced bug

fixes, including recent fixes and increased backend sup-
port for the new flexible primary key type.
Haskell has many different database bindings avail-

able, but most provide few usefeul static guarantees.
Persistent uses knowledge of the data schema to pro-
vide a type-safe interface to the database. Persistent is
designed to work across different databases, currently
working on Sqlite, PostgreSQL, MongoDB, MySQL,
Redis, and ZooKeeper.
Persistent provides a high-level query interface that

works against all backends.

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones"] []

The result of this will be a list of Haskell records.
Persistent can also be used to write type-safe query

libraries that are specific. esqueleto is a library for writ-
ing arbitrary SQL queries that is built on Persistent.

Future plans

Persistent is in a stable, feature complete state. Future
plans are only to increase its ease the places where it
can be easitly used:
◦ Declaring a schema separately from a record, pos-

sibly leveraging GHC’s new annotations feature or
another pattern
Persistent users may also be interested in Ground-

hog, a similar project.
Persistent is recommended to Yesod (→ 5.2.2) users.

However, there is nothing particular to Yesod or even
web development about it. You can have a type-safe,
productive way to store data for any kind of Haskell
project.

Further reading

◦ http://www.yesodweb.com/book/persistent
◦ http://hackage.haskell.org/package/esqueleto
◦ http://www.yesodweb.com/blog/2014/09/persistent-2
◦ http://www.yesodweb.com/blog/2014/08/

announcing-persistent-2

7.5.2 Riak bindings

Report by: Antonio Nikishaev
Status: active development

riak is a Haskell binding to the Riak database. While
stable and working, it has had only riak-1.∗ sup-
port. The author of this report entry has been re-
cently working on fixing bugs and adding new riak-2.∗
features. Notable ones are: bucket types, high-level
CRDT (Conflict-free replicated data types) support,
basic search operations.

Further reading

◦ http://hackage.haskell.org/package/riak
◦ https://github.com/markhibberd/riak-haskell-client

42

https://hackage.haskell.org/package/generics-sop/
https://github.com/kosmikus/SSGEP/
http://www.andres-loeh.de/TrueSumsOfProducts/
http://www.yesodweb.com/book/persistent
http://hackage.haskell.org/package/esqueleto
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2
http://hackage.haskell.org/package/riak
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
http://hackage.haskell.org/package/riak
https://github.com/markhibberd/riak-haskell-client

7.5.3 Opaleye

Report by: Tom Ellis
Status: stable, active

Opaleye is an open-source library which provides an
SQL-generating embedded domain specific language. It
allows SQL queries to be written within Haskell in a
typesafe and composable fashion, with clear semantics.
The project was publically released in December

2014. It is stable and actively maintained, and used in
production in a number of commercial environments.
Professional support is provided by Purely Agile.
Just like Haskell, Opaleye takes the principles of type

safety, composability and semantics very seriously, and
one aim for Opaleye is to be “the Haskell” of relational
query languages.
In order to provide the best user experience and to

avoid compatibility issues, Opaleye specifically targets
PostgreSQL. It would be straightforward produce an
adaptation of Opaleye targeting other popular SQL
databases such as MySQL, SQL Server, Oracle and
SQLite. Offers of collaboration on such projects would
be most welcome.
Opaleye is inspired by theoretical work by David Spi-

vak, and by practical work by the HaskellDB team. In-
deed in many ways Opaleye can be seen as a spiritual
successor to HaskellDB. Opaleye takes many ideas from
the latter but is more flexible and has clearer semantics.

Further reading

http://hackage.haskell.org/package/opaleye

7.5.4 HLINQ - LINQ for Haskell

Report by: Mantas Markevicius
Participants: Mike Dodds, Jason Reich
Status: Experimental

HLINQ is a Haskell implementation of the LINQ
database query framework [1] modelled on Cheney et
al’s T-LINQ system for F# [2]. Database queries
in HLINQ are written in a syntax close to standard
Haskell do notation:

Queries can be composed using Template Haskell
splicing operators, while type-safety rules provide ad-
ditional correctness guarantees. Additionally, HLINQ
is built on the HDBC library and uses prepared SQL
statements protecting it against most SQL injection
type attacks. Furthermore queries are avalanche-safe,
meaning that for any query only a single SQL state-
ment will be generated. Our system is in prototype
stage, but microbenchmarks show performance com-
petitive with HaskellDB.

The project is hosted on GitHub [3], with a technical
report planned soon.

Further reading

1. Microsoft LINQ: https:
//msdn.microsoft.com/en-us/library/bb397926.aspx

2. Cheney, James, Sam Lindley, and Philip Wadler.
"A practical theory of language-integrated query."
ACM SIGPLAN Notices. Vol. 48. No. 9. ACM,
2013.

3. https://github.com/juventietis/HLINQ

7.5.5 YeshQL

Report by: Tobias Dammers
Status: Active, usable, somewhat stable

YeshQL is a library to bridge the Haskell / SQL gap by
implementing a quasi-quoter that allows programmers
to write SQL queries in plain SQL, adding metainfor-
mation as structured SQL comments. The latter al-
lows the quasi-quoter to generate a type-safe API for
these queries. YeshQL uses HDBC for the database
backends, but doesn’t depend on any particular HDBC
driver.
The approach was stolen from the YesQL library for

Clojure, and adapted to be more idiomatic in Haskell.
An example code snippet might look like this:

withTransaction db $ \conn -> do
pageID:_ <- [yesh1|

-- :: (Integer)
-- :title:Text
-- :body:Text
INSERT INTO pages (title, body)
VALUES (:title, :body)
RETURNING id
|]
conn title body

[yesh1|
-- :: Integer
INSERT
INTO page_owners (page_id, owner_id)
VALUES (:pageID, :userID)
|]
conn pageID currentUserID

return pageID

YeshQL is somewhat production ready; I have used it
on several real-world projects, with good success. How-
ever, it is still a bit rough around some edges, to note:
◦ While results are type safe, YeshQL can currently

only generate query functions that return (lists of)
tuples (for SELECT queries), row counts (UPDATE,
INSERT, DELETE), or row IDs (INSERT). I would
like to extend it such that the query functions can au-
tomatically convert entire rows to typed values other
than tuples.

43

http://hackage.haskell.org/package/opaleye
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://github.com/juventietis/HLINQ

◦ A way of marking queries as “intended to return only
one row” is currently missing. Such a feature would
change the return type of a SELECT query from a
list to a Maybe, or throw an exception when no row
was found.

◦ Parser errors could use some love, and the parser
could be made more robust overall.
All that said, contributions of any kind are more than

welcome.

Further reading

◦ https://bitbucket.org/tdammers/yeshql
◦ http://hackage.haskell.org/package/yeshql
◦ https://github.com/krisajenkins/yesql (not my work)

7.6 User Interfaces

7.6.1 HsQML

Report by: Robin KAY
Status: active development

HsQML provides access to a modern graphical user
interface toolkit by way of a binding to the cross-
platform Qt Quick framework.
The library focuses on mechanisms for marshalling

data between Haskell and Qt’s domain-specific QML
language. The intention is that QML, which incorpo-
rates both a declarative syntax and JavaScript code,
can be used to design and animate the front-end of
an application while being able to easily interface with
Haskell code for functionality.

Status The latest version at time of press is 0.3.3.0.
Changes released since the previous edition of this re-
port include support for rendering custom OpenGL
graphics onto QML elements, facilities for managing
object life-cycles with weak references and finalisers,
and a number of bug fixes. It has been tested on the
major desktop platforms: Linux, Windows, and Ma-
cOS.

Further reading

http://www.gekkou.co.uk/software/hsqml/

7.6.2 threepenny-gui

Report by: Heinrich Apfelmus
Status: active development

Threepenny-gui is a framework for writing graphical
user interfaces (GUI) that uses the web browser as a
display. Features include:
◦ Easy installation. Everyone has a reasonably mod-

ern web browser installed. Just install the library
from Hackage and you are ready to go. The library
is cross-platform.

◦ HTML + JavaScript. You have all capabilities of
HTML at your disposal when creating user inter-
faces. This is a blessing, but it can also be a curse,
so the library includes a few layout combinators to
quickly create user interfaces without the need to
deal with the mess that is CSS. A foreign function
interface (FFI) allows you to execute JavaScript code
in the browser.

◦ Functional Reactive Programming (FRP) promises
to eliminate the spaghetti code that you usually
get when using the traditional imperative style for
programming user interactions. Threepenny has an
FRP library built-in, but its use is completely op-
tional. Employ FRP when it is convenient and fall
back to the traditional style when you hit an impasse.

Status

The project is alive and kicking, the latest release is
version 0.6.0.3. You can download the library from
Hackage and use it right away to write that cheap GUI
you need for your project. Here a screenshot from the
example code:

For a collection of real world applications that use the
library, have a look at the gallery on the homepage.
Compared to the previous report, no major changes

have been made. A bug related to garbage collection of
event handlers has been fixed, and the library has been
updated to work with the current Haskell ecosystem.

44

https://bitbucket.org/tdammers/yeshql
http://hackage.haskell.org/package/yeshql
https://github.com/krisajenkins/yesql
http://www.gekkou.co.uk/software/hsqml/

Current development

The library is still very much in flux, significant API
changes are likely in future versions. The goal is to
make GUI programming as simple as possible, and that
just needs some experimentation.
While Threepenny uses the web browser as a dis-

play, the goal was always to provide an environ-
ment for developing desktop applications. Recentely,
a new platform for developing desktop applications
with JavaScript has emerged, called Electron. I have
successfully managed to connect Threepenny with the
Electron platform, but I don’t know how to best in-
tegrate this with the Haskell ecosystem, in particular
Cabal. If you can offer any help with this, please let
me know.

Further reading

◦ Project homepage:
http://wiki.haskell.org/Threepenny-gui

◦ Example code: https://github.com/
HeinrichApfelmus/threepenny-gui#examples

◦ Application gallery:
http://wiki.haskell.org/Threepenny-gui#Gallery

7.6.3 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a library for functional reactive
programming (FRP).
FRP offers an elegant and concise way to express

interactive programs such as graphical user interfaces,
animations, computer music or robot controllers. It
promises to avoid the spaghetti code that is all too com-
mon in traditional approaches to GUI programming.
The goal of the library is to provide a solid founda-

tion.
◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ The library features an efficient implementation. No
more spooky time leaks, predicting space & time us-
age should be straightforward.
The library is meant to be used in conjunction with

existing libraries that are specific to your problem do-
main. For instance, you can hook it into any event-

based GUI framework, like wxHaskell or Gtk2Hs. Sev-
eral helper packages like reactive-banana-wx provide a
small amount of glue code that can make life easier.
Status. With the release of version 1.0.0.0, the de-

velopment of the reactive-banana library has reached
a milestone! I finally feel that the library does all the
things that I wanted it to do.
In particular, compared to the previous report, the

library now implements garbage collection for dynam-
ically switched events. Also, the API no longer uses
a phantom parameter to keep track of starting times;
instead, a monadic approach is used. This simplifies
the API for dynamic event switching, at the cost of re-
quiring monadic types for some first-order combinators
like stepper.
Additionally, there has been a small change concern-

ing the semantics of the Event type: It is no longer
possible to have multiple simultaneous occurrences in
a single event stream. This forces the programmer to
be more thoughtful about simultaneous event occur-
rences, a common source of bugs. The expressivity is
the same, the old semantics can be recovered by using
lists as occurrences.
Current development. With the library being com-

plete, is there anything left to do? Well, of course, a
library is never complete! However, my future focus
will lie more on applications of FRP, rather than the
implementation of the FRP primitives. For instance, I
want to make more use of FRP in my threepenny-gui
project, which is a library for writing graphical user in-
terfaces in Haskell (→ 7.6.2). In turn, this will probably
lead to improvements in the reactive-banana library, be
it API revisions or performance tuning.

Further reading

◦ Project homepage:
http://wiki.haskell.org/Reactive-banana

◦ Example code:
http://wiki.haskell.org/Reactive-banana/Examples

7.6.4 fltkhs - GUI bindings to the FLTK library

Report by: Aditya Siram
Status: active

The fltks project is a set of bindings to the FLTK
C++ toolkit (www.fltk.org). Coverage is fairly com-
plete (85%) and it is easy to install and use. The main
goal of this effort is to provide a low-cost, hassle-free
way of creating self-contained, native GUI applications
in pure Haskell that are portable to Windows, Linux
and OSX.
FLTK was chosen because it is a mature toolkit and

designed to be lightweight, portable and self-contained.
In turn, fltks inherits these qualities with the addi-
tional benefit of having almost no dependencies outside
of base and FLTK itself. This makes it very easy to get
up and running with fltks.

45

http://electron.atom.io/
http://wiki.haskell.org/Threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui#examples
https://github.com/HeinrichApfelmus/threepenny-gui#examples
http://wiki.haskell.org/Threepenny-gui#Gallery
http://wiki.haskell.org/Reactive-banana
http://wiki.haskell.org/Reactive-banana/Examples
www.fltk.org

fltks is also designed to be easy to use and learn.
It tries to accomplish this by providing an API that
matches the FLTK API as closely as possible so that a
user can look up the pre-existing FLTK documentation
for some function and in most cases be able to “guess”
the corresponding Haskell function that delegates to
it. Additionally fltks currently ships with 15 demos
which are exact ports of demos shipped with the FLTK
distribution so the user can study the code side-by-side.
In most cases there is direct correspondence.
fltks is also extensible in a couple of ways. Firstly,

the user can create custom GUI widgets in pure Haskell
by simply overriding some key C++ functions with
Haskell functions. Secondly, it is easy to add third-
party widgets without touching the core bindings.
Meaning if there is a useful FLTK widget that is not
part of the FLTK distribution, the user can easily wrap
it and publish it as a separate package without ever
touching these bindings. Hopefully this fosters con-
tribution allowing fltks to keep up with the FLTK
ecosystem and even outpace it since users are now able
to create new widgets in pure Haskell.
Ongoing work includes not only covering 100% of the

API and porting all the demos but also adding sup-
port for FLUID (http://en.wikipedia.org/wiki/FLUID),
the FLTK GUI builder. Haskellers will then be able
to take any existing FLTK app which uses FLUID to
build the user interface and migrate it to Haskell.
Contributions are welcome!

Further reading

https://hackage.haskell.org/package/fltkhs

7.6.5 wxHaskell

Report by: Henk-Jan van Tuyl
Status: active development

Since the previous HCAR, not much has changed,
but there are plans to adapt wxHaskell to wxWidgets
3.1 and GHC 8.0 if necessary. New project participants
are welcome.
wxHaskell is a portable and native GUI library for

Haskell. The goal of the project is to provide an indus-
trial strength GUI library for Haskell, but without the
burden of developing (and maintaining) one ourselves.
wxHaskell is therefore built on top of wxWidgets: a

comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with the native look-and-feel.
A screen printout of a sample wxHaskell program:

Further reading

https://wiki.haskell.org/WxHaskell

7.7 Graphics and Audio

7.7.1 vect

Report by: Balázs Kőműves
Status: mostly stable

The vect package is low-dimensional linear algebra li-
brary intended specifically for computer graphics. It
provides types and operations in 2, 3 and 4 dimensions,
and is more-or-less feature-complete. OpenGL support
is available as a separate package.

The library is intentionally monomorphic, providing
as base fields the concrete types Float and Double. The
monomorphicity makes life easier for both the user and
the compiler, and we think that for graphics these two
types cover most of the typical use cases. Nevertheless,
a third, polymorphic version may be added in the fu-
ture (until that happens, there is a polymorphic fork
on Hackage).

Further reading

◦ http://hackage.haskell.org/package/vect
◦ http://hackage.haskell.org/package/vect-opengl

46

http://en.wikipedia.org/wiki/FLUID
https://hackage.haskell.org/package/fltkhs
https://wiki.haskell.org/WxHaskell
http://hackage.haskell.org/package/vect
http://hackage.haskell.org/package/vect-opengl

7.7.2 diagrams

Report by: Brent Yorgey
Participants: many
Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is always more to be
done, but diagrams is already quite fully-featured, with
a comprehensive user manual and a growing set of tu-
torials, a large collection of primitive shapes and at-
tributes, many different modes of composition, paths,
cubic splines, images, text, arbitrary monoidal annota-
tions, named subdiagrams, and more.

What’s new

Diagrams development has currently stalled a bit, as
most of the major contributors are busy with other
things. However, this summer should bring a 1.4 re-
lease with some new features:
◦ B-spline support, and B-spline to cubic Bezier con-
version

◦ Path union and intersection
◦ CSG support for 3D diagrams
◦ New techniques and tools for drawing 2D projections

of 3D diagrams, illustrated above
◦ Constraint-based layout
We are also continuing work on using stack to cre-

ate a system for easier, more reproducible builds, which
will benefit both users and developers, and form the
basis for much more comprehensive continuous inte-
gration testing.

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of its
size, generality, and enthusiastic embrace of advanced
type system features, diagrams can be intimidating to
would-be users and contributors; however, we are ac-
tively working on new documentation and resources
to help combat this. For more information on ways
to contribute and how to get started, see the Con-
tributing page on the diagrams wiki: http://haskell.org/
haskellwiki/Diagrams/Contributing, or come hang out in
the #diagrams IRC channel on freenode.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://haskell.org/haskellwiki/Diagrams
◦ http://github.com/diagrams
◦ http:

//ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
◦ http://www.youtube.com/watch?v=X-8NCkD2vOw

47

http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw

7.7.3 Chordify

Report by: Jeroen Bransen
Participants: W. Bas de Haas, José Pedro Magalhães,

Dion ten Heggeler, Tijmen Ruizendaal,
Gijs Bekenkamp, Hendrik Vincent Koops

Status: actively developed

Chordify is a music player that extracts chords from
musical sources like Youtube, Deezer, Soundcloud, or
your own files, and shows you which chord to play
when. The aim of Chordify is to make state-of-the-
art music technology accessible to a broader audience.
Our interface is designed to be simple: everyone who
can hold a musical instrument should be able to use it.
Behind the scenes, we use the sonic annotator for

extraction of audio features. These features consist
of the downbeat positions and the tonal content of a
piece of music. Next, the Haskell program HarmTrace
takes these features and computes the chords. Harm-
Trace uses a model of Western tonal harmony to aid
in the chord selection. At beat positions where the au-
dio matches a particular chord well, this chord is used
in final transcription. However, in case there is uncer-
tainty about the sounding chords at a specific position
in the song, the HarmTrace harmony model will select
the correct chords based on the rules of tonal harmony.
We have recently expanded our team and we are

currently redesigning and expanding the Haskell back-
end. We want to use machine learning techniques to
improve the chord extraction algorithm based on user
edits. Furthermore, we are currently implementing a
system that merges edits from various users into one
single corrected version, of which preliminary results
can be found here.
The code for HarmTrace is available on Hackage, and

we have ICFP’11 and ISMIR’12 publications describing
some of the technology behind Chordify.

Further reading

https://chordify.net

7.7.4 csound-expression

Report by: Anton Kholomiov
Status: active, experimental

The csound-expression is a Haskell framework for elec-
tronic music production. It’s based on very efficient
and feature rich software synthesizer Csound. The
Csound is a programming language for music produc-
tion. The csound-expression strives to be as simple and
responsive as it can be. Features include support for
almost all Csound audio units, composable GUIs, FRP
for event scheduling, MIDI support and many others.
Library contains many beautiful instruments (see the
companion package csound-catalog). It can be used for
real-time performances.
The csound-expression is a Csound code generator.

The flexible nature of Csound (it’s written in C and has
wonderful API) allows to use the produced code on any
desktop OS, Android, iOS, Raspberry Pi, Unity, within
many other languages. We can create audio engines
with Haskell.
With Csound it inherits many cutting edge sound

design techniques like granular synthesis or hyper vec-
torial synthesis, ambisonics. It’s based on Csound
but there is no need to know Csound to create some-
thing interesting with it. You can just read the guide
of the library and start coding your own synthesizers
or electronic music: https://github.com/spell-music/
csound-expression/blob/master/tutorial/Index.md.
So what’s new? Let’s review the most prominent

features:

◦ The new release adds support for the fa-
mous Padsynth algorithm. It allows to create
very pleasing pads and natural textures. Also
there are some predefined instruments that ex-
plore the realms of padsynth (see the details
at https://github.com/spell-music/csound-expression/
blob/master/tutorial/chapters/Padsynth.md).

◦ The Micro-tonal tunings were added. User can
play with custom tunings live and use them to
compose the music. There are many predefined
ancient and modern tunings available. You can
discover the music of pre equal temperament era!
You can listen the music how the Bach, Mozart
and Chopin had listened to it (see the details
at https://github.com/spell-music/csound-expression/
blob/master/tutorial/chapters/Tuning.md).

◦ Support for Csound API was implemented. With
Csound API you can use the Csound as a library
and insert your Haskell generated Csound files into
another programs. Many languages can use Csound
with API (Python, Java, C, C++, Lua, and many
more). you can check out the guide on how to

48

http://chordify.net
http://www.omras2.org/SonicAnnotator
http://hackage.haskell.org/package/HarmTrace
http://ismir2015.uma.es/LBD/LBD8.pdf
http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
https://chordify.net
https://github.com/spell-music/csound-expression/blob/master/tutorial/Index.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/Index.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/Padsynth.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/Padsynth.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/Tuning.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/Tuning.md

use the Haskell generated code inside Python here
https://github.com/spell-music/csound-expression/
blob/master/tutorial/chapters/CsoundAPI.md.

◦ The ping-pong delay was added to the stack of ef-
fects.

◦ New release adds support for monophonic synthesiz-
ers. They are very useful for modern electronic dance
music.

◦ Functions for creation of FM-like synthesizers were
added. You can construct a synthesizer as graph
with FM units at the nodes. You can use as many
units as you wish!

The library was used in real musical applications!

◦ The desktop synthesizer called tiny-synth was devel-
oped with Python and Haskell. The UI was written
in Python with the help of wxPython library and the
audio engine was written in Haskell. The synthesizer
contains many instruments that were taken from
the collection of instruments defined in the package
csound-catalog (it’s also available on Hackage).
You can look at the source code of the project:
https://github.com/spell-music/csound-expression/
blob/master/tutorial/chapters/CsoundAPI.md. The
synthesizer can be played live with MIDI-keyboard.
It’s designed to be simple to use. It contains about
100 instruments.

◦ The Haskell generated code was tested on stage in
the real gig! It has happened on 3 of April. The
Haskell program was used as a real-time synthesizer.
The notes were triggered with MIDI-keyboard and
the sound was produced with instruments created
with Haskell. It was well received by the audience.
The concert has lasted for an hour. You can hear
the recordings of the music at soundcloud: https:
//soundcloud.com/kailash-project.

◦ I’ve made some new tracks that use the library. You
can listen to them at my soundcloud page: https:
//soundcloud.com/anton-kho.

The future plans for the library is to improve doc-
umentation and create a musical Android application
that is based on Haskell.
The library is available on Hackage. See the pack-

ages csound-expression, csound-sampler and csound-
catalog.

Further reading

https://github.com/anton-k/csound-expression
http://csound.github.io/

7.7.5 hmidi

Report by: Balázs Kőműves
Status: stable

The hmidi package provides bindings to the OS-level
MIDI services, allowing Haskell programs to communi-
cate with physical or virtual MIDI devices, for exam-
ple MIDI keyboards, controllers, synthesizers, or music
software.
Supported operating systems are Mac OS X and

Windows. Linux (ALSA) support may be added at
some future time.
An example application is provided by the

launchpad-control package, which provides a high-
level interface to the Novation Launchpad MIDI con-
troller.

Further reading

◦ http://hackage.haskell.org/package/hmidi
◦ http:

//hackage.haskell.org/package/launchpad-control

7.8 Text and Markup Languages

7.8.1 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.19 and has been released in

April 2015. Development repository and bug tracker
are on GitHub. The tool is mostly in plain mainte-
nance mode, although there are still vague plans for
a complete rewrite of lhs2TEX, hopefully cleaning up
the internals and making the functionality of lhs2TEX
available as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

49

https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/CsoundAPI.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/CsoundAPI.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/CsoundAPI.md
https://github.com/spell-music/csound-expression/blob/master/tutorial/chapters/CsoundAPI.md
https://soundcloud.com/kailash-project
https://soundcloud.com/kailash-project
https://soundcloud.com/anton-kho
https://soundcloud.com/anton-kho
https://github.com/anton-k/csound-expression
http://csound.github.io/
http://hackage.haskell.org/package/hmidi
http://hackage.haskell.org/package/launchpad-control
http://hackage.haskell.org/package/launchpad-control
http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex

7.8.2 pulp

Report by: Daniel Wagner
Participants: Daniel Wagner, Michael Greenberg
Status: Not yet released

Anybody who has used LATEX knows that it is a fan-
tastic tool for typesetting; but its error reporting leaves
much to be desired. Even simple documents that use
a handful of packages can produce hundreds of lines of
uninteresting output on a successful run. Picking out
the parts that require action is a serious chore, and lo-
cating the right part of the document source to change
can be tiresome when there are many files.
Pulp is a parser for LATEX log files with a small but

expressive configuration language for identifying which
messages are of interest. A typical run of pulp after
successfully building a document produces no output;
this makes it very easy to spot when something has
gone wrong. Next time you want to produce a great
paper, process your log with pulp!

Features
◦ LATEX log parser with special-case support for many
popular packages and classes

◦ Expressive configuration language
– Filter out document-specific unimportance
– Increase verbosity as the document nears com-

pletion
◦ Uniform error reporting format with file and line in-

formation
◦ Instructions for use with latexmk
◦ Rudimentary Windows support

Further reading

http://github.com/dmwit/pulp

7.8.3 Unicode things

Report by: Antonio Nikishaev
Status: work in progress

Many programming languages offer non-existing or
very poor support for Unicode. While many think
that Haskell is not one of them, this is not completely
true. The way-to-go library of Haskell’s string type,
Text, only provides codepoint-level operations. Just
as a small and very elementary example: two “Haskell
café” strings, first written with the ‘é’ character, and
the second with the ‘e’ character followed by a com-
bining acute accent character, obviously have a corre-
spondence for many real-world situations. Yet they are
entirely different and unconnected things for Text and
its operations.
And even though there is text-icu library offering

proper Unicode functions, it has a form of FFI bind-
ings to C library (and that is painful, especially for

Windows users). More so, its API is very low-level and
incomplete.
Prose is a work-in-progress pure Haskell implemen-

tation of Unicode strings. Right now it’s completely
unoptimized. Implemented parts are normalization al-
gorithms and segmentation by graphemes and words.
Numerals is pure Haskell implementation of CLDR

(Common Language Data Repository, Unicode’s locale
data) numerals formatting.

Contributions and comments are always welcome!

Further reading

◦ http://lelf.lu/prose
◦ https://github.com/llelf/prose
◦ https://github.com/llelf/numerals

7.8.4 Ginger

Report by: Tobias Dammers
Status: Active, usable, not feature complete

Ginger is a Haskell implementation of the Jinja2 HTML
template language. Unlike most existing Haskell tem-
plating solutions, Ginger expands templates at run-
time, not compile time; this is a deliberate design deci-
sion, intended to support a typical rapid-cycle web de-
velopment workflow. Also unlike most existing Haskell
HTML DSLs, Ginger is completely unaware of the
DOM, and does not enforce well-formed HTML. Just
like Jinja2, however, it does distinguish HTML source
and raw values at the type level, meaning that HTML
encoding is automatic and (mostly) transparent, avoid-
ing the most common source of XSS vulnerabilities. For
a quick impression of what Ginger syntax looks like:

<section class="page">
<h1>{{ page.title }}</h1>
{% if page.image %}

<img class="page-image"
src="{{ page.image.thumbURL }}" />

{% endif %}
<section class="teaser">

{{ page.teaser }}
</section>
<section class="content">

{{ page.body|markdown }}
</section>
<section class="page-meta">

Submitted by {{ page.author }} on
{{ page.submitted|formatDate(’%Y-%m-%d’) }}

</section>
</section>

All the important features of Jinja2 have been imple-
mented, and the library is fully usable for production
work. Some features of the original Jinja2 have been
left out because the author considers them Pythonisms;
others are missing simply because they haven’t been

50

http://github.com/dmwit/pulp
http://lelf.lu/prose
https://github.com/llelf/prose
https://github.com/llelf/numerals

implemented yet. Other planned improvements include
TemplateHaskell support (which would allow program-
mers to compile Ginger templates directly into the
binary, and perform template compilation at compile
time rather than runtime), a built-in caching mecha-
nism, and more configuration options. I am also plan-
ning on overhauling the testing setup to use HUnit,
QuickCheck, and Tasty, rather than (or in addition to)
the current shell-script-based simulation tests. Contri-
butions of any kind are very welcome.
In the near future, the most important things to add

will be built-in filters to get closer to Jinja2 feature
parity on that front.

Further reading

◦ https://bitbucket.org/tdammers/ginger
◦ http://hackage.haskell.org/package/ginger
◦ http://jinja2.pocoo.org (the original Ginger, not my

work)

7.9 Natural Language Processing

7.9.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell.
At the present, the mailing list is mainly used to

make announcements to the Haskell NLP community.
We hope that we will continue to expand the list and
expand our ways of making it useful to people poten-
tially using Haskell in the NLP world.

New packages
◦ Earley-0.8.0 (Olle Fredriksson)

This (Text.Earley) is a library consisting of two
parts:

1. Text.Earley.Grammar: An embedded
context-free grammar (CFG) domain-specific
language (DSL) with semantic action specifica-
tion in applicative style.
An example of a typical expression grammar
working on an input tokenized into strings is
the following:

expr :: Grammar r String (Prod r String String Expr)
expr = mdo

x1 ← rule $ Add < $ > x1 < ∗ namedSymbol "+" < ∗ > x2
< | > x2
<? > "sum"

x2 ← rule $ Mul < $ > x2 < ∗ namedSymbol "*" < ∗ > x3
< | > x3
<? > "product"

x3 ← rule $ Var < $ > (satisfy ident <? > "identifier")
< | > namedSymbol "(" ∗ > x1 < ∗ namedSymbol ")"

return x1
where

ident (x: _) = isAlpha x
ident = False

2. Text.Earley.Parser: An implementation of (a
modification of) the Earley parsing algorithm.
To invoke the parser on the above grammar, run
e.g. (here using words as a stupid tokeniser):

fullParses $ parser expr $ words "a + b * (c + d)"
= ([Add (Var "a") (Mul (Var "b")

(Add (Var "c") (Var "d")))]
, Report {...}
)

Note that we get a list of all the possible parses
(though in this case there is only one).

https://github.com/ollef/Earley

Further reading

◦ The Haskell NLP page http://projects.haskell.org/nlp

7.9.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.
GenI is now mirrored on GitHub, with its issue

tracker and wiki and homepage also hosted there. The
most recent release, GenI 0.24 (2013-09-18), allows for
custom semantic inputs, making it simpler to use GenI
in a wider variety for applications. This has recently
been joined by a companion geni-util package which
offers a rudimentary geniserver client and a reporting
tool for grammar debugging.

51

https://bitbucket.org/tdammers/ginger
http://hackage.haskell.org/package/ginger
http://jinja2.pocoo.org
https://github.com/ollef/Earley
http://projects.haskell.org/nlp

GenI is available on Hackage, and can be installed
via cabal-install, along with its GUI and HTTP server
user interfaces. For more information, please contact
us on the geni-users mailing list.

Further reading

◦ http://github.com/kowey/GenI
◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

7.10 Embedding DSLs for Low-Level
Processing

7.10.1 CλaSH

Report by: Christiaan Baaij
Participants: Jan Kuper, Arjan Boeijink, Rinse Wester
Status: actively developed

The first line of the package description on hackage is:

CλaSH (pronounced ’clash’) is a functional hard-
ware description language that borrows its syntax
and semantics from the functional programming
language Haskell.

In essence, however, it is a combination of:
◦ A Haskell library containing data types and func-
tions for circuit design: http://hackage.haskell.org/
package/clash-prelude.

◦ A compiler that transforms the Haskell code to low-
level synthesisable VHDL or SystemVerilog: http://
hackage.haskell.org/package/clash-ghc.
Of course, the compiler cannot transform arbitrary

Haskell code to hardware, but only the structural sub-
set of Haskell. This subset is vaguely described as the
semantic subset of Haskell from which a finite struc-
ture can be inferred, and hence excludes unbounded
recursion. The CλaSH compiler is thus a proper com-
piler (based on static analysis), and not an embedded
Domain Specific Language (DSL) such as Kansas Lava.
CλaSH has been in active development since 2010.

Since then we have significantly improved stability,
enlarged the subset of transformable Haskell, im-
proved performance of the compiler, and added (Sys-
tem)Verilog generation. And, perhaps most impor-
tantly, vastly improved documentation.
CλaSH is available on Hackage, for GHC version 7.10

and higher:

$ cabal update
$ cabal install clash-ghc

What’s new since last HCAR:

◦ CλaSH can now generate, next to VHDL-93 and
SystemVerilog-2005, Verilog-2001.

◦ Support for memory primitives whose content can be
initialised from a file.

◦ Major overhaul and extension of the Vector mod-
ule. All functions in Vector are now synthesisable
to VHDL/(System)Verilog.

Development plans for CλaSH are:
◦ Behavioural synthesis of unbounded recursion (by In-

gmar te Raa).
◦ Use a dependently typed internal core language, so

that we can use both Haskell/GHC and Idris http://
http://www.idris-lang.org/ as front-end language for
circuit design (by Christiaan Baaij).

Further reading

http://www.clash-lang.org

7.10.2 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and is currently being developed by projects at
Chalmers University of Technology, SICS Swedish ICT
AB and Ericsson AB.
The motivating application of Feldspar is telecoms

processing, but the language is intended to be useful

52

http://github.com/kowey/GenI
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users
http://hackage.haskell.org/package/clash-prelude
http://hackage.haskell.org/package/clash-prelude
http://hackage.haskell.org/package/clash-ghc
http://hackage.haskell.org/package/clash-ghc
http://http://www.idris-lang.org/
http://http://www.idris-lang.org/
http://www.clash-lang.org

for DSP and numeric code in general. The aim is to
allow functions to be written in pure functional style
in order to raise the abstraction level of the code and
to enable more high-level optimizations. The current
version consists of a library of numeric and array pro-
cessing operations as well as a code generator producing
C code for running on embedded targets.
The official packages feldspar-language and

feldspar-compiler contain the language for pure
computations and its C back end, respectively.
Additionally, we are working on a completely new

implementation of Feldspar, RAW-Feldspar (not yet re-
leased, but fully usable). This implementation uses a
slightly different language design that gives better con-
trol over things like memory allocation. It also extends
Feldspar with a monad that supports interaction with
the operating system, calls to external C libraries, con-
currency, etc.
Ongoing work involves using RAW-Feldspar to im-

plement more high-level libraries for streaming and in-
teractive programs. Two examples of such libraries are:
◦ zeldspar – a Ziria-like EDSL
◦ feldspar-synch – a synchronous data-flow library
raw-feldspar-mcs is a library built on top of RAW-

Feldspar that generates code for running on NUMA
architectures such as the Parallella.
There is also ongoing work to generate VHDL from

RAW-Feldspar programs.

Further reading

◦ Official home page: http://feldspar.github.io

7.11 Games

7.11.1 EtaMOO

Report by: Rob Leslie
Status: experimental, active development

EtaMOO is a new, experimental MOO server imple-
mentation written in Haskell. MOOs are network ac-
cessible, multi-user, programmable, interactive systems
well suited to the construction of text-based adventure
games, conferencing systems, and other collaborative
software. The design of EtaMOO is modeled closely
after LambdaMOO, perhaps the most widely used im-
plementation of MOO to date.
Unlike LambdaMOO which is a single-threaded

server, EtaMOO seeks to offer a fully multi-threaded
environment, including concurrent execution of MOO
tasks. To retain backward compatibility with the gen-
eral MOO code expectation of single-threaded seman-
tics, EtaMOO makes extensive use of software trans-
actional memory (STM) to resolve possible conflicts
among simultaneously running MOO tasks.

EtaMOO fully implements the MOO programming
language as specified for the latest version of the Lamb-
daMOO server, with the aim of offering drop-in com-
patibility. Several enhancements are also planned to be
introduced over time, such as support for 64-bit MOO
integers, Unicode MOO strings, and others.
Recent development has brought the project to a

largely usable state. A major advancement was made
by integrating the vcache library from Hackage for per-
sistent storage — a pairing that worked especially well
given EtaMOO’s existing use of STM. Consequently,
EtaMOO now has a native binary database backing
with continuous checkpointing and instantaneous crash
recovery. Furthermore, EtaMOO takes advantage of
vcache’s automatic value cache with implicit structure
sharing, so the entire MOO database need not be held
in memory at once, and duplicate values (such as object
properties) are stored only once in persistent storage.
Further development has incorporated optional sup-

port for the lightweight object WAIF data type as origi-
nally described and implemented for the LambdaMOO
server. The vcache library was especially useful in im-
plementing the persistent shared WAIF references for
EtaMOO.
Future EtaMOO development will focus on feature

parity with the LambdaMOO server, full Unicode sup-
port, and several additional novel features.
Latest development of EtaMOO can be seen on

GitHub, with periodic releases also being made avail-
able through Hackage.

Further reading

◦ https://github.com/verement/etamoo
◦ https://hackage.haskell.org/package/EtaMOO
◦ https://en.wikipedia.org/wiki/MOO

7.11.2 scroll

Report by: Joey Hess
Status: stable, complete

Scroll is a roguelike game, developed in one week as an
entry in the 2015 Seven Day Roguelike Challenge.
In scroll, you’re a bookworm that’s stuck on a scroll.

You have to dodge between words and use spells to
make your way down the page as the scroll is read.
Go too slow and you’ll get wound up in the scroll and
crushed.
This was my first experience with using Haskell for

game development, and I found it quite an interesting
experience, and a great crutch in such an intense coding
sprint. Strong typing and purely functional code saved
me from many late night mistakes, until I eventually
became so exhausted that String → String seemed like
a good idea. Even infinite lists found a use; one of
scroll’s levels features a reversed infinite stream of con-
sciousness based on Joyce’s Ulysses. . .

53

http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
https://github.com/emilaxelsson/raw-feldspar
https://github.com/koengit/zeldspar
https://github.com/emilaxelsson/feldspar-synch
https://github.com/kmate/raw-feldspar-mcs
http://www.parallella.org
http://feldspar.github.io
https://github.com/verement/etamoo
https://hackage.haskell.org/package/EtaMOO
https://en.wikipedia.org/wiki/MOO

Scroll was written in continuation passing style, and
this turned out to be especially useful in developing
its magic system, with spells that did things ranging
from creating other spells, to using a quick continuation
based threading system to handle background tasks, to
letting the player enter the altered reality of a dream,
from which they could wake up later.
I had a great time creating a game in such a short

time with Haskell, and documenting my progress in 7
blog posts, and it’s been well received by players.

Further reading

http://joeyh.name/code/scroll/

7.11.3 Nomyx

Report by: Corentin Dupont
Status: stable, actively developed

Nomyx is a unique game where you can change the rules
of the game itself, while playing it! In fact, changing
the rules is the goal of the game. Changing a rule
is considered as a move. Of course even that can be
changed! The players can submit new rules or modify
existing ones, thus completely changing the behaviour
of the game through time. The rules are managed and
interpreted by the computer. They must be written
in the Nomyx language, based on Haskell. This is the
first complete implementation of a Nomic game on a
computer.
At the beginning, the initial rules are describing:
◦ How to add new rules and change existing ones. For
example a unanimity vote is necessary to have a new
rule accepted.

◦ How to win the game. For example you win the game
if you have 5 rules accepted.
But of course even that can be changed!
A first version has been released. A match is cur-

rently on-going, join us! A lot of learning material is
available, including a video, a tutorial, a FAQ, a forum
and API documentation.
If you like Nomyx, you can help! There is a devel-

opment mailing list (check the website). The plan now
is to create a new version were knowing haskell is not
necessary to play.

Further reading

http://www.nomyx.net

7.11.4 Barbarossa

Report by: Nicu Ionita
Status: actively developed

Barbarossa is a UCI chess engine written completely in
Haskell. UCI is one of 2 protocols used in the computer
chess scene to communicate between a chess GUI and
a chess engine. This way it is possible to write just the
chess engine, which then works with any chess GUI.
I started in 2009 to write a chess engine under the

name Abulafia. In 2012 I decided to rewrite the eval-
uation and search parts of the engine under the new
name, Barbarossa.
My motivation was to demonstrate that even in a

domain in which the raw speed of a program is very im-
portant, as it is in computer chess, it is possible to write
competitive software with Haskell. The speed of Bar-
barossa (measured in searched nodes per second) is still
far behind comparable engines written in C or C++.
Nevertheless Barbarossa can compete with many en-
gines - as it can be seen on the CCRL rating lists,
where is it currently listed with a strength of about
2200 ELO.
Barbarossa uses a few techniques which are well

known in the computer chess scene:
◦ in evaluation: material, king safety, piece mobility,

pawn structures, tapped evaluation and a few other
less important features

◦ in search: principal variation search, transposition
table, null move pruning, killer moves, futility prun-
ing, late move reduction, internal iterative deepen-
ing.
I still have a lot of ideas which could improve the

strength of the engine, some of which address a higher
speed of the calculations, and some, new chess related
features, which may reduce the search tree.
The engine is open source and is published on github.

The last released version is Barbarossa v0.3.0 from be-
gin of October.
The version 0.4.0 is still in development and will be

released probably end of May this year. Currently the
version is about 100 ELO points stronger than the pre-
viously version (internal ratings).

Further reading

◦ https://github.com/nionita/Barbarossa/releases
◦ http://www.computerchess.org.uk/ccrl/404/

54

http://joeyh.name/code/scroll/
http://www.nomyx.net
https://github.com/nionita/Barbarossa/releases
http://www.computerchess.org.uk/ccrl/404/

7.12 Others

7.12.1 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion provides a low-level domain-specific lan-
guage (DSL) for the formulation of dynamic programs
with emphasis on computational biology and linguis-
tics. We follow ideas established in algebraic dynamic
programming (ADP) where a problem is separated into
a grammar defining the search space and one or more
algebras that score and select elements of the search
space. The DSL has been designed with performance
and a high level of abstraction in mind.
ADPfusion grammars are abstract over the type of

terminal and syntactic symbols. Thus it is possible to
use the same notation for problems over different in-
put types. We directly support grammars over strings,
sets (with boundaries, if necessary), and trees. Lin-
ear, context-free and multiple context-free languages
are supported, where linear languages can be asymp-
totically more efficient both in time and space. ADPfu-
sion is extendable by the user without having to modify
the core library. This allows users of the library to sup-
port novel input types, as well as domain-specific index
structures. The extension for tree-structured inputs is
implemented in exactly this way and can serve as a
guideline.
As an example, consider a grammar that recognizes

palindromes. Given the non-terminal p, as well as
parsers for single characters c and the empty input ε,
the production rule for palindromes can be formulated
as p→ c p c | ε.
The corresponding ADPfusion code is similar:

p (f <<< c % p % c ||| g <<< e ... h)

We need a number of combinators as “glue” and
additional evaluation functions f , g, and h. With
f c1 p c2 = p && (c1 ≡ c2) scoring a candidate,
g e = True, and h xs = or xs determining if the
current substring is palindromic.
This effectively turns the grammar into a memo-

function that then yields the optimal solution via a call
to axiom p. Backtracking for co- and sub-optimal solu-
tions is provided as well. The backtracking machinery
is derived automatically and requires the user to only
provide a set of pretty-printing evaluation functions.
As of now, code written in ADPfusion achieves per-

formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

The entry on generalized Algebraic Dynamic Pro-
gramming (→ 7.12.2) provides information on the as-
sociated high-level environment for the development of
dynamic programs.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://dx.doi.org/10.1145/2364527.2364559

7.12.2 Generalized Algebraic Dynamic
Programming

Report by: Christian Höner zu Siederdissen
Participants: Sarah J. Berkemer
Status: usable, active development

Generalized Algebraic Dynamic Programming (gADP)
provides a solution for high-level dynamic programs.
We treat the formal grammars underlying each DP
algorithm as an algebraic object which allows us to
calculate with them. gADP covers dynamic program-
ming problems of various kinds: (i) we include linear,
context-free, and multiple context-free languages (ii)
over sequences, trees, and sets; and (iii) provide ab-
stract algebras to combine grammars in novel ways.
Below, we describe the highlights our system offers

in more detail:

Grammars Products

We have developed a theory of algebraic operations
over linear and context-free grammars. This theory al-
lows us to combine simple “atomic” grammars to create
more complex ones.
With the compiler that accompanies our theory, we

make it easy to experiment with grammars and their
products. Atomic grammars are user-defined and the
algebraic operations on the atomic grammars are em-
bedded in a rigerous mathematical framework.
Our immediate applications are problems in compu-

tational biology and linguistics. In these domains, al-
gorithms that combine structural features on individ-
ual inputs (or tapes) with an alignment or structure

55

http://www.bioinf.uni-leipzig.de/Software/gADP
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559

between tapes are becoming more commonplace. Our
theory will simplify building grammar-based applica-
tions by dealing with the intrinsic complexity of these
algorithms.
We provide multiple types of output. LATEX is avail-

able to those users who prefer to manually write the re-
sulting grammars. Alternatively, Haskell modules can
be created. TemplateHaskell and QuasiQuoting ma-
chinery is also available turning this framework into a
fully usable embedded domain-specific language. The
DSL or Haskell module use ADPfusion (→ 7.12.1) with
multitape extensions, delivering “close-to-C” perfor-
mance.

Set Grammars

Most dynamic programming frameworks we are aware
of deal with problems over sequence data. There
are, however, many dynamic programming solutions to
problems that are inherently non-sequence like. Hamil-
tonian path problems, finding optimal paths through a
graph while visiting each node, are a well-studied ex-
ample.
We have extended our formal grammar library to

deal with problems that can not be encoded via linear
data types. This provides the user of our framework
with two benefits, easy encoding of problems based on
set-like inputs and construction of dynamic program-
ming solutions. On a more general level, the extension
of ADPfusion and the formal grammars library shows
how to encode new classes of problems that are now
gaining traction and are being studied.
If, say, the user wants to calculate the shortest

Hamiltonian path through all nodes of a graph, then
the grammar for this problem is:

s (f <<< s % n ||| g <<< n ... h)

which states that a path s is either extended by a node
n, or that a path is started by having just a first, single
node n. Functions f and g evaluate the cost of moving
to the new node. gADP has notions of sets with inter-
faces (here: for s) that provide the needed functionality
for stating that all nodes in s have been visited with
a final visited node from which an edge to n is to be
taken.

Tree Grammars

Tree grammars are important for the analysis of struc-
tured data common in linguistics and bioinformatics.
Consider two parse trees for english and german (from:
Berkemer et al. General Reforestation: Parsing Trees
and Forests) and the node matching probabilities we
gain when trying to align the two trees:

We can create the parse trees themselves with a nor-
mal context-free language on sequences. We can also
compare the two sentences with, say, a Needleman-
Wunsch style sequence alignment algorithm. However,
this approach ignores the fact that parse trees encode
grammatical structure inherent to languages. The com-
parison of sentences in english or german should be on
the level of the structured parse tree, not the unstruc-
tured sequence of words.
Our extension of ADPfusion (→ 7.12.1) to forests as

inputs allows us to deal with a variety of problems in
complete analogy to sequence-based dynamic program-
ming. This extension fully includes grammar products,
and automatic outside grammars.

Automatic Outside Grammars

Our third contribution to high-level and efficient dy-
namic programming is the ability to automatically con-
struct Outside algorithms given an Inside algorithm.
The combination of an Inside algorithm and its cor-
responding Outside algorithm allow the developer to
answer refined questions for the ensemble of all (sub-
optimal) solutions.
The image below depicts one such automatically cre-

ated grammar that parses a string from the Outside in.
T and C are non-terminal symbols of the Outside gram-
mar; the production rules also make use of the S and
B non-terminals of the Inside version.

One can, for example, not only ask for the most effi-
cient path through all cities on a map, but also answer
which path between two cities is the most frequented
one, given all possible travel routes. In networks, this
allows one to determine paths that are chosen with high
likelihood.

Multiple Context-Free Grammars

In both, linguistics and bioinformatics, a number of
problems exist that can only be described with formal
languages that are more powerful than context-free lan-
guages, but often have the form of two or more inter-
leaved context-free languages (say: anbncn). In RNA
biology, pseudoknotted structures can be modelled in

56

this way, while in linguistics, we can model languages
with crossing dependencies.
ADPfusion and the generalized Algebraic Dynamic

Programming methodology have been extended to han-
dle these kinds of grammars.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP/
◦ http://dx.doi.org/10.1109/TCBB.2014.2326155
◦ http://dx.doi.org/10.1007/978-3-319-12418-6_8

7.12.3 leapseconds-announced

Report by: Björn Buckwalter
Status: stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondTable with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.
Version 2015 of leapseconds-announced contains all

leap seconds up to 2015-07-01. A new version will be
uploaded if/when the IERS announces a new leap sec-
ond.

Further reading

https://hackage.haskell.org/package/leapseconds-announced

7.12.4 hledger

Report by: Simon Michael
Status: ongoing development; suitable for daily use

hledger is a cross-platform program (and Haskell li-
brary) for tracking money, time, or any other com-
modity, using double-entry accounting and a simple,
editable text file format. hledger aims to be a reliable,
practical tool for daily use, and provides command-line,
curses-style, and web interfaces. It is a largely compati-
ble Haskell reimplementation of John Wiegley’s Ledger
program. hledger is released under GNU GPLv3+.
hledger’s HCAR entry was last updated in the

November 2011 report, but development has continued
steadily, with 2-3 major releases each year.
Many new features and improvements have been in-

troduced, making hledger much more useful. These
include:
◦ Easier installation, using stack, system packages, or
downloadable Windows binaries.

◦ A simpler and more robust web interface, with built-
in help, balance charts, flexible transaction entry,
and automatic browser startup

◦ A new curses-style interface, hledger-ui, is now in-
cluded and fully supported

◦ The command-line interface is more robust, and is
aware of terminal width, COLUMNS, and wide char-
acters

◦ New commands: accounts, balancesheet, cashflow,
incomestatement

◦ New add-on packages: ledger-autosync,
hledger-diff, hledger-interest, and
hledger-irr

◦ hledger can now report current value based on mar-
ket prices (-V)

◦ The journal format has become richer, supporting
more Ledger features such as balance assertions

◦ hledger journals and reports can be exported as
CSV

◦ hledger now reads CSV files directly, using flexible
conversion rules

◦ The balance command can show multiple columns,
with per-period changes or ending balances

◦ Depth-limiting now interacts well with other fea-
tures, making it effective for summarising

◦ hledger-web’s query language is richer and is also
used by the command-line interface

◦ The Decimal library is used for representing amounts
exactly

◦ Unicode is handled correctly
◦ Many commands are faster

Project updates include:

◦ hledger.org and the docs have been refreshed a few
times, and now include many examples

◦ hledger’s code repo and bug tracker have moved
from darcs/darcs hub/google code to git/github

◦ hledger has its own IRC channel on freenode:
#hledger, with logging and commit/issue/travis no-
tifications

hledger is available from hledger.org, github, hack-
age, stackage, and is packaged for a number of
systems including Debian, Ubuntu, Gentoo, Fedora,
and NixOS. See http://hledger.org/download or http:
//hledger.org/developer-guide for guidance.

Immediate plans:

◦ improve docs and help,
◦ improve parser speed and memory efficiency,
◦ integrate a separate parser for Ledger files built by

John Wiegley,
◦ hledger-ui improvements,
◦ and work towards the 1.0 release.

Further reading

http://hledger.org

57

http://www.bioinf.uni-leipzig.de/Software/gADP/
http://dx.doi.org/10.1109/TCBB.2014.2326155
http://dx.doi.org/10.1007/978-3-319-12418-6_8
https://hackage.haskell.org/package/leapseconds-announced
hledger.org
hledger.org
http://hledger.org/download
http://hledger.org/developer-guide
http://hledger.org/developer-guide
http://hledger.org

7.12.5 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
The program works on Linux, Windows, and thanks

to a contribution by Vincent Rasneur, it now also works
on MacOS X.

Further reading

◦ http://arbtt.nomeata.de/
◦ http://www.joachim-breitner.de/blog/archives/

336-The-Automatic-Rule-Based-Time-Tracker.html
◦ http://arbtt.nomeata.de/doc/users_guide/

7.12.6 Transient

Report by: Alberto Gómez Corona
Status: active development

Transient is a monad/applicative/Alternative with bat-
teries included that bringing the power of high level ef-
fects in order to reduce the learning curve and make
the haskell programmer productive. Effects include
event handling/reactive, backtracking, extensible state,
indetermism, concurrency, parallelism, thread con-
trol and distributed computing, publish/suscribe and
client/server side web programming among others.
What is new in this report is:
◦ Distributed computing primitives have been moved
to a different package: Transient-Universe.

◦ All distributed primitives derive from two basic ones:
wormhole and teleport.

◦ Web browsers act as transient nodes participating in
distributed computing. The transient program com-
piled with ghcjs is sent to the web browser when the
URL point to a transient node with the HTTP proto-
col. Once the program is loaded the web node inter-
act with the server nodes using webSocket commu-
nication using the same transient distributed primi-
tives.

◦ Nodes in Web Browsers can render dynamic HTML
widgets. The widget DSL is in the package ghcjs-
hplay. It is a translation of the package hplayground.

◦ Events triggered int he web browser by the user can
trigger server computations that send results back

and are renderdered in the browser. So transient
can create client/server widgets and these widgets
can be combined with standard haskell combinators
to create more complex ones.
Future work: server-side HTML rendering, making

transient industry strenght, benchmarking, improve re-
source management, create web site.

Further reading

◦ Transient tutorial
◦ distributed Transient, GIT repository
◦ GIT repository of the widget rendering DSL
◦ Transient GIT repository
◦ An EDSL for Hard-working IT programmers
◦ The hardworking programmer II: practical backtracking

to undo actions
◦ Publish-suscribe variables
◦ Moving processes between nodes
◦ Parallel non-determinism
◦ streamimg, distributed streaming, mapReduce with

distributed datasets

7.12.7 tttool

Report by: Joachim Breitner
Status: active development

The Ravensburger Tiptoi R© pen is an interactive toy
for kids aged 4 to 10 that uses OiD technology to react
when pointed at the objects on Ravensburger’s Tiptoi
books, games, puzzles and other toys. It is programmed
via binary files in a proprietary, undocumented data
format.
We have reverse engineered the format, and created

a tool to analyze these files and generate our own. This
program, called tttool, is implemented in Haskell,
which turned out to be a good choice: Thanks to
Haskell’s platform independence, we can easily serve
users on Linux, Windows and OS X.
The implementation makes use of some nice Haskell

idoms such as a monad that, while parsing a binary, cre-
ates a hierarchical description of it and a writer monad
that uses lazyness and MonadFix to reference positions
in the file “before” these are determined.

Further reading

◦ https://github.com/entropia/tip-toi-reveng
◦ http://tttool.entropia.de/ (in German)
◦ http://funktionale-programmierung.de/2015/04/15/

monaden-reverse-engineering.html (in German)

58

http://arbtt.nomeata.de/
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://arbtt.nomeata.de/doc/users_guide/
https://github.com/agocorona/transient/wiki/Transient-tutorial
https://github.com/agocorona/transient-universe
https://github.com/agocorona/ghcjs-hplay
https://github.com/agocorona/transient
https://www.fpcomplete.com/user/agocorona/EDSL-for-hard-working-IT-programmers
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/publish-subscribe-variables-transient-effects-v
https://www.fpcomplete.com/user/agocorona/moving-haskell-processes-between-nodes-transient-effects-iv
https://www.fpcomplete.com/user/agocorona/beautiful-parallel-non-determinism-transient-effects-iii
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1
https://github.com/entropia/tip-toi-reveng
http://tttool.entropia.de/
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html

7.12.8 gipeda

Report by: Joachim Breitner
Status: active development

Gipeda is a a tool that presents data from your pro-
gram’s benchmark suite (or any other source), with nice
tables and shiny graphs. Its name is an abbreviation
for “Git performance dashboard” and highlights that it
is aware of git, with its DAG of commits.

Gipeda powers the GHC performance dashboard at
http://perf.haskell.org, but it builds on Shake and cre-
ates static files, so that hosting a gipeda site is easily
possible. Also, it is useful not only for benchmarks:
The author uses it to track the progress of his thesis,
measured in area covered by the ink.

Further reading

https://github.com/nomeata/gipeda

7.12.9 Octohat (Stack Builders)

Report by: Stack Builders
Participants: Juan Carlos Paucar, Sebastian Estrella,

Juan Pablo Santos
Status: Working, well-tested minimal wrapper

around GitHub’s API

Octohat is a comprehensively test-covered Haskell li-
brary that wraps GitHub’s API. While we have used
it successfully in an open-source project to automate
granting access control to servers, it is in very early
development, and it only covers a small portion of
GitHub’s API.
Octohat is available on Hackage, and the source code

can be found on GitHub.
We have already received some contributions from

the community for Octohat, and we are looking forward
to more contributions in the future.

Further reading

◦ https://github.com/stackbuilders/octohat
◦ Octohat announcement
◦ Octohat update

7.12.10 git-annex

Report by: Joey Hess
Status: stable, actively developed

git-annex allows managing files with git, without check-
ing the file contents into git. While that may seem

paradoxical, it is useful when dealing with files larger
than git can currently easily handle, whether due to
limitations in memory, time, or disk space.
As well as integrating with the git command-line

tools, git-annex includes a graphical app which can be
used to keep a folder synchronized between computers.
This is implemented as a local webapp using yesod and
warp.
git-annex runs on Linux, OSX and other Unixes, and

has been ported to Windows. There is also an incom-
plete but somewhat usable port to Android.
Five years into its development, git-annex has a wide

user community. It is being used by organizations for
purposes as varied as keeping remote Brazilian com-
munities in touch and managing Neurological imaging
data. It is available in a number of Linux distributions,
in OSX Homebrew, and is one of the most downloaded
utilities on Hackage. It was my first Haskell program.

At this point, my goals for git-annex are to continue
to improve its foundations, while at the same time keep-
ing up with the constant flood of suggestions from its
user community, which range from adding support for
storing files on more cloud storage platforms (around
20 are already supported), to improving its usability for
new and non technically inclined users, to scaling bet-
ter to support Big Data, to improving its support for
creating metadata driven views of files in a git reposi-
tory.
At some point I’d also like to split off any one of a

half-dozen general-purpose Haskell libraries that have
grown up inside the git-annex source tree.

Further reading

http://git-annex.branchable.com/

7.12.11 openssh-github-keys (Stack Builders)

Report by: Stack Builders
Participants: Justin Leitgeb
Status: A library to automatically manage SSH

access to servers using GitHub teams

It is common to control access to a Linux server by
changing public keys listed in the authorized_keys
file. Instead of modifying this file to grant and revoke
access, a relatively new feature of OpenSSH allows the

59

http://perf.haskell.org
https://github.com/nomeata/gipeda
https://hackage.haskell.org/package/openssh-github-keys
https://hackage.haskell.org/package/openssh-github-keys
http://hackage.haskell.org/package/octohat
https://github.com/stackbuilders/octohat
https://github.com/stackbuilders/octohat
http://www.stackbuilders.com/news/announcing-octohat-a-new-haskell-wrapper-for-github-s-api
http://www.stackbuilders.com/news/new-octohat-release
http://git-annex.branchable.com/

accepted public keys to be pulled from standard output
of a command.
This package acts as a bridge between the OpenSSH

daemon and GitHub so that you can manage access
to servers by simply changing a GitHub Team, in-
stead of manually modifying the authorized_keys file.
This package uses the Octohat wrapper library for the
GitHub API which we recently released.
openssh-github-keys is still experimental, but we are

using it on a couple of internal servers for testing pur-
poses. It is available on Hackage and contributions and
bug reports are welcome in the GitHub repository.
While we don’t have immediate plans to put openssh-

github-keys into heavier production use, we are inter-
ested in seeing if community members and system ad-
ministrators find it useful for managing server access.

Further reading

https://github.com/stackbuilders/openssh-github-keys

7.12.12 propellor

Report by: Joey Hess
Status: actively developed

Propellor is a configuration management system for
Linux that is configured using Haskell. It fills a simi-
lar role as Puppet, Chef, or Ansible, but using Haskell
instead of the ad-hoc configuration language typical of
such software. Propellor is somewhat inspired by the
functional configuration management of NixOS.
A simple configuration of a web server in Propellor

looks like this:

webServer :: Host
webServer = host "webserver.example.com"

& ipv4 "93.184.216.34"
& staticSiteDeployedTo "/var/www"

‘requires‘ Apt.serviceInstalledRunning "apache2"
‘onChange‘ Apache.reloaded

staticSiteDeployedTo :: FilePath→ Property NoInfo

There have been many benefits to using Haskell for
configuring and building Propellor, but the most strik-
ing are the many ways that the type system can be
used to help ensure that Propellor deploys correct and
consistent systems. Beyond typical static type bene-
fits, GADTs and type families have proven useful. For
details, see the blog.
An eventual goal is for Propellor to use type level

programming to detect at compile time when a host has
eg, multiple servers configured that would fight over the
same port. Moving system administration toward using
types to prove correctness properties of the system.
Another exciting possibility is using Propellor to not

only configure existing Linux systems, but to manage
their entire installation process. This has already been
prototyped in a surprisingly small amount of added

code (under 200 lines), which can replace arbitrary
Linux systems with clean re-installs described entirely
by Propellor’s config.hs.

Further reading

http://propellor.branchable.com/

7.12.13 dimensional: Statically Checked Physical
Dimensions

Report by: Douglas McClean
Participants: Björn Buckwalter, Alberto Valverde

GonzÃąlez
Status: active

Dimensional is a library providing data types for per-
forming arithmetic with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage within
the frame of the SI. Example:

d :: Fractional a ⇒ Time a → Length a
d t = a /_2 ∗ t ˆ pos2

where a = 9.82 ∗˜ (meter / second ˆ pos2)

We are pleased to announce the release of dimen-
sional 1.0, based on the prototype dimensional-dk im-
plementation. Using data kinds and closed type fami-
lies, the new version includes improved Haddock doc-
umentation, unit names with many options for pretty-
printing, exact conversion factors between units (even
between degrees and radians!), types for manipulating
units and quantities whose dimensions are not known
statically, and support for unboxed vectors.
New users with access to GHC 7.8 or later are

strongly encouraged to use dimensional 1.0.
The “classic” dimensional library as released in 2006

is based on multi-parameter type classes and functional
dependencies. It is stable with units being added on
an as-needed basis. The primary documentation is the
literate Haskell source code. Any future maintenance
releases will have version numbers < 1.0.
The dimensional-tf library released in January 2012

a port of dimensional using type families will continue
to be supported but is not recommended for new de-
velopment.

Further reading

https://github.com/bjornbm/dimensional-dk

60

http://hackage.haskell.org/package/octohat
http://hackage.haskell.org/package/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys
http://propellor.branchable.com/posts/
http://propellor.branchable.com/
https://github.com/bjornbm/dimensional-dk

7.12.14 igrf: The International Geomagnetic
Reference Field

Report by: Douglas McClean
Status: active

The igrf library provides a Haskell implementation of
the International Geomagnetic Reference Field, includ-
ing the latest released model values.
Upcoming development efforts include a parser for

the model files as released by the IAGA and a
dimensionally-typed interface using the dimensional li-
brary.

Further reading

https://github.com/dmcclean/igrf

7.12.15 Haskell in Green Land

Report by: Gilberto Melfe
Participants: Luís Gabriel Lima, Francisco Soares-Neto,

Paulo Lieuthier, Fernando Castor, João
Paulo Fernandes

Status: mostly stable, with ongoing extensions

In the Haskell in Green Land initiative we attempt to
understand the energy behavior of programs written in
Haskell. It is particularly interesting to study Haskell
in the context of energy consumption since Haskell has
mature implementations of sophisticated features such
as laziness, partial function application, software trans-
actional memory, tail recursion, and a kind system.
Furthermore, recursion is the norm in Haskell programs
and side effects are restricted by the type system of the
language.
We analyze the energy efficiency of Haskell programs

from two different perspectives:

a) strictness: by default, expressions in Haskell are
lazily evaluated, meaning that any given expres-
sion will only be evaluated when it is first necessary.
This is different from most programming languages,
where expressions are evaluated strictly and possi-
bly multiple times;

b) concurrency: previous work has demonstrated that
concurrent programming constructs can influence
energy consumption in unforeseen ways.

Concretely, we have addressed the following high-
level research question: To what extent can we save
energy by refactoring existing Haskell programs to use
different data structure implementations or concurrent
programming constructs?
In order to address this research question, we con-

ducted two complementary empirical studies:

a) we analyzed the performance and energy behavior of
several benchmark operations over 15 different im-
plementations of three different types of data struc-
tures considered by the Edison Haskell library;

b) we assessed three different thread management con-
structs and three primitives for data sharing using
nine benchmarks and multiple experimental config-
urations.

Overall, experimental space exploration comprises
more than 2000 configurations and 20000 executions.
We found that small changes can make a big differ-

ence in terms of energy consumption. For example, in
one of our benchmarks, under a specific configuration,
choosing one data sharing primitive over another can
yield 60% energy savings. Nonetheless, there is no uni-
versal winner.
In addition, the relationship between energy con-

sumption and performance is not always clear. Gen-
erally, especially in the sequential benchmarks, high
performance is a proxy for low energy consumption.
Nonetheless, when concurrency comes into play, we
found scenarios where the configuration with the best
performance (30% faster than the one with the worst
performance) also exhibited the second worst energy
consumption (used 133% more energy than the one
with the lowest usage).
To support developers in better understanding this

complex relationship, we have extended two existing
tools from the Haskell world:

i) the powerful benchmarking library Criterion;

ii) the profiler that comes with the Glasgow Haskell
Compiler.

Originally, such tools were devised for performance
analysis and we have adapted them to make them
energy-aware.

Further reading

The data for this study, the source code for the
implemented tools and benchmarks as well as a paper
describing all the details of our work can be found at
green-haskell.github.io.
Furthermore, we have referenced the following papers:
◦ Pinto, Gustavo and Castor, Fernando and Liu, Yu

David: Understanding Energy Behaviors of Thread
Management Constructs, Proceedings of the 2014
ACM International Conference on Object Oriented
Programming Systems Languages & Applications

◦ Luís Gabriel Lima and Gilberto Melfe and Francisco
Soares-Neto and Paulo Lieuthier and João Paulo
Fernandes and Fernando Castor, Haskell in Green
Land: Analyzing the Energy Behavior of a Purely
Functional Language, Proceedings of the 23rd IEEE
International Conference on Software Analysis,
Evolution, and Reengineering (SANER’2016)

61

https://github.com/dmcclean/igrf
http://green-haskell.github.io

7.12.16 Kitchen Snitch server

Report by: Dino Morelli
Participants: Betty Diegel
Status: stable, actively developed

This project is the server-side software for Kitchen
Snitch, a mobile application that provides health in-
spection scores, currently for the Raleigh-Durham area
in NC, USA. The data can be accessed on maps along
with inspection details, directions and more.
The back-end software provides a REST API for mo-

bile clients and runs services to perform regular inspec-
tion data acquisition and maintenance.
Kitchen Snitch has been in development for over a

year and is running on AWS. The mobile client and
server were released for public use in April of 2016 after
a beta-test period.
Some screenshots of the Android client software in

action:

Getting Kitchen Snitch:
The mobile client can be installed from the

Google Play Store. There is also a landing page
http://getks.honuapps.com/.
The Haskell server source code is available on darc-

shub at the URLs below.

Further reading

◦ ks-rest http://hub.darcs.net/dino/ks-rest
◦ ks-download http://hub.darcs.net/dino/ks-download
◦ ks-library http://hub.darcs.net/dino/ks-library

7.12.17 DSLsofMath

Report by: Patrik Jansson
Participants: Cezar Ionescu, Irene Lobo Valbuena,

Adam Sandberg Ericsson
Status: active development

“Domain Specific Languages of Mathematics” is a
project at Chalmers University of Technology devel-
oping a new BSc level course and accompanying ma-
terial for learning and applying classical mathematics
(mainly real and complex analysis). The main idea
is to encourage the students to approach mathemati-
cal domains from a functional programming perspec-
tive: to identify the main functions and types involved
and, when necessary, to introduce new abstractions; to
give calculational proofs; to pay attention to the syn-
tax of the mathematical expressions; and, finally, to
organize the resulting functions and types in domain-
specific languages.
The first instance of the course was carried out Jan-

March 2016 at Chalmers and the course material is
available on github. The next step is to write up the
lecture notes as a book during the autumn, in prepa-
ration for the next instance of the course early 2017.
Contributions and ideas are welcome!

Further reading

◦ DSLsofMath (github organisation)
◦ TFPIE 2015 paper
◦ Exam 2016 with solutions

62

https://play.google.com/store/apps/details?id=com.honu.ksnitch
http://getks.honuapps.com/
http://hub.darcs.net/dino/ks-rest
http://hub.darcs.net/dino/ks-download
http://hub.darcs.net/dino/ks-library
https://github.com/DSLsofMath/DSLsofMath
https://github.com/DSLsofMath
https://github.com/DSLsofMath/tfpie2015
https://github.com/DSLsofMath/DSLsofMath/blob/master/Exam/2016-03/

8 Commercial Users

8.1 Well-Typed LLP

Report by: Andres Löh
Participants: Duncan Coutts, Adam Gundry

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
We have been working on a large number of different

projects for various clients, most of which are unfortu-
nately not publically visible.
Here is a non-exhaustive list of open-source contri-

butions we have made:
Ben Gamari and Austin Seipp have been helping

with the GHC 8.0 release (→ 3.1).
Duncan Coutts and Austin Seipp have put a lot of

effort into the binary-serialise-cbor library, which
is intended to be an improved version of (large parts
of) the binary package. With the help of many other
contributors, the package is now nearly release-ready.
Duncan Coutts has been working on bringing nix-

style local builds to Cabal (→ 6.3.1).
Andres Löh has helped with the development of the

Haskell Servant web framework, continuing to improve
routing. This work is included in the 0.7 release.
In October 2016, we are planning to organize Haskell

courses in London as well as the Haskell eXchange
again. There will be a public call for contributions
soon.
If you are interested in getting information about

Well-Typed events (such as conferences or courses we
are participating in or organizing), you can subscribe
to a new mailing list at http://www.well-typed.com/
cgi-bin/mailman/listinfo/events.
We are also always looking for new clients and

projects, so if you have something we could help you
with, or even would just like to tell us about your use
of Haskell, please just drop us an e-mail.

Further reading

◦ Company page: http://www.well-typed.com
◦ Blog: http://blog.well-typed.com/
◦ binary-serialise-cbor package:
https://github.com/well-typed/binary-serialise-cbor/

◦ Austin talk on binary-serialise-cbor at Boston
Haskell Meetup:
https://www.youtube.com/watch?v=Mj2cXQXgyWE

◦ Servant: http://haskell-servant.readthedocs.io/
◦ Haskell eXchange 2016 (registration):

https://skillsmatter.com/conferences/
7276-haskell-exchange-2016

◦ Haskell courses in London:
https://skillsmatter.com/explore?content=courses&
location=&q=tag%3Ahaskell

◦ Training page:
http://www.well-typed.com/services_training

◦ Well-Typed events mailing list: http://www.
well-typed.com/cgi-bin/mailman/listinfo/events

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: Commercial product; free for academia

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.
BSV is used for all aspects of ASIC and FPGA de-

sign — specification, synthesis, modeling, and verifi-
cation. Digital circuits are described using a nota-
tion with Haskell semantics, including algebraic types,
polymorphism, type classes, higher-order functions and
monadic elaboration. Strong static checking is also
used to support discipline for multiple clock-domains
and gated clocks. The dynamic semantics of a such
circuits are described using Term Rewriting Systems
(which are essentially atomic state transitions). BSV
is applicable to all kinds of hardware systems, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches,
and to complete SoCs (Systems on a Chip).
Perhaps uniquely among hardware-design languages,

BSV’s rewrite rules enable design-by-refinement, where
an initial executable approximate design is systemati-
cally transformed into a quality implementation by suc-
cessively adding functionality and architectural detail.
Before synthesizing to hardare, a circuit description

can be executed and debugged in Bluesim, a fast simu-
lation tool. Then, the bsc tool compiles BSV into high-
quality Verilog, which is then further synthesized into
netlists for ASICs and FPGAs using standard synthesis
tools. There are extensive libraries and infrastructure
components to make it easy to build FPGA-based ac-
celerators for compute-intensive software.
Bluespec also provides implementations and develop-

ment environments for CPUs based on the U.C. Berke-
ley RISC-V instruction set (www.riscv.org).

63

mailto: info at well-typed.com
http://www.well-typed.com/cgi-bin/mailman/listinfo/events
http://www.well-typed.com/cgi-bin/mailman/listinfo/events
http://www.well-typed.com
http://blog.well-typed.com/
https://github.com/well-typed/binary-serialise-cbor/
https://www.youtube.com/watch?v=Mj2cXQXgyWE
http://haskell-servant.readthedocs.io/
https://skillsmatter.com/conferences/7276-haskell-exchange-2016
https://skillsmatter.com/conferences/7276-haskell-exchange-2016
https://skillsmatter.com/explore?content=courses&location=&q=tag%3Ahaskell
https://skillsmatter.com/explore?content=courses&location=&q=tag%3Ahaskell
http://www.well-typed.com/services_training
http://www.well-typed.com/cgi-bin/mailman/listinfo/events
http://www.well-typed.com/cgi-bin/mailman/listinfo/events

Status and availability

BSV tools have been available since 2004, both com-
mercially and free for academic teaching and research.
It is used in a several leading universities (incl. MIT,
U.Cambridge, and IIT Chennai) for computer architec-
ture research.

Further reading

◦ Types, Functional Programming and Atomic
Transactions in Hardware Design, R.S. Nikhil, in In
Search of Elegance in the Theory and Practice of
Computation, Essays dedicated to Peter Buneman
(Festschrift), Springer-Verlag Lecture Notes in
Computer Science, LNCS 8000, pp.418-431, 2013.

◦ Abstraction in Hardware System Design, R.S.
Nikhil, in Communications of the ACM, 54:10,
October 2011, pp. 36-44.

◦ BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com (or free PDF from
Bluespec, Inc.)

◦ http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

◦ http:
//www.cl.cam.ac.uk/~swm11/examples/bluespec/:
Simon Moore’s BSV examples (U. Cambridge).

◦ http://csg.csail.mit.edu/6.375: Complex Digital
Systems, MIT courseware.

8.3 Better

Report by: Carl Baatz

Better provides a platform for delivering adaptive on-
line training to students and employees.
Companies and universities work with us to develop

courses which are capable of adapting to individual
learners. This adaptivity is based on evidence we col-
lect about the learner’s understanding of the course ma-
terial (primarily by means of frequent light-weight as-
sessments). These courses run on our platform, which
exposes a (mobile-compatible) web interface to learn-
ers. The platform also generates course statistics so
that managers/teachers can monitor the progress of the
class taking the course and evaluate its effectiveness.
The backend is entirely written in Haskell. We use

the snap web framework and we have a storage layer
written on top of postgres-simple which abstracts
data retrieval, modification, and versioning. The choice
of language has worked out well for us: as well as the joy
of writing Haskell for a living, we get straightforward
deployment and extensive server monitoring courtesy
of ekg. Using GHC’s profiling capabilities, we have
also managed to squeeze some impressive performance
out of our deployment.
The application-specific logic is all written in Haskell,

as is most of the view layer. As much rendering as pos-
sible is performed on the backend using blaze-html,

and the results are sent to a fairly thin single-page
web application written in Typescript (which, while
not perfect, brings some invaluable static analysis to
our front-end codebase).
The company is based in Zurich, and the majority of

the engineering team are Haskellers. We enjoy a high
level of involvement with the Zurich Haskell commu-
nity and are delighted to be able to host the monthly
HaskellerZ user group meetups and the yearly ZuriHac
hackathon.

8.4 Keera Studios LTD

Report by: Ivan Perez

Keera Studios Ltd. is a game development studio
that uses Haskell to create mobile and desktop games.
We have published Magic Cookies!, the first commercial
game for Android written in Haskell, now available on
Google PlayTM (https://goo.gl/cM1tD8).
We have also shown a breakout-like game running on

a Android tablet (http://goo.gl/53pK2x), using hard-
ware acceleration and parallelism. The desktop version
of this game additionally supports Nintendo Wiimotes
and Kinect. This proves that Haskell truly is viable op-
tion for professional game development, both for mobile
and for desktop. A new game is currently being devel-
oped for Android and iOS.

In order to provide more reliable code for our clients,
we have developed a battery of small Haskell mobile
apps, each testing only one feature. We have dozens of
apps, covering SDL and multimedia including multi-
touch support, accelerometers, and stereoscopy (for
more realistic depth and 3D effects). Our battery also
includes apps that communicate with Java via C/C++,

64

http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
https://goo.gl/cM1tD8
http://goo.gl/53pK2x

used for Facebook/Twitter status sharing, to save game
preferences using Android’s built-in Shared Preferences
storage system, or to create Android widgets. We have
also started the Haskell Game Programming project
http://git.io/vlxtJ, which contains documentation and
multiple examples of multimedia, access to gaming
hardware, physics and game concepts. We continue
to participate in Haskell meetings and engaging in the
community, with a recent talk on Game Programming
at the Haskell eXchange 2015.
We have developed GALE, a DSL for graphic adven-

tures, together with an engine and a basic IDE that al-
lows non-programmers to create their own 2D graphic
adventure games without any knowledge of program-
ming. Supported features include multiple charac-
ter states and animations, multiple scenes and lay-
ers, movement bitmasks (used for shortest-path cal-
culation), luggage, conversations, sound effects, back-
ground music, and a customizable UI. The IDE takes
care of asset management, generating a fully portable
game with all the necessary files. The engine is multi-
platform, working seamlessly on Linux, Windows and
Android. We are continue beta-testing GALE games
on Google Play.
We have released Keera Hails, the reactive library

we use for desktop GUI applications, as Open Source
(http://git.io/vTvXg). Keera Hails is being actively
developed and provides integration with Gtk+, net-
work sockets, files, FRP Yampa signal functions and
other external resources. Experimental integration
with wxWidgets and Qt is also available, and newer
versions include partial backends for Android (using
Android’s default widget system, communicating via
FFI) and HTML DOM (via GHCJS). We are work-
ing on providing complete backends for all major GUI
toolkits and platforms. Recent updates to our project
are geared towards adding documentation, tests and
benchmarks, in order to facilitate using, understanding
and extending the framework and guaranteeing a high
level of quality.
Apart from implementing a simple yet powerful form

of reactivity, Keera Hails addresses common prob-
lems in Model-View-Controller, providing an applica-
tion skeleton with a scalable architecture and thread-
safe access to the application’s internal model. Accom-
panying libraries feature standarised solutions for com-
mon features such as configuration files and interna-
tionalisation. We have used this framework in commer-
cial applications (including but not limited to GALE
IDE), and in the Open-Source posture monitor Keera
Posture (http://git.io/vTvXy). Links to these applica-
tions, examples, demos and papers, including a recent
paper on Reactive Values and Relations presented at
the Haskell Symposium 2015, are available on our web-
site.
We are committed to using Haskell for all our

operations. For games we often opt for the Ar-
rowized Functional Reactive Programming Domain-

Specific Language Yampa (http://git.io/vTvxQ) or for
Keera GALE. For desktop GUI applications we use our
own Keera Hails (http://git.io/vTvXg). To create web
applications and internal support tools we use Yesod,
and continue developing our project management, is-
sue tracking and invoicing web application to facilitate
communication with our clients.

Screenshots, videos and details are pub-
lished regularly on our Facebook page
(https://www.facebook.com/keerastudios) and on
our company website (http://www.keera.co.uk). If
you want to use Haskell in your next game, desktop or
web application, or to receive more information, please
contact us at .

8.5 Stack Builders

Report by: Stack Builders
Status: software consultancy

Stack Builders is an international Haskell and Ruby
agile software consultancy with offices in New York,
United States, and Quito, Ecuador.

In addition to our Haskell software consultancy ser-
vices, we are actively involved with the Haskell com-
munity:

◦ We organize Quito Lambda, a monthly meetup
about functional programming in Quito, Ecuador.

◦ We maintain several packages in Hackage includ-
ing hapistrano, inflections, octohat, openssh-github-
keys, and twitter-feed.

◦ We talk about Haskell at universities and events such
as Lambda Days and BarCamp Rochester.

◦ We write blog posts and tutorials about Haskell.

For more information, take a look at our website or
get in touch with us at info@stackbuilders.com.

Further reading

http://www.stackbuilders.com/

65

http://git.io/vlxtJ
http://git.io/vTvXg
http://git.io/vTvXy
http://git.io/vTvxQ
http://git.io/vTvXg
https://www.facebook.com/keerastudios
http://www.keera.co.uk
mailto:keera\protect \unhbox \voidb@x \hbox {\protect \protect \begingroup \def \MessageBreak {
(scrreprt) }\let \protect \immediate\write \@unused {
Class scrreprt Warning: Usage of deprecated font command `\tt'!\MessageBreak You should note, that in 1994 font command `\tt' has\MessageBreak been defined for compatiblitiy to Script 2.0 only.\MessageBreak Now, after two decades of LaTeX2e and NFSS2, you\MessageBreak shouldn't use such commands any longer and within\MessageBreak KOMA-Script usage of `\tt' is definitely deprecated.\MessageBreak See `fntguide.pdf' for more information about\MessageBreak recommended font commands.\MessageBreak Note also, that KOMA-Script will remove the definition\MessageBreak of `\tt' anytime until release of about version 3.20.\MessageBreak But for now, KOMA-Script will replace deprecated `\tt'\MessageBreak by `\normalfont \ttfamily ' on input line 20470.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update keera\char 46{}co\char 46{}uk\char 125{}\char 123{}keera}keera.co.uk
mailto:info@stackbuilders.com
http://www.stackbuilders.com/

8.6 Optimal Computational Algorithms,
Inc.

Report by: Christopher Anand

OCA develops high-performance, high-assurance
mathematical software using Coconut (COde CON-
structing User Tool), a hierarchy of DSLs embedded
in Haskell, which were originally developed at McMas-
ter University. The DSLs encode declarative assembly
language, symbolic linear algebra, and algebraic trans-
formations. Accompanying tools include interpreters,
simulators, instruction schedulers, code transformers
(both rule-based and ad-hoc) and graph and schedule
visualizers.

To date, Coconut math function libraries have been
developed for five commercial architectures. Taking
advantage of Cocont’s symbolic code generation, soft-
ware for reconstructing multi-coil Magnetic Resonance
Images was generated from a high-level mathematical
specification. The implementation makes full use of
dual-CPUs, multiple cores and SIMD parallelism, and
is licensed to a multi-national company. The specifica-
tion is transformed using rules for symbolic differenti-
ation, algebraic simplification and parallelization. The
soundness of the generated parallelization can be veri-
fied in linear time (measured with respect to program
size).

Further reading

◦ http://www.cas.mcmaster.ca/~kahl/Publications/
TR/Anand-Kahl-2007a_DSL/

◦ http://www.cas.mcmaster.ca/~anand/papers/
AnandKahlThaller2006.pdf

◦ http://www.cas.mcmaster.ca/sqrl/papers/
SQRLreport50.pdf

◦ https://macsphere.mcmaster.ca/handle/11375/10755
◦ http://www.cas.mcmaster.ca/~anand/papers/

CAS-14-05-CA.pdf

8.7 Snowdrift.coop

Report by: Bryan Richter
Participants: Aaron Wolf et al.
Status: Work in progress

Snowdrift.coop is a web platform for funding and
supporting free/libre/open projects. We are tackling
the ‘snowdrift dilemma’ that limits contributions to
non-rivalrous goods such as open-source software. The
organization is a non-profit multi-stakeholder cooper-
ative, and all code is available under OSI- and FSF-
approved licenses. Haskell is our primary programming
language, and we welcome any interested contributors
to help us accelerate our progress.
In our current work we have recently focused on three

main areas: 1) opening the project to greater participa-
tion through code refactoring and tool development, 2)
firming up the co-op governance structure, and 3) cre-
ating a comprehensive design framework for the web-
site. There is also plenty of ongoing feature develop-
ment on various aspects of the live site.
One notable contribution Snowdrift has made to the

Haskell ecosystem is a thorough ‘getting started’ ex-
perience for beginners, from text editor suggestions to
introductions to git. As part of that effort, we have de-
veloped a foolproof build process, with a tip of our hats
to the new tool stack, and have developed a database
initialization tool and various Yesod integrations with
ghci and text editors. Interested contributors will find
many opportunities for progress in this area.
The funding mechanism is not yet functional but pro-

gressing. Once functional, Snowdrift.coop itself will be
a supported project, and should prove to be an ex-
cellent test-case for the adoption and success of the
concept. In the meanwhile, we are actively looking
for ways to improve both productivity and opportu-
nities for our distributed team of volunteers. Expe-
rienced Haskellers are invited to mentor volunteers,
take ownership of component libraries, and provide
opinions and insights. New Haskellers—not to men-
tion designers, writers, economists, legal professionals,
or anyone else philosophically inclined to our mission
of freeing the commons—are especially welcome; we
pride ourselves on being inclusive and approachable by
(non-)programmers at any level of technical sophistica-
tion!

Further reading

◦ https://snowdrift.coop
◦ https://lists.snowdrift.coop
◦ https://git.gnu.io/snowdrift

66

http://www.cas.mcmaster.ca/~kahl/Publications/TR/Anand-Kahl-2007a_DSL/
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Anand-Kahl-2007a_DSL/
http://www.cas.mcmaster.ca/~anand/papers/AnandKahlThaller2006.pdf
http://www.cas.mcmaster.ca/~anand/papers/AnandKahlThaller2006.pdf
http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport50.pdf
http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport50.pdf
https://macsphere.mcmaster.ca/handle/11375/10755
http://www.cas.mcmaster.ca/~anand/papers/CAS-14-05-CA.pdf
http://www.cas.mcmaster.ca/~anand/papers/CAS-14-05-CA.pdf
https://snowdrift.coop
https://lists.snowdrift.coop
https://git.gnu.io/snowdrift

8.8 McMaster Computing and Software
Outreach

Report by: Christopher Anand
Status: active

McMaster Computing and Software Outreach visits
schools in Ontario, Canada to teach basic Computer
Science topics and discuss the impacts of the Infor-
mation Revolution, teaching children from six to six-
teen. In 2015, we swapped out Python in our pro-
gramming activities for ELM, which is a functional re-
placement for JavaScript. ELM looks a lot like Haskell,
but does not have user-definable type classes and is
strict. Thanks largely to ELM, we tripled the number
of children in our workshops to 3500. Our hypothesis
is that declarative programming matches the computa-
tional model instructed in basic algebra, which receives
significant attention in the Ontario curriculum. But it
is possible that other aspects of the language are more
important. We also believe that immediate graphical
feedback is important, as do many other educators, but
since declarative specifications of vector graphics are
significantly simpler than stateful constructions, these
issues are not orthogonal.
We would like to thank Evan Czapliki for creating

ELM, and assisting us.
To see what children with no programming experi-

ence can accomplish in a declarative language in a just
a few hours, please visit http://outreach.mcmaster.ca/
menu/fame.html. Note that grade 4 students are about
ten years old.

67

http://outreach.mcmaster.ca/menu/fame.html
http://outreach.mcmaster.ca/menu/fame.html

9 Research and User Groups

9.1 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on functional pro-
gramming – mostly taught in Haskell – at Eötvös
Loránd University, Faculty of Informatics. Currently,
we are offering the following courses in that regard:
◦ Functional programming for first-year Hungarian un-
dergraduates in Software Technology and second-
year Hungarian teacher of informatics students, both
as part of their official curriculum.

◦ An additional semester on functional programming
with Haskell for bachelor’s students, where many of
the advanced concepts are featured, such as algebraic
data types, type classes, functors, monads and their
use. This is an optional course for Hungarian under-
graduate and master’s students, supported by the
Eötvös József Collegium.

◦ Functional programming for Hungarian and foreign-
language master’s students in Software Technol-
ogy. The curriculum assumes no prior knowledge
on the subject in the beginning, then through teach-
ing the basics, it gradually advances to discussion
of parallel and concurrent programming, property-
based testing, purely functional data structures,
efficient I/O implementations, embedded domain-
specific languages, and reactive programming. It is
taught in both one- and two-semester formats, where
the latter employs the Clean language for the first
semester.
In addition to these, there is also a Haskell-related

course, Type Systems of Programming Languages,
taught for Hungarian master’s students in Software
Technology. This course gives a more formal intro-
duction to the basics and mechanics of type systems
applied in many statically-typed functional languages.
For teaching some of the courses mentioned above,

we have been using an interactive online evaluation
and testing system, called ActiveHs. It contains sev-
eral dozens of systematized exercises, and through that,
some of our course materials are available there in En-
glish as well.
Our homebrew online assignment management sys-

tem, "BE-AD" keeps working on for the fourth semester
starting from this September. The BE-AD system is
implemented almost entirely in Haskell, based on the
Snap web framework and Bootstrap. Its goal to help
the lecturers with scheduling course assignments and
tests, and it can automatically check the submitted so-

lutions as an option. It currently has over 700 users and
it provides support for 12 courses at the department, in-
cluding all that are related to functional programming.
This is still in an alpha status yet so it is not available
on Hackage as of yet, only on GitHub, but so far it has
been performing well, especially in combination with
ActiveHs.

Further reading

◦ Haskell course materials (in English):
http://pnyf.inf.elte.hu/fp/Index_en.xml

◦ Agda tutorial (in English):
http://people.inf.elte.hu/pgj/agda/tutorial/

◦ ActiveHs:
http://hackage.haskell.org/package/activehs

◦ BE-AD: http://github.com/andorp/bead

9.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Manfred Schmidt-Schauß

Semantics of Functional Programming Lan-
guages. Extended call-by-need lambda calculi model
the semantics of Haskell. We analyze the semantics of
those calculi with a special focus on the correctness of
program analyses and program transformations. In our
recent research, we use Haskell to develop automated
tools to show correctness of program transformations,
where the method is syntax-oriented and computes so-
called forking and commuting diagrams by a combina-
tion of several unification algorithms.
Improvements In recent research we analyzed

whether program transformations are optimizations,
i.e. whether they improve the time resource behavior.
We showed that common subexpression elimination is
an improvement, also under polymorphic typing. We
developed methods for better reasoning about improve-
ments in the presence of sharing, i.e. in call-by-need
calculi. Ongoing work is to enhance the techniques to
(preferably automatically) verify that program trans-
formations are improvements.
Concurrency. We analyzed a higher-order func-

tional language with concurrent threads, monadic IO,
MVars and concurrent futures which models Concur-
rent Haskell. We proved that this language conserva-
tively extends the purely functional core of Haskell. In
a similar program calculus we proved correctness of a

68

http://pnyf.inf.elte.hu/fp/Index_en.xml
http://people.inf.elte.hu/pgj/agda/tutorial/
http://hackage.haskell.org/package/activehs
http://github.com/andorp/bead

highly concurrent implementation of Software Trans-
actional Memory (STM) and developed an alternative
implementation of STM Haskell which performs quite
early conflict detection.
Grammar based compression. This research

topic focuses on algorithms on grammar compressed
data like strings, matrices, and terms. Our goal is to
reconstruct known algorithms on uncompressed data
for their use on grammars without prior decompression.
We implemented several algorithms as a Haskell library
including efficient algorithms for fully compressed pat-
tern matching.
Cycle Rewriting. Cycle rewrite applies string

rewriting to cycles – a cycle is a string where start and
end are connected. We developed techniques to prove
cycle termination. A tool (cycsrs) was implemented
in Haskell to show termination by transformation and
then using automated termination provers. Also tools
to prove cycle termination by trace-decreasing ma-
trix interpretations and to disprove termination by a
smart search for counter-examples were implemented
in Haskell. It participated in the Termination Compe-
tition 2015.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell,
we use for example also Erlang and ML, Haskell pro-
vides a major focus and common language for teaching
and research.
Our members pursue a variety of Haskell-related

projects, several of which are reported in other sections
of this report. Stephen Adams is working on advanced
refactoring of Haskell programs, extending HaRe. An-
dreas Reuleaux is building in Haskell a refactoring tool
for a dependently typed functional language. Maarten
Faddegon is working on making tracing for Haskell
practical and easy to use by building the lightweight
tracer and debugger Hoed. Olaf Chitil is also working
on tracing, including the further development of the
Haskell tracer Hat, and on type error debugging. Meng
Wang is working on lenses, bidirectional transforma-
tion and property-based testing (QuickCheck). Scott
Owens is working on verified compilers for the (strict)

functional language CakeML. He and Simon Thompson
are also working on verified refactoring. Recently Ste-
fan Kahrs worked on minimising regular expressions,
implemented in Haskell.
We are always looking for more PhD students. We

are particularly keen to recruit students interested in
programming tools for verification, tracing, refactoring,
type checking and any useful feedback for a program-
mer. The school and university have support for strong
candidates: more details at http://www.cs.kent.ac.uk/
pg or contact any of us individually by email.
We are also keen to attract researchers to Kent

to work with us. There are many opportunities
for research funding that could be taken up at
Kent, as shown in the website http://www.kent.ac.uk/
researchservices/sciences/fellowships/index.html. Please
let us know if you’re interested in applying for one of
these, and we’ll be happy to work with you on this.
Finally, if you would like to visit Kent, either to give

a seminar if you’re passing through London or the UK,
or to stay for a longer period, please let us know.

Further reading

◦ PLAS group:
http://www.cs.kent.ac.uk/research/groups/plas/

◦ Maarten Faddegon and Olaf Chitil: Lightweight
Computation Tree Tracing for Lazy Functional
Languages. PLDI 2016.

◦ Haskell: the craft of functional programming:
http://www.haskellcraft.com

◦ Refactoring Functional Programs: http:
//www.cs.kent.ac.uk/research/groups/plas/hare.html

◦ Hoed, a lightweight Haskell tracer and debugger:
https://github.com/MaartenFaddegon/Hoed

◦ Hat, the Haskell Tracer:
http://projects.haskell.org/hat/

◦ CakeML, a verification friendly dialect of SML:
https://cakeml.org

◦ Heat, an IDE for learning Haskell:
http://www.cs.kent.ac.uk/projects/heat/

9.4 Haskell at KU Leuven, Belgium

Report by: Tom Schrijvers

Functional Programming, and Haskell in particular, is
an active topic of research and teaching in the Declar-
ative Languages & Systems group of KU Leuven, Bel-
gium.

Teaching Haskell is an integral part of the curricu-
lum for both informatics bachelors and masters of en-
gineering in computer science. In addition, we offer
and supervise a range of Haskell-related master thesis
topics.

69

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/pg
http://www.cs.kent.ac.uk/pg
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
https://github.com/MaartenFaddegon/Hoed
http://projects.haskell.org/hat/
https://cakeml.org
http://www.cs.kent.ac.uk/projects/heat/

Research We actively pursue various Haskell-related
lines of research. Some recent and ongoing work:
◦ Steven Keuchel works on InBound, a Haskell-
like DSL for specifying abstract syntax trees with
binders.

◦ George Karachlias works on extending GHC’s pat-
tern match checker to deal with GADTs, in collab-
oration with Dimitrios Vytiniotis and Simon Peyton
Jones.

◦ Alexander Vandenbroucke extends the nondetermin-
ism monad with tabulation, a form of memoization
“on steroids” from logic programming.

◦ With Nicolas Wu we have recently worked on fusion
for free monads to obtain efficient algebraic effect
handlers. See our forthcoming MPC 2015 paper.

◦ With Mauro Jaskelioff and Exequiel Rivas we launch
a new slogan:

Nondeterminism monads are just near-
semirings in the category of endofunctors,
what’s the problem?

See our forthcoming paper at PPDP 2015.

Leuven Haskell User Group We host the Leuven
Haskell User Group, which has held its first meet-
ing on March 3, 2015. The group meets roughly
every other week and combines formal presentations
with informal discussion. For more information: http:
//groups.google.com/forum/#!forum/leuven-haskell

Further reading

http://people.cs.kuleuven.be/~tom.schrijvers/Research/

9.5 HaskellMN

Report by: Kyle Marek-Spartz
Participants: Tyler Holien
Status: ongoing

HaskellMN is a user group from Minnesota. We have
monthly meetings on the thirdWednesday in downtown
Saint Paul.

Further reading

http://www.haskell.mn

9.6 Functional Programming at KU

Report by: Andrew Gill
Status: ongoing

Functional Programming continues at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andrew Gill) together form the core functional pro-
gramming initiative at KU. All the Haskell related KU
projects are now focused on use-cases for the remote
monad design pattern (→ 6.4.11). One example is the
Haskino Project (→ 6.1.6).

Further reading

The Functional Programming Group: http://www.ittc.
ku.edu/csdl/fpg

9.7 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. Members of the group include users
of Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb–Nov) and meet on
the fourth Wednesday of each month. We regularly get
40–50 attendees, with a 70/30 industry/research split.
Talks this year have included material on compilers,
theorem proving, type systems, Haskell web program-
ming, dynamic programming, Scala and more. We usu-
ally have about 90 mins of talks, starting at 6:30pm.
All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/
◦ http://fp-syd.ouroborus.net/wiki/Past/2016

70

http://groups.google.com/forum/#!forum/leuven-haskell
http://groups.google.com/forum/#!forum/leuven-haskell
http://people.cs.kuleuven.be/~tom.schrijvers/Research/
http://www.haskell.mn
http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2016

9.8 Regensburg Haskell Meetup

Report by: Andres Löh

Since autumn 2014 Haskellers in Regensburg, Bavaria,
Germany have been meeting roughly once per month
to socialize and discuss Haskell-related topics.

I’m happy to say that this meetup continues to
thrive. We typically have between 10 and 15 atten-
dees (which is really not bad if you consider the size of
Regensburg), and we often get visitors from Munich,
Nürnberg and Passau.

New members are always welcome, whether they
are Haskell beginners or experts. If you are living
in the area or visiting, please join! Meetings are an-
nounced a few weeks in advance on our meetup page:
http://www.meetup.com/Regensburg-Haskell-Meetup/.

9.9 Curry Club Augsburg

Report by: Ingo Blechschmidt
Status: active

Since March 2015 haskellistas, scalafists, lambdroids,
and other fans of functional programming languages in
Augsburg, Bavaria, Germany have been meeting every
four weeks in the OpenLab, Augsburg’s hacker space.
Usually there are ten to twenty attendees.
At each meeting, there are typically two to three

talks on a wide range of topics of interest to Haskell
programmers, such as latest news from the Kmettiverse
and introductions to the category-theoretic background
of freer monads. Afterwards we have stimulating dis-
cussions while dining together.

From time to time we offer free workshops to intro-
duce new programmers to the joy of Haskell.
Newcomers are always welcome! Recordings of our

talks are available at http://www.curry-club-augsburg.
de/.

Further reading

http://www.curry-club-augsburg.de/

9.10 Italian Haskell Group

Report by: Francesco Ariis
Status: ongoing

Born in Summer 2015, the Italian Haskell Group is an
effort to advocate functional programming and share
our passion for Haskell through real-life meetings, dis-
cussion groups and community projects.
There have been 3 meetups (in Milan, Bologna and

Florence), our plans to continue with a quarterly sched-
ule. Anyone from the experienced hacker to the func-
tionally curious newbie is welcome; during the rest of
the year you can join us on our irc/mumble channel for
haskell-related discussions and activities.

Further reading
◦ site: http://haskell-ita.it/
◦ IRC channel:

https://webchat.freenode.net/?channels=%23haskell.it
◦ Discussion forum :

https://groups.google.com/forum/#!forum/haskell_ita

71

http://www.meetup.com/Regensburg-Haskell-Meetup/
http://www.curry-club-augsburg.de/
http://www.curry-club-augsburg.de/
http://www.curry-club-augsburg.de/
http://haskell-ita.it/
https://webchat.freenode.net/?channels=%23haskell.it
https://groups.google.com/forum/#!forum/haskell_ita

	Community
	Haskell' — Haskell 2020
	Haskellers

	Books, Articles, Tutorials
	Oleg's Mini Tutorials and Assorted Small Projects
	School of Haskell
	Haskell Programming from first principles, a book forall
	Learning Haskell

	Implementations
	The Glasgow Haskell Compiler
	The Helium Compiler
	UHC, Utrecht Haskell Compiler
	Frege
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Fedora Haskell SIG

	Related Languages and Language Design
	Agda
	Disciple

	Haskell and …
	Haskell and Parallelism
	Eden
	Auto-parallelizing Pure Functional Language System

	Haskell and the Web
	WAI
	Yesod
	Warp
	Mighttpd2 — Yet another Web Server
	Happstack
	Snap Framework
	MFlow
	JS Bridge
	PureScript

	Haskell and Compiler Writing
	MateVM
	UUAG

	Development Tools
	Environments
	ghc-mod — Happy Haskell Programming
	haskell-ide-engine, a project for unifying IDE functionality
	Haskell IDE From FP Complete
	HaRe — The Haskell Refactorer
	ghc-exactprint
	Haskino
	IHaskell: Haskell for Interactive Computing
	Haskell for Mac

	Code Management
	Darcs
	cab — A Maintenance Command of Haskell Cabal Packages

	Deployment
	Cabal
	The Stack build tool
	Stackage: the Library Dependency Solution
	Haskell Cloud

	Others
	ghc-heap-view
	ghc-vis
	Hat — the Haskell Tracer
	Tasty
	Generic random generators
	Automatic type inference from JSON
	Exference
	Lentil
	Hoed – The Lightweight Algorithmic Debugger for Haskell
	Déjà Fu: Concurrency Testing
	The Remote Monad Design Pattern

	Libraries, Applications, Projects
	Language Features
	Conduit
	GHC type-checker plugin for kind Nat
	Dependent Haskell
	Yampa

	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners
	The Incredible Proof Machine

	Mathematics, Numerical Packages and High Performance Computing
	hblas
	Numerical
	combinat
	petsc-hs

	Data Types and Data Structures
	Transactional Trie
	fixplate
	generics-sop

	Databases and Related Tools
	Persistent
	Riak bindings
	Opaleye
	HLINQ - LINQ for Haskell
	YeshQL

	User Interfaces
	HsQML
	threepenny-gui
	reactive-banana
	fltkhs - GUI bindings to the FLTK library
	wxHaskell

	Graphics and Audio
	vect
	diagrams
	Chordify
	csound-expression
	hmidi

	Text and Markup Languages
	lhs2TeX
	pulp
	Unicode things
	Ginger

	Natural Language Processing
	NLP
	GenI

	Embedding DSLs for Low-Level Processing
	CaSH
	Feldspar

	Games
	EtaMOO
	scroll
	Nomyx
	Barbarossa

	Others
	ADPfusion
	Generalized Algebraic Dynamic Programming
	leapseconds-announced
	hledger
	arbtt
	Transient
	tttool
	gipeda
	Octohat (Stack Builders)
	git-annex
	openssh-github-keys (Stack Builders)
	propellor
	dimensional: Statically Checked Physical Dimensions
	igrf: The International Geomagnetic Reference Field
	Haskell in Green Land
	Kitchen Snitch server
	DSLsofMath

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Better
	Keera Studios LTD
	Stack Builders
	Optimal Computational Algorithms, Inc.
	Snowdrift.coop
	McMaster Computing and Software Outreach

	Research and User Groups
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Haskell at KU Leuven, Belgium
	HaskellMN
	Functional Programming at KU
	fp-syd: Functional Programming in Sydney, Australia
	Regensburg Haskell Meetup
	Curry Club Augsburg
	Italian Haskell Group

