
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Thirty Second Edition — May 2017

Mihai Maruseac (ed.)
Chris Allen Christopher Anand Moritz Angermann

Francesco Ariis Heinrich Apfelmus Emil Axelsson
Gershom Bazerman Doug Beardsley Ingo Blechschmidt
Emanuel Borsboom Jan Bracker Jeroen Bransen
Joachim Breitner Björn Buckwalter Erik de Castro Lopo

Manuel M. T. Chakravarty Olaf Chitil Alberto Gómez Corona
Nils Dallmeyer Tobias Dammers Kei Davis

Dimitri DeFigueiredo Richard Eisenberg Tom Ellis
Maarten Faddegon Dennis Felsing Olle Fredriksson

Phil Freeman PÁLI Gábor János Ben Gamari
Michael Georgoulopoulos Andrew Gill Mikhail Glushenkov

Mark Grebe Adam Gundry Jurriaan Hage
Bastiaan Heeren Sylvain Henry Joey Hess

Guillaume Hoffmann Graham Hutton Nicu Ionita
Patrik Jansson Anton Kholomiov Harendra Kumar
Oleg Kiselyov Rob Leslie Ben Lippmeier
Andres Löh Rita Loogen Tim Matthews

Gilberto Melfe Simon Michael Andrey Mokhov
Dino Morelli Antonio Nikishaev Wisnu Adi Nurcahyo
Ulf Norell Ivan Perez Jens Petersen

Bryan Richter Herbert Valerio Riedel Sibi Prabakaran
Alexey Radkov Michael Schröder Jeremy Shaw

Christian Höner zu Siederdissen Jeremy Singer Gideon Sireling
Michael Snoyman David Sorokin Lennart Spitzner
Yuriy Syrovetskiy Jonathan Thaler Henk-Jan van Tuyl
Michael Walker Ingo Wechsung Li-yao Xia
Kazu Yamamoto Yuji Yamamoto Brent Yorgey
Marco Zocca Stack Builders

http://tinyurl.com/haskcar


Preface

This is the 32nd edition of the Haskell Communities and Activities Report. It comes shortly
after the 31st edition because that one was delayed until December. It is my intention to keep
the next editions on schedule.
This report has 125 entries, 67 of which were touched between December and today. Out of

these, 16 are new. As usual, fresh entries – either completely new or old entries which have
been revived after a short temporarily disappearance – are formatted using a blue background,
while updated entries have a header with a blue background.
Since my goal is to keep only entries which are under active development (defined as receiv-

ing an update in a 3-editions sliding window), contributions from 2015 and before have been
completely removed. However, they can be resurfaced in the next edition, should a new up-
date be sent for them. For the 30th edition, for example, we had around 20 new entries which
resurfaced. We hope to see more entries revived and updated in the next edition.
A call for new HCAR entries and updates to existing ones will be issued on the Haskell mailing

lists in late September/early October.
Work on a new, modern HCAR pipeline continues to develop. Once that is done, the next

edition will look different, allowing for more expressivity. Details will follow on the usual
communication channels, once they become available.
Now enjoy the current report and see what other Haskellers have been up to lately. Any

feedback is very welcome, as always.

Mihai Maruseac, Leap Year Technologies, US
〈hcar@haskell.org〉

2

mailto: hcar at haskell.org


Contents

1 Community 6
1.1 Haskell’ — Haskell 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Haskellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Books, Articles, Tutorials 7
2.1 Oleg’s Mini Tutorials and Assorted Small Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 School of Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Haskell Programming from first principles, a book forall . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Learning Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Programming in Haskell - 2nd Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Stack Builders Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Haskell MOOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Implementations 10
3.1 The Glasgow Haskell Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 The Helium Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Frege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Specific Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 Fedora Haskell SIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2 Debian Haskell Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Related Languages and Language Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.1 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 Disciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Libraries, Tools, Applications, Projects 15
4.1 Language Extensions and Related Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 Dependent Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 generics-sop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.3 Supermonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Build Tools and Related Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Cabal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 The Stack build tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Stackage: the Library Dependency Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.4 Stackgo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.5 hsinstall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.6 cab — A Maintenance Command of Haskell Cabal Packages . . . . . . . . . . . . . . . . . . . . . 18
4.2.7 yesod-rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Repository Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Octohat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Darcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 git-annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.4 openssh-github-keys (Stack Builders) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Debugging and Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.1 Hoed – The Lightweight Algorithmic Debugger for Haskell . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2 ghc-heap-view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 ghc-vis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.4 Hat — the Haskell Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Development Tools and Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.1 Haskell for Mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.2 haskell-ide-engine, a project for unifying IDE functionality . . . . . . . . . . . . . . . . . . . . . . 23
4.5.3 HyperHaskell – The strongly hyped Haskell interpreter . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Formal Systems and Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3



4.6.1 The Incredible Proof Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6.2 Exference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7.1 Holmes, Plagiarism Detection for Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7.2 Interactive Domain Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7.3 DSLsofMath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 Text and Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8.1 Brittany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8.2 lhs2TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8.3 Unicode things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8.4 Lentil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8.5 Fast Unicode Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8.6 Ginger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9 Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9.1 WAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9.2 Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9.3 Mighttpd2 — Yet another Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9.4 Yesod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9.5 Happstack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9.6 Snap Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.9.7 Sprinkles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.9.8 MFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.9.9 PureScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9.10 Hapistrano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9.11 nginx-haskell-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.10 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.10.1 Persistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.10.2 Opaleye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10.3 YeshQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10.4 Riak bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.11 Data Structures, Data Types, Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.11.1 Algebraic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.11.2 Conduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11.3 Transactional Trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11.4 Random access zipper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.11.5 Generic random generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.11.6 Generalized Algebraic Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.11.7 Earley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.11.8 Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.12.1 Eden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.12.2 Auto-parallelizing Pure Functional Language System . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.12.3 Déjà Fu: Concurrency Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.12.4 The Remote Monad Design Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.12.5 concurrent-output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.13 Systems programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.13.1 Haskell for Mobile development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.13.2 haskus-system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.13.3 Haskino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.13.4 Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.14 Mathematics, Simulations and High Performance Computing . . . . . . . . . . . . . . . . . . . . . 44
4.14.1 sparse-linear-algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.14.2 aivika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15 Graphical User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15.1 threepenny-gui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.15.2 wxHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.16 FRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.16.1 Yampa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4



4.16.2 reactive-banana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.16.3 Functional Reactive Agent-Based Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.17 Graphics and Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.17.1 diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.17.2 Chordify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.17.3 csound-expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.18 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.18.1 EtaMOO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.18.2 Barbarossa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.18.3 Tetris in Haskell in a Weekend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.18.4 tttool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.19 Data Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.19.1 hledger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.19.2 gipeda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.19.3 arbtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.19.4 propellor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.20 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.20.1 ADPfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.20.2 leapseconds-announced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.20.3 Haskell in Green Land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.20.4 Kitchen Snitch server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.20.5 clr-haskell (Haskell interoperability with the Common Language Runtime) . . . . . . . . . . . . . 56
4.20.6 FRTrader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.20.7 shell-conduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.20.8 Hapoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.20.9 Hanum - OSM Dynamic Attributes Linter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.20.10 tldr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Commercial Users 58
5.1 Well-Typed LLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Keera Studios LTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Stack Builders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 McMaster Computing and Software Outreach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Research and User Groups 62
6.1 DataHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Haskell at Eötvös Loránd University (ELTE), Budapest . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Artificial Intelligence and Software Technology at Goethe-University Frankfurt . . . . . . . . . . . 63
6.4 Functional Programming at the University of Kent . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 Functional Programming at KU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 fp-syd: Functional Programming in Sydney, Australia . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.7 Regensburg Haskell Meetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.8 Curry Club Augsburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.9 Italian Haskell Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.10 RuHaskell – the Russian-speaking haskellers community . . . . . . . . . . . . . . . . . . . . . . . 65
6.11 NY Haskell Users Group and Compose Conference . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.12 Japan Haskell User Group – Haskell-jp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.13 Functional Programming at the Telkom University . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5



1 Community

1.1 Haskell’ — Haskell 2020

Report by: Herbert Valerio Riedel
Participants: Andres Löh, Antonio Nikishaev, Austin

Seipp, Carlos Camarao de Figueiredo,
Carter Schonwald, David Luposchainsky,

Henk-Jan van Tuyl, Henrik Nilsson,
Herbert Valerio Riedel, Iavor Diatchki,
John Wiegley, José Manuel Calderón

Trilla, Jurriaan Hage, Lennart Augustsson,
M Farkas-Dyck, Mario Blaz̆ević, Nicolas

Wu, Richard Eisenberg, Vitaly Bragilevsky,
Wren Romano

Haskell’ is an ongoing process to produce revisions to
the Haskell standard, incorporating mature language
extensions and well-understood modifications to the
language. New revisions of the language are expected
once per year.
The goal of the Haskell Language committee together

with the Core Libraries Committee is to work towards a
new Haskell 2020 Language Report. The Haskell Prime
Process relies on everyone in the community to help by
contributing proposals which the committee will then
evaluate and, if suitable, help formalise for inclusion.
Everyone interested in participating is also invited to
join the haskell-prime mailing list.
Four years (or rather ~3.5 years) from now may seem

like a long time. However, given the magnitude of the
task at hand, to discuss, formalise, and implement pro-
posed extensions (taking into account the recently en-
acted three-release-policy) to the Haskell Report, the
process shouldn’t be rushed. Consequently, this may
even turn out to be a tight schedule after all. However,
it’s not excluded there may be an interim revision of
the Haskell Report before 2020.
Based on this schedule, GHC 8.8 (likely to be re-

leased early 2020) would be the first GHC release to
feature Haskell 2020 compliance. Prior GHC releases
may be able to provide varying degree of conformance
to drafts of the upcoming Haskell 2020 Report.
The Haskell Language 2020 committee starts out

with 20 members which contribute a diversified skill-
set. These initial members also represent the Haskell
community from the perspective of practitioners, im-
plementers, educators, and researchers.
The Haskell 2020 committee is a language commit-

tee; it will focus its efforts on specifying the Haskell
language itself. Responsibility for the libraries laid out
in the Report is left to the Core Libraries Committee
(CLC). Incidentally, the CLC still has an available seat;
if you would like to contribute to the Haskell 2020 Core
Libraries you are encouraged to apply for this opening.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Haskellers is a web site in maintenance mode. No

new features are being added, though the site remains
active with many new accounts and job postings con-
tinuing. If you have specific feature requests, feel free
to send them in (especially with pull requests!).
Haskellers remains a site intended for all members

of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

6

http://www.haskellers.com/


2 Books, Articles, Tutorials

2.1 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmij.org/ftp/Haskell/)
has received a three-part addition:

Implementing Explicit and Finding Implicit Sharing
in Embedded DSLs

The web page collects the materials for the tutorial on
sharing and common subexpression elimination in em-
bedded domain-specific language compilers. The tuto-
rial was presented at DSL 2011: IFIP Working Con-
ference on Domain-Specific Languages (6-8 September
2011, Bordeaux, France). The material includes the
extensively commented Haskell source code, with solu-
tions to selected exercises.
As the running example, the tutorial uses a DSL of

arithmetic expressions with the strong flavor of hard-
ware description languages. In fact, the output of the
DSL compilation is essentially a netlist (the list of prim-
itive gates and connections among them). The tutorial
reviews several ways to introduce sharing, so important
in hardware and so difficult to represent in functional
programming. The DSL approach advocated in the
tutorial is probably the best compromise, hiding the
essentially imperative nature of sharing.
Read the tutorial online.

Explicit sharing across several expressions

We demonstrate how to add explicit sharing – a let-
like form – to a DSL without introducing large no-
tational inconvenience and, specifically, without re-
writing the code in a monadic style. Recall that in
pure functional code sharing is not observable: it is an
imperative feature. The challenge of explicit sharing in
an embedded DSL was posed on Haskell-Cafe, back in
2008.
Read the tutorial online.

Historical note on hash consing

Hash-consing reminds one of lisp (where it has been
used widely). However, hash-consing has been invented
before lisp! Hash-consing – as well as hash functions,
investigation of their properties and the algorithm for
compiling arithmetic expressions (still used, e.g., in

OCaml compiler) – were first described in the paper
by A.P.Ershov published in 1958. Although published
in Russian, the English translation appeared in Com-
munications of the ACM later that year: the unheard
of publishing speed for those times.
Read the tutorial online.

2.2 School of Haskell

Report by: Michael Snoyman
Participants: Edward Kmett, Simon Peyton Jones

and others
Status: active

The School of Haskell has been available since early
2013. It’s main two functions are to be an education
resource for anyone looking to learn Haskell and as
a sharing resources for anyone who has built a valu-
able tutorial. The School of Haskell contains tutorials,
courses, and articles created by both the Haskell com-
munity and the developers at FP Complete. Courses
are available for all levels of developers.
Since the last HCAR, School of Haskell has been

open sourced, and is available from its own do-
main name (schoolofhaskell.com). In addition, the
underlying engine powering interactive code snippets,
ide-backend, has also been released as open source.
Currently 3150 tutorials have been created and 441

have been officially published. Some of the most visited
tutorials are Text Manipulation, Attoparsec, Learning
Haskell at the SOH, Introduction to Haskell - Haskell
Basics, and A Little Lens Starter Tutorial. Over the
past year the School of Haskell has averaged about 16k
visitors a month.
All Haskell programmers are encouraged to visit the

School of Haskell and to contribute their ideas and
projects. This is another opportunity to showcase the
virtues of Haskell and the sophistication and high level
thinking of the Haskell community.

Further reading

https://www.schoolofhaskell.com/

2.3 Haskell Programming from first
principles, a book forall

Report by: Chris Allen
Participants: Julie Moronuki
Status: Content complete, in final editing

Haskell Programming is a book that aims to get people
from the barest basics to being well-grounded in enough
intermediate Haskell concepts that they can self-learn

7

http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/tagless-final/sharing/sharing.html
http://okmij.org/ftp/tagless-final/sharing/sharing.html#ex13
http://okmij.org/ftp/tagless-final/sharing/sharing.html#history
schoolofhaskell.com
https://www.schoolofhaskell.com/


what would be typically required to use Haskell in pro-
duction or to begin investigating the theory and de-
sign of Haskell independently. We’re writing this book
because many have found learning Haskell to be diffi-
cult, but it doesn’t have to be. What particularly con-
tributes to the good results we’ve been getting has been
an aggressive focus on effective pedagogy and extensive
testing with reviewers as well as feedback from readers.
My coauthor Julie Moronuki is a linguist who’d never
programmed before learning Haskell and authoring the
book with me.
Haskell Programming is currently content complete

and is approximately 1,200 pages long in the v0.12.0
release. The book is available for sale during the early
access, which includes the 1.0 release of the book in
PDF. We’re still editing the material. We expect to
release the final version of the book this winter.

Further reading

◦ http://haskellbook.com
◦ https://superginbaby.wordpress.com/2015/05/30/

learning-haskell-the-hard-way/
◦ http://bitemyapp.com/posts/

2015-08-23-why-we-dont-chuck-readers-into-web-apps.html

2.4 Learning Haskell

Report by: Manuel M. T. Chakravarty
Participants: Gabriele Keller
Status: Work in progress with eight published

chapters

Learning Haskell is a new Haskell tutorial that inte-
grates text and screencasts to combine in-depth expla-
nations with the hands-on experience of live coding. It
is aimed at people who are new to Haskell and func-
tional programming. Learning Haskell does not assume
previous programming expertise, but it is structured
such that an experienced programmer who is new to
functional programming will also find it engaging.
Learning Haskell combines perfectly with the Haskell

for Mac programming environment, but it also includes
instructions on working with a conventional command-
line Haskell installation. It is a free resource that
should benefit anyone who wants to learn Haskell.
Learning Haskell is still work in progress with eight

chapters already available. The current material cov-
ers all the basics, including higher-order functions and
algebraic data types. Learning Haskell is approachable
and fun – it includes topics such as illustrating various
recursive structures using fractal graphics, such as this
fractal tree.

Further chapters will be made available as we com-
plete them.

Further reading

◦ Learning Haskell is free at http://learn.hfm.io
◦ Blog post with some background:

http://blog.haskellformac.com/blog/learning-haskell

2.5 Programming in Haskell - 2nd Edition

Report by: Graham Hutton
Status: published September 2016

Overview

Haskell is a purely functional language that allows pro-
grammers to rapidly develop software that is clear, con-
cise and correct. This book is aimed at a broad spec-
trum of readers who are interested in learning the lan-
guage, including professional programmers, university
students and high-school students. However, no pro-
gramming experience is required or assumed, and all
concepts are explained from first principles with the
aid of carefully chosen examples and exercises. Most of

8

http://haskellbook.com
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
http://learn.hfm.io
http://blog.haskellformac.com/blog/learning-haskell


the material in the book should be accessible to any-
one over the age of around sixteen with a reasonable
aptitude for scientific ideas.

Structure

The book is divided into two parts. Part I introduces
the basic concepts of pure programming in Haskell and
is structured around the core features of the language,
such as types, functions, list comprehensions, recursion
and higher-order functions. Part II covers impure pro-
gramming and a range of more advanced topics, such
as monads, parsing, foldable types, lazy evaluation and
reasoning about programs. The book contains many
extended programming examples, and each chapter in-
cludes suggestions for further reading and a series of
exercises. The appendices provide solutions to selected
exercises, and a summary of some of the most com-
monly used definitions from the Haskell standard pre-
lude.

What’s New

The book is an extensively revised and expanded ver-
sion of the first edition. It has been extended with new
chapters that cover more advanced aspects of Haskell,
new examples and exercises to further reinforce the con-
cepts being introduced, and solutions to selected ex-
ercises. The remaining material has been completely
reworked in response to changes in the language and
feedback from readers. The new edition uses the Glas-
gow Haskell Compiler (GHC), and is fully compatible
with the latest version of the language, including recent
changes concerning applicative, monadic, foldable and
traversable types.

Further reading

http://www.cs.nott.ac.uk/~pszgmh/pih.html

2.6 Stack Builders Tutorials

Report by: Stack Builders

At Stack Builders, we consider it our mission not only
to develop robust and reliable applications for clients,
but to help the industry as a whole by lowering the
barrier to entry for technology that we consider im-
portant. We hope that you enjoy our tutorials – we’re
sure you’ll find them useful. Any suggestions for future
publications, don’t hesitate to contact us.

Further reading

◦ https://www.stackbuilders.com/tutorials/
◦ https://github.com/stackbuilders/tutorials

2.7 Haskell MOOC

Report by: Jeremy Singer
Participants: Wim Vanderbauwhede
Status: First run of a six-week online Haskell

course has just completed

The School of Computing Science at the University of
Glasgow partnered with the FutureLearn platform to
deliver a six week massive open online course (MOOC)
entitled Functional Programming in Haskell. The
course goes through the basics of the Haskell language,
using short videos, an online REPL, multiple choice
quizzes and articles.
The first run of the course completed on 30 Oct 2016.

Over 6000 people signed up for the course, 50% of
whom actively engaged with the materials. Around 800
students completed the full course. The most engaging
aspect of the activity was the comradely atmosphere in
the discussion forums.
The course will run again, probably in Sep–Oct 2017.

Visit our site to register your interest.
We hope to refine the learning materials, based on

the first run of the course. We also intend to write up
our experiences as a scholarly report.

Further reading

https://www.futurelearn.com/courses/
functional-programming-haskell/1

9

http://www.cs.nott.ac.uk/~pszgmh/pih.html
https://www.stackbuilders.com/tutorials/
https://github.com/stackbuilders/tutorials
https://www.futurelearn.com/courses/functional-programming-haskell/1
https://www.futurelearn.com/courses/functional-programming-haskell/1
https://www.futurelearn.com/courses/functional-programming-haskell/1


3 Implementations

3.1 The Glasgow Haskell Compiler

Report by: Ben Gamari
Participants: the GHC developers
Status: GHC continues to improve in performance

and stability in 8.2

By the time of publication GHC will be nearing re-
lease of its 8.2.1 release. While GHC 8.0 was a feature-
oriented release, the past year of GHC development has
been focused on stabilization and consolidation of ex-
isting features. This has included an effort to reduce
compilation times, improve code generation, and place
the levity polymorphism story introduced in GHC 8.0
on a stable theoretical footing.
While priorities for the 8.4 release have not yet been

discussed, they will very likely include further focus on
compilation time reduction, improved error messages,
and additional improvements to code generation.

Major changes in GHC 8.2

While the emphasis of 8.2 is on performance, stability,
and consolidation, it also includes a number of new
features.

Libraries, source language, and type system

◦ Indexed Typeable representations. While GHC
has long supported runtime type reflection through
the Typeable typeclass, its current incarnation re-
quires careful use, providing little in the way of type-
safety. For this reason the implementation of types
like Data.Dynamic must be implemented in terms of
unsafeCoerce with no compiler verification.
GHC 8.2 will address this by introducing indexed
type representations, leveraging the type-checker to
verify many programs using type reflection. This al-
lows facilities like Data.Dynamic to be implemented
in a fully type-safe manner. See the paper1 for a de-
scription of the proposed interface and the Wiki2 for
current implementation status.

◦ Backpack. Backpack has merged with GHC, Ca-
bal and cabal-install, allowing you to write li-
braries which are parametrized by signatures, let-
ting users decide how to instantiate them at a later

1https://research.microsoft.com/en-us/um/people/simonpj/
papers/haskell-dynamic/

2https://ghc.haskell.org/trac/ghc/wiki/Typeable/BenGamari

point in time. If you want to just play around with
the signature language, there is a new major mode
ghc –backpack; at the Cabal syntax level, there are
two new fields signatures and mixins which permit
you to define parametrized packages, and instantiate
them in a flexible way. More details are on the Back-
pack wiki page3.

◦ Levity polymorphism. GHC 8.0 reworked GHC’s
kind system introducing the notion of levity to de-
scribe a type’s runtime representation. However, the
ability to write functions which were polymorphic
over levity was purposefully withheld.
While GHC’s current compilation model doesn’t al-
low arbitrary levity polymorphism, GHC 8.2 enables
certain classes of polymorphism which were either
disallowed or broken in 8.0. See the paper for details
4.

◦ deriving strategies. GHC now provides the pro-
grammer with a precise mechanism to distinguish be-
tween the three ways to derive typeclass instances:
the usual way, the GeneralizedNewtypeDeriving
way, and the DeriveAnyClass way. See the
DerivingStrategies Wiki page for more details 5.

◦ New classes in base. The Bifoldable, and
Bitraversable typeclasses are now included in the
base library.

◦ Unboxed sums. GHC 8.2 has a new language
extension, UnboxedSums, that enables unboxed rep-
resentation for non-recursive sum types. GHC 8.2
doesn’t use unboxed sums automatically, but the ex-
tension comes with new syntax, so users can manu-
ally unpack sums. More details can be found in the
Wiki page 6.

Runtime system

◦ Compact regions. This runtime system feature al-
lows a referentially “closed” set of heap objects to be
collected into a “compact region,” allowing cheaper
garbage collection, sharing of heap-objects between
processes, and the possibility of inexpensive serial-
ization. See the paper 7 for details.

◦ Better profiling support. The cost-center profiler
now better integrates with the GHC event-log. Heap

3https://ghc.haskell.org/trac/wiki/Backpack
4https://www.microsoft.com/en-us/research/publication/

levity-polymorphism/
5https://ghc.haskell.org/trac/wiki/DerivingStrategies
6https://ghc.haskell.org/trac/ghc/wiki/UnpackedSumTypes
7http://ezyang.com/papers/ezyang15-cnf.pdf

10

https://research.microsoft.com/en-us/um/people/simonpj/papers/haskell-dynamic/
https://research.microsoft.com/en-us/um/people/simonpj/papers/haskell-dynamic/
https://ghc.haskell.org/trac/ghc/wiki/Typeable/BenGamari
https://ghc.haskell.org/trac/wiki/Backpack
https://www.microsoft.com/en-us/research/publication/levity-polymorphism/
https://www.microsoft.com/en-us/research/publication/levity-polymorphism/
https://ghc.haskell.org/trac/wiki/DerivingStrategies
https://ghc.haskell.org/trac/ghc/wiki/UnpackedSumTypes
http://ezyang.com/papers/ezyang15-cnf.pdf


profile samples can now be dumped to the event log,
allowing heap behavior to be more easily correlated
with other program events. Moreover, the cost cen-
ter stack output (e.g. .prof files) can now be pro-
duced in a machine-readable JSON format for easier
integration with external tooling.

◦ More robust DWARF output. GHC 8.2 will be
the first release with reliable support for DWARF
debugging information. A number of bugs leading
to incorrect debug information for foreign calls have
been fixed, meaning it should now be safe to enable
debugging information in production builds.
With stable DWARF support comes a number of op-
portunities for new performance analysis and debug-
ging tools (e.g. statistical profiling, cheap execution
stacks). As GHC’s debugging information improves,
we expect to see tooling developed to support these
applications. See the DWARF status page on the
GHC Wiki8 for further information.

◦ Better support for NUMA platforms. Ma-
chines with non-uniform memory access costs are
becoming more and more common as core counts
continue to rise. The runtime system is now better
equipped to efficiently run on such systems.

◦ Experimental changes to the scheduler that en-
able the number of threads used for garbage collec-
tion to be lower than the -N setting.

◦ Support for StaticPointers in GHCi. At long
last programs making use of the StaticPointers
language extension will have first-class bytecode in-
terpreter support, allowing such programs to be
loaded into GHCi.

◦ Reduced CPU usage at idle. A long-standing
regression resulting in unnecessary wake-ups in an
otherwise idle program was fixed. This should lower
CPU utilization and improve power consumption for
some programs.

Miscellaneous

◦ Compiler Determinism. GHC 8.0.2 is the first re-
lease of GHC which produces deterministic interface
files. This helps consumers like Nix and caching build
systems, and presents new opportunities for compile-
time improvements. See the Wiki 9 for details.

Development updates and acknowledgments

Since the 8.0 release nearly a year ago, GHC’s devel-
opment community has continued to grow. Over the
last year we have seen sixty new developers submit
patches, many of whom have become regular contrib-
utors. These include new generations of researchers,

8https://ghc.haskell.org/trac/ghc/wiki/DWARF/Status
9https://ghc.haskell.org/trac/ghc/wiki/DeterministicBuilds

as well as, increasingly, regular Haskell users from in-
dustry and elsewhere. GHC has had an exciting few
months...
Moritz Angermann has been hard at work improving

cross-compilation and bringing remoting support to the
-fexternal-interpreter feature introduced in GHC
8.0. He has also contributed a number of patches im-
proving support for iOS and Android targets and has
been pondering how to enable Template Haskell during
cross-compilation.
Ryan Scott and Matthew Pickering have been fixing

bugs all over the compiler, in addition to their respec-
tive work on deriving strategies and the new COMPLETE
pragma mentioned above.
Tamar Christina has been hard at work as our res-

ident Windows expert. In addition to introducing
split sections support, reworking dynamic linking, fix-
ing toolchain breakage due to the recent Windows 10
Creator’s Update, and maintaining GHC packaging for
the Chocolatey package manager, he is also an invalu-
able source of knowledge.
Andrey Mokhov and Jose Calderon have been con-

tinuing work on Hadrian, GHC’s new build system
built on Shake. Hadrian is already very usable, lacking
only in support for a some non-standard build config-
urations, building documentation, and producing bi-
nary and source distributions. These would be great,
fairly self-contained projects for any interested devel-
oper with a Haskell experience. Contact Andrey if any
of these sound intriguing to you.
Michal Terepeta has been performing a long-overdue

grooming of GHC’s nofib benchmark suite. This suite
is one of the primary windows into the performance of
the compiler, yet has fallen into somewhat of a state of
disrepair. Michal has been fixing broken tests, refac-
toring the build system, and generally making nofib a
nicer place. In addition, he has been gradually cleaning
up native code generator, revisiting GHC’s use of the
hoopl library. Also working in the native code gen-
erator is Thomas Jakway, who has been working on
improving the register allocator’s treatment of loops.
Another contributor working on runtime perfor-

mance is Luke Maurer, who has contributed a rework
of GHC’s treatment of join points, one of the major fea-
tures of 8.2. Join points are an essential optimization
which allows GHC to eliminate closure allocation for
some types of calls. Prior to GHC 8.2 the join points
optimization was fragile due to the lack of a sound the-
oretical footing. With Luke’s work, GHC is much bet-
ter at preserving join point opportunities, leading to
improved code generation in many performance criti-
cal settings. More details can be found in his paper
10.
As always, this is just a fraction of the contributions

which we’ve seen in the past months. GHC improves

10https://www.microsoft.com/en-us/research/publication/
compiling-without-continuations

11

https://ghc.haskell.org/trac/ghc/wiki/DWARF/Status
https://ghc.haskell.org/trac/ghc/wiki/DeterministicBuilds
https://www.microsoft.com/en-us/research/publication/compiling-without-continuations
https://www.microsoft.com/en-us/research/publication/compiling-without-continuations


through the efforts of everyone who offers patches, bug
reports, code review, and discussion. If you have con-
tributed any of these in the past year, thank you!
GHC HQ has also taken a number of steps in the

past months to try to improve contributor workflow.
Our new proposal process11 officially began in Decem-
ber and has been extremely active ever since: the
ghc-proposals repository now has over fifty pull re-
quests and has facilitated hundreds of messages of great
discussion. Thanks to our everyone who has partici-
pated! GHC also now accepts GitHub pull requests for
small changes to the user guide and library documents,
which several contributors have made use of this. We
hope that this channel will make it easier for users to
contribute and perhaps feel compelled to pick up larger
tasks in the future.
As always, if you are interested in contributing

to any facet of GHC, be the runtime system, type-
checker, documentation, simplifier, or anything in be-
tween, please come speak to us either on IRC (#ghc
on irc.freeenode.net) or ghc-devs@haskell.org.
Happy Haskelling!

Further reading

◦ GHC website:
https://haskell.org/ghc/

◦ GHC users guide:
https:
//downloads.haskell.org/~ghc/master/users_guide/

◦ ghc-devs mailing list:
https://mail.haskell.org/mailman/listinfo/ghc-devs

3.2 The Helium Compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back, including domain specific type error diagnosis by
means of specialized type rules. Helium and its asso-
ciated packages are available from Hackage. Install it
by running cabal install helium. You should also
cabal install lvmrun on which it dynamically de-
pends for running the compiled code.
Currently Helium is at version 1.8.1. The major

change with respect to 1.8 is that Helium is again
well-integrated with the Hint programming environ-
ment that Arie Middelkoop wrote in Java. The jar-file
for Hint can be found on the Helium website, which is
11https://github.com/ghc-proposals/ghc-proposals

located at http://www.cs.uu.nl/wiki/Helium. This web-
site also explains in detail what Helium is about, what
it offers, and what we plan to do in the near and far
future.
A student has added parsing and static checking for

type class and instance definitions to the language, but
type inferencing and code generating still need to be
added. Completing support for type classes is the sec-
ond thing on our agenda, the first thing being making
updates to the documentation of the workings of He-
lium on the website.

3.3 Frege

Report by: Ingo Wechsung
Participants: Dierk König, Mark Perry, Marimuthu

Madasami, Sean Corfield, Volker Steiss
and others

Status: actively maintained

Frege is a Haskell dialect for the Java Virtual Machine
(JVM). It covers essentially Haskell 2010, though there
are some mostly insubstantial differences. Several GHC
language extensions are supported, most prominently
higher rank types.
As Frege wants to be a practical JVM language, in-

teroperability with existing Java code is essential. To
achieve this, it is not enough to have a foreign function
interface as defined by Haskell 2010. We must also have
the means to inform the compiler about existing data
types (i.e. Java classes and interfaces). We have thus
replaced the FFI by a so called native interface which
is tailored for the purpose.
The compiler, standard library and associated tools

like Eclipse IDE plugin, REPL (interpreter) and several
build tools are in a usable state, and development is
actively ongoing. The compiler is self hosting and has
no dependencies except for the JDK.
In the growing, but still small community, a con-

sensus developed last summer that existing differences
to Haskell shall be eliminated. Ideally, Haskell source
code could be ported by just compiling it with the Frege
compiler. Thus, the ultimate goal is for Frege to be-
come the Haskell implementation on the JVM.
Already, in the last months, some of the most of-

fending differences have been removed: lambda syn-
tax, instance/class context syntax, recognition of True
and False as boolean literals, lexical syntax for variables
and layout-mode issues. Frege now also supports code
without module headers.
Frege is available under the BSD-3 license at the

GitHub project page. A ready to run JAR file can
be downloaded or retrieved through JVM-typical build
tools like Maven, Gradle or Leiningen.
All new users and contributors are welcome!
Currently, we have a new version of code generation

in alpha status. This will be the base for future inter-
operability with Java 8 and above.

12

https://haskell.org/ghc/
https://downloads.haskell.org/~ghc/master/users_guide/
https://downloads.haskell.org/~ghc/master/users_guide/
https://mail.haskell.org/mailman/listinfo/ghc-devs
https://github.com/ghc-proposals/ghc-proposals
http://www.cs.uu.nl/wiki/Helium


In April, a community member submitted his mas-
ters thesis about implementation of a STM library for
Frege.

Further reading

https://github.com/Frege/frege

3.4 Specific Platforms

3.4.1 Fedora Haskell SIG

Report by: Jens Petersen
Status: active

The Fedora Haskell SIG works to provide good Haskell
support in the Fedora Project Linux distribution.
For the coming Fedora 26 release ghc has been up-

dated to 8.0.2 and all the Haskell packages have been
rebuilt and most updated to LTS 8.2 (except pandoc
and hledger, due to missing dependencies). For current
releases there is a ghc-8.0.2 Fedora Copr repo avail-
able for Fedora and EPEL 7, and also a Fedora Copr
repo for stack. We use the cabal-rpm packaging tool
to create and update Haskell packages, and improved
fedora-haskell/fedora-haskell-tools to build them.
If you are interested in Fedora Haskell packag-

ing, please join our mailing-list and the Freenode
#fedora-haskell channel. You can also follow @fedo-
rahaskell for occasional updates.

Further reading

◦ Homepage:
http://fedoraproject.org/wiki/Haskell_SIG

◦ Mailing-lists: https://lists.fedoraproject.org/archives/
list/haskell@lists.fedoraproject.org/ and
https://lists.fedoraproject.org/archives/list/
haskell-devel@lists.fedoraproject.org/

◦ Package list: https://admin.fedoraproject.org/pkgdb/
packager/haskell-sig/

◦ Copr repos: https:
//copr.fedorainfracloud.org/coprs/petersen/ghc-8.0.2
and https:
//copr.fedorainfracloud.org/coprs/petersen/stack

◦ Fedora Haskell Tools: https:
//github.com/fedora-haskell/fedora-haskell-tools

3.4.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux

distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 995 source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.
The current stable Debian release (“jessie”) provides

the Haskell Platform 2013.2.0.0 and GHC 7.6.3, with
GHC 7.10.3 being available via “jessie-backports”. In
Debian unstable and testing (the soon-to-be released
release “stretch”) we ship GHC 8.0.1.
Debian users benefit from the Haskell ecosystem

on 17 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.5 Related Languages and Language
Design

3.5.1 Agda

Report by: Ulf Norell
Participants: Ulf Norell, Nils Anders Danielsson,

Andreas Abel, Jesper Cockx, Makoto
Takeyama, Stevan Andjelkovic,

Jean-Philippe Bernardy, James Chapman,
Dominique Devriese, Peter Divianszki,

Fredrik Nordvall Forsberg, Olle
Fredriksson, Daniel Gustafsson, Alan

Jeffrey, Fredrik Lindblad, Guilhem Moulin,
Nicolas Pouillard, Andrés Sicard-Ramírez

and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e., GADTs which can
be indexed by values and not just types. The lan-
guage also supports coinductive types, parameterized
modules, and mixfix operators, and comes with an in-
teractive interface—the type checker can assist you in
the development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of value as a platform
for research and experiments in dependently typed pro-
gramming.
Some highlights from the past six months:

13

https://github.com/Frege/frege
http://fedoraproject.org/wiki/Haskell_SIG
https://lists.fedoraproject.org/archives/list/haskell@lists.fedoraproject.org/
https://lists.fedoraproject.org/archives/list/haskell@lists.fedoraproject.org/
https://lists.fedoraproject.org/archives/list/haskell-devel@lists.fedoraproject.org/
https://lists.fedoraproject.org/archives/list/haskell-devel@lists.fedoraproject.org/
https://admin.fedoraproject.org/pkgdb/packager/haskell-sig/
https://admin.fedoraproject.org/pkgdb/packager/haskell-sig/
https://copr.fedorainfracloud.org/coprs/petersen/ghc-8.0.2
https://copr.fedorainfracloud.org/coprs/petersen/ghc-8.0.2
https://copr.fedorainfracloud.org/coprs/petersen/stack
https://copr.fedorainfracloud.org/coprs/petersen/stack
https://github.com/fedora-haskell/fedora-haskell-tools
https://github.com/fedora-haskell/fedora-haskell-tools
http://wiki.debian.org/Haskell


◦ Agda 2.5.2 was released in December 2016.

◦ The Agda documentation at http://agda.
readthedocs.org/en/stable/ is being continuously
improved.

◦ Experimental support for homotopy type theory has
been added to the developement branch by Andrea
Vezzosi.

Release of Agda 2.5.3 is planned for summer 2017.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

3.5.2 Disciple

Report by: Ben Lippmeier
Participants: Ben Lippmeier, Jacob Stanley
Status: experimental, active development

The Disciplined Disciple Compiler (DDC) is a research
compiler used to investigate program transformation
in the presence of computational effects. It compiles
a family of strict functional core languages and sup-
ports region and effect typing. This extra informa-
tion provides a handle on the operational behaviour of
code that isn’t available in other languages. Programs
can be written in either a pure/functional or effect-
ful/imperative style, and one of our goals is to provide
both styles coherently in the same language.

What is new?

DDC is in an experimental, pre-alpha state, though
parts of it do work. In September this year we released
DDC 0.4.3, with the following new features:
◦ Completed desugaring of pattern alternatives.
◦ Better type inference for higher ranked types, which

allows explicit dictonaries for Functor, Applicative,
Monad and friends to be written easily.

◦ Automatic insertion of run and box casts is now more
well baked.

◦ Automatic interrogation of LLVM compiler version
and generation of matching LLVM assembly syntax.

◦ Added code generation for partial applications of
data constructors.

◦ Added support for simple type synonyms.

Further reading

http://disciple.ouroborus.net

14

http://agda.readthedocs.org/en/stable/
http://agda.readthedocs.org/en/stable/
http://wiki.portal.chalmers.se/agda/
http://disciple.ouroborus.net


4 Libraries, Tools, Applications, Projects

4.1 Language Extensions and Related
Projects

4.1.1 Dependent Haskell

Report by: Richard Eisenberg
Status: work in progress

I am working on an ambitious update to GHC that will
bring full dependent types to the language. In GHC 8,
the Core language and type inference have already been
updated according to the description in our ICFP’13
paper [1]. Accordingly, all type-level constructs are
simultaneously kind-level constructs, as there is no dis-
tinction between types and kinds. Specifically, GADTs
and type families are promotable to kinds. At this
point, I conjecture that any construct writable in those
other dependently-typed languages will be expressible
in Haskell through the use of singletons.
Building on this prior work, I have written my dis-

sertation on incorporating proper dependent types in
Haskell [2]. I have yet to have the time to start gen-
uine work on the implementation, but I plan to do so
starting summer 2017.
Here is a sneak preview of what will be possible with

dependent types, although much more is possible, too!

data Vec :: ∗ → Integer→ ∗ where
Nil :: Vec a 0
(:::) :: a → Vec a n → Vec a (1 ’+ n)

replicate :: π n. ∀a. a → Vec a n
replicate @0 = Nil
replicate x = x ::: replicate x

Of course, the design here (especially for the proper de-
pendent types) is preliminary, and input is encouraged.

Further reading

◦ [1]: System FC with Explicit Kind Equality, by
Stephanie Weirich, Justin Hsu, and Richard
A. Eisenberg. ICFP ’13. http://www.cis.upenn.edu/
~eir/papers/2013/fckinds/fckinds.pdf

◦ [2]: Dependent Types in Haskell: Theory and
Practice, by Richard A. Eisenberg. PhD Thesis,
2015. https:
//github.com/goldfirere/thesis/tree/master/built

4.1.2 generics-sop

Report by: Andres Löh
Participants: Andres Löh, Edsko de Vries

The generics-sop (“sop” is for “sum of products”)
package is a library for datatype-generic program-
ming in Haskell, in the spirit of GHC’s built-in
DeriveGeneric construct and the generic-deriving
package.
Datatypes are represented using a structurally iso-

morphic representation that can be used to define
functions that work automatically for a large class of
datatypes (comparisons, traversals, translations, and
more). In contrast with the previously existing li-
braries, generics-sop does not use the full power
of current GHC type system extensions to model
datatypes as an n-ary sum (choice) between the con-
structors, and the arguments of each constructor as an
n-ary product (sequence, i.e., heterogeneous lists). The
library comes with several powerful combinators that
work on n-ary sums and products, allowing to define
generic functions in a very concise and compositional
style.
The current release is 0.2.0.0.
A new talk from ZuriHack 2016 is available on

Youtube. The most interesting upcoming feature is
probably type-level metadata, making use of the fact
that GHC 8 now offers type-level metadata for the
built-in generics. While the feature is in principle im-
plemented, there are still a few open questions about
what representation would be most convenient to work
with in practice. Help or opinions are welcome!

Further reading

◦ generics-sop package:
https://hackage.haskell.org/package/generics-sop/

◦ Tutorial (summer school lecture notes):
https://github.com/kosmikus/SSGEP/

◦ ZuriHac 2016 talk:
https://www.youtube.com/watch?v=sQxH349HOik

◦ WGP 2014 talk:
https://www.youtube.com/watch?v=jzgfM6NFE3Y

◦ Paper:
http://www.andres-loeh.de/TrueSumsOfProducts/

15

http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
https://github.com/goldfirere/thesis/tree/master/built
https://github.com/goldfirere/thesis/tree/master/built
https://hackage.haskell.org/package/generics-sop/
https://github.com/kosmikus/SSGEP/
https://www.youtube.com/watch?v=sQxH349HOik
https://www.youtube.com/watch?v=jzgfM6NFE3Y
http://www.andres-loeh.de/TrueSumsOfProducts/


4.1.3 Supermonads

Report by: Jan Bracker
Participants: Henrik Nilsson
Status: Experimental fully working version

The supermonad package provides a unified way to rep-
resent different monadic notions. In other words, it
provides a way to use standard and generalized mon-
ads (with additional indices or constraints) with each
other without having to manually disambiguate which
notion is referred to in every computation. To achieve
this, the library represents monads as a set of two type
classes that are general enough to allow instances for all
of the different notions and then aids constraint check-
ing through a GHC plugin to ensure that everything
type checks properly. Due to the plugin the library can
only be used with GHC.
If you are interested in using the library, we have

a few examples of different size in the repository to
show how it can be utilized. The generated Haddock
documentation also has full coverage and can be seen
on the libraries Hackage page.
The project had its first release shortly before ICFP

and the Haskell Symposium 2016. We are currently
working on providing the same kind of support for ap-
plicative functors and arrows, so that generalizations
of these notions can be used as freely as the different
notions of monads.
If you are interested in contributing, found a bug or

have a suggestion to improve the project we are happy
to hear from you in person, by email or over the projects
bug tracker on GitHub.

Further reading

◦ Hackage:
http://hackage.haskell.org/package/supermonad

◦ Repository:
https://github.com/jbracker/supermonad

◦ Paper:
http://www.cs.nott.ac.uk/~psxjb5/publications/
2016-BrackerNilsson-Supermonads.pdf

◦ Bug-Tracker:
https://github.com/jbracker/supermonad/issues

◦ Haskell Symposium presentation:
https://youtu.be/HRofw58sySw

4.2 Build Tools and Related Projects

4.2.1 Cabal

Report by: Mikhail Glushenkov
Status: Stable, actively developed

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it

is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent Progress

We’ve recently produced new point releases of Ca-
bal/cabal-install from the 1.24 branch. Among
other things, Cabal 1.24.2.0 includes a fix necessary to
make soon-to-be-released GHC 8.0.2 work on macOS
Sierra.
Almost 1500 commits were made to the master

branch by 53 different contributors since the 1.24 re-
lease. Among the highlights are:
◦ Convenience, or internal libraries – named libraries

that are only intended for use inside the package. A
common use case is sharing code between the test
suite and the benchmark suite without exposing it
to the users of the package.

◦ Support for foreign libraries, which are Haskell li-
braries intended to be used by foreign languages like
C. Foreign libraries only work with GHC 7.8 and
later.

◦ Initial support for building Backpack packages.
Backpack is an exciting new project adding an ML-
style module system to Haskell, but on the package
level. See here and here for a more thorough intro-
duction to Backpack.

◦ ./Setup configure now accepts an argument spec-
ifying the component to be configured. This is
mainly an internal change, but it means that
cabal-install can now perform component-level
parallel builds (among other things).

◦ A lot of improvements in the new-build feature
(a.k.a. nix-style local builds). Git HEAD version
of cabal-install is now recommended if you use
new-build. For an introduction to new-build, see
this chapter of the manual.

◦ Special support for the Nix package manager in
cabal-install. See here for more details.

◦ cabal upload now uploads a package candidate by
default. Use cabal upload --publish to upload a
final version. cabal upload --check has been re-
moved in favour of package candidates.

◦ An --index-state flag for requesting a specific ver-
sion of the package index.

◦ New cabal reconfigure command, which re-runs
configure with most recently used flags.

◦ New autogen-modules field for modules built auto-
matically (like Paths_PACKAGENAME).

◦ New version range operator ˆ>=, which is equivalent
to >= intersected with an automatically-inferred ma-
jor version bound. For example, ˆ>= 2.0.3 is equiv-
alent to >= 2.0.3 && < 2.1.

16

http://hackage.haskell.org/package/supermonad
https://github.com/jbracker/supermonad
http://www.cs.nott.ac.uk/~psxjb5/publications/2016-BrackerNilsson-Supermonads.pdf
http://www.cs.nott.ac.uk/~psxjb5/publications/2016-BrackerNilsson-Supermonads.pdf
https://github.com/jbracker/supermonad/issues
https://youtu.be/HRofw58sySw
https://mail.haskell.org/pipermail/cabal-devel/2016-December/010384.html
https://ghc.haskell.org/trac/ghc/ticket/12479
https://gist.github.com/23Skidoo/1a291fd56a18b51f415db5fbaff56ec6
http://cabal.readthedocs.io/en/latest/developing-packages.html#library
http://cabal.readthedocs.io/en/latest/developing-packages.html#foreign-libraries
https://github.com/ezyang/ghc-proposals/blob/backpack/proposals/0000-backpack.rst
http://blog.ezyang.com/category/haskell/backpack/
https://github.com/ghc-proposals/ghc-proposals/pull/4
https://github.com/ghc-proposals/ghc-proposals/pull/4
http://cabal.readthedocs.io/en/latest/nix-local-build-overview.html
http://cabal.readthedocs.io/en/latest/nix-integration.html
http://cabal.readthedocs.io/en/latest/nix-local-build.html#cfg-field-index-state
https://github.com/haskell/cabal/pull/3818
http://cabal.readthedocs.io/en/latest/developing-packages.html#autogenerated-modules
http://cabal.readthedocs.io/en/latest/developing-packages.html#pkg-field-build-depends


◦ An --allow-older flag, dual to --allow-newer.
◦ New Parsec-based parser for .cabal files has been
merged, but not enabled by default yet.

◦ The manual has been converted to reST/Sphinx for-
mat, improved and expanded.

◦ Hackage Security has been enabled by default.
◦ A lot of bug fixes and performance improvements.

Looking Forward

The next Cabal/cabal-install versions will be re-
leased either in early 2017, or simultaneously with GHC
8.2 (April/May 2017). Our main focus at this stage is
getting the new-build feature to the state where it can
be enabled by default, but there are many other areas
of Cabal that need work.
We would like to encourage people considering con-

tributing to take a look at the bug tracker on GitHub
and the Wiki, take part in discussions on tickets and
pull requests, or submit their own. The bug tracker is
reasonably well maintained and it should be relatively
clear to new contributors what is in need of attention
and which tasks are considered relatively easy. For
more in-depth discussion there is also the cabal-devel
mailing list.

Further reading

◦ Cabal homepage: https://www.haskell.org/cabal/
◦ Cabal on GitHub: https://github.com/haskell/cabal

4.2.2 The Stack build tool

Report by: Emanuel Borsboom
Status: stable

Stack is a modern, cross-platform build tool for Haskell
code. It is intended for Haskellers both new and expe-
rienced.
Stack handles the management of your toolchain (in-

cluding GHC - the Glasgow Haskell Compiler - and,
for Windows users, MSYS), building and registering
libraries, building build tool dependencies, and more.
While it can use existing tools on your system, Stack
has the capacity to be your one-stop shop for all Haskell
tooling you need.
The primary design point is reproducible builds. If

you run stack build today, you should get the same
result running stack build tomorrow. There are some
cases that can break that rule (changes in your oper-
ating system configuration, for example), but, overall,
Stack follows this design philosophy closely. To make
this a simple process, Stack uses curated package sets
called snapshots.
Stack has also been designed from the ground up to

be user friendly, with an intuitive, discoverable com-
mand line interface.
Since its first release in June 2015, many people are

using it as their primary Haskell build tool, both com-

mercially and as hobbyists. New features and refine-
ments are continually being added, with regular new
releases.
Binaries and installers/packages are available for

common operating systems to make it easy to get
started. Download it at http://haskellstack.org/.

Further reading

http://haskellstack.org/

4.2.3 Stackage: the Library Dependency Solution

Report by: Michael Snoyman
Status: new

Stackage began in November 2012 with the mission
of making it possible to build stable, vetted sets of
packages. The overall goal was to make the Cabal
experience better. Two years into the project, a lot
of progress has been made and now it includes both
Stackage and the Stackage Server. To date, there are
over 1900 packages available in Stackage. The official
site is https://www.stackage.org.
The Stackage project consists of many different com-

ponents, linked to from the Stackage Github reposi-
tory https://github.com/fpco/stackage#readme. These
include:
◦ Stackage Nightly, a daily build of the Stackage pack-

age set
◦ LTS Haskell, which provides major-version compati-

bility for a package set over a longer period of time
◦ Stackage Server, which runs on stackage.org and

provides browsable docs, reverse dependencies, and
other metadata on packages

◦ Stackage Curator, a tool for running the various
builds
The Stackage package set has first-class support in

the Stack build tool (→ 4.2.2). There is also support
for cabal-install via cabal.config files, e.g. https://www.
stackage.org/lts/cabal.config.
There are dozens of individual maintainers for pack-

ages in Stackage. Overall Stackage curation is han-
dled by the “Stackage curator” team, which consists of
Michael Snoyman, Adam Bergmark, Dan Burton, Jens
Petersen, and Luke Murphy.
Stackage provides a well-tested set of packages

for end users to develop on, a rigorous continuous-
integration system for the package ecosystem, some ba-
sic guidelines to package authors on minimal package
compatibility, and even a testing ground for new ver-
sions of GHC. Stackage has helped encourage package
authors to keep compatibility with a wider range of de-
pendencies as well, benefiting not just Stackage users,
but Haskell developers in general.
If you’ve written some code that you’re actively

maintaining, don’t hesitate to get it in Stackage. You’ll

17

http://cabal.readthedocs.io/en/latest/installing-packages.html#cmdoption-setup-configure--allow-newer
https://github.com/haskell/cabal/pull/3602
https://github.com/haskell/cabal/pull/3602
http://cabal.readthedocs.io/en/latest/
https://www.well-typed.com/blog/2015/08/hackage-security-beta/
https://github.com/haskell/cabal/issues/
https://github.com/haskell/cabal/wiki/Hackathon-2016
https://mail.haskell.org/mailman/listinfo/cabal-devel
https://www.haskell.org/cabal/
https://github.com/haskell/cabal
http://haskellstack.org/
http://haskellstack.org/
https://www.stackage.org
https://github.com/fpco/stackage#readme
https://www.stackage.org/lts/cabal.config
https://www.stackage.org/lts/cabal.config


be widening the potential audience of users for your
code by getting your package into Stackage, and you’ll
get some helpful feedback from the automated builds
so that users can more reliably build your code.
Since the last HCAR, we have moved Stackage

Nightly to GHC 8.0.2, as well as released LTS 8 based
on that same GHC release. We continue to make re-
leases of LTS 6 and 7 concurrently, which are based on
GHC 7.10.3 and 8.0.1, respectively.

4.2.4 Stackgo

Report by: Sibi Prabakaran
Status: active

A browser plugin (currently supported for Fire-
fox/Google Chrome) to automatically redirect Had-
dock documentation on Hackage to corresponding
Stackage pages, when the request is via search engines
like Google/Bing etc. For the case where the package
hasn’t been added yet to Stackage, no redirect will be
made and the Hackage documentation will be available.
This plugin also tries to guess when the user would
want to go to a Hackage page instead of the Stackage
one and tries to do the right thing there.
Compared to the previous version, stackgo now al-

ways takes you to the latest lts page of the package.

Further reading

◦ https://github.com/psibi/stackgo
◦ https:

//addons.mozilla.org/en-US/firefox/addon/stackgo
◦ https://chrome.google.com/webstore/detail/

ojjalokgookadeklnffglgbnlbaiackn

4.2.5 hsinstall

Report by: Dino Morelli
Status: stable, actively developed

This is a utility to install Haskell programs on a sys-
tem using stack. Although stack does have an install
command, it only copies binaries. Sometimes more is
needed, other files and some directory structure. hsin-
stall tries to install the binaries, the LICENSE file and
also the resources directory if it finds one.
Installations can be performed in one of two directory

structures. FHS, or the Filesystem Hierarchy Standard
(most UNIX-like systems) and what I call “bundle”
which is a portable directory for the app and all of
its files. They look like this:
◦ bundle is sort-of a self-contained structure like this:

$PREFIX/
$PROJECT-$VERSION/
bin/...
doc/LICENSE
resources/...

◦ fhs is the more traditional UNIX structure like this:

$PREFIX/
bin/...
share/
$PROJECT-$VERSION/
doc/LICENSE
resources/...

There are two parts to hsinstall that are intended to
work together. The first part is a Haskell shell script,
util/install.hs. Take a copy of this script and check
it into a project you’re working on. This will be your
installation script. Running the script with the –help
switch will explain the options. Near the top of the
script are default values for these options that should
be tuned to what your project needs.
The other part of hsinstall is a library. The install

script will try to install a resources directory if it
finds one. the HSInstall library can then be used in
your code to locate the resources at runtime.
Note that you only need the library if your software

has data files it needs to locate at runtime in the in-
stallation directories. Many programs don’t have this
requirement and can ignore the library altogether.
Source code is available on darcshub, Hackage and

Stackage

Further reading

◦ hsinstall on darcshub
http://hub.darcs.net/dino/hsinstall

◦ hsinstall on Hackage
https://hackage.haskell.org/package/hsinstall

◦ hsinstall on Stackage
https://www.stackage.org/package/hsinstall

4.2.6 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg and cabal.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.
Since the last HCAR, Cabal 2.0 was supported

thanks to Ryan Scott.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

18

https://github.com/psibi/stackgo
https://addons.mozilla.org/en-US/firefox/addon/stackgo
https://addons.mozilla.org/en-US/firefox/addon/stackgo
https://chrome.google.com/webstore/detail/ojjalokgookadeklnffglgbnlbaiackn
https://chrome.google.com/webstore/detail/ojjalokgookadeklnffglgbnlbaiackn
http://hub.darcs.net/dino/hsinstall
https://hackage.haskell.org/package/hsinstall
https://www.stackage.org/package/hsinstall
http://www.mew.org/~kazu/proj/cab/en/


4.2.7 yesod-rest

Report by: Sibi Prabakaran
Status: active

A Yesod scaffolding site with Postgres backend. It pro-
vides a JSON API backend as a separate subsite. The
primary purpose of this repository is to use Yesod as a
API server backend and do the frontend development
using a tool like React or Angular. The current code
includes a basic example using React and Babel which
is bundled finally by webpack and added in the handler
getHomeR in a type safe manner.
The future work is to integrate it as part of yesod-

scaffold and make it as part of stack template.

Further reading

◦ https://github.com/psibi/yesod-rest
◦ https:

//github.com/yesodweb/yesod-scaffold/issues/136

4.3 Repository Management

4.3.1 Octohat

Report by: Stack Builders
Participants: Juan Carlos Paucar, Sebastian Estrella,

Juan Pablo Santos
Status: Working, well-tested minimal wrapper

around GitHub’s API

Octohat is a comprehensively test-covered Haskell li-
brary that wraps GitHub’s API. While we have used
it successfully in an open-source project to automate
granting access control to servers, it is in very early
development, and it only covers a small portion of
GitHub’s API.
Octohat is available on Hackage, and the source code

can be found on GitHub.
We have already received some contributions from

the community for Octohat, and we are looking forward
to more contributions in the future.

Further reading

◦ https://github.com/stackbuilders/octohat
◦ Octohat announcement
◦ Octohat update

4.3.2 Darcs

Report by: Guillaume Hoffmann
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a

disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
In April 2016, we released Darcs 2.12, with mi-

nors update in September 2016 and January 2017
to fix compiling with GHC 8 and other minor
bugs. This new major release includes the new
darcs show dependencies command (for exporting
the patch dependencies graph of a repository to the
Graphviz format), improvements for Git import, and
improvements to darcs whatsnew to facilitate support
of Darcs by third-party version control front ends like
Meld and Diffuse.

SFC and donations Darcs is free software licensed un-
der the GNU GPL (version 2 or greater). Darcs is a
proud member of the Software Freedom Conservancy,
a US tax-exempt 501(c)(3) organization. We accept
donations at http://darcs.net/donations.html.

Further reading

◦ http://darcs.net
◦ http://darcs.net/Releases/2.12
◦ http://hub.darcs.net

4.3.3 git-annex

Report by: Joey Hess
Status: stable, actively developed

git-annex allows managing files with git, without check-
ing the file contents into git. While that may seem
paradoxical, it is useful when dealing with files larger
than git can currently easily handle, whether due to
limitations in memory, time, or disk space.
As well as integrating with the git command-line

tools, git-annex includes a graphical app which can be
used to keep a folder synchronized between computers.
This is implemented as a local webapp using yesod and
warp.
git-annex runs on Linux, OSX and other Unixes, and

has been ported to Windows. There is also an incom-
plete but somewhat usable port to Android.
Five years into its development, git-annex has a wide

user community. It is being used by organizations for
purposes as varied as keeping remote Brazilian com-
munities in touch and managing Neurological imaging
data. It is available in a number of Linux distributions,
in OSX Homebrew, and is one of the most downloaded
utilities on Hackage. It was my first Haskell program.

19

https://github.com/psibi/yesod-rest
https://github.com/yesodweb/yesod-scaffold/issues/136
https://github.com/yesodweb/yesod-scaffold/issues/136
https://hackage.haskell.org/package/openssh-github-keys
https://hackage.haskell.org/package/openssh-github-keys
http://hackage.haskell.org/package/octohat
https://github.com/stackbuilders/octohat
https://github.com/stackbuilders/octohat
http://www.stackbuilders.com/news/announcing-octohat-a-new-haskell-wrapper-for-github-s-api
http://www.stackbuilders.com/news/new-octohat-release
http://darcs.net/donations.html
http://darcs.net
http://darcs.net/Releases/2.12
http://hub.darcs.net


At this point, my goals for git-annex are to continue
to improve its foundations, while at the same time keep-
ing up with the constant flood of suggestions from its
user community, which range from adding support for
storing files on more cloud storage platforms (around
20 are already supported), to improving its usability for
new and non technically inclined users, to scaling bet-
ter to support Big Data, to improving its support for
creating metadata driven views of files in a git reposi-
tory.
At some point I’d also like to split off any one of a

half-dozen general-purpose Haskell libraries that have
grown up inside the git-annex source tree.

Further reading

http://git-annex.branchable.com/

4.3.4 openssh-github-keys (Stack Builders)

Report by: Stack Builders
Participants: Justin Leitgeb
Status: active

It is common to control access to a Linux server by
changing public keys listed in the authorized_keys
file. Instead of modifying this file to grant and revoke
access, a relatively new feature of OpenSSH allows the
accepted public keys to be pulled from standard output
of a command.
This package acts as a bridge between the OpenSSH

daemon and GitHub so that you can manage access
to servers by simply changing a GitHub Team, in-
stead of manually modifying the authorized_keys file.
This package uses the Octohat wrapper library for the
GitHub API which we released.
openssh-github-keys is still experimental, but we are

using it on a couple of internal servers for testing pur-
poses. It is available on Hackage and contributions and
bug reports are welcome in the GitHub repository.
While we don’t have immediate plans to put openssh-

github-keys into heavier production use, we are inter-
ested in seeing if community members and system ad-
ministrators find it useful for managing server access.

Further reading

https://github.com/stackbuilders/openssh-github-keys

4.4 Debugging and Profiling

4.4.1 Hoed – The Lightweight Algorithmic
Debugger for Haskell

Report by: Maarten Faddegon
Status: active

Hoed is a lightweight algorithmic debugger that is prac-
tical to use for real-world programs because it works
with any Haskell run-time system and does not require
trusted libraries to be transformed.
To locate a defect with Hoed you annotate suspected

functions and compile as usual. Then you run your
program, information about the annotated functions is
collected. Finally you connect to a debugging session
using a webbrowser.

Using Hoed

Let us consider the following program, a defective im-
plementation of a parity function with a test property.

isOdd :: Int -> Bool
isOdd n = isEven (plusOne n)

isEven :: Int -> Bool
isEven n = mod2 n == 0

plusOne :: Int -> Int
plusOne n = n + 1

mod2 :: Int -> Int
mod2 n = div n 2

prop_isOdd :: Int -> Bool
prop_isOdd x = isOdd (2*x+1)

main :: IO ()
main = printO (prop_isOdd 1)

main :: IO ()
main = quickcheck prop_isOdd

Using the property-based test tool QuickCheck we
find the counter example 1 for our property.

./MyProgram
*** Failed! Falsifiable (after 1 test): 1

Hoed can help us determine which function is de-
fective. We annotate the functions isOdd, isEven,
plusOne and mod2 as follows:

import Debug.Hoed.Pure

isOdd :: Int -> Bool
isOdd = observe "isOdd" isOdd’
isOdd’ n = isEven (plusOne n)

isEven :: Int -> Bool
isEven = observe "isEven" isEven’
isEven’ n = mod2 n == 0

20

http://git-annex.branchable.com/
http://hackage.haskell.org/package/octohat
http://hackage.haskell.org/package/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys


plusOne :: Int -> Int
plusOne = observe "plusOne" plusOne’
plusOne’ n = n + 1

mod2 :: Int -> Int
mod2 = observe "mod2" mod2’
mod2’ n = div n 2

prop_isOdd :: Int -> Bool
prop_isOdd x = isOdd (2*x+1)

main :: IO ()
main = printO (prop_isOdd 1)

And run our program:

./MyProgram
False
Listening on http://127.0.0.1:10000/

Now you can use your webbrowser to interact with
Hoed.
There is a classic algorithmic debugging interface in

which you are shown computation statements, these are
function applications and their result, and are asked to
judge if these are correct. After judging enough com-
putation statements the algorithmic debugger tells you
where the defect is in your code.

In the explore mode, you can also freely browse the
tree of computation statements to get a better un-
derstanding of your program. The observe mode is
inspired by HOOD and gives a list of computation
statements. Using regular expressions this list can be
searched. Algorithmic debugging normally starts at
the top of the tree, e.g. the application of isOdd to
(2*x+1) in the program above, using explore or ob-
serve mode a different starting point can be chosen.
To reduce the number of questions the programmer

has to answer, we added a new mode Assisted Algo-
rithmic Debugging in version 0.3.5 of Hoed. In this
mode (QuickCheck) properties already present in pro-
gram code for property-based testing can be used to
automatically judge computation statements

Further reading

◦ http://wiki.haskell.org/Hoed
◦ http://hackage.haskell.org/package/Hoed

4.4.2 ghc-heap-view

Report by: Joachim Breitner
Participants: Dennis Felsing
Status: active development

The library ghc-heap-view provides means to inspect
the GHC’s heap and analyze the actual layout of
Haskell objects in memory. This allows you to inves-
tigate memory consumption, sharing and lazy evalua-
tion.
This means that the actual layout of Haskell objects

in memory can be analyzed. You can investigate shar-
ing as well as lazy evaluation using ghc-heap-view.
The package also provides the GHCi command

:printHeap, which is similar to the debuggers’ :print
command but is able to show more closures and their
sharing behaviour:

> let x = cycle [True, False]
> :printHeap x
_bco
> head x
True
> :printHeap x
let x1 = True : _thunk x1 [False]
in x1
> take 3 x
[True,False,True]
> :printHeap x
let x1 = True : False : x1
in x1

The graphical tool ghc-vis (→ 4.4.3) builds on ghc-
heap-view.
Since version 0.5.6, ghc-heap-view supports GHC 8.

Further reading

◦ http://www.joachim-breitner.de/blog/archives/
548-ghc-heap-view-Complete-referential-opacity.html

◦ http://www.joachim-breitner.de/blog/archives/
580-GHCi-integration-for-GHC.HeapView.html

◦ http://www.joachim-breitner.de/blog/archives/
590-Evaluation-State-Assertions-in-Haskell.html

4.4.3 ghc-vis

Report by: Joachim Breitner
Status: active development

The tool ghc-vis visualizes live Haskell data structures
in GHCi. Since it does not force the evaluation of the
values under inspection it is possible to see Haskell’s
lazy evaluation and sharing in action while you interact
with the data.
Ghc-vis supports two styles: A linear rendering sim-

ilar to GHCi’s :print, and a graph-based view where
closures in memory are nodes and pointers between
them are edges. In the following GHCi session a par-
tially evaluated list of fibonacci numbers is visualized:

21

http://wiki.haskell.org/Hoed
http://hackage.haskell.org/package/Hoed
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html


> let f = 0 : 1 : zipWith (+) f (tail f)
> f !! 2
> :view f

At this point the visualization can be used interac-
tively: To evaluate a thunk, simply click on it and im-
mediately see the effects. You can even evaluate thunks
which are normally not reachable by regular Haskell
code.
Ghc-vis can also be used as a library and in combi-

nation with GHCi’s debugger.

Further reading

http://felsin9.de/nnis/ghc-vis

4.4.4 Hat — the Haskell Tracer

Report by: Olaf Chitil
Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.
Hat helps locating errors in programs. Furthermore,

it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.
You trace a program with Hat by following these

steps:

1. With hat-trans translate all the source modules of
your Haskell program into tracing versions. Compile
and link (including the Hat library) these tracing ver-
sions with ghc as normal.

2. Run the program. It does exactly the same as the
original program except for additionally writing a
trace to file.

3. After the program has terminated, view the trace
with a tool. Hat comes with several tools for se-
lectively viewing fragments of the trace in different
ways: hat-observe for Hood-like observations, hat-
trail for exploring a computation backwards, hat-
explore for freely stepping through a computation,
hat-detect for algorithmic debugging, . . .

Hat is distributed as a package on Hackage that con-
tains all Hat tools and tracing versions of standard li-
braries. Hat works with the Glasgow Haskell compiler
for Haskell programs that are written in Haskell 98 plus
a few language extensions such as multi-parameter type
classes and functional dependencies. Note that all mod-
ules of a traced program have to be transformed, in-
cluding trusted libraries (transformed in trusted mode).
For portability all viewing tools have a textual inter-
face; however, many tools require an ANSI terminal
and thus run on Unix / Linux / OS X, but not on
Windows.
In the longer term we intend to transfer the

lightweight tracing technology that we use in Hoed (→
4.4.1) also to Hat.

Further reading

◦ Initial website: http://projects.haskell.org/hat
◦ Hackage package:

http://hackage.haskell.org/package/hat

4.5 Development Tools and Editors

4.5.1 Haskell for Mac

Report by: Manuel M. T. Chakravarty
Status: Available & actively developed

Haskell for Mac is an easy-to-use, innovative pro-
gramming environment and learning platform for
Haskell on OS X. It includes its own Haskell distri-
bution and requires no further set up. It features inter-
active Haskell playgrounds to explore and experiment
with code. Playground code is not only type-checked,
but also executed while you type, which leads to a fast
turn around during debugging or experimenting with
new code.

22

http://felsin9.de/nnis/ghc-vis
http://projects.haskell.org/hat
http://hackage.haskell.org/package/hat


Integrated environment. Haskell for Mac inte-
grates everything needed to start writing Haskell code,
including an editor with syntax highlighting and smart
identifier completion. Haskell for Mac creates Haskell
projects based on standard Cabal specifications for
compatibility with the rest of the Haskell ecosystem.
It includes the Glasgow Haskell Compiler (GHC) and
over 200 of the most popular packages of LTS Haskell
package sets. Matching command line tools and extra
packages can be installed, too.
Type directed development. Haskell for Mac

uses GHC’s support for deferred type errors so that
you can still execute playground code in the face of
type errors. This is convenient during refactoring to
test changes, while some code still hasn’t been adapted
to new signatures. Moreover, you can use type holes to
stub out missing pieces of code, while still being able
to run code. The system will also report the types ex-
pected for holes and the types of the available bindings.
Interactive HTML, graphics & games. Haskell

for Mac comes with support for web programming,
network programming, graphics programming, anima-
tions, and much more. Interactively generate web
pages, charts, animations, or even games (with the
OS X SpriteKit support). Graphics are also live and
change as you modify the program code.
The screenshot below is from the development of

a Flappy Bird clone in Haskell. Watch the Haskell
for Mac developer live code Flappy Bird in Haskell in
20min at the end of the Compose :: Melbourne 2016
keynote at https://speakerdeck.com/mchakravarty/
playing-with-graphics-and-animations-in-haskell. You
can find more information about writing games in
Haskell in this blog post: http://blog.haskellformac.
com/blog/writing-games-in-haskell-with-spritekit.

Haskell for Mac has recently gained auto-completion
of identifiers, taking into account the current mod-
ule’s imports. It now also features a graphical pack-
age installer for LTS Haskell and support for GHC 8.
Moreover, a new type class, Presentable, enables cus-
tom rendering of user-defined data types using images,
HTML, and even animations.
Haskell for Mac is available for purchase from the

Mac App Store. Just search for "Haskell", or visit our
website for a direct link. We are always available for
questions or feedback at support@haskellformac.com.

Further reading

The Haskell for Mac website: http://haskellformac.com

4.5.2 haskell-ide-engine, a project for unifying IDE
functionality

Report by: Chris Allen
Participants: Alan Zimmerman, Moritz Kiefer, Michael

Sloan, Gracjan Polak, Daniel Gröber,
others welcome

Status: Open source, just beginning

haskell-ide-engine is a backend for driving the sort of
features programmers expect out of IDE environments.
haskell-ide-engine is a project to unify tooling efforts
into something different text editors, and indeed IDEs
as well, could use to avoid duplication of effort.
There is basic support for getting type information

and refactoring, more features including type errors,
linting and reformatting are planned. People who are
familiar with a particular part of the chain can focus
their efforts there, knowing that the other parts will
be handled by other components of the backend. Inte-
gration for Emacs and Leksah is available and should
support the current features of the backend. Work
has started on a Language Server Protocol transport,
for use in VS Code. haskell-ide-engine also has a
REST API with Swagger UI. Inspiration is being taken
from the work the Idris community has done toward an
interactive editing environment as well.
Help is very much needed and wanted so if this is

a problem that interests you, please pitch in! This is
not a project just for a small inner circle. Anyone who
wants to will be added to the project on github, address
your request to @alanz.

Further reading

◦ https://github.com/haskell/haskell-ide-engine
◦ https:

//github.com/Microsoft/language-server-protocol
◦ https://mail.haskell.org/pipermail/haskell-cafe/

2015-October/121875.html
◦ https://www.fpcomplete.com/blog/2015/10/

new-haskell-ide-repo
◦ https://www.reddit.com/r/haskell/comments/

3pt560/ann_haskellide_project/
◦ https://www.reddit.com/r/haskell/comments/

3qbgmo/fp_complete_the_new_haskellide_repo/

23

https://speakerdeck.com/mchakravarty/playing-with-graphics-and-animations-in-haskell
https://speakerdeck.com/mchakravarty/playing-with-graphics-and-animations-in-haskell
http://blog.haskellformac.com/blog/writing-games-in-haskell-with-spritekit
http://blog.haskellformac.com/blog/writing-games-in-haskell-with-spritekit
support@haskellformac.com
http://haskellformac.com
https://github.com/haskell/haskell-ide-engine
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/language-server-protocol
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/


4.5.3 HyperHaskell – The strongly hyped Haskell
interpreter

Report by: Heinrich Apfelmus
Status: available, active development

HyperHaskell is a graphical Haskell interpreter, not un-
like GHCi, but hopefully more awesome. You use work-
sheets to enter expressions and evaluate them. Results
are displayed graphically using HTML.
HyperHaskell is intended to be easy to install. It

is cross-platform and should run on Linux, Mac and
Windows. Internally, it uses the GHC API to inter-
pret Haskell programs, and the graphical front-end is
built on the Electron framework. HyperHaskell is open
source.
HyperHaskell’s main attraction is a Display class

that supersedes the good old Show class. The result
looks like this:

Current status

HyperHaskell is currently Level α. Compared to the
previous report, no new release has been made, but
basic features are working. A new cell type, the text
cell, has been implemented, but not yet released.
I am looking for help in setting up binary releases on

the Windows platform!

Future development

Programming a computer usually involves writing a
program text in a particular language, a “verbal” ac-
tivity. But computers can also be instructed by ges-
tures, say, a mouse click, which is a “nonverbal” ac-
tivity. The long term goal of HyperHaskell is to blur

the lines between programming “verbally” and “non-
verbally” in Haskell. This begins with an interpreter
that has graphical representations for values, but also
includes editing a program text while it’s running (“live
coding”) and interactive representations of values (e.g.
“tangible values”). This territory is still largely un-
charted from a purely functional perspective, proba-
bly due to a lack of easily installed graphical facili-
ties. It is my hope that HyperHaskell may provide a
common ground for exploration and experimentation
in this direction, in particular by offering the Display
class which may, perhaps one day, replace our good old
Show class.
A simple form of live coding is planned for Level β.

Further reading

◦ Project homepage and downloads:
https://github.com/HeinrichApfelmus/hyper-haskell

4.6 Formal Systems and Reasoners

4.6.1 The Incredible Proof Machine

Report by: Joachim Breitner
Status: active development

The Incredible Proof Machine is a visual interactive
theorem prover: Create proofs of theorems in proposi-
tional, predicate or other, custom defined logics simply
by placing blocks on a canvas and connecting them.
You can think of it as Simulink mangled by the Curry-
Howard isomorphism.
It is also an addictive and puzzling game, I have been

told.

The Incredible Proof Machine runs completely in
your browser. While the UI is (unfortunately) bor-
ing standard JavaScript code with a spagetthi flavor,
all the logical heavy lifting is done with Haskell, and
compiled using GHCJS.

Further reading

◦ http://incredible.nomeata.de The Incredible Proof
Machine

◦ https://github.com/nomeata/incredible Source Code
◦ http://www.joachim-breitner.de/blog/682-The_

Incredible_Proof_Machine Announcement blog post

24

https://github.com/HeinrichApfelmus/hyper-haskell
http://incredible.nomeata.de
https://github.com/nomeata/incredible
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine


4.6.2 Exference

Report by: Lennart Spitzner
Status: experimental, active development

Exference is a tool aimed at supporting developers writ-
ing Haskell code by generating expressions from a type,
e.g.

Input:

(Show b) => (a -> b) -> [a] -> [String]

Output:

\ f1 -> fmap (show . f1)

Input:

(Monad m, Monad n)
=> ([a] -> b -> c) -> m [n a] -> m (n b)
-> m (n c)

Output:

\ f1 -> liftA2 (\ hs i ->
liftA2 (\ n os -> f1 os n) i (sequenceA hs))

The algorithm does a proof search specialized to the
Haskell type system. In contrast to Djinn, the well
known tool with the same general purpose, Exference
supports a larger subset of the Haskell type system -
most prominently type classes. The cost of this feature
is that Exference makes no promise regarding termi-
nation (because the problem becomes an undecidable
one; a draft of a proof can be found in the pdf below).
Of course the implementation applies a time-out.
There are two primary use-cases for Exference:
◦ In combination with typed holes: The programmer
can insert typed holes into the source code, retrieve
the expected type from ghc and forward this type to
Exference. If a solution, i.e. an expression, is found
and if it has the right semantics, it can be used to
fill the typed hole.

◦ As a type-class-aware search engine. For example,
Exference is able to answer queries such as Int →
Float, where the common search engines like hoogle
or hayoo are not of much use.
The current implementation is functional and works

well. The most important aspect that still could use
improvement is the performance, but it would proba-
bly take a slightly improved approach for the core al-
gorithm (and thus a major rewrite of this project) to
make significant gains.
The project is actively maintained; apart from occa-

sional bug-fixing and general maintenance/refactoring
there are no major new features planned currently.
Try it out by on IRC(freenode): exferenceBot is in

#haskell and #exference.

Further reading

◦ https://github.com/lspitzner/exference
◦ https://github.com/lspitzner/exference/raw/master/

exference.pdf

4.7 Education

4.7.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).
In November 2010, Gerben Verburg started to

reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, which has been presented at
CSERC’13, and should become available in the ACM
Digital Library.
The tool will be made available through Hackage at

some point, but before that happens it can already be
obtained on request from Jurriaan Hage.

Contact

〈J.Hage@uu.nl〉

4.7.2 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Johan Jeuring, Alex Gerdes, Josje Lodder,

Hieke Keuning, Ivica Milovanovic
Status: experimental, active development

Ideas (Interactive Domain-specific Exercise Assis-
tants) is a joint research project between the Open Uni-
versity of the Netherlands and Utrecht University. The
project’s goal is to use software and compiler technol-
ogy to build state-of-the-art components for intelligent
tutoring systems (ITS), learning environments, and ap-
plied games. The ‘ideas’ software package provides a
generic framework for constructing the expert knowl-
edge module (also known as a domain reasoner) for
an ITS or learning environment. Domain knowledge
is offered as a set of feedback services that are used
by external tools such as the digital mathematical en-
vironment (first/left screenshot) and the Math-Bridge
system. We have developed several domain reasoners

25

https://github.com/lspitzner/exference
https://github.com/lspitzner/exference/raw/master/exference.pdf
https://github.com/lspitzner/exference/raw/master/exference.pdf
mailto: J.Hage at uu.nl
http://ideas.cs.uu.nl
http://hackage.haskell.org/package/ideas


based on this framework, including reasoners for math-
ematics, linear algebra, statistics, propositional logic,
for learning Haskell (the Ask-Elle programming tutor)
and evaluating Haskell expressions, and for practicing
communication skills (the serious game Communicate!,
second/right screenshot).

We have continued working on the domain reasoners
that are used by our programming tutors. The Ask-Elle
functional programming tutor lets you practice intro-
ductory functional programming exercises in Haskell.
We have extended this tutor with QuickCheck prop-
erties for testing the correctness of student programs,
and for the generation of counterexamples. We have
analysed the usage of the tutor to find out how many
student submissions are correctly diagnosed as right or
wrong.

We have just started with the Advise-Me project
(Automatic Diagnostics with Intermediate Steps in
Mathematics Education), which is a Strategic Partner-
ship in EU’s Erasmus+ programme. In this project
we develop innovative technology for calculating de-
tailed diagnostics in mathematics education, for do-
mains such as ‘Numbers’ and ‘Relationships’. The tech-
nology is offered as an open, reusable set of feedback
and assessment services. The diagnostic information is
calculated automatically based on the analysis of inter-
mediate steps.
We are continuing our research in various directions.

We are investigating feedback generation for axiomatic
proofs for propositional logic. We also want to add
student models to our framework and use these to make
the tutors more adaptive, and develop authoring tools
to simplify the creation of domain reasoners.
The library for developing domain reasoners with

feedback services is available as a Cabal source pack-
age. We have written a tutorial on how to make your
own domain reasoner with this library. The domain
reasoner for mathematics and logic has been released
as a separate package.

Further reading

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive

Exercises. Mathematics in Computer Science,
3(3):349–370, 2010.

◦ Bastiaan Heeren and Johan Jeuring. Feedback
services for stepwise exercises. Science of Computer
Programming, Special Issue on Software
Development Concerns in the e-Learning Domain,
volume 88, 110–129, 2014.

◦ Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and
Thomas Binsbergen. Ask-Elle: an Adaptable
Programming Tutor for Haskell Giving Automated
Feedback. Journal of Artificial Intelligence in
Education 2016.

◦ Josje Lodder, Bastiaan Heeren, and Johan Jeuring.
Generating hints and feedback for Hilbert-style
axiomatic proofs. To appear in SIGCSE 2017.

4.7.3 DSLsofMath

Report by: Patrik Jansson
Participants: Cezar Ionescu, Irene Lobo Valbuena,

Adam Sandberg Ericsson
Status: active development

“Domain Specific Languages of Mathematics” is a
project at Chalmers University of Technology devel-
oping a new BSc level course and accompanying ma-
terial for learning and applying classical mathematics
(mainly real and complex analysis).
The main idea is to encourage the students to ap-

proach mathematical domains from a functional pro-
gramming perspective: to identify the main functions
and types involved and, when necessary, to introduce
new abstractions; to give calculational proofs; and, fi-
nally, to organize the resulting functions and types in
domain-specific languages.
The first instance of the course was carried out Jan-

March 2016 at Chalmers and the course material is
available on github.
The next step is to write up the lecture notes as a

book during the autumn, in preparation for the next
instance of the course early 2017.
Contributions and ideas are welcome!

Further reading

◦ DSLsofMath (github organisation)
◦ TFPIE 2015 paper
◦ Exam 2016 with solutions

26

http://www.projects.science.uu.nl/communicate/
http://ideas.cs.uu.nl/FPTutor/
http://ideas.cs.uu.nl/FPTutor/
http://advise-me.ou.nl
http://ideas.cs.uu.nl/logax/
http://ideas.cs.uu.nl/logax/
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/tutorial
http://hackage.haskell.org/package/ideas-math
http://hackage.haskell.org/package/ideas-math
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AxiomaticProofs.html
http://www.open.ou.nl/bhr/AxiomaticProofs.html
https://github.com/DSLsofMath/DSLsofMath
https://github.com/DSLsofMath
https://github.com/DSLsofMath/tfpie2015
https://github.com/DSLsofMath/DSLsofMath/blob/master/Exam/2016-03/


4.8 Text and Markup

4.8.1 Brittany

Report by: Lennart Spitzner
Status: work in progress

Brittany is a Haskell source code formatting tool. It is
based on ghc-exactprint and thus uses the ghc parser,
in contrast to tools based on haskell-src-exts such as
hindent or haskell-formatter.
The goals of the project are to:
◦ support the full ghc-haskell syntax including syntac-
tic extensions;

◦ retain newlines and comments unmodified (to the de-
gree possible when code around them gets reformat-
ted);

◦ be clever about using horizontal space while not over-
flowing it if it cannot be avoided;

◦ have linear complexity in the size of the input text /
the number of syntactic nodes in the input.

◦ support horizontal alignments (e.g. different equa-
tions/pattern matches in the some function’s defini-
tion).
In contrast to other formatters brittany internally

works in two steps: Firstly transforming the syntax
tree into a document tree representation, similar to
the document representation in general-purpose pretty-
printers such as the pretty package, but much more spe-
cialized for the specific purpose of handling a Haskell
source code document. Secondly this document rep-
resentation is transformed into the output text docu-
ment. This approach allows to handle many different
syntactic constructs in a uniform way, making it possi-
ble to attain the above goals with a manageable amount
of work.
Brittany is work in progress; currently only type sig-

natures and function bindings are transformed, and
not all syntactic constructs are supported. Nonethe-
less Brittany is safe to try/use as there are checks in
place to ensure that the output is syntactically valid.
Brittany requires ghc-8, and is not released on hack-

age yet; for a description of how to build it see the
repository README.

Further reading

◦ https://github.com/lspitzner/brittany

4.8.2 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions

of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.19 and has been released in

April 2015. Development repository and bug tracker
are on GitHub. The tool is mostly in plain mainte-
nance mode, although there are still vague plans for
a complete rewrite of lhs2TEX, hopefully cleaning up
the internals and making the functionality of lhs2TEX
available as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

4.8.3 Unicode things

Report by: Antonio Nikishaev
Status: work in progress

Many programming languages offer non-existing or
very poor support for Unicode. While many think
that Haskell is not one of them, this is not completely
true. The way-to-go library of Haskell’s string type,
Text, only provides codepoint-level operations. Just
as a small and very elementary example: two “Haskell
café” strings, first written with the ‘é’ character, and
the second with the ‘e’ character followed by a com-
bining acute accent character, obviously have a corre-
spondence for many real-world situations. Yet they are
entirely different and unconnected things for Text and
its operations.
And even though there is text-icu library offering

proper Unicode functions, it has a form of FFI bind-
ings to C library (and that is painful, especially for
Windows users). More so, its API is very low-level and
incomplete.
Prose is a work-in-progress pure Haskell implemen-

tation of Unicode strings. Right now it’s completely
unoptimized. Implemented parts are normalization al-
gorithms and segmentation by graphemes and words.
Numerals is pure Haskell implementation of CLDR

(Common Language Data Repository, Unicode’s locale
data) numerals formatting.
Contributions and comments are always welcome!

Further reading

◦ http://lelf.lu/prose
◦ https://github.com/llelf/prose
◦ https://github.com/llelf/numerals

27

https://github.com/lspitzner/brittany
http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex
http://lelf.lu/prose
https://github.com/llelf/prose
https://github.com/llelf/numerals


4.8.4 Lentil

Report by: Francesco Ariis
Status: working

Lentil helps the programmers who litter their code with
TODOs and FIXMEs.
Lentil goes through a project and outputs all issues

in a pretty format, referencing their file/line position.
As today it recognises Haskell, Javascript, C/C++,
Python, Ruby, Pascal, Perl, Shell and Nix source files,
plus plain .txt files.
Lentil syntax allows you to put [tag]s in your issues,

which can then be used to filter/extract/export data.
Current version is 0.1.12.0, which introduces new

flag-words, recognised languages (html, elm, coffee-
script, typescript) and export formats (xml).

Further reading

◦ manual:
http://ariis.it/static/articles/lentil/page.html

◦ decentralised issue tracking: http:
//ariis.it/static/articles/decentralised-lentil/page.html

4.8.5 Fast Unicode Normalization

Report by: Harendra Kumar
Status: Working

Unicode strings need to be converted to a normal-
ized form using the Unicode Character Database be-
fore they can be compared for equivalence. unicode-
transforms is a pure Haskell implementation of Uni-
code normalization. The alternative is the text-
icu package which provides this functionality as
Haskell bindings to the ICU C++ implementation.
unicode-transforms supports all forms of normalization
(NFC/NFD/NFKC/NFKD) and supports the latest
version of the Unicode standard (Unicode 9).
One of the goals of unicode-transforms was high per-

formance. We have successfully achieved this goal
for decompose (NFD/NFKD) forms, achieving perfor-
mance close to, and in one benchmark even better than
the C++ implementation (i.e. the text-icu package).
Compose (NFC/NFKC) implementation is not yet op-
timized, and though the performance of compose is de-
cent it is not at par with the C++ implementation.
This is still open for anyone looking for a challenge to
beat C++.
This library can potentially be integrated with the

text package allowing us to keep text in a standard
normalized form by default, thus freeing the Haskell
programmers from worrying about explicit normaliza-
tion. The library is available on Hackage under BSD3
license.

Further reading

https://github.com/harendra-kumar/unicode-transforms

4.8.6 Ginger

Report by: Tobias Dammers
Status: Active, usable, not feature complete

Ginger is a Haskell implementation of the Jinja2 HTML
template language. Unlike most existing Haskell tem-
plating solutions, Ginger expands templates at run-
time, not compile time; this is a deliberate design deci-
sion, intended to support a typical rapid-cycle web de-
velopment workflow. Also unlike most existing Haskell
HTML DSLs, Ginger is completely unaware of the
DOM, and does not enforce well-formed HTML. Just
like Jinja2, however, it does distinguish HTML source
and raw values at the type level, meaning that HTML
encoding is automatic and (mostly) transparent, avoid-
ing the most common source of XSS vulnerabilities. For
a quick impression of what Ginger syntax looks like:

<section class="page">
<h1>{{ page.title }}</h1>
{% if page.image %}

<img class="page-image"
src="{{ page.image.thumbURL }}" />

{% endif %}
<section class="teaser">

{{ page.teaser }}
</section>
<section class="content">

{{ page.body|markdown }}
</section>
<section class="page-meta">

Submitted by {{ page.author }} on
{{page.submitted|formatDate(’%Y-%m-%d’)}}

</section>
</section>

All the important features of Jinja2 have been imple-
mented, and the library is fully usable for production
work. Some features of the original Jinja2 have been
left out because the author considers them Pythonisms;
others are missing simply because they haven’t been
implemented yet. Additionally, some features have
been added that are missing in Jinja2, such as lambdas,
being able to use macros as functions or filters, ‘do‘
expressions, output indenting constructs, and "script
mode", switching Ginger into a syntax that is closer
to a unityped scripting language than a template lan-
guage.

28

http://ariis.it/static/articles/lentil/page.html
http://ariis.it/static/articles/decentralised-lentil/page.html
http://ariis.it/static/articles/decentralised-lentil/page.html
https://github.com/harendra-kumar/unicode-transforms


Improvement that haven’t made it yet include Tem-
plateHaskell support (which would allow programmers
to compile Ginger templates directly into the binary,
and perform template compilation at compile time
rather than runtime), a built-in caching mechanism,
and more configuration options. Contributions of any
kind are very welcome.

Further reading

◦ https://ginger.tobiasdammers.nl/
◦ https://bitbucket.org/tdammers/ginger
◦ http://hackage.haskell.org/package/ginger
◦ http://jinja2.pocoo.org (the original Jinja2, not my

work)

4.9 Web

4.9.1 WAI

Report by: Kazu Yamamoto
Participants: Michael Snoyman, Greg Weber
Status: stable

WAI (Web Application Interface) is an application
interface between web applications and handlers in
Haskell. The Application data type is defined as fol-
lows:

type Application
= Request
-> (Response -> IO ResponseReceived)
-> IO ResponseReceived

That is, a WAI application takes two arguments: a
Request and a function to send a Response. So, the
typical behavior of WAI application is processing a re-
quest, generating a response and passing the response
to the function.
Historically speaking, this interface made possible to

develop handlers other than HTTP. The WAI applica-
tions can run through FastCGI (wai-handler-fastcgi),
run as stand-alone (wai-handler-webkit), etc. But the
most popular handler is based on HTTP, of course. The
major HTTP handler for WAI is Warp which now pro-
vides both HTTP/1.1 and HTTP/2. TLS (warp-tls)
is also available. New transports such as WebSocket
(wai-websocket) and Event Source (wai-extra) can be
implemented, too.
It is possible to develop WAI applications directly.

For instance, Hoogle and Mighttpd2 take this way.
However, you may want to use web application frame-
works such as Apiary, MFlow, rest, Servant, Scotty,
Spock, Yesod, etc.
WAI also provides Middleware:

type Middleware = Application -> Application

WAI middleware can inspect and transform a re-
quest, for example by automatically gzipping a re-
sponse or logging a request (wai-extra).

Since the last HCAR, no major changes were made.

Further reading

◦ https://groups.google.com/d/forum/haskell-wai

4.9.2 Warp

Report by: Kazu Yamamoto
Participants: Michael Snoyman
Status: stable

Warp is a high performance, easy to deploy HTTP han-
dler for WAI (→ 4.9.1). Its supports both HTTP/1.1
and HTTP/2.
Since the last HCAR,Warp improved some exception

handling.

Further reading

◦ “Warp: A Haskell Web Server”
– the May/June 2011 issue of IEEE Internet

Computing
– Issue page:

http://www.computer.org/portal/web/csdl/abs/
mags/ic/2011/03/mic201103toc.htm

– PDF: http://steve.vinoski.net/pdf/IC-Warp_a_
Haskell_Web_Server.pdf

◦ “Warp”
– The Performance of Open Source Applications
– HTML:

http://www.aosabook.org/en/posa/warp.html

4.9.3 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 3 is a simple but prac-
tical Web server in Haskell. It provides features to han-
dle static files, redirection, CGI, reverse proxy, reload-
ing configuration files and graceful shutdown. Also
TLS is supported.
The logic to handle static files has been transferred to

Warp, an HTTP server library. So, Mighttpd became
a simpler web application now.
You can install Mighttpd 3 (mighttpd2) from Hack-

ageDB. Note that the package name is mighttpd2, not
mighttpd3, for historical reasons.
Since the last HCAR, Mighttpd provided the

Tls_Chain_Files configuration option to support cer-
tificates generated by Let’s encrypt and changed to re-
turn a bad request for paths including dot files for se-
curity reasons.

29

https://ginger.tobiasdammers.nl/
https://bitbucket.org/tdammers/ginger
http://hackage.haskell.org/package/ginger
http://jinja2.pocoo.org
https://groups.google.com/d/forum/haskell-wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://www.aosabook.org/en/posa/warp.html


Further reading

◦ http://www.mew.org/~kazu/proj/mighttpd/en/

4.9.4 Yesod

Report by: Michael Snoyman
Participants: Greg Weber, Luite Stegeman, Felipe Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, Yesod
helps users create highly scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO.
But Yesod is even more focused on scalable develop-

ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.
◦ declarative routing with type-safe urls — say good-
bye to broken links

◦ no XSS attacks — form submissions are automati-
cally sanitized

◦ database safety through the Persistent library (→
4.10.1) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.
When type safety conflicts with programmer produc-

tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 4.10.1). Views
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing and
can return different representations of a resource (html,
json, etc).
Yesod is broken up into many smaller projects

and leverages Wai (→ 4.9.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks that use WAI such as Scotty and Servant.
Yesod has been in API stability for some time. The

1.4 release was made in September of 2014, and we are
still backwards-compatible to that. Even then, the 1.4
release was almost a completely backwards-compatible

change. The version bump was mostly performed to
break compatibility with older versions of dependen-
cies, which allowed us to remove approximately 500
lines of conditionally compiled code. Notable changes
in 1.4 include:
◦ New routing system with more overlap checking con-

trol.
◦ yesod-auth works with your database and your

JSON.
◦ yesod-test sends HTTP/1.1 as the version.
◦ Type-based caching with keys.
The Yesod team is quite happy with the current level

of stability in Yesod. Since the 1.0 release, Yesod has
maintained a high level of API stability, and we in-
tend to continue this tradition. Future directions for
Yesod are now largely driven by community input and
patches. We’ve been making progress on the goal of
easier client-side interaction, and have high-level inter-
action with languages like Fay, TypeScript, and Coffe-
Script. GHCJS support is in the works.
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.
To see an example site with source code available,

you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

4.9.5 Happstack

Report by: Jeremy Shaw

Happstack is a diverse collection of libraries for creating
web applications in Haskell. Libraries include support
for type-safe routing, HTML templating, form valida-
tion, authentication and more.
In the last six months we have added two

new experimental packages: happstack-servant and
happstack-websockets. happstack-servant makes
it easy to use Happstack with the new servant frame-
work. happstack-websockets provides support for us-
ing websockets.

Further reading

◦ http://www.happstack.com/
◦ http:

//www.happstack.com/docs/crashcourse/index.html

30

http://www.mew.org/~kazu/proj/mighttpd/en/
http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/
http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html


4.9.6 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, Gabriel Gonzalez, Greg Hale,
and others

Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, stability,
and ease of use. The project’s goal is to be a cohesive
high-level platform for web development that leverages
the power and expressiveness of Haskell to make build-
ing websites quick and easy.
This HCAR we are pleased to announce the release

of Snap 1.0. This major milestone includes a rewrite
of Snap’s web server. The new web server is built on
io-streams, a simple and fast stream library designed
specifically for this purpose. It is also faster and more
robust with 100% test coverage.
If you would like to contribute, get a question an-

swered, or just keep up with the latest activity, stop by
the #snapframework IRC channel on Freenode.

Further reading

◦ Snaplet Directory:
http://snapframework.com/snaplets

◦ http://snapframework.com
◦ io-streams:

http://hackage.haskell.org/package/io-streams
◦ snap-server test coverage: https:

//snapframework.github.io/snap-code-coverage/
snap-server/hpc-ghc-8.0.1/hpc_index.html

◦ Snap 1.0 release announcement::
http://snapframework.com/blog/2016/08/07/snap-1.
0-released

4.9.7 Sprinkles

Report by: Tobias Dammers
Status: Active, usable

Sprinkles is a "zero programning web development
framework", intended for building content-centric
server-site websites in a declarative fashion.
As such, Sprinkles sits in a unique position in be-

tween static site generators such as Jekyll, Hakyll, etc.,
and fully dynamic CMS solutions like Ghost, Word-
Press, etc.
A Sprinkles website consists of a project file in YAML

format, a set of templates (using Ginger, a Haskell im-
plementation of the Jinja HTML template language),
and static files such as stylesheets, images, and client-
side scripts. Data can be loaded from SQL databases,
local files, HTTP, or local shell scripts, and Sprin-
kles supports a wide range of input formats, including

JSON, YAML, HTML, Markdown, LaTeX, and even
DOCX. The heart of a project file is a list of routes,
each specifying a list of backend data sources to query,
the output of which then gets bound to a template
variable.
Unlike a static site generator, Sprinkles generates its

HTML output on the fly, so there is no build step, you
just deploy your updated project files to the server,
restart the Sprinkles process, and your new site is live.
Unlike a classic CMS, however, there is no admin area;
instead, you manage your data externally.
This approach has a few advantages, most notably, it

makes Sprinkles more secure, because no admin area is
exposed that could be exploited to escalate from com-
promising the public-facing part to gain write access;
write access is implemented separately, via separate
channels (typically an SSH connection).
Various workflows are possible, e.g.:
◦ hand-editing markdown files or even Word docu-

ments
◦ putting your data in an SQL database, using a graph-

ical SQL frontend to modify things, and pointing
Sprinkles at the database

◦ using an existing website as your data source, but
building a Sprinkles frontend on top

◦ using github as your data source (the Ginger home-
page at https://ginger.tobiasdammers.nl/ does this for
the user guide section)

◦ using something like https://form.io/ to manage your
data, and pointing Sprinkles at an API endpoint

◦ ...
Sprinkles comes with a built-in Warp server, and this

is the preferred deployment option, but CGI, SCGI and
FastCGI are also supported.

Further reading

◦ https://sprinkles.tobiasdammers.nl/
◦ https://bitbucket.org/tdammers/sprinkles
◦ http://hackage.haskell.org/package/sprinkles

4.9.8 MFlow

Report by: Alberto Gómez Corona
Status: active development

MFlow is a Web framework of the kind of other func-
tional, stateful frameworks like WASH, Seaside, Ocsi-
gen or Racket. MFlow does not use continuation pass-
ing properly, but a backtracking monad that permits
the synchronization of browser and server and error
tracing. This monad is on top of another “Workflow”
monad that adds effects for logging and recovery of
process/session state. In addition, MFlow is RESTful.
Any GET page in the flow can be pointed to with a
REST URL.
The navigation as well as the page results are type

31

http://snapframework.com/snaplets
http://snapframework.com
http://hackage.haskell.org/package/io-streams
https://snapframework.github.io/snap-code-coverage/snap-server/hpc-ghc-8.0.1/hpc_index.html
https://snapframework.github.io/snap-code-coverage/snap-server/hpc-ghc-8.0.1/hpc_index.html
https://snapframework.github.io/snap-code-coverage/snap-server/hpc-ghc-8.0.1/hpc_index.html
http://snapframework.com/blog/2016/08/07/snap-1.0-released
http://snapframework.com/blog/2016/08/07/snap-1.0-released
https://ginger.tobiasdammers.nl/
https://form.io/
https://sprinkles.tobiasdammers.nl/
https://bitbucket.org/tdammers/sprinkles
http://hackage.haskell.org/package/sprinkles


safe. Internal links are safe and generate GET re-
quests. POST request are generated when formlets
with form fields are used and submitted. It also imple-
ments monadic formlets: They can modify themselves
within a page. If JavaScript is enabled, the widget re-
freshes itself within the page. If not, the whole page is
refreshed to reflect the change of the widget.
MFlow hides the heterogeneous elements of a web ap-

plication and expose a clear, modular, type safe DSL
of applicative and monadic combinators to create from
multipage to single page applications. These combina-
tors, called widgets or enhanced formlets, pack together
javascript, HTML, CSS and the server code.
A paper describing the MFlow internals has been

published in The Monad Reader issue 23.

Further reading

◦ MFlow as a DSL for web applications https://www.
fpcomplete.com/school/to-infinity-and-beyond/
older-but-still-interesting/MFlowDSL1

◦ MFlow, a continuation-based web framework
without continuations http://themonadreader.
wordpress.com/2014/04/23/issue-23

◦ How Haskell can solve the integration problem
https://www.fpcomplete.com/school/
to-infinity-and-beyond/pick-of-the-week/
how-haskell-can-solve-the-integration-problem

◦ Towards a deeper integration: A Web language:
http://haskell-web.blogspot.com.es/2014/04/
towards-deeper-integration-web-language.html

◦ Perch https://github.com/agocorona/haste-perch
◦ hplayground demos http://tryplayg.herokuapp.com
◦ haste-perch-hplaygroun tutorial
http://www.airpair.com/haskell/posts/
haskell-tutorial-introduction-to-web-apps

◦ react.js a solution for a problem that Haskell can
solve in better ways
http://haskell-web.blogspot.com.es/2014/11/
browser-programming-reactjs-as-solution.html

◦ MFlow demo site: http://mflowdemo.herokuapp.com

4.9.9 PureScript

Report by: Phil Freeman
Status: active, looking for contributors

PureScript is a small strongly typed programming lan-
guage that compiles to efficient, readable JavaScript.
The PureScript compiler is written in Haskell.
The PureScript language features Haskell-like syn-

tax, type classes with functional dependencies, rank-n
types, extensible records and extensible effects.
PureScript features a comprehensive standard li-

brary, and a large number of other libraries and tools
under development, covering data structures, algo-

rithms, Javascript integration, web services, game de-
velopment, testing, asynchronous programming, FRP,
graphics, audio, UI implementation, and many other
areas. It is easy to wrap existing Javascript function-
ality for use in PureScript, making PureScript a great
way to get started with strongly-typed pure functional
programming on the web. PureScript is currently used
successfully in production in commercial code.
The PureScript compiler can be downloaded from

purescript.org, or compiled from source from Hackage.

Further reading

https://github.com/purescript/purescript/

4.9.10 Hapistrano

Report by: Stack Builders
Status: active

Hapistrano deploys Haskell applications to a new di-
rectory marked with a timestamp on the remote host.
It creates this new directory quickly by placing a Git
repository for caching purposes on the remote server.
When the build process completes, it switches a sym-

link to the current release directory, and optionally
restarts the web server. By default, Hapistrano keeps
the last five releases on the target host filesystem and
deletes previous releases to avoid filling up the disk.
Hapistrano has been almost completely rewritten

and new features have been added. The reason for
such a rewrite was that we wished to make configu-
ration easier and to avoid re-building our software on
target hosts when possible, thus making CI cycles that
deploy our software much quicker.
Hapistrano is available on Hackage, and contribution

are welcome in the GitHub repository.

Further reading

◦ https://github.com/stackbuilders/hapistrano
◦ Hapistrano update

32

https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
http://themonadreader.wordpress.com/2014/04/23/issue-23
http://themonadreader.wordpress.com/2014/04/23/issue-23
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
https://github.com/agocorona/haste-perch
http://tryplayg.herokuapp.com
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://mflowdemo.herokuapp.com
purescript.org
https://github.com/purescript/purescript/
https://hackage.haskell.org/package/hapistrano
https://github.com/stackbuilders/hapistrano
https://github.com/stackbuilders/hapistrano
https://stackbuilders.com/news/hapistrano-s-new-features


4.9.11 nginx-haskell-module

Report by: Alexey Radkov
Status: stable, actively developed

The nginx-haskell-module allows using typed Haskell
handlers from within custom Nginx configurations. It
provides several Nginx directives that correspond to
where Haskell code is applied and what kind of task it
solves:

◦ haskell_run — run Haskell handler synchronously
and return a string-like result;

◦ haskell_run_async — run Haskell handler asyn-
chronously in the early rewrite Nginx phase and re-
turn a string-like result when ready;

◦ haskell_content — run Haskell handler for rendering
content;

◦ haskell_static_content — optimized content render-
ing;

◦ haskell_unsafe_content — optimized (in another
way) content rendering;

◦ haskell_run_service — run Haskell handler as a ser-
vice, meaning that this implements not a request-
driven task but rather timer-driven and is directly
bound to the Nginx event loop.

Here, "a string-like result" is an umbrella term for
various Haskell string-like implementations like String
and ByteString, perhaps wrapped inside IO Monad.
Typed Haskell handlers give a strong guarantee that
underlying code will cause no IO specific side effects
thus making sure that Nginx will not stop working due
to unpredictably long-running IO code, which is ex-
tremely crucial for this popular web server.
On the other hand, when effectful code is desirable,

it can be declared with directive haskell_run_async,
which runs Haskell code asynchronously and won’t stop
the Nginx world. Moreover, the module provides di-
rective haskell_run_service for running custom asyn-
chronous "services" that are not bound to requests: this
makes it possible to program interesting solutions like
Nginx-specific service discovery (see a reference to an
advanced example below). An asynchronous service
results are available in request-specific Nginx configu-
ration areas (e.g. location) via an Nginx variable that
holds a string, which, on a deeper level, may wrap a
typed data (or JSON, or other representations).
Basically, a service results variable is stored

in a worker-specific memory, but with directive
haskell_service_var_in_shm it gets its place in
a shared memory and becomes available from all
Nginx workers. In conjunction with directive

haskell_service_var_update_callback, this allows pro-
gramming custom ad-hoc solutions when a Haskell ser-
vice’s results are needed in another Nginx module. On
the Github project page there is an advanced example
dynamicUpstreams that implements such an approach.
The module provides other two di-

rectives haskell_var_nocacheable and
haskell_var_compensate_uri_changes that make Ng-
inx error_page redirections almost Turing-complete.
It is achieved by letting them loop without limits on
number of cycles (by the second directive) and ensur-
ing that loop-specific variables get updated between
iterations (by the first directive). The technique of
Turing-complete error_page redirections is used in an
advanced example labeledMediaRouting.

Further reading

◦ Project page:
http://github.com/lyokha/nginx-haskell-module

◦ Module ngx-export on Hackage:
http://hackage.haskell.org/package/ngx-export

◦ An advanced example in a blog article:
http://lin-techdet.blogspot.com/2017/01/
nginx-haskell-module-labeled-media.html

4.10 Databases

4.10.1 Persistent

Report by: Michael Snoyman
Participants: Greg Weber, Felipe Lessa
Status: stable

Since the last HCAR, persistent has mostly experienced
bug fixes, including recent fixes and increased backend
support for the new flexible primary key type.
Haskell has many different database bindings avail-

able, but most provide few useful static guarantees.
Persistent uses knowledge of the data schema to pro-
vide a type-safe interface to the database. Persistent is
designed to work across different databases, currently
working on Sqlite, PostgreSQL, MongoDB, MySQL,
Redis, and ZooKeeper.
Persistent provides a high-level query interface that

works against all backends.

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones" ] [ ]

The result of this will be a list of Haskell records.
Persistent can also be used to write type-safe query

libraries that are specific. esqueleto is a library for writ-
ing arbitrary SQL queries that is built on Persistent.

33

http://github.com/lyokha/nginx-haskell-module
http://hackage.haskell.org/package/ngx-export
http://lin-techdet.blogspot.com/2017/01/nginx-haskell-module-labeled-media.html
http://lin-techdet.blogspot.com/2017/01/nginx-haskell-module-labeled-media.html


Future plans

Persistent is in a stable, feature complete state. Future
plans are only to increase its ease the places where it
can be easitly used:
◦ Declaring a schema separately from a record, pos-
sibly leveraging GHC’s new annotations feature or
another pattern
Persistent users may also be interested in Ground-

hog, a similar project.
Persistent is recommended to Yesod (→ 4.9.4) users.

However, there is nothing particular to Yesod or even
web development about it. You can have a type-safe,
productive way to store data for any kind of Haskell
project.

Further reading

◦ http://www.yesodweb.com/book/persistent
◦ http://hackage.haskell.org/package/esqueleto
◦ http:

//www.yesodweb.com/blog/2014/09/persistent-2
◦ http://www.yesodweb.com/blog/2014/08/

announcing-persistent-2

4.10.2 Opaleye

Report by: Tom Ellis
Status: stable, active

Opaleye is an open-source library which provides an
SQL-generating embedded domain specific language. It
allows SQL queries to be written within Haskell in a
typesafe and composable fashion, with clear semantics.
The project was publically released in December

2014. It is stable and actively maintained, and used in
production in a number of commercial environments.
Professional support is provided by Purely Agile.
Just like Haskell, Opaleye takes the principles of type

safety, composability and semantics very seriously, and
one aim for Opaleye is to be “the Haskell” of relational
query languages.
In order to provide the best user experience and to

avoid compatibility issues, Opaleye specifically targets
PostgreSQL. It would be straightforward produce an
adaptation of Opaleye targeting other popular SQL
databases such as MySQL, SQL Server, Oracle and
SQLite. Offers of collaboration on such projects would
be most welcome.
Opaleye is inspired by theoretical work by David Spi-

vak, and by practical work by the HaskellDB team. In-
deed in many ways Opaleye can be seen as a spiritual
successor to HaskellDB. Opaleye takes many ideas from
the latter but is more flexible and has clearer semantics.

Further reading

http://hackage.haskell.org/package/opaleye

4.10.3 YeshQL

Report by: Tobias Dammers
Status: Active, usable, somewhat stable

YeshQL is a library to bridge the Haskell / SQL gap by
implementing a quasi-quoter that allows programmers
to write SQL queries in plain SQL, adding metainfor-
mation as structured SQL comments. The latter al-
lows the quasi-quoter to generate a type-safe API for
these queries. YeshQL uses HDBC for the database
backends, but doesn’t depend on any particular HDBC
driver.
The approach was stolen from the YesQL library for

Clojure, and adapted to be more idiomatic in Haskell.
An example code snippet might look like this:

withTransaction db $ \conn -> do
pageID:_ <- [yesh1|

-- :: (Integer)
-- :title:Text
-- :body:Text
INSERT INTO pages (title, body)
VALUES (:title, :body)
RETURNING id
|]
conn title body

[yesh1|
-- :: Integer
INSERT
INTO page_owners (page_id, owner_id)
VALUES (:pageID, :userID)
|]
conn pageID currentUserID

return pageID

YeshQL is production ready; I have used it on several
real-world projects, with good success. The syntax has
some breaking changes based on progressive insight,
addressing all the issues mentioned in earlier reports.
Recent improvements:
◦ Queries can now directly return record types, as long

as a suitable ToSqlRow instance exists.
◦ Queries can use projection functions to access sub-

sets of arguments passed to them. This is mainly in-
tended so that you can pass record types to queries,
and the query itself extracts the fields it needs.

◦ FromSqlRow and ToSqlRow typeclasses can be de-
rived automatically with TemplateHaskell.

◦ YeshQL can be used both as a quasi-quoter and as
plain TemplateHaskell to support more use cases.

◦ It is now possible to generate DDL queries (not re-
turning any results) and queries returning rowcounts
instead of result sets.
Contributions of any kind are more than welcome.

Further reading

◦ https://bitbucket.org/tdammers/yeshql

34

http://www.yesodweb.com/book/persistent
http://hackage.haskell.org/package/esqueleto
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2
http://hackage.haskell.org/package/opaleye
https://bitbucket.org/tdammers/yeshql


◦ http://hackage.haskell.org/package/yeshql
◦ https://github.com/krisajenkins/yesql (not my work)

4.10.4 Riak bindings

Report by: Antonio Nikishaev
Status: active development

riak is a Haskell binding to the Riak database. While
stable and working, it has had only riak-1.∗ sup-
port. The author of this report entry has been re-
cently working on fixing bugs and adding new riak-2.∗
features. Notable ones are: bucket types, high-level
CRDT (Conflict-free replicated data types) support,
basic search operations.

Further reading

◦ http://hackage.haskell.org/package/riak
◦ https://github.com/markhibberd/riak-haskell-client

4.11 Data Structures, Data Types,
Algorithms

4.11.1 Algebraic graphs

Report by: Andrey Mokhov
Participants: Arseniy Alekseyev, Neil Mitchell
Status: usable, active development

Alga is a library for algebraic manipulation of graphs
in Haskell. The underlying theory is presented here.

Main idea

Consider the following data type, which is defined in
the top-level module Algebra.Graph of the library:

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

We can give the following semantics to the construc-
tors in terms of the pair (V,E) of vertices and edges:
◦ Empty constructs the empty graph (∅, ∅).
◦ Vertex x constructs a single vertex, i.e. ({x}, ∅).
◦ Overlay x y overlays graphs (Vx, Ex) and (Vy, Ey)

constructing (Vx ∪ Vy, Ex ∪ Ey).
◦ Connect x y connects graphs (Vx, Ex) and (Vy, Ey)

constructing (Vx ∪ Vy, Ex ∪ Ey ∪ Vx × Vy).
This figure shows examples of graph construction,

where + and ∗ stand for Overlay and Connect.

We can give an algebraic semantics to the graph con-
struction primitives by defining the type class:

class Graph g where
type Vertex g
empty :: g
vertex :: Vertex g → g
overlay :: g → g → g
connect :: g → g → g

Instances of the type class obey the following laws:
◦ (+, empty) is an idempotent commutative monoid.
◦ (∗, empty) is a monoid.
◦ ∗ distributes over +, e.g. x ∗ (y + z) = x ∗ y + x ∗ z.
◦ ∗ can be decomposed: x ∗ y ∗ z = x ∗ y+ x ∗ z+ y ∗ z.
This algebraic structure corresponds to unlabelled

directed graphs: every expression represents a graph,
and every graph can be represented by an expression.
The library defines several law-abiding instances and
polymorphic graph manipulation functions.

Current status

The library is documented, tested and usable. It is un-
der active development, so the API is subject to change.

Further reading

◦ http://hackage.haskell.org/package/algebraic-graphs
◦ https://github.com/snowleopard/alga-paper

35

http://hackage.haskell.org/package/yeshql
https://github.com/krisajenkins/yesql
http://hackage.haskell.org/package/riak
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
http://hackage.haskell.org/package/riak
https://github.com/markhibberd/riak-haskell-client
https://github.com/snowleopard/alga-paper
http://hackage.haskell.org/package/algebraic-graphs
https://github.com/snowleopard/alga-paper


4.11.2 Conduit

Report by: Michael Snoyman
Status: stable

The conduit package is one of the most popular ap-
proaches to solving the streaming data problem in
Haskell. It provides a composable, resource-safe, and
constant memory solution to many common problems.
With the well developed conduit ecosystem around it,
you can easily deal with a variety of data sources (files,
memory, HTTP, TCP), file formats (XML, YAML,
JSON, CSV), advanced abstractions around parallel
processing and concurrency, and have access to a wide
range of helpful library functions to choose from.
Since the last HCAR, conduit has remained in an

API stable mode. There are some tentative plans for a
future breaking change which will standardize operator,
function, and type naming around the recent reskin-
ning described in http://www.snoyman.com/blog/2016/
09/proposed-conduit-reskin. However, we strongly want
to do this in a way that minimizes API breakage, so
are taking such a change slowly.
Under the surface, conduit makes use of coroutines

and an inlined free monad transformer approach to
allow for a high level of flexibility in conduit com-
position. This is as opposed to other approaches,
like list-t or stream fusion, which trade in some of
that flexibility for performance. Some of these ideas
were explored in http://www.yesodweb.com/blog/2016/
02/first-class-stream-fusion. The end result is that,
for most I/O based applications, conduit provides a
great trade-off. For fully CPU-bound operations, you’ll
likely want to consider using something less flexible but
higher performance.
Conduit is intended to be a replacement to usage of

lazy I/O in Haskell code, allowing us to work on large
data sets, ensure resources are cleaned up promptly,
and retain composable programs. Please see the afore-
mentioned tutorial for many examples of how this
works.
The conduit package is designed to work well with

the resourcet package, which allows for guarantee-
ing resource finalization in continuation-based monads.
This is one of the main simplifications that conduit
achieved versus previous streaming approaches, such
as the enumerator package and other left-fold iterator
approaches.
Since its initial release, conduit has been through

many design iterations, all the while keeping to its ini-
tial core principles. The conduit API has remained sta-
ble on version 1.2, which includes a lot of work around
performance optimizations, including a stream fusion
implementation to allow much more optimized runs for
some forms of pipelines, and the codensity transform

to provide better behavior of monadic bind.
Additionally, much work has gone into

conduit-combinators and streaming-commons.
The former provides a "batteries included" approach
to conduit, containing a wide array of common func-
tionality for both chunked data (like ByteString, Text,
and Vector) and unchunked data. The latter contains
common functionality useful to most streaming data
frameworks, made available so that other libraries in
this solution space can share a common code base.
There is a rich ecosystem of libraries available to

be used with conduit, including cryptography, network
communications, serialization, XML processing, and
more.
Many conduit libraries are available via Hackage,

Stackage Nightly, and LTS Haskell (just search for the
word conduit). The main repository includes a tutorial
on using the package.

Further reading

◦ https://haskell-lang.org/library/conduit
◦ https://github.com/snoyberg/conduit#readme
◦ https://www.stackage.org/package/conduit
◦ https:

//www.stackage.org/package/conduit-combinators
◦ http://hackage.haskell.org/packages/archive/pkg-list.

html#cat:conduit

4.11.3 Transactional Trie

Report by: Michael Schröder
Status: stable

The transactional trie is a contention-free hash map for
Software Transactional Memory (STM). It is based on
the lock-free concurrent hash trie.
“Contention-free” means that it will never cause spu-

rious conflicts between STM transactions operating on
different elements of the map at the same time. Com-
pared to simply putting a HashMap into a TVar, it is
up to 8x faster and uses 10x less memory.

Further reading

◦ http://hackage.haskell.org/package/ttrie
◦ http://github.com/mcschroeder/thesis, in particular

chapter 3, which includes a detailed discussion of
the transactional trie’s design and implementation,
its limitations, and an evaluation of its performance.

36

http://www.snoyman.com/blog/2016/09/proposed-conduit-reskin
http://www.snoyman.com/blog/2016/09/proposed-conduit-reskin
http://www.yesodweb.com/blog/2016/02/first-class-stream-fusion
http://www.yesodweb.com/blog/2016/02/first-class-stream-fusion
https://haskell-lang.org/library/conduit
https://github.com/snoyberg/conduit#readme
https://www.stackage.org/package/conduit
https://www.stackage.org/package/conduit-combinators
https://www.stackage.org/package/conduit-combinators
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/package/ttrie
http://github.com/mcschroeder/thesis


4.11.4 Random access zipper

Report by: Li-yao Xia
Status: Experimental, work in progress

The Random Access Zipper (RAZ) is a data structure
for representing sequences with efficient indexing and
edits.
The paper introducting it (with an implementation

in OCaml) reported performance that is competitive
with the more common Finger Tree structure.
I have translated it in Haskell, and started imple-

menting the same interface as Data.Sequence from
containers in Data.Raz.Sequence.
I reproduced the benchmarks from the paper as

well as those of containers. On average, Haskell’s
raz is slightly slower than OCaml’s, but faster than
containers for many operations.

Future work

The Data.Raz.Sequence module remains to be fin-
ished to fully match Data.Sequence.
There are certainly lots of optimizations opportuni-

ties.
Raz requires randomness, which results in some awk-

ward types in Haskell on the one hand (or, internal
(ab)use of unsafePerformIO to implement a pure in-
terface), but this explicitness can be informative on the
other hand, though I am not yet certain how that in-
formation may be usefully exploited.

Further reading

◦ Random Access Zippers: Simple, Purely-Functional
Sequences, K. Headley, M. A. Hammer.
https://arxiv.org/abs/1608.06009

◦ https://hackage.haskell.org/package/raz
◦ https://github.com/Lysxia/raz.haskell

4.11.5 Generic random generators

Report by: Li-yao Xia
Status: Experimental, active development

Description

The generic-random library automatically derives ran-
dom generators for most datatypes. It can be used in
testing for example, in particular to define instances of
QuickCheck’s Arbitrary.
The module Generic.Random.Generic leverages

GHC.Generics to handle common boilerplate in in-
stances of Arbitrary for simple datatypes.
However, for recursive datatypes, a naive generator is

likely to have problematic issues: non-termination, in-
conveniently biased distributions (too large, too small,
too full). Generic.Random.Data derives Boltzmann
samplers, introduced by Duchon et al. (2004). They
produce finite values of a given type and about a given

size (the number of constructors) in linear time; the dis-
tribution is uniform when conditioned to a fixed size:
two values with the same size occur with the same prob-
ability.

Status

I found out that the FEAT library, which can derive
random generators for the same class of datatypes pro-
ducing values of a given size exactly and uniformly dis-
tributed, has much better performance as well.
In theory, Boltzmann samplers have the better

asymptotic complexity, but they come with an over-
head that appears hard to get rid of; generic-random
only catches up to FEAT on data sizes that seem too
large to be practical (thousands of constructors).
Due to that, I have lost the motivation to go forward

with this package. I still remain open to discussion and
suggestions.
Admittedly, the benchmarks I did were perhaps sim-

plistic (they can be found in the Github repo), com-
paring the speed of generating basic binary trees. I
am unsure about how the trade-offs evolve with more
complex types.

Further reading

◦ Boltzmann Samplers for the Random Generation of
Combinatorial Structures P. Duchon, P. Flajolet, G.
Louchard, G. Schaeffer.
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf

◦ https://hackage.haskell.org/package/generic-random
◦ https://github.com/Lysxia/generic-random
◦ https://hackage.haskell.org/package/testing-feat

4.11.6 Generalized Algebraic Dynamic
Programming

Report by: Christian Höner zu Siederdissen
Participants: Sarah J. Berkemer
Status: usable, active development

Generalized Algebraic Dynamic Programming (gADP)
provides a solution for high-level dynamic programs.
We treat the formal grammars underlying each DP
algorithm as an algebraic object which allows us to
calculate with them. gADP covers dynamic program-
ming problems of various kinds: (i) we include linear,
context-free, and multiple context-free languages (ii)
over sequences, trees, and sets; and (iii) provide ab-
stract algebras to combine grammars in novel ways.
Below, we describe the highlights our system offers

in more detail:

Grammars Products

We have developed a theory of algebraic operations
over linear and context-free grammars. This theory al-
lows us to combine simple “atomic” grammars to create
more complex ones.

37

https://arxiv.org/abs/1608.06009
https://hackage.haskell.org/package/raz
https://github.com/Lysxia/raz.haskell
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf
https://hackage.haskell.org/package/generic-random
https://github.com/Lysxia/generic-random
https://hackage.haskell.org/package/testing-feat


With the compiler that accompanies our theory, we
make it easy to experiment with grammars and their
products. Atomic grammars are user-defined and the
algebraic operations on the atomic grammars are em-
bedded in a rigorous mathematical framework.
Our immediate applications are problems in compu-

tational biology and linguistics. In these domains, al-
gorithms that combine structural features on individ-
ual inputs (or tapes) with an alignment or structure
between tapes are becoming more commonplace. Our
theory will simplify building grammar-based applica-
tions by dealing with the intrinsic complexity of these
algorithms.
We provide multiple types of output. LATEX is avail-

able to those users who prefer to manually write the re-
sulting grammars. Alternatively, Haskell modules can
be created. TemplateHaskell and QuasiQuoting ma-
chinery is also available turning this framework into a
fully usable embedded domain-specific language. The
DSL or Haskell module use ADPfusion (→ 4.20.1) with
multitape extensions, delivering “close-to-C” perfor-
mance.

Set Grammars

Most dynamic programming frameworks we are aware
of deal with problems over sequence data. There
are, however, many dynamic programming solutions to
problems that are inherently non-sequence like. Hamil-
tonian path problems, finding optimal paths through a
graph while visiting each node, are a well-studied ex-
ample.
We have extended our formal grammar library to

deal with problems that can not be encoded via linear
data types. This provides the user of our framework
with two benefits, easy encoding of problems based on
set-like inputs and construction of dynamic program-
ming solutions. On a more general level, the extension
of ADPfusion and the formal grammars library shows
how to encode new classes of problems that are now
gaining traction and are being studied.
If, say, the user wants to calculate the shortest

Hamiltonian path through all nodes of a graph, then
the grammar for this problem is:

s (f <<< s % n ||| g <<< n ... h)

which states that a path s is either extended by a node
n, or that a path is started by having just a first, single
node n. Functions f and g evaluate the cost of moving
to the new node. gADP has notions of sets with inter-
faces (here: for s) that provide the needed functionality
for stating that all nodes in s have been visited with
a final visited node from which an edge to n is to be
taken.

Tree Grammars

Tree grammars are important for the analysis of struc-
tured data common in linguistics and bioinformatics.
Consider two parse trees for english and german (from:
Berkemer et al. General Reforestation: Parsing Trees
and Forests) and the node matching probabilities we
gain when trying to align the two trees:

We can create the parse trees themselves with a nor-
mal context-free language on sequences. We can also
compare the two sentences with, say, a Needleman-
Wunsch style sequence alignment algorithm. However,
this approach ignores the fact that parse trees encode
grammatical structure inherent to languages. The com-
parison of sentences in english or german should be on
the level of the structured parse tree, not the unstruc-
tured sequence of words.
Our extension of ADPfusion (→ 4.20.1) to forests as

inputs allows us to deal with a variety of problems in
complete analogy to sequence-based dynamic program-
ming. This extension fully includes grammar products,
and automatic outside grammars.

Automatic Outside Grammars

Our third contribution to high-level and efficient dy-
namic programming is the ability to automatically con-
struct Outside algorithms given an Inside algorithm.
The combination of an Inside algorithm and its cor-
responding Outside algorithm allow the developer to
answer refined questions for the ensemble of all (sub-
optimal) solutions.
The image below depicts one such automatically cre-

ated grammar that parses a string from the Outside in.
T and C are non-terminal symbols of the Outside gram-
mar; the production rules also make use of the S and
B non-terminals of the Inside version.

One can, for example, not only ask for the most effi-
cient path through all cities on a map, but also answer
which path between two cities is the most frequented
one, given all possible travel routes. In networks, this
allows one to determine paths that are chosen with high
likelihood.

38



Multiple Context-Free Grammars

In both, linguistics and bioinformatics, a number of
problems exist that can only be described with formal
languages that are more powerful than context-free lan-
guages, but often have the form of two or more inter-
leaved context-free languages (say: anbncn). In RNA
biology, pseudoknotted structures can be modelled in
this way, while in linguistics, we can model languages
with crossing dependencies.
ADPfusion and the generalized Algebraic Dynamic

Programming methodology have been extended to han-
dle these kinds of grammars.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP/
◦ http://dx.doi.org/10.1109/TCBB.2014.2326155
◦ http://dx.doi.org/10.1007/978-3-319-12418-6_8

4.11.7 Earley

Report by: Olle Fredriksson
Participants: Spiros Boosalis, Oleg Grenrus, Tero

Keinänen
Status: maintained

Earley is a parsing library that can parse all context-
free grammars, including tricky ones for example with
left-recursion. The grammars are specified in applica-
tive style.
A new feature in the Earley library is language gener-

ation. Given a grammar and a list of allowed input to-
kens, Earley can generate the members of the language
that the grammar generates. The following example
shows the language generated by a Roman numerals
grammar limited to the tokens ’V’, ’I’, and ’X’.

language (generator romanNumeralsGrammar "VIX")
= [(0, ""), (1, "I"), (5, "V"), (10, "X"), (20, "XX"),

(11, "XI"), (15, "XV"), (6, "VI"), (9, "IX"),
(4, "IV"), (2, "II"), (3, "III"), (19, "XIX"),
(16, "XVI"), (14, "XIV"), (12, "XII"), (7, "VII"),
(21, "XXI"), (25, "XXV"), (30, "XXX"),
(31, "XXXI"), (35, "XXXV"), (8, "VIII"),
(13, "XIII"), (17, "XVII"), (26, "XXVI"),
(29, "XXIX"), (24, "XXIV"), (22, "XXII"),
(18, "XVIII"), (36, "XXXVI"), (39, "XXXIX"),
(34, "XXXIV"), (32, "XXXII"), (23, "XXIII"),
(27, "XXVII"), (33, "XXXIII"), (28, "XXVIII"),
(37, "XXXVII"), (38, "XXXVIII")]

Further reading

https://github.com/ollef/Earley

4.11.8 Transient

Report by: Alberto Gómez Corona
Status: active development

Transient is a monad/applicative/Alternative with bat-
teries included that brings the power of high level ef-
fects in order to reduce the learning curve and make
the Haskell programmer productive. Effects include
event handling/reactive, backtracking, extensible state,
indeterminism, concurrency, parallelism, thread con-
trol and distributed computing, publish/subscribe and
client/server side web programming among others.
All effects can be combined while maintaining alge-

braic and monadic composability using standard ap-
plicative, alternative and monadic combinators.
What is new in this report is:
◦ Restoring execution state from checkpoint
◦ Nodes can connect using websockets or relay com-

munications
◦ Secure communications with TLS
◦ Optimize local calls
◦ Exception management using backtracking
◦ HTML rendering support templates and template

edition !!??
Future work: Relay communications, Programmer-

defined serialization, Server side HTML rendering

Further reading

◦ gitter chat
◦ Transient tutorial
◦ distributed Transient, GIT repository
◦ Transient GIT repository
◦ An EDSL for Hard-working IT programmers
◦ The hardworking programmer II: practical

backtracking to undo actions
◦ Publish-suscribe variables
◦ Moving processes between nodes
◦ Parallel non-determinism
◦ streamimg, distributed streaming, mapReduce with

distributed datasets

39

http://www.bioinf.uni-leipzig.de/Software/gADP/
http://dx.doi.org/10.1109/TCBB.2014.2326155
http://dx.doi.org/10.1007/978-3-319-12418-6_8
https://github.com/ollef/Earley
https://gitter.im/Transient-Transient-Universe-HPlay/Lobby
https://github.com/agocorona/transient/wiki/Transient-tutorial
https://github.com/agocorona/transient-universe
https://github.com/agocorona/transient
https://www.fpcomplete.com/user/agocorona/EDSL-for-hard-working-IT-programmers
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/publish-subscribe-variables-transient-effects-v
https://www.fpcomplete.com/user/agocorona/moving-haskell-processes-between-nodes-transient-effects-iv
https://www.fpcomplete.com/user/agocorona/beautiful-parallel-non-determinism-transient-effects-iii
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1


4.12 Parallelism

4.12.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Rita Loogen, Lukas Schiller,

in Sydney: Jost Berthold
Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.

Eden’s primitive constructs are process abstractions
and process instantiations. Higher-level coordination is
achieved by defining skeletons, ranging from a simple
parallel map to sophisticated master-worker schemes.
They have been used to parallelize a set of non-trivial
programs.
Eden’s interface supports a simple definition of ar-

bitrary communication topologies using Remote Data.
The remote data concept can also be used to compose
skeletons in an elegant and effective way, especially in
distributed settings. A PA-monad enables the eager
execution of user defined sequences of Parallel Actions
in Eden.

Survey and standard reference: Rita Loogen,
Yolanda Ortega-Mallén, and Ricardo Peña: Parallel
Functional Programming in Eden, Journal of Func-
tional Programming 15(3), 2005, pages 431–475.

Tutorial: Rita Loogen: Eden - Parallel Func-
tional Programming in Haskell, in: V. Zsók, Z.
Horváth, and R. Plasmeijer (Eds.): CEFP 2011,
Springer LNCS 7241, 2012, pp. 142-206. (see also:
www.mathematik.uni-marburg.de/~eden/?content=cefp)

Implementation

Eden is implemented by modifications to the Glasgow-
Haskell Compiler (extending its runtime system to use
multiple communicating instances). Apart from MPI
or PVM in cluster environments, Eden supports a
shared memory mode on multicore platforms, which
uses multiple independent heaps but does not depend
on any middleware. Building on this runtime support,
the Haskell package edenmodules defines the language,
and edenskels provides a library of parallel skeletons.
The source code repository for Eden releases

is james.mathematik.uni-marburg.de:8080/gitweb, the
Eden libraries (Haskell-level) are also available via
Hackage. Please contact us if you need any support.

Tools and libraries

The Eden trace viewer tool EdenTV provides a vi-
sualisation of Eden program runs on various levels.
Activity profiles are produced for processing elements
(machines), Eden processes and threads. In addi-
tion message transfer can be shown between processes
and machines. EdenTV is written in Haskell and is
freely available on the Eden web pages and on hack-
age. Eden’s thread view can also be used to visualise
ghc eventlogs. Recently, in the course of his Bache-
lor thesis, Bastian Reitemeier developed another trace
viewer tool, Eden-Tracelab, which is capable of visual-
ising large trace files, without being constrained by the
available memory. Details can be found in his blogpost
brtmr.de/2015/10/17/introducing-eden-tracelab.html.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ L. Schiller: An Agglomeration Law for Sorting Net-
works and its Application in Functional Program-
ming, Workshop on Functional and (Constraint)
Logic Programming (WFLP), Leipzig, September
2016.

◦ M. Dieterle, Th. Horstmeyer, R. Loogen, J.
Berthold: Skeleton Composition vs Stable Process
Systems in Eden, Journal of Functional Program-
ming, Volume 26, Published online: 15 July 2016,
e11, 40 pages.

◦ J. Berthold, H.-W. Loidl, K. Hammond: PAEAN:
Portable and scalable runtime support for parallel
Haskell dialects, Journal of Functional Program-
ming, Volume 26, Published online: 13 July 2016,
e10, 39 pages.

Further reading

http://www.mathematik.uni-marburg.de/~eden

40

www.mathematik.uni-marburg.de/~eden/?content=cefp
james.mathematik.uni-marburg.de:8080/gitweb
brtmr.de/2015/10/17/introducing-eden-tracelab.html
http://www.mathematik.uni-marburg.de/~eden


4.12.2 Auto-parallelizing Pure Functional Language
System

Report by: Kei Davis
Participants: Dean Prichard, David Ringo, Loren

Anderson, Jacob Marks
Status: active

The main project goal is the demonstration of a light-
weight, higher-order, polymorphic, pure functional lan-
guage implementation in which we can experiment
with automatic parallelization strategies, varying de-
grees of default function and constructor strictness, and
lightweight instrumentation.
We do not consider speculative or eager evaluation,

but do plan to infer strictness by program analysis, so
potential parallelism is dictated by the specified de-
gree of default strictness, language constructs for par-
allelism, and program analysis.
Our approach is similar to that of the Intel Labs

Haskell Research Compiler: we use GHC as a front-
end to generate STG, then exit to our own back-end
compiler. As in their case we do not attempt to use
the GHC runtime. Our implementation is light-weight
in that we are not attempting to support or recreate
the vast functionality of GHC and its runtime. This
approach is also similar to Don Stewart’s except that
we generate C instead of Java.

Current Status

Currently we have a fully functioning serial implemen-
tation and a primitive proof-of-design parallel imple-
mentation. The most recent major development was
the bridge between GHC and our system. Thus we
can now compile and run Haskell programs with sim-
ple primitive and algebraic data types.
Additionally, we have developed a new strictness

analysis technique that will be incorporated into the
compiler. We’ll miss the Static Analysis Symposium
2017 submission deadline, unfortunately.

Immediate Plans

We are currently developing a more realistic parallel
runtime. The implementation of the strictness analysis
is scheduled as a Master’s thesis project starting May
2017.

Undergraduate/post-graduate Internships

If you are a United States citizen or permanent resi-
dent alien studying computer science or mathematics
at the undergraduate level, or are a recent graduate,
with strong interests in Haskell programming, com-
piler/runtime development, and pursuing a spring, fall,

or summer internship at Los Alamos National Labora-
tory, this could be for you.
We don’t expect applicants to necessarily already be

highly accomplished Haskell programmers—such an in-
ternship is expected to be a combination of further de-
veloping your programming/Haskell skills and putting
them to good use. If you’re already a strong C hacker
we could use that too.

The application process requires a bit of
work so don’t leave enquiries until the last
day/month. Dates for terms beyond fall 2017 are
best guesses based on prior years.

Term Application Deadline
Opening

Fall 2017 Open May 31 2017
Spring 2018 July 2017 Oct 2017
Summer 2018 Oct 2017 Jan 2018

Email kei (at) lanl (dot) gov if interested in more
information, and feel free to pass this along.

Further reading

Email same address as above for the Trends in
Functional Programming 2016 paper about this
project.
Intern Loren Anderson did an interesting Haskell exer-
cise while here for this mathematics paper.

4.12.3 Déjà Fu: Concurrency Testing

Report by: Michael Walker
Status: actively developed

Déjà Fu is a concurrency testing tool for Haskell. It
provides a typeclass abstraction over a large subset of
the functionality in the Control.Concurrent module hi-
erarchy, and makes use of testing techniques pioneered
in the imperative and object-oriented worlds.
The testing trades completeness for speed, by bound-

ing the number of preemptions and yields in a single
execution, as well as the overall length. This also al-
lows testing of potentially non-terminating programs.
All of these bounds are optional, however, and can be
disabled, or changed.
A brief list of supported functionality:
◦ Threads: the forkIO* and forkOn* functions, al-

though bound threads are not supported.
◦ Getting and setting capablities (testing default is

two).
◦ Yielding and delaying.
◦ Mutable state: STM, MVar, and IORef.
◦ Relaxed memory for IORef operations: total store

order (the testing default) and partial store order.
◦ Atomic compare-and-swap for IORef.

41

https://dl.acm.org/citation.cfm?id=2503779
https://dl.acm.org/citation.cfm?id=2503779
http://www.cse.unsw.edu.au/~pls/thesis/dons-thesis.ps.gz
http://ijmcs.future-in-tech.net/11.1/R-Anderson.pdf


◦ Exceptions.
◦ All of the data structures in Control.Concurrent.*
and Control.Concurrent.STM.* have typeclass-
abstracted equivalents.
This is quite a rich set of functionality, although it is

not complete. If there is something else you need, file
an issue!
Even if you don’t need the testing functionality, the

concurrency abstraction (in the “concurrency” pack-
age) is useful in its own right, as it allows transparent
use of concurrency with many common monad trans-
formers.
The 0.5 and 0.6 releases of dejafu have seen sig-

nificant performance improvements both in time and
space, and support for testing programs by random
scheduling.

Further reading

◦ http://hackage.haskell.org/package/dejafu
◦ http://hackage.haskell.org/package/concurrency
◦ The 2015 Haskell Symposium paper is available at

http://bit.ly/1N2Lkw4; and a more up-to-date
technical report is available at
http://bit.ly/1SMHx4U.

◦ There are a number of blog posts on the
functionality and implementation at
https://www.barrucadu.co.uk.

4.12.4 The Remote Monad Design Pattern

Report by: Andrew Gill
Participants: Justin Dawson, Mark Grebe, James

Stanton, David Young
Status: active

The remote monad design pattern is a way of mak-
ing Remote Procedure Calls (RPCs), and other calls
that leave the Haskell eco-system, considerably less ex-
pensive. The idea is that, rather than directly call a re-
mote procedure, we instead give the remote procedure
call a service-specific monadic type, and invoke the re-
mote procedure call using a monadic “send” function.
Specifically, a remote monad is a monad that has its
evaluation function in a remote location, outside the
local runtime system.
By factoring the RPC into sending invocation and

service name, we can group together procedure calls,
and amortize the cost of the remote call. To give an
example, Blank Canvas, our library for remotely access-
ing the JavaScript HTML5 Canvas, has a send func-
tion, lineWidth and strokeStyle services, and our
remote monad is called Canvas:
send :: Device -> Canvas a -> IO a
lineWidth :: Double -> Canvas ()
strokeStyle :: Text -> Canvas ()

If we wanted to change the (remote) line width, the
lineWidth RPC can be invoked by combining send and
lineWidth:

send device (lineWidth 10)

Likewise, if we wanted to change the (remote) stroke
color, the strokeStyle RPC can be invoked by com-
bining send and strokeStyle:

send device (strokeStyle "red")

The key idea is that remote monadic commands can
be locally combined before sending them to a remote
server. For example:

send device (lineWidth 10 >> strokeStyle "red")

The complication is that, in general, monadic com-
mands can return a result, which may be used by sub-
sequent commands. For example, if we add a monadic
command that returns a Boolean,

isPointInPath :: (Double,Double) -> Canvas Bool

we could use the result as follows:

send device $ do
inside <- isPointInPath (0,0)
lineWidth (if inside then 10 else 2)
...

The invocation of send can also return a value:

do res <- send device (isPointInPath (0,0))
...

Thus, while the monadic commands inside send are
executed in a remote location, the results of those ex-
ecutions need to be made available for use locally.
We had a paper in the 2015 Haskell Symposium that

discusses these ideas in more detail, and more recently,
we have improved the packet mechanism to include an
analog of the applicate monad structure, allowing for
even better bundling. We have also improved the error
handling capabilities. These ideas are implemented up
in the hackage package remote-monad, which captures
the pattern, and automatically bundled the monadic
requests.

Further reading

http://ku-fpg.github.io/practice/remotemonad

4.12.5 concurrent-output

Report by: Joey Hess
Status: stable, actively developed

A common problem with concurrent programs is that
output to the console has to be buffered or otherwise
dealt with to avoid multiple threads writing over top of
one-another. This is particularly a problem for progress
displays, and the output of external processes. The
concurrent-output library aims to be a simple solution
to this problem.

42

http://hackage.haskell.org/package/dejafu
http://hackage.haskell.org/package/concurrency
http://bit.ly/1N2Lkw4
http://bit.ly/1SMHx4U
https://www.barrucadu.co.uk
http://ku-fpg.github.io/practice/remotemonad


It includes support for multiple console regions,
which different threads can update independently.
Rather than the complexity of using a library such as
ncurses to lay out the screen, concurrent-output’s re-
gions are compositional; it acts as a kind of miniature
tiling window manager. This makes it easy to gener-
ate progress displays similar to those used by apt or
docker.
STM is used extensively in the implementation,

which simplified what would have otherwise been a
mess of nested locks. This made concurrent-output ex-
tensible using STM transactions. See this blog post.
Concurrent-output is used by git-annex, propellor,

and xdcc and patches have been developed to make
both shake and stack use it.

4.13 Systems programming

4.13.1 Haskell for Mobile development

Report by: Moritz Angermann
Participants: zw3rk.com and obsidian.systems
Status: in review

The set of languages to choose from for mobile devel-
opment is limited to those languages that can target
those ecosystems.
There have been ongoing efforts to make Haskell a

viable choice for Mobile Development for many years,
via the path of cross compilation.
A major obstacle for cross compilation with Haskell

is Template Haskell. Up until recently Template
Haskell was available only for stage2 compilers, while
cross compilers are stage1. One notable excep-
tion is GHCJS, which had Template Haskell sup-
port quite some time already via an out of process
Template Haskell solution. With the addition of
-fexternal-interpreter via iserv in recent GHCs,
which implements a very similar system, it is possible
to add TH support to stage1 cross compilers.
With the addition of linker for mach-o/aarch64,

elf/aarch64, and improvements to the elf/armv7 linker
in GHC, as well as a proxy mechanism that allows GHC
to communicate with a remote iserv on a different host
it is now possible to compile large chunks of TH code
with cross compilers targeting supported linker plat-
forms. File and Process IO pose interesting problems.
The necessary changes to GHC are all under review

and will hopefully make it into GHC 8.4 in time.
There are some additional challenges in the Haskell

ecosystem (e.g. cabal is not very cross compilation
aware) that need to be addressed before Haskell for
Mobile works out of the box.
A periodically force-pushed snapshot of the GHC

HEAD plus the open differentials is available, as well as
build scripts that build ghc for iOS and Android using

a custom toolchain, derived from the ghc-ios-scripts.
GHCSlave apps for iOS and Android that wrap iserv.
Further information covering the ongoing develop-

ment will be published at https://medium.com/@zw3rk.

4.13.2 haskus-system

Report by: Sylvain Henry
Status: active

haskus-system is a framework designed for system
programming. Fundamentally it is an experiment into
providing an integrated interface leveraging Haskell fea-
tures (type-safety, STM, etc.) for the whole system:
input, display, sound, network, etc.

It is based directly and only on the Linux kernel:

◦ it doesn’t contain any kernel level code (device
driver, etc.)

◦ it doesn’t rely on usual interfaces (e.g., libdrm, lib-
input, X11, wayland, etc.) to communicate with the
kernel

The source code is freely available (BSD3 license).

Notable changes since the last HCAR:

◦ the project has been renamed from ViperVM to
haskus-system

◦ a lot of documentation has been written (see the web-
site)

◦ several examples have been released

Further reading

www.haskus.org/system

43

http://joeyh.name/blog/entry/STM_Region_contents/
zw3rk.com
obsidian.systems
https://github.com/angerman/ghc/tree/my-ghc
https://github.com/zw3rk/ghc-build-scripts
https://github.com/zw3rk/ghc-scripts
https://github.com/ghc-ios/ghc-ios-scripts
https://github.com/zw3rk/ghc-slave
https://medium.com/@zw3rk
www.haskus.org/system


4.13.3 Haskino

Report by: Andrew Gill
Participants: Mark Grebe
Status: active

Haskino is a Haskell development environment for
programming the Arduino microcontroller boards in a
high level functional language instead of the low level
C language normally used.
This work started with Levent Erkök’s hArduino

package. The original version of Haskino, extended
hArduino by applying the concepts of the strong re-
mote monad design pattern to provide a more efficient
way of communicating, and generalizing the controls
over the remote execution. In addition, it added a deep
embedding, control structures, an expression language,
and a redesigned firmware interpreter to enable stan-
dalone software for the Arduino to be developed using
the full power of Haskell.
The current version of Haskino continues to build

on this work. Haskino is now able to directly gener-
ate C programs from our Arduino Monad. This allows
the same monadic program to be quickly developed
and prototyped with the interpreter, then compiled to
C for more efficient operation. In addition, we have
added scheduling capability with lightweight threads
and semaphores for inter-thread synchronization.
The development has been active over the past year.

A paper was published at PADL 2016 for original ver-
sion, and there is a paper accepted for presentation at
TFP 2016 for the new scheduled and compiled version.

Further reading

◦ https://github.com/ku-fpg/haskino
◦ https://github.com/ku-fpg/wiki

4.13.4 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and has been developed as a collaboration, in
different phases, between Chalmers University of Tech-
nology, ELTE University, SICS Swedish ICT AB and
Ericsson AB.

The motivating application of Feldspar is telecoms
processing, but the language is intended to be useful
for DSP and numeric code in general as well as for
programming embedded systems. The aim is to allow
functions to be written in functional style in order to
raise the abstraction level of the code and to enable
more high-level optimizations.
The currently recommended Feldspar implementa-

tion is RAW-Feldspar. Its README file is a good
starting point for getting to know Feldspar.
RAW-Feldspar provides libraries for numeric and ar-

ray processing operations, and supports file handling,
calls to external C libraries, concurrency, etc. It also
comes with a code generator producing C code for run-
ning on embedded targets.
For reference, the original Feldspar implementation

is available in the packages
◦ feldspar-language – language front end
◦ feldspar-compiler – C back end
Ongoing work involves using RAW-Feldspar to im-

plement more high-level libraries for streaming and in-
teractive programs. Two examples of such libraries are:
◦ zeldspar – a Ziria-like EDSL
◦ feldspar-synch – a synchronous data-flow library
raw-feldspar-mcs is a library built on top of RAW-

Feldspar that generates code for running on NUMA
architectures such as the Parallella.
There is also ongoing work to support hard-

ware/software co-design in RAW-Feldspar.

Further reading

◦ Official home page: http://feldspar.github.io

4.14 Mathematics, Simulations and High
Performance Computing

4.14.1 sparse-linear-algebra

Report by: Marco Zocca
Participants:
Status: Actively developed

This library provides common numerical analysis func-
tionality, without requiring any external bindings. It
is not optimized for performance yet, but it serves as
an experimental platform for scientific computation in
a purely functional setting.
Currently it offers :
◦ iterative linear solvers of the Krylov subspace type,

e.g. variants of conjugate gradient such as Conju-
gate Gradient Squared, BiConjugate Gradient and
BiCGSTAB

◦ linear eigensolvers, based on the QR algorithm and
the Rayleigh iteration

◦ matrix factorizations (namely, LU and QR)
◦ a number of utility functions such vector and matrix

norms, computation of the matrix condition number,

44

https://github.com/ku-fpg/haskino
https://github.com/ku-fpg/wiki
http://hackage.haskell.org/package/raw-feldspar
https://github.com/Feldspar/raw-feldspar/blob/master/README.md
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
https://github.com/koengit/zeldspar
https://github.com/emilaxelsson/feldspar-synch
https://github.com/kmate/raw-feldspar-mcs
http://www.parallella.org
http://feldspar.github.io


Givens’ rotation and Householder reflection matri-
ces, and partitioning/stacking/reshaping operations.
The initial motivation for this was on one hand the

lack of native Haskell tools for numerical computation,
and on the other a curiosity to reimagine scientific com-
puting through a functional lens.
The implementation relies on nested IntMap’s from

containers, but more efficient backends might be de-
sirable, e.g based on Vector. One of the current devel-
opment goals is completely generalizing the interface to
typeclasses in order to decouple algorithms from datas-
tructures.
A usage tutorial on the major functionality is avail-

able in the README file, and all interface functions
are commented throughout the Haddock documenta-
tion.
sparse-linear-algebra is freely available on Hack-

age under the terms of a GPL-3 license; development
is tracked on GitHub, and all suggestions and contri-
butions are very much welcome.

Further reading

◦ https://github.com/ocramz/sparse-linear-algebra
◦ https:

//hackage.haskell.org/package/sparse-linear-algebra

4.14.2 aivika

Report by: David Sorokin
Status: stable

Aivika is a collection of open-source simulation libraries
written in Haskell. It is mainly focused on discrete
event simulation but has a partial support of system
dynamics and agent-based modeling too.
A key idea is that many simulation activities can

be modeled based on abstract computations such as
monads, streams and arrows. The computations are
composing units, which we can construct simulation
models from and then run.
Aivika consists of a few packages. The basic pack-

age introduces the simulation computations. There are
other packages that allow automating simulation ex-
periments. They can save the simulation results in files,
plot charts and histograms, collect the statistics sum-
mary and so on. There are also packages for distributed
parallel simulation and nested simulation based on the
generalized version of Aivika.
The core of Aivika is quite stable and well-tested.

The libraries work on Linux, OS X and Windows. They
are licensed under BSD3 and available on Hackage.
There are plans to find new application fields for the

libraries. The core libraries solve a very general task
and definitely can be applied to other fields too.

Further reading

http://hackage.haskell.org/package/aivika

4.15 Graphical User Interfaces

4.15.1 threepenny-gui

Report by: Heinrich Apfelmus
Status: active development

Threepenny-gui is a framework for writing graphical
user interfaces (GUI) that uses the web browser as a
display. Features include:
◦ Easy installation. Everyone has a reasonably mod-

ern web browser installed. Just install the library
from Hackage and you are ready to go. The library
is cross-platform.

◦ HTML + JavaScript. You have all capabilities of
HTML at your disposal when creating user inter-
faces. This is a blessing, but it can also be a curse,
so the library includes a few layout combinators to
quickly create user interfaces without the need to
deal with the mess that is CSS. A foreign function
interface (FFI) allows you to execute JavaScript code
in the browser.

◦ Functional Reactive Programming (FRP) promises
to eliminate the spaghetti code that you usually
get when using the traditional imperative style for
programming user interactions. Threepenny has an
FRP library built-in, but its use is completely op-
tional. Employ FRP when it is convenient and fall
back to the traditional style when you hit an impasse.
You can download the library from Hackage or Stack

and use it right away to write that cheap GUI you need
for your project. Here a screenshot from the example
code:

For a collection of real world applications that use the
library, have a look at the gallery on the homepage.

Status

Compared to the previous report, the JavaScript FFI
has been improved significantly. It is now more robust
when handling exceptions or loss of connection, and

45

https://github.com/ocramz/sparse-linear-algebra
https://hackage.haskell.org/package/sparse-linear-algebra
https://hackage.haskell.org/package/sparse-linear-algebra
http://hackage.haskell.org/package/aivika


has better performance by (optionally) buffering FFI
calls. Moreover, thanks to the efforts of our new co-
maintainer Simon Jakobi, the library is now available
on Stackage and has been updated to work with the
current Haskell ecosystem.

Future development

The library is still in flux, API changes are likely in
future versions.
In the future, I hope to include some sort of GUI

combinator library that abstracts away the need to go
into details with HTML and CSS, as the latter can be
very cumbersome for GUI design. Perhaps a solution
based on the qooxdoo JavaScript framework may work.

Further reading

◦ Project homepage:
http://wiki.haskell.org/Threepenny-gui

◦ Example code:
https://github.com/HeinrichApfelmus/
threepenny-gui/tree/master/samples#readme

◦ Application gallery:
http://wiki.haskell.org/Threepenny-gui#Gallery

4.15.2 wxHaskell

Report by: Henk-Jan van Tuyl
Status: active development

wxHaskell 0.92.3.0 is released with minor improve-
ments. Next to come, is adapting wxHaskell to wxWid-
gets 3.1. New project participants are welcome.
wxHaskell is a portable and native GUI library for

Haskell. The goal of the project is to provide an indus-
trial strength GUI library for Haskell, but without the
burden of developing (and maintaining) one ourselves.
wxHaskell is therefore built on top of wxWidgets: a

comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with the native look-and-feel.
A screen printout of a sample wxHaskell program:

Further reading

https://wiki.haskell.org/WxHaskell

4.16 FRP

4.16.1 Yampa

Report by: Ivan Perez

Yampa (Github: http://git.io/vTvxQ, Hackage:
http://goo.gl/JGwycF), is a Functional Reactive Pro-
gramming implementation in the form of a EDSL to de-
fine Signal Functions, that is, transformations of input
signals into output signals (aka. behaviours in other
FRP dialects).
Yampa systems are defined as combinations of Sig-

nal Functions. Yampa includes combinators to create
constant signals, apply pointwise (or time-wise) trans-
formations, access the running time, introduce delays
and create loopbacks (carrying present output as future
input). Systems can be dynamic: their structure can
be changed using switching combinators, which apply
a different signal function at some point in the future.
Combinators that deal with collections enable adding,
removing, altering, pausing and unpausing signal func-
tions at will.
A suitable thinking model for FRP in Yampa is

that of signal processing, in which components (sig-
nal functions) transform signals based on their present
value and a component’s internal state. Components
can, therefore, be serialized, applied in parallel, etc.
Yampa’s signal functions implement the Arrow and Ar-
rowLoop typeclasses, making it possible to use both
arrow notation and arrow combinators.
Yampa combinators guarantee causality: the value of

an output signal at a time t can only depend on values
of input signals at times [0, t]. Efficiency is provided by
limiting history only to the immediate past, and letting
signals functions explicitly carry state for the future.
Unlike other implementations of FRP, Yampa enforces
a strict separation of effects and pure transformations:
all IO code must exist outside Signal Functions, making
systems easier to reason about and debug.

46

http://www.qooxdoo.org
http://wiki.haskell.org/Threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui/tree/master/samples#readme
https://github.com/HeinrichApfelmus/threepenny-gui/tree/master/samples#readme
http://wiki.haskell.org/Threepenny-gui#Gallery
https://wiki.haskell.org/WxHaskell
http://git.io/vTvxQ
http://goo.gl/JGwycF


Yampa has been used to create both free/open-
source and commercial games. Examples of the
former include Frag (http://goo.gl/8bfSmz), a ba-
sic reimplementation of the Quake III Arena engine
in Haskell, and Haskanoid (http://git.io/v8eq3), an
arkanoid game featuring SDL graphics and sound with
Wiimote & Kinect support, which works on Windows,
Linux, Mac, Android and web browsers (thanks to
GHCJS). Examples of the latter include Keera Studios’
Magic Cookies! (https://goo.gl/0A8z6i), a board game
for Android written in Haskell and avaliable on Google
Play.

Guerric Chupin (ENSTA ParisTech), under the su-
pervision of Henrik Nilsson (Functional Programming
Lab, University of Nottingham) has developed Arpeg-
gigon (https://gitlab.com/chupin/arpeggigon), an in-
teractive cellular automaton for composing groove-
based music. The aim was to evaluate two reac-
tive but complementary frameworks for implement-
ing interactive time-aware applications. Arpeggigon
uses Yampa for music generation, Gtk2HS for Graph-
ical User Interface, jack for handling MIDI I/O, and
Keera Hails to implement a declarative MVC ar-
chitecture, based on Reactive Values and Relations
(RVRs). The results have been written up in an
application paper, Funky Grooves: Declarative Pro-
gramming of Full-Fledged Musical Applications, that
will be presented at PADL 2017. The code and an
extended version of the paper are publicly available
(https://gitlab.com/chupin/arpeggigon).

Yampa is under active development. The last few
versions of Yampa have featured a cleaner API, better
documentation and new Signal Function combinators.
Our github repository includes development branches
with features that have been used to extend Yampa for
custom games, some of which will be included in future
versions. Furthermore, Yampa will now be extended
with testing and debugging features, which allow us to

express temporal assertions about FRP systems using
Temporal Logic, and to use QuickCheck to test those
properties, as described in the paper “Testing and De-
bugging Functional Reactive Programming”, accepted
for ICFP 2017.
Extensions to Arrowized Functional Reactive Pro-

gramming are an active research topic. Last year
we published, together with Manuel Bärenz, a
monadic arrowized reactive framework called Dunai
(https://git.io/vXsw1), and a minimal FRP implemen-
tation called BearRiver. BearRiver provides all the core
features of Yampa, as well as additional extensions. We
have demonstrated the usefulness of our approach and
the compatibility with existing Yampa games by using
BearRiver to compile and execute the Haskanoid and
Magic Cookies! for Android without changing the code
of such games.
The Functional Programming Laboratory at the Uni-

versity of Nottingham is working on other extensions to
make Yampa more general and modular, increase per-
formance, enable new use cases and address existing
limitations. To collaborate with our research, please
contact Ivan Perez () and Henrik Nilsson ().
We encourage all Haskellers to participate on

Yampa’s development by opening issues on our Github
page (http://git.io/vTvxQ), adding improvements, cre-
ating tutorials and examples, and using Yampa in their
next amazing Haskell games.

4.16.2 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a library for functional reactive
programming (FRP). FRP offers an elegant and concise
way to express interactive programs such as graphical
user interfaces, animations, computer music or robot
controllers. It promises to avoid the spaghetti code
that is all too common in traditional approaches to
GUI programming.
The goal of the library is to provide a solid founda-

tion.
◦ Programmers interested in implementing FRP will

have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ The library features an efficient implementation. No
more spooky time leaks, predicting space & time us-
age should be straightforward.
The library is meant to be used in conjunction with

existing libraries that are specific to your problem do-

47

http://goo.gl/8bfSmz
http://git.io/v8eq3
https://goo.gl/0A8z6i
https://gitlab.com/chupin/arpeggigon
https://gitlab.com/chupin/arpeggigon
https://git.io/vXsw1
mailto:ixp\protect \unhbox \voidb@x \hbox {\protect \protect \begingroup \def \MessageBreak {
(scrreprt)              }\let \protect \immediate\write \@unused {
Class scrreprt Warning: Usage of deprecated font command `\tt'!\MessageBreak You should note, that in 1994 font command `\tt' has\MessageBreak been defined for compatiblitiy to Script 2.0 only.\MessageBreak Now, after two decades of LaTeX2e and NFSS2, you\MessageBreak shouldn't use such commands any longer and within\MessageBreak KOMA-Script usage of `\tt' is definitely deprecated.\MessageBreak See `fntguide.pdf' for more information about\MessageBreak recommended font commands.\MessageBreak Note also, that KOMA-Script will remove the definition\MessageBreak of `\tt' anytime until release of about version 3.20.\MessageBreak But for now, KOMA-Script will replace deprecated `\tt'\MessageBreak by `\normalfont \ttfamily ' on input line 5265.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}ixp}cs.nott.ac.uk
mailto:nhn\protect \unhbox \voidb@x \hbox {\protect \protect \begingroup \def \MessageBreak {
(scrreprt)              }\let \protect \immediate\write \@unused {
Class scrreprt Warning: Usage of deprecated font command `\tt'!\MessageBreak You should note, that in 1994 font command `\tt' has\MessageBreak been defined for compatiblitiy to Script 2.0 only.\MessageBreak Now, after two decades of LaTeX2e and NFSS2, you\MessageBreak shouldn't use such commands any longer and within\MessageBreak KOMA-Script usage of `\tt' is definitely deprecated.\MessageBreak See `fntguide.pdf' for more information about\MessageBreak recommended font commands.\MessageBreak Note also, that KOMA-Script will remove the definition\MessageBreak of `\tt' anytime until release of about version 3.20.\MessageBreak But for now, KOMA-Script will replace deprecated `\tt'\MessageBreak by `\normalfont \ttfamily ' on input line 5266.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}nhn}cs.nott.ac.uk
http://git.io/vTvxQ


main. For instance, you can hook it into any event-
based GUI framework, like wxHaskell or Gtk2Hs. Sev-
eral helper packages like reactive-banana-wx provide a
small amount of glue code that can make life easier.

Status

Having reached the milestone of version 1.*, I con-
sider the library API to be stable and feature complete.
Compared to the previous report, thanks to the efforts
of our new co-maintainer Oliver Charles, the library is
now available on Stackage (→ 4.2.3).

Future development

There still remains some work to be done to improve
the constant factor performance of the library.
Also, the library does not yet compile well to

JavaScript with GHCJS, as there are some issues with
garbage collection.

Further reading

◦ Project homepage:
http://wiki.haskell.org/Reactive-banana

◦ Example code:
http://wiki.haskell.org/Reactive-banana/Examples

4.16.3 Functional Reactive Agent-Based Simulation

Report by: Jonathan Thaler
Status: Experimental, active development

Implementations of Agent-Based Simulation (ABS)
have so far been reduced to the context of Object-
Orientation (OO). We investigate how ABS can be im-
plemented in a pure functional language like Haskell.
The fundamental problem is that unlike in OO there
are no objects and no implicit aliases through which
to access and change data: method calls are not avail-
able in FP. We solve the problem of how to represent
an agent and how agents can interact with each other.
We build on the concept of Functional Reactive Pro-
gramming for which we use the library Yampa. This
allows us to represent agents as signal-functions with
different types as input and output. In each time-step
an agent gets fed in an input and creates an output
which is the input for the next time-step, creating a
feedback. The input- and output-types contain incom-
ing and outgoing messages and various events like start,
termination, kill. Also we build on the facilities Yampa
provides for time-flow of a system be it continuous or
discrete. For interactions between Agents we imple-
mented messages, which are interactions over simulated
time and a novel concept which we termed ’conversa-
tions’, which are restricted interactions during which
the simulation-time is halted. It is of most importance
to us to keep our code pure - except from the reactive

Yampa-loop all our code is pure and does not make use
of the IO-Monad. Currently we are implementing the
full SugarScape model of J.M.Epstein and R.Axtell as
described in their book, which serves as the initial use-
case to drive the implementation of our library. In the
next step we also want to implement Agent_Zero, the
most recent Agent-Model developed by J.M.Epstein.
Further research will go into validation & verification
of ABS in our library using QuickCheck and algebraic
reasoning. The code is freely available but not sta-
ble as it currently serves for prototyping for gaining
insights into the problems faced when implementing
ABS in Haskell. The plan is to release the final imple-
mentation at the end of the PhD as a stable and full-
featured library on Hackage. If you are interested in
the on-going research please contact Jonathan Thaler
(jonathan.thaler@nottingham.ac.uk).

Further reading

Repository: https://github.com/thalerjonathan/phd/
tree/master/coding/libraries/frABS

48

http://wiki.haskell.org/Reactive-banana
http://wiki.haskell.org/Reactive-banana/Examples
https://github.com/thalerjonathan/phd/tree/master/coding/libraries/frABS
https://github.com/thalerjonathan/phd/tree/master/coding/libraries/frABS


4.17 Graphics and Audio

4.17.1 diagrams

Report by: Brent Yorgey
Participants: many
Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is always more to be
done, but diagrams is already quite fully-featured, with
a comprehensive user manual and a growing set of tu-
torials, a large collection of primitive shapes and at-
tributes, many different modes of composition, paths,
cubic splines, images, text, arbitrary monoidal annota-
tions, named subdiagrams, and more.

What’s new

Diagrams 1.4 was released at the end of October, and
mostly just adds new features, such as:

◦ B-spline support, and B-spline to cubic Bezier con-
version

◦ Boolean operations on paths, such as union and in-
tersection

◦ CSG support for 3D diagrams
◦ New techniques and tools for drawing 2D projections

of 3D diagrams, illustrated above
◦ Constraint-based layout

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of its
size, generality, and enthusiastic embrace of advanced
type system features, diagrams can be intimidating to
would-be users and contributors; however, we are ac-
tively working on new documentation and resources
to help combat this. For more information on ways
to contribute and how to get started, see the Con-
tributing page on the diagrams wiki: http://haskell.org/
haskellwiki/Diagrams/Contributing, or come hang out in
the #diagrams IRC channel on freenode.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://haskell.org/haskellwiki/Diagrams
◦ http://github.com/diagrams
◦ http:

//ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
◦ http://www.youtube.com/watch?v=X-8NCkD2vOw

49

http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw


4.17.2 Chordify

Report by: Jeroen Bransen
Participants: W. Bas de Haas, José Pedro Magalhães,

Dion ten Heggeler, Tijmen Ruizendaal,
Gijs Bekenkamp, Hendrik Vincent Koops

Status: actively developed

Chordify is a music player that extracts chords from
musical sources like Youtube, Deezer, Soundcloud, or
your own files, and shows you which chord to play
when. The aim of Chordify is to make state-of-the-
art music technology accessible to a broader audience.
Our interface is designed to be simple: everyone who
can hold a musical instrument should be able to use it.
Behind the scenes, we use the sonic annotator for

extraction of audio features. These features consist of
the downbeat positions and the tonal content of a piece
of music. Next, from these features a set of probable
chords is constructed for each beat. Finally a Hidden
Markov Model, which is trained on datasets of audio
with manually annotated chords, is used to pick the
final chord for each beat. This model encapsulates the
rules of tonal harmony.
We have recently completely redesigned our Haskell

backend, improving both the chord accuracy and the
scalability. We now have a distributed backend based
on Cloud Haskell, allowing us to easily scale up when
the demand increases. Our library currently contains
about 4.5 million songs, and about 6,000 new songs are
Chordified every day. We have also released an iOS app
that allows iPhone and iPad users to interface with our
technology more easily.
Chordify is a proud user of Haskell, but we have re-

cently also encountered some problems and limitations
of the language and the libraries. These include:
◦ A hard-to-find memory leak, where the memory us-
age of one of our live systems grew slowly over time.
After many failed debugging and profiling attempts,
this turned out to be a library that was a bit too lazy
in evaluating its data. Using a different library with
slightly stricter evaluation solved this problem.

◦ The signal processing libraries that we tried are not
efficient and complete enough. At Chordify we want
to do fast audio processing, for which Haskell im-
plementations are not available or nowhere near the
performance of C libraries.

◦ The library coverage for machine learning techniques
is limited. We use TensorFlow for training and some

handwritten code to import and evaluate the trained
models in our own pipeline, but we believe that bet-
ter approaches should be possible.
In the coming months we expect to improve our

chord extraction algorithm yet again using deep learn-
ing. Recent research has shown that deep learning can
improve the feature extraction phase, and our own pre-
liminary research shows that combining chords from
multiple sources, such as edits from users on our web-
site, can improve the accuracy of such a feature extrac-
tion deep network even further.
The code for our old backend, called HarmTrace, is

available on Hackage, and we have ICFP’11, ISMIR’12
and ISMIR’16 publications describing some of the tech-
nology behind Chordify.

Further reading

https://chordify.net

4.17.3 csound-expression

Report by: Anton Kholomiov
Status: active, experimental

The csound-expression is a Haskell framework for elec-
tronic music production. It’s based on very efficient
and feature rich software synthesizer Csound. The
Csound is a programming language for music produc-
tion. With CE we can generate the Csound code out
of high-level functional description.
There are improvements of the library that are worth

to mention:
◦ Complete support for monophonic synthesizers. Pre-

viously it was possible to use them only with MIDI-
devices. But now it’s also possible to use them with
scores and event streams.

◦ Many guitar bread and butter effects were imple-
mented. It makes it easy to create your own virtual
pedalboards and use them on stage if you have good
audio-card with Jack-inputs.
Also it comes with friendly DSL to compose the
stompboxes algorithms with visual representation.
Need distortion, delay and reverb? You can do it
with couple lines of code right in the ghci:

let board = fxHor [uiTort1 , uiAdele2 0.4 0.35, uiHall2 ]
dac $ fxApply (board :: Source Fx2)

◦ It greatly improves support for OSC. Several on stage
OSC-synthesizers were made with it.

◦ The complete list of Csound table generators is im-
plemented. With it we can load files to tables and
make various functional shape (like splines, random
distributions etc)

◦ It adds exeprimental support for Arrays. It’s a
Csound container data type.

50

http://chordify.net
http://www.omras2.org/SonicAnnotator
http://haskell-distributed.github.io/
https://www.tensorflow.org/
http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
https://www.ris.uu.nl/ws/files/24258152/integration.pdf
https://chordify.net


You can listen to the music that was made with
Haskell and the library csound-expression:
◦ https://soundcloud.com/anton-kho
◦ https://soundcloud.com/kailash-project
The library is available on Github and Hackage. See

the packages csound-expression, csound-sampler and
csound-catalog.

Further reading

◦ https://github.com/spell-music/csound-expression
◦ https://github.com/anton-k/csound-expression
◦ http://csound.github.io/

4.18 Games

4.18.1 EtaMOO

Report by: Rob Leslie
Status: experimental, active development

EtaMOO is a new, experimental MOO server imple-
mentation written in Haskell. MOOs are network ac-
cessible, multi-user, programmable, interactive systems
well suited to the construction of text-based adventure
games, conferencing systems, and other collaborative
software. The design of EtaMOO is modeled closely
after LambdaMOO, perhaps the most widely used im-
plementation of MOO to date.
Unlike LambdaMOO which is a single-threaded

server, EtaMOO seeks to offer a fully multi-threaded
environment, including concurrent execution of MOO
tasks. To retain backward compatibility with the gen-
eral MOO code expectation of single-threaded seman-
tics, EtaMOO makes extensive use of software trans-
actional memory (STM) to resolve possible conflicts
among simultaneously running MOO tasks.
EtaMOO fully implements the MOO programming

language as specified for the latest version of the Lamb-
daMOO server, with the aim of offering drop-in com-
patibility. Several enhancements are also planned to be
introduced over time, such as support for 64-bit MOO
integers, Unicode MOO strings, and others.
Recent development has brought the project to a

largely usable state. A major advancement was made
by integrating the vcache library from Hackage for per-
sistent storage — a pairing that worked especially well
given EtaMOO’s existing use of STM. Consequently,
EtaMOO now has a native binary database backing
with continuous checkpointing and instantaneous crash
recovery. Furthermore, EtaMOO takes advantage of
vcache’s automatic value cache with implicit structure
sharing, so the entire MOO database need not be held
in memory at once, and duplicate values (such as object
properties) are stored only once in persistent storage.
Further development has incorporated optional sup-

port for the lightweight object WAIF data type as origi-
nally described and implemented for the LambdaMOO

server. The vcache library was especially useful in im-
plementing the persistent shared WAIF references for
EtaMOO.
Future EtaMOO development will focus on feature

parity with the LambdaMOO server, full Unicode sup-
port, and several additional novel features.
Latest development of EtaMOO can be seen on

GitHub, with periodic releases also being made avail-
able through Hackage.

Further reading

◦ https://github.com/verement/etamoo
◦ https://hackage.haskell.org/package/EtaMOO
◦ https://en.wikipedia.org/wiki/MOO

4.18.2 Barbarossa

Report by: Nicu Ionita
Status: actively developed

Barbarossa is a UCI chess engine written completely in
Haskell. UCI is one of the two most used protocols used
in the computer chess scene to communicate between a
chess GUI and a chess engine. This way it is possible
to write just the chess engine, which then works with
any chess GUI.
I started in 2009 to write a chess engine under the

name Abulafia. In 2012 I decided to rewrite the eval-
uation and search parts of the engine under the new
name, Barbarossa.
My motivation was to demonstrate that even in a

domain in which the raw speed of a program is very im-
portant, as it is in computer chess, it is possible to write
competitive software with Haskell. The speed of Bar-
barossa (measured in searched nodes per second) is still
far behind comparable engines written in C or C++.
Nevertheless Barbarossa can compete with many en-
gines - as it can be seen on the CCRL rating lists,
where is it currently listed with a strength of about
2200 ELO.
Barbarossa uses a few techniques which are well

known in the computer chess scene:
◦ in evaluation: material, king safety, piece mobility,

pawn structures, tapped evaluation and a few other
less important features

◦ in search: principal variation search, transposition
table, null move pruning, killer moves, futility prun-
ing, late move reduction, internal iterative deepen-
ing.
I still have a lot of ideas which could improve the

strength of the engine, some of which address a higher
speed of the calculations, and some, new chess related
features, which may reduce the search tree.
The engine is open source and is published on github.

The last released version is Barbarossa v0.4.0 from De-
cember 2016.

51

https://soundcloud.com/anton-kho
https://soundcloud.com/kailash-project
https://github.com/spell-music/csound-expression
https://github.com/anton-k/csound-expression
http://csound.github.io/
https://github.com/verement/etamoo
https://hackage.haskell.org/package/EtaMOO
https://en.wikipedia.org/wiki/MOO


Further reading

◦ https://github.com/nionita/Barbarossa/releases
◦ http://www.computerchess.org.uk/ccrl/404/

4.18.3 Tetris in Haskell in a Weekend

Report by: Michael Georgoulopoulos
Status: actively developed

I made a Tetris in Haskell, while learning the ba-
sics of the language, in order to gain some hands-on
experience, and also to convince myself that Haskell is
a practical language that’s worth the time investment
and the steep learning curve.
I am now convinced that that is the case. In fact, I’m

amazed at how concise and readable Haskell code can
be, and I can already acknowledge Haskell as a tool for
productivity, predictability and reliability, which are
without a doubt, properties most software developers
could benefit from.
I have documented this experience as a series of

thoughts from the point of view of a beginner, in the
form of a blog post titled “Tetris in Haskell in a Week-
end”
I also documented the project’s evolution in small

increments as a git repository that might be of interest
to other beginners. The repository can be accessed via
github, and contributions are welcome

Further reading

https://github.com/mgeorgoulopoulos/
TetrisHaskellWeekend

4.18.4 tttool

Report by: Joachim Breitner
Status: active development

The Ravensburger Tiptoi R© pen is an interactive toy
for kids aged 4 to 10 that uses OiD technology to react
when pointed at the objects on Ravensburger’s Tiptoi
books, games, puzzles and other toys. It is programmed
via binary files in a proprietary, undocumented data
format.
We have reverse engineered the format, and created

a tool to analyze these files and generate our own. This
program, called tttool, is implemented in Haskell,
which turned out to be a good choice: Thanks to

Haskell’s platform independence, we can easily serve
users on Linux, Windows and OS X.
The implementation makes use of some nice Haskell

idioms such as a monad that, while parsing a binary,
creates a hierarchical description of it and a writer
monad that uses lazyness and MonadFix to reference
positions in the file “before” these are determined.

Further reading

◦ https://github.com/entropia/tip-toi-reveng
◦ http://tttool.entropia.de/ (in German)
◦ http://funktionale-programmierung.de/2015/04/15/

monaden-reverse-engineering.html (in German)

4.19 Data Tracking

4.19.1 hledger

Report by: Simon Michael
Status: stable, actively developed

hledger is a set of cross-platform tools (and Haskell
libraries) for tracking money, time, or any other com-
modity, using double-entry accounting and a simple
text file format. hledger aims to be a reliable and
practical tool for daily use, and provides command-line,
curses-style, and web interfaces. It is a largely compati-
ble Haskell reimplementation of John Wiegley’s Ledger
program. hledger is released under GNU GPLv3+.
In November 2015, the immediate plans were to im-

prove docs and help, improve parser speed and memory
efficiency, integrate a separate parser for Ledger files
built by John Wiegley, hledger-ui improvements, and
work towards the 1.0 release.
All but one of these goals have been achieved:
◦ docs have been reorganized, with more focussed man-

uals available in multiple versions, formats and as
built-in help

◦ hledger has migrated from parsec to megaparsec and
from String to Text, parsers have been simplified,
memory usage is 30% less on large files, speed is
slightly improved all around

◦ the ledger4 parser is not yet integrated
◦ hledger-ui has acquired many new features making it

more useful (file editing, filtering, historical/period
modes, quick period browsing..)

◦ 1.0 has been released!
Also,
◦ hledger-web is more robust and more mobile-friendly
◦ hledger-api, a simple web API server, has been added
◦ a new "timedot" file format allows retroac-

tive/approximate time logging
◦ we now support GHC 8 and GHC 7.10, dropping

GHC 7.8 and 7.6 support. (GHC 7.8 support requires
a maintainer).

◦ hpack is now used for maintaining cabal files
◦ our benchmarking tool has been spun off as the

quickbench package

52

https://github.com/nionita/Barbarossa/releases
http://www.computerchess.org.uk/ccrl/404/
https://cdry.wordpress.com/2016/10/11/tetris-in-haskell-in-a-weekend/
https://cdry.wordpress.com/2016/10/11/tetris-in-haskell-in-a-weekend/
https://github.com/mgeorgoulopoulos/TetrisHaskellWeekend
https://github.com/mgeorgoulopoulos/TetrisHaskellWeekend
https://github.com/entropia/tip-toi-reveng
http://tttool.entropia.de/
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html


◦ the hledger.org website is simpler, clearer, and more
mobile-friendly

◦ a call for help was sent out last month, and contrib-
utor activity has increased.
Future plans include:
◦ support the 1.0 release
◦ improve the website and docs
◦ grow the user & developer community
◦ clean up, automate, improve and scale our processes
◦ improve quality, reduce waste
◦ add the ledger4 parser
◦ add budget/goal-tracking features
◦ improve hledger-ui usability and features; live reload-

ing
hledger is available from the hledger.org website,

from Github, Hackage, and Stackage, and is packaged
for a number of systems including Homebrew, Debian,
Ubuntu, Gentoo, Fedora, and NixOS.

Further reading

http://hledger.org

4.19.2 gipeda

Report by: Joachim Breitner
Status: active development

Gipeda is a a tool that presents data from your pro-
gram’s benchmark suite (or any other source), with nice
tables and shiny graphs. Its name is an abbreviation
for “Git performance dashboard” and highlights that it
is aware of git, with its DAG of commits.

Gipeda powers the GHC performance dashboard at
http://perf.haskell.org, but it builds on Shake and cre-
ates static files, so that hosting a gipeda site is easily
possible. Also, it is useful not only for benchmarks:
The author uses it to track the progress of his thesis,
measured in area covered by the ink.

Further reading

https://github.com/nomeata/gipeda

4.19.3 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
The program works on Linux, Windows, and thanks

to a contribution by Vincent Rasneur, it now also works
on MacOS X.

Further reading

◦ http://arbtt.nomeata.de/
◦ http://www.joachim-breitner.de/blog/archives/

336-The-Automatic-Rule-Based-Time-Tracker.html
◦ http://arbtt.nomeata.de/doc/users_guide/

53

http://hledger.org
http://perf.haskell.org
https://github.com/nomeata/gipeda
http://arbtt.nomeata.de/
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://arbtt.nomeata.de/doc/users_guide/


4.19.4 propellor

Report by: Joey Hess
Status: actively developed

Propellor is a configuration management system for
Linux that is configured using Haskell. It fills a simi-
lar role as Puppet, Chef, or Ansible, but using Haskell
instead of the ad-hoc configuration language typical of
such software. Propellor is somewhat inspired by the
functional configuration management of NixOS.
A simple configuration of a web server in Propellor

looks like this:

webServer :: Host
webServer = host "webserver.example.com"

& ipv4 "93.184.216.34"
& staticSiteDeployedTo "/var/www"

‘requires‘ Apt.serviceInstalledRunning "apache2"
‘onChange‘ Apache.reloaded

staticSiteDeployedTo :: FilePath→ Property DebianLike

There have been many benefits to using Haskell for
configuring and building Propellor, but the most strik-
ing are the many ways that the type system can be
used to help ensure that Propellor deploys correct and
consistent systems. Beyond typical static type bene-
fits, GADTs and type families have proven useful. For
details, see the blog.
An eventual goal is for Propellor to use type level

programming to detect at compile time when a host has
eg, multiple servers configured that would fight over the
same port. Moving system administration toward using
types to prove correctness properties of the system.
Propellor recently has been extended to support

FreeBSD, and this led to Propellor properties including
information about the supported OSes in their types.
That was implemented using singletons to represent the
OS, and functions over type level lists. For details, see
this blog post.
Propellor has also been extended to be able to create

bootable disk images. This allows it to not only con-
figure existing Linux systems, but manage their entire
installation process.

Further reading

http://propellor.branchable.com/

4.20 Others

4.20.1 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion provides a low-level domain-specific lan-
guage (DSL) for the formulation of dynamic programs
with emphasis on computational biology and linguis-
tics. We follow ideas established in algebraic dynamic
programming (ADP) where a problem is separated into
a grammar defining the search space and one or more
algebras that score and select elements of the search
space. The DSL has been designed with performance
and a high level of abstraction in mind.
ADPfusion grammars are abstract over the type of

terminal and syntactic symbols. Thus it is possible to
use the same notation for problems over different in-
put types. We directly support grammars over strings,
sets (with boundaries, if necessary), and trees. Lin-
ear, context-free and multiple context-free languages
are supported, where linear languages can be asymp-
totically more efficient both in time and space. ADPfu-
sion is extendable by the user without having to modify
the core library. This allows users of the library to sup-
port novel input types, as well as domain-specific index
structures. The extension for tree-structured inputs is
implemented in exactly this way and can serve as a
guideline.
As an example, consider a grammar that recognizes

palindromes. Given the non-terminal p, as well as
parsers for single characters c and the empty input ε,
the production rule for palindromes can be formulated
as p→ c p c | ε.
The corresponding ADPfusion code is similar:

p (f <<< c % p % c ||| g <<< e ... h)

We need a number of combinators as “glue” and
additional evaluation functions f , g, and h. With
f c1 p c2 = p && (c1 ≡ c2) scoring a candidate,
g e = True, and h xs = or xs determining if the
current substring is palindromic.
This effectively turns the grammar into a memo-

function that then yields the optimal solution via a call
to axiom p. Backtracking for co- and sub-optimal solu-
tions is provided as well. The backtracking machinery
is derived automatically and requires the user to only
provide a set of pretty-printing evaluation functions.
As of now, code written in ADPfusion achieves per-

formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

54

http://propellor.branchable.com/posts/
https://joeyh.name/blog/entry/type_safe_multi-OS_Propellor/
http://joeyh.name/blog/entry/propelling_disk_images/
http://joeyh.name/blog/entry/propelling_disk_images/
http://propellor.branchable.com/


The entry on generalized Algebraic Dynamic Pro-
gramming (→ 4.11.6) provides information on the as-
sociated high-level environment for the development of
dynamic programs.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://dx.doi.org/10.1145/2364527.2364559

4.20.2 leapseconds-announced

Report by: Björn Buckwalter
Status: stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondMap with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.
Version 2017.1 of leapseconds-announced was re-

leased to support the change from LeapSecondTable to
LeapSecondMap in time-1.7. It contains all leap sec-
onds up to 2017-01-01. A new version will be uploaded
if/when the IERS announces a new leap second.

Further reading

https://hackage.haskell.org/package/
leapseconds-announced

4.20.3 Haskell in Green Land

Report by: Gilberto Melfe
Participants: Luís Gabriel Lima, Francisco Soares-Neto,

Paulo Lieuthier, Fernando Castor, João
Paulo Fernandes

Status: mostly stable, with ongoing extensions

In the Haskell in Green Land initiative we attempt to
understand the energy behavior of programs written in
Haskell. It is particularly interesting to study Haskell
in the context of energy consumption since Haskell has
mature implementations of sophisticated features such
as laziness, partial function application, software trans-
actional memory, tail recursion, and a kind system.
Furthermore, recursion is the norm in Haskell programs
and side effects are restricted by the type system of the
language.
We analyze the energy efficiency of Haskell programs

from two different perspectives:

a) strictness: by default, expressions in Haskell are
lazily evaluated, meaning that any given expres-
sion will only be evaluated when it is first necessary.
This is different from most programming languages,
where expressions are evaluated strictly and possi-
bly multiple times;

b) concurrency: previous work has demonstrated that
concurrent programming constructs can influence
energy consumption in unforeseen ways.

Concretely, we have addressed the following high-
level research question: To what extent can we save
energy by refactoring existing Haskell programs to use
different data structure implementations or concurrent
programming constructs?
In order to address this research question, we con-

ducted two complementary empirical studies:

a) we analyzed the performance and energy behavior of
several benchmark operations over 15 different im-
plementations of three different types of data struc-
tures considered by the Edison Haskell library;

b) we assessed three different thread management con-
structs and three primitives for data sharing using
nine benchmarks and multiple experimental config-
urations.

Overall, experimental space exploration comprises
more than 2000 configurations and 20000 executions.
We found that small changes can make a big differ-

ence in terms of energy consumption. For example, in
one of our benchmarks, under a specific configuration,
choosing one data sharing primitive over another can
yield 60% energy savings. Nonetheless, there is no uni-
versal winner.
In addition, the relationship between energy con-

sumption and performance is not always clear. Gen-
erally, especially in the sequential benchmarks, high

55

http://www.bioinf.uni-leipzig.de/Software/gADP
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559
https://hackage.haskell.org/package/leapseconds-announced
https://hackage.haskell.org/package/leapseconds-announced


performance is a proxy for low energy consumption.
Nonetheless, when concurrency comes into play, we
found scenarios where the configuration with the best
performance (30% faster than the one with the worst
performance) also exhibited the second worst energy
consumption (used 133% more energy than the one
with the lowest usage).
To support developers in better understanding this

complex relationship, we have extended two existing
tools from the Haskell world:

i) the powerful benchmarking library Criterion;

ii) the profiler that comes with the Glasgow Haskell
Compiler.

Originally, such tools were devised for performance
analysis and we have adapted them to make them
energy-aware.

Further reading

The data for this study, the source code for the
implemented tools and benchmarks as well as a paper
describing all the details of our work can be found at
green-haskell.github.io.
Furthermore, we have referenced the following papers:
◦ Pinto, Gustavo and Castor, Fernando and Liu, Yu

David: Understanding Energy Behaviors of Thread
Management Constructs, Proceedings of the 2014
ACM International Conference on Object Oriented
Programming Systems Languages & Applications

◦ Luís Gabriel Lima and Gilberto Melfe and Francisco
Soares-Neto and Paulo Lieuthier and João Paulo
Fernandes and Fernando Castor, Haskell in Green
Land: Analyzing the Energy Behavior of a Purely
Functional Language, Proceedings of the 23rd IEEE
International Conference on Software Analysis,
Evolution, and Reengineering (SANER’2016)

4.20.4 Kitchen Snitch server

Report by: Dino Morelli
Participants: Betty Diegel
Status: stable, actively developed

This project is the server-side software for Kitchen
Snitch, a mobile application that provides health in-
spection scores, currently for the Raleigh-Durham area
in NC, USA. The data can be accessed on maps along
with inspection details, directions and more.
The back-end software provides a REST API for mo-

bile clients and runs services to perform regular inspec-
tion data acquisition and maintenance.
Kitchen Snitch has been in development for over a

year and is running on AWS. The mobile client and
server were released for public use in April of 2016 after
a beta-test period.
Some screenshots of the Android client software in

action:

Getting Kitchen Snitch:
The mobile client can be installed from the

Google Play Store. There is also a landing page
http://getks.honuapps.com/.
The Haskell server source code is available on darc-

shub at the URLs below.

Further reading

◦ ks-rest http://hub.darcs.net/dino/ks-rest
◦ ks-download http://hub.darcs.net/dino/ks-download
◦ ks-library http://hub.darcs.net/dino/ks-library

4.20.5 clr-haskell (Haskell interoperability with the
Common Language Runtime)

Report by: Tim Matthews
Participants: José Iborra López
Status: experimental, actively developed

clr-haskell is a project to enable the use of code within
the common language runtime (.NET / Mono / Core-
CLR) from GHC Haskell.
This project provides 2 primary flavours for a devel-

oper to interop between the CLR & Haskell:
The Haskeller’s strongly typed flavour. Takes advan-

tage of the latest GHC extensions to provide a way of
encoding an OO type system within the Haskell type
system.
The .NET dev’s inline flavour. Provides the ability

to call directly into valid C# / F# syntax via quasi-
quoted template Haskell.

Further reading

https://gitlab.com/tim-m89/clr-haskell

56

http://green-haskell.github.io
https://play.google.com/store/apps/details?id=com.honu.ksnitch
http://getks.honuapps.com/
http://hub.darcs.net/dino/ks-rest
http://hub.darcs.net/dino/ks-download
http://hub.darcs.net/dino/ks-library
https://gitlab.com/tim-m89/clr-haskell


4.20.6 FRTrader

Report by: Dimitri DeFigueiredo
Status: active

FRTrader is a new functional reactive bitcoin trading
bot. It uses the reactive-banana FRP library and cur-
rently has bindings to the GDAX bitcoin exchange.
The bot uses as a multi-threaded architecture that
makes it easy to plug in extra exchanges and to trade
on multiple exchanges simultaneously.
The code is available on github.
The following talk recorded at BayHac 2017 explains

the design rationale and the use of FRP in trading.
We welcome contributions and hope to add bindings

to other exchanges soon. Also, feel free to make a huge
trading profit! Enjoy!

4.20.7 shell-conduit

Report by: Sibi Prabakaran
Participants: Chris Done
Status: active

shell-conduit allows writing shell scripts with conduit.
It uses template Haskell to bring all the executables in
the PATH as top level functions which can be used to
launch them as a process.
Recent development in shell-conduit added support

for variadic list usage.

< makeDirs :: Segment ()
< makeDirs = mkdir "-p" ["dir1", "dir2", "dir3"]

Further reading

◦ https://github.com/psibi/shell-conduit
◦ http://chrisdone.com/posts/shell-conduit

4.20.8 Hapoid

Report by: Wisnu Adi Nurcahyo
Status: Under development

Hapoid is an Portable Object Translation file Linter for
Bahasa Indonesia.
Currently, this project is a prototype but it will con-

tinue to be developed.

Further reading

https://github.com/wisn/hapoid

4.20.9 Hanum - OSM Dynamic Attributes Linter

Report by: Wisnu Adi Nurcahyo
Status: Prototype

Hanum is an OpenStreetMap dynamic attributes linter
with custom presets.
Some contributors to OSM may just want to fix

wrong attributes on the OSM data. This means that
they might not want to see any path or shape of the
data. This linter thus acts as a library which allows
data validation and creating new editors for OSM.
The linter filters error, thus reducing possible con-

flicts when submitting data to OSM. To further en-
hance the capabilities, custom presets and rules can be
created for each individual country.

Motivation

In Indonesia, especially in Kalimantan there are many
areas where OSM has invalid data. For example,
SMAN 1 Bintang Ara, which is a senior high school,
shows on OSM as having a school : type_idn attribute
of elementary school. Furthermore, it also lacks an ad-
dress attribute.
A similar example is found in Papua: there are loca-

tions where the admin_level attribute is not a number
as it should be, as well as areas where addr : full has
invalid formatting.
With Hanum, we can define custom rules and use

these presets to improve data quality.

Further reading

https://github.com/wisn/hanum

4.20.10 tldr

Report by: Sibi Prabakaran
Status: active

tldr is a command line client for the TLDR pages. The
TLDR pages are a community effort to simplify the
beloved man pages with practical examples.

Further reading

https://github.com/psibi/tldr-hs

57

https://github.com/dimitri-xyz/frtrader
https://www.youtube.com/watch?v=ZF_eZkXwaLk
https://github.com/psibi/shell-conduit
http://chrisdone.com/posts/shell-conduit
https://github.com/wisn/hapoid
https://github.com/wisn/hanum
https://github.com/psibi/tldr-hs


5 Commercial Users

5.1 Well-Typed LLP

Report by: Adam Gundry
Participants: Duncan Coutts, Andres Löh and others

Well-Typed is a Haskell services company. We provide
commercial support for Haskell as a development plat-
form, including consulting services, training, bespoke
software development and technical support. For more
information, please take a look at our website or drop
us an e-mail at 〈info@well-typed.com〉.
One of our main responsibilities is the maintenance

of GHC (→ 3.1), thanks to support from Microsoft Re-
search and others. At the beginning of the year we were
delighted to welcome Reid Barton and David Feuer to
join the team alongside Ben Gamari. Work is now well
underway on the 8.2.1 release. If your company is inter-
ested in supporting work on GHC, either by contribut-
ing to the general maintenance pool or funding work
on specific issues, please get in touch with us. We are
also able to provide technical support with toolchain
issues such as non-standard GHC configurations.
We endeavour to make our work available as open

source software where possible, and contribute back to
existing projects we use, although inevitably much of
our work is proprietary to our clients and not publicly
available. Here is a non-exhaustive list of open-source
projects to which we contribute:

◦ Well-Typed is cooperating with Tweag I/O and
LeapYear Technologies to improve bindings to the
Java Native Interface (JNI) and Spark, the Apache
framework for writing distributed applications (a
generalization of Hadoop).

◦ Duncan Coutts has been further improving
new-build, the Nix-style local builds feature
for Cabal (→ 4.2.1).

◦ Duncan Coutts, Austin Seipp, Ben Gamari
and other contributors are working on the
binary-serialise-cbor library, an improved ver-
sion of (large parts of) the binary package.

◦ Andres Löh recently released a new version of
the generic programming library generics-sop (→
4.1.2), taking advantage of the new type-level meta-
data support in GHC 8 to provide new possibilities
for generic programming, such as record subtyping.

◦ Adam Gundry continues his work on record field
overloading, with GHC 8.2.1 including modifications

to the OverloadedLabels extension and a new facil-
ity for polymorphism over record field selectors.

We are looking forward to the next Haskell eXchange
in London from 12–13th October 2017, and we are
planning another free Hackathon on 14th–15th Octo-
ber. Together with Skills Matter, we will be offering
public Haskell training courses in London from 26th–
30th June and around the Haskell eXchange (10th–
11th, 16th–17th October). Registration is now open
for both the courses and eXchange, so if you would like
to come, register now!
We’ll also once again be participating in ZuriHac

(Zurich, June 2017), and ICFP and affiliated events
(Oxford, September 2017).
If you are interested in getting information about

Well-Typed events (such as conferences or courses we
are participating in or organising), you can subscribe
to our events mailing list. We are also always looking
for new clients and projects, so if you have something
we could help you with, or even would just like to tell
us about your use of Haskell, please drop us an e-mail.

Further reading

◦ Home page: https://www.well-typed.com
◦ Blog: https://www.well-typed.com/blog/
◦ Training page:

https://www.well-typed.com/services_training
◦ Events mailing list: https://www.well-typed.com/

cgi-bin/mailman/listinfo/events
◦ JNI bindings: https://github.com/tweag/inline-java
◦ Spark bindings: https://github.com/tweag/sparkle
◦ binary-serialise-cbor:
https://github.com/well-typed/binary-serialise-cbor/

◦ generics-sop:
https://github.com/well-typed/generics-sop/

◦ GHC proposal for overloaded record fields: https:
//github.com/ghc-proposals/ghc-proposals/pull/6

◦ Haskell eXchange 2017: https://skillsmatter.com/
conferences/8522-haskell-exchange-2017

◦ Skills Matter courses:
https://skillsmatter.com/explore?q=haskell

58

mailto: info at well-typed.com
https://www.well-typed.com
https://www.well-typed.com/blog/
https://www.well-typed.com/services_training
https://www.well-typed.com/cgi-bin/mailman/listinfo/events
https://www.well-typed.com/cgi-bin/mailman/listinfo/events
https://github.com/tweag/inline-java
https://github.com/tweag/sparkle
https://github.com/well-typed/binary-serialise-cbor/
https://github.com/well-typed/generics-sop/
https://github.com/ghc-proposals/ghc-proposals/pull/6
https://github.com/ghc-proposals/ghc-proposals/pull/6
https://skillsmatter.com/conferences/8522-haskell-exchange-2017
https://skillsmatter.com/conferences/8522-haskell-exchange-2017
https://skillsmatter.com/explore?q=haskell


5.2 Keera Studios LTD

Report by: Ivan Perez

Keera Studios Ltd. is a Haskell game development
studio that focuses on games and mobile apps for both
Android and iOS.
In recent months we have completed a set of develop-

ment tools for mobile Haskell games that enables com-
piling, testing, packaging and deploying mobile games
with no effort. Our framework is versatile enough to
accomodate not only games, but also mobile apps using
standard widget toolkits available on mobile platforms,
in order to provide a natural look and feel.
Our development toolkit has been designed to be

trivial to run in different environments. Currently we
use Travis CI to compile, package, sign and automat-
ically upload our games to Google Play for Android
(and tweet when a major release is out!). When devel-
oping locally, our toolchain maximizes caching, and is
able to recompile a mobile app and deploy it to a phone
(connected via USB) in less than 45 seconds, or to the
online store in less than one minute.
We top our development framework with a novel

tool for testing and debugging mobile games: Haskell
TitanTM (Testing Infrastructure for Temporal Abstrac-
tioNs). Haskell TitanTM is designed to take advan-
tage of Haskell’s referential transparency to deliver
fully reproducible game runs that can be saved, re-
played, paused, played backwards, modified and de-
bugged. Our GUI tool communicates with the game
running on a phone or a computer, and uses Temporal
Logic to specify game assertions. Players can record a
game run with minimal overhead and send it over the
internet to our servers, which we can use to reproduce
bugs deterministically on the same architecture. Our
tool also integrates well with QuickCheck, which we
use to test game assertions and find counterexamples.
Effectively, we can see QuickCheck play.

We have published Magic Cookies!, the first commer-
cial game for Android written in Haskell, available on
Google PlayTM (https://goo.gl/cM1tD8). Currently
holding a 4.8/5 star review, Magic Cookies! been in
the Top 100 of paid board games on Google Play US,
and Top 125 in the European Union. Magic Cookies!
also works seamlessly on iOS.
We have also shown a breakout-like game running on

a Android tablet (http://goo.gl/53pK2x), using hard-
ware acceleration and parallelism, which has also been
released on Google Play for Android. The desktop
version additionally supports Nintendo Wiimotes and
Kinect, and is distributed pre-compiled for Ubuntu via
Launchpad. A version compiled with GHCJS has also
been published for browser.
We are currently developing two games for both An-

droid and iOS. The first, a novel game designed to chal-
lenge user’s ability to track multiple objects moving
simultaneously in different directions, is currently in
beta-testing phase. The second, inspired by the classic
Super Pang, is currently in prototyping phase.

We have developed GALE, a DSL for graphic adven-
tures, together with an engine and a basic IDE that al-
lows non-programmers to create their own 2D graphic
adventure games without any knowledge of program-
ming. Supported features include multiple charac-
ter states and animations, multiple scenes and lay-
ers, movement bitmasks (used for shortest-path cal-
culation), luggage, conversations, sound effects, back-
ground music, and a customizable UI. The IDE takes
care of asset management, generating a fully portable
game with all the necessary files. The engine is multi-
platform, working seamlessly on Linux, Windows and
Android.
We have also started the Haskell Game Programming

project (http://git.io/vlxtJ), which contains documen-
tation and multiple examples of multimedia, access to
gaming hardware, physics and game concepts. We have
developed a battery of Haskell mobile demos, covering
SDL multimedia (including demos for multi-touch and
accelerometers), communication with Java via C/C++,
Facebook/Twitter status sharing, access to each mobile
ecosystem (for instance, to use Android built-in Shared
Preferences storage system, or for in-app payments),
and use to native mobile widgets on Android and iOS.
All of this proves that Haskell truly is viable option

for professional game development, for both mobile and

59

https://goo.gl/cM1tD8
http://goo.gl/53pK2x
http://git.io/vlxtJ


desktop games. Our novel testing and debugging tools
show that Haskell can, is certain respects, be more suit-
able than other languages for game programming, es-
pecially for (heterogeneous) mobile devices. In combi-
nation with our samples and our compilation, packag-
ing and deployment tool, we have a complete, pain-free
mobile app and development suite.
Our GUI applications are created using Keera

Hails, our Open-Source reactive programming library
(http://git.io/vTvXg). Keera Hails provides integra-
tion with GTK+, network sockets, files, FRP Yampa
signal functions and other external resources. Ex-
perimental integration with wxWidgets, Qt, Android
and iOS (using each platform’s default widget sys-
tem, communicating via FFI), and HTML DOM (via
GHCJS) is also available. We have used Keera Hails
for our Graphic Adventure IDE, the Open-Source pos-
ture monitor Keera Posture (http://git.io/vTvXy), as
well as multiple other commercial and open-source ap-
plications. This reactive framework is straightforward
to adapt to new platforms, and we have recently shown
a reactive Haskell application that works on iOS, An-
droid, Windows, Linux, Mac and Web, just by choosing
different backends (https://goo.gl/nFUA2u).
Last year, Guerric Chupin (ENSTA ParisTech) and

Henrik Nilsson (University of Nottingham) published
Arpeggigon (https://gitlab.com/chupin/arpeggigon),
an interactive cellular automaton for composing
groove-based music, which combines the FRP imple-
mentation Yampa and our reactive framework Keera
Hails. The former, in the synchronous dataflow tradi-
tion, aligns with the temporal and declarative nature
of music, while the latter allows declarative interfac-
ing with external components as needed for full-fledged
musical applications. Their results have been written
up in an application paper, Funky Grooves: Declarative
Programming of Full-Fledged Musical Applications, to
be presented at PADL 2017.
Videos and details of our work are published reg-

ularly on Facebook (https://fb.me/keerastudios), on
Twitter (https://www.twitter.com/keerastudios), and
on our company website (http://www.keera.co.uk). If
you want to use Haskell in your next game, desktop
or mobile application, or to receive more information,
please contact us at .

5.3 Stack Builders

Report by: Stack Builders
Status: software consultancy

Stack Builders is an international software consul-
tancy, aimed to push the boundaries of the software
industry. As consultants, we use functional program-
ming, especially Haskell, to build amazing products.
The company has offices in New York, United States,
and Quito, Ecuador.
In addition to our Haskell software consultancy ser-

vices, we are actively involved with the Haskell com-
munity:
◦ We organize Quito Lambda, a monthly meetup

about functional programming in Quito, Ecuador
(Now also available for live streaming). The talks
are conducted in Spanish for this meetup.

◦ We maintain several packages in Hackage including
cassava-megaparsec, dotenv, hapistrano, inflections,
octohat, openssh-github-keys, stache, and twitter-
feed.

◦ We talk about Haskell at universities and events such
as Lambda Days and BarCamp Rochester.

◦ We write blog posts and tutorials about Haskell.
For more information, take a look at our website or

get in touch with us at info@stackbuilders.com.

Further reading

http://www.stackbuilders.com/

5.4 McMaster Computing and Software
Outreach

Report by: Christopher Anand
Status: active

McMaster Computing and Software Outreach visits
schools in Ontario, Canada to teach basic Computer
Science topics and discuss the impacts of the Infor-
mation Revolution, teaching children from six to six-
teen. In 2015, we swapped out Python in our pro-
gramming activities for ELM, which is a functional re-
placement for JavaScript. ELM looks a lot like Haskell,
but does not have user-definable type classes and is
strict. Thanks largely to ELM, we tripled the number
of children in our workshops to 3500. Our hypothesis
is that declarative programming matches the computa-
tional model instructed in basic algebra, which receives

60

http://git.io/vTvXg
http://git.io/vTvXy
https://goo.gl/nFUA2u
https://gitlab.com/chupin/arpeggigon
https://fb.me/keerastudios
https://www.twitter.com/keerastudios
http://www.keera.co.uk
mailto:keera\protect \unhbox \voidb@x \hbox {\protect \protect \begingroup \def \MessageBreak {
(scrreprt)              }\let \protect \immediate\write \@unused {
Class scrreprt Warning: Usage of deprecated font command `\tt'!\MessageBreak You should note, that in 1994 font command `\tt' has\MessageBreak been defined for compatiblitiy to Script 2.0 only.\MessageBreak Now, after two decades of LaTeX2e and NFSS2, you\MessageBreak shouldn't use such commands any longer and within\MessageBreak KOMA-Script usage of `\tt' is definitely deprecated.\MessageBreak See `fntguide.pdf' for more information about\MessageBreak recommended font commands.\MessageBreak Note also, that KOMA-Script will remove the definition\MessageBreak of `\tt' anytime until release of about version 3.20.\MessageBreak But for now, KOMA-Script will replace deprecated `\tt'\MessageBreak by `\normalfont \ttfamily ' on input line 6569.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update keera\char 46{}co\char 46{}uk\char 125{}\char 123{}keera}keera.co.uk
https://www.meetup.com/Quito-Lambda-Meetup/
https://www.stackbuilders.com/tutorials/
https://www.stackbuilders.com/
mailto:info@stackbuilders.com
http://www.stackbuilders.com/


significant attention in the Ontario curriculum. But it
is possible that other aspects of the language are more
important. We also believe that immediate graphical
feedback is important, as do many other educators, but
since declarative specifications of vector graphics are
significantly simpler than stateful constructions, these
issues are not orthogonal.
We would like to thank Evan Czapliki for creating

ELM, and assisting us.
To see what children with no programming experi-

ence can accomplish in a declarative language in a just
a few hours, please visit http://outreach.mcmaster.ca/
menu/fame.html. Note that grade 4 students are about
ten years old.

61

http://outreach.mcmaster.ca/menu/fame.html
http://outreach.mcmaster.ca/menu/fame.html


6 Research and User Groups

6.1 DataHaskell

Report by: Marco Zocca
Participants: Nikita Tchayka, Mahdi Dibaiee, John Vial,

Stefan Dresselhaus, and many others
Status: Ongoing

The DataHaskell community was initiated in Septem-
ber 2016 as a gathering place for scientific computing,
machine learning and data science practitioners and
Haskell programmers; we observe a growing interest
in using functional composition, domain-specific lan-
guages and type inference for implementing robust and
reusable data processing pipelines.
DataHaskell revolves around a Gitter chatroom and

a GitHub organization. The development team uses a
Trello board to track ongoing activities; access to this
tool will be granted to all interested parties.
As first steps we set up a documentation site that

serves both as a knowledge base of related Haskell pack-
ages and frameworks and to coordinate development,
along with a package benchmarking repository.
After an informal survey we concluded that large

part of our userbase seems to be lacking most
◦ an IDE for exploratory data analysis,
◦ a generic ‘data-frame’ for fast import and manipula-

tion of heterogeneous tabular data,
◦ a native numerical back-end.
Current DataHaskell activities are focusing on im-

proving the ergonomics of the IHaskell notebook, and
putting it to use on a Kaggle classification exercise.
This will serve to highlight the merits and the gaps or
inefficiencies in the current package landscape.
We cherish the open and multidisciplinary nature of

our community, and welcome all new users and contri-
butions.

Further reading

◦ datahaskell.org
◦ https://gitter.im/dataHaskell/Lobby
◦ https://github.com/DataHaskell
◦ https://trello.com/b/ucB25d5v/tasks
◦ http://www.datahaskell.org/docs/
◦ https:

//github.com/DataHaskell/numeric-libs-overview
◦ https://github.com/DataHaskell/DataIHaskell
◦ https://github.com/johnny555/ToolExamples/tree/

master/Kaggle

6.2 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on functional pro-
gramming – mostly taught in Haskell – at Eötvös
Loránd University, Faculty of Informatics. Currently,
we are offering the following courses in that regard:
◦ Functional programming for first-year Hungarian un-

dergraduates in Software Technology and second-
year Hungarian teacher of informatics students, both
as part of their official curriculum.

◦ An additional semester on functional programming
with Haskell for bachelor’s students, where many of
the advanced concepts are featured, such as algebraic
data types, type classes, functors, monads and their
use. This is an optional course for Hungarian under-
graduate and master’s students, supported by the
Eötvös József Collegium.

◦ Functional programming for Hungarian and foreign-
language master’s students in Software Technol-
ogy. The curriculum assumes no prior knowledge
on the subject in the beginning, then through teach-
ing the basics, it gradually advances to discussion
of parallel and concurrent programming, property-
based testing, purely functional data structures,
efficient I/O implementations, embedded domain-
specific languages, and reactive programming. It is
taught in both one- and two-semester formats, where
the latter employs the Clean language for the first
semester.
In addition to these, there is also a Haskell-related

course, Type Systems of Programming Languages,
taught for Hungarian master’s students in Software
Technology. This course gives a more formal intro-
duction to the basics and mechanics of type systems
applied in many statically-typed functional languages.
For teaching some of the courses mentioned above,

we have been using an interactive online evaluation
and testing system, called ActiveHs. It contains sev-
eral dozens of systematized exercises, and through that,
some of our course materials are available there in En-
glish as well.
Our homebrew online assignment management sys-

tem, "BE-AD" keeps working on for the fourth semester
starting from this September. The BE-AD system is
implemented almost entirely in Haskell, based on the
Snap web framework and Bootstrap. Its goal to help
the lecturers with scheduling course assignments and
tests, and it can automatically check the submitted so-

62

datahaskell.org
https://gitter.im/dataHaskell/Lobby
https://github.com/DataHaskell
https://trello.com/b/ucB25d5v/tasks
http://www.datahaskell.org/docs/
https://github.com/DataHaskell/numeric-libs-overview
https://github.com/DataHaskell/numeric-libs-overview
https://github.com/DataHaskell/DataIHaskell
https://github.com/johnny555/ToolExamples/tree/master/Kaggle
https://github.com/johnny555/ToolExamples/tree/master/Kaggle


lutions as an option. It currently has over 700 users and
it provides support for 12 courses at the department, in-
cluding all that are related to functional programming.
This is still in an alpha status yet so it is not available
on Hackage as of yet, only on GitHub, but so far it has
been performing well, especially in combination with
ActiveHs.

Further reading

◦ Haskell course materials (in English):
http://pnyf.inf.elte.hu/fp/Index_en.xml

◦ Agda tutorial (in English):
http://people.inf.elte.hu/pgj/agda/tutorial/

◦ ActiveHs:
http://hackage.haskell.org/package/activehs

◦ BE-AD: http://github.com/andorp/bead

6.3 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: Nils Dallmeyer
Participants: Manfred Schmidt-Schauß

Semantics of Functional Programming Lan-
guages. Extended call-by-need lambda calculi model
the semantics of Haskell. We analyze the semantics of
those calculi with a special focus on the correctness of
program analyses and program transformations. In our
recent research, we use Haskell to develop automated
tools to show correctness of program transformations,
where the method is syntax-oriented and computes so-
called forking and commuting diagrams by a combina-
tion of several unification algorithms that operate on
a meta-representation of the language expressions and
transformations.
We therefore developed variants of unification on the

meta-representation: An expressive variant that cov-
ers all the specifics of normal-order reduction rules.
We also developed (less expressive) extensions of nom-
inal unification, which can, however, deal directly with
alpha-equivalence: one variant that can deal with re-
cursive lets, and another variant that permits variable-
variables.
Improvements In recent research we analyzed

whether program transformations are optimizations,
i.e. whether they improve the time and/or space re-
source behavior. We showed that common subex-
pression elimination is an improvement, also under
polymorphic typing. We developed methods for bet-
ter reasoning about improvements in the presence
of sharing, i.e. in call-by-need calculi. We also de-
veloped a simulation-based method to validate time-
improvements respecting the sharing structure. To
support reasoning on space improvements we imple-

mented a tool in Haskell. Ongoing work is to enhance
the techniques to (preferably automatically) verify that
program transformations are improvements.
Concurrency We analyzed a higher-order func-

tional language with concurrent threads, monadic IO,
MVars and concurrent futures which models Concur-
rent Haskell. We proved that this language conserva-
tively extends the purely functional core of Haskell. In
a similar program calculus we proved correctness of a
highly concurrent implementation of Software Trans-
actional Memory (STM) and developed an alternative
implementation of STM Haskell which performs quite
early conflict detection.
Grammar based compression This research topic

focuses on algorithms on grammar compressed data like
strings, matrices, and terms. We implemented several
algorithms as a Haskell library.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

6.4 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell,
we use for example also Erlang and ML, Haskell pro-
vides a major focus and common language for teaching
and research.
Our members pursue a variety of Haskell-related

projects, several of which are reported in other sec-
tions of this report. In the last months Dominic Or-
chard, Hugo Férée and Reuben Rowe joined our group.
Stephen Adams is working on advanced refactoring of
Haskell programs, extending HaRe. He currently fo-
cuses on refactoring code using monads to code such
that it uses the Applicative class instead. Andreas
Reuleaux is building in Haskell a refactoring tool for a
dependently typed functional language. Maarten Fad-
degon and Olaf Chitil are working on making tracing
for Haskell practical and easy to use. Maarten built the
lightweight tracer and algorithmic debugger Hoed and
Olaf develops the Haskell tracer Hat further. Dominic
Orchard is working on coeffectful programming and ap-
plying verification in computational science. He also
develops tools in Haskell for analysing, refactoring and
verifying Fortran programs. Meng Wang is working
on lenses, bidirectional transformation and property-
based testing (QuickCheck). Together with last years
visitor Colin Runciman from the University of York,

63

http://pnyf.inf.elte.hu/fp/Index_en.xml
http://people.inf.elte.hu/pgj/agda/tutorial/
http://hackage.haskell.org/package/activehs
http://github.com/andorp/bead
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html


Stefan Kahrs is working on minimising regular expres-
sions, implemented in Haskell. Scott Owens is working
on verified compilers for the (strict) functional language
CakeML. Simon Thompson, Scott Owens, Hugo Férée
and Reuben Rowe recently started an EPSRC project
on trustworthy refactoring. They are studying refactor-
ing for CakeML and OCaml, informed by their previous
work for Haskell and Erlang.

We are always looking for more PhD students. We
are particularly keen to recruit students interested in
programming tools for verification, compilation, trac-
ing, refactoring, type checking and any useful feed-
back for a programmer. The school and university
have support for strong candidates: more details at
http://www.cs.kent.ac.uk/pg or contact any of us indi-
vidually by email.

We are also keen to attract researchers to Kent
to work with us. There are many opportunities
for research funding that could be taken up at
Kent, as shown in the website http://www.kent.ac.uk/
researchservices/sciences/fellowships/index.html. Please
let us know if you’re interested in applying for one of
these, and we’ll be happy to work with you on this.

Finally, if you would like to visit Kent, either to give
a seminar if you’re passing through London or the UK,
or to stay for a longer period, please let us know.

Further reading

◦ PLAS group:
http://www.cs.kent.ac.uk/research/groups/plas/

◦ Marco Gaboardi, Shin-ya Kasumata, Dominic
Orchard, Flavien Breuvart and Tarmo Uustalu:
Combining Effects and Coeffects via Grading.
ICFP 2016.

◦ Maarten Faddegon and Olaf Chitil: Lightweight
Computation Tree Tracing for Lazy Functional
Languages. PLDI 2016.

◦ Haskell: the craft of functional programming:
http://www.haskellcraft.com

◦ Parsers and static analysis tools for Fortran code in
Haskell https://github.com/camfort/fortran-src

◦ A refactoring and verification tool for Fortran code
in Haskell https://github.com/camfort/camfort

◦ Refactoring Functional Programs: http:
//www.cs.kent.ac.uk/research/groups/plas/hare.html

◦ Hoed, a lightweight Haskell tracer and debugger:
https://github.com/MaartenFaddegon/Hoed

◦ Hat, the Haskell Tracer:
http://projects.haskell.org/hat/

◦ CakeML, a verification friendly dialect of SML:
https://cakeml.org

◦ Heat, an IDE for learning Haskell:
http://www.cs.kent.ac.uk/projects/heat/

6.5 Functional Programming at KU

Report by: Andrew Gill
Status: ongoing

Functional Programming continues at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andrew Gill) together form the core functional pro-
gramming initiative at KU. All the Haskell related KU
projects are now focused on use-cases for the remote
monad design pattern (→ 4.12.4). One example is the
Haskino Project (→ 4.13.3).

Further reading

The Functional Programming Group: http://www.ittc.
ku.edu/csdl/fpg

6.6 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. Members of the group include users
of Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb–Nov) and meet on
the fourth Wednesday of each month. We regularly get
40–50 attendees, with a 70/30 industry/research split.
Talks this year have included material on compilers,
theorem proving, type systems, Haskell web program-
ming, dynamic programming, Scala and more. We usu-
ally have about 90 mins of talks, starting at 6:30pm.
All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/
◦ http://fp-syd.ouroborus.net/wiki/Past/2016

64

http://www.cs.kent.ac.uk/pg
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
https://github.com/camfort/fortran-src
https://github.com/camfort/camfort
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
https://github.com/MaartenFaddegon/Hoed
http://projects.haskell.org/hat/
https://cakeml.org
http://www.cs.kent.ac.uk/projects/heat/
http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2016


6.7 Regensburg Haskell Meetup

Report by: Andres Löh

Since autumn 2014 Haskellers in Regensburg, Bavaria,
Germany have been meeting roughly once per month
to socialize and discuss Haskell-related topics.
We usually have dinner first and then move on to

have a talk. Topics vary quite a bit, from introduc-
tory to advanced, from theoretical to practical, and we
have been looking at other languages such as Scala or
dependently typed languages as well.
There are typically between 5 and 15 attendees, and

we often get visitors from Munich and Nürnberg.
New members are always welcome, whether they

are Haskell beginners or experts. If you are living
in the area or are visiting, please join! Meetings are
announced a few weeks in advance on our meetup page:
http://www.meetup.com/Regensburg-Haskell-Meetup/.

6.8 Curry Club Augsburg

Report by: Ingo Blechschmidt
Status: active

Since March 2015 haskellistas, scalafists, lambdroids,
and other fans of functional programming languages in
Augsburg, Bavaria, Germany have been meeting every
four weeks in the OpenLab, Augsburg’s hacker space.
Usually there are ten to twenty attendees.
At each meeting, there are typically two to three

talks on a wide range of topics of interest to Haskell
programmers, such as latest news from the Kmettiverse
and introductions to the category-theoretic background
of freer monads. Afterwards we have stimulating dis-
cussions while dining together.

From time to time we offer free workshops to intro-
duce new programmers to the joy of Haskell.
Newcomers are always welcome! Recordings of our

talks are available at http://www.curry-club-augsburg.
de/.

Further reading

http://www.curry-club-augsburg.de/

6.9 Italian Haskell Group

Report by: Francesco Ariis
Status: ongoing

Born in Summer 2015, the Italian Haskell Group is an
effort to advocate functional programming and share
our passion for Haskell through real-life meetings, dis-
cussion groups and community projects.
There have been 3 meetups (in Milan, Bologna and

Florence), our plans to continue with a quarterly sched-
ule. Anyone from the experienced hacker to the func-
tionally curious newbie is welcome; during the rest of
the year you can join us on our irc/mumble channel for
haskell-related discussions and activities.

Further reading

◦ site: http://haskell-ita.it/
◦ IRC channel: https:

//webchat.freenode.net/?channels=%23haskell.it
◦ Discussion forum : https:

//groups.google.com/forum/#!forum/haskell_ita

6.10 RuHaskell – the Russian-speaking
haskellers community

Report by: Yuriy Syrovetskiy
Status: active

RuHaskell is the Russian-speaking community of
haskellers. We have a website with Haskell-related ar-
ticles, a podcast, a subreddit and some Gitter chats in-
cluding one for novice haskellers specially. We also or-
ganize mini-conferences about twice a year in Moscow,
Russia. The 4th mini-conference has taken place in the
April, 2017.

Further reading

◦ Short info: https://wiki.haskell.org/RuHaskell
◦ Website: ruhaskell.org
◦ Gitter chats: /ruHaskell/home
◦ Twitter channel: @ruHaskell
◦ Subreddit: /r/ruhaskell

65

http://www.meetup.com/Regensburg-Haskell-Meetup/
http://www.curry-club-augsburg.de/
http://www.curry-club-augsburg.de/
http://www.curry-club-augsburg.de/
http://haskell-ita.it/
https://webchat.freenode.net/?channels=%23haskell.it
https://webchat.freenode.net/?channels=%23haskell.it
https://groups.google.com/forum/#!forum/haskell_ita
https://groups.google.com/forum/#!forum/haskell_ita
https://wiki.haskell.org/RuHaskell
https://ruhaskell.org
https://gitter.im/ruHaskell/home
https://twitter.com/ruHaskell
https://www.reddit.com/r/ruhaskell/


6.11 NY Haskell Users Group and
Compose Conference

Report by: Gershom Bazerman
Status: ongoing

Since 2012 the NY Haskell Users Group has been
hosting monthly Haskell talks and the occasional
hackathon. Over fifteen-hundred members are regis-
tered on Meetup for the group, and talk attendence
ranges between sixty to one hundred and twenty. NY-
HUG has also been organizing, on and off, beginner-
oriented hangouts where people can assemble and study
and learn together. And as of recently, NYHUG has
also been the home base for organizing a Haskell Pro-
gramming from First Principles study group, as well as
an active Slack channel where ongoing discussion for
the reading group takes place.
In 2015, the NY Haskell organizers launched the

Compose Conference, which was held again in 2016,
with a sibling “Compose::Melbourne” conference be-
ing held in 2016 as well. Compose is a cross-language
conference for functional programmers, focused on
strongly-typed functional languages such as Haskell,
OCaml, F#, and SML. It aims to be both practical
and educational, among other things providing oppor-
tunity for researchers to present the more applicable el-
ements of their work to a wide audience of professional
and hobbyist functional programmers. It is our hope
to continue Compose and also to extend it to sibling
conferences in other geographic areas as well sharing
similar goals and format.

Further reading

◦ http://www.meetup.com/NY-Haskell/
◦ http://www.composeconference.org/

6.12 Japan Haskell User Group –
Haskell-jp

Report by: Yuji Yamamoto
Status: active

Japan Haskell User Group (a.k.a Haskell-jp) is a new
Haskell user community group in Japan. Our main
goals are to promote Haskell in Japan and to sup-
port Haskell users in Japan. For the time being, our
main activity is to provide a space where people who
want to share Haskell-related information in Japan via
haskell.jp domain and the Slack team.
We launched the website on 30th of April 2017. The

website is vital to our current main activity. So the
date is the birthday of Haskell-jp.
As long as I see, Haskell is not very popular in Japan,

even less popular than the other languages. Among
those conditions, Haskell-jp just started. We’ll make
all the best to make Japan a Haskellers’ eutopia.

6.13 Functional Programming at the
Telkom University

Report by: Wisnu Adi Nurcahyo

Functional programmers are rare to find in Indonesia,
especially for Haskell where they are less than 30 from
hundreds of thousands programmers that the country
has.
I started a functional programming group at Telkom

University. My goal is to create a great community of
functional programmers starting from university.

Contact

〈wisnu@nurcahyo.me〉

66

http://www.meetup.com/NY-Haskell/
http://www.composeconference.org/
https://join-haskell-jp-slack.herokuapp.com/
https://haskell.jp/
mailto: wisnu at nurcahyo.me

	Community
	Haskell' — Haskell 2020
	Haskellers

	Books, Articles, Tutorials
	Oleg's Mini Tutorials and Assorted Small Projects
	School of Haskell
	Haskell Programming from first principles, a book forall
	Learning Haskell
	Programming in Haskell - 2nd Edition
	Stack Builders Tutorials
	Haskell MOOC

	Implementations
	The Glasgow Haskell Compiler
	The Helium Compiler
	Frege
	Specific Platforms
	Fedora Haskell SIG
	Debian Haskell Group

	Related Languages and Language Design
	Agda
	Disciple


	Libraries, Tools, Applications, Projects
	Language Extensions and Related Projects
	Dependent Haskell
	generics-sop
	Supermonads

	Build Tools and Related Projects
	Cabal
	The Stack build tool
	Stackage: the Library Dependency Solution
	Stackgo
	hsinstall
	cab — A Maintenance Command of Haskell Cabal Packages
	yesod-rest

	Repository Management
	Octohat
	Darcs
	git-annex
	openssh-github-keys (Stack Builders)

	Debugging and Profiling
	Hoed – The Lightweight Algorithmic Debugger for Haskell
	ghc-heap-view
	ghc-vis
	Hat — the Haskell Tracer

	Development Tools and Editors
	Haskell for Mac
	haskell-ide-engine, a project for unifying IDE functionality
	HyperHaskell – The strongly hyped Haskell interpreter

	Formal Systems and Reasoners
	The Incredible Proof Machine
	Exference

	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners
	DSLsofMath

	Text and Markup
	Brittany
	lhs2TeX
	Unicode things
	Lentil
	Fast Unicode Normalization
	Ginger

	Web
	WAI
	Warp
	Mighttpd2 — Yet another Web Server
	Yesod
	Happstack
	Snap Framework
	Sprinkles
	MFlow
	PureScript
	Hapistrano
	nginx-haskell-module

	Databases
	Persistent
	Opaleye
	YeshQL
	Riak bindings

	Data Structures, Data Types, Algorithms
	Algebraic graphs
	Conduit
	Transactional Trie
	Random access zipper
	Generic random generators
	Generalized Algebraic Dynamic Programming
	Earley
	Transient

	Parallelism
	Eden
	Auto-parallelizing Pure Functional Language System
	Déjà Fu: Concurrency Testing
	The Remote Monad Design Pattern
	concurrent-output

	Systems programming
	Haskell for Mobile development
	haskus-system
	Haskino
	Feldspar

	Mathematics, Simulations and High Performance Computing
	sparse-linear-algebra
	aivika

	Graphical User Interfaces
	threepenny-gui
	wxHaskell

	FRP
	Yampa
	reactive-banana
	Functional Reactive Agent-Based Simulation

	Graphics and Audio
	diagrams
	Chordify
	csound-expression

	Games
	EtaMOO
	Barbarossa
	Tetris in Haskell in a Weekend
	tttool

	Data Tracking
	hledger
	gipeda
	arbtt
	propellor

	Others
	ADPfusion
	leapseconds-announced
	Haskell in Green Land
	Kitchen Snitch server
	clr-haskell (Haskell interoperability with the Common Language Runtime)
	FRTrader
	shell-conduit
	Hapoid
	Hanum - OSM Dynamic Attributes Linter
	tldr


	Commercial Users
	Well-Typed LLP
	Keera Studios LTD
	Stack Builders
	McMaster Computing and Software Outreach

	Research and User Groups
	DataHaskell
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Functional Programming at KU
	fp-syd: Functional Programming in Sydney, Australia
	Regensburg Haskell Meetup
	Curry Club Augsburg
	Italian Haskell Group
	RuHaskell – the Russian-speaking haskellers community
	NY Haskell Users Group and Compose Conference
	Japan Haskell User Group – Haskell-jp
	Functional Programming at the Telkom University


