
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Thirty Fourth Edition — May 2018

Mihai Maruseac (ed.)
Chris Allen Christopher Anand Moritz Angermann

Francesco Ariis Heinrich Apfelmus Gershom Bazerman
Doug Beardsley Jost Berthold Ingo Blechschmidt
Sasa Bogicevic Emanuel Borsboom Jan Bracker
Jeroen Bransen Joachim Breitner Rudy Braquehais
Björn Buckwalter Erik de Castro Lopo Manuel M. T. Chakravarty
Eitan Chatav Olaf Chitil Alberto Gómez Corona
Nils Dallmeyer Tobias Dammers Kei Davis

Dimitri DeFigueiredo Richard Eisenberg Maarten Faddegon
Dennis Felsing Olle Fredriksson Phil Freeman
Marc Fontaine PÁLI Gábor János Michał J. Gajda
Ben Gamari Michael Georgoulopoulos Andrew Gill

Mikhail Glushenkov Mark Grebe Gabor Greif
Adam Gundry Jennifer Hackett Jurriaan Hage
Martin Handley Bastiaan Heeren Sylvain Henry

Joey Hess Kei Hibino Guillaume Hoffmann
Graham Hutton Nicu Ionita Judah Jacobson
Patrik Jansson Wanqiang Jiang Dzianis Kabanau

Nikos Karagiannidis Anton Kholomiov Oleg Kiselyov
Ivan Krišto Yasuaki Kudo Harendra Kumar
Rob Leslie David Lettier Ben Lippmeier
Andres Löh Rita Loogen Tim Matthews

Simon Michael Andrey Mokhov Dino Morelli
Damian Nadales Henrik Nilsson Wisnu Adi Nurcahyo

Ulf Norell Ivan Perez Jens Petersen
Sibi Prabakaran Bryan Richter Herbert Valerio Riedel
Alexey Radkov Vaibhav Sagar Kareem Salah
Michael Schröder Christian Höner zu Siederdissen Ben Sima
Jeremy Singer Gideon Sireling Erik Sjöström
Chris Smith Michael Snoyman David Sorokin

Lennart Spitzner Yuriy Syrovetskiy Jonathan Thaler
Henk-Jan van Tuyl Tillmann Vogt Michael Walker

Li-yao Xia Kazu Yamamoto Yuji Yamamoto
Brent Yorgey Christina Zeller Marco Zocca

http://tinyurl.com/haskcar

Preface

This is the 34th edition of the Haskell Communities and Activities Report. This report has 148
entries, 5 more than in the previous edition. Of these, 39 projects have received substantial
updates and 18 entries are completely new. As usual, fresh entries – either completely new or
old entries which have been revived after a short temporarily disappearance – are formatted
using a blue background, while updated entries have a header with a blue background.
Since my goal is to keep only entries which are under active development (defined as receiving

an update in a 3-editions sliding window), contributions from May 2015 and before have been
completely removed, excepting those related to user groups and communities. However, they
can be resurfaced in the next edition, should a new update be sent for them. For the 30th
edition, for example, we had around 20 new entries which resurfaced.
A call for new HCAR entries and updates to existing ones will be issued on the Haskell mailing

lists in late September/early October.
Now enjoy the current report and see what other Haskellers have been up to lately. Any

feedback is very welcome, as always.

Mihai Maruseac, LeapYear Technologies Inc., US
〈hcar@haskell.org〉

PS: For this edition, I would like to thank Robin Bate Boerop for mentioning HCAR in his
talk at BayHac. A few of the new entries are the result of his announcement.

2

mailto: hcar at haskell.org

Contents

1 Community 7
1.1 Haskell’ — Haskell 2020 . 7
1.2 Haskellers . 7

2 Books, Articles, Tutorials 8
2.1 Oleg’s Mini Tutorials and Assorted Small Projects . 8
2.2 School of Haskell . 8
2.3 Learning Haskell . 9
2.4 Programming in Haskell - 2nd Edition . 9
2.5 Haskell Programming from first principles, a book for all . 10
2.6 Haskell MOOC . 10

3 Implementations 11
3.1 The Glasgow Haskell Compiler . 11
3.2 The Helium Compiler . 12
3.3 Specific Platforms . 13
3.3.1 Fedora Haskell SIG . 13
3.3.2 Debian Haskell Group . 13
3.4 Related Languages and Language Design . 13
3.4.1 hs-to-coq . 13
3.4.2 Agda . 14
3.4.3 Disciple . 14

4 Libraries, Tools, Applications, Projects 15
4.1 Language Extensions and Related Projects . 15
4.1.1 Dependent Haskell . 15
4.1.2 generics-sop . 15
4.1.3 Supermonads . 16
4.1.4 Reifying type families . 16
4.2 Build Tools and Related Projects . 17
4.2.1 Cabal . 17
4.2.2 The Stack build tool . 17
4.2.3 Stackage: the Library Dependency Solution . 18
4.2.4 Stackgo . 18
4.2.5 pier . 18
4.2.6 Packcheck: Universal CI testing for Haskell packages . 19
4.2.7 hsinstall . 19
4.2.8 yesod-rest . 20
4.2.9 Haskell Cloud . 20
4.3 Repository Management . 20
4.3.1 Darcs . 20
4.3.2 git-annex . 20
4.4 Debugging and Profiling . 21
4.4.1 Hoed – The Lightweight Algorithmic Debugger for Haskell . 21
4.4.2 ghc-vis . 22
4.4.3 ghc-heap-view . 23
4.4.4 Hat — the Haskell Tracer . 23
4.5 Testing . 24
4.5.1 inspection-testing . 24
4.5.2 LeanCheck . 24
4.5.3 Extrapolate . 24
4.5.4 Speculate . 25

3

4.5.5 TorXakis . 25
4.6 Development Tools and Editors . 26
4.6.1 Haskell for Mac . 26
4.6.2 haskell-ide-engine, a project for unifying IDE functionality . 27
4.6.3 HyperHaskell – The strongly hyped Haskell interpreter . 27
4.6.4 CodeWorld . 28
4.6.5 Haskell Indexer . 28
4.6.6 Brittany . 29
4.6.7 IHaskell . 29
4.6.8 Doc Browser . 30
4.7 Formal Systems and Reasoners . 30
4.7.1 The Incredible Proof Machine . 30
4.7.2 Exference . 30
4.8 Education . 31
4.8.1 Holmes, Plagiarism Detection for Haskell . 31
4.8.2 Interactive Domain Reasoners . 31
4.8.3 Basic Haskell Cheat Sheet . 32
4.8.4 DSLsofMath . 33
4.8.5 Learn You A Physics . 33
4.9 Text and Markup . 33
4.9.1 lhs2TEX . 33
4.9.2 Fast Unicode Normalization . 34
4.9.3 Automatic type inference from JSON . 34
4.9.4 Ginger . 34
4.10 Web . 35
4.10.1 WAI . 35
4.10.2 Warp . 36
4.10.3 Yesod . 36
4.10.4 Snap Framework . 36
4.10.5 MFlow . 37
4.10.6 PureScript . 37
4.10.7 Sprinkles . 37
4.10.8 nginx-haskell-module . 38
4.10.9 Template Toolkit . 39
4.11 Databases . 40
4.11.1 Persistent . 40
4.11.2 Squeal . 40
4.11.3 Haskell Relational Record . 42
4.11.4 YeshQL . 42
4.11.5 DBFunctor: Functional Data Management . 42
4.12 Data Structures, Data Types, Algorithms . 44
4.12.1 Algebraic graphs . 44
4.12.2 JudyGraph . 45
4.12.3 Conduit . 45
4.12.4 Transactional Trie . 46
4.12.5 Concurrent Trie . 46
4.12.6 Random access zipper . 47
4.12.7 Generic random generators . 47
4.12.8 ADPfusion . 47
4.12.9 Generalized Algebraic Dynamic Programming . 48
4.12.10 Applications of Algebraic Dynamic Programming . 50
4.12.11 Earley . 50
4.12.12 Type Providers . 50
4.12.13 Transient . 50
4.12.14 Streamly: Streaming Concurrently . 51
4.12.15 Streaming Performance Benchmarks . 51
4.12.16 proto-lens . 52

4

4.13 Parallelism and Concurrency . 52
4.13.1 Eden . 52
4.13.2 Auto-parallelizing Pure Functional Language System . 53
4.13.3 concurrent-output . 54
4.13.4 Déjà Fu: Concurrency Testing . 54
4.14 Systems programming . 55
4.14.1 Haskell for Mobile development . 55
4.14.2 haskus-system . 55
4.14.3 Haskino . 55
4.14.4 STM32-Zombie . 56
4.15 Mathematics, Simulations and High Performance Computing . 57
4.15.1 sparse-linear-algebra . 57
4.15.2 aivika . 57
4.15.3 General Decimal Arithmetic . 57
4.16 Graphical User Interfaces . 58
4.16.1 wxHaskell . 58
4.16.2 threepenny-gui . 58
4.17 FRP . 59
4.17.1 Yampa . 59
4.17.2 reactive-banana . 60
4.17.3 Functional Reactive Agent-Based Simulation . 61
4.18 Graphics and Audio . 62
4.18.1 diagrams . 62
4.18.2 csound-expression . 63
4.18.3 Chordify . 63
4.18.4 The Arpeggigon . 64
4.18.5 Gifcurry . 65
4.18.6 Movie Monad . 65
4.19 Games . 66
4.19.1 Nomyx . 66
4.19.2 EtaMOO . 66
4.19.3 Tetris in Haskell in a Weekend . 66
4.19.4 Barbarossa . 67
4.19.5 tttool . 67
4.19.6 Asteroids . 68
4.20 Data Tracking . 68
4.20.1 hledger . 68
4.20.2 gipeda . 68
4.20.3 arbtt . 69
4.20.4 propellor . 69
4.21 Others . 70
4.21.1 leapseconds-announced . 70
4.21.2 clr-haskell (Haskell interoperability with the Common Language Runtime) 70
4.21.3 Kitchen Snitch server . 70
4.21.4 FRTrader . 70
4.21.5 Hapoid . 71
4.21.6 Hanum - OSM Dynamic Attributes Linter . 71
4.21.7 shell-conduit . 71
4.21.8 tldr . 71
4.21.9 pprjam . 71

5 Commercial Users 73
5.1 Well-Typed LLP . 73
5.2 Keera Studios LTD . 74
5.3 McMaster Computing and Software Outreach . 76

6 Research and User Groups 77
6.1 DataHaskell . 77

5

6.2 Haskell at Eötvös Loránd University (ELTE), Budapest . 77
6.3 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 78
6.4 Functional Programming at the University of Kent . 78
6.5 Functional Programming at KU . 79
6.6 Functional Programming Laboratory at the University of Nottingham 79
6.7 fp-syd: Functional Programming in Sydney, Australia . 80
6.8 Regensburg Haskell Meetup . 80
6.9 Curry Club Augsburg . 81
6.10 Italian Haskell Group . 81
6.11 RuHaskell – the Russian-speaking haskellers community . 81
6.12 NY Haskell Users Group and Compose Conference . 81
6.13 Japan Haskell User Group – Haskell-jp . 82
6.14 Tokyo Haskell Meetup – Casual, English-speaking monthly meetings in Tokyo 82
6.15 Functional Programming at the Telkom University . 82
6.16 Haskell Serbia . 82

6

1 Community

1.1 Haskell’ — Haskell 2020

Report by: Herbert Valerio Riedel
Participants: Andres Löh, Antonio Nikishaev, Austin

Seipp, Carlos Camarao de Figueiredo,
Carter Schonwald, David Luposchainsky,

Henk-Jan van Tuyl, Henrik Nilsson,
Herbert Valerio Riedel, Iavor Diatchki,
John Wiegley, José Manuel Calderón

Trilla, Jurriaan Hage, Lennart Augustsson,
M Farkas-Dyck, Mario Blaz̆ević, Nicolas

Wu, Richard Eisenberg, Vitaly Bragilevsky,
Wren Romano

Haskell’ is an ongoing process to produce revisions to
the Haskell standard, incorporating mature language
extensions and well-understood modifications to the
language. New revisions of the language are expected
once per year.
The goal of the Haskell Language committee together

with the Core Libraries Committee is to work towards a
new Haskell 2020 Language Report. The Haskell Prime
Process relies on everyone in the community to help by
contributing proposals which the committee will then
evaluate and, if suitable, help formalise for inclusion.
Everyone interested in participating is also invited to
join the haskell-prime mailing list.
Four years (or rather ~3.5 years) from now may seem

like a long time. However, given the magnitude of the
task at hand, to discuss, formalise, and implement pro-
posed extensions (taking into account the recently en-
acted three-release-policy) to the Haskell Report, the
process shouldn’t be rushed. Consequently, this may
even turn out to be a tight schedule after all. However,
it’s not excluded there may be an interim revision of
the Haskell Report before 2020.

Based on this schedule, GHC 8.8 (likely to be re-
leased early 2020) would be the first GHC release to
feature Haskell 2020 compliance. Prior GHC releases
may be able to provide varying degree of conformance
to drafts of the upcoming Haskell 2020 Report.

The Haskell Language 2020 committee starts out
with 20 members which contribute a diversified skill-
set. These initial members also represent the Haskell
community from the perspective of practitioners, im-
plementers, educators, and researchers.

The Haskell 2020 committee is a language commit-
tee; it will focus its efforts on specifying the Haskell
language itself. Responsibility for the libraries laid out
in the Report is left to the Core Libraries Committee
(CLC). Incidentally, the CLC still has an available seat;
if you would like to contribute to the Haskell 2020 Core
Libraries you are encouraged to apply for this opening.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.

Haskellers is a web site in maintenance mode. No
new features are being added, though the site remains
active with many new accounts and job postings con-
tinuing. If you have specific feature requests, feel free
to send them in (especially with pull requests!).

Haskellers remains a site intended for all members
of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

7

http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmij.org/ftp/Haskell/)
has received a manifold addition centered on Type
Equality and Overlapping Instances.

Type Equality Predicates and Assertions

We describe several forms of testing two types for equal-
ity, and asserting that two types are equal or not equal.
The predicates differ in how they compare type vari-
ables, whether they allow wildcards, etc.
Described predicates:

◦ TypeEq t1 t2 : simplifies to HTrue if the type checker
regards t1 and t2 as the same. The result is HFalse
if the type checker can see the two types as differ-
ent. The decision is postponed if t1 and t2 are not
instantiated enough;

◦ TypeEqTotal t1 t2 : immediately yields either HFalse
or HTrue, regardless of how t1 and t2 are instanti-
ated. A type variable is TypeEqTotal only to itself;

◦ t1∼t2 : asserts that t1 and t2 are the same, and, as
a side effect, instantiates type variables in t1 and t2
to make the type the same. If the types cannot be
made the same, a type error is raised;

◦ A predicate version of t1∼t2 – that is, TypeEq with
the side-effect of instantiation of type variables – is
incoherent;
Read the tutorial online.
How to implement type equality.

For and Against Overlapping Instances

Overlapping instances are so practically appealing be-
cause they express the common pattern of adding a spe-
cial case to an existing set of overloaded functions. We
illustrate the pattern on a real-life example of optimiz-
ing a generic library. The example demonstrates the
conflict between two practically useful features, over-
lapping instances and associated data types.

Overlapping instances are controversial because they
straddle a contradiction. They embody “negation as
failure”: the general type class instance is chosen for
the given type only when all more specific instances
failed to match the type. Negation-as-failure presup-
poses closed world, or a fixed set of instances. However,
type classes are open: the user may add more instances
at any time, in the same or different modules.
Read the tutorial online.
Another use case: Comparing types by their shape.

Objections to overlapping instances.

Type-level type introspection, equality and
matching

We describe type-level representation of types: essen-
tially type-level Typeable. The library lets us check if
two types are equal or dis-equal, and compare them by
shape. We may use wildcards in type comparisons.

The library exhibits type-level conditional and
higher-order type families such as Member (which takes
a type-level equality predicate as an argument).

Read the tutorial online.
Using TTypeable to avoid OverlappingInstances.

2.2 School of Haskell

Report by: Michael Snoyman
Participants: Edward Kmett, Simon Peyton Jones

and others
Status: active

The School of Haskell has been available since early
2013. It’s main two functions are to be an education
resource for anyone looking to learn Haskell and as
a sharing resources for anyone who has built a valu-
able tutorial. The School of Haskell contains tutorials,
courses, and articles created by both the Haskell com-
munity and the developers at FP Complete. Courses
are available for all levels of developers.

School of Haskell has been open sourced, and is avail-
able from its own domain name (schoolofhaskell.com).
In addition, the underlying engine powering interactive
code snippets, ide-backend, has also been released as
open source.

Currently 3150 tutorials have been created and 441
have been officially published. Some of the most visited
tutorials are Text Manipulation, Attoparsec, Learning
Haskell at the SOH, Introduction to Haskell - Haskell
Basics, and A Little Lens Starter Tutorial. Over the
past year the School of Haskell has averaged about 16k
visitors a month.

All Haskell programmers are encouraged to visit the
School of Haskell and to contribute their ideas and
projects. This is another opportunity to showcase the
virtues of Haskell and the sophistication and high level
thinking of the Haskell community.

Further reading

https://www.schoolofhaskell.com/

8

http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Haskell/typeEQ.html#forms
http://okmij.org/ftp/Haskell/typeEQ.html#old-implementations
http://okmij.org/ftp/Haskell/typeEQ.html#special-case
http://okmij.org/ftp/Haskell/typeEQ.html#constructor
http://okmij.org/ftp/Haskell/typeEQ.html#anti-over
http://okmij.org/ftp/Haskell/typeEQ.html#TTypeable
http://okmij.org/ftp/Haskell/typeEQ.html#without-over
schoolofhaskell.com
https://www.schoolofhaskell.com/

2.3 Learning Haskell

Report by: Manuel M. T. Chakravarty
Participants: Gabriele Keller
Status: Work in progress with eight published

chapters

Learning Haskell is a new Haskell tutorial that inte-
grates text and screencasts to combine in-depth expla-
nations with the hands-on experience of live coding. It
is aimed at people who are new to Haskell and func-
tional programming. Learning Haskell does not assume
previous programming expertise, but it is structured
such that an experienced programmer who is new to
functional programming will also find it engaging.

Learning Haskell combines perfectly with the Haskell
for Mac programming environment, but it also includes
instructions on working with a conventional command-
line Haskell installation. It is a free resource that
should benefit anyone who wants to learn Haskell.

Learning Haskell is still work in progress with eight
chapters already available. The current material cov-
ers all the basics, including higher-order functions and
algebraic data types. Learning Haskell is approachable
and fun – it includes topics such as illustrating various
recursive structures using fractal graphics, such as this
fractal tree.

Further chapters will be made available as we com-
plete them.

Further reading

◦ Learning Haskell is free at http://learn.hfm.io
◦ Blog post with some background:
http://blog.haskellformac.com/blog/learning-haskell

2.4 Programming in Haskell - 2nd Edition

Report by: Graham Hutton
Status: published September 2016

Overview

Haskell is a purely functional language that allows pro-
grammers to rapidly develop software that is clear, con-
cise and correct. This book is aimed at a broad spec-
trum of readers who are interested in learning the lan-
guage, including professional programmers, university
students and high-school students. However, no pro-
gramming experience is required or assumed, and all
concepts are explained from first principles with the
aid of carefully chosen examples and exercises. Most of
the material in the book should be accessible to any-
one over the age of around sixteen with a reasonable
aptitude for scientific ideas.

Structure

The book is divided into two parts. Part I introduces
the basic concepts of pure programming in Haskell and
is structured around the core features of the language,
such as types, functions, list comprehensions, recursion
and higher-order functions. Part II covers impure pro-
gramming and a range of more advanced topics, such
as monads, parsing, foldable types, lazy evaluation and
reasoning about programs. The book contains many
extended programming examples, and each chapter in-
cludes suggestions for further reading and a series of
exercises. The appendices provide solutions to selected
exercises, and a summary of some of the most com-
monly used definitions from the Haskell standard pre-
lude.

9

http://learn.hfm.io
http://blog.haskellformac.com/blog/learning-haskell

What’s New

The book is an extensively revised and expanded ver-
sion of the first edition. It has been extended with new
chapters that cover more advanced aspects of Haskell,
new examples and exercises to further reinforce the con-
cepts being introduced, and solutions to selected ex-
ercises. The remaining material has been completely
reworked in response to changes in the language and
feedback from readers. The new edition uses the Glas-
gow Haskell Compiler (GHC), and is fully compatible
with the latest version of the language, including recent
changes concerning applicative, monadic, foldable and
traversable types.

Further reading

http://www.cs.nott.ac.uk/~pszgmh/pih.html

2.5 Haskell Programming from first
principles, a book for all

Report by: Chris Allen
Participants: Julie Moronuki
Status: Content complete, in final editing

Haskell Programming is a book that aims to get people
from the barest basics to being well-grounded in enough
intermediate Haskell concepts that they can self-learn
what would be typically required to use Haskell in pro-
duction or to begin investigating the theory and de-
sign of Haskell independently. We’re writing this book
because many have found learning Haskell to be diffi-
cult, but it doesn’t have to be. What particularly con-
tributes to the good results we’ve been getting has been
an aggressive focus on effective pedagogy and extensive
testing with reviewers as well as feedback from readers.
My coauthor Julie Moronuki is a linguist who’d never
programmed before learning Haskell and authoring the
book with me.
Haskell Programming is currently content complete

and is approximately 1,200 pages long in the v0.12.0
release. The book is available for sale during the early
access, which includes the 1.0 release of the book in
PDF. We’re still editing the material. We expect to
release the final version of the book this winter.

Further reading

◦ http://haskellbook.com
◦ https://superginbaby.wordpress.com/2015/05/30/

learning-haskell-the-hard-way/
◦ http://bitemyapp.com/posts/

2015-08-23-why-we-dont-chuck-readers-into-web-apps.html

2.6 Haskell MOOC

Report by: Jeremy Singer
Participants: Wim Vanderbauwhede
Status: Third run of a six-week online Haskell

course has just completed

The School of Computing Science at the University
of Glasgow has partnered with the FutureLearn plat-
form to deliver a six week massive open online course
(MOOC) entitled Functional Programming in Haskell.
The course goes through the basics of the Haskell lan-
guage, using short videos, an online REPL, multiple
choice quizzes and articles.

The third run of the course began on 1 Apr 2018.
Around 1500 people signed up for the course, 70% of
whom actively engaged with the materials. The most
engaging aspect of the activity is the comradely atmo-
sphere in the discussion forums.

The course is in a steady state, running two times per
year in April and September. Visit our site to register
your interest.

We are continuously refining the learning materials,
based on learner feedback from the course. We pre-
sented some initial experiences at the Trends in Func-
tional Programming in Education 2017 conference.

Further reading

◦ https://www.futurelearn.com/courses/
functional-programming-haskell

◦ https:
//www.cs.kent.ac.uk/people/staff/sjt/TFPIE2017/
TFPIE_2017/Papers/TFPIE_2017_paper_5.pdf

10

http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://haskellbook.com
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
https://www.futurelearn.com/courses/functional-programming-haskell
https://www.futurelearn.com/courses/functional-programming-haskell
https://www.futurelearn.com/courses/functional-programming-haskell
https://www.cs.kent.ac.uk/people/staff/sjt/TFPIE2017/TFPIE_2017/Papers/TFPIE_2017_paper_5.pdf
https://www.cs.kent.ac.uk/people/staff/sjt/TFPIE2017/TFPIE_2017/Papers/TFPIE_2017_paper_5.pdf
https://www.cs.kent.ac.uk/people/staff/sjt/TFPIE2017/TFPIE_2017/Papers/TFPIE_2017_paper_5.pdf

3 Implementations

3.1 The Glasgow Haskell Compiler

Report by: Ben Gamari
Participants: the GHC developers
Status: GHC 8.6

2018 saw GHC’s first release under its new accelerated
release schedule. GHC 8.4.1 contained improvements
in GHC’s standard libraries, code generation, and hun-
dreds of bug fixes. Our focus is now turned to the next
major release of the 8.0 series, GHC 8.6.1.

Major changes in GHC 8.6

Libraries, source language, and type system

◦ The new -XNumericUnderscores extension allows
underscores to be used in numeric literals, improving
legibility of longer literals.

◦ The long-awaited -XBlockArguments extensions al-
lows do and lambda expressions to be used directly as
a function argument, eliminating the need for paren-
theses or an application operator.

◦ Possibly: The -XDerivingVia extension, a proposed
relative of -XGeneralizedNewtypeDeriving which
allows users to derive typeclasses using a generalized
form of newtype deriving.

◦ The Data.Functor.Contravariant module from
the contravariant package has been moved into
base.

Compiler

◦ The compiler’s core simplifier now performs signifi-
cantly more varieties of numeric constant folding.

◦ Incomplete pattern match warnings are now offered
for guards in pattern bindings and MultiWayIf al-
ternatives.

◦ A new syntax tree representation based on Trees
That Grow. This will make it easier for external
users to add their own annotations to the HsSyn
AST. In future this should allow Shayan Najd to har-
monise the GHC and Template Haskell ASTs, and
for the ghc-exactprint annotations to move into
the GHC parsed AST (Shayan Najd and Alan Zim-
merman).

◦ Further improvements in support for cross-
compilation (Moritz Angerman)

◦ Replacement of the make-based build system with
Hadrian. Hadrian, while being usable in GHC 8.4,
should be able to replace make in nearly all uses.

Moreover, it will have significantly better documen-
tation and support relocatable installation trees, a
feature unavailable in the current build system (An-
drey Mokhov, Zhen Zhang, Moritz Angerman, Alp
Mestanogullari)

◦ Many, many bug fixes.

Runtime system

Significantly improved Windows support with a new
I/O manager, long file path compatibility and dynamic
linking support (Tamar Christina).

GHC proposals

Since the launch of the GHC proposals process
(https://github.com/ghc-proposals/ghc-proposals), over
128 proposals have been created, 41 have been submit-
ted to the committee and 19 have been accepted. These
are:
◦ OverloadedRecordFields (PR #6)
◦ Update levity polymorphism (PR #29)
◦ Make Constraint not apart from Type (PR #32)
◦ Hex floats (PR #37)
◦ Allow signatures on pattern synonym constructors

(PR #42)
◦ Explicit foralls proposal (PR #55)
◦ Overhaul deriving instances for empty data types

proposal (PR #63)
◦ Require namespacing fixity declarations for type

names (PR #65)
◦ Extend -Wall with incomplete-uni-patterns and
incomplete-record-updates (PR #71)

◦ Add small primitive types, like Int8#/Word8# (PR
#74)

◦ Propose underscores in numeric literals (PR #76)
◦ Deprecate STM invariant mechanism (PR #77)
◦ Type-level type applications (PR #80)
◦ Embrace (Type :: Type) (PR #83)
◦ Allow do etc. to be used as function arguments with-

out a $ (PR #90)
◦ As-pattern synonyms (PR #94)
◦ Unlifted Newtypes (PR #98)
◦ Proposal for Source Plugins (PR #107)
◦ Quantified constraints (PR #109)

At the time of writing, 15 proposals are under ac-
tive discussion by the community and 13 proposals are
under review by the committee.

Looking forward: What’s hot

GHC is lucky to have a large number of volunteer con-
tributors.

11

http://www.jucs.org/jucs_23_1/trees_that_grow/jucs_23_01_0042_0062_najd.pdf
http://www.jucs.org/jucs_23_1/trees_that_grow/jucs_23_01_0042_0062_najd.pdf
https://github.com/ghc-proposals/ghc-proposals
https://github.com/ghc-proposals/ghc-proposals/pulls?q=is%3Aopen+is%3Apr+no%3Alabel
https://github.com/ghc-proposals/ghc-proposals/pulls?q=is%3Aopen+is%3Apr+label%3A%22Pending+committee+review%22

◦ Matthías Páll Gissurarson has been adding support
for significantly improved diagnostics messages for
typed holes.

◦ Ryan Scott has been busily triaging and fixing bugs
on a daily basis, and generally helps to keep things
running smoothly.

◦ Mark Karpov of Tweag I/O has been pushing for-
ward GHC’s continuous integration reboot. Us-
ing computational resources generously provided by
Google X, GHC will be moving its continuous in-
tegration infrastructure to CircleCI and Appveyor.
This will allow us to more easily produce binary dis-
tributions

◦ Boldizsár Németh has been working on improving
GHC’s plugin story. GHC currently disables to its
recompilation checking when compiling with plugin,
dramatically increasing build times in common situ-
ations.

◦ Joachim Breitner has been continuing his work on
improving GHC’s treatment of “join points”.

◦ Michal Terepeta has been performing a variety of
refactoring and optimization in the backend as well
as introducing support for sub-word-sized fields.

◦ Andreas Klebinger has been working on improving
various facets of GHC’s backend code generator. In
the past few weeks alone he has contributed perfor-
mance optimisations for GHC’s C-- pass, improved
common subexpression elimination, and added in-
frastructure for taking advantage of branch likeli-
hoods.

◦ Tamar Christina has continued his work on making
GHC run great on Windows. Recently he has been
working to finish up a patchset enabling dynamic
linking support on Windows. Tamar is also working
on a rework of GHC’s Windows IO manager imple-
mentation. The new implementation will take full
advantage of Windows’ asynchronous I/O interfaces
and should solve dozens of long-standing tickets.

◦ In addition to contributing valuable code review and
bug triaging, Sebastian Graf has contributed fixes to
a variety of issues throughout the compiler, includ-
ing fixes to demand analysis and improvements to
common Enum instances.

◦ Recently Patrick Dougherty dusted off a long-
dormant patch making the ghc-heapview package
a first-class citizen. This package allows Haskell pro-
grams to introspect the heap

◦ Andrey Mokhov, Zhen Zhang, Moritz Anger-
mann, Alp Mestanogullari, Tamar Christina, Patrick
Dougherty and Tao He have all been working on the
finishing the last mile of the switch to GHC’s new
Shake-based build system, Hadrian.

◦ One of the larger projects in the pipeline for 8.6 is
Alan Zimmerman and Shayan Najd’s refactoring of
GHC to use the extensible Trees That Grow AST
structure.

◦ Alan Zimmerman has also been looking to teach
GHC’s parser to parse incrementally, allowing lower

latency reparsing during IDE usage.
◦ Simon Peyton Jones implemented so-called

quantified constraints, which have been on
the to-do list for over a decade, and were de-
scribed in a 2017 Haskell Symposium paper.
(http://i.cs.hku.hk/~bruno//papers/hs2017.pdf) A
GHC proposal (https://github.com/Gertjan423/
ghc-proposals/blob/quantified-constraints/proposals/
0000-quantified-constraints.rst) to adopt quantified
constraints was agreed, so they will appear in GHC
8.6.
As always, if you are interested in contributing to

any facet of GHC, be it the runtime system, type-
checker, documentation, simplifier, or anything in be-
tween, please come speak to us either on IRC (#ghc
on irc.freeenode.net) or ghc-devs@haskell.org.
Happy Haskelling!

Further reading

◦ GHC website: https://haskell.org/ghc/
◦ GHC users guide: https:

//downloads.haskell.org/~ghc/master/users_guide/
◦ ghc-devs mailing list:

https://mail.haskell.org/mailman/listinfo/ghc-devs

3.2 The Helium Compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back, including domain specific type error diagnosis by
means of specialized type rules. Helium and its asso-
ciated packages are available from Hackage. Install it
by running cabal install helium. You should also
cabal install lvmrun on which it dynamically de-
pends for running the compiled code.

Currently Helium is at version 1.8.1. The major
change with respect to 1.8 is that Helium is again
well-integrated with the Hint programming environ-
ment that Arie Middelkoop wrote in Java. The jar-file
for Hint can be found on the Helium website, which is
located at http://www.cs.uu.nl/wiki/Helium. This web-
site also explains in detail what Helium is about, what
it offers, and what we plan to do in the near and far
future.

A student has added parsing and static checking for
type class and instance definitions to the language, but
type inferencing and code generating still need to be
added. Completing support for type classes is the sec-
ond thing on our agenda, the first thing being making
updates to the documentation of the workings of He-
lium on the website.

12

http://i.cs.hku.hk/~bruno//papers/hs2017.pdf
https://github.com/Gertjan423/ghc-proposals/blob/quantified-constraints/proposals/0000-quantified-constraints.rst
https://github.com/Gertjan423/ghc-proposals/blob/quantified-constraints/proposals/0000-quantified-constraints.rst
https://github.com/Gertjan423/ghc-proposals/blob/quantified-constraints/proposals/0000-quantified-constraints.rst
https://haskell.org/ghc/
https://downloads.haskell.org/~ghc/master/users_guide/
https://downloads.haskell.org/~ghc/master/users_guide/
https://mail.haskell.org/mailman/listinfo/ghc-devs
http://www.cs.uu.nl/wiki/Helium

3.3 Specific Platforms

3.3.1 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Elliott Sales de Andrade, Robert-André

Mauchin
Status: active

The Fedora Haskell SIG works to provide good Haskell
support in the Fedora Project Linux distribution.
For the Fedora 28 release on 1st May, ghc was up-

dated to 8.2.2 and packages to Stackage LTS 10 ver-
sions. Also the shared dynamic libraries now live in
system libdir. Over 30 new packages were added to Fe-
dora 28. We use the cabal-rpm packaging tool to create
and update Haskell packages, and fedora-haskell-tools
to rebuild them.

For the next release we plan to update to LTS 11,
and also to do some packaging changes to subpackage
haddock documentation for libraries.

A Fedora Copr repo is available for ghc-8.4.2.
If you are interested in Fedora Haskell packag-

ing, please join our mailing-list and the Freenode
#fedora-haskell channel. You can also follow @fedo-
rahaskell for occasional updates.

Further reading

◦ Homepage:
http://fedoraproject.org/wiki/Haskell_SIG

◦ Mailing-lists: https://lists.fedoraproject.org/archives/
list/haskell@lists.fedoraproject.org/ and
https://lists.fedoraproject.org/archives/list/
haskell-devel@lists.fedoraproject.org/

◦ Package list: https://admin.fedoraproject.org/pkgdb/
packager/haskell-sig/

◦ Copr repos: https:
//copr.fedorainfracloud.org/coprs/petersen/ghc-8.0.2
and https:
//copr.fedorainfracloud.org/coprs/petersen/stack

◦ Fedora Haskell Tools: https:
//github.com/fedora-haskell/fedora-haskell-tools

3.3.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core packages and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 1077 source packages.

A system of virtual package names and dependen-
cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.

The current stable Debian release (“strech”) provides
GHC 8.0.1. In Debian unstable and testing (“buster”,
the next release) we ship GHC 8.0.2. GHC 8.2 is staged
in “experimental”.

Debian users benefit from the Haskell ecosystem
on 22 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.4 Related Languages and Language
Design

3.4.1 hs-to-coq

Report by: Joachim Breitner
Participants: Antal Spector-Zabusky, Stephanie Weirich
Status: working

The hs-to-coq tool, written by Antal Spector-
Zabusky, Joachim Breitner and Stephanie Weirich,
translates a large subset of Haskell into Gallina, the
programming langauge of the proof assistant Coq. The
translation process is configurable and allows the user
to stub out low-level features, to map Haskell types
and functions to corresponding existing Coq types and
functions and to declare termination arguments. It
has been used to verify a large subset of Haskell’s
containers library.

Further reading

◦ https://github.com/antalsz/hs-to-coq/
◦ https://arxiv.org/abs/1711.09286 paper introducing
hs-to-coq

◦ https://arxiv.org/abs/1803.06960 paper discussing
the verification of containers

13

http://fedoraproject.org/wiki/Haskell_SIG
https://lists.fedoraproject.org/archives/list/haskell@lists.fedoraproject.org/
https://lists.fedoraproject.org/archives/list/haskell@lists.fedoraproject.org/
https://lists.fedoraproject.org/archives/list/haskell-devel@lists.fedoraproject.org/
https://lists.fedoraproject.org/archives/list/haskell-devel@lists.fedoraproject.org/
https://admin.fedoraproject.org/pkgdb/packager/haskell-sig/
https://admin.fedoraproject.org/pkgdb/packager/haskell-sig/
https://copr.fedorainfracloud.org/coprs/petersen/ghc-8.0.2
https://copr.fedorainfracloud.org/coprs/petersen/ghc-8.0.2
https://copr.fedorainfracloud.org/coprs/petersen/stack
https://copr.fedorainfracloud.org/coprs/petersen/stack
https://github.com/fedora-haskell/fedora-haskell-tools
https://github.com/fedora-haskell/fedora-haskell-tools
http://wiki.debian.org/Haskell
https://github.com/antalsz/hs-to-coq/
https://arxiv.org/abs/1711.09286
https://arxiv.org/abs/1803.06960

3.4.2 Agda

Report by: Ulf Norell
Participants: Ulf Norell, Nils Anders Danielsson,

Andreas Abel, Jesper Cockx, Makoto
Takeyama, Stevan Andjelkovic,

Jean-Philippe Bernardy, James Chapman,
Dominique Devriese, Peter Divianszki,

Fredrik Nordvall Forsberg, Olle
Fredriksson, Daniel Gustafsson, Alan

Jeffrey, Fredrik Lindblad, Guilhem Moulin,
Nicolas Pouillard, Andrés Sicard-Ramírez

and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e., GADTs which can
be indexed by values and not just types. The lan-
guage also supports coinductive types, parameterized
modules, and mixfix operators, and comes with an in-
teractive interface—the type checker can assist you in
the development of your code.

A lot of work remains in order for Agda to become a
full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of value as a platform
for research and experiments in dependently typed pro-
gramming.

Release of Agda 2.5.4 is planned for early summer
2018 with a number of new features:
◦ do-notation
◦ Compile-time call-by-need evaluation
◦ Builtin 64-bit words
◦ Improved performance of compiled code

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

3.4.3 Disciple

Report by: Ben Lippmeier
Participants: Ben Lippmeier, Jacob Stanley
Status: experimental, active development

The Disciplined Disciple Compiler (DDC) is a research
compiler used to investigate program transformation
in the presence of computational effects. It compiles
a family of strict functional core languages and sup-
ports region and effect typing. This extra informa-
tion provides a handle on the operational behaviour of
code that isn’t available in other languages. Programs
can be written in either a pure/functional or effect-
ful/imperative style, and one of our goals is to provide
both styles coherently in the same language.

What is new?

DDC v0.5.1 was released in late October, and is in
"working alpha" state. The main new features are:
◦ Copying garbage collection using the LLVM shadow

stack.
◦ Implicit parameters, which support Haskell-like ad-

hoc overloading using dictionaries.
◦ Floating point primitives.
◦ Travis continuous integration for the GitHub site.
◦ A new Sphinx based user guide and homepage.

We are currently working on a new indexed binary
format for interface files, as re-parsing interface files is
currently a bottleneck. The file format is to be provided
by the Shimmer project, which has been split out into
a separate repo.

Further reading

◦ http://disciple.ouroborus.net
◦ https://github.com/DDCSF/shimmer

14

http://wiki.portal.chalmers.se/agda/
http://disciple.ouroborus.net
https://github.com/DDCSF/shimmer

4 Libraries, Tools, Applications, Projects

4.1 Language Extensions and Related
Projects

4.1.1 Dependent Haskell

Report by: Richard Eisenberg
Status: work in progress

I am working on an ambitious update to GHC that will
bring full dependent types to the language. In GHC 8,
the Core language and type inference have already been
updated according to the description in our ICFP’13
paper [1]. Accordingly, all type-level constructs are
simultaneously kind-level constructs, as there is no dis-
tinction between types and kinds. Specifically, GADTs
and type families are promotable to kinds. At this
point, I conjecture that any construct writable in those
other dependently-typed languages will be expressible
in Haskell through the use of singletons.
Building on this prior work, I have written my dis-

sertation on incorporating proper dependent types in
Haskell [2]. I have yet to have the time to start gen-
uine work on the implementation, but I plan to do so
starting summer 2017.

Here is a sneak preview of what will be possible with
dependent types, although much more is possible, too!

data Vec :: ∗ → Integer→ ∗ where
Nil :: Vec a 0
(:::) :: a → Vec a n → Vec a (1 ’+ n)

replicate :: π n. ∀a. a → Vec a n
replicate @0 = Nil
replicate x = x ::: replicate x

Of course, the design here (especially for the proper de-
pendent types) is preliminary, and input is encouraged.

Further reading

◦ [1]: System FC with Explicit Kind Equality, by
Stephanie Weirich, Justin Hsu, and Richard
A. Eisenberg. ICFP ’13.
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/
fckinds.pdf

◦ [2]: Dependent Types in Haskell: Theory and
Practice, by Richard A. Eisenberg. PhD Thesis,
2015.
https://github.com/goldfirere/thesis/tree/master/built

4.1.2 generics-sop

Report by: Andres Löh
Participants: Andres Löh, Edsko de Vries

The generics-sop (“sop” is for “sum of products”)
package is a library for datatype-generic program-
ming in Haskell, in the spirit of GHC’s built-in
DeriveGeneric construct and the generic-deriving
package.

Datatypes are represented using a structurally iso-
morphic representation that can be used to define
functions that work automatically for a large class of
datatypes (comparisons, traversals, translations, and
more). In contrast with the previously existing li-
braries, generics-sop does not use the full power
of current GHC type system extensions to model
datatypes as an n-ary sum (choice) between the con-
structors, and the arguments of each constructor as an
n-ary product (sequence, i.e., heterogeneous lists). The
library comes with several powerful combinators that
work on n-ary sums and products, allowing to define
generic functions in a very concise and compositional
style.

The current release is 0.2.0.0.
A new talk from ZuriHack 2016 is available on

Youtube. The most interesting upcoming feature is
probably type-level metadata, making use of the fact
that GHC 8 now offers type-level metadata for the
built-in generics. While the feature is in principle im-
plemented, there are still a few open questions about
what representation would be most convenient to work
with in practice. Help or opinions are welcome!

Further reading

◦ generics-sop package:
https://hackage.haskell.org/package/generics-sop/

◦ Tutorial (summer school lecture notes):
https://github.com/kosmikus/SSGEP/

◦ ZuriHac 2016 talk:
https://www.youtube.com/watch?v=sQxH349HOik

◦ WGP 2014 talk:
https://www.youtube.com/watch?v=jzgfM6NFE3Y

◦ Paper:
http://www.andres-loeh.de/TrueSumsOfProducts/

15

http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
https://github.com/goldfirere/thesis/tree/master/built
https://hackage.haskell.org/package/generics-sop/
https://github.com/kosmikus/SSGEP/
https://www.youtube.com/watch?v=sQxH349HOik
https://www.youtube.com/watch?v=jzgfM6NFE3Y
http://www.andres-loeh.de/TrueSumsOfProducts/

4.1.3 Supermonads

Report by: Jan Bracker
Participants: Jan Bracker and Henrik Nilsson
Status: Experimental fully working version

The supermonad package provides a unified way to rep-
resent different monadic and applicative notions. In
other words, it provides a way to use standard and
generalized monads and applicative functors (with ad-
ditional indices or constraints) without having to man-
ually disambiguate which notion is referred to in every
context. This allows the reuse of code, such as standard
library functions, across all of the notions.
To achieve this, the library splits the monad and ap-

plicative type classes such that they are general enough
to allow instances for all of the generalized notions and
then aids constraint checking through a GHC plugin to
ensure that everything type checks properly. Due to
the plugin the library can only be used with GHC.

If you are interested in using the library, we have
a few examples of different size in the repository to
show how it can be utilized. The generated Haddock
documentation also has full coverage and can be seen
on the libraries Hackage page.

The project had its first release shortly before ICFP
and the Haskell Symposium 2016. Since then we have
added support for applicative functors in addition to
monads.

We are working on a comprehensive paper that cov-
ers all aspects of the project and its theoretical founda-
tions. The paper is submitted to the Journal of Func-
tional Programming.

If you are interested in contributing, found a bug or
have a suggestion to improve the project we are happy
to hear from you in person, by email or over the projects
bug tracker on GitHub.

Further reading

◦ Hackage:
http://hackage.haskell.org/package/supermonad

◦ Repository:
https://github.com/jbracker/supermonad

◦ Paper:
https://jbracker.de/publications/
2016-BrackerNilsson-Supermonads.pdf

◦ Comprehensive JFP Paper:
https://jbracker.de/publications/
2017-BrackerNilsson-SupermonadsAndSuperapplicatives-UnderConsideration.
pdf

◦ Bug-Tracker:
https://github.com/jbracker/supermonad/issues

◦ Haskell Symposium presentation:
https://youtu.be/HRofw58sySw

4.1.4 Reifying type families

Report by: Gabor Greif
Status: experimental, comments welcome

The outcome of the compile-time evaluation of type
families is currently inscrutable to the running pro-
gram. tyfam-witnesses is a new minimal library that
utilises Template Haskell to obtain the necessary arti-
facts for running the clauses of closed type families at
execution time. By pattern matching on the outcome
all the type-level equalities can be recovered.

For each closed type family in a series of declara-
tions, witnesses adds a GADT mirroring its clauses,
and a reification function that runs it given indexed
TypeReps. Here is a usage example:

type family Elim v f where
Elim v (v -> c) = c
Elim v (d -> c) = d -> Elim v c

}

gets accompanied with

data ElimRefl v f where
Elim0 :: Elim v (v -> d) ~ d

=> ElimRefl v (v -> d)
Elim1 :: Elim v (c -> d) ~ (c -> Elim a b)

=> ElimRefl v (c -> d)

and a runner (or reifier)

reify_Elim :: TypeRep a -> TypeRep b
=> Maybe (ElimRefl a b)

Pattern matching on the result of the latter guides
the GHC type checker and allows writing recursive
functions that evaluate to an ElimRefl v f, which
would otherwise get stuck.

The library has been introduced at the Regensburg
Haskell Meetup (→ 6.8) and other conferences in Oct.
2017.

You can find it on hackage, grab it with
cabal install tyfam-witnesses, be reminded how-
ever, that GHC v8.2 is a prerequisite for its usage.

I am interested in possible further uses and am wait-
ing for encouragement in resolving the two remaining
restrictions.

Further reading

◦ https://hackage.haskell.org/package/tyfam-witnesses
◦ https://skillsmatter.com/skillscasts/

10947-lightning-talk-engage-clutch-shift-gear-rofl

16

http://hackage.haskell.org/package/supermonad
https://github.com/jbracker/supermonad
https://jbracker.de/publications/2016-BrackerNilsson-Supermonads.pdf
https://jbracker.de/publications/2016-BrackerNilsson-Supermonads.pdf
https://jbracker.de/publications/2017-BrackerNilsson-SupermonadsAndSuperapplicatives-UnderConsideration.pdf
https://jbracker.de/publications/2017-BrackerNilsson-SupermonadsAndSuperapplicatives-UnderConsideration.pdf
https://jbracker.de/publications/2017-BrackerNilsson-SupermonadsAndSuperapplicatives-UnderConsideration.pdf
https://github.com/jbracker/supermonad/issues
https://youtu.be/HRofw58sySw
https://hackage.haskell.org/package/tyfam-witnesses
https://skillsmatter.com/skillscasts/10947-lightning-talk-engage-clutch-shift-gear-rofl
https://skillsmatter.com/skillscasts/10947-lightning-talk-engage-clutch-shift-gear-rofl

4.2 Build Tools and Related Projects

4.2.1 Cabal

Report by: Mikhail Glushenkov
Status: Stable, actively developed

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent Progress

We’ve recently produced new point releases of Ca-
bal/cabal-install from the 1.24 branch. Among
other things, Cabal 1.24.2.0 includes a fix necessary to
make soon-to-be-released GHC 8.0.2 work on macOS
Sierra.
Almost 1500 commits were made to the master

branch by 53 different contributors since the 1.24 re-
lease. Among the highlights are:
◦ Convenience, or internal libraries – named libraries
that are only intended for use inside the package. A
common use case is sharing code between the test
suite and the benchmark suite without exposing it
to the users of the package.

◦ Support for foreign libraries, which are Haskell li-
braries intended to be used by foreign languages like
C. Foreign libraries only work with GHC 7.8 and
later.

◦ Initial support for building Backpack packages.
Backpack is an exciting new project adding an ML-
style module system to Haskell, but on the package
level. See here and here for a more thorough intro-
duction to Backpack.

◦ ./Setup configure now accepts an argument spec-
ifying the component to be configured. This is
mainly an internal change, but it means that
cabal-install can now perform component-level
parallel builds (among other things).

◦ A lot of improvements in the new-build feature
(a.k.a. nix-style local builds). Git HEAD version
of cabal-install is now recommended if you use
new-build. For an introduction to new-build, see
this chapter of the manual.

◦ Special support for the Nix package manager in
cabal-install. See here for more details.

◦ cabal upload now uploads a package candidate by
default. Use cabal upload --publish to upload a
final version. cabal upload --check has been re-
moved in favour of package candidates.

◦ An --index-state flag for requesting a specific ver-
sion of the package index.

◦ New cabal reconfigure command, which re-runs
configure with most recently used flags.

◦ New autogen-modules field for modules built auto-
matically (like Paths_PACKAGENAME).

◦ New version range operator ˆ>=, which is equivalent
to >= intersected with an automatically-inferred ma-
jor version bound. For example, ˆ>= 2.0.3 is equiv-
alent to >= 2.0.3 && < 2.1.

◦ An --allow-older flag, dual to --allow-newer.
◦ New Parsec-based parser for .cabal files has been

merged, but not enabled by default yet.
◦ The manual has been converted to reST/Sphinx for-

mat, improved and expanded.
◦ Hackage Security has been enabled by default.
◦ A lot of bug fixes and performance improvements.

Looking Forward

The next Cabal/cabal-install versions will be re-
leased either in early 2017, or simultaneously with GHC
8.2 (April/May 2017). Our main focus at this stage is
getting the new-build feature to the state where it can
be enabled by default, but there are many other areas
of Cabal that need work.

We would like to encourage people considering con-
tributing to take a look at the bug tracker on GitHub
and the Wiki, take part in discussions on tickets and
pull requests, or submit their own. The bug tracker is
reasonably well maintained and it should be relatively
clear to new contributors what is in need of attention
and which tasks are considered relatively easy. For
more in-depth discussion there is also the cabal-devel
mailing list.

Further reading

◦ Cabal homepage: https://www.haskell.org/cabal/
◦ Cabal on GitHub: https://github.com/haskell/cabal

4.2.2 The Stack build tool

Report by: Emanuel Borsboom
Status: stable

Stack is a modern, cross-platform build tool for Haskell
code. It is intended for Haskellers both new and expe-
rienced.

Stack handles the management of your toolchain (in-
cluding GHC - the Glasgow Haskell Compiler - and,
for Windows users, MSYS), building and registering
libraries, building build tool dependencies, and more.
While it can use existing tools on your system, Stack
has the capacity to be your one-stop shop for all Haskell
tooling you need.

The primary design point is reproducible builds. If
you run stack build today, you should get the same
result running stack build tomorrow. There are some

17

https://mail.haskell.org/pipermail/cabal-devel/2016-December/010384.html
https://ghc.haskell.org/trac/ghc/ticket/12479
https://gist.github.com/23Skidoo/1a291fd56a18b51f415db5fbaff56ec6
http://cabal.readthedocs.io/en/latest/developing-packages.html#library
http://cabal.readthedocs.io/en/latest/developing-packages.html#foreign-libraries
https://github.com/ezyang/ghc-proposals/blob/backpack/proposals/0000-backpack.rst
http://blog.ezyang.com/category/haskell/backpack/
https://github.com/ghc-proposals/ghc-proposals/pull/4
https://github.com/ghc-proposals/ghc-proposals/pull/4
http://cabal.readthedocs.io/en/latest/nix-local-build-overview.html
http://cabal.readthedocs.io/en/latest/nix-integration.html
http://cabal.readthedocs.io/en/latest/nix-local-build.html#cfg-field-index-state
https://github.com/haskell/cabal/pull/3818
http://cabal.readthedocs.io/en/latest/developing-packages.html#autogenerated-modules
http://cabal.readthedocs.io/en/latest/developing-packages.html#pkg-field-build-depends
http://cabal.readthedocs.io/en/latest/installing-packages.html#cmdoption-setup-configure--allow-newer
https://github.com/haskell/cabal/pull/3602
https://github.com/haskell/cabal/pull/3602
http://cabal.readthedocs.io/en/latest/
https://www.well-typed.com/blog/2015/08/hackage-security-beta/
https://github.com/haskell/cabal/issues/
https://github.com/haskell/cabal/wiki/Hackathon-2016
https://mail.haskell.org/mailman/listinfo/cabal-devel
https://www.haskell.org/cabal/
https://github.com/haskell/cabal

cases that can break that rule (changes in your oper-
ating system configuration, for example), but, overall,
Stack follows this design philosophy closely. To make
this a simple process, Stack uses curated package sets
called snapshots.
Stack has also been designed from the ground up to

be user friendly, with an intuitive, discoverable com-
mand line interface.

Since its first release in June 2015, many people are
using it as their primary Haskell build tool, both com-
mercially and as hobbyists. New features and refine-
ments are continually being added, with regular new
releases.

Binaries and installers/packages are available for
common operating systems to make it easy to get
started. Download it at http://haskellstack.org/.

Further reading

http://haskellstack.org/

4.2.3 Stackage: the Library Dependency Solution

Report by: Michael Snoyman
Status: new

Stackage began in November 2012 with the mission of
making it possible to build stable, vetted sets of pack-
ages. The overall goal was to make the Cabal expe-
rience better. Five years into the project, a lot of
progress has been made and now it includes both Stack-
age and the Stackage Server. To date, there are over
1900 packages available in Stackage. The official site is
https://www.stackage.org.
The Stackage project consists of many different com-

ponents, linked to from the Stackage Github reposi-
tory https://github.com/fpco/stackage#readme. These
include:
◦ Stackage Nightly, a daily build of the Stackage pack-
age set

◦ LTS Haskell, which provides major-version compati-
bility for a package set over a longer period of time

◦ Stackage Server, which runs on stackage.org and
provides browsable docs, reverse dependencies, and
other metadata on packages

◦ Stackage Curator, a tool for running the various
builds
The Stackage package set has first-class support in

the Stack build tool (→ 4.2.2). There is also support
for cabal-install via cabal.config files, e.g. https://www.
stackage.org/lts/cabal.config.

There are dozens of individual maintainers for pack-
ages in Stackage. Overall Stackage curation is han-
dled by the “Stackage curator” team, which consists
of Michael Snoyman, Adam Bergmark, Dan Burton,
Jens Petersen, Luke Murphy, Chris Dornan, and Mihai
Maruseac.

Stackage provides a well-tested set of packages
for end users to develop on, a rigorous continuous-
integration system for the package ecosystem, some ba-
sic guidelines to package authors on minimal package
compatibility, and even a testing ground for new ver-
sions of GHC. Stackage has helped encourage package
authors to keep compatibility with a wider range of de-
pendencies as well, benefiting not just Stackage users,
but Haskell developers in general.

If you’ve written some code that you’re actively
maintaining, don’t hesitate to get it in Stackage. You’ll
be widening the potential audience of users for your
code by getting your package into Stackage, and you’ll
get some helpful feedback from the automated builds
so that users can more reliably build your code.

Since the last HCAR, we have moved Stackage
Nightly to GHC 8.4.1, as well as released LTS 10 and
11 based on GHC 8.2.2.

4.2.4 Stackgo

Report by: Sibi Prabakaran
Status: active

A browser plugin (currently supported for Fire-
fox/Google Chrome) to automatically redirect Had-
dock documentation on Hackage to corresponding
Stackage pages, when the request is via search engines
like Google/Bing etc. For the case where the package
hasn’t been added yet to Stackage, no redirect will be
made and the Hackage documentation will be available.
This plugin also tries to guess when the user would
want to go to a Hackage page instead of the Stackage
one and tries to do the right thing there.

Further reading

◦ https://github.com/psibi/stackgo
◦ https:

//addons.mozilla.org/en-US/firefox/addon/stackgo
◦ https://chrome.google.com/webstore/detail/

ojjalokgookadeklnffglgbnlbaiackn

4.2.5 pier

Report by: Judah Jacobson
Status: experimental

Pier is a command-line tool for building Haskell
projects. It is similar in purpose to Stack (→ 4.2.2);
it uses *.cabal files to configure individual packages,
a top-level YAML file to configure the whole project,
and Stackage (→ 4.2.3) to get consistent sets of package
dependencies. However, Pier attempts to address some
of Stack’s limitations by exploring a different approach:
◦ Pier invokes tools such as ghc directly, implement-

ing the fine-grained Haskell build logic from (nearly)
scratch. In contrast, Stack relies on a separate
framework to implement most of its build steps (i.e.,

18

http://haskellstack.org/
http://haskellstack.org/
https://www.stackage.org
https://github.com/fpco/stackage#readme
https://www.stackage.org/lts/cabal.config
https://www.stackage.org/lts/cabal.config
https://github.com/psibi/stackgo
https://addons.mozilla.org/en-US/firefox/addon/stackgo
https://addons.mozilla.org/en-US/firefox/addon/stackgo
https://chrome.google.com/webstore/detail/ojjalokgookadeklnffglgbnlbaiackn
https://chrome.google.com/webstore/detail/ojjalokgookadeklnffglgbnlbaiackn

Cabal-the-library’s Distribution.Simple), giving
it a more coarse control over the build.

◦ Pier layers its Haskell-specific logic on top of a
general-purpose library for hermetic, parallel builds
and dependency tracking. That library is itself im-
plemented using Shake, and motivated by tools such
as Nix and Bazel. In contrast, Stack’s build and de-
pendency logic is more specific to Haskell projects.
Interestingly, Stack originally did depend on Shake,

but stopped using it early on. For more information,
see write-ups by authors of Stack and Shake.)

Pier is still experimental, but is already able to build
most the packages in Stackage (specifically, 90% of the
more than 2600 packages in lts-10.3) as well as itself
(i.e., pier build pier). Notably, packages with cus-
tom Setup scripts are not yet supported.
Future plans include: adding more commands such

as pier repl; improving the usability around the out-
put file store (for example, garbage collection); and ex-
posing the internal library that Pier uses for hermetic
build steps and immutable outputs.

Further reading

◦ https://github.com/judah/pier
◦ https://hackage.haskell.org/package/pier

4.2.6 Packcheck: Universal CI testing for Haskell
packages

Report by: Harendra Kumar
Status: Working

packcheck uniformly, consistently builds and com-
prehensively sanity tests a Haskell package across
build tools (stack/cabal) and across all platforms
(Linux/MacOS/Windows). You do not need to be fa-
miliar with any of the build tools to use it.
packcheck provides a universal CI/build script

packcheck.sh and config files designed such that you
can just copy over the .travis.yml and appveyor.yml
files provided with packcheck to your package repos-
itory and your package is CI ready. You can repli-
cate the same testing on your local machine, just copy
packcheck.sh to your local machine, put it in your
PATH, and run it from your package directory:

$ packcheck.sh stack
$ packcheck.sh cabal
$ packcheck.sh cabal-new

Further reading

◦ https://github.com/harendra-kumar/packcheck
◦ https://hackage.haskell.org/package/packcheck

4.2.7 hsinstall

Report by: Dino Morelli
Status: stable, actively developed

This is a utility to install Haskell programs on a sys-
tem using stack. Although stack does have an install
command, it only copies binaries. Sometimes more is
needed, other files and some directory structure. hsin-
stall tries to install the binaries, the LICENSE file and
also the resources directory if it finds one.

Installations can be performed in one of two directory
structures. FHS, or the Filesystem Hierarchy Standard
(most UNIX-like systems) and what I call “bundle”
which is a portable directory for the app and all of
its files. They look like this:
◦ bundle is sort-of a self-contained structure like this:

$PREFIX/
$PROJECT-$VERSION/
bin/...
doc/LICENSE
resources/...

◦ fhs is the more traditional UNIX structure like this:
$PREFIX/
bin/...
share/
$PROJECT-$VERSION/
doc/LICENSE
resources/...

There are two parts to hsinstall that are intended to
work together. The first part is a Haskell shell script,
util/install.hs. Take a copy of this script and check
it into a project you’re working on. This will be your
installation script. Running the script with the –help
switch will explain the options. Near the top of the
script are default values for these options that should
be tuned to what your project needs.

The other part of hsinstall is a library. The install
script will try to install a resources directory if it
finds one. the HSInstall library can then be used in
your code to locate the resources at runtime.

Note that you only need the library if your software
has data files it needs to locate at runtime in the in-
stallation directories. Many programs don’t have this
requirement and can ignore the library altogether.

Source code is available on darcshub, Hackage and
Stackage

Further reading

◦ hsinstall on darcshub
http://hub.darcs.net/dino/hsinstall

◦ hsinstall on Hackage
https://hackage.haskell.org/package/hsinstall

◦ hsinstall on Stackage
https://www.stackage.org/package/hsinstall

19

http://shakebuild.com/
https://nixos.org/nix
https://bazel.build/
https://groups.google.com/d/msg/haskell-stack/icN7M0tJgxw/obPPZUVeAgAJ
http://neilmitchell.blogspot.com/2016/07/why-did-stack-stop-using-shake.html
https://github.com/judah/pier
https://hackage.haskell.org/package/pier
https://github.com/harendra-kumar/packcheck
https://hackage.haskell.org/package/packcheck
http://hub.darcs.net/dino/hsinstall
https://hackage.haskell.org/package/hsinstall
https://www.stackage.org/package/hsinstall

4.2.8 yesod-rest

Report by: Sibi Prabakaran
Status: active

A Yesod scaffolding site with Postgres backend. It pro-
vides a JSON API backend as a separate subsite. The
primary purpose of this repository is to use Yesod as a
API server backend and do the frontend development
using a tool like React or Angular. The current code
includes a basic example using React and Babel which
is bundled finally by webpack and added in the handler
getHomeR in a type safe manner.

The future work is to make it compatible with yesod-
1.6 and then integrate it as part of yesod-scaffold and
make it as part of stack template.

Further reading

◦ https://github.com/psibi/yesod-rest
◦ https:

//github.com/yesodweb/yesod-scaffold/issues/136

4.2.9 Haskell Cloud

Report by: Gideon Sireling

Haskell Cloud is a Source-to-Image builder for building
Haskell source into a runnable Docker image. It can be
used directly with s2i, or deployed on OpenShift.
Using the Haskell Cloud builder, existing Haskell

projects can be uploaded, built, and run from the cloud
with minimal changes. A choice of pre-installed frame-
works is available - see the Wiki for details.

Further reading

◦ https://bitbucket.org/accursoft/haskell-cloud

4.3 Repository Management

4.3.1 Darcs

Report by: Guillaume Hoffmann
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

Darcs 2.14.0 was released on April 2018. It features a
better support of non-ASCII encodings by default, an
improved display of patch dependencies, per-file con-
flict marking, a more efficient annotate command, and
better shell completion.

SFC and donations Darcs is free software licensed un-
der the GNU GPL (version 2 or greater). Darcs is a
proud member of the Software Freedom Conservancy,
a US tax-exempt 501(c)(3) organization. We accept
donations at http://darcs.net/donations.html.

Further reading

◦ http://darcs.net
◦ http://darcs.net/Releases/2.14
◦ http://hub.darcs.net

4.3.2 git-annex

Report by: Joey Hess
Status: stable, actively developed

git-annex allows managing files with git, without check-
ing the file contents into git. While that may seem
paradoxical, it is useful when dealing with files larger
than git can currently easily handle, whether due to
limitations in memory, time, or disk space.

As well as integrating with the git command-line
tools, git-annex includes a graphical app which can be
used to keep a folder synchronized between computers.
This is implemented as a local webapp using yesod and
warp.

git-annex runs on Linux, OSX and other Unixes, and
has been ported to Windows. There is also an incom-
plete but somewhat usable port to Android.

Five years into its development, git-annex has a wide
user community. It is being used by organizations for

20

https://github.com/psibi/yesod-rest
https://github.com/yesodweb/yesod-scaffold/issues/136
https://github.com/yesodweb/yesod-scaffold/issues/136
https://github.com/openshift/source-to-image
https://www.openshift.com/
http://www.haskell.org/haskellwiki/Web/Cloud#OpenShift
https://bitbucket.org/accursoft/haskell-cloud
http://darcs.net/donations.html
http://darcs.net
http://darcs.net/Releases/2.14
http://hub.darcs.net

purposes as varied as keeping remote Brazilian com-
munities in touch and managing Neurological imaging
data. It is available in a number of Linux distributions,
in OSX Homebrew, and is one of the most downloaded
utilities on Hackage. It was my first Haskell program.

At this point, my goals for git-annex are to continue
to improve its foundations, while at the same time keep-
ing up with the constant flood of suggestions from its
user community, which range from adding support for
storing files on more cloud storage platforms (around
20 are already supported), to improving its usability for
new and non technically inclined users, to scaling bet-
ter to support Big Data, to improving its support for
creating metadata driven views of files in a git reposi-
tory.

At some point I’d also like to split off any one of a
half-dozen general-purpose Haskell libraries that have
grown up inside the git-annex source tree.

Further reading

http://git-annex.branchable.com/

4.4 Debugging and Profiling

4.4.1 Hoed – The Lightweight Algorithmic
Debugger for Haskell

Report by: Maarten Faddegon
Status: active

Hoed is a tracer and debugger for the programming
language Haskell.

To locate a defect with Hoed you annotate suspected
functions and compile as usual. Then you run your
program, information about the annotated functions is
collected. Finally you connect to a debugging session
using a console.

With Hoed you can list and search observed func-
tions applied to argument values and the result values.
Hoed also provides algorithmic debugging. An algo-
rithmic debugger finds defects in programs by system-
atic search. The programmer directs the search by an-
swering a series of yes/no questions about the correct-
ness of specific function applications and their results.
Hoed also allows the use of (QuickCheck-style) prop-
erties to answer automatically some of the questions
arising during algorithmic debugging, and to replace
others by simpler questions.

Using Hoed

Let us consider the following program, a defective im-
plementation of a parity function with a test property.

isOdd :: Int -> Bool
isOdd n = isEven (plusOne n)

isEven :: Int -> Bool
isEven n = mod2 n == 0

plusOne :: Int -> Int
plusOne n = n + 1

mod2 :: Int -> Int
mod2 n = div n 2

prop_isOdd :: Int -> Bool
prop_isOdd x = isOdd (2*x+1)

main :: IO ()
main = printO (prop_isOdd 1)

main :: IO ()
main = quickcheck prop_isOdd

Using the property-based test tool QuickCheck we
find the counter example 1 for our property.

./MyProgram
*** Failed! Falsifiable (after 1 test): 1

21

http://git-annex.branchable.com/

Hoed can help us determine which function is de-
fective. We annotate the functions isOdd, isEven,
plusOne and mod2 as follows:

import Debug.Hoed.Pure

isOdd :: Int -> Bool
isOdd = observe "isOdd" isOdd’
isOdd’ n = isEven (plusOne n)

isEven :: Int -> Bool
isEven = observe "isEven" isEven’
isEven’ n = mod2 n == 0

plusOne :: Int -> Int
plusOne = observe "plusOne" plusOne’
plusOne’ n = n + 1

mod2 :: Int -> Int
mod2 = observe "mod2" mod2’
mod2’ n = div n 2

prop_isOdd :: Int -> Bool
prop_isOdd x = isOdd (2*x+1)

main :: IO ()
main = printO (prop_isOdd 1)

After running the program a computation tree is con-
structed and the algorithmic debugger is launched in
the console.

False

=== program terminated ===
Please wait while the computation tree
is constructed...

=== Debug Session ===

hdb> adb
==================================== [0-0/4]
isOdd 3 = False
?
right Judge computation statements right

according to the intended
behaviour/specification
of the function.

wrong Judge computation statements wrong
according to the intended
behaviour/specification
of the function.

==================================== [0-0/4]
isOdd 3 = False
? wrong
==================================== [1-0/4]
isEven 4 = False
? wrong
==================================== [2-0/4]
mod2 4 = 2

? wrong
==================================== [3-0/4]
Fault located! In:
mod2 4 = 2
hdb>

To reduce the number of questions the programmer
has to answer, we added a new mode Assisted Algo-
rithmic Debugging. In this mode (QuickCheck) proper-
ties already present in program code for property-based
testing can be used to automatically judge computation
statements

Further reading

◦ http://wiki.haskell.org/Hoed
◦ http://hackage.haskell.org/package/Hoed

4.4.2 ghc-vis

Report by: Joachim Breitner
Status: active development

The tool ghc-vis visualizes live Haskell data structures
in GHCi. Since it does not force the evaluation of the
values under inspection it is possible to see Haskell’s
lazy evaluation and sharing in action while you interact
with the data.

Ghc-vis supports two styles: A linear rendering sim-
ilar to GHCi’s :print, and a graph-based view where
closures in memory are nodes and pointers between
them are edges. In the following GHCi session a par-
tially evaluated list of fibonacci numbers is visualized:

> let f = 0 : 1 : zipWith (+) f (tail f)
> f !! 2
> :view f

At this point the visualization can be used interac-
tively: To evaluate a thunk, simply click on it and im-
mediately see the effects. You can even evaluate thunks

22

http://wiki.haskell.org/Hoed
http://hackage.haskell.org/package/Hoed

which are normally not reachable by regular Haskell
code.
Ghc-vis can also be used as a library and in combi-

nation with GHCi’s debugger.

Further reading

http://felsin9.de/nnis/ghc-vis

4.4.3 ghc-heap-view

Report by: Joachim Breitner
Participants: Dennis Felsing
Status: active development

The library ghc-heap-view provides means to inspect
the GHC’s heap and analyze the actual layout of
Haskell objects in memory. This allows you to inves-
tigate memory consumption, sharing and lazy evalua-
tion.
This means that the actual layout of Haskell objects

in memory can be analyzed. You can investigate shar-
ing as well as lazy evaluation using ghc-heap-view.

The package also provides the GHCi command
:printHeap, which is similar to the debuggers’ :print
command but is able to show more closures and their
sharing behaviour:

> let x = cycle [True, False]
> :printHeap x
_bco
> head x
True
> :printHeap x
let x1 = True : _thunk x1 [False]
in x1
> take 3 x
[True,False,True]
> :printHeap x
let x1 = True : False : x1
in x1

The graphical tool ghc-vis (→ 4.4.2) builds on ghc-
heap-view.
Since version 0.5.10, ghc-heap-view supports GHC

8.2. There is ongoing work that might merge this func-
tionality into GHC proper.

Further reading

◦ http://www.joachim-breitner.de/blog/archives/
548-ghc-heap-view-Complete-referential-opacity.html

◦ http://www.joachim-breitner.de/blog/archives/
580-GHCi-integration-for-GHC.HeapView.html

◦ http://www.joachim-breitner.de/blog/archives/
590-Evaluation-State-Assertions-in-Haskell.html

◦ https://phabricator.haskell.org/D3055 Ongoing work
to merge ghc-heap-view into GHC.

4.4.4 Hat — the Haskell Tracer

Report by: Olaf Chitil

Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.

Hat helps locating errors in programs. Furthermore,
it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.

You trace a program with Hat by following these
steps:

1. With hat-trans translate all the source modules of
your Haskell program into tracing versions. Compile
and link (including the Hat library) these tracing ver-
sions with ghc as normal.

2. Run the program. It does exactly the same as the
original program except for additionally writing a
trace to file.

3. After the program has terminated, view the trace
with a tool. Hat comes with several tools for se-
lectively viewing fragments of the trace in different
ways: hat-observe for Hood-like observations, hat-
trail for exploring a computation backwards, hat-
explore for freely stepping through a computation,
hat-detect for algorithmic debugging, . . .

Hat is distributed as a package on Hackage that con-
tains all Hat tools and tracing versions of standard li-
braries. Hat 2.9.4 works with recent versions of the
Glasgow Haskell compiler for Haskell programs that
are written in Haskell 98 plus a few language extensions
such as multi-parameter type classes and functional de-
pendencies.

Although Hat is distributed as a cabal package that
can be installed with stack, it currently does not sup-
port working with stack projects; instead it provides
an old-fashioned build tool hat-make.

Note that all modules of a traced program have to be
transformed, including trusted libraries (transformed
in trusted mode). For portability all viewing tools
have a textual interface; however, many tools require
an ANSI terminal and thus run on Unix / Linux / OS
X, but not on Windows.

In the longer term we intend to transfer the
lightweight tracing technology that we use in Hoed (→
4.4.1) also to Hat.

Further reading

◦ Initial website: http://projects.haskell.org/hat
◦ Hackage package:

http://hackage.haskell.org/package/hat

23

http://felsin9.de/nnis/ghc-vis
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
https://phabricator.haskell.org/D3055
http://projects.haskell.org/hat
http://hackage.haskell.org/package/hat

4.5 Testing

4.5.1 inspection-testing

Report by: Joachim Breitner
Status: working

Carefully crafted Haskell libraries are often set up to
trigger a specific cascade of optimization. Stream fu-
sion as found in the text and vector libraries is a
good example, as are generic programming libraries like
generic-lens. The inspection-testing library al-
lows developers to assert that certian transformations
indeed happen at compile time, and check these asser-
tions automatically.
For example, the following test file ensures that

GHC’s optimizer removes the call to fmap in lhs:

{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -O -fplugin

Test.Inspection.Plugin #-}
import Test.Inspection
import Data.Maybe

lhs, rhs :: (a -> b) -> Maybe a -> Bool
lhs f x = isNothing (fmap f x)

rhs f Nothing = True
rhs f (Just _) = False

inspect $ ’lhs === ’rhs

Further reading

◦ https://github.com/nomeata/inspection-testing
◦ https://arxiv.org/abs/1803.07130 paper introducing
inspection-testing

4.5.2 LeanCheck

Report by: Rudy Braquehais
Participants: Colin Runciman
Status: Actively maintained, v0.7.0

LeanCheck is an enumerative property-based testing
library with a very small core of only 180 lines of code.
Its enumeration is size-bounded so the number of tests
is easier to control than with SmallCheck.
It is used like so:

> import Test.LeanCheck
> check $ \x y -> x + y == y + (x :: Int)
+++ OK, passed 200 tests.
> check $ \x y -> x - y == y - (x :: Int)
*** Failed! Falsifiable (after 2 tests):
0 1

LeanCheck has support for higher-order properties
(those taking functions as arguments). For example:

> check $ \f p xs -> map f (filter p xs)
> == filter p (map f xs
> :: [Bool])
*** Failed! Falsifiable (after 20 tests):
\x -> case x of False -> False; True -> False
\x -> case x of False -> False; True -> True
[True]

The function filter does not commute with map.
LeanCheck works on properties whose argument

types are instances of the Listable typeclass. It is
very easy to define Listable instances for user-defined
types. For example, take “Hutton’s Razor”:

data Expr = Val Int | Add Expr Expr
deriving (Show, Eq)

Its Listable instance can be given by

instance Listable Expr where
tiers = cons1 Val \/ cons2 Add

or automatically derived using Template Haskell by

deriveListable ’’Expr

LeanCheck is available on Hackage under a BSD3-
style license. All you need to do to get it is:

$ cabal install leancheck

The latest version (v0.7.0) includes functions to com-
pute statistics of Listable instances.

Further reading

◦ https://hackage.haskell.org/package/leancheck
◦ https://github.com/rudymatela/leancheck
◦ Chapter 3 of Rudy Braquehais’ 2017 PhD Thesis:

https://matela.com.br/paper/rudy-phd-thesis.pdf

4.5.3 Extrapolate

Report by: Rudy Braquehais
Participants: Colin Runciman
Status: Actively maintained, v0.3.1

Extrapolate is a property-based testing library capable
of reporting generalized counter-examples to proper-
ties. Extrapolate works on top of LeanCheck (→ 4.5.2).
Here is an example:

> import Test.Extrapolate
> import Data.List (nub)
> check $ \xs -> nub xs == (xs :: [Int])
*** Failed! Falsifiable (after 3 tests):
[0,0]

24

https://github.com/nomeata/inspection-testing
https://arxiv.org/abs/1803.07130
https://hackage.haskell.org/package/leancheck
https://github.com/rudymatela/leancheck
https://matela.com.br/paper/rudy-phd-thesis.pdf

Generalization:
x:x:_

Conditional Generalization:
x:xs when elem x xs

The above property about nub not only fails for the
list [0,0] but also for any list that has repeated ele-
ments.

The generalization of failing cases informs the pro-
grammer more fully and more immediately what char-
acterizes failures. This information helps the program-
mer to locate more confidently and more rapidly the
causes of failure in their program.

Extrapolate’s generalization of counter-examples is
similar to SmartCheck’s. However, when generaliz-
ing, Extrapolate allows for repeated variables and side-
conditions.

Extrapolate is available on Hackage under a BSD3-
style license. All you need to do to get it is:

$ cabal install extrapolate

The latest version (v0.3.1) uses Speculate (→ 4.5.4)
to avoid testing equivalent conditions improving results
and performance.

Further reading

◦ https://hackage.haskell.org/package/extrapolate
◦ https://github.com/rudymatela/extrapolate
◦ IFL 2017 paper about Extrapolate:

https://matela.com.br/paper/extrapolate.pdf
◦ Chapter 6 of Rudy Braquehais’ 2017 PhD Thesis:

https://matela.com.br/paper/rudy-phd-thesis.pdf

4.5.4 Speculate

Report by: Rudy Braquehais
Participants: Colin Runciman
Status: Actively maintained, v0.3.2

Speculate is a library that uses testing to automatically
discover and conjecture properties about Haskell func-
tions. Those properties can contribute to understand-
ing, documentation, validation, design refinement and
regression testing.
The following example shows how to use Speculate to

discover properties about addition and multiplication:

> import Test.Speculate
> speculate args
> { constants = [constant "+" (+)
> , constant "*" (*)] }

x + y == y + x
x * y == y * x

(x + y) + z == x + (y + z)

(x * y) * z == x * (y * z)
(x + x) * y == x * (y + y)

x <= x * x

Speculate can even discover properties about higher-
order functions. For example, it discovers the following
properties about map, id and (.) (cf. eg/fun.hs):

id x == x
f (g x) == (f . g) x

map id xs == xs
map (f . g) xs == map f (map g xs)

f . id == f
id . f == f

(f . g) . h == f . (g . h)

Speculate is similar to QuickSpec, but uses a differ-
ent algorithm to produce inequalities and conditional
equations. See the documentation for further details
and examples.

The latest version (v0.3.2) includes significant perfor-
mance improvements. It also includes improvements in
documentation, examples and API.

Speculate is available on Hackage under a BSD3-style
license. All you need to do to get it is:

$ cabal install speculate

Further reading

◦ https://hackage.haskell.org/package/speculate
◦ https://github.com/rudymatela/speculate
◦ The Haskell Symposium 2017 paper about

Speculate:
https://matela.com.br/paper/speculate.pdf

◦ Chapter 5 of Rudy Braquehais’ 2017 PhD Thesis:
https://matela.com.br/paper/rudy-phd-thesis.pdf

4.5.5 TorXakis

Report by: Damian Nadales
Status: active development

More often than not, testing software consumes a large
portion of the development budget, however we fre-
quently see cases where unit and integration tests fail to
uncover critical errors that appear once the software is
deployed. Most testing techniques revolve around spec-
ifying a collection of execution sequences that check the
expected against the actual behavior. A problem with
this is that the number of possible execution sequences
is huge, and therefore only a very small portion of these
would be covered by test cases that are specified as a
sequence of steps. The second problem is that, with
the goal of increasing coverage and prevent regression
bugs a large number of test cases is written, which eats
up the development budget.

25

https://hackage.haskell.org/package/extrapolate
https://github.com/rudymatela/extrapolate
https://matela.com.br/paper/extrapolate.pdf
https://matela.com.br/paper/rudy-phd-thesis.pdf
https://hackage.haskell.org/package/speculate
https://github.com/rudymatela/speculate
https://matela.com.br/paper/speculate.pdf
https://matela.com.br/paper/rudy-phd-thesis.pdf

Model-based testing is a technique for writing tests,
where a model of the system behavior is made a a high-
level of abstraction, and then the system-under test is
tested against this the expected behavior as specified
by the model. Model-based testing relies on different
algorithms for generating test cases from models, which
allows to achieve a much higher test coverage than stan-
dard testing techniques, while requiring only a fraction
of the code.

TorXakis is such a model-based testing tool, that has
been used to verify large scale systems in well-know
high tech companies. This tool is entirely written in
Haskell, and its code is available on Github under a
BSD3 license.

Since July last year, a lot of effort was put into taking
TorXakis from a prototype to an industrial grade tool.
Some of the improvements made include:
◦ setup of continuous integration (Windows/Linux),

including hlint quality metrics via code climate.
◦ release of macOS and Windows installers.
◦ addition of integration tests and benchmarks.
◦ improvements in performance.
◦ architectural simplifications.

In addition, there is ongoing work in a new command
line interface and a new compiler for the TorXakis lan-
guage.

A year is almost gone, and there are a lot of interest-
ing challenges ahead to make TorXakis a tool that can
be used in production, so we welcome the contributions
of anybody interested in the topic.

Further reading

https://github.com/TorXakis/TorXakis/

4.6 Development Tools and Editors

4.6.1 Haskell for Mac

Report by: Manuel M. T. Chakravarty
Status: Available & actively developed

Haskell for Mac is an easy-to-use, innovative pro-
gramming environment and learning platform for
Haskell on OS X. It includes its own Haskell distri-
bution and requires no further set up. It features inter-
active Haskell playgrounds to explore and experiment
with code. Playground code is not only type-checked,
but also executed while you type, which leads to a fast
turn around during debugging or experimenting with
new code.
Integrated environment. Haskell for Mac inte-

grates everything needed to start writing Haskell code,
including an editor with syntax highlighting and smart
identifier completion. Haskell for Mac creates Haskell
projects based on standard Cabal specifications for
compatibility with the rest of the Haskell ecosystem.
It includes the Glasgow Haskell Compiler (GHC) and
over 200 of the most popular packages of LTS Haskell
package sets. Matching command line tools and extra
packages can be installed, too.
Type directed development. Haskell for Mac

uses GHC’s support for deferred type errors so that
you can still execute playground code in the face of
type errors. This is convenient during refactoring to
test changes, while some code still hasn’t been adapted
to new signatures. Moreover, you can use type holes to
stub out missing pieces of code, while still being able
to run code. The system will also report the types ex-
pected for holes and the types of the available bindings.
Interactive HTML, graphics & games. Haskell

for Mac comes with support for web programming,
network programming, graphics programming, anima-
tions, and much more. Interactively generate web
pages, charts, animations, or even games (with the
OS X SpriteKit support). Graphics are also live and
change as you modify the program code.

The screenshot below is from the development of
a Flappy Bird clone in Haskell. Watch the Haskell
for Mac developer live code Flappy Bird in Haskell in
20min at the end of the Compose :: Melbourne 2016
keynote at https://speakerdeck.com/mchakravarty/
playing-with-graphics-and-animations-in-haskell. You
can find more information about writing games in

26

https://github.com/TorXakis/TorXakis/
https://speakerdeck.com/mchakravarty/playing-with-graphics-and-animations-in-haskell
https://speakerdeck.com/mchakravarty/playing-with-graphics-and-animations-in-haskell

Haskell in this blog post: http://blog.haskellformac.
com/blog/writing-games-in-haskell-with-spritekit.

Haskell for Mac has recently gained auto-completion
of identifiers, taking into account the current mod-
ule’s imports. It now also features a graphical pack-
age installer for LTS Haskell and support for GHC 8.
Moreover, a new type class, Presentable, enables cus-
tom rendering of user-defined data types using images,
HTML, and even animations.
Haskell for Mac is available for purchase from the

Mac App Store. Just search for "Haskell", or visit our
website for a direct link. We are always available for
questions or feedback at support@haskellformac.com.

Further reading

The Haskell for Mac website: http://haskellformac.com

4.6.2 haskell-ide-engine, a project for unifying IDE
functionality

Report by: Chris Allen
Participants: Alan Zimmerman, Moritz Kiefer, Michael

Sloan, Gracjan Polak, Daniel Gröber,
others welcome

Status: Open source, just beginning

haskell-ide-engine is a backend for driving the sort of
features programmers expect out of IDE environments.
haskell-ide-engine is a project to unify tooling efforts
into something different text editors, and indeed IDEs
as well, could use to avoid duplication of effort.
There is basic support for getting type information

and refactoring, more features including type errors,
linting and reformatting are planned. People who are
familiar with a particular part of the chain can focus
their efforts there, knowing that the other parts will
be handled by other components of the backend. Inte-
gration for Emacs and Leksah is available and should
support the current features of the backend. Work
has started on a Language Server Protocol transport,
for use in VS Code. haskell-ide-engine also has a
REST API with Swagger UI. Inspiration is being taken
from the work the Idris community has done toward an
interactive editing environment as well.
Help is very much needed and wanted so if this is

a problem that interests you, please pitch in! This is
not a project just for a small inner circle. Anyone who

wants to will be added to the project on github, address
your request to @alanz.

Further reading

◦ https://github.com/haskell/haskell-ide-engine
◦ https:

//github.com/Microsoft/language-server-protocol
◦ https://mail.haskell.org/pipermail/haskell-cafe/

2015-October/121875.html
◦ https://www.fpcomplete.com/blog/2015/10/

new-haskell-ide-repo
◦ https://www.reddit.com/r/haskell/comments/

3pt560/ann_haskellide_project/
◦ https://www.reddit.com/r/haskell/comments/

3qbgmo/fp_complete_the_new_haskellide_repo/

4.6.3 HyperHaskell – The strongly hyped Haskell
interpreter

Report by: Heinrich Apfelmus
Status: available, active development

HyperHaskell is a graphical Haskell interpreter, not un-
like GHCi, but hopefully more awesome. You use work-
sheets to enter expressions and evaluate them. Results
are displayed graphically using HTML.
HyperHaskell is intended to be easy to install. It

is cross-platform and should run on Linux, Mac and
Windows. Internally, it uses the GHC API to inter-
pret Haskell programs, and the graphical front-end is
built on the Electron framework. HyperHaskell is open
source.
HyperHaskell’s main attraction is a Display class

that supersedes the good old Show class. The result
looks like this:

27

http://blog.haskellformac.com/blog/writing-games-in-haskell-with-spritekit
http://blog.haskellformac.com/blog/writing-games-in-haskell-with-spritekit
support@haskellformac.com
http://haskellformac.com
https://github.com/haskell/haskell-ide-engine
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/language-server-protocol
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/

Status

HyperHaskell is currently Level α. The latest stable
release is 0.1.0.2. Compared to the previous report,
no new release has been made, but basic features are
working. It is now possible to interpret statements in
the IO monad and to bind variables, greatly enhancing
the usefulness of the interpreter.
Support for the Nix package manager has been im-

plemented by Rodney Lorrimar. I am looking for help
in setting up binary releases on the Windows platform!

Future development

Programming a computer usually involves writing a
program text in a particular language, a “verbal” ac-
tivity. But computers can also be instructed by ges-
tures, say, a mouse click, which is a “nonverbal” ac-
tivity. The long term goal of HyperHaskell is to blur
the lines between programming “verbally” and “non-
verbally” in Haskell. This begins with an interpreter
that has graphical representations for values, but also
includes editing a program text while it’s running (“live
coding”) and interactive representations of values (e.g.
“tangible values”). This territory is still largely un-
charted from a purely functional perspective, proba-
bly due to a lack of easily installed graphical facili-
ties. It is my hope that HyperHaskell may provide a
common ground for exploration and experimentation
in this direction, in particular by offering the Display
class which may, perhaps one day, replace our good old
Show class.

A simple form of live coding is planned for Level β,
and I am experimenting with interactive music pro-
gramming.

Further reading

◦ Project homepage and downloads:
https://github.com/HeinrichApfelmus/hyper-haskell

4.6.4 CodeWorld

Report by: Chris Smith
Status: actively used

CodeWorld is a web-based educational programming
environment using Haskell, and appropriate for all ages.
It provides a simple mathematical model for geometric
figures, animations, and interactive and multi-player
games. The language scales between a graphical block-
based language for primary students, a simplified vari-
ant of Haskell, and the full-fledged Haskell language
for older students and universities. In addition to the
tools, CodeWorld also provides learning resources for
teachers and independent learners. CodeWorld is ac-
tively used for Haskell programming classes and activ-
ities, by universities, primary and secondary schools,
and non-profit organizations and programs.

Features

◦ A cloud-based programming environment available
from anywhere, to write and run code directly in the
browser.

◦ A full-featured Haskell editor with syntax high-
lighting, rainbow brackets, formatting, and auto-
complete.

◦ A simple graphics model for composable geometry
and animations.

◦ Integrated debugging tools that intelligently link pro-
gram output to the lines of code responsible.

◦ The world’s simplest framework for single and multi-
player (networked) games.

Recent changes

In the summer of 2017, CodeWorld hosted four stu-
dents through the Summer of Haskell program to work
on improving debugging tools, error messages, collab-
orative coding experiences, and exporting projects to
video and mobile applications. Some contributions are
still being merged. Other recent changes include the
addition of a model for simple multi-player networked
games and QuickCheck support for the full Haskell
mode. Simultaneously, we’ve been busy developing a
packaged curriculum for early secondary students, ages
11-14, using functional programming as a framework
for creative mathematics.

Availability

CodeWorld is freely available. The hosted web site at
http://code.world is open to the public. Source code
for the project is available under the Apache license.
Teaching materials and resources are released as they
are completed under a Creative Commons license.

Further reading

https://github.com/google/codeworld

4.6.5 Haskell Indexer

Report by: Ivan Krišto
Participants: Robin Palotai, Kristoffer Søholm
Status: stable, actively developed

Haskell Indexer is a Kythe extension for working
with Haskell source code. Kythe is language-agnostic
ecosystem for building tools that work with code. An
example is code search with cross-reference support:
https://cs.chromium.org/. Haskell Indexer makes it
possible to use Kythe-based tools with Haskell. With
Haskell Indexer it’s possible to list all use-sites of any
given function (get reverse-references) and explore the
code without any IDE setup.

A portion of GHC and Stackage is indexed and avail-
able at http://stuff.codereview.me/.

28

https://github.com/HeinrichApfelmus/hyper-haskell
http://code.world
https://github.com/google/codeworld
https://kythe.io/
https://cs.chromium.org/
http://stuff.codereview.me/

Haskell Indexer is in active use and development.
As of today, it’s possible to get it from GitHub – the
Hackage release is work in progress. The future plans
include improving the cross-reference support, adding
cross-language linking with C and better handling of
Template Haskell.

Further reading

◦ https://github.com/google/haskell-indexer
◦ https://kythe.io/

4.6.6 Brittany

Report by: Lennart Spitzner
Status: work in progress

Brittany is a Haskell source code formatting tool that
tries to produce consistent, neat, and concise layouting
while preserving comments and user-provided format-
ting (e.g. newlines). In particular brittany..
◦ is highly configurable (powerful, alas sparsely docu-
mented);

◦ retains newlines and comments unmodified (to the
degree possible when code around them gets refor-
matted);

◦ makes clever use of horizontal space without over-
flowing the column limit (80 or whatever);

◦ supports horizontal alignment (e.g. different equa-
tions/pattern matches in the some function’s defini-
tion).
The project is not finished in two important aspects:

◦ Brittany does not know how to format data, class,
or instance declarations yet. So it currently only
affects a) the module header (exports/imports) b)
type signatures c) (function) equations.

◦ Not all extensions are supported yet. E.g. Tem-
plateHaskell/Quasiquoters are not fully supported,
plus some other extensions.

Brittany is based on ghc-exactprint and the ghc
parser. It requires ghc-8.*, and is available on Hackage
and on Stackage.

The project welcomes contribution for any desired,
yet missing features.

The design/implementation of this project has been
captured in several documents you can find in the
project’s repository.

Further reading

◦ https://github.com/lspitzner/brittany

4.6.7 IHaskell

Report by: Vaibhav Sagar
Status: available, actively maintained

IHaskell is a Haskell kernel for the Jupyter project, and
it is usable through various Jupyter frontends, such as
the console and the notebook. It is an interactive shell
similar to GHCi, and it provides features such as syntax
highlighting, autocompletion, multi-line input cells, in-
tegrated documentation, rich output visualisation, and
more. It integrates with HLint to provide style and for-
matting suggestions, and notebooks can be exported as
Literate Haskell or Markdown.

An example IHaskell notebook looks like this:

IHaskell currently supports GHC 8.0, 8.2, and 8.4,
and older releases have support back to GHC 7.6. It can
be installed on Linux and macOS. Windows is currently
not supported. Installation via Cabal, Stack, and Nix
is supported, and the recently announced mybinder.org
can also be used to host IHaskell notebooks.

Further reading

IHaskell is open source, and the project homepage is
at https://github.com/gibiansky/IHaskell.

29

https://github.com/google/haskell-indexer
https://github.com/google/haskell-indexer
https://kythe.io/
https://github.com/lspitzner/brittany
mybinder.org
https://github.com/gibiansky/IHaskell

4.6.8 Doc Browser

Report by: Wanqiang Jiang
Status: under development

Doc Browser is an API documentation browser written
in Haskell and QML.
It is a native desktop app, with offline supports for

Hoogle, DevDocs’ docset and Dash’s docset.

It is under development, but the GUI is suitable for
daily use.

Further reading

◦ https://github.com/qwfy/doc-browser#readme

4.7 Formal Systems and Reasoners

4.7.1 The Incredible Proof Machine

Report by: Joachim Breitner
Status: active development

The Incredible Proof Machine is a visual interactive
theorem prover: Create proofs of theorems in proposi-
tional, predicate or other, custom defined logics simply
by placing blocks on a canvas and connecting them.
You can think of it as Simulink mangled by the Curry-
Howard isomorphism.

It is also an addictive and puzzling game, I have been
told.

The Incredible Proof Machine runs completely in
your browser. While the UI is (unfortunately) bor-
ing standard JavaScript code with a spaghetti flavor,
all the logical heavy lifting is done with Haskell, and
compiled using GHCJS.

Further reading

◦ http://incredible.nomeata.de The Incredible Proof
Machine

◦ https://github.com/nomeata/incredible Source Code
◦ http://www.joachim-breitner.de/blog/682-The_

Incredible_Proof_Machine Announcement blog post

4.7.2 Exference

Report by: Lennart Spitzner
Status: experimental

Exference is a tool aimed at supporting developers writ-
ing Haskell code by generating expressions from a type,
e.g.

Input:

(Show b) => (a -> b) -> [a] -> [String]

Output:

\ f1 -> fmap (show . f1)

Input:

(Monad m, Monad n)
=> ([a] -> b -> c) -> m [n a] -> m (n b)
-> m (n c)

Output:

\ f1 -> liftA2 (\ hs i ->
liftA2 (\ n os -> f1 os n) i (sequenceA hs))

30

https://github.com/qwfy/doc-browser#readme
http://incredible.nomeata.de
https://github.com/nomeata/incredible
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine

The algorithm does a proof search specialized to the
Haskell type system. In contrast to Djinn, the well
known tool with the same general purpose, Exference
supports a larger subset of the Haskell type system -
most prominently type classes. The cost of this feature
is that Exference makes no promise regarding termi-
nation (because the problem becomes an undecidable
one; a draft of a proof can be found in the pdf below).
Of course the implementation applies a time-out.

There are two primary use-cases for Exference:
◦ In combination with typed holes: The programmer

can insert typed holes into the source code, retrieve
the expected type from ghc and forward this type to
Exference. If a solution, i.e. an expression, is found
and if it has the right semantics, it can be used to
fill the typed hole.

◦ As a type-class-aware search engine. For example,
Exference is able to answer queries such as Int →
Float, where the common search engines like hoogle
or hayoo are not of much use.
The current implementation is functional and works

well. The most important aspect that still could use
improvement is the performance, but it would proba-
bly take a slightly improved approach for the core al-
gorithm (and thus a major rewrite of this project) to
make significant gains.

The project is actively maintained; apart from occa-
sional bug-fixing and general maintenance/refactoring
there are no major new features planned currently.

Try it out by on IRC(freenode): exferenceBot is in
#haskell and #exference.

Further reading

◦ https://github.com/lspitzner/exference
◦ https://github.com/lspitzner/exference/raw/master/

exference.pdf

4.8 Education

4.8.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).
In November 2010, Gerben Verburg started to

reimplement Holmes keeping only the heuristics we

figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, which has been presented at
CSERC’13, and should become available in the ACM
Digital Library.

The tool will be made available through Hackage at
some point, but before that happens it can already be
obtained on request from Jurriaan Hage.

Contact

〈J.Hage@uu.nl〉

4.8.2 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Johan Jeuring, Alex Gerdes, Josje Lodder,

Hieke Keuning
Status: experimental, active development

Ideas (Interactive Domain-specific Exercise Assis-
tants) is a joint research project between the Open Uni-
versity of the Netherlands and Utrecht University. The
project’s goal is to use software and compiler technol-
ogy to build state-of-the-art components for intelligent
tutoring systems (ITS), learning environments, and ap-
plied games. The ‘ideas’ software package provides a
generic framework for constructing the expert knowl-
edge module (also known as a domain reasoner) for
an ITS or learning environment. Domain knowledge
is offered as a set of feedback services that are used by
external tools such as the digital mathematical environ-
ment (first/left screenshot) and the Math-Bridge sys-
tem. Over the last ten years, we have developed several
domain reasoners based on this framework, including
reasoners for mathematics, linear algebra, statistics,
propositional logic, for learning Haskell (the Ask-Elle
programming tutor) and evaluating Haskell expressions
and evaluating microcontroller I/O expressions, and
for practicing communication skills (the serious game
Communicate!, second/right screenshot).

We have continued working on the domain reasoners
that are used by our programming tutors. The Ask-Elle
functional programming tutor lets you practice intro-
ductory functional programming exercises in Haskell.

31

https://github.com/lspitzner/exference
https://github.com/lspitzner/exference/raw/master/exference.pdf
https://github.com/lspitzner/exference/raw/master/exference.pdf
mailto: J.Hage at uu.nl
http://ideas.cs.uu.nl
http://hackage.haskell.org/package/ideas
http://www.projects.science.uu.nl/communicate/
http://ideas.cs.uu.nl/FPTutor/
http://ideas.cs.uu.nl/FPTutor/

We have extended this tutor with QuickCheck prop-
erties for testing the correctness of student programs,
and for the generation of counterexamples. We have
analysed the usage of the tutor to find out how many
student submissions are correctly diagnosed as right or
wrong.

We have started with the Advise-Me project (Au-
tomatic Diagnostics with Intermediate Steps in Math-
ematics Education), which is a Strategic Partnership
in EU’s Erasmus+ programme. In this project we de-
velop innovative technology for calculating detailed di-
agnostics in mathematics education, for domains such
as ‘Numbers’ and ‘Relationships’. The technology is
offered as an open, reusable set of feedback and as-
sessment services. The diagnostic information is calcu-
lated automatically based on the analysis of intermedi-
ate steps.

We are continuing our research in various directions.
We are investigating feedback generation for axiomatic
proofs for propositional logic. We also want to add
student models to our framework and use these to make
the tutors more adaptive, and develop authoring tools
to simplify the creation of domain reasoners.

The library for developing domain reasoners with
feedback services is available as a Cabal source pack-
age. The latest release has support for constructing
constraint-based tutors, besides the model-tracing tu-
tors based on problem-solving procedures that are ex-
pressed in an extensible domain-specific language. We
have written a tutorial on how to make your own do-
main reasoner with this library.

Further reading

◦ Hugo Arends, Hieke Keuning, Bastiaan Heeren, and
Johan Jeuring. An Intelligent Tutor to Learn the
Evaluation of Microcontroller I/O Programming
Expressions. Koli Calling Conference on Computing
Education Research, 2–9, 2017.

◦ Bastiaan Heeren and Johan Jeuring. An Extensible
Domain-Specific Language for Describing
Problem-Solving Procedures. Artificial Intelligence
in Education, 77–89, 2017.

◦ Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and
Thomas van Binsbergen. Ask-Elle: an adaptable
programming tutor for Haskell giving automated
feedback. International Journal of Artificial
Intelligence in Education, volume 27 (1), 65–100,
2017.

◦ Josje Lodder, Bastiaan Heeren, and Johan Jeuring.
Generating hints and feedback for Hilbert-style
axiomatic proofs. SIGCSE ’17, 387–392, 2017.

◦ Bastiaan Heeren and Johan Jeuring. Feedback
services for stepwise exercises. Science of Computer
Programming, Special Issue on Software
Development Concerns in the e-Learning Domain,
volume 88, 110–129, 2014.

4.8.3 Basic Haskell Cheat Sheet

Report by: Rudy Braquehais
Status: Actively maintained, v1.1

The Basic Haskell Cheat Sheet is a reference sheet
with reminders of the most common Haskell features
and functions condensed in two pages.

It covers a subset of the standard prelude, including
examples of:
◦ declarations & expressions;
◦ operators & functions;
◦ list comprehensions;
◦ GHC invocation & GHCi commands.

It does not aim to teach readers how to use the lan-
guage, but simply remind readers of syntax, functions
or caveats. It can be useful both to newcomers and
oldtimers of the Haskell language.

Contributions are welcome, just submit a “pull re-
quest” on GitHub. Note the hard limit of two pages:
to add something, something else should be removed.

Further reading

◦ Current version (v1.1):
https://github.com/rudymatela/concise-cheat-sheets/
releases/download/haskell-v1.1/haskell-cs-1.1.pdf

◦ Future versions will be posted on:
https://github.com/rudymatela/concise-cheat-sheets

32

http://advise-me.ou.nl
http://ideas.cs.uu.nl/logax/
http://ideas.cs.uu.nl/logax/
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/tutorial
http://www.open.ou.nl/bhr/MickTutor.html
http://www.open.ou.nl/bhr/MickTutor.html
http://www.open.ou.nl/bhr/MickTutor.html
http://www.open.ou.nl/bhr/DSLForProblemSolving.html
http://www.open.ou.nl/bhr/DSLForProblemSolving.html
http://www.open.ou.nl/bhr/DSLForProblemSolving.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AskElle2016.html
http://www.open.ou.nl/bhr/AxiomaticProofs.html
http://www.open.ou.nl/bhr/AxiomaticProofs.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/FeedbackServices.html
https://github.com/rudymatela/concise-cheat-sheets/releases/download/haskell-v1.1/haskell-cs-1.1.pdf
https://github.com/rudymatela/concise-cheat-sheets/releases/download/haskell-v1.1/haskell-cs-1.1.pdf
https://github.com/rudymatela/concise-cheat-sheets

4.8.4 DSLsofMath

Report by: Patrik Jansson
Participants: Cezar Ionescu, Daniel Heurlin, Daniel

Schoepe
Status: active development

“Domain Specific Languages of Mathematics” is a
project at Chalmers and UGOT which lead to a new
BSc level course of the same name, including accom-
panying material for learning and applying classical
mathematics (mainly basics of real and complex anal-
ysis). The main idea is to encourage the students to
approach mathematical domains from a functional pro-
gramming perspective: to identify the main functions
and types involved and, when necessary, to introduce
new abstractions; to give calculational proofs; to pay
attention to the syntax of the mathematical expres-
sions; and, finally, to organize the resulting functions
and types in domain-specific languages.
The third instance of the course was carried out Jan–

March 2018 in Gothenburg and the course material is
available on github. The lecture notes have been col-
lected in an informal “book” during the last six months;
contributions and ideas are welcome!

Just two example to give a feeling for the contents:
Given the definition of “h :A→ B is a homomorphism

from Op : A→ A→ A to op : B→ B→ B”:

H2(h,Op, op) = ∀ x. ∀ y. h (Op x y) op (h x) (h y)

Then H2(exp, (+), (·)) says that ex+y ex · ey for all x
and y.
A somewhat longer example (two tweets):

import Prelude hiding (exp, sin, cos)
z = zipWith
c

∫
f = c : z (/) f [1 . .]

exp = 1
∫

exp
sin = 0

∫
cos

cos = 1
∫

(−sin)
instance Num a ⇒ Num [a] where

(+) = z (+)
(−) = z (−)
(∗) = m
fromInteger i = fromInteger i : repeat 0

m (x : xs) q@(y : ys) = x ∗ y : (map (x∗) ys) + xs ∗ q
one = 1 :: [Rational]
test = (sin 2̂ + cos 2̂) ' one
d cs = zipWith (∗) [1 . .] (tail cs)
xs ' ys = and (take 10 (z () xs ys))
test2 = exp ' d exp

See also the HCAR entry “Learn you a Physics” (→
4.8.5) by a group of BSc students.

Further reading

◦ DSLsofMath (github organisation)
◦ “Learn you a Physics” BSc project applying

DSLsofMath ideas.
◦ Latest snapshot of the DSLsofMath Lecture Notes

(work in progress)
◦ Exam 2018 with solutions
◦ TFPIE 2015 paper

4.8.5 Learn You A Physics

Report by: Erik Sjöström
Participants: Oskar Lundström, Johan Johansson, Björn

Werner
Status: active development

Learn You A Physics is the result of a BSc project at
Chalmers (supervised by P. Jansson) where the goal is
to create an introductory learning material for physics
aimed at programmers with a basic understanding of
Haskell.

It does this by identifying key areas in physics with
a well defined scope, for example dimensional analysis
or single particle mechanics, and develops a domain
specific language around each of these areas.

The implementation of these DSL’s are the meat of
the learning material with accompanying text to ex-
plain every step and how it relates to the physics of
that specific area.

The text is written in such a way as to be as non-
frightening as possible, and to only require a beginner
knowledge in Haskell. Inspiration is taken from Learn
you a Haskell for Great Good and the project DSLsof-
Math (→ 4.8.4) at Chalmers and University of Gothen-
burg.

The source code and learning material is freely avail-
able online.

Further reading

Learn You A Physics

4.9 Text and Markup

4.9.1 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions

33

http://www.chalmers.se/en/Pages/default.aspx
http://www.gu.se/english
https://github.com/DSLsofMath/DSLsofMath
https://twitter.com/patrikja/status/966074410611413000
https://github.com/DSLsofMath
https://github.com/DSLsofMath/BScProj2018/
https://github.com/DSLsofMath/DSLsofMath/tree/master/L/snapshots
https://github.com/DSLsofMath/DSLsofMath/tree/master/L/snapshots
https://github.com/DSLsofMath/DSLsofMath/blob/master/Exam/2018-03/
https://github.com/DSLsofMath/tfpie2015
http://learnyouahaskell.com/
http://learnyouahaskell.com/
https://github.com/DSLsofMath/DSLsofMath
https://github.com/DSLsofMath/DSLsofMath
https://github.com/DSLsofMath/BScProj2018/tree/master/Physics
https://dslsofmath.github.io/BScProj2018/
https://dslsofmath.github.io/BScProj2018/

of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.19 and has been released in

April 2015. Development repository and bug tracker
are on GitHub. The tool is mostly in plain mainte-
nance mode, although there are still vague plans for
a complete rewrite of lhs2TEX, hopefully cleaning up
the internals and making the functionality of lhs2TEX
available as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

4.9.2 Fast Unicode Normalization

Report by: Harendra Kumar
Status: Working

Unicode strings need to be converted to a normal-
ized form using the Unicode Character Database be-
fore they can be compared for equivalence. unicode-
transforms is a pure Haskell implementation of Uni-
code normalization. The alternative is the text-
icu package which provides this functionality as
Haskell bindings to the ICU C++ implementation.
unicode-transforms supports all forms of normalization
(NFC/NFD/NFKC/NFKD) and supports the latest
version of the Unicode standard (Unicode 9).
One of the goals of unicode-transforms was high per-

formance. We have successfully achieved this goal
for decompose (NFD/NFKD) forms, achieving perfor-
mance close to, and in one benchmark even better than
the C++ implementation (i.e. the text-icu package).
Compose (NFC/NFKC) implementation is not yet op-
timized, and though the performance of compose is de-
cent it is not at par with the C++ implementation.
This is still open for anyone looking for a challenge to
beat C++.
This library can potentially be integrated with the

text package allowing us to keep text in a standard
normalized form by default, thus freeing the Haskell
programmers from worrying about explicit normaliza-
tion. The library is available on Hackage under BSD3
license.

Further reading

https://github.com/harendra-kumar/
unicode-transforms

4.9.3 Automatic type inference from JSON

Report by: Michał J. Gajda
Status: stable

This rapid software development tool json-autotype
interprets JSON data and converts them into Haskell
module with data type declarations.

$ json-autotype input.json -o JSONTypes.hs

The generated declarations use automatically de-
rived Aeson class instances to read and write data di-
rectly from/to JSON strings, and facilitate interaction
with growing number of large JSON APIs.

Generated parser can be immediately tested on an
input data:

$ runghc JSONTypes.hs input.json

The software can be installed directly from Hackage.
It uses sophisticated union type unification, and ro-

bustly interprets most ambiguities using clever typing.
The tool has reached maturity this year, and thanks

to automated testing procedures it seems to robustly
infer types for all JSON inputs considered valid by Ae-
son.

The tool now supports Elm output, and plans to
support all members of Haskell family of languages.

The author welcomes comments and suggestions at
〈mjgajda@gmail.com〉.

Further reading

http://hackage.haskell.org/package/json-autotype

4.9.4 Ginger

Report by: Tobias Dammers
Status: Active development

Ginger is a Haskell implementation of the Jinja2 HTML
template language. Unlike most existing Haskell tem-
plating solutions, Ginger expands templates at run-
time, not compile time; this is a deliberate design deci-
sion, intended to support a typical rapid-cycle web de-
velopment workflow. Also unlike most existing Haskell
HTML DSLs, Ginger is completely unaware of the
DOM, and does not enforce well-formed HTML. Just
like Jinja2, however, it does distinguish HTML source
and raw values at the type level, meaning that HTML
encoding is automatic and (mostly) transparent, avoid-
ing the most common source of XSS vulnerabilities. For
a quick impression of what Ginger syntax looks like:

<section class="page">
<h1>{{ page.title }}</h1>
{% if page.image %}

<img class="page-image"

34

http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex
https://github.com/harendra-kumar/unicode-transforms
https://github.com/harendra-kumar/unicode-transforms
https://github.com/mgajda/json-autotype
mailto: mjgajda at gmail.com
http://hackage.haskell.org/package/json-autotype

src="{{ page.image.thumbURL }}" />
{% endif %}
<section class="teaser">

{{ page.teaser }}
</section>
<section class="content">

{{ page.body|markdown }}
</section>
<section class="page-meta">

Submitted by {{ page.author }} on
{{page.submitted|formatDate(’%Y-%m-%d’)}}

</section>
</section>

All the important features of Jinja2 have been imple-
mented, and the library is fully usable for production
work. Some features of the original Jinja2 have been
left out because the author considers them Pythonisms;
others are missing simply because they haven’t been
implemented yet. Additionally, some features have
been added that are missing in Jinja2, such as lambdas,
being able to use macros as functions or filters, ‘do‘
expressions, output indenting constructs, and “script
mode”, switching Ginger into a syntax that is closer
to a unityped scripting language than a template lan-
guage.

Improvement that haven’t made it yet include Tem-
plateHaskell support (which would allow programmers
to compile Ginger templates directly into the binary,
and perform template compilation at compile time
rather than runtime), a built-in caching mechanism,
and more configuration options. Contributions of any
kind are very welcome.

Further reading

◦ https://ginger.tobiasdammers.nl/
◦ https://github.com/tdammers/ginger
◦ http://hackage.haskell.org/package/ginger
◦ http://jinja2.pocoo.org (the original Jinja2, not my

work)

4.10 Web

4.10.1 WAI

Report by: Kazu Yamamoto
Participants: Michael Snoyman, Greg Weber
Status: stable

WAI (Web Application Interface) is an application
interface between web applications and handlers in
Haskell. The Application data type is defined as fol-
lows:

type Application
= Request
-> (Response -> IO ResponseReceived)
-> IO ResponseReceived

That is, a WAI application takes two arguments: a
Request and a function to send a Response. So, the
typical behavior of WAI application is processing a re-
quest, generating a response and passing the response
to the function.

Historically speaking, this interface made possible to
develop handlers other than HTTP. The WAI applica-
tions can run through FastCGI (wai-handler-fastcgi),
run as stand-alone (wai-handler-webkit), etc. But the
most popular handler is based on HTTP, of course. The
major HTTP handler for WAI is Warp which now pro-
vides both HTTP/1.1 and HTTP/2. TLS (warp-tls)
is also available. New transports such as WebSocket
(wai-websocket) and Event Source (wai-extra) can be
implemented, too.

It is possible to develop WAI applications directly.
For instance, Hoogle and Mighttpd2 take this way.
However, you may want to use web application frame-
works such as Apiary, MFlow, rest, Servant, Scotty,
Spock, Yesod, etc.

WAI also provides Middleware:

type Middleware = Application -> Application

WAI middleware can inspect and transform a re-
quest, for example by automatically gzipping a re-
sponse or logging a request (wai-extra).

Since the last HCAR, WAI started using Builder
of ByteString instead of Builder of blaze-builder. Be-
cause they are identical, no backward compatibility is-
sue happens.

Further reading

◦ https://groups.google.com/d/forum/haskell-wai

35

https://ginger.tobiasdammers.nl/
https://github.com/tdammers/ginger
http://hackage.haskell.org/package/ginger
http://jinja2.pocoo.org
https://groups.google.com/d/forum/haskell-wai

4.10.2 Warp

Report by: Kazu Yamamoto
Participants: Michael Snoyman
Status: stable

Warp is a high performance, easy to deploy HTTP han-
dler for WAI (→ 4.10.1). Its supports both HTTP/1.1
and HTTP/2.
Since the last HCAR, no major changes were made.

Further reading

◦ “Warp: A Haskell Web Server”
– the May/June 2011 issue of IEEE Internet

Computing
– Issue page:

http://www.computer.org/portal/web/csdl/abs/
mags/ic/2011/03/mic201103toc.htm

– PDF: http://steve.vinoski.net/pdf/IC-Warp_a_
Haskell_Web_Server.pdf

◦ “Warp”
– The Performance of Open Source Applications
– HTML:

http://www.aosabook.org/en/posa/warp.html

4.10.3 Yesod

Report by: Michael Snoyman
Participants: Greg Weber, Luite Stegeman, Felipe Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, Yesod
helps users create highly scalable web applications.
Performance scalability comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in event-based asynchronous IO.

But Yesod is even more focused on scalable develop-
ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.

Of course type-safety guarantees against typos or the
wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.
◦ declarative routing with type-safe urls — say good-

bye to broken links
◦ no XSS attacks — form submissions are automati-

cally sanitized
◦ database safety through the Persistent library (→

4.11.1) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.

When type safety conflicts with programmer produc-
tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.

MVC stands for model-view-controller. The pre-
ferred library for models is Persistent (→ 4.11.1). Views
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing and
can return different representations of a resource (html,
json, etc).

Yesod is broken up into many smaller projects and
leverages Wai (→ 4.10.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks that use WAI such as Scotty and Servant.

Since the last HCAR, we’ve released version 1.6, the
first breaking version of Yesod since September 2014.
Most code will continue to work unchanged, but im-
provements have been added to Yesod’s monad trans-
former implementation, as well as adding some long-
awaited cleanups.

The Yesod team is quite happy with the current level
of stability in Yesod. Since the 1.0 release, Yesod has
maintained a high level of API stability, and we in-
tend to continue this tradition. Future directions for
Yesod are now largely driven by community input and
patches. We’ve been making progress on the goal of
easier client-side interaction, and have high-level inter-
action with languages like Fay, TypeScript, and Coffe-
Script. GHCJS support is in the works.

The Yesod site (http://www.yesodweb.com/) is a
great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.

To see an example site with source code available,
you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

4.10.4 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Greg Hale, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, stability,
and ease of use. The project’s goal is to be a cohesive
high-level platform for web development that leverages
the power and expressiveness of Haskell to make build-
ing websites quick and easy.

36

http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://www.aosabook.org/en/posa/warp.html
http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/

Snap continues to see active use in industry and
continued support from the development team. If
you would like to contribute, get a question answered,
or just keep up with the latest activity, stop by the
#snapframework IRC channel on Freenode.

Further reading

◦ http://snapframework.com
◦ snap-server test coverage: https:

//snapframework.github.io/snap-code-coverage/
snap-server/hpc-ghc-8.0.1/hpc_index.html

◦ Snaplet Directory:
http://snapframework.com/snaplets

◦ io-streams:
http://hackage.haskell.org/package/io-streams

4.10.5 MFlow

Report by: Alberto Gómez Corona
Status: active development

MFlow is a Web framework of the kind of other func-
tional, stateful frameworks like WASH, Seaside, Ocsi-
gen or Racket. MFlow does not use continuation pass-
ing properly, but a backtracking monad that permits
the synchronization of browser and server and error
tracing. This monad is on top of another “Workflow”
monad that adds effects for logging and recovery of
process/session state. In addition, MFlow is RESTful.
Any GET page in the flow can be pointed to with a
REST URL.
The navigation as well as the page results are type

safe. Internal links are safe and generate GET re-
quests. POST request are generated when formlets
with form fields are used and submitted. It also imple-
ments monadic formlets: They can modify themselves
within a page. If JavaScript is enabled, the widget re-
freshes itself within the page. If not, the whole page is
refreshed to reflect the change of the widget.

MFlow hides the heterogeneous elements of a web ap-
plication and expose a clear, modular, type safe DSL
of applicative and monadic combinators to create from
multipage to single page applications. These combina-
tors, called widgets or enhanced formlets, pack together
javascript, HTML, CSS and the server code.

A paper describing the MFlow internals has been
published in The Monad Reader issue 23.

Further reading

◦ MFlow as a DSL for web applications https://www.
fpcomplete.com/school/to-infinity-and-beyond/
older-but-still-interesting/MFlowDSL1

◦ MFlow, a continuation-based web framework
without continuations http://themonadreader.
wordpress.com/2014/04/23/issue-23

◦ How Haskell can solve the integration problem
https://www.fpcomplete.com/school/

to-infinity-and-beyond/pick-of-the-week/
how-haskell-can-solve-the-integration-problem

◦ Towards a deeper integration: A Web language:
http://haskell-web.blogspot.com.es/2014/04/
towards-deeper-integration-web-language.html

◦ Perch https://github.com/agocorona/haste-perch
◦ hplayground demos http://tryplayg.herokuapp.com
◦ haste-perch-hplaygroun tutorial

http://www.airpair.com/haskell/posts/
haskell-tutorial-introduction-to-web-apps

◦ react.js a solution for a problem that Haskell can
solve in better ways
http://haskell-web.blogspot.com.es/2014/11/
browser-programming-reactjs-as-solution.html

◦ MFlow demo site: http://mflowdemo.herokuapp.com

4.10.6 PureScript

Report by: Phil Freeman
Status: active, looking for contributors

PureScript is a small strongly typed programming lan-
guage that compiles to efficient, readable JavaScript.
The PureScript compiler is written in Haskell.

The PureScript language features Haskell-like syn-
tax, type classes with functional dependencies, rank-n
types, and row polymorphism with a form of polymor-
phic labels.

PureScript features a comprehensive standard li-
brary, and a large number of other libraries and tools
under development, covering data structures, algo-
rithms, Javascript integration, web services, game de-
velopment, testing, asynchronous programming, FRP,
graphics, audio, UI implementation, and many other
areas. It is easy to wrap existing Javascript function-
ality for use in PureScript, making PureScript a great
way to get started with strongly-typed pure functional
programming on the web. PureScript is currently used
successfully in production in commercial code.

The PureScript compiler can be downloaded from
purescript.org, or compiled from source from Hackage.

Further reading

https://github.com/purescript/purescript/

4.10.7 Sprinkles

Report by: Tobias Dammers
Status: Active development

Sprinkles is a “zero programming web development
framework”, intended for building content-centric
server-site websites in a declarative fashion.

As such, Sprinkles sits in a unique position in be-
tween static site generators such as Jekyll, Hakyll, etc.,
and fully dynamic CMS solutions like Ghost, Word-
Press, etc.

37

http://snapframework.com
https://snapframework.github.io/snap-code-coverage/snap-server/hpc-ghc-8.0.1/hpc_index.html
https://snapframework.github.io/snap-code-coverage/snap-server/hpc-ghc-8.0.1/hpc_index.html
https://snapframework.github.io/snap-code-coverage/snap-server/hpc-ghc-8.0.1/hpc_index.html
http://snapframework.com/snaplets
http://hackage.haskell.org/package/io-streams
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
http://themonadreader.wordpress.com/2014/04/23/issue-23
http://themonadreader.wordpress.com/2014/04/23/issue-23
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
https://github.com/agocorona/haste-perch
http://tryplayg.herokuapp.com
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://mflowdemo.herokuapp.com
purescript.org
https://github.com/purescript/purescript/

A Sprinkles website consists of a project file in YAML
format, a set of templates (using Ginger, a Haskell im-
plementation of the Jinja HTML template language),
and static files such as stylesheets, images, and client-
side scripts. Data can be loaded from SQL databases,
local files, HTTP, or local shell scripts, and Sprin-
kles supports a wide range of input formats, including
JSON, YAML, HTML, Markdown, LaTeX, and even
DOCX. The heart of a project file is a list of routes,
each specifying a list of backend data sources to query,
the output of which then gets bound to a template
variable.

Unlike a static site generator, Sprinkles generates its
HTML output on the fly, so there is no build step, you
just deploy your updated project files to the server,
restart the Sprinkles process, and your new site is live.
Unlike a classic CMS, however, there is no admin area;
instead, you manage your data externally.

This approach has a few advantages, most notably, it
makes Sprinkles more secure, because no admin area is
exposed that could be exploited to escalate from com-
promising the public-facing part to gain write access;
write access is implemented separately, via separate
channels (typically an SSH connection).

Various workflows are possible, e.g.:
◦ hand-editing markdown files or even Word docu-

ments
◦ putting your data in an SQL database, using a graph-

ical SQL frontend to modify things, and pointing
Sprinkles at the database

◦ using an existing website as your data source, but
building a Sprinkles frontend on top

◦ using github as your data source (the Ginger home-
page at https://ginger.tobiasdammers.nl/ does this for
the user guide section)

◦ using something like https://form.io/ to manage your
data, and pointing Sprinkles at an API endpoint

◦ ...
Sprinkles comes with a built-in Warp server, and this

is the preferred deployment option, but CGI, SCGI and
FastCGI are also supported. A “bake” mode has been
added recently that turns Sprinkles into a static site
generator, so a Jekyll-style workflow is now also possi-
ble.

Further reading

◦ https://sprinkles.tobiasdammers.nl/
◦ https://github.com/tdammers/sprinkles
◦ http://hackage.haskell.org/package/sprinkles

4.10.8 nginx-haskell-module

Report by: Alexey Radkov
Status: stable, actively developed

The nginx-haskell-module allows using typed Haskell
handlers from within custom Nginx configurations. It
provides several Nginx directives that correspond to
where Haskell code is applied and what kind of task it
solves:
◦ haskell_run — run Haskell handler synchronously

and return a string-like result;
◦ haskell_run_async — run Haskell handler asyn-

chronously in the early rewrite Nginx phase and re-
turn a string-like result when ready;

◦ haskell_content — run Haskell handler for rendering
content;

◦ haskell_static_content — optimized content render-
ing;

◦ haskell_unsafe_content — optimized (in another
way) content rendering;

◦ haskell_run_service — run Haskell handler as a ser-
vice, meaning that this implements not a request-
driven task but rather timer-driven and is directly
bound to the Nginx event loop.

◦ haskell_service_hook — run Haskell handler that
alters a specific global state as a content handler,
that can be used to build custom APIs for managing
Haskell services;

◦ haskell_service_update_hook — run Haskell handler
in an Nginx worker’s main thread after the service
has reported a result, that can be used to run C
plugins related to the service.
Here, “a string-like result” is an umbrella term for

various Haskell string-like implementations like String
and ByteString, perhaps wrapped inside IO Monad.
Typed Haskell handlers give a strong guarantee that
underlying code will cause no IO specific side effects
thus making sure that Nginx will not stop working due
to unpredictably long-running IO code, which is ex-
tremely crucial for this popular web server.

On the other hand, when effectful code is desirable,
it can be declared with directive haskell_run_async,
which runs Haskell code asynchronously and won’t stop
the Nginx world. Moreover, the module provides di-
rective haskell_run_service for running custom asyn-
chronous “services” that are not bound to requests: this
makes it possible to program interesting solutions like
Nginx-specific service discovery (see a reference to an
advanced example below). An asynchronous service
results are available in request-specific Nginx configu-
ration areas (e.g. location) via an Nginx variable that
holds a string, which, on a deeper level, may wrap a
typed data (or JSON, or other representations).

Basically, a service results variable is stored

38

https://ginger.tobiasdammers.nl/
https://form.io/
https://sprinkles.tobiasdammers.nl/
https://github.com/tdammers/sprinkles
http://hackage.haskell.org/package/sprinkles

in a worker-specific memory, but with directive
haskell_service_var_in_shm it gets its place in
a shared memory and becomes available from all
Nginx workers. In conjunction with directive
haskell_service_var_update_callback, this allows pro-
gramming custom ad-hoc solutions when a Haskell ser-
vice’s results are needed in another Nginx module. On
the Github project page there is an advanced example
dynamicUpstreams that implements such an approach.

Starting from version 1.4.0 of the module, services
that share their results in shared memory become
shared themselves. This means that only one worker
process really runs a shared service, while services on
the other workers wait on locks until the active worker
exits or dies.

Starting from version 1.8.0 of the module, services
can be managed by custom hooks declared with di-
rective haskell_service_hook. With the hooks, it
is possible to build custom APIs for managing ser-
vices of arbitrary complexity. A similar directive
haskell_service_update_hook allows for writing C plu-
gins that run in a worker’s main thread upon every
update from the service. To access internal Nginx
global data in a plugin, the Haskell module provides
several opaque pointers, in particular ngxCyclePtr, ngx-
UpstreamMainConfPtr, and ngxCachedTimePtr.
The module provides other two di-

rectives haskell_var_nocacheable and
haskell_var_compensate_uri_changes that make Ng-
inx error_page redirections almost Turing-complete.
It is achieved by letting them loop without limits on
number of cycles (by the second directive) and ensur-
ing that loop-specific variables get updated between
iterations (by the first directive). The technique of
Turing-complete error_page redirections is used in an
advanced example labeledMediaRouting.

Further reading

◦ Project page
◦ Module ngx-export on Hackage
◦ An advanced example in a blog article
◦ A comprehensive tutorial with many examples in

PDF

4.10.9 Template Toolkit

Report by: Dzianis Kabanau
Status: active, working

Haskell implementation of popular Perl template pro-
cessing system.
Perl Template Toolkit is mainly used for web devel-

opment.
This port includes such features as:

◦ Perl-like variables: scalar, array, hash
◦ Variables interpolation and autovivification.
◦ Conditional directives
◦ Loops and loop controls

◦ Processing of external templates and internal sub-
template blocks

◦ Many virtual methods and filters
In the next release it is planned to include support

for custom methods, filters and functions in templates.

Further reading

https://hackage.haskell.org/package/template-toolkit

39

http://github.com/lyokha/nginx-haskell-module
http://hackage.haskell.org/package/ngx-export
http://lin-techdet.blogspot.com/2017/01/nginx-haskell-module-labeled-media.html
http://nbviewer.jupyter.org/github/lyokha/nginx-haskell-module/blob/master/docs/yet-another-doc-with-examples/nginx-haskell-module-yadwe.pdf
http://nbviewer.jupyter.org/github/lyokha/nginx-haskell-module/blob/master/docs/yet-another-doc-with-examples/nginx-haskell-module-yadwe.pdf
https://hackage.haskell.org/package/template-toolkit

4.11 Databases

4.11.1 Persistent

Report by: Michael Snoyman
Participants: Greg Weber, Felipe Lessa
Status: stable

Since the last HCAR, persistent has mostly experienced
bug fixes, including recent fixes and increased backend
support for the new flexible primary key type.
Haskell has many different database bindings avail-

able, but most provide few useful static guarantees.
Persistent uses knowledge of the data schema to pro-
vide a type-safe interface to the database. Persistent is
designed to work across different databases, currently
working on Sqlite, PostgreSQL, MongoDB, MySQL,
Redis, and ZooKeeper.

Persistent provides a high-level query interface that
works against all backends.

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones"] []

The result of this will be a list of Haskell records.
Persistent can also be used to write type-safe query

libraries that are specific. esqueleto is a library for writ-
ing arbitrary SQL queries that is built on Persistent.

Future plans

Persistent is in a stable, feature complete state. Future
plans are only to increase its ease for the places where
it can be easily used:
◦ Declaring a schema separately from a record, pos-

sibly leveraging GHC’s new annotations feature or
another pattern
Persistent users may also be interested in Ground-

hog, a similar project.
Persistent is recommended to Yesod (→ 4.10.3) users.

However, there is nothing particular to Yesod or even
web development about it. You can have a type-safe,
productive way to store data for any kind of Haskell
project.

Further reading

◦ http://www.yesodweb.com/book/persistent
◦ http://hackage.haskell.org/package/esqueleto
◦ http:

//www.yesodweb.com/blog/2014/09/persistent-2
◦ http://www.yesodweb.com/blog/2014/08/

announcing-persistent-2

4.11.2 Squeal

Report by: Eitan Chatav
Status: experimental, active development

The squeal-postgresql package is a library providing
a deep embedding of PostgreSQL in Haskell. Squeal
makes use of lots of features and ideas in Haskell such
as:
◦ DataKinds
◦ OverloadedLabels
◦ Indexed monads
◦ Generics
◦ GADTs

The point is not to use them in particularly new
ways, but for very practical purposes. DataKinds are
used to embed the SQL type and schema system into
Haskell. OverloadedLabels are used to refer to tables
and columns. Indexed monads are used to track chang-
ing schema types. Generics are used to easily marshal
data between Haskell product and record types and
SQL parameter and row types. GADTs are used for
joins, aliased expressions, heterogeneous lists and more.

However, in spite of these perhaps being formidable
sounding concepts, it is much easier to learn them when
there is a familiar pattern you can use, and that’s SQL.
I believe that if a Haskeller knows SQL, then Squeal
can be a gateway to learning these concepts. That’s
because Squeal tries to be (mostly) faithful to SQL.

If the Squeal expressions are basically SQL, then why
not just use SQL? Squeal adds strong, static typing and
decomposability, which helps to develop and maintain
an application. Change your schema and the compiler
will tell you where you must change your queries and
manipulations. Queries and manipulations with com-
mon subparts can be factored for reusability. You can
even write typed schema migration definitions using
Squeal.

Squeal is still experimental and I would love to get
some real users and contributors. Send me bug reports
and feature requests. There are still many missing fea-
tures that I have plans to include.

What is new?

Since the last HCAR, Squeal has released version 0.2.1.
This is a minor update over version 0.2 which was re-
leased late March. The difference between these two
versions is solving an issue where alias identifiers could
conflict with reserved words in PostgreSQL. To fix the
issue, alias identifiers are now quoted. Thanks to Pet-
ter Rasmussen for the fix.

The version 0.2 was released March 26th and has the
following changes:

40

http://www.yesodweb.com/book/persistent
http://hackage.haskell.org/package/esqueleto
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2

◦ Constraints: Type level table constraints like pri-
mary and foreign keys and column constraints like
having DEFAULT

◦ Migrations: Support for linear, invertible migrations
tracked in an auxiliary table

◦ Arrays: Support for fixed- and variable-length arrays
◦ Aliases: Generalized ‘Has‘ constraint
◦ Pools: Support for pooled connections
◦ Transactions: Support for transaction control lan-

guage
◦ Queries, Manipulations, Definitions: Small and large

changes to Squeal’s DSL
Bringing SQL constraints to the type level means

that more of the schema is statically known. In version
0.1 column constraints – which boil down to having
‘DEFAULT‘ or not – were at the type level, but they
were confusingly named.

0.1: ’Optional (’NotNull ’PGInt4)
0.2: ’Def :=> ’NotNull ’PGInt4
0.1: ’Required (’NotNull ’PGInt4)
0.2: ’NoDef :=> ’NotNull ’PGInt4

The :=> type operator is intended to helpfully con-
note a constraint relation. It’s also used for table con-
straints which are new in version 0.2:

"emails" :::
’["pk_emails" ::: ’PrimaryKey ’["id"]
, "fk_user_id" ::: ’ForeignKey ’["user_id"]

"users" ’["id"]
] :=>
’["id" ::: ’Def :=> ’NotNull ’PGint4
, "user_id" ::: ’NoDef :=> ’NotNull ’PGint4
, "email" ::: ’NoDef :=> ’Null ’PGtext
]

Another change in the constraint system was the re-
moval of column constraints from query and manipu-
lation results, as result columns don’t support a no-
tion of DEFAULT. This necessitates a distinction be-
tween TableTypes which have both column and table
constraints and RelationTypes which have neither.
Migrations are a hot topic and many people have

requested this feature. From version 0.2, Squeal adds
support for linear, invertible migrations. That is, a
migration is a named, invertible, schema-tracking com-
putation:

data Migration io schema0 schema1 = Migration
{ name :: Text
-- ^ The ‘name‘ of a ‘Migration‘.
-- Each ‘name‘ in a ‘Migration‘ should
-- be unique.

, up :: PQ schema0 schema1 io ()
-- ^ The ‘up‘ instruction of a ‘Migration‘.

, down :: PQ schema1 schema0 io ()
-- ^ The ‘down‘ instruction of a ‘Migration‘.

}

And, Migrations can be put together in an “aligned”
list:

data AlignedList p x0 x1 where
Done :: AlignedList p x x
(:>>) :: p x0 x1

-> AlignedList p x1 x2
-> AlignedList p x0 x2

These aligned lists are free categories and might look
familiar from the reflections without remorse technique,
which uses their cousins, aligned sequences.

In the context of migration, they allow one to
chain new migrations as a schema evolves over time.
Migrations’ execution is tracked in an auxiliary mi-
grations table. Migration lists can then be run or
rewinded.

migrateUp
:: MonadBaseControl IO io
=> AlignedList (Migration io)

schema0 schema1
-- ^ migrations to run

-> PQ
("schema_migrations"
::: MigrationsTable ’: schema0)

("schema_migrations"
::: MigrationsTable ’: schema1)

io ()

migrateDown
:: MonadBaseControl IO io
=> AlignedList (Migration io)

schema0 schema1
-- ^ migrations to rewind

-> PQ
("schema_migrations"
::: MigrationsTable ’: schema1)

("schema_migrations"
::: MigrationsTable ’: schema0)

io ()

Regarding aliases, in Squeal 0.1, we had different
typeclasses HasColumn and HasTable to indicate that
a table has a column or that a schema has a table. In
Squeal 0.2 this has been unified to a single typeclass,

class KnownSymbol alias =>
Has (alias :: Symbol)
(fields :: [(Symbol,kind)])
(field :: kind)

| alias fields -> field where

Support for array types has been added to Squeal 0.2
through the ’PGfixarray and ’PGvararray PGTypes.
Array values can be constructed using the ‘array‘ func-
tion and can be encoded from and decoded to Haskell
Vectors.
Squeal 0.2 provides a monad transformer PoolPQ

that’s an instance of MonadPQ. The resource-pool

41

http://okmij.org/ftp/Haskell/zseq.pdf

library is leveraged to provide striped pools of
Connections. PoolPQ should be a drop in replacement
for running Manipulations and Querys with PQ.

Squeal 0.2 supports a simple transaction control
language. A computation in MonadPQ can be called
transactionally with different levels of isolation. Ad-
ditionally, a schema changing computation, a data def-
inition, can be run in a transaction. Running a compu-
tation in a transaction means that all SQL statements
will be rolled back if an exception is encountered.
The above changes required major and minor

changes to Squeal DSL functions. Please consult the
documentation.

Further reading

◦ https:
//hackage.haskell.org/package/squeal-postgresql

◦ https://github.com/morphismtech/squeal

4.11.3 Haskell Relational Record

Report by: Kei Hibino
Participants: Shohei Murayama, Shohei Yasutake, Sho

Kuroda and Kazu Yamamoto
Status: stable, active

Haskell Relational Record (HRR) is open-source li-
braries which provides a pragmatic embedded domain
specific language to generate SQL. It supports a large
part of the SQL standard which includes outer joins
and aggregations with type safety, and also supports
pragmatic but type-unsafe features like placeholder,
correlation and direct SQL embedding interfaces. Di-
rect SQL embedding interfaces allow database-system-
dependent SQL code fragments.
HRR also provides template-haskell which gener-

ates record types and relation types definitions from
relational-database schemas. Supported schemes of
relational-database engines are PostgreSQL, MySQL,
SQLite, IBM DB2, Microsoft SQL Server and Orac-
leSQL.

HRR is publicly developed on github since 2013, and
its release is publicly announced to Haskell community
in December 2014. HRR has been in use at Asahi Net
(Internet Service Provider in Japan) since March 2013,
and more than three years of production use demon-
strates its stability and usability. HRR is actively de-
veloped, and technical support is provided in Haskell-
jp (→ 6.13).

Further reading

http://khibino.github.io/haskell-relational-record/

4.11.4 YeshQL

Report by: Tobias Dammers
Status: Stable, active development

YeshQL is a library to bridge the Haskell / SQL gap by
implementing a quasi-quoter that allows programmers
to write SQL queries in plain SQL, adding metainfor-
mation as structured SQL comments. The latter al-
lows the quasi-quoter to generate a type-safe API for
these queries. YeshQL uses HDBC for the database
backends, but doesn’t depend on any particular HDBC
driver.

The approach was stolen from the YesQL library for
Clojure, and adapted to be more idiomatic in Haskell.

An example code snippet might look like this:

withTransaction db $ \conn -> do
pageID:_ <- [yesh1|

-- :: (Integer)
-- :title:Text
-- :body:Text
INSERT INTO pages (title, body)
VALUES (:title, :body)
RETURNING id
|]
conn title body

[yesh1|
-- :: Integer
INSERT
INTO page_owners (page_id, owner_id)
VALUES (:pageID, :userID)
|]
conn pageID currentUserID

return pageID

Contributions of any kind are more than welcome.

Further reading

◦ https://bitbucket.org/tdammers/yeshql
◦ http://hackage.haskell.org/package/yeshql
◦ https://github.com/krisajenkins/yesql (not my work)

4.11.5 DBFunctor: Functional Data Management

Report by: Nikos Karagiannidis
Status: Stable, active development

DBFunctor is a library for Functional Data Manage-
ment of tabular data. What does this mean?
It means that whenever you have a data analy-

sis/preparation/transformation task and you want to
do it with Haskell type-safe code, that you enjoy, love
and trust so much, now you can!

Moreover, whenever you have a data set in plain CSV
files and you want to write a Haskell application that
needs to analyze these data by queries, or apply any
data transformations on them; you no longer need to
install a database, import the files into the database
and then use some Haskell library, in order to query

42

https://hackage.haskell.org/package/squeal-postgresql
https://hackage.haskell.org/package/squeal-postgresql
https://github.com/morphismtech/squeal
http://khibino.github.io/haskell-relational-record/
https://bitbucket.org/tdammers/yeshql
http://hackage.haskell.org/package/yeshql
https://github.com/krisajenkins/yesql

the data in the database. You can query and transform
the data stored in the CSV files in-place, within your
Haskell application; generating new CSV files whenever
you wish, by using the DBFunctor package and the
powerful Embedded Domain Specific Language – called
Julius – that comes with it.

Typical examples of DBFunctor use-cases

◦ Build database-less Haskell apps Build your
data processing Haskell apps without the need to
import your data in a database for querying func-
tionality or any data transformations. Analyze
your CSV files in-place with plain Haskell code (for
Haskellers!).

◦ Data Preparation I.e., clean-up data, calculate de-
rived fields and variables, group by and aggregate
etc., in order to feed some machine learning algo-
rithm (for Data Scientists).

◦ Data Transformation in order to transform data
from Data Model A to Data Model B (typical use-
case for Data Engineers who perform ETL*/ELT
tasks for feeding Data Warehouses or Data Marts)

◦ Data Exploration Ad hoc data analysis tasks, in
order to explore a data set for several purposes such
as to find business insights and solve a specific busi-
ness problem, or to do data profiling in order to
evaluate the quality of the data coming from a data
source, etc (for Data Analysts).

◦ Business Intelligence Build reports, or dashboards
in order to share business insights with others and
drive decision making process (for BI power-users)
ETL stands for Extract Transform and Load and is

the standard technology for accomplishing data man-
agement tasks in Data Warehouses / Data Marts and
in general for preparing data for any analytic pur-
poses (Ad hoc queries, data exploration/data analysis,
Reporting and Business Intelligence, feeding Machine
Learning algorithms, etc.). ELT is a newer variation
of ETL and means that the data are first Loaded into
their final destination and then the data Transforma-
tion runs in-place (as opposed to running at a separate
staging area on possibly a different server)).

When to use it?

DBFunctor should be used whenever data manipula-
tion/transformation tasks over tabular data must be
performed and we wish to perform them with Haskell
code, yielding all the well-known (to Haskellers) bene-
fits from doing that.
DBFunctor provides an in-memory data structure

called RTable, which implements the concept of a Re-
lational Table (which, simply put, is a set of tuples)
and all relevant relational algebra operations (selection,
projection, inner join, outer joins, aggregations, group
by, set operations etc.).

Moreover, it implements the concepts of Column
Mapping (for deriving new columns based on existing
ones – by splitting, merging, or with any other possible
combination using a lambda expression or a function
to define the new value) and that of the ETL Map-
ping, which is the equivalent of a “mapping” in an ETL
tool (like Informatica, Talend, Oracle Data Integrator,
SSIS, Pentaho, etc.). With this powerful construct, one
can build arbitrary complex data pipelines, which can
enable any type of data transformations and all these
by writing Haskell code.

What Kinds of Data?

With the term “tabular data” we mean any type of
data that can be mapped to an RTable (e.g., CSV (any
delimiter), DB Table/Query, JSON etc). Essentially,
for a Haskell data type a to be “tabular”, one must
implement the following functions:

toRTable :: RTableMData -> a -> RTable
fromRTable :: RTableMData -> RTable -> a

These two functions implement the “logic” of trans-
forming data type a to/from an RTable based on spe-
cific RTable Metadata, which specify the column names
and data types of the RTable, as well as (optionally)
the primary key constraint, and/or alternative unique
constraints (i.e., similar information provided with a
CREATE TABLE statement in SQL).

By implementing these two functions, data type
a essentially becomes an instance of the type
class RTabular and thus can be transformed with
the DBFunctor package. Currently, we have
implemented a CSV data type (based one the
[Cassava](https://github.com/haskell-hvr/cassava) li-
brary), in order to enable data transformations over
CSV files.

Main Features

◦ No need to use a database, in order to process
your data – you can do it in-place with just your
Haskell code. Easy manipulation of your “tabu-
lar data” (e.g.,CSV files). Create arbitrary complex
data transformation flows for your tabular data with
ease, with just common Haskell code.

◦ Enables Functional Data Management by imple-
menting the Relational Table concept and exposing
all relational algebra operations (select, project, (in-
ner/outer)join, set operations, aggregations, group
by etc.) , as well as the “ETL Mapping” concept
(common to all ETL tools) as Haskell functions and
data types.

◦ Provides an Embedded Domain Specific Language
(EDSL) for ETL, called Julius, which enables to ex-
press complex data transformation flows (i.e., an ar-
bitrary combination of ETL operations) in a more

43

friendly manner (a Julius Expression), with Haskell
code (no special language for ETL scripting required
– just Haskell).

◦ printf-like formatting function, for print-
ing RTables on screen. Ideal for building
command-line applications (e.g., a REPL) for
manipulating tabular data (for example see
[hCSVDB](https://github.com/nkarag/haskell-
CSVDB)).

◦ It is applicable to any kind of data that can be pre-
sented in a tabular form. This is achieved by a simple
Type Class interface.

Future Vision

Apart from supporting other “tabular” data types (e.g.,
database tables/queries) our ultimate goal is, eventu-
ally to make DBFunctor the first declarative library
for ETL/ELT, by exploiting the virtues of functional
programming and Haskell strong type system in par-
ticular.
Here we use “declarative” in the same sense that SQL

is a declarative language for querying data. You only
have to state what data you want to be returned and
you don’t care about how this will be accomplished –
the DBMS engine does this for you behind the scenes.

In the same manner, ideally, one should only need
to code the desired data transformation from a source
schema to a target schema, as well as all the data in-
tegrity constraints and business rules that should hold
after the transformation and not having to define all
the individual steps for implementing the transforma-
tion, as it is the common practice today. This will yield
tremendous benefits compared to common ETL chal-
lenges faced today and change the way we build data
transformation flows. Just to name a few:
◦ ETL code correctness out-of-the-box
◦ No data quality errors due to ETL developer mis-

takes
◦ Self-documented ETL code (your documentation i.e.,

the source-to-target mapping and the business rules,
is also the only code you need to write!)

◦ Drastically minimize time-to-market for delivering
Data Marts and Data Warehouses, or simply imple-
menting Data Analysis tasks.
The above is inspired by the theoretical work on Cat-

egorical Databases by David Spivak.

Further reading

https://github.com/nkarag/haskell-DBFunctor

4.12 Data Structures, Data Types,
Algorithms

4.12.1 Algebraic graphs

Report by: Andrey Mokhov
Participants: Arseniy Alekseyev, Neil Mitchell
Status: usable, active development

Alga is a library for algebraic manipulation of graphs
in Haskell. The underlying theory is presented here.

Main idea

Consider the following data type, which is defined in
the top-level module Algebra.Graph of the library:

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

We can give the following semantics to the construc-
tors in terms of the pair (V,E) of vertices and edges:
◦ Empty constructs the empty graph (∅, ∅).
◦ Vertex x constructs a single vertex, i.e. ({x}, ∅).
◦ Overlay x y overlays graphs (Vx, Ex) and (Vy, Ey)

constructing (Vx ∪ Vy, Ex ∪ Ey).
◦ Connect x y connects graphs (Vx, Ex) and (Vy, Ey)
constructing (Vx ∪ Vy, Ex ∪ Ey ∪ Vx × Vy).
This figure shows examples of graph construction,

where + and ∗ stand for Overlay and Connect.

We can give an algebraic semantics to the graph con-
struction primitives by defining the type class:

class Graph g where
type Vertex g
empty :: g
vertex :: Vertex g → g
overlay :: g → g → g
connect :: g → g → g

44

https://github.com/nkarag/haskell-DBFunctor
https://github.com/snowleopard/alga-paper

Instances of the type class obey the following laws:
◦ (+, empty) is an idempotent commutative monoid.
◦ (∗, empty) is a monoid.
◦ ∗ distributes over +, e.g. x ∗ (y + z) = x ∗ y + x ∗ z.
◦ ∗ can be decomposed: x ∗ y ∗ z = x ∗ y+ x ∗ z+ y ∗ z.

This algebraic structure corresponds to unlabelled
directed graphs: every expression represents a graph,
and every graph can be represented by an expression.
The library defines several law-abiding instances and
polymorphic graph manipulation functions.

Current status

The library is documented, tested and usable. It is un-
der active development, so the API is subject to change.

Further reading

◦ http://hackage.haskell.org/package/algebraic-graphs
◦ https://github.com/snowleopard/alga-paper

4.12.2 JudyGraph

Report by: Tillmann Vogt
Status: experimental

Overview

JudyGraph is a graph library that can handle very
dense graphs with a million edges per node. As the
name suggests, the library is based on Judy arrays,
which is a very fast and memory efficient key-value stor-
age. The properties of this key-value storage guided
the development in that node and edge data had to be
compressed into 32 bit values with typeclasses. The
lowest bits of the edge are used to enumerate sev-
eral edges with the same property (which is encoded
in the higher bits). The documentation of Judy Ar-
rays promises very little CPU cache misses when only
the lowest bits are used successively. Another trick to
squeeze edge data into 32 bit is to interpret an edge
differently depending on the node index of the origin
node. Depending on the range in which the index is
the edge is interpreted differently.

Query EDSL

The library was developed as an alternative for the
Neo4j graph database. That’s why it also has a query
language that resembles Cypher:

query <- temp jgraph
(person --| raises |-- issue
--| references |-- issue)

where
person = node (nodes32 [0]) :: CyN
raises = edge (attr Raises) :: CyE
issue = node (labels [ISSUE]) :: CyN

Storing GHC Core of 1000s of libraries

Last year at Hal Leipzig, I showed that storing the ghc-
core code of 1000s of libraries in a graph could be of
great help for Haskell tooling. The goal is a function
search engine that can get better search results by using
PageRank. It should also be possible to click together
little programs, once a function is picked. The doc
folder contains the slides of this talk.

Future

Currently the library is targeted to load a large graph
from csv-files (that fits into memory) and to achieve
fast queries and do some post processing like adding
or updating edges, but no deletion. The future plan
is to implement persistence, get ACID guarantees and
implement missing Cypher commands. I would be glad
for hints.

Further reading

◦ https://github.com/tkvogt/judy-graph-db
◦ https://en.wikipedia.org/wiki/Judy_array

4.12.3 Conduit

Report by: Michael Snoyman
Status: stable

The conduit package is one of the most popular ap-
proaches to solving the streaming data problem in
Haskell. It provides a composable, resource-safe, and
constant memory solution to many common problems.
With the well developed conduit ecosystem around it,
you can easily deal with a variety of data sources (files,
memory, HTTP, TCP), file formats (XML, YAML,
JSON, CSV), advanced abstractions around parallel
processing and concurrency, and have access to a wide
range of helpful library functions to choose from.

Since the last HCAR, conduit has had a new major
release, version 1.3. The changes include:
◦ Drop monad-control and exceptions in favor of unlif-

tio
◦ Drop mmorph dependency
◦ Deprecate old type synonyms and operators

(see http://www.snoyman.com/blog/2016/09/
proposed-conduit-reskin)

◦ Drop finalizers from the library entirely
◦ Add the Conduit and Data.Conduit.Combinators

modules, stolen from conduit-combinators
This results in a simpler core, more consistent API,

and a more batteries-included experience in the conduit
library itself.

Under the surface, conduit makes use of coroutines

45

http://hackage.haskell.org/package/algebraic-graphs
https://github.com/snowleopard/alga-paper
https://github.com/tkvogt/judy-graph-db
https://en.wikipedia.org/wiki/Judy_array
http://www.snoyman.com/blog/2016/09/proposed-conduit-reskin
http://www.snoyman.com/blog/2016/09/proposed-conduit-reskin

and an inlined free monad transformer approach to
allow for a high level of flexibility in conduit com-
position. This is as opposed to other approaches,
like list-t or stream fusion, which trade in some of
that flexibility for performance. Some of these ideas
were explored in http://www.yesodweb.com/blog/2016/
02/first-class-stream-fusion. The end result is that,
for most I/O based applications, conduit provides a
great trade-off. For fully CPU-bound operations, you’ll
likely want to consider using something less flexible but
higher performance.

Conduit is intended to be a replacement to usage of
lazy I/O in Haskell code, allowing us to work on large
data sets, ensure resources are cleaned up promptly,
and retain composable programs. Please see the afore-
mentioned tutorial for many examples of how this
works.

The conduit package is designed to work well with
the resourcet package, which allows for guarantee-
ing resource finalization in continuation-based monads.
This is one of the main simplifications that conduit
achieved versus previous streaming approaches, such
as the enumerator package and other left-fold iterator
approaches.

There is a rich ecosystem of libraries available to
be used with conduit, including cryptography, network
communications, serialization, XML processing, and
more.

Many conduit libraries are available via Hackage,
Stackage Nightly, and LTS Haskell (just search for the
word conduit). The main repository includes a tutorial
on using the package (https://github.com/snoyberg/
conduit#readme).

Conduit includes a stream fusion framework for
optimizing away intermediate data creation. Un-
fortunately, these optimizations do not always trig-
ger due to problems with rewrite rule firing.
There is some consideration around making this
stream fusion a first-class entity that developers
can rely upon. See http://www.yesodweb.com/blog/
2016/02/first-class-stream-fusion and https://github.
com/snoyberg/foreach.

Further reading

◦ https://haskell-lang.org/library/conduit
◦ https://github.com/snoyberg/conduit#readme
◦ https://www.stackage.org/package/conduit
◦ https:

//www.stackage.org/package/conduit-combinators
◦ http://hackage.haskell.org/packages/archive/pkg-list.

html#cat:conduit

4.12.4 Transactional Trie

Report by: Michael Schröder
Status: stable

The transactional trie is a contention-free hash map for
Software Transactional Memory (STM). It is based on
the lock-free concurrent hash trie.

“Contention-free” means that it will never cause spu-
rious conflicts between STM transactions operating on
different elements of the map at the same time. Com-
pared to simply putting a HashMap into a TVar, it is
up to 8x faster and uses 10x less memory.

Further reading

◦ http://hackage.haskell.org/package/ttrie
◦ http://github.com/mcschroeder/thesis, in particular

chapter 3, which includes a detailed discussion of
the transactional trie’s design and implementation,
its limitations, and an evaluation of its performance.

4.12.5 Concurrent Trie

Report by: Michael Schröder
Status: stable

A non-blocking concurrent map implementation based
on the lock-free concurrent hash trie (aka Ctrie).
A hash trie is a tree whose leaves store key-value

bindings and whose nodes are implemented as arrays.
The concurrent trie extends the hash trie by adding
indirection nodes above every array node. Indirection
nodes have the property that they stay in the trie even
if the nodes above or below them change. When insert-
ing an element into the trie, instead of directly modify-
ing an array node, an updated copy of the array node is
created and an atomic compare-and-swap operation on
the indirection node is used to switch out the old array
node for the new one. If the compare-and-swap opera-
tion fails, the insert is retried from the beginning. This
simple scheme, where indirection nodes act as barri-
ers for concurrent modification, ensures that there are
no lost updates or race conditions of any kind, while
keeping all operations completely lock-free.

A more thorough discussion, including proofs of lin-
earizability and lock- freedom, can be found in the pa-
pers by Prokopec et al.

Further reading

◦ http://hackage.haskell.org/package/ctrie
◦ "Cache-Aware Lock-Free Concurent Hash Tries",

Aleksander Prokopec, Phil Bagwell, Martin Odersky
◦ "Concurrent Tries with Efficient Non-Blocking

Snapshots", Aleksander Prokopec, Nathan G.
Bronson, Phil Bagwell, Martin Odersky

46

http://www.yesodweb.com/blog/2016/02/first-class-stream-fusion
http://www.yesodweb.com/blog/2016/02/first-class-stream-fusion
https://github.com/snoyberg/conduit#readme
https://github.com/snoyberg/conduit#readme
http://www.yesodweb.com/blog/2016/02/first-class-stream-fusion
http://www.yesodweb.com/blog/2016/02/first-class-stream-fusion
https://github.com/snoyberg/foreach
https://github.com/snoyberg/foreach
https://haskell-lang.org/library/conduit
https://github.com/snoyberg/conduit#readme
https://www.stackage.org/package/conduit
https://www.stackage.org/package/conduit-combinators
https://www.stackage.org/package/conduit-combinators
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/package/ttrie
http://github.com/mcschroeder/thesis
http://hackage.haskell.org/package/ctrie

4.12.6 Random access zipper

Report by: Li-yao Xia
Status: Experimental, work in progress

The Random Access Zipper (RAZ) is a data structure
for representing sequences with efficient indexing and
edits.
The paper introducting it (with an implementation

in OCaml) reported performance that is competitive
with the more common Finger Tree structure.

I have translated it in Haskell, and started imple-
menting the same interface as Data.Sequence from
containers in Data.Raz.Sequence.
I reproduced the benchmarks from the paper as

well as those of containers. On average, Haskell’s
raz is slightly slower than OCaml’s, but faster than
containers for many operations.

Future work

The Data.Raz.Sequence module remains to be fin-
ished to fully match Data.Sequence.
There are certainly lots of optimizations opportuni-

ties.
Raz requires randomness, which results in some awk-

ward types in Haskell on the one hand (or, internal
(ab)use of unsafePerformIO to implement a pure in-
terface), but this explicitness can be informative on the
other hand, though I am not yet certain how that in-
formation may be usefully exploited.

Further reading

◦ Random Access Zippers: Simple, Purely-Functional
Sequences, K. Headley, M. A. Hammer.
https://arxiv.org/abs/1608.06009

◦ https://hackage.haskell.org/package/raz
◦ https://github.com/Lysxia/raz.haskell

4.12.7 Generic random generators

Report by: Li-yao Xia
Status: Experimental, active development

Description

The generic-random library automatically derives ran-
dom generators for most datatypes. It can be used in
testing for example, in particular to define instances of
QuickCheck’s Arbitrary.
The module Generic.Random.Generic leverages

GHC.Generics to handle common boilerplate in in-
stances of Arbitrary for simple datatypes.
However, for recursive datatypes, a naive generator is

likely to have problematic issues: non-termination, in-
conveniently biased distributions (too large, too small,
too full). Generic.Random.Data derives Boltzmann
samplers, introduced by Duchon et al. (2004). They
produce finite values of a given type and about a given

size (the number of constructors) in linear time; the dis-
tribution is uniform when conditioned to a fixed size:
two values with the same size occur with the same prob-
ability. An implementation can now be found in the
boltzmann-samplers library (it has been split out of
generic-random).

Status

Slowness of Boltzmann samplers I found out that
the FEAT library, which can derive random generators
for the same class of datatypes producing values of a
given size exactly and uniformly distributed, has much
better performance as well.

A more detailed explanation can be found at https:
//github.com/Lysxia/generic-random/issues/6.

In theory, Boltzmann samplers have the better
asymptotic complexity, but they come with an over-
head that appears hard to get rid of; boltzmann-
samplers only catches up to FEAT on data sizes that
seem too large to be practical (thousands of construc-
tors).

Due to that, I have lost some motivation to go for-
ward with boltzmann-samplers. I still remain open to
discussion and suggestions.

Generic and applicative interface In spite of the
above issues, I’ve started a rework of boltzmann-
samplers using GHC.Generics rather than SYB, and
a more general way to obtain generators from an ap-
plicative specification.

The branch can currently be found at: https://
github.com/Lysxia/boltzmann-samplers/tree/generics.

Further reading

◦ Boltzmann Samplers for the Random Generation of
Combinatorial Structures P. Duchon, P. Flajolet, G.
Louchard, G. Schaeffer.
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf

◦ https://hackage.haskell.org/package/generic-random
◦ https://github.com/Lysxia/generic-random
◦ https://hackage.haskell.org/package/testing-feat

4.12.8 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion provides a low-level domain-specific lan-
guage (DSL) for the formulation of dynamic programs
with emphasis on computational biology and linguis-
tics. We follow ideas established in algebraic dynamic
programming (ADP) where a problem is separated into
a grammar defining the search space and one or more
algebras that score and select elements of the search

47

https://arxiv.org/abs/1608.06009
https://hackage.haskell.org/package/raz
https://github.com/Lysxia/raz.haskell
https://github.com/Lysxia/generic-random/issues/6
https://github.com/Lysxia/generic-random/issues/6
https://github.com/Lysxia/boltzmann-samplers/tree/generics
https://github.com/Lysxia/boltzmann-samplers/tree/generics
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf
https://hackage.haskell.org/package/generic-random
https://github.com/Lysxia/generic-random
https://hackage.haskell.org/package/testing-feat

space. The DSL has been designed with performance
and a high level of abstraction in mind.
ADPfusion grammars are abstract over the type of

terminal and syntactic symbols. Thus it is possible to
use the same notation for problems over different in-
put types. We directly support grammars over strings,
sets (with boundaries, if necessary), trees, as well as
profile hidden Markov models, and profile stochastic
context-free grammars. Linear, context-free and mul-
tiple context-free languages are supported, where linear
languages can be asymptotically more efficient both in
time and space. ADPfusion is extendable by the user
without having to modify the core library. This allows
users of the library to support novel input types, as well
as domain-specific index structures. Currently, ADP-
fusion, as a core library, provides support for linear
string-based grammars. All above-mentioned variants
are provided as extension packages and can serve as a
guideline on how to expand the capabilities of ADPfu-
sion.

As an example of ADPfusion in practice, consider a
grammar that recognizes palindromes. Given the non-
terminal p, as well as parsers for single characters c and
the empty input ε, the production rule for palindromes
can be formulated as p→ c p c | ε.
The corresponding ADPfusion code is similar:

p (f <<< c % p % c ||| g <<< e ... h)

We need a number of combinators as “glue” and
additional evaluation functions f , g, and h. With
f c1 p c2 = p && (c1 ≡ c2) scoring a candidate,
g e = True, and h xs = or xs determining if the
current substring is palindromic.
This effectively turns the grammar into a memo-

function that then yields the optimal solution via a call
to axiom p. Backtracking for co- and sub-optimal solu-
tions is provided as well. The backtracking machinery
is derived automatically and requires the user to only
provide a set of pretty-printing evaluation functions.

As of now, code written in ADPfusion achieves per-
formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

The entry on generalized Algebraic Dynamic Pro-
gramming (→ 4.12.9) provides information on the as-
sociated high-level environment for the development of
dynamic programs.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://dx.doi.org/10.1145/2364527.2364559

4.12.9 Generalized Algebraic Dynamic
Programming

Report by: Christian Höner zu Siederdissen
Participants: Sarah J. Berkemer
Status: usable, active development

Generalized Algebraic Dynamic Programming (gADP)
provides a solution for high-level dynamic programs.
We treat the formal grammars underlying each DP
algorithm as an algebraic object which allows us to
calculate with them. gADP covers dynamic program-
ming problems of various kinds: (i) we include linear,
context-free, and multiple context-free languages (ii)
over sequences, trees, sets, and profile stochastic struc-
tures (profile HMMs and profile SCFGs); and (iii) pro-
vide abstract algebras to combine grammars in novel
ways.

Below, we describe the highlights our system offers
in more detail:

Grammars Products

We have developed a theory of algebraic operations
over linear and context-free grammars. This theory al-
lows us to combine simple “atomic” grammars to create
more complex ones.

With the compiler that accompanies our theory, we
make it easy to experiment with grammars and their
products. Atomic grammars are user-defined and the
algebraic operations on the atomic grammars are em-
bedded in a rigorous mathematical framework.

Our immediate applications are problems in compu-
tational biology and linguistics. In these domains, al-
gorithms that combine structural features on individ-
ual inputs (or tapes) with an alignment or structure
between tapes are becoming more commonplace. Our
theory will simplify building grammar-based applica-
tions by dealing with the intrinsic complexity of these
algorithms.

We provide multiple types of output. LATEX is avail-
able to those users who prefer to manually write the re-
sulting grammars. Alternatively, Haskell modules can
be created. TemplateHaskell and QuasiQuoting ma-
chinery is also available turning this framework into a
fully usable embedded domain-specific language. The

48

http://www.bioinf.uni-leipzig.de/Software/gADP
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559

DSL or Haskell module use ADPfusion (→ 4.12.8) with
multitape extensions, delivering “close-to-C” perfor-
mance.

Set Grammars

Most dynamic programming frameworks we are aware
of deal with problems over sequence data. There
are, however, many dynamic programming solutions to
problems that are inherently non-sequence like. Hamil-
tonian path problems, finding optimal paths through a
graph while visiting each node, are a well-studied ex-
ample.
We have extended our formal grammar library to

deal with problems that can not be encoded via linear
data types. This provides the user of our framework
with two benefits, easy encoding of problems based on
set-like inputs and construction of dynamic program-
ming solutions. On a more general level, the extension
of ADPfusion and the formal grammars library shows
how to encode new classes of problems that are now
gaining traction and are being studied.

If, say, the user wants to calculate the shortest
Hamiltonian path through all nodes of a graph, then
the grammar for this problem is:

s (f <<< s % n ||| g <<< n ... h)

which states that a path s is either extended by a node
n, or that a path is started by having just a first, single
node n. Functions f and g evaluate the cost of moving
to the new node. gADP has notions of sets with inter-
faces (here: for s) that provide the needed functionality
for stating that all nodes in s have been visited with
a final visited node from which an edge to n is to be
taken.

Tree Grammars

Tree grammars are important for the analysis of struc-
tured data common in linguistics and bioinformat-
ics. Consider two parse trees for English and German
(from: Berkemer et al. General Reforestation: Parsing
Trees and Forests) and the node matching probabilities
we gain when trying to align the two trees:

We can create the parse trees themselves with a nor-
mal context-free language on sequences. We can also
compare the two sentences with, say, a Needleman-
Wunsch style sequence alignment algorithm. However,
this approach ignores the fact that parse trees encode
grammatical structure inherent to languages. The com-
parison of sentences in English or German should be on

the level of the structured parse tree, not the unstruc-
tured sequence of words.

Our extension of ADPfusion (→ 4.12.8) to forests as
inputs allows us to deal with a variety of problems in
complete analogy to sequence-based dynamic program-
ming. This extension fully includes grammar products,
and automatic outside grammars.

Automatic Outside Grammars

Our third contribution to high-level and efficient dy-
namic programming is the ability to automatically con-
struct Outside algorithms given an Inside algorithm.
The combination of an Inside algorithm and its cor-
responding Outside algorithm allow the developer to
answer refined questions for the ensemble of all (sub-
optimal) solutions.

The image below depicts one such automatically cre-
ated grammar that parses a string from the Outside in.
T and C are non-terminal symbols of the Outside gram-
mar; the production rules also make use of the S and
B non-terminals of the Inside version.

One can, for example, not only ask for the most effi-
cient path through all cities on a map, but also answer
which path between two cities is the most frequented
one, given all possible travel routes. In networks, this
allows one to determine paths that are chosen with high
likelihood.

Multiple Context-Free Grammars

In both, linguistics and bioinformatics, a number of
problems exist that can only be described with formal
languages that are more powerful than context-free lan-
guages, but often have the form of two or more inter-
leaved context-free languages (say: anbncn). In RNA
biology, pseudoknotted structures can be modelled in
this way, while in linguistics, we can model languages
with crossing dependencies.

ADPfusion and the generalized Algebraic Dynamic
Programming methodology have been extended to han-
dle these kinds of grammars.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP/
◦ Product Grammars for Alignment and Folding

https://doi.org/10.1109/TCBB.2014.2326155
◦ Algebraic Dynamic Programming over General

Data Structures
https://doi.org/10.1186/1471-2105-16-S19-S2

49

http://www.bioinf.uni-leipzig.de/Software/gADP/
https://doi.org/10.1109/TCBB.2014.2326155
https://doi.org/10.1186/1471-2105-16-S19-S2

◦ Algebraic Dynamic Programming for Multiple
Context-Free Languages http://www.sciencedirect.
com/science/article/pii/S0304397516301797

◦ Algebraic Dynamic Programming on Trees
https://doi.org/10.3390/a10040135

4.12.10 Applications of Algebraic Dynamic
Programming

Report by: Christian Höner zu Siederdissen
Participants: Maria Beatriz Walter Costa
Status: usable, active development

Here, we showcase an application developed using gen-
eralized Algebraic Dynamic Programming (→ 4.12.9).

Temporal Ordering of Substitutions in RNA
Evolution

Joint work with Maria Beatriz Walter Costa, Dan Tul-
pan, Peter F. Stadler, and Katja Nowick.
The MutationOrder program tries to solve the fol-

lowing problem: We are given two RNA input se-
quences: (i) an ancestral sequence, and (ii) an extant
sequence which is related to the ancestral sequence but
has undergone a number of mutations (that are typi-
cally thought of to be beneficial).
We now have to determine the most likely order in

which single nucleotide mutations happened between
two RNA sequences. The algorithm that answers this
question is a variant of the travelling salesman problem.
First, we need to keep track of all the mutations (nodes
or “cities”) previously visited, instead of just the two
nodes indicating the most recent and current change as
these modify the cost of the current change. Second, it
is biologically possible that one or more hidden nodes
– corresponding to mutations and backmutations were
visited. This in turns leads to a multi-stage histomor-
phism problem we solve with our algorithm.

Further reading

◦ hackage
http://hackage.haskell.org/package/MutationOrder

◦ paper https://www.sciencedirect.com/science/article/
pii/S0022519317305222

4.12.11 Earley

Report by: Olle Fredriksson
Participants: Spiros Boosalis, Oleg Grenrus, Tero

Keinänen
Status: maintained

Earley is a parsing library that can parse all context-
free grammars, including tricky ones for example with
left-recursion. The grammars are specified in applica-
tive style.

A new feature in the Earley library is language gener-
ation. Given a grammar and a list of allowed input to-
kens, Earley can generate the members of the language
that the grammar generates. The following example
shows the language generated by a Roman numerals
grammar limited to the tokens ’V’, ’I’, and ’X’.

language (generator romanNumeralsGrammar "VIX")
= [(0, ""), (1, "I"), (5, "V"), (10, "X"), (20, "XX"),

(11, "XI"), (15, "XV"), (6, "VI"), (9, "IX"),
(4, "IV"), (2, "II"), (3, "III"), (19, "XIX"),
(16, "XVI"), (14, "XIV"), (12, "XII"), (7, "VII"),
(21, "XXI"), (25, "XXV"), (30, "XXX"),
(31, "XXXI"), (35, "XXXV"), (8, "VIII"),
(13, "XIII"), (17, "XVII"), (26, "XXVI"),
(29, "XXIX"), (24, "XXIV"), (22, "XXII"),
(18, "XVIII"), (36, "XXXVI"), (39, "XXXIX"),
(34, "XXXIV"), (32, "XXXII"), (23, "XXIII"),
(27, "XXVII"), (33, "XXXIII"), (28, "XXVIII"),
(37, "XXXVII"), (38, "XXXVIII")]

Further reading

https://github.com/ollef/Earley

4.12.12 Type Providers

Report by: Michał J. Gajda
Participants: Michał Gajda, Kevin Cheung, Guru

Devanla, and others
Status: Started

Discussion in the DataHaskell community suggested
that we need an extensive effort to make it easier to
parse different file formats, and hasten the setup of
DataHaskell projects.

Currently we have json-autotype (→ 4.9.3), and
Frames library that autodetect file format, generate ap-
propriate type description, and the parser.

We expanded our efforts to build type providers with
xml-typelift library written by Kevin Cheung with
advice of Michal - it generates type descriptions.

We also started building type-provider tool that
will catalog the existing parsers for common file for-
mats, and automaticaly generate import code. Proto-
type is available in GitHub repository.

Further reading

https://github.com/DataHaskell/type-providers

4.12.13 Transient

Report by: Alberto Gómez Corona
Status: active development

Transient is a monad/applicative/Alternative with bat-
teries included that brings the power of high level ef-
fects in order to reduce the learning curve and make

50

http://www.sciencedirect.com/science/article/pii/S0304397516301797
http://www.sciencedirect.com/science/article/pii/S0304397516301797
https://doi.org/10.3390/a10040135
http://hackage.haskell.org/package/MutationOrder
https://www.sciencedirect.com/science/article/pii/S0022519317305222
https://www.sciencedirect.com/science/article/pii/S0022519317305222
https://github.com/ollef/Earley
https://github.com/DataHaskell/type-providers
https://github.com/DataHaskell/type-providers

the Haskell programmer productive. Effects include
event handling/reactive, backtracking, extensible state,
indeterminism, concurrency, parallelism, thread con-
trol and distributed computing, publish/subscribe and
client/server side web programming among others.
All effects can be combined while maintaining alge-

braic and monadic composability using standard ap-
plicative, alternative and monadic combinators.

What is new in this report is:
◦ Restoring execution state from checkpoint
◦ Nodes can connect using websockets or relay com-

munications
◦ Secure communications with TLS
◦ Optimize local calls
◦ Exception management using backtracking
◦ HTML rendering support templates and template

edition !!??
Future work: Relay communications, Programmer-

defined serialization, Server side HTML rendering

Further reading

◦ gitter chat
◦ Transient tutorial
◦ distributed Transient, GIT repository
◦ Transient GIT repository
◦ An EDSL for Hard-working IT programmers
◦ The hardworking programmer II: practical

backtracking to undo actions
◦ Publish-suscribe variables
◦ Moving processes between nodes
◦ Parallel non-determinism
◦ streamimg, distributed streaming, mapReduce with

distributed datasets

4.12.14 Streamly: Streaming Concurrently

Report by: Harendra Kumar
Status: Active Development

Streamly is a natural extension of Haskell lists to
monadic streaming with concurrent composition:

import Streamly
import qualified Streamly.Prelude as S
main = runStream $

S.repeatM getLine
& fmap read
& S.filter even
& S.takeWhile (<= 9)
& fmap (\x -> x * x)
& S.mapM print

You can fold streams concurrently.

main = S.toList $ parallely $
foldMap delay [1 .. 10]
where

delay n = S.once $
threadDelay (n * 1000000) >> print n

Streams support nested and concurrent looping con-
structs. For example, to compute each square and the
sum of squares concurrently:

main = do
s <- S.sum $ asyncly $ do
x2 <- foldMap square [1 .. 10]
y2 <- foldMap square [1 .. 10]
return $ sqrt (x2 + y2)

print s
where square x = return $ x * x

The following example recursively lists a directory
tree concurrently. To see the elegance of the API, just
remove runStream and the asyncly combinator and the
code now becomes regular IO monad code.

main = runStream $ asyncly $
getCurrentDir >>= readdir
where
readdir d = do
(dirs, files) <- liftIO $ listDir d
liftIO $ mapM_ print files
foldMap readdir dirs

There is much more to Streamly, please see the
tutorial included in the package, and the streaming-
benchmarks (→ 4.12.15) repository on github for per-
formance comparison. There is a lot left to do; contri-
butions are needed and welcome.

Further reading

◦ https://github.com/composewell/streamly
◦ https:

//github.com/composewell/streaming-benchmarks

4.12.15 Streaming Performance Benchmarks

Report by: Harendra Kumar
Status: Active Development

There are quite a few Haskell streaming libraries pro-
viding streaming IO functionality. Apart from the dif-
ference in user level APIs they also use different de-
sign philosophies and the underlying stream or stream
processor types. It is interesting to know how the dif-
ferent approaches compare with each other in terms
of performance on micro-benchmarks. In addition to
helping users in choosing a library, comparative per-
formance measurement can also provide an insight into
the strengths and weaknesses of the design approaches
which can in turn help in choosing the best approach
when building a new library. It can also help in finding

51

https://gitter.im/Transient-Transient-Universe-HPlay/Lobby
https://github.com/agocorona/transient/wiki/Transient-tutorial
https://github.com/agocorona/transient-universe
https://github.com/agocorona/transient
https://www.fpcomplete.com/user/agocorona/EDSL-for-hard-working-IT-programmers
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/publish-subscribe-variables-transient-effects-v
https://www.fpcomplete.com/user/agocorona/moving-haskell-processes-between-nodes-transient-effects-iv
https://www.fpcomplete.com/user/agocorona/beautiful-parallel-non-determinism-transient-effects-iii
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1
https://github.com/composewell/streamly
https://github.com/composewell/streaming-benchmarks
https://github.com/composewell/streaming-benchmarks

performance issues and improving these libraries.
streaming-benchmarks package provides a common

framework to fairly measure and compare the perfor-
mance of the various monadic streaming libraries in-
cluding vector, streamly (→ 4.12.14), streaming, pipes,
conduit, machines and drinkery. The library also pro-
vides performance measurement of pure data structures
like list and vector for a comparison with the monadic
ones. The benchmarking code is pretty modular and
new streaming libraries can be added easily. The fig-
ures in this section show some of the benchmarks,
please see the README in the streaming-benchmarks
GitHub repository for more details.

A word of caution for end users, these are micro
benchmarks and whether they are significant for a par-
ticular use case in a macro setting depends on the con-
tribution of the micro-benchmark cost to the overall
performance of the application.

Further reading

https://github.com/composewell/streaming-benchmarks

4.12.16 proto-lens

Report by: Judah Jacobson
Status: active

The proto-lens library provides an API for protocol
buffers, a language-independent binary file format. Ca-
bal (→ 4.2.1) and Stack (→ 4.2.2) projects can use
proto-lens to autogenerate Haskell source bindings from
the original protocol buffer specifications.
The library uses modern Haskell language and li-

brary patterns for simpler and safer code, including:
◦ Composable field accessors via lenses and prisms
◦ Overloaded names for field accessors via type-level

literals and the OverloadedLabels extension
◦ Type-safe reflection and encoding/decoding of mes-
sages via GADTs
Version 0.3.0.0 of the library was recently released;

it includes usability improvements to the API and gen-
erating prisms for "oneof" fields (sum types). Ongoing
work includes better integration with gRPC and im-
proving the type error messages.

Further reading

◦ https://hackage.haskell.org/proto-lens
◦ https://google.github.io/proto-lens
◦ https://github.com/google/proto-lens

4.13 Parallelism and Concurrency

4.13.1 Eden

Report by: Jost Berthold and Rita Loogen
Participants: Rita Loogen, Lukas Schiller (Marburg),

Jost Berthold (Sydney), Florian Fey
(Münster), Yolanda Ortega-Mallén,
Mercedes Hidalgo, Fernando Rubio,

Alberto de la Encina (Madrid)
Status: available

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation, including automatic process communication (via
head-strict lazy lists) and synchronization. Higher-level
coordination is achieved by defining skeletons, ranging
from a simple parallel map to sophisticated master-
worker schemes. Eden’s interface includes the con-
cept of Remote Data, which provides implicit stream
communication channels between processes to compose
skeletons and define arbitrary communication topolo-
gies. A PA-monad enables the eager execution of user
defined sequences of Parallel Actions in Eden.

Standard reference: Rita Loogen, Yolanda Ortega-
Mallén, and Ricardo Peña: Parallel Functional Pro-
gramming in Eden, JFP 15(3), 2005, pages 431–475.

Tutorial: Rita Loogen: Eden - Parallel Func-
tional Programming in Haskell, in: V. Zsók, Z.
Horváth, and R. Plasmeijer (Eds.): CEFP 2011,
Springer LNCS 7241, 2012, pp. 142-206. (see also:
www.mathematik.uni-marburg.de/~eden/?content=cefp)

Implementation

Eden is currently implemented by modifications to the
Glasgow-Haskell Compiler GHC, extending its run-
time system to use multiple communicating instances
with independent heap management. The implemen-
tation supports MPI (or PVM) in cluster environ-
ments, and a shared memory mode solely based on

52

https://github.com/composewell/streaming-benchmarks
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://hackage.haskell.org/proto-lens
https://google.github.io/proto-lens
https://github.com/google/proto-lens
www.mathematik.uni-marburg.de/~eden/?content=cefp

OS support (Windows/Linux) on multicore platforms.
Source code of the modified GHC is available from
http://github.com/jberthold/ghc; there are Eden vari-
ants of every major/minor GHC version since 2008,
which can be built using only the usual GHC build
tools (and MPI if desired).
Building on this runtime support, the Haskell pack-

age edenmodules defines the language, and edenskels
provides a library of parallel skeletons. The
Eden libraries are available via Hackage and from
http://hex.mathematik.uni-marburg.de:8080/.
As an alternative, a library-only implementation of

Eden was recently developed by Florian Fey. This
implementation uses the network-fancy package for
networking, and the packman package for serialising
Haskell heap objects.
If you want to use Eden, we will be happy to provide

support, and delighted to receive your contributions to
its implementation — please contact us via github or
e-mail.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visu-
alisation of Eden program runs. Visual post-mortem
activity profiles are produced for processing elements
(machines), Eden processes and threads, including mes-
sage traffic. EdenTV is written in Haskell and is freely
available on hackage. It can also display thread views
of GHC eventlogs.
A second trace viewer tool is Eden-Tracelab,

by Bastian Reitemeier. It can visualise larger
trace files by using an external database. See
brtmr.de/2015/10/17/introducing-eden-tracelab.html.
The Eden skeleton library contains various skele-

tons for parallel processing, including parallel maps,
workpools, divide-and-conquer, and common process
topologies. Take a look on the Eden pages or the had-
dock documentation on hackage for an overview.

Applications

Eden’s simple API of explicit processes with implicit
communication enables rapid prototyping for parallel
programs at both the skeleton/library and the applica-
tion level. A range of research has investigated Eden
skeletons library optimisations and refinements. Eden
has been used to solve optimisation problems in contin-
uous domains. This has been done by defining parallel
skeletons dealing with different bioinspired metaheuris-
tics, such as Particle Swarm Optimization, Differential
Evolution, and Artificial Bee Colony.

Further reading

http://www.mathematik.uni-marburg.de/~eden

4.13.2 Auto-parallelizing Pure Functional Language
System

Report by: Kei Davis
Participants: Dean Prichard, David Ringo, Loren

Anderson, Jacob Marks
Status: active

The main project goal is the demonstration of a light-
weight, higher-order, polymorphic, pure functional lan-
guage implementation in which we can experiment
with automatic parallelization strategies, varying de-
grees of default function and constructor strictness, and
lightweight instrumentation.

We do not consider speculative or eager evaluation,
but do plan to infer strictness by program analysis, so
potential parallelism is dictated by the specified de-
gree of default strictness, language constructs for par-
allelism, and program analysis.

Our approach is similar to that of the Intel Labs
Haskell Research Compiler: we use GHC as a front-end
to generate STG, then exit to our own back-end com-
piler; additionally, we have native Mini-Haskell and
STG front-ends. As in their case we do not attempt
to use the GHC runtime. Our implementation is light-
weight in that we are not attempting to support or
recreate the vast functionality of GHC and its runtime.
This approach is also similar to Don Stewart’s except
that we generate C instead of Java.

Current Status

Currently we have a fully functioning serial implemen-
tation and a primitive proof-of-design parallel imple-
mentation. The most recent major development was
the bridge between GHC and our system. Thus we
can now compile and run Haskell programs with sim-
ple primitive and algebraic data types using GHC or
our own mini-Haskell front-end.

Additionally, we have developed a new strictness
analysis technique that is currently being implemented.

Immediate Plans

We are currently developing a more realistic parallel
runtime, and writing up and implementing the new
strictness analysis technique.

Undergraduate/post-graduate Internships

If you are a United States citizen or permanent resi-
dent alien studying computer science or mathematics
at the undergraduate level, or are a recent graduate,
with strong interests in Haskell programming, com-
piler/runtime development, and pursuing a spring, fall,
or summer internship at Los Alamos National Labora-
tory, USA, this could be for you.

We don’t expect applicants to necessarily already be
highly accomplished Haskell programmers—such an in-
ternship is expected to be a combination of further de-

53

http://github.com/jberthold/ghc
http://hex.mathematik.uni-marburg.de:8080/
brtmr.de/2015/10/17/introducing-eden-tracelab.html
http://www.mathematik.uni-marburg.de/~eden
https://dl.acm.org/citation.cfm?id=2503779
https://dl.acm.org/citation.cfm?id=2503779
http://www.cse.unsw.edu.au/~pls/thesis/dons-thesis.ps.gz

veloping your programming/Haskell skills and putting
them to good use. If you’re already a strong C hacker
we could use that too.

The application process requires a bit of
work so don’t leave enquiries until the last
day/month. Dates for terms beyond summer 2018
are best guesses based on prior years.

Term Application Deadline
Opening

Fall 2018 OPEN NOW May 31 2018
Spring 2019 July 2018 Oct 2018
Summer 2019 Oct 2018 Jan 2019

Email kei (at) lanl (dot) gov if interested in more
information, and feel free to pass this along.

Further reading

Email same address as above for the Trends in
Functional Programming 2016 paper about this
project.
Intern Loren Anderson did an interesting Haskell exer-
cise while here for this mathematics paper.

4.13.3 concurrent-output

Report by: Joey Hess
Status: stable, actively developed

A common problem with concurrent programs is that
output to the console has to be buffered or otherwise
dealt with to avoid multiple threads writing over top of
one-another. This is particularly a problem for progress
displays, and the output of external processes. The
concurrent-output library aims to be a simple solution
to this problem.
It includes support for multiple console regions,

which different threads can update independently.
Rather than the complexity of using a library such as
ncurses to lay out the screen, concurrent-output’s re-
gions are compositional; it acts as a kind of miniature
tiling window manager. This makes it easy to gener-
ate progress displays similar to those used by apt or
docker.

STM is used extensively in the implementation,
which simplified what would have otherwise been a
mess of nested locks. This made concurrent-output ex-
tensible using STM transactions. See this blog post.

Concurrent-output is used by git-annex, propellor,
and xdcc and patches have been developed to make
both shake and stack use it.

4.13.4 Déjà Fu: Concurrency Testing

Report by: Michael Walker
Status: actively developed

Déjà Fu is a concurrency testing tool for Haskell built
on top of the “concurrency” library, which provides a
typeclass abstraction over a large subset of the “base”
concurrency API, such as:
◦ Threading
◦ Capabilities
◦ Yielding and delaying
◦ IORefs, MVars, and Software Transactional Memory
◦ Relaxed memory for IORef operations
◦ Atomic IORef primitives
◦ Exceptions

In the last six months, in addition to the usual stream
of bugfixes and performance improvements, dejafu has:
overhauled the API, throwing out many confusingly
similar functions; implemented a snapshotting mech-
anism, to avoid redundancy in test cases with some
nontrivial set-up work; gained support for simplifying
execution traces; and switched to using a more conve-
nient record-based approach for configuration.

Further reading

◦ http://hackage.haskell.org/package/dejafu
◦ http://hackage.haskell.org/package/concurrency
◦ The 2015 Haskell Symposium paper is available at

http://bit.ly/1N2Lkw4; and a more up-to-date
technical report is available at
http://bit.ly/1SMHx4U.

◦ There are a number of blog posts on the
functionality and implementation at
https://www.barrucadu.co.uk.

54

http://ijmcs.future-in-tech.net/11.1/R-Anderson.pdf
http://joeyh.name/blog/entry/STM_Region_contents/
http://hackage.haskell.org/package/dejafu
http://hackage.haskell.org/package/concurrency
http://bit.ly/1N2Lkw4
http://bit.ly/1SMHx4U
https://www.barrucadu.co.uk

4.14 Systems programming

4.14.1 Haskell for Mobile development

Report by: Moritz Angermann
Participants: zw3rk.com and obsidian.systems
Status: in review

The set of languages to choose from for mobile devel-
opment is limited to those languages that can target
those ecosystems.

There have been ongoing efforts to make Haskell a
viable choice for Mobile Development for many years,
via the path of cross compilation.

A major obstacle for cross compilation with Haskell
is Template Haskell. Up until recently Template
Haskell was available only for stage2 compilers, while
cross compilers are stage1. One notable excep-
tion is GHCJS, which had Template Haskell sup-
port quite some time already via an out of process
Template Haskell solution. With the addition of
-fexternal-interpreter via iserv in recent GHCs,
which implements a very similar system, it is possible
to add TH support to stage1 cross compilers.

With the addition of linker for mach-o/aarch64,
elf/aarch64, and improvements to the elf/armv7 linker
in GHC, as well as a proxy mechanism that allows GHC
to communicate with a remote iserv on a different host
it is now possible to compile large chunks of TH code
with cross compilers targeting supported linker plat-
forms. File and Process IO pose interesting problems.

The necessary changes to GHC are all under review
and will hopefully make it into GHC 8.4 in time.

There are some additional challenges in the Haskell
ecosystem (e.g. cabal is not very cross compilation
aware) that need to be addressed before Haskell for
Mobile works out of the box.

A periodically force-pushed snapshot of the GHC
HEAD plus the open differentials is available, as well as
build scripts that build ghc for iOS and Android using
a custom toolchain, derived from the ghc-ios-scripts.
GHCSlave apps for iOS and Android that wrap iserv.

Further information covering the ongoing devel-
opment will be published at https://medium.com/
@zw3rk.

4.14.2 haskus-system

Report by: Sylvain Henry
Status: active

haskus-system is a system programming framework
directly on top of the Linux kernel system calls. It
doesn’t rely on usual interfaces (e.g., libc, libdrm, li-
binput, X11, wayland, etc.) to communicate with the
kernel. Everything is done in Haskell.

Notable changes since the last HCAR:
◦ Building a system is much easier. We just have

to declare the Linux version to use and some
other options in a system.yaml file and a tool
called haskus-system-build automatically down-
loads, builds and configures the dependencies (Linux,
SysLinux).

◦ The same tool can also be used to build ISO images
and to execute the system with QEMU.

◦ The user manual has been enhanced and a new demo
is available showing a simple terminal-like applica-
tion.
The source code is freely available (BSD3 license).

Further reading

http://www.haskus.org/system

4.14.3 Haskino

Report by: Andrew Gill
Participants: Mark Grebe
Status: active

Haskino is a Haskell development environment for
programming the Arduino microcontroller boards in a

55

zw3rk.com
obsidian.systems
https://github.com/angerman/ghc/tree/my-ghc
https://github.com/zw3rk/ghc-build-scripts
https://github.com/zw3rk/ghc-scripts
https://github.com/ghc-ios/ghc-ios-scripts
https://github.com/zw3rk/ghc-slave
https://medium.com/@zw3rk
https://medium.com/@zw3rk
http://www.haskus.org/system

high level functional language instead of the low level
C language normally used.
This work started with Levent Erkök’s hArduino

package. The original version of Haskino, extended
hArduino by applying the concepts of the strong re-
mote monad design pattern to provide a more efficient
way of communicating, and generalizing the controls
over the remote execution. In addition, it added a deep
embedding, control structures, an expression language,
and a redesigned firmware interpreter to enable stan-
dalone software for the Arduino to be developed using
the full power of Haskell.
The current version of Haskino continues to build

on this work. Haskino is now able to directly gener-
ate C programs from our Arduino Monad. This allows
the same monadic program to be quickly developed
and prototyped with the interpreter, then compiled to
C for more efficient operation. In addition, we have
added scheduling capability with lightweight threads
and semaphores for inter-thread synchronization.

The development has been active over the past year.
A paper was published at PADL 2016 for original ver-
sion, and there is a paper accepted for presentation at
TFP 2016 for the new scheduled and compiled version.

Further reading

◦ https://github.com/ku-fpg/haskino
◦ https://github.com/ku-fpg/haskino/wiki

4.14.4 STM32-Zombie

Report by: Marc Fontaine
Status: active

The STM32-Zombie project turns a STM32Fxxx mi-
cro controller into a Haskell programmable and flexi-
ble IO peripheral of your PC. The STM32Fxxx micro
controller family features a variety of powerful IO pe-
ripherals like GPIO ports, USART, SPI, I2C, USB, ADC,
timers, real time clock, etc. and STM32-Zombie al-
lows a Haskell program to control the complete set of
built-in micro controller peripherals.
The project is called STM32-Zombie because it shuts

down the controllers brain (the ARM CPU) and turns
it into a remote controlled zombie. It works with-
out any c-code, cross-compiler tool-chain, or firmware.
The STM32Fxxx peripherals use memory mapped con-
trol registers and the on-chip-debugging interface of the
controller allows Haskell to access all of the controllers

address space and registers. With help of the DMA
controller even hard-real-time applications, like high-
frequency sampling or generating of high-frequency
output patterns, are possible.

Minimal hardware requirements, for trying out this
project, are a mini STM32F103 breakout board and a
STLink V2 USB dongle simulator. Both parts are
available for less then $2 each. My test setup are mini
STM32F103 breakout boards. I have not tested the li-
brary with other members of the STM32Fxxx family but
the library is probably a good starting point for work
on other STM32Fxxx controllers.
The cabal package contains examples for LED blink-

ing, serial port, SPI, high-frequency ADC sampling,
control of WS1228B RGB LED strips, and more.
The library uses the naming conventions of the ST-

Microelectronics STM32F10x Firmware Library and
provides a mid-level abstraction of the hardware.

While access to all of the peripherals is possible, the
abstraction layer is still work-in-progress and does not
cover all of the peripherals yet.

Comments, suggestions, experience reports, and
patches are welcome. The project is open to any kind
of contribution.

Further reading

◦ https://github.com/MarcFontaine/stm32hs
◦ http://hackage.haskell.org/package/STM32-Zombie

56

https://github.com/ku-fpg/haskino
https://github.com/ku-fpg/haskino/wiki
https://github.com/MarcFontaine/stm32hs
http://hackage.haskell.org/package/STM32-Zombie

4.15 Mathematics, Simulations and High
Performance Computing

4.15.1 sparse-linear-algebra

Report by: Marco Zocca
Participants:
Status: Actively developed

This library provides common numerical analysis func-
tionality, without requiring any external bindings. It
is not optimized for performance yet, but it serves as
an experimental platform for scientific computation in
a purely functional setting.
Currently it offers :

◦ iterative linear solvers of the Krylov subspace type,
e.g. variants of conjugate gradient such as Conju-
gate Gradient Squared, BiConjugate Gradient and
BiCGSTAB

◦ linear eigensolvers, based on the QR algorithm and
the Rayleigh iteration

◦ matrix factorizations (namely, LU and QR)
◦ a number of utility functions such vector and matrix

norms, computation of the matrix condition number,
Givens’ rotation and Householder reflection matri-
ces, and partitioning/stacking/reshaping operations.
The initial motivation for this was on one hand the

lack of native Haskell tools for numerical computation,
and on the other a curiosity to reimagine scientific com-
puting through a functional lens.

The implementation relies on nested IntMap’s from
containers.
Currently, a new backend based on accelerate

is under development, along with a generalized in-
terface based on typeclasses, which will allow to
decouple algorithms from datastructures. Eventu-
ally, the accelerate-based backend and interface
will be provided as two distinct packages, and
sparse-linear-algebra will import from both and
provide a new reference implementation.
A usage tutorial on the major functionality is avail-

able in the README file, and all interface functions
are commented throughout the Haddock documenta-
tion.
sparse-linear-algebra is freely available on Hack-

age under the terms of a GPL-3 license; development
is tracked on GitHub, and all suggestions and contri-
butions are very much welcome.

Further reading

◦ https://github.com/ocramz/sparse-linear-algebra
◦ https:

//hackage.haskell.org/package/sparse-linear-algebra

4.15.2 aivika

Report by: David Sorokin
Status: stable

Aivika is a collection of open-source simulation libraries
written in Haskell. It is mainly focused on discrete
event simulation but has a partial support of system
dynamics and agent-based modeling too.

A key idea is that many simulation activities can
be modeled based on abstract computations such as
monads, streams and arrows. The computations are
composing units, which we can construct simulation
models from and then run.

Aivika consists of a few packages. The basic pack-
age introduces the simulation computations. There are
other packages that allow automating simulation ex-
periments. They can save the simulation results in files,
plot charts and histograms, collect the statistics sum-
mary and so on. There are also packages for distributed
parallel simulation and nested simulation based on the
generalized version of Aivika.

The core of Aivika is quite stable and well-tested.
The libraries work on Linux, OS X and Windows. They
are licensed under BSD3 and available on Hackage.

There are plans to find new application fields for the
libraries. The core libraries solve a very general task
and definitely can be applied to other fields too.

Further reading

http://hackage.haskell.org/package/aivika

4.15.3 General Decimal Arithmetic

Report by: Rob Leslie
Status: experimental, active development

Haskell’s Float and Double types are often used for
floating-point arithmetic, but sometimes they should
not be. Although the Haskell Language Report does
not require it, these types are typically implemented
using a binary floating-point representation, and con-
sequently do not always have an exact correspondence
with the way we write a value using decimal notation.
For example, the value 0.1 cannot be represented ex-
actly as a binary floating-point value, because there is
no integer solution to make c× 2q = 10−1.
This can lead to subtle errors in computations, as

well as the attendant grief and frustration when our
programs fail to meet user expectations. It is why
Mike Cowlishaw, editor of the IEEE 754 standard for
floating-point arithmetic, writes: “While suitable for
many purposes, binary floating-point arithmetic should
not be used for financial, commercial, and user-centric
applications or web services because the decimal data
used in these applications cannot be represented ex-
actly using binary floating-point.”

Mike Cowlishaw has an entire section of his web-
site devoted to General Decimal Arithmetic (URL be-

57

https://hackage.haskell.org/package/accelerate
https://github.com/ocramz/sparse-linear-algebra
https://hackage.haskell.org/package/sparse-linear-algebra
https://hackage.haskell.org/package/sparse-linear-algebra
http://hackage.haskell.org/package/aivika

low), including a complete specification that describes
the decimal arithmetic included in the updated IEEE
754-2008 standard. Decimal floating-point arithmetic
works just like its binary cousin, except it uses a radix
value of 10 internally instead of 2. This allows decimal
floating-point values to be represented exactly; there is
a one-to-one correspondence between the way a value
is written in decimal notation and the way it is rep-
resented internally. Consequently there are fewer sur-
prises when performing arithmetic with such values.
The decimal-arithmetic package is being developed

to provide a Haskell implementation of the General
Decimal Arithmetic specification. It offers a versatile
Decimal type constructor that is parameterized with
both a precision and a rounding algorithm; all arith-
metic using this type will be restricted to the given
precision, using the given rounding algorithm whenever
the result of a computation exceeds the precision.

Several type aliases are provided as a convenience.
For example, Decimal64 is a decimal floating-point
type with 16 digits of precision (comparable to Double)
that rounds half even. It is special because it also has
a Binary instance with a 64-bit encoded representa-
tion using the decimal64 interchange format. Similar
types Decimal32 (cf. Float) and Decimal128 are also
provided.
All the usual numeric, fractional, real, and floating-

point type classes have been fully implemented, allow-
ing decimal types to be used as drop-in substitutes for
Float and Double. In addition, a low-level arithmetic
monad is provided within which primitive operations
can be performed with complete control over the out-
come of exceptional conditions such as inexact results
or division by zero.
The package is currently in a usable state; extensive

testing is encouraged. While the package includes a
moderate test suite, future work will focus on ensuring
the implementation passes all of the test cases provided
on Mike Cowlishaw’s website.

Further reading

◦ http://speleotrove.com/decimal/
◦ https:

//hackage.haskell.org/package/decimal-arithmetic

4.16 Graphical User Interfaces

4.16.1 wxHaskell

Report by: Henk-Jan van Tuyl
Status: active development

wxHaskell 0.93.0.0 development is in progress, with,
amongst others, an adaptation to Cabal 2.0. A ca-
bal.project file is added to the GitHub repository and
the test sets are converted to Cabal packages, to be
able to compile everything with the experimental com-
mand "cabal new-build all". Preparations have been
made for the wxWidgets 3.1 binding, but more work is
needed for this.

New project participants are welcome.
wxHaskell is a portable and native GUI library for

Haskell. The goal of the project is to provide an indus-
trial strength GUI library for Haskell, but without the
burden of developing (and maintaining) one ourselves.

wxHaskell is therefore built on top of wxWidgets: a
comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with the native look-and-feel.

A screen printout of a sample wxHaskell program:

Further reading

https://wiki.haskell.org/WxHaskell

4.16.2 threepenny-gui

Report by: Heinrich Apfelmus
Status: active development

Threepenny-gui is a framework for writing graphical
user interfaces (GUI) that uses the web browser as a
display. Features include:
◦ Easy installation. Everyone has a reasonably mod-

ern web browser installed. Just install the library
from Hackage and you are ready to go. The library
is cross-platform.

58

http://speleotrove.com/decimal/
https://hackage.haskell.org/package/decimal-arithmetic
https://hackage.haskell.org/package/decimal-arithmetic
https://wiki.haskell.org/WxHaskell

◦ HTML + JavaScript. You have all capabilities of
HTML at your disposal when creating user inter-
faces. This is a blessing, but it can also be a curse,
so the library includes a few layout combinators to
quickly create user interfaces without the need to
deal with the mess that is CSS. A foreign function
interface (FFI) allows you to execute JavaScript code
in the browser.

◦ Functional Reactive Programming (FRP) promises
to eliminate the spaghetti code that you usually
get when using the traditional imperative style for
programming user interactions. Threepenny has an
FRP library built-in, but its use is completely op-
tional. Employ FRP when it is convenient and fall
back to the traditional style when you hit an impasse.
You can download the library from Hackage or Stack-

age and use it right away to write that cheap GUI you
need for your project. Here a screenshot from the ex-
ample code:

For a collection of real world applications that use the
library, have a look at the gallery on the homepage.

Status

The latest release is version 0.8.2.0. I would like to
thank co-maintainer Simon Jakobi for his diligent and
timely releases.
Compared to the previous report, several small ad-

ditions to the API have been made, the documentation
has been improved, and compatibility with the latest
GHC versions has been ensured. Moreover, I given a
tutorial about the library on HaL 2017, and the slides
are now available in the source repository.

Future development

The library is still in flux, API changes are likely in
future versions.

In the future, I hope to improve the functional re-
active programming (FRP) aspects of the framework,
for instance by using the reactive-banana library as
a basis. (→ 4.17.2)

Further reading

◦ Project homepage:
http://wiki.haskell.org/Threepenny-gui

◦ Example code:
https://github.com/HeinrichApfelmus/
threepenny-gui/tree/master/samples#readme

◦ Application gallery:
http://wiki.haskell.org/Threepenny-gui#Gallery

4.17 FRP

4.17.1 Yampa

Report by: Ivan Perez

Yampa (Github: http://git.io/vTvxQ, Hackage:
http://goo.gl/JGwycF), is a Functional Reactive Pro-
gramming implementation in the form of a EDSL to de-
fine Signal Functions, that is, transformations of input
signals into output signals (aka. behaviours in other
FRP dialects).

Yampa systems are defined as combinations of Sig-
nal Functions. Yampa includes combinators to create
constant signals, apply pointwise (or time-wise) trans-
formations, access the running time, introduce delays
and create loopbacks (carrying present output as future
input). Systems can be dynamic: their structure can
be changed using switching combinators, which apply
a different signal function at some point in the future.
Combinators that deal with collections enable adding,
removing, altering, pausing and unpausing signal func-
tions at will.

A suitable thinking model for FRP in Yampa is
that of signal processing, in which components (sig-
nal functions) transform signals based on their present
value and a component’s internal state. Components
can, therefore, be serialized, applied in parallel, etc.
Yampa’s signal functions implement the Arrow and Ar-
rowLoop typeclasses, making it possible to use both
arrow notation and arrow combinators.

Yampa combinators guarantee causality: the value of
an output signal at a time t can only depend on values
of input signals at times [0, t]. Efficiency is provided by
limiting history only to the immediate past, and letting
signals functions explicitly carry state for the future.
Unlike other implementations of FRP, Yampa enforces
a strict separation of effects and pure transformations:
all IO code must exist outside Signal Functions, making
systems easier to reason about and debug.

Yampa has been used to create both free/open-
source and commercial games. Examples of the
former include Frag (http://goo.gl/8bfSmz), a ba-
sic reimplementation of the Quake III Arena engine
in Haskell, and Haskanoid (http://git.io/v8eq3), an
arkanoid game featuring SDL graphics and sound with

59

http://wiki.haskell.org/Threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui/tree/master/samples#readme
https://github.com/HeinrichApfelmus/threepenny-gui/tree/master/samples#readme
http://wiki.haskell.org/Threepenny-gui#Gallery
http://git.io/vTvxQ
http://goo.gl/JGwycF
http://goo.gl/8bfSmz
http://git.io/v8eq3

Wiimote & Kinect support, which works on Win-
dows, Linux, Mac, Android, iOS and web browsers
(thanks to GHCJS). Examples of the latter include
Keera Studios (→ 5.2)’ Magic Cookies!, a Haskell
puzzle board game for iOS and Android available
on iTunes (https://goo.gl/6gB6sb) and Google Play
(https://goo.gl/0A8z6i).

Guerric Chupin (ENSTA ParisTech), un-
der the supervision of Henrik Nilsson (Func-
tional Programming Lab, University of Notting-
ham (→ 6.6)) has developed Arpeggigon (→ 4.18.4)
(https://gitlab.com/chupin/arpeggigon), an interac-
tive cellular automaton for composing groove-based
music. The aim was to evaluate two reactive but
complementary frameworks for implementing interac-
tive time-aware applications. Arpeggigon uses Yampa
for music generation, Gtk2HS for Graphical User
Interface, jack for handling MIDI I/O, and Keera Hails
to implement a declarative MVC architecture, based
on Reactive Values and Relations (RVRs). The results
have been written up in an application paper, Funky
Grooves: Declarative Programming of Full-Fledged
Musical Applications, presented at PADL 2017. The
code and an extended version of the paper are publicly
available (https://gitlab.com/chupin/arpeggigon).
Arpeggigon has also been demonstrated at FARM
2017, the Haskell eXchange 2017, and Haskell in
Leipzig 2017.

Yampa is under active development, with many
Haskellers participating and sending their contribu-
tions. Recent releases have featured a cleaner API
and new Signal Function combinators. The most re-
cent version, released this year, includes full documen-
tation. Our github repository includes development
branches with features that have been used to extend
Yampa for custom games. Some of these features have
been presented in the paper “Back to the Future: time
travel in FRP”, presented at the Haskell Symposium
2017, and will be included in future versions. Yampa

will now be extended with testing and debugging fea-
tures, which allow us to express temporal assertions
about FRP systems using Temporal Logic, and to use
QuickCheck to test those properties, as described in
the paper “Testing and Debugging Functional Reactive
Programming”, presented at ICFP 2017.

Extensions to Arrowized Functional Reactive Pro-
gramming are an active research topic. Last year
we published, together with Manuel Bärenz, a
monadic arrowized reactive framework called Dunai
(https://git.io/vXsw1), and a minimal FRP implemen-
tation called BearRiver. BearRiver provides all the core
features of Yampa, as well as additional extensions. We
have demonstrated the usefulness of our approach and
the compatibility with existing Yampa games by using
BearRiver to compile and execute the Haskanoid and
Magic Cookies! for Android without changing the code
of such games. These games are also available for iOS
and other platforms.

The Functional Programming Laboratory at the Uni-
versity of Nottingham (→ 6.6) is working on other ex-
tensions to make Yampa more general and modular, in-
crease performance, enable new use cases and address
existing limitations. To collaborate with our research,
please contact Ivan Perez () and Henrik Nilsson ().

There are several other channels that anyone can
use to reach other Yampa users and implementors,
including a mailing list and the #yampa IRC chan-
nel on freenode. We are also active on Haskell Café
and the facebook group Programming Haskell, and
subscribe to the Yampa keyword on StackOverflow.
We encourage all Haskellers to participate on Yampa’s
development by opening issues on our Github page
(http://git.io/vTvxQ), adding improvements, creating
tutorials and examples, and using Yampa in their next
amazing Haskell games. We thank the kind users who
have already sent us their contributions.

4.17.2 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a library for functional reactive
programming (FRP). FRP offers an elegant and concise
way to express interactive programs such as graphical
user interfaces, animations, computer music or robot
controllers. It promises to avoid the spaghetti code
that is all too common in traditional approaches to
GUI programming.

The goal of the library is to provide a solid founda-
tion.

60

https://goo.gl/6gB6sb
https://goo.gl/0A8z6i
https://gitlab.com/chupin/arpeggigon
https://gitlab.com/chupin/arpeggigon
https://git.io/vXsw1
mailto:ixp\protect \unhbox \voidb@x \hbox {\protect \protect \protect \begingroup \def \MessageBreak {
(scrreprt) }\let \protect \immediate\write \@unused {
Class scrreprt Warning: deprecated old font command `\tt' used.\MessageBreak You should note, that since 1994 LaTeX2e provides a\MessageBreak new font selection scheme called NFSS2 with several\MessageBreak new, combinable font commands. New KOMA-Script classes\MessageBreak have defined the old font commands like `\tt' only for\MessageBreak compatibility with LaTeX 2.09 document styles of\MessageBreak Script 2.0. These commands are deprecated and\MessageBreak undocumented at least since 2003. Since 2013,\MessageBreak KOMA-Script classes warn about soon removement of\MessageBreak these deprecated commands. Now, after two decades of\MessageBreak LaTeX2e, NFSS2, and KOMA-Script these commands will\MessageBreak not work any longer. If loading a package results in\MessageBreak this message you should contact the author of that\MessageBreak package and ask him to replace the depracted font\MessageBreak command `\tt', e.g., by `\normalfont \ttfamily '.\MessageBreak Otherwise you should reconfigure or replace the\MessageBreak package. If you have used the old font command\MessageBreak `\tt' yourself you should replace it, e.g., by\MessageBreak `\normalfont \ttfamily ' on input line 6466.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}ixp}cs.nott.ac.uk
mailto:nhn\protect \unhbox \voidb@x \hbox {\protect \protect \protect \begingroup \def \MessageBreak {
(scrreprt) }\let \protect \immediate\write \@unused {
Class scrreprt Warning: deprecated old font command `\tt' used.\MessageBreak You should note, that since 1994 LaTeX2e provides a\MessageBreak new font selection scheme called NFSS2 with several\MessageBreak new, combinable font commands. New KOMA-Script classes\MessageBreak have defined the old font commands like `\tt' only for\MessageBreak compatibility with LaTeX 2.09 document styles of\MessageBreak Script 2.0. These commands are deprecated and\MessageBreak undocumented at least since 2003. Since 2013,\MessageBreak KOMA-Script classes warn about soon removement of\MessageBreak these deprecated commands. Now, after two decades of\MessageBreak LaTeX2e, NFSS2, and KOMA-Script these commands will\MessageBreak not work any longer. If loading a package results in\MessageBreak this message you should contact the author of that\MessageBreak package and ask him to replace the depracted font\MessageBreak command `\tt', e.g., by `\normalfont \ttfamily '.\MessageBreak Otherwise you should reconfigure or replace the\MessageBreak package. If you have used the old font command\MessageBreak `\tt' yourself you should replace it, e.g., by\MessageBreak `\normalfont \ttfamily ' on input line 6467.
}\endgroup \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}nhn}cs.nott.ac.uk
http://mailman.cs.yale.edu/mailman/listinfo/yampa-users
https://www.facebook.com/groups/programming.haskell/
http://git.io/vTvxQ

◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ The library features an efficient implementation. No
more spooky time leaks, predicting space & time us-
age should be straightforward.
The library is meant to be used in conjunction with

existing libraries that are specific to your problem do-
main. For instance, you can hook it into any event-
based GUI framework, like wxHaskell or Gtk2Hs. Sev-
eral helper packages like reactive-banana-wx provide a
small amount of glue code that can make life easier.

Status

The latest release is version 1.1.0.1. Thanks to the
efforts of our co-maintainer Oliver Charles, the library
is available on Stackage. (→ 4.2.3) The library API is
stable and feature complete.

Future development

There still remains some work to be done to improve
the constant factor performance of the library. Also,
the library does not yet compile well to JavaScript with
GHC/JS, as there are some issues with garbage collec-
tion.
Several other improvements have been suggested on

the issue tracker, most notably renaming the Event
type to Events, as the plural provides a more apt de-
scription of the semantics of this type.

Further reading

◦ Project homepage:
http://wiki.haskell.org/Reactive-banana

◦ Example code:
http://wiki.haskell.org/Reactive-banana/Examples

4.17.3 Functional Reactive Agent-Based Simulation

Report by: Jonathan Thaler
Status: Experimental, active development

Agent-Based Simulation (ABS) is a methodology in
which a system is simulated in a bottom-up approach
by modelling the micro interactions of its constituting
parts, called agents, out of which the global macro sys-
tem behaviour emerges. So far mainly object-oriented
techniques and languages have been used in ABS. We
investigate how ABS can be implemented in a pure
functional language like Haskell. We build on the con-
cept of Functional Reactive Programming and Monadic
Stream Functions for which we use the library Dunai.
It is of most importance to us to keep our code pure

- except from the reactive main-loop all our code is

pure and does not make use of the IO Monad. This
guarantees us reproducibility of the simulation already
at compile time because no external sources of non-
determinism can influence the computations. We claim
that, in contrast to traditional object-oriented lan-
guages, this representation is conceptually cleaner and
opens the way to formally reason about ABS. For an in-
troduction into the concepts behind functional reactive
ABS we refer to our paper, submitted for Haskell Sym-
posium 2018: https://github.com/thalerjonathan/phd/
blob/master/public/purefunctionalepidemics/pfe.pdf.

We implemented the library chimera for this purpose
which implements all concepts (and more) described in
the paper. As use-cases we also implemented a number
of various well known ABS models e.g. Schelling Seg-
regation, Sugarscape, Agent_Zero. The code is freely
available but not stable as it currently serves for pro-
totyping for gaining insights into the problems faced
when implementing ABS in Haskell. The plan is to re-
lease the final implementation at the end of the PhD
as a stable and full-featured library on Hackage.

If you are interested in the on-going
research please contact Jonathan Thaler
(jonathan.thaler@nottingham.ac.uk).

Further reading

Repository: https://github.com/thalerjonathan/
chimera

61

http://wiki.haskell.org/Reactive-banana
http://wiki.haskell.org/Reactive-banana/Examples
https://github.com/thalerjonathan/phd/blob/master/public/purefunctionalepidemics/pfe.pdf
https://github.com/thalerjonathan/phd/blob/master/public/purefunctionalepidemics/pfe.pdf
https://github.com/thalerjonathan/chimera
https://github.com/thalerjonathan/chimera

4.18 Graphics and Audio

4.18.1 diagrams

Report by: Brent Yorgey
Participants: many
Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is always more to be
done, but diagrams is already quite fully-featured, with
a comprehensive user manual and a growing set of tu-
torials, a large collection of primitive shapes and at-
tributes, many different modes of composition, paths,
cubic splines, images, text, arbitrary monoidal annota-
tions, named subdiagrams, and more.

What’s new

Work on diagrams has slowed considerably since the
release of diagrams 1.4 in October 2016, due to time
constraints of the main developers. However, work on
diagrams 2.0 is slowly but steadily progressing, target-
ing a release during the summer of 2018. Updates will
include:
◦ Completely rewritten support for animations, with
much better semantics and updated examples and
tutorials.

◦ Death to the type-level “backend token”, which will
allow much easier creation of diagrams that simulta-
neously work with multiple backends.

◦ A complete rewrite of the library internals, resulting
in better performance and enabling cool new features
like diagram traversals.

◦ Lots of small updates and improvements.

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of its
size, generality, and enthusiastic embrace of advanced
type system features, diagrams can be intimidating to
would-be users and contributors; however, we are ac-
tively working on new documentation and resources
to help combat this. For more information on ways
to contribute and how to get started, see the Con-
tributing page on the diagrams wiki: http://haskell.org/
haskellwiki/Diagrams/Contributing, or come hang out in
the #diagrams IRC channel on freenode.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://haskell.org/haskellwiki/Diagrams
◦ http://github.com/diagrams
◦ http:

//ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
◦ http://www.youtube.com/watch?v=X-8NCkD2vOw

62

http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw

4.18.2 csound-expression

Report by: Anton Kholomiov
Status: active, experimental

The csound-expression is a Haskell framework for elec-
tronic music production. It’s based on very efficient
and feature rich software synthesizer Csound. The
Csound is a programming language for music produc-
tion. With CE we can generate the Csound code out of
high-level functional description. The project is avail-
able on Hackage and can be installed with cabal.
The new version 5.3 is out. Let’s look at the new

features.
The project was updated to compile with new GHC

8.4.x. Also it was tested on previous compilers down to
7.8. So the CE should compile across 7.8 to 8.4 GHC
compilers.

The library was updated to support latest Csound
stable release 6.10. There are many new DSP algo-
rithms available with this update. Among them there
are many great filters like emulation of Korg 35 analog
filter, or emulation of Roland TB-303 resonant filter,
zero-delay feedback filters. You can find them at the
module Csound.Air.Filter.

This release features new effects useful for guitars.
Like emulation of Roland Space echo (function tapeE-
cho or magnus) and ambient guitar effect (ambiEnv,
ambiGuitar). The Space echo simulates behaviour of
magnetic tape delay. Ambient guitar detects strike at-
tacks in the audio signal and smoothes them down, so
that they sound like pads.

New addition is built in BPM synchronization. User
can set global BPM with function setBpm. Then it’s
possible to use functions that synchronize Hzs (function
syn) and seconds (function takt) to global BPM. It’s
useful to align delay times and LFO rates with global
BPM. Also module csound-sampler was updated to re-
spond to changes in global BPM.

There are some additions to improve usability of
the library like adding new instances for rendering to
Csound files. Like rendering functions with arbitrary
number of inputs and outputs and rendering of func-
tions augmented with UIs.

Also documentation, examples and tutorial were up-
dated for recent changes.

New useful functions: brown for brownian noise, re-
sizeGui for scaling GUIs window size.

You can listen to the music that was made with
Haskell and the library csound-expression:
◦ https://soundcloud.com/anton-kho
◦ https://soundcloud.com/kailash-project

The library is available on Github and Hackage. See
the packages csound-expression, csound-sampler and
csound-catalog.

Further reading

◦ https://github.com/spell-music/csound-expression
◦ http:

//hackage.haskell.org/package/csound-expression
◦ http://csound.github.io/

4.18.3 Chordify

Report by: Jeroen Bransen
Participants: W. Bas de Haas, José Pedro Magalhães,

Dion ten Heggeler, Tijmen Ruizendaal,
Gijs Bekenkamp, Hendrik Vincent Koops

Status: actively developed

Chordify is a music player that extracts chords from
musical sources like Youtube, Deezer, Soundcloud, or
your own files, and shows you which chord to play
when. The aim of Chordify is to make state-of-the-
art music technology accessible to a broader audience.
Our interface is designed to be simple: everyone who
can hold a musical instrument should be able to use it.

Behind the scenes, we have a chord extraction
pipeline that is written in Haskell with some bindings
to C libraries. We use Kiss FFT for computing audio
features, which give information about the frequencies
in the audio signal. These features are the inputs for a
deep convolutional neural network that is trained and
evaluated with bindings to the Tensorflow library. Fi-
nally a Hidden Markov Model, which is also trained on
datasets of audio with manually annotated chords, is
used to pick the final chord for each beat. This model
encapsulates the rules of tonal harmony.

We have a distributed backend based on Cloud
Haskell, allowing us to easily scale up when the demand
increases. Our library currently contains about 6.5 mil-
lion songs, and about 7,500 new songs are Chordified
every day. We have also released an iOS app that allows
iPhone and iPad users to interface with our technology
more easily, and an Android version is being developed.

Chordify is a proud user of Haskell, but we have also
encountered some problems and limitations of the lan-
guage and the libraries. These include:
◦ A hard-to-find memory leak, where the memory us-

age of one of our live systems grew slowly over time.
After many failed debugging and profiling attempts,
this turned out to be a library that was a bit too lazy
in evaluating its data. Using a different library with
slightly stricter evaluation solved this problem.

63

https://soundcloud.com/anton-kho
https://soundcloud.com/kailash-project
https://github.com/spell-music/csound-expression
http://hackage.haskell.org/package/csound-expression
http://hackage.haskell.org/package/csound-expression
http://csound.github.io/
http://chordify.net
https://www.tensorflow.org/
http://haskell-distributed.github.io/
http://haskell-distributed.github.io/

◦ The signal processing libraries that we tried are not
efficient and complete enough. At Chordify we want
to do fast audio processing, for which Haskell im-
plementations are not available or nowhere near the
performance of C libraries.
The code for our old backend, called HarmTrace, is

available on Hackage, and we have ICFP’11, ISMIR’12,
ISMIR’16 and DLM’17 publications describing some of
the technology behind Chordify.

Further reading

https://chordify.net

4.18.4 The Arpeggigon

Report by: Henrik Nilsson
Participants: Henrik Nilsson, Guerric Chupin, Jin Zhan
Status: Experimental: working but not yet feature

complete

The Arpeggigon is a Functional Reactive Musical Au-
tomaton developed by Henrik Nilsson and summer in-
terns Guerric Chupin and Jin Zhan. The work took
place in the Functional Programming Laboratory, Uni-
versity of Nottingham (→ 6.6), which Guerric now has
joined as a PhD student.
The Arpeggigon was developed as a case study for

evaluating the combination of two reactive but comple-
mentary frameworks for implementing interactive time-
aware applications: (FRP) as embodied by Yampa and
Reactive Values and Relations (RVR). Hybrid (mixed
continuous and discrete time) aspects were of particu-
lar interest.

We choose a musical application as music is a domain
with hybrid temporal aspects at its core. The goal
was to develop a full-fledged application in terms of
look and feel and interoperability with standard MIDI
software and hardware as would be found in a studio
setting. To that end, we opted for using the standard
GUI framework GTK+ for the user interface and the
Jack framework for MIDI connectivity. Additionally,
we wanted an application that is interesting and fun in
its own right.

The Arpeggigon was inspired by the hardware re-
acTogon: a “chain reactive performance arpeggiator”.
It’s essentially a cellular automaton based around the
Harmonic Table: a way to arrange musical notes on a
hexagonal grid. Play heads bounce between tokens ar-
ranged on the hexagonal grid. Whenever a play head
hits a token, a note corresponding to the position of the
token on the grid is played. The picture below shows
what the Arpeggigon looks like:

The case study demonstrates that FRP in combina-
tion with RVR is a compelling combination for build-
ing this kind of applications. FRP, in the synchronous
dataflow tradition, aligns with the temporal and declar-
ative nature of music, while RVR allows declarative in-
terfacing with external components as needed for full-
fledged musical applications.

The results have been written up in an application
paper, “Funky Grooves: Declarative Programming of
Full-Fledged Musical Applications”, that was presented
at PADL 2017. There is also an extended technical
report version and videos as well as slides from talks
(PADL, FARM, Haskell eXchange, etc).

The code is publicly available on GitLab.
The next steps are to make the Arpeggigon more

feature complete and to improve its interoperability in
the context of a MIDI studio by improving its timing.

Further reading

◦ Paper:
http://eprints.nottingham.ac.uk/38747/

◦ Technical Report:
http://eprints.nottingham.ac.uk/38657/

◦ Haskell eXchange 2017 talk (video)
◦ London Haskell Meetup talk (slides):

http://www.cs.nott.ac.uk/~psznhn/talks.html#
lhmjune2017

◦ Computerphile overview:
https://www.youtube.com/watch?v=v0HIkFR1EN4

◦ Video Demo:
https://www.youtube.com/watch?v=yJteVN8OQYk

◦ Repository:
https://gitlab.com/chupin/arpeggigon

64

http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
https://www.ris.uu.nl/ws/files/24258152/integration.pdf
https://arxiv.org/abs/1706.09552
https://chordify.net
http://eprints.nottingham.ac.uk/38747/
http://eprints.nottingham.ac.uk/38657/
https://skillsmatter.com/skillscasts/10883-the-arpeggigon-a-functional-reactive-musical-automaton
http://www.cs.nott.ac.uk/~psznhn/talks.html#lhmjune2017
http://www.cs.nott.ac.uk/~psznhn/talks.html#lhmjune2017
https://www.youtube.com/watch?v=v0HIkFR1EN4
https://www.youtube.com/watch?v=yJteVN8OQYk
https://gitlab.com/chupin/arpeggigon

4.18.5 Gifcurry

Report by: David Lettier
Status: actively maintained

Gifcurry is an open source video to GIF maker writ-
ten in Haskell. Powered by the core library, Gifcurry
has both a command-line and graphical user interface.
Features include a video preview, seeking, trimming,
croping, text overlays with font selection, setting the
width and output quality, and saving the results as a
GIF or video. Platforms supported include Linux and
macOS.

Gifcurry is actively maintained and continuously im-
proved. A two year old project, Gifcurry has had 17
releases at the time of this writing. The most recent
version was released in April of 2018.

Gifcurry’s source is on GitHub and Hackage. Linux
users can download and install Gifcurry via the Arch
User Repository, Snapcraft, AppImageHub, or the
GitHub releases page. There is a convenient build
script for macOS users and a Homebrew package is
planned.

Future improvements include being able to add mul-
tiple text overlays and having them show in the video
preview. Currently, Gifcurry allows you to add two
text overlays (one for the top and bottom) that last
the entire duration. Instead, you’ll be able to add as
many as you wish, specifying the start time, duration,
font, and location for each.

Further reading

https://github.com/lettier/gifcurry

4.18.6 Movie Monad

Report by: David Lettier
Status: actively maintained

Movie Monad is an open source desktop video player
written in Haskell. Its run-time dependencies include
GTK+ and GStreamer. To interface with GTK+ and
GStreamer, Movie Monad uses the haskell-gi bindings.
Features include the usual playback and volume con-
trols, full screen mode, subtitle support, variable speed
playback, and a command line interface. Users can play
both local and remote files from the web.

While there already exists a wide array of video play-
ers, there is still room for Movie Monad with its in-
tuitive interface and unobtrusive feature set. Movie
Monad falls somewhere between mpv’s minimalism and
VLC’s verbosity. The main reason for the project’s ex-
istence, however, is to showcase Haskell’s capabilities
of targeting the desktop by using Haskell to build a
nontrivial, multimedia GUI application.

The project is still ongoing and actively maintained.
Originally, Movie Monad was web based. It used Fay,
Clay, and Blaze to generate the JavaScript, CSS, and
HTML needed to run the program with Electron. How-
ever, the project switched to GTK+ and GStreamer for
portability and performance reasons.

Movie Monad’s source is on GitHub and Hackage.
Linux users can download and install Movie Monad
via the Arch User Repository, Flathub, Snapcraft, Ap-
pImageHub, GNOME Software, or the GitHub releases
page. There is a convenient build script for macOS
users and a Homebrew package is planned.

Two new features are planned for Movie Monad. In
addition to browsing through local files, Movie Monad
will support browsing through podcast feeds. The
other planned feature involves image recognition al-
lowing users to search through a video much like they
would a text document. If you see a feature Movie
Monad should have, be sure to leave your feedback on
the GitHub issues page.

Further reading

https://github.com/lettier/movie-monad

65

https://github.com/lettier/gifcurry
https://github.com/lettier/movie-monad

4.19 Games

4.19.1 Nomyx

Report by: Corentin Dupont
Status: stable, actively developed

Nomyx is a unique game where you can change the rules
of the game itself, while playing it! In fact, changing
the rules is the goal of the game. Changing a rule
is considered as a move. The players can submit new
rules or modify existing ones, thus completely changing
the behavior of the game through time. The rules are
managed and interpreted by the computer. They must
be written in the Nomyx language, based on Haskell.
This is the first complete implementation of a Nomic
game on a computer.
At the beginning, the initial rules are describing:

◦ How to add new rules and change existing ones. For
example a unanimity vote is necessary to have a new
rule accepted.

◦ How to win the game. For example you win the game
if you have 5 rules accepted.
The V1.0 has been released!

◦ a completely new web GUI
◦ a library of ready-made rules
◦ add client command line interface
◦ a REST API
◦ a new event programming library called ’Imprevu’
◦ container-based deployment

The game has been presented in Zurihac 2017, where
we playing several live matches. A lot of learning ma-
terial is available, including videos, a tutorial, a FAQ,
and API documentation.

If you like Nomyx, you can help! There is a develop-
ment mailing list (check the website).

Further reading

http://www.nomyx.net

4.19.2 EtaMOO

Report by: Rob Leslie
Status: experimental, active development

EtaMOO is a new, experimental MOO server imple-
mentation written in Haskell. MOOs are network ac-
cessible, multi-user, programmable, interactive systems
well suited to the construction of text-based adventure
games, conferencing systems, and other collaborative
software. The design of EtaMOO is modeled closely
after LambdaMOO, perhaps the most widely used im-
plementation of MOO to date.
Unlike LambdaMOO which is a single-threaded

server, EtaMOO seeks to offer a fully multi-threaded
environment, including concurrent execution of MOO
tasks. To retain backward compatibility with the gen-
eral MOO code expectation of single-threaded seman-
tics, EtaMOO makes extensive use of software trans-

actional memory (STM) to resolve possible conflicts
among simultaneously running MOO tasks.

EtaMOO fully implements the MOO programming
language as specified for the latest version of the Lamb-
daMOO server, with the aim of offering drop-in com-
patibility. Several enhancements are also planned to be
introduced over time, such as support for 64-bit MOO
integers, Unicode MOO strings, and others.

Recent development has brought the project to a
largely usable state. A major advancement was made
by integrating the vcache library from Hackage for per-
sistent storage — a pairing that worked especially well
given EtaMOO’s existing use of STM. Consequently,
EtaMOO now has a native binary database backing
with continuous checkpointing and instantaneous crash
recovery. Furthermore, EtaMOO takes advantage of
vcache’s automatic value cache with implicit structure
sharing, so the entire MOO database need not be held
in memory at once, and duplicate values (such as object
properties) are stored only once in persistent storage.

Further development has incorporated optional sup-
port for the lightweight object WAIF data type as origi-
nally described and implemented for the LambdaMOO
server. The vcache library was especially useful in im-
plementing the persistent shared WAIF references for
EtaMOO.

Future EtaMOO development will focus on feature
parity with the LambdaMOO server, full Unicode sup-
port, and several additional novel features.

Latest development of EtaMOO can be seen on
GitHub, with periodic releases also being made avail-
able through Hackage.

Further reading

◦ https://github.com/verement/etamoo
◦ https://hackage.haskell.org/package/EtaMOO
◦ https://en.wikipedia.org/wiki/MOO

4.19.3 Tetris in Haskell in a Weekend

Report by: Michael Georgoulopoulos
Status: actively developed

I made a Tetris in Haskell, while learning the ba-
sics of the language, in order to gain some hands-on
experience, and also to convince myself that Haskell is
a practical language that’s worth the time investment
and the steep learning curve.

66

http://www.nomyx.net
https://github.com/verement/etamoo
https://hackage.haskell.org/package/EtaMOO
https://en.wikipedia.org/wiki/MOO

I am now convinced that that is the case. In fact, I’m
amazed at how concise and readable Haskell code can
be, and I can already acknowledge Haskell as a tool for
productivity, predictability and reliability, which are
without a doubt, properties most software developers
could benefit from.

I have documented this experience as a series of
thoughts from the point of view of a beginner, in the
form of a blog post titled “Tetris in Haskell in a Week-
end”

I also documented the project’s evolution in small
increments as a git repository that might be of interest
to other beginners. The repository can be accessed via
github, and contributions are welcome

Further reading

https://github.com/mgeorgoulopoulos/
TetrisHaskellWeekend

4.19.4 Barbarossa

Report by: Nicu Ionita
Status: actively developed

Barbarossa is a UCI chess engine written completely in
Haskell. UCI is one of the two most used protocols used
in the computer chess scene to communicate between a
chess GUI and a chess engine. This way it is possible
to write just the chess engine, which then works with
any chess GUI.
I started in 2009 to write a chess engine under the

name Abulafia. In 2012 I decided to rewrite the eval-
uation and search parts of the engine under the new
name, Barbarossa.

My motivation was to demonstrate that even in a
domain in which the raw speed of a program is very im-
portant, as it is in computer chess, it is possible to write
competitive software with Haskell. The speed of Bar-
barossa (measured in searched nodes per second) is still
far behind comparable engines written in C or C++.
Nevertheless Barbarossa can compete with many en-
gines - as it can be seen on the CCRL rating lists,
where is it currently listed with a strength of about
2200 ELO.

Barbarossa uses a few techniques which are well
known in the computer chess scene:
◦ in evaluation: material, king safety, piece mobility,

pawn structures, tapped evaluation and a few other
less important features

◦ in search: principal variation search, transposition
table, null move pruning, killer moves, futility prun-
ing, late move reduction, internal iterative deepen-
ing.
I still have a lot of ideas which could improve the

strength of the engine, some of which address a higher
speed of the calculations, and some, new chess related
features, which may reduce the search tree.

The engine is open source and is published on github.
The last released version is Barbarossa v0.4.0 from De-
cember 2016.

Further reading

◦ https://github.com/nionita/Barbarossa/releases
◦ http://www.computerchess.org.uk/ccrl/404/

4.19.5 tttool

Report by: Joachim Breitner
Status: active development

The Ravensburger Tiptoi R© pen is an interactive toy
for kids aged 4 to 10 that uses OiD technology to react
when pointed at the objects on Ravensburger’s Tiptoi
books, games, puzzles and other toys. It is programmed
via binary files in a proprietary, undocumented data
format.

We have reverse engineered the format, and created
a tool to analyze these files and generate our own. This
program, called tttool, is implemented in Haskell,
which turned out to be a good choice: Thanks to
Haskell’s platform independence, we can easily serve
users on Linux, Windows and OS X.

The implementation makes use of some nice Haskell
idioms such as a monad that, while parsing a binary,
creates a hierarchical description of it and a writer
monad that uses lazyness and MonadFix to reference
positions in the file “before” these are determined.

Further reading

◦ https://github.com/entropia/tip-toi-reveng
◦ http://tttool.entropia.de/ (in German)
◦ http://funktionale-programmierung.de/2015/04/15/

monaden-reverse-engineering.html (in German)

67

https://cdry.wordpress.com/2016/10/11/tetris-in-haskell-in-a-weekend/
https://cdry.wordpress.com/2016/10/11/tetris-in-haskell-in-a-weekend/
https://github.com/mgeorgoulopoulos/TetrisHaskellWeekend
https://github.com/mgeorgoulopoulos/TetrisHaskellWeekend
https://github.com/nionita/Barbarossa/releases
http://www.computerchess.org.uk/ccrl/404/
https://github.com/entropia/tip-toi-reveng
http://tttool.entropia.de/
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html

4.19.6 Asteroids

Report by: Kareem Salah
Status: available, actively developed

Asteroids is a Haskell version of the known game with
the same name. It was developed as learning project.
The main aim of the game is to score the highest

score by shooting the coming asteroids while avoiding
them and remembering that the player only has three
spaceships.

The implementation simulates the space physics and
follows the original rules. In addition, we added a
multi-player system to invite friends to join the cam-
paign.

Our team found it a good opportunity to develop
this using Haskell. By using lazy evaluation techniques
we were able to provide a stable framerate.

Further reading

https://github.com/kareem2048/Asteroids

4.20 Data Tracking

4.20.1 hledger

Report by: Simon Michael
Status: stable, actively developed

hledger is a set of cross-platform tools (and Haskell
libraries) for tracking money, time, or any other com-
modity, using double-entry accounting and a simple
future-proof text file format.

It is an enhanced, well-documented reimplementa-
tion of plain text accounting in Haskell, inspired by
John Wiegley’s Ledger program.
hledger aims to be a reliable and practical tool for

daily use, and provides command-line, curses-style, and
web interfaces.
hledger is released under GNU GPLv3+.
Project activity has been continuous since our last

update in November 2016.
Some notable developments:

◦ The community has grown in size and activity. The
number of committers has doubled, from 42 to 84.

◦ Website, documentation, CI and project infrastruc-
ture have been improved

◦ A cross-platform installer script has been added
◦ Many fixes, refinements, and new features have been

added, such as:
◦ balance assignments
◦ pivot
◦ periodic transactions
◦ automated postings
◦ budget reports
◦ normal-positive reports
◦ HTML output
◦ custom account sorting
◦ import command
◦ live reloading in hledger-ui

hledger is available from the hledger.org website,
Github, Hackage, or Stackage. It is packaged for
a number of systems (Windows, Homebrew, most
GNU/Linux distros, NixOS, Sandstorm..) and build-
able on other systems supporting GHC (freeBSD,
openBSD..).

Further reading

http://hledger.org

4.20.2 gipeda

Report by: Joachim Breitner
Status: active development

Gipeda is a tool that presents data from your program’s
benchmark suite (or any other source), with nice tables
and shiny graphs. Its name is an abbreviation for “Git

68

https://github.com/kareem2048/Asteroids
http://hledger.org

performance dashboard” and highlights that it is aware
of git, with its DAG of commits.

Gipeda powers the GHC performance dashboard at
http://perf.haskell.org, but it builds on Shake and cre-
ates static files, so that hosting a gipeda site is easily
possible.

Further reading

https://github.com/nomeata/gipeda

4.20.3 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
The program works on Linux, Windows, and MacOS

X.

Further reading

◦ http://arbtt.nomeata.de/
◦ http://www.joachim-breitner.de/blog/archives/

336-The-Automatic-Rule-Based-Time-Tracker.html
◦ http://arbtt.nomeata.de/doc/users_guide/

4.20.4 propellor

Report by: Joey Hess
Status: actively developed

Propellor is a configuration management system for
Linux that is configured using Haskell. It fills a simi-
lar role as Puppet, Chef, or Ansible, but using Haskell
instead of the ad-hoc configuration language typical of
such software. Propellor is somewhat inspired by the
functional configuration management of NixOS.
A simple configuration of a web server in Propellor

looks like this:

webServer :: Host
webServer = host "webserver.example.com"

& ipv4 "93.184.216.34"
& staticSiteDeployedTo "/var/www"

‘requires‘ Apt.serviceInstalledRunning "apache2"
‘onChange‘ Apache.reloaded

staticSiteDeployedTo :: FilePath→ Property DebianLike

There have been many benefits to using Haskell for
configuring and building Propellor, but the most strik-
ing are the many ways that the type system can be
used to help ensure that Propellor deploys correct and
consistent systems. Beyond typical static type bene-
fits, GADTs and type families have proven useful. For
details, see the blog.

An eventual goal is for Propellor to use type level
programming to detect at compile time when a host has
eg, multiple servers configured that would fight over the
same port. Moving system administration toward using
types to prove correctness properties of the system.

Propellor recently has been extended to support
FreeBSD, and this led to Propellor properties including
information about the supported OSes in their types.
That was implemented using singletons to represent the
OS, and functions over type level lists. For details, see
this blog post.

Propellor has also been extended to be able to create
bootable disk images. This allows it to not only con-
figure existing Linux systems, but manage their entire
installation process.

Further reading

http://propellor.branchable.com/

69

http://perf.haskell.org
https://github.com/nomeata/gipeda
http://arbtt.nomeata.de/
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://arbtt.nomeata.de/doc/users_guide/
http://propellor.branchable.com/posts/
https://joeyh.name/blog/entry/type_safe_multi-OS_Propellor/
http://joeyh.name/blog/entry/propelling_disk_images/
http://joeyh.name/blog/entry/propelling_disk_images/
http://propellor.branchable.com/

4.21 Others

4.21.1 leapseconds-announced

Report by: Björn Buckwalter
Status: stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondMap with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.
Version 2017.1 of leapseconds-announced was re-

leased to support the change from LeapSecondTable to
LeapSecondMap in time-1.7. It contains all leap sec-
onds up to 2017-01-01. A new version will be uploaded
if/when the IERS announces a new leap second.

Further reading

https://hackage.haskell.org/package/
leapseconds-announced

4.21.2 clr-haskell (Haskell interoperability with the
Common Language Runtime)

Report by: Tim Matthews
Participants: José Iborra López
Status: experimental, actively developed

clr-haskell is a project to enable the use of code within
the common language runtime (.NET / Mono / Core-
CLR) from GHC Haskell.
This project provides 2 primary flavours for a devel-

oper to interop between the CLR & Haskell:
The Haskeller’s strongly typed flavour. Takes advan-

tage of the latest GHC extensions to provide a way of
encoding an OO type system within the Haskell type
system.

The .NET dev’s inline flavour. Provides the ability
to call directly into valid C# / F# syntax via quasi-
quoted template Haskell.

Further reading

https://gitlab.com/tim-m89/clr-haskell

4.21.3 Kitchen Snitch server

Report by: Dino Morelli
Participants: Betty Diegel
Status: stable, actively developed

This project is the server-side software for Kitchen
Snitch, a mobile application that provides health in-
spection scores, currently for the Raleigh-Durham area
in NC, USA. The data can be accessed on maps along
with inspection details, directions and more.

The back-end software provides a REST API for mo-
bile clients and runs services to perform regular inspec-
tion data acquisition and maintenance.

Kitchen Snitch has been in development for over a
year and is running on AWS. The mobile client and
server were released for public use in April of 2016 after
a beta-test period.

Some screenshots of the Android client software in
action:

Getting Kitchen Snitch:
The mobile client can be installed from the

Google Play Store. There is also a landing page
http://getks.honuapps.com/.
The Haskell server source code is available on darc-

shub at the URLs below.

Further reading

◦ ks-rest http://hub.darcs.net/dino/ks-rest
◦ ks-download http://hub.darcs.net/dino/ks-download
◦ ks-library http://hub.darcs.net/dino/ks-library

4.21.4 FRTrader

Report by: Dimitri DeFigueiredo
Status: active

FRTrader is a functional reactive bitcoin trading bot.
It uses the reactive-banana FRP library and currently
has bindings to the GDAX bitcoin exchange. The bot
uses as a multi-threaded architecture that makes it easy
to plug in extra exchanges and to trade on multiple
exchanges simultaneously.

The code is available on github.
The following talk recorded at BayHac 2017 explains

the design rationale and the use of FRP in trading.
We welcome contributions and hope to add bindings

to other exchanges soon. Also, feel free to make a huge
trading profit! Enjoy!

70

https://hackage.haskell.org/package/leapseconds-announced
https://hackage.haskell.org/package/leapseconds-announced
https://gitlab.com/tim-m89/clr-haskell
https://play.google.com/store/apps/details?id=com.honu.ksnitch
http://getks.honuapps.com/
http://hub.darcs.net/dino/ks-rest
http://hub.darcs.net/dino/ks-download
http://hub.darcs.net/dino/ks-library
https://github.com/dimitri-xyz/frtrader
https://www.youtube.com/watch?v=ZF_eZkXwaLk

4.21.5 Hapoid

Report by: Wisnu Adi Nurcahyo
Status: Under development

Hapoid is an Portable Object Translation file Linter for
Bahasa Indonesia.
Currently, this project is a prototype but it will con-

tinue to be developed.

Further reading

https://github.com/wisn/hapoid

4.21.6 Hanum - OSM Dynamic Attributes Linter

Report by: Wisnu Adi Nurcahyo
Status: Prototype

Hanum is an OpenStreetMap dynamic attributes linter
with custom presets.
Some contributors to OSM may just want to fix

wrong attributes on the OSM data. This means that
they might not want to see any path or shape of the
data. This linter thus acts as a library which allows
data validation and creating new editors for OSM.

The linter filters error, thus reducing possible con-
flicts when submitting data to OSM. To further en-
hance the capabilities, custom presets and rules can be
created for each individual country.

Motivation

In Indonesia, especially in Kalimantan there are many
areas where OSM has invalid data. For example,
SMAN 1 Bintang Ara, which is a senior high school,
shows on OSM as having a school : type_idn attribute
of elementary school. Furthermore, it also lacks an ad-
dress attribute.
A similar example is found in Papua: there are loca-

tions where the admin_level attribute is not a number
as it should be, as well as areas where addr : full has
invalid formatting.
With Hanum, we can define custom rules and use

these presets to improve data quality.

Further reading

https://github.com/wisn/hanum

4.21.7 shell-conduit

Report by: Sibi Prabakaran
Participants: Chris Done
Status: active

shell-conduit allows writing shell scripts with conduit.
It uses template Haskell to bring all the executables in
the PATH as top level functions which can be used to
launch them as a process.

Further reading

◦ https://github.com/psibi/shell-conduit
◦ http://chrisdone.com/posts/shell-conduit

4.21.8 tldr

Report by: Sibi Prabakaran
Status: active

tldr is a command line client for the TLDR pages. The
TLDR pages are a community effort to simplify the
beloved man pages with practical examples.

Compared to the previous version, the new ve-
rion works in Windows and doesn’t do eager cloning.
Also default completion support has been added from
optparse-applicative. The new-format branch contains
changes for the new syntax of TLDR pages and will be
merged with master whenever the upstream changes
are finalized and merged.

Further reading

https://github.com/psibi/tldr-hs

4.21.9 pprjam

Report by: Ben Sima
Status: Beta

pprjam is a reference manager for academics that al-
lows you to organize your library of papers, add tags
and notes, and create “ppr stacks” (like a playlist for
references) to share with your colleagues. More collab-
oration features are planned for business (paid) users.
The feature I’m really excited about, however, is what

71

https://github.com/wisn/hapoid
https://github.com/wisn/hanum
https://github.com/psibi/shell-conduit
http://chrisdone.com/posts/shell-conduit
https://github.com/psibi/tldr-hs

I call the “ppr trail” which uses a graph database to
show, for any given paper, all of it’s citations and ev-
erything that cites it; this would allow you to explore
the history of an idea by following the trail of publica-
tions over time with just a few clicks.
The first beta prototype has been deployed and is in

active development. Production (i.e. usable) version is
planned for the end of Q2. I heavily use Yesod for the
web stuff and pandoc-citeproc for dealing with citation
formats. Deployment is handled with NixOS.

Further reading

http://pprjam.com/

72

http://pprjam.com/

5 Commercial Users

5.1 Well-Typed LLP

Report by: Adam Gundry
Participants: Duncan Coutts, Andres Löh and others

Well-Typed is a Haskell services company. We provide
commercial support for Haskell as a development plat-
form, including consulting services, training, bespoke
software development and technical support. For more
information, please take a look at our website or drop
us an e-mail at 〈info@well-typed.com〉.
One of our main responsibilities is maintenance and

release management for GHC (→ 3.1), thanks to sup-
port from several companies including Microsoft Re-
search. Our full-time GHC team is led by Ben Gamari.
If your company is interested in supporting work on
GHC, either by contributing to the general mainte-
nance pool or funding work on specific issues, please get
in touch with us. We are also able to provide techni-
cal support with toolchain issues such as non-standard
GHC configurations.
Through our work for IOHK we have recently been

contributing significantly to the development of the
Cardano cryptocurrency, which is implemented in
Haskell. Cardano has been in the top 10 cryptocur-
rencies by market cap since December 2017. We are
applying formal methods and related “semi-formal”
techniques to achieve higher assurance and improved
code quality in future iterations of the cryptocurrency
(including everything from QuickCheck-compatible de-
signs to developing formalized process calculi in Is-
abelle).

We endeavour to make our work available as open
source software wherever possible, and contribute back
to existing projects we use. Recently our contributions
have included:
◦ Andres Löh and collaborators have proposed
DerivingVia, a carefully-crafted extension to GHC’s
GeneralizedNewtypeDeriving feature that signif-
icantly increases the expressive power of Haskell’s
deriving construct.

◦ Duncan Coutts, Austin Seipp, Ben Gamari
and other contributors have released the cborg
and serialise libraries (formerly known as
binary-serialise-cbor). The serialise library
provides efficient serialisation of Haskell values as
ByteStrings for storage or transmission purposes (as
in the binary package). The underlying binary for-
mat is the standardised Concise Binary Object Rep-
resentation (CBOR), which is both fast and capable
of being inspected or analysed without custom tools.

◦ Edsko de Vries developed visualize-cbn, a tool for
generating visualisations of lazy evaluation, includ-
ing as interactive HTML/JavaScript pages. This is
useful for teaching and for understanding the reduc-
tion behaviour of programs.

◦ Edsko also recently released friendly, a simple
command-line tool for generic pretty-printing.

◦ Andres Löh continued development of the generic
programming library generics-sop (→ 4.1.2).
We are looking forward to the next Haskell eXchange

in London from 11–12th October 2018, and we are plan-
ning another free Hackathon on 13th October. To-
gether with Skills Matter, we will be offering public
Haskell training courses in London around the Haskell
eXchange (8th–10th, 15th–16th October). Registration
is now open for both the courses and eXchange, so if
you would like to come, register now!

We are always looking for new clients and projects, so
if you have something we could help you with, or even
would just like to tell us about your use of Haskell,
please drop us an e-mail.

Further reading

◦ Home page: https://www.well-typed.com/
◦ Blog: https://www.well-typed.com/blog/
◦ Training page:

https://www.well-typed.com/services_training/
◦ Cardano: https://www.cardano.org/
◦ DerivingVia proposal: https:

//github.com/ghc-proposals/ghc-proposals/pull/120
◦ cborg: http://hackage.haskell.org/package/cborg
◦ serialise:

http://hackage.haskell.org/package/serialise
◦ generics-sop:

http://hackage.haskell.org/package/generics-sop
◦ visualize-cbn:

http://hackage.haskell.org/package/visualize-cbn
◦ friendly:

https://hackage.haskell.org/package/friendly
◦ Haskell eXchange 2018: https://skillsmatter.com/
conferences/10237-haskell-exchange-2018

◦ Skills Matter courses:
https://skillsmatter.com/explore?content=courses&
location=London&q=haskell

73

mailto: info at well-typed.com
https://www.well-typed.com/
https://www.well-typed.com/blog/
https://www.well-typed.com/services_training/
https://www.cardano.org/
https://github.com/ghc-proposals/ghc-proposals/pull/120
https://github.com/ghc-proposals/ghc-proposals/pull/120
http://hackage.haskell.org/package/cborg
http://hackage.haskell.org/package/serialise
http://hackage.haskell.org/package/generics-sop
http://hackage.haskell.org/package/visualize-cbn
https://hackage.haskell.org/package/friendly
https://skillsmatter.com/conferences/10237-haskell-exchange-2018
https://skillsmatter.com/conferences/10237-haskell-exchange-2018
https://skillsmatter.com/explore?content=courses&location=London&q=haskell
https://skillsmatter.com/explore?content=courses&location=London&q=haskell

5.2 Keera Studios LTD

Report by: Christina Zeller and Ivan Perez

Keera Studios Ltd. is a Haskell development studio
that focuses on games and mobile apps for both iOS
and Android.

Last year, we completed a set of development tools
for mobile Haskell games that enables compiling, test-
ing, packaging and deploying mobile games with no ef-
fort. Our framework is versatile enough to accomodate
not only games, but also mobile apps using standard
widget toolkits available on mobile platforms, in order
to provide a natural look and feel.

Our development toolkit if based on two tools, An-
dronaut and Curiosity, that provide, respectively, An-
droid and iOS application templates and compile, pack-
age, sign and upload Haskell games and mobile apps to
online stores. They have been designed to be trivial
use, both during development and in CI servers: each
tool downloads GHC pre-compiled for each target, as
well as other SDKs and tools needed for mobile plat-
forms. We use Travis CI to compile, package, sign and
automatically upload our games to Google Play for An-
droid (and tweet when a major release is out!). When
developing locally, Andronaut and Curiosity maximize
caching, and are able to recompile a mobile app and de-
ploy it to a phone (connected via USB) in less than 45
seconds, or to the online store in less than one minute.

We top our development framework with a novel
tool for testing and debugging mobile games: Haskell
TitanTM (Testing Infrastructure for Temporal Abstrac-
tioNs). Haskell TitanTM is designed to take advan-
tage of Haskell’s referential transparency to deliver
fully reproducible game runs that can be saved, re-
played, paused, played backwards, modified and de-
bugged. Our GUI tool communicates with the game
running on a phone or a computer, and uses Temporal
Logic to specify game assertions. Players can record a
game run with minimal overhead and send it over the

internet to our servers, which we can use to reproduce
bugs deterministically on the same architecture. Our
tool also integrates well with QuickCheck, which we
use to test game assertions and find counterexamples.
Effectively, we can see QuickCheck play.

We have published Magic Cookies!, the first commer-
cial game for iOS and Android written in Haskell, avail-
able on iTunes (https://goo.gl/6gB6sb) and on Google
PlayTM (https://goo.gl/cM1tD8). Currently holding a
4.9/5 star review, Magic Cookies! been in the Top 100
of paid board games on Google Play US, and Top 125
in the European Union, number 7 for paid braingames
in Taiwan, number 15 in Italy, and Top 50 in 110 coun-
tries.

We have developed a breakout clone that runs
on Windows, Linux, Mac, iOS, Android and Web
(http://goo.gl/53pK2x), using hardware acceleration
and parallelism. This game has been released on
Google Play for Android, is distributed pre-compiled
for Ubuntu via Launchpad, and can be played directly
on the browser, compiled via GHCJS. The desktop
version additionally supports Nintendo Wiimotes and
Kinect. Thanks to many volunteer Haskellers, this
game has seen updated documentation, better support
for all OSs, and now includes 9 new levels.

We are currently developing three arcade games for
both Android and iOS. Soon we will release the first
version of a game internally called ‘npuzzles’, a sliding
block puzzle game with classic levels, as well as levels
with altered or novel rules designed to surprise, chal-
lenge and engage the player. This game is the first
built from scratch using our SAGE infrastructure (de-
tailed below), and serves as a well documented game-
programming teaching source using Haskell, functional
reactive programming (Yampa), SAGE, and our stan-
dard game structure, to show how easy and clear
Haskell desktop and mobile games can be. The second
game is Escape, and has been designed to challenge

74

https://goo.gl/6gB6sb
https://goo.gl/cM1tD8
http://goo.gl/53pK2x

user’s ability to track multiple objects moving simul-
taneously in different directions. The third one, code-
named pang-a-lambda, is inspired by the classic Super
Pang and takes advantage of newer developments in
the FRP implementation Yampa to include declarative
physics simulations and time transformations, includ-
ing the possibility of reversing time.

We are also producing a visual interactive game
about the war in Ukraine, which depicts the everyday
life of people affected by the war, in an effort to raise
awareness about the current state of affairs, how people
are being treated and what they have lost. This game
invites the player to see the human side of people who
remain invisible to their own society, only to become
an unnamed shield standing at the conflict line. On the
basis of this game, our company has been accepted in
Facebook’s acceleration programme for new apps and
startups FbStart, and being granted thousands of dol-
lars in digital goods and services for support and ad-
vertising.
This year we have completed the first version of our

Simple Arcade Game Engine (SAGE), which hides te-
dious details from the developer. SAGE provides so-
lutions for aspects common to many games, like asset
management, 2D drawings, interactive widgets and po-
sitioning, and input devices (mouse, keyboard, touch-
screen, accelerometers, wiimote and kinect), different
game screens (splash screen, menus, level selection),
preferences, saving and restoring the game state, and
basic 2D physics and collisions. SAGE works for mobile
and desktop and supports multiple backends, like SDL
and SDL2, and hiding the details from the developer.
The first game released with SAGE will be npuzzles,
and we are currently porting other games to this new
framework before their release.

In previous years we also developed GALE, a DSL for
graphic adventures, together with an engine and a basic
IDE that allows non-programmers to create their own
2D graphic adventure games without any knowledge
of programming. Supported features include multiple
character states and animations, multiple scenes and
layers, movement bitmasks (used for shortest-path cal-
culation), luggage, conversations, sound effects, back-
ground music, and a customizable UI. The IDE takes
care of asset management, generating a fully portable
game with all the necessary files. The engine is multi-
platform, working seamlessly on Linux, Windows, An-
droid and iOS. This work has been described in the pa-
per “GALE: A functional Graphic Adventure Library

and Engine”, presented at FARM 2017.

We have also started the Haskell Game Programming
project (http://git.io/vlxtJ), which contains documen-
tation and multiple examples of multimedia, access to
gaming hardware, physics and game concepts. We have
developed a battery of Haskell mobile demos, covering
SDL multimedia (including demos for multi-touch and
accelerometers), communication with Java via C/C++,
Facebook/Twitter status sharing, access to each mobile
ecosystem (for instance, to use Android built-in shared
preferences storage system, or for in-app payments),
and use to native mobile widgets on Android and iOS.

All of this proves that Haskell truly is a viable op-
tion for professional game and app development, for
both mobile and desktop. Our novel testing and debug-
ging tools show that Haskell can, in certain respects,
be more suitable than other languages for game and
app programming, especially for (heterogeneous) mo-
bile devices. In combination with our samples and our
compilation, packaging and deployment tool, we have
a complete, pain-free mobile app development suite.

Our GUI applications are created using Keera
Hails, our open-source reactive programming library
(http://git.io/vTvXg). Keera Hails provides inte-
gration with GTK+, network sockets, files, FRP
Yampa signal functions and other external resources.
Keera Hails is straightforward to adapt to new plat-
forms, and we have shown reactive Haskell applica-
tions that work on iOS, Android, Windows, Linux,
Mac and Web/DOM (using each platform’s default
widget system), just by choosing different backends
(https://goo.gl/nFUA2u). We have used Keera Hails
for our Graphic Adventure IDE, the open-source pos-
ture monitor Keera Posture (http://git.io/vTvXy),
as well as multiple other commercial and open-
source applications. Guerric Chupin (ENSTA Paris-
Tech) and Henrik Nilsson (University of Notting-
ham (→ 6.6)) have also published Arpeggigon (→
4.18.4) (https://gitlab.com/chupin/arpeggigon), an in-
teractive cellular automaton for composing groove-
based music, which combines the FRP implementa-
tion Yampa and Keera Hails. Their results have been
written up in an application paper, Funky Grooves:
Declarative Programming of Full-Fledged Musical Ap-
plications, presented at PADL 2017, and demonstrated
at FARM 2017, the Haskell eXchange 2017, and Haskell
in Leipzig 2017.

Videos and details of our work are published reg-
ularly on Facebook (https://fb.me/keerastudios), on
Twitter (https://www.twitter.com/keerastudios), and
on our company website (http://www.keera.co.uk). If
you want to use Haskell in your next game, desktop
or mobile application, or to receive more information,
please contact us at 〈keera@keera.co.uk〉.

75

http://git.io/vlxtJ
http://git.io/vTvXg
https://goo.gl/nFUA2u
http://git.io/vTvXy
https://gitlab.com/chupin/arpeggigon
https://fb.me/keerastudios
https://www.twitter.com/keerastudios
http://www.keera.co.uk
mailto: keera at keera.co.uk

5.3 McMaster Computing and Software
Outreach

Report by: Christopher Anand
Status: active

McMaster Computer Science Outreach visits schools in
Ontario, Canada to teach basic Computer Science top-
ics and discuss the impacts of the Information Rev-
olution, teaching children from six to sixteen, using
Elm for the programming portion of our program-
ming. Elm looks a lot like Haskell, but does not
have user-definable type classes and is strict. We pre-
sented a paper about our tools and curriculum at TF-
PIE 2017, https://www.cs.kent.ac.uk/people/staff/sjt/
TFPIE2017/TFPIE_2017/Programme.html.

We would like to thank Google for igniteCS fund-
ing, which allowed us to run seven-week workshops
in schools in high-needs schools. Many of their con-
tributions are in our Hall of Fame: http://outreach.
mcmaster.ca/menu/fame.html.

76

https://www.cs.kent.ac.uk/people/staff/sjt/TFPIE2017/TFPIE_2017/Programme.html
https://www.cs.kent.ac.uk/people/staff/sjt/TFPIE2017/TFPIE_2017/Programme.html
http://outreach.mcmaster.ca/menu/fame.html
http://outreach.mcmaster.ca/menu/fame.html

6 Research and User Groups

6.1 DataHaskell

Report by: Marco Zocca
Participants: Nikita Tchayka, Mahdi Dibaiee,

John Vial, Stefan Dresselhaus,
Michał Gajda,

and many others
Status: Ongoing

The DataHaskell community was initiated in Septem-
ber 2016 as a gathering place for scientific computing,
machine learning and data science practitioners and
Haskell programmers; we observe a growing interest
in using functional composition, domain-specific lan-
guages and type inference for implementing robust and
reusable data processing pipelines.
DataHaskell revolves around a Gitter chatroom and

a GitHub organization. The community is slowly but
steadily growing; new interested people join the cha-
troom discussion (which now counts more than 230
unique users) every few days, and 20 or so are active
on an average week.

We have a documentation page that serves both as a
knowledge base of related Haskell packages and frame-
works and to coordinate development, along with a
package benchmarking repository.

After an informal survey we concluded that large
part of our userbase seems to be lacking most:
◦ an IDE for exploratory data analysis,
◦ a generic ‘data-frame’ for fast import and manipula-

tion of heterogeneous tabular data,
◦ a native numerical back-end.
◦ type providers for easy import of diverse data,
◦ Docker images pre-built to support big numerical li-

braries in IHaskell notebook environment, like AT-
LAS, TensorFlow, or GSL.
The notebook-IDE situation has improved, thanks

for example to an updated iHaskell and the new, na-
tive Haskell.do editor. Dataframes are a more subtle
topic, that require domain-specific optimizations, and
we are also actively working on that after adopting the
analyze package.

Some of us met in person at ZuriHac (Zürich) and
ICFP 2017 (Oxford). An informal DataHaskell work-
shop took place on Saturday 9, 2017 at ICFP, during
which a series of lightning talks showed various appli-
cations of the current state of the library ecosystem,
e.g. rendering mathematics-heavy code on Hackage,
high-performance numerical computing, probabilistic
EDSLs and notebook usage for exploratory data anal-
ysis.

The workshop was well-received and we are evaluat-
ing various options for upcoming meetings, e.g. to be
hosted at either functional programming or data sci-
ence conferences.

We cherish the open and multidisciplinary nature of
our community, and welcome all new users and contri-
butions.

Further reading

http://datahaskell.org

6.2 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on functional pro-
gramming – mostly taught in Haskell – at Eötvös
Loránd University, Faculty of Informatics. Currently,
we are offering the following courses in that regard:
◦ Functional programming for first-year Hungarian un-

dergraduates in Software Technology and second-
year Hungarian teacher of informatics students, both
as part of their official curriculum.

◦ An additional semester on functional programming
with Haskell for bachelor’s students, where many of
the advanced concepts are featured, such as algebraic
data types, type classes, functors, monads and their
use. This is an optional course for Hungarian under-
graduate and master’s students, supported by the
Eötvös József Collegium.

◦ Functional programming for Hungarian and foreign-
language master’s students in Software Technol-
ogy. The curriculum assumes no prior knowledge
on the subject in the beginning, then through teach-
ing the basics, it gradually advances to discussion
of parallel and concurrent programming, property-
based testing, purely functional data structures,
efficient I/O implementations, embedded domain-
specific languages, and reactive programming. It is
taught in both one- and two-semester formats, where
the latter employs the Clean language for the first
semester.
In addition to these, there is also a Haskell-related

course, Type Systems of Programming Languages,
taught for Hungarian master’s students in Software
Technology. This course gives a more formal intro-
duction to the basics and mechanics of type systems
applied in many statically-typed functional languages.

77

https://gitter.im/dataHaskell/Lobby
https://github.com/DataHaskell
http://www.datahaskell.org/docs/
https://github.com/DataHaskell/numeric-libs-benchmarks
http://haskell.do
https://github.com/DataHaskell/analyze
http://datahaskell.org

For teaching some of the courses mentioned above,
we have been using an interactive online evaluation
and testing system, called ActiveHs. It contains sev-
eral dozens of systematized exercises, and through that,
some of our course materials are available there in En-
glish as well.

Our homebrew online assignment management sys-
tem, "BE-AD" keeps working on for the fourth semester
starting from this September. The BE-AD system is
implemented almost entirely in Haskell, based on the
Snap web framework and Bootstrap. Its goal to help
the lecturers with scheduling course assignments and
tests, and it can automatically check the submitted so-
lutions as an option. It currently has over 700 users and
it provides support for 12 courses at the department, in-
cluding all that are related to functional programming.
This is still in an alpha status yet so it is not available
on Hackage as of yet, only on GitHub, but so far it has
been performing well, especially in combination with
ActiveHs.

Further reading

◦ Haskell course materials (in English):
http://pnyf.inf.elte.hu/fp/Index_en.xml

◦ Agda tutorial (in English):
http://people.inf.elte.hu/pgj/agda/tutorial/

◦ ActiveHs:
http://hackage.haskell.org/package/activehs

◦ BE-AD: http://github.com/andorp/bead

6.3 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: Nils Dallmeyer
Participants: Manfred Schmidt-Schauß

Semantics of Functional Programming Lan-
guages. Extended call-by-need lambda calculi model
the semantics of Haskell. We analyze the semantics of
those calculi with a special focus on the correctness of
program analyses and program transformations. In our
recent research, we use Haskell to develop automated
tools to show correctness of program transformations,
where the method is syntax-oriented and computes so-
called forking and commuting diagrams by a combina-
tion of several unification algorithms that operate on
a meta-representation of the language expressions and
transformations.

We therefore developed variants of unification on the
meta-representation: An expressive variant that covers
all the specifics of normal-order reduction rules. Oth-
ers are extensions of nominal unification with built-in
alpha-equivalence: one variant can deal with recursive
lets, the second one permits variable-variables, and a

third one permits context-variables and a meta-form of
distinct-variable-conditions.
Improvements In recent research we analyzed

whether program transformations are optimizations,
i.e. whether they improve the time and/or space re-
source behavior. We showed that common subex-
pression elimination is an improvement, also under
polymorphic typing. We developed methods for bet-
ter reasoning about improvements in the presence
of sharing, i.e. in call-by-need calculi. We also de-
veloped a simulation-based method to validate time-
improvements respecting the sharing structure. We
showed for different transformations that they are
space improvements and developed a tool for specific
space analyses.
Concurrency We analyzed a higher-order func-

tional language with concurrent threads, monadic IO,
MVars and concurrent futures which models Concur-
rent Haskell and proved that this language conserva-
tively extends the purely functional core of Haskell. In
a similar program calculus we proved correctness of a
highly concurrent implementation of Software Trans-
actional Memory (STM) and developed an alternative
implementation of STM Haskell which performs quite
early conflict detection. Moreover we developed an
algorithm that optimizes concurrent programs w.r.t.
space and analyzed the impact on complexity of syn-
chronization requirements.
Grammar based compression This research topic

focuses on algorithms on grammar compressed data like
strings, matrices, and terms. We implemented several
algorithms as a Haskell library.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

6.4 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell
– we use for example also Erlang and ML – Haskell pro-
vides a major focus and common language for teaching
and research.

Our members pursue a variety of Haskell-related
projects, several of which are reported in other sections
of this report. In September Joanna Sharrad joined us
as a new PhD student to work with Meng Wang and
Olaf Chitil on type error debugging. For her under-
graduate work on delta debugging of type errors she
already won the second place in the Student Research

78

http://pnyf.inf.elte.hu/fp/Index_en.xml
http://people.inf.elte.hu/pgj/agda/tutorial/
http://hackage.haskell.org/package/activehs
http://github.com/andorp/bead
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html

Competition at ICFP 2017. Stephen Adams is working
on advanced refactoring of Haskell programs, extend-
ing HaRe. Andreas Reuleaux is building in Haskell
a refactoring tool for a dependently typed functional
language. Maarten Faddegon built the lightweight
tracer and algorithmic debugger Hoed for real-world
Haskell programs and successfully defended his PhD
thesis. Olaf Chitil develops these ideas on tracing fur-
ther, with a small prototype tracer HatLight for a sub-
set of Haskell and the aim of developing the Haskell
tracer Hat further. Dominic Orchard is working on co-
effectful programming and applying verification in com-
putational science. He also develops tools in Haskell for
analysing, refactoring and verifying Fortran programs.
Meng Wang is working on lenses, bidirectional transfor-
mation and property-based testing (QuickCheck). To-
gether with last years visitor Colin Runciman from the
University of York, Stefan Kahrs is working on min-
imising regular expressions, implemented in Haskell.
Scott Owens is working on verified compilers for the
(strict) functional language CakeML. Simon Thomp-
son, Scott Owens, Hugo Férée and Reuben Rowe are
working on an EPSRC project on trustworthy refac-
toring. They are studying refactoring for CakeML and
OCaml, informed by their previous work for Haskell
and Erlang.
We are always looking for more PhD students. We

are particularly keen to recruit students interested in
programming tools for verification, compilation, trac-
ing, refactoring, type checking and any useful feed-
back for a programmer. The school and university
have support for strong candidates: more details at
http://www.cs.kent.ac.uk/pg or contact any of us indi-
vidually by email.
We are also keen to attract researchers to Kent

to work with us. There are many opportunities
for research funding that could be taken up at
Kent, as shown in the website http://www.kent.ac.uk/
researchservices/sciences/fellowships/index.html. Please
let us know if you’re interested in applying for one of
these, and we’ll be happy to work with you on this.
Finally, if you would like to visit Kent, either to give

a seminar if you’re passing through London or the UK,
or to stay for a longer period, please let us know.

Further reading

◦ PLAS group:
http://www.cs.kent.ac.uk/research/groups/plas/

◦ Haskell: the craft of functional programming:
http://www.haskellcraft.com

◦ Parsers and static analysis tools for Fortran code in
Haskell https://github.com/camfort/fortran-src

◦ A refactoring and verification tool for Fortran code
in Haskell https://github.com/camfort/camfort

◦ Refactoring Functional Programs: http:
//www.cs.kent.ac.uk/research/groups/plas/hare.html

◦ Hoed, a lightweight Haskell tracer and debugger:

https://github.com/MaartenFaddegon/Hoed
◦ Hat, the Haskell Tracer:

http://projects.haskell.org/hat/
◦ CakeML, a verification friendly dialect of SML:

https://cakeml.org
◦ Heat, an IDE for learning Haskell:

http://www.cs.kent.ac.uk/projects/heat/

6.5 Functional Programming at KU

Report by: Andrew Gill
Status: ongoing

Functional Programming continues at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andrew Gill) together form the core functional pro-
gramming initiative at KU. All the Haskell related KU
projects are now focused on use-cases for the remote
monad design pattern. One example is the Haskino
Project (→ 4.14.3).

Further reading

The Functional Programming Group: http://www.ittc.
ku.edu/csdl/fpg

6.6 Functional Programming Laboratory at
the University of Nottingham

Report by: Jennifer Hackett, Martin Handley

The School of Computer Science at the University of
Nottingham is home to the Functional Programming
Laboratory, a research group focused on all theoreti-
cal and practical aspects of functional programming,
together with related topics such as type theory and
category theory. The lab is led by Thorsten Altenkirch
and Graham Hutton, with Henrik Nilsson and Venanzio
Capretta as academic staff. In addition, we currently
have three post-doctoral researchers, eight postgradu-
ate students and one intern.

Our interests are wide-ranging, including:

79

http://www.cs.kent.ac.uk/pg
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
https://github.com/camfort/fortran-src
https://github.com/camfort/camfort
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
https://github.com/MaartenFaddegon/Hoed
http://projects.haskell.org/hat/
https://cakeml.org
http://www.cs.kent.ac.uk/projects/heat/
http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
http://www.cs.nott.ac.uk/~psztxa/
http://cs.nott.ac.uk/~pszgmh
http://www.cs.nott.ac.uk/~psznhn/
http://www.duplavis.com/venanzio/
http://www.duplavis.com/venanzio/

Mind the Gap: Reasoning about Efficiency

The Functional Programming Lab is currently home to
an EPSRC grant on reasoning about the efficiency of
programs. Jennifer Hackett and Graham Hutton are
currently preparing a paper for ICFP that presents a
cost-aware parametricity theorem that produces free
theorems that can be used to reason about time costs,
alongside another paper exploring an approach to rea-
soning about efficiency based on metric spaces. Also,
Martin Handley and Graham Hutton have developed
a tool that will assist programmers to reason inequa-
tionally about the cost behaviour of their programs. A
paper on this tool has been submitted to the upcoming
European Symposium on Programming.

Generalizing Monads and Applicative Functors

Jan Bracker and Henrik Nilsson are working on uni-
fying generalizations of monads and applicative func-
tors. Their work has produced the supermonads li-
brary (→ 4.1.3) which offers a unified way to work with
these generalized notions in Haskell (details in the in-
dependent entry). In addition to the practical support
of these notions they are also exploring the theoretical
foundations of said notions in category theory. Future
work may involve generalizing arrows as well.

Functional Reactive Programming

Functional Reactive Programming (FRP) remains an
active part of our research. Henrik Nilsson and Ivan
Perez have worked on monadic FRP, FRP extensions
such as time transformations, property-based testing
and debugging for FRP, Reactive Values and Relations
(RVR). We have also worked on applications of these
technologies; e.g., to games and music. In particular,
together with summer interns Guerric Chupin and Jin
Zhan, we developed the Arpeggigon (→ 4.18.4), a Func-
tional Reactive Musical Automaton, as a substantial
test case for FRP and RVR that is also an interest-
ing and fun application in its own right. This has led
to a number of publications and talks (PADL, ICFP,
Haskell Symposium, FARM, London Haskell Meetup,
Haskell eXchange, Haskell in Leipzig) as well as open
source software releases. The Yampa (→ 4.17.1) FRP
implementation is also actively being maintained.
Jonathan Thaler is applying Functional Reactive

Programming to agent-based simulation (→ 4.17.3)
with the aim to create more robust and correct im-
plementations.

Teaching

The lab plays an active role in teaching, with Haskell
playing an important role in many of the modules of-
fered. Modules include: Programming, Programming
Paradigms, Advanced Functional Programming, Ma-
chines and Their Languages, Compilers, Introduction

to Formal Reasoning, Advanced Algorithms and Data
Structures, Languages and Computation and Founda-
tions of Programming.

Other Activities

Every Friday afternoon we hold the FP Café, an in-
formal meeting where we hold whiteboard discussions
on current activities, general business or anything that
sounds interesting. Visitors are welcome: if you want
to come along (perhaps even to give a talk yourself),
please contact us!

The lab plays a leading role in the Midlands Gradu-
ate School in the Foundations of Computing Science.

Further reading

http://www.nottingham.ac.uk/research/groups/fp-lab/

6.7 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. Members of the group include users
of Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb–Nov) and meet on
the fourth Wednesday of each month. We regularly get
40–50 attendees, with a 70/30 industry/research split.
Talks this year have included material on compilers,
theorem proving, type systems, Haskell web program-
ming, dynamic programming, Scala and more. We usu-
ally have about 90 mins of talks, starting at 6:30pm.
All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/
◦ http://fp-syd.ouroborus.net/wiki/Past/2016

6.8 Regensburg Haskell Meetup

Report by: Andres Löh

Since autumn 2014 Haskellers in Regensburg, Bavaria,
Germany have been meeting roughly once per month
to socialize and discuss Haskell-related topics.

We usually have dinner first and then move on to
have a talk. Topics vary quite a bit, from introduc-
tory to advanced, from theoretical to practical, and we
have been looking at other languages such as Scala or
dependently typed languages as well.

There are typically between 5 and 15 attendees, and
we often get visitors from Munich and Nürnberg.

80

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P00587X/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/P00587X/1
http://cs.nott.ac.uk/~pszjlh
http://cs.nott.ac.uk/~pszgmh
http://www.cs.nott.ac.uk/~psxmah/
http://cs.nott.ac.uk/~pszgmh
http://www.cs.nott.ac.uk/~psxjb5/
http://www.cs.nott.ac.uk/~psznhn/
https://hackage.haskell.org/package/supermonad
http://www.cs.nott.ac.uk/~psznhn/
http://www.cs.nott.ac.uk/~psxip1/
http://www.cs.nott.ac.uk/~psxip1/
http://www.cs.nott.ac.uk/~psxjat/
mailto:fp-lunch@cs.nott.ac.uk
http://www.cs.nott.ac.uk/MGS/
http://www.cs.nott.ac.uk/MGS/
http://www.nottingham.ac.uk/research/groups/fp-lab/
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2016

New members are always welcome, whether they
are Haskell beginners or experts. If you are living
in the area or are visiting, please join! Meetings are
announced a few weeks in advance on our meetup page:
http://www.meetup.com/Regensburg-Haskell-Meetup/.

6.9 Curry Club Augsburg

Report by: Ingo Blechschmidt
Status: active

Since March 2015 haskellistas, scalafists, lambdroids,
and other fans of functional programming languages in
Augsburg, Bavaria, Germany have been meeting every
four weeks in the OpenLab, Augsburg’s hacker space.
Usually there are ten to twenty attendees.
At each meeting, there are typically two to three

talks on a wide range of topics of interest to Haskell
programmers, such as latest news from the Kmettiverse
and introductions to the category-theoretic background
of freer monads. Afterwards we have stimulating dis-
cussions while dining together.

From time to time we offer free workshops to intro-
duce new programmers to the joy of Haskell.

Newcomers are always welcome! Recordings of our
talks are available at http://www.curry-club-augsburg.
de/.

Further reading

http://www.curry-club-augsburg.de/

6.10 Italian Haskell Group

Report by: Francesco Ariis
Status: ongoing

Born in Summer 2015, the Italian Haskell Group is an
effort to advocate functional programming and share
our passion for Haskell through real-life meetings, dis-
cussion groups and community projects.
There have been 3 meetups (in Milan, Bologna and

Florence), our plans to continue with a quarterly sched-
ule. Anyone from the experienced hacker to the func-
tionally curious newbie is welcome; during the rest of
the year you can join us on our irc/mumble channel for
haskell-related discussions and activities.

Further reading

◦ site: http://haskell-ita.it/
◦ IRC channel: https:

//webchat.freenode.net/?channels=%23haskell.it
◦ Discussion forum : https:

//groups.google.com/forum/#!forum/haskell_ita

6.11 RuHaskell – the Russian-speaking
haskellers community

Report by: Yuriy Syrovetskiy
Status: active

RuHaskell is the Russian-speaking community of
haskellers. We have a website with Haskell-related ar-
ticles, a podcast, a subreddit and some Gitter chats in-
cluding one for novice haskellers specially. We also or-
ganize mini-conferences about twice a year in Moscow,
Russia. The 4th mini-conference has taken place in the
April, 2017.

Further reading

◦ Short info: https://wiki.haskell.org/RuHaskell
◦ Website: ruhaskell.org
◦ Gitter chats: /ruHaskell/home
◦ Twitter channel: @ruHaskell
◦ Subreddit: /r/ruhaskell

6.12 NY Haskell Users Group and
Compose Conference

Report by: Gershom Bazerman
Status: ongoing

Since 2012 the NY Haskell Users Group has been
hosting monthly Haskell talks and the occasional
hackathon. Over fifteen-hundred members are regis-
tered on Meetup for the group, and talk attendence
ranges between sixty to one hundred and twenty. NY-
HUG has also been organizing, on and off, beginner-
oriented hangouts where people can assemble and study
and learn together. And as of recently, NYHUG has
also been the home base for organizing a Haskell Pro-
gramming from First Principles study group, as well as
an active Slack channel where ongoing discussion for
the reading group takes place.

In 2015, the NY Haskell organizers launched the
Compose Conference, which was held again in 2016,
with a sibling “Compose::Melbourne” conference be-
ing held in 2016 as well. Compose is a cross-language
conference for functional programmers, focused on
strongly-typed functional languages such as Haskell,
OCaml, F#, and SML. It aims to be both practical
and educational, among other things providing oppor-
tunity for researchers to present the more applicable el-
ements of their work to a wide audience of professional
and hobbyist functional programmers. It is our hope

81

http://www.meetup.com/Regensburg-Haskell-Meetup/
http://www.curry-club-augsburg.de/
http://www.curry-club-augsburg.de/
http://www.curry-club-augsburg.de/
http://haskell-ita.it/
https://webchat.freenode.net/?channels=%23haskell.it
https://webchat.freenode.net/?channels=%23haskell.it
https://groups.google.com/forum/#!forum/haskell_ita
https://groups.google.com/forum/#!forum/haskell_ita
https://wiki.haskell.org/RuHaskell
https://ruhaskell.org
https://gitter.im/ruHaskell/home
https://twitter.com/ruHaskell
https://www.reddit.com/r/ruhaskell/

to continue Compose and also to extend it to sibling
conferences in other geographic areas as well sharing
similar goals and format.

Further reading

◦ http://www.meetup.com/NY-Haskell/
◦ http://www.composeconference.org/

6.13 Japan Haskell User Group –
Haskell-jp

Report by: Yuji Yamamoto
Status: active

Japan Haskell User Group (a.k.a Haskell-jp) is a
Haskellers’ community group in Japan, established at
April 2017.
Since it began, we have tried various activities to

help Haskellers discuss, collect, learn, and deliver any
information related to Haskell.

Today we have two major updates since the last
HCAR:

New logo voted

Thanks to Fumiaki Kinoshita
(https://github.com/fumieval) and the voters in
Haskell-jp, we got a brand-new, nice, and more
Japanese logo. It’s nicknamed “Sakulambda”, after its
motif, sakura and the lambda character.

Submitting a new article to the Haskell-jp blog

All you have to do is send a pull request to the Haskell-
jp repository with your article written in Markdown
format.
We will review the rendered article as well as its

source code, and deploy it by merging on master.
These features are implemented by Circle CI’s build

artifacts and Travis CI’s automatic deployment.

Further reading

◦ https://haskell.jp/blog
◦ https://haskell.jp/antenna
◦ https://wiki.haskell.jp/
◦ https://www.reddit.com/r/haskell_jp/
◦ https://haskell-jp.slack.com
◦ https://github.com/haskell-jp

6.14 Tokyo Haskell Meetup – Casual,
English-speaking monthly meetings in
Tokyo

Report by: Yasuaki Kudo
Status: active

Tokyo Haskell Meetup is a group that meets mostly
every month in Tokyo. English is the dominant lan-
guage and we enjoy casual and lively discussions of
Haskell and Functional Languages, (and others includ-
ing Philosophy, Politics, Business, etc.), while helping
each other learn Haskell. Our members proficiency in
Haskell is very diverse – from the beginners (such as
myself) to the experts.

Further reading

https://www.meetup.com/Tokyo-Haskell-Meetup

6.15 Functional Programming at the
Telkom University

Report by: Wisnu Adi Nurcahyo

Functional programmers are rare to find in Indonesia,
especially for Haskell where they are less than 30 from
hundreds of thousands programmers that the country
has.

I started a functional programming group at Telkom
University. My goal is to create a great community of
functional programmers starting from university.

Contact

〈wisnu@nurcahyo.me〉

6.16 Haskell Serbia

Report by: Sasa Bogicevic
Status: Active

Haskell-serbia is website for the Haskell user group in
Serbia.

The idea is to organize meetups, write tutorials and
generally spread the Haskell programming language in
Serbia.

It is in active development and website is up and
running.

There are plans to add fresh new look to website,
customize user profile pages, write more tutorials and
generally get more people involved.

Further reading

https://haskell-serbia.com

82

http://www.meetup.com/NY-Haskell/
http://www.composeconference.org/
https://haskell.jp/blog
https://haskell.jp/antenna
https://wiki.haskell.jp/
https://www.reddit.com/r/haskell_jp/
https://haskell-jp.slack.com
https://github.com/haskell-jp
https://www.meetup.com/Tokyo-Haskell-Meetup
mailto: wisnu at nurcahyo.me
https://haskell-serbia.com

	Community
	Haskell' — Haskell 2020
	Haskellers

	Books, Articles, Tutorials
	Oleg's Mini Tutorials and Assorted Small Projects
	School of Haskell
	Learning Haskell
	Programming in Haskell - 2nd Edition
	Haskell Programming from first principles, a book for all
	Haskell MOOC

	Implementations
	The Glasgow Haskell Compiler
	The Helium Compiler
	Specific Platforms
	Fedora Haskell SIG
	Debian Haskell Group

	Related Languages and Language Design
	hs-to-coq
	Agda
	Disciple

	Libraries, Tools, Applications, Projects
	Language Extensions and Related Projects
	Dependent Haskell
	generics-sop
	Supermonads
	Reifying type families

	Build Tools and Related Projects
	Cabal
	The Stack build tool
	Stackage: the Library Dependency Solution
	Stackgo
	pier
	Packcheck: Universal CI testing for Haskell packages
	hsinstall
	yesod-rest
	Haskell Cloud

	Repository Management
	Darcs
	git-annex

	Debugging and Profiling
	Hoed – The Lightweight Algorithmic Debugger for Haskell
	ghc-vis
	ghc-heap-view
	Hat — the Haskell Tracer

	Testing
	inspection-testing
	LeanCheck
	Extrapolate
	Speculate
	TorXakis

	Development Tools and Editors
	Haskell for Mac
	haskell-ide-engine, a project for unifying IDE functionality
	HyperHaskell – The strongly hyped Haskell interpreter
	CodeWorld
	Haskell Indexer
	Brittany
	IHaskell
	Doc Browser

	Formal Systems and Reasoners
	The Incredible Proof Machine
	Exference

	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners
	Basic Haskell Cheat Sheet
	DSLsofMath
	Learn You A Physics

	Text and Markup
	lhs2TeX
	Fast Unicode Normalization
	Automatic type inference from JSON
	Ginger

	Web
	WAI
	Warp
	Yesod
	Snap Framework
	MFlow
	PureScript
	Sprinkles
	nginx-haskell-module
	Template Toolkit

	Databases
	Persistent
	Squeal
	Haskell Relational Record
	YeshQL
	DBFunctor: Functional Data Management

	Data Structures, Data Types, Algorithms
	Algebraic graphs
	JudyGraph
	Conduit
	Transactional Trie
	Concurrent Trie
	Random access zipper
	Generic random generators
	ADPfusion
	Generalized Algebraic Dynamic Programming
	Applications of Algebraic Dynamic Programming
	Earley
	Type Providers
	Transient
	Streamly: Streaming Concurrently
	Streaming Performance Benchmarks
	proto-lens

	Parallelism and Concurrency
	Eden
	Auto-parallelizing Pure Functional Language System
	concurrent-output
	Déjà Fu: Concurrency Testing

	Systems programming
	Haskell for Mobile development
	haskus-system
	Haskino
	STM32-Zombie

	Mathematics, Simulations and High Performance Computing
	sparse-linear-algebra
	aivika
	General Decimal Arithmetic

	Graphical User Interfaces
	wxHaskell
	threepenny-gui

	FRP
	Yampa
	reactive-banana
	Functional Reactive Agent-Based Simulation

	Graphics and Audio
	diagrams
	csound-expression
	Chordify
	The Arpeggigon
	Gifcurry
	Movie Monad

	Games
	Nomyx
	EtaMOO
	Tetris in Haskell in a Weekend
	Barbarossa
	tttool
	Asteroids

	Data Tracking
	hledger
	gipeda
	arbtt
	propellor

	Others
	leapseconds-announced
	clr-haskell (Haskell interoperability with the Common Language Runtime)
	Kitchen Snitch server
	FRTrader
	Hapoid
	Hanum - OSM Dynamic Attributes Linter
	shell-conduit
	tldr
	pprjam

	Commercial Users
	Well-Typed LLP
	Keera Studios LTD
	McMaster Computing and Software Outreach

	Research and User Groups
	DataHaskell
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Functional Programming at KU
	Functional Programming Laboratory at the University of Nottingham
	fp-syd: Functional Programming in Sydney, Australia
	Regensburg Haskell Meetup
	Curry Club Augsburg
	Italian Haskell Group
	RuHaskell – the Russian-speaking haskellers community
	NY Haskell Users Group and Compose Conference
	Japan Haskell User Group – Haskell-jp
	Tokyo Haskell Meetup – Casual, English-speaking monthly meetings in Tokyo
	Functional Programming at the Telkom University
	Haskell Serbia

