
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Tenth Edition – June 12, 2006

Andres Löh (ed.)
Lloyd Allison Tiago Miguel Laureano Alves Krasimir Angelov

Dmitry Astapov Alistair Bayley Jean-Philippe Bernardy
Clifford Beshers Edwin Brady Björn Bringert

Chris Brown Manuel Chakravarty Olaf Chitil
Alain Crémieux Iavor Diatchki Atze Dĳkstra
Robert Dockins Frederik Eaton Shae Erisson
Jan van Eĳck Martin Erwig Sander Evers

Markus Forsberg Simon Foster Benjamin Franksen
Leif Frenzel André Furtado John Goerzen

Dimitry Golubovsky Murray Gross Walter Gussmann
Jurriaan Hage Thomas Hallgren Keith Hanna

Robert van Herk Ralf Hinze Paul Hudak
Liyang Hu Graham Hutton Johan Jeuring

Paul Johnson Isaac Jones Oleg Kiselyov
Marnix Klooster Lemmih Huiqing Li

Andres Löh Rita Loogen Salvador Lucas
Christoph Lüth Ketil Malde Christian Maeder
Simon Marlow Paolo Martini Conor McBride

Serge Mechveliani Neil Mitchell William Garret Mitchener
Andy Adams-Moran J. Garrett Morris Rickard Nilsson

Sven Panne Ross Paterson Jens Petersen
Simon Peyton-Jones Bernie Pope Claus Reinke

Frank Rosemeier David Roundy Alberto Ruiz
David Sabel Tom Shackell Uwe Schmidt

Martĳn Schrage Alexandra Silva Axel Simon
Anthony Sloane Dominic Steinitz Donald Bruce Stewart

Martin Sulzmann Doaitse Swierstra Wouter Swierstra
Audrey Tang Henning Thielemann Peter Thiemann

Simon Thompson Phil Trinder Arjan van Ĳzendoorn
Miguel Vilaca Joost Visser Malcolm Wallace
Stefan Wehr Ashley Yakeley Bulat Ziganshin

http://www.haskell.org/communities/

Preface

This is the tenth edition of the Haskell Communities and Activities Report (HCAR) – a col-
lection of entries about everything that is going on and related to Haskell in some way that
appears twice a year. Perhaps the release of the tenth edition is a good time to have a look
back at the beginning.

At the Haskell Workshop 2001, during the traditional discussion on “The Future of Haskell”,
Claus Reinke pointed out that it is very difficult to keep track of all the developments within
the Haskell community: there are many people working on and with Haskell, they are located in
very different places and are working on several different fields. He was asking for a collection of
up-to-date information about releases of compilers, tools, and application, but also of ongoing
work in a single place for everyone to look up.

Everyone agreed with Claus, but probably nothing would have happened if he himself had
not volunteered to start the project. Already in November 2001, the first edition of the HCAR
appeared. It had 20 contributors and the PostScript/PDF version consisted of 22 pages.

Four and a half years later, one can compare the current edition with the first and will notice
that the basic structure has remained unchanged, but the size has nearly tripled (62 pages) and
the number of contributors has almost reached a hundred (93 contributors). This demonstrates
that the original concept was a good one, and that the HCAR is successful. I would therefore
like to thank Claus for his work on the first five editions, Arthur van Leeuwen, the editor of the
sixth edition, but most of all the countless contributors that have filled the report with content
over the years. It is you that really make the report happen, and also a joy to work on, allowing
me to read lots of interesting submissions while assembling the report.

I am very happy to see that the HCAR has quite some “competition” these days: the Haskell
Weekly News (→ 1.4) gather Haskell-relevant information on a regular basis, the mailing lists
are as active as they always are, the #haskell IRC channel (→ 1.3) is a direct contact to other
people interested in Haskell and a reliable source of information about current work, the Haskell
Sequence (→ 1.4.1) is a news portal for the Haskell world, the Haskell Planet (unfortunately
without an entry) collects blogs by Haskellers, the Haskell Wiki has been integrated with the
main haskell.org (→ 1.1) site, and I am sure I forgot a few other ways to get at information
about Haskell communities and activities.

All the media mentioned above have different strengths and weaknesses, and therefore serve
and reach different groups of people. It is good to see that there is so much communication in
the Haskell world.

If you miss a project in this HCAR, then simply contribute to the next – either by writing
an entry yourself, or by making the project leader aware of the HCAR! Please mark the final
weeks of October in your calendar, because that is when the entries for the November edition
will be collected.

As always, feedback is very welcome 〈hcar@haskell.org〉. Now, I wish you pleasant reading!

Andres Löh, University of Bonn, Germany

2

mailto: hcar at haskell.org

Contents

1 General 7
1.1 HaskellWiki and haskell.org . 7
1.2 haskell.org and Google Summer of Code 2006 . 7
1.3 #haskell . 8
1.4 Haskell Weekly News . 8
1.4.1 The Haskell Sequence . 8
1.5 The Monad.Reader . 8
1.6 Books and tutorials . 8
1.6.1 “Hitchhickers Guide to Haskell” tutorial . 8
1.6.2 New textbook – Programming in Haskell . 9
1.6.3 Haskell Tutorial WikiBook . 9

2 Implementations 10
2.1 The Glasgow Haskell Compiler . 10
2.2 Hugs . 11
2.3 nhc98 . 11
2.4 yhc . 11

3 Language 12
3.1 Variations of Haskell . 12
3.1.1 Haskell on handheld devices . 12
3.1.2 Vital: Visual Interactive Programming . 12
3.1.3 Pivotal: Visual Interactive Programming . 12
3.1.4 House (formerly hOp) . 12
3.1.5 Camila . 13
3.1.6 HASP . 13
3.2 Non-sequential Programming . 13
3.2.1 Data Parallel Haskell . 13
3.2.2 GpH – Glasgow Parallel Haskell . 13
3.2.3 GdH – Glasgow Distributed Haskell . 14
3.2.4 Eden . 15
3.3 Type System/Program Analysis . 16
3.3.1 Epigram . 16
3.3.2 Chameleon project . 16
3.3.3 XHaskell project . 17
3.3.4 Constraint Based Type Inferencing at Utrecht . 17
3.3.5 EHC, ‘Essential Haskell’ Compiler . 18
3.4 Generic Programming . 18

4 Libraries 20
4.1 Packaging and Distribution . 20
4.1.1 Hackage and Cabal . 20
4.2 General libraries . 20
4.2.1 Hacanon-light . 20
4.2.2 HODE . 20
4.2.3 PFP – Probabilistic Functional Programming Library for Haskell 20
4.2.4 Hmm: Haskell Metamath module . 21
4.2.5 GSLHaskell . 21
4.2.6 An Index Aware Linear Algebra Library . 21
4.2.7 Ivor . 22
4.2.8 magic-haskell . 22
4.2.9 MissingH . 22

3

4.2.10 MissingPy . 23
4.3 Parsing and transforming . 23
4.3.1 Utrecht Parsing Library and Attribute Grammar System . 23
4.3.2 Strafunski . 23
4.4 System . 24
4.4.1 hs-plugins . 24
4.4.2 ldap-haskell . 24
4.4.3 Package “time” (formerly TimeLib) . 24
4.4.4 The libpcap Binding . 24
4.4.5 Streams . 24
4.5 Databases and data storage . 25
4.5.1 CoddFish . 25
4.5.2 Takusen . 25
4.5.3 HaskellDB . 25
4.6 Data types and data structures . 26
4.6.1 Standard Collection Libraries (formerly Hierarchical Libraries Collections) 26
4.6.2 The revamped monad transformer library . 26
4.6.3 Data.ByteString (formerly FPS (fast packed strings)) . 26
4.6.4 Edison . 26
4.6.5 Numeric prelude . 27
4.6.6 2-3 Finger Search Trees . 27
4.6.7 HList – a library for strongly typed heterogeneous collections . 28
4.6.8 ArrayRef . 28
4.7 Data processing . 28
4.7.1 HsSyck . 28
4.7.2 AltBinary . 29
4.7.3 Compression-2005 . 29
4.7.4 The Haskell Cryptographic Library . 29
4.7.5 2LT: Two-Level Transformation . 30
4.8 User interfaces . 30
4.8.1 Gtk2Hs . 30
4.8.2 hscurses . 31
4.9 (Multi-)Media . 31
4.9.1 HOpenGL – A Haskell Binding for OpenGL and GLUT . 31
4.9.2 HOpenAL – A Haskell Binding for OpenAL and ALUT . 31
4.9.3 hsSDL . 32
4.9.4 Haskore revision . 32
4.10 Web and XML programming . 32
4.10.1 CabalFind . 32
4.10.2 WebFunctions . 33
4.10.3 HaXml . 33
4.10.4 Haskell XML Toolbox . 33
4.10.5 WASH/CGI – Web Authoring System for Haskell . 34
4.10.6 HAIFA . 34
4.10.7 HaXR – the Haskell XML-RPC library . 35

5 Tools 36
5.1 Foreign Function Interfacing . 36
5.1.1 HSFFIG . 36
5.1.2 FFI Imports Packaging Utility . 36
5.1.3 C→Haskell . 37
5.2 Scanning, Parsing, Analysis . 37
5.2.1 Frown . 37
5.2.2 Alex version 2 . 37
5.2.3 Happy . 37
5.2.4 Attribute Grammar Support for Happy . 38
5.2.5 BNF Converter . 38
5.2.6 Sdf2Haskell . 39

4

5.2.7 SdfMetz . 39
5.2.8 XsdMetz: metrics for XML Schema . 39
5.3 Transformations . 39
5.3.1 The Programatica Project . 39
5.3.2 Term Rewriting Tools written in Haskell . 40
5.3.3 HaRe – The Haskell Refactorer . 41
5.4 Testing and Debugging . 41
5.4.1 Tracing and Debugging . 41
5.4.2 Hat . 41
5.4.3 buddha . 42
5.5 Development . 42
5.5.1 hmake . 42
5.5.2 Zeroth . 42
5.5.3 Ruler . 42
5.5.4 cpphs . 43
5.5.5 Visual Haskell . 43
5.5.6 hIDE – the Haskell Integrated Development Environment . 43
5.5.7 Haskell support for the Eclipse IDE . 43
5.5.8 Haddock . 44
5.5.9 Hoogle – Haskell API Search . 44

6 Applications 45
6.1 h4sh . 45
6.2 Fermat’s Last Margin . 45
6.3 Conjure . 45
6.4 DEMO – Model Checking for Dynamic Epistemic Logic . 45
6.5 Pugs . 46
6.6 Darcs . 46
6.7 Arch2darcs . 46
6.8 downNova . 46
6.9 HWSProxyGen . 46
6.10 Hircules, an irc client . 47
6.11 lambdabot . 47
6.12 λFeed . 47
6.13 yi . 47
6.14 Dazzle . 47
6.15 Blobs . 48
6.16 INblobs – Interaction Nets interpreter . 48
6.17 Yarrow . 48
6.18 DoCon, the Algebraic Domain Constructor . 49
6.19 Dumatel, a prover based on equational reasoning . 49
6.20 lhs2TEX . 49
6.21 Audio signal processing . 49

7 Users 51
7.1 Commercial users . 51
7.1.1 Galois Connections, Inc. 51
7.1.2 Aetion Technologies LLC . 51
7.1.3 Linspire . 52
7.2 Haskell in Education . 52
7.2.1 Functional programming at school . 52
7.3 Research Groups . 53
7.3.1 Foundations of Programming Group at the University of Nottingham 53
7.3.2 Artificial Intelligence and Software Technology at JWG-University Frankfurt 55
7.3.3 Formal Methods at Bremen University . 56
7.3.4 Functional Programming at Brooklyn College, City University of New York 57
7.3.5 Functional Programming at Macquarie University . 57
7.3.6 Functional Programming at the University of Kent . 57

5

7.3.7 Parallel and Distributed Functional Languages Research Group at Heriot-Watt University 58
7.3.8 Programming Languages & Systems at UNSW . 58
7.4 User groups . 59
7.4.1 Debian Users . 59
7.4.2 Fedora Haskell . 59
7.4.3 OpenBSD Haskell . 59
7.4.4 Haskell in Gentoo Linux . 59
7.5 Individuals . 59
7.5.1 Oleg’s Mini tutorials and assorted small projects . 59
7.5.2 Implementation of “How to write a financial contract” . 60
7.5.3 Inductive Programming . 61
7.5.4 Bioinformatics tools . 61
7.5.5 Using Haskell to implement simulations of language acquisition, variation, and change 61

6

1 General

1.1 HaskellWiki and haskell.org

Report by: Ashley Yakeley

HaskellWiki is a MediaWiki installation now running
on haskell.org, including the haskell.org “front page”.
Anyone can create an account and edit and create
pages. Examples of content include:

◦ Documentation of the language and libraries

◦ Explanation of common idioms

◦ Suggestions and proposals for improvement of the
language and libraries

◦ Description of Haskell-related projects

◦ News and notices of upcoming events

We encourage people to create pages to describe and
advertise their own Haskell projects, as well as add to
and improve the existing content. All content is sub-
mitted and available under a “simple permissive” li-
cense (except for a few legacy pages).

In addition to HaskellWiki, the haskell.org website
hosts some ordinary HTTP directories. The machine
also hosts mailing lists. There is plenty of space and
processing power for just about anything that peo-
ple would want to do there: if you have an idea for
which HaskellWiki is insufficient, contact the maintain-
ers, John Peterson and Olaf Chitil, to get access to this
machine.

Further reading

◦ http://haskell.org/
◦ http://haskell.org/haskellwiki/Mailing_Lists

1.2 haskell.org and Google Summer of
Code 2006

Report by: Paolo Martini
Status: very active

Background

Google started to fund students working on Open
Source/Free Software projects during the last summer
through the Summer of Code programme. It aims to
help students entering the FOSS development world,
providing guidance and money for the summer period
($4,500 for three months of work.)

A number of organizations which runs active FOSS

projects take part to this programme. They are
required to provide mentors for students and pub-
lish a list of projects of interest. (More details
can be found here: http://haskell.org/pipermail/haskell/
2006-April/017872.html.)

The official Google site publishes detailed informa-
tions and deadlines, and it is located at http://code.
google.com/soc/.

Status

haskell.org is officially a mentoring organization for this
year’s programme. Many community members volun-
teered for the organising and mentoring roles needed,
an updated list of them can be found on the trac site
we set up:
◦ http://hackage.haskell.org/trac/summer-of-code/
(The site also contains the list of projects proposals
from the organization.)

The application period opened on May 1st, and
ended on May 9th.

We got more than a hundred proposals from roughly
90 individual students!

Google has accepted nine of the proposals for funding
– paid Haskell Open Source work for the summer:

◦ Thin out cabal-get and integrate in GHC by Paolo
Martini, mentored by Isaac Jones

◦ GHCi based debugger for Haskell by José Iborra
López, mentored by Lemmih

◦ haskellnet by Jun Mukai, mentored by Shae Matĳs
Erisson

◦ A model for client-side scripts with HSP by Joel
Bjórnson, mentored by Niklas Broberg

◦ Unicode ByteString, Data.Rope, Parsec for generic
strings by Spencer Janssen, mentored by Don Stew-
art

◦ Port Haddock to use GHC by David Waern, men-
tored by Simon Marlow

◦ Fast Mutable Collection Types for Haskell by Caio
Marcelo de Oliveira Filho, mentored by Audrey Tang

◦ Implement a better type checker for yhc by Leon P
Smith, mentored by Malcolm Wallace

◦ Language.C – a C parser written in Haskell by Marc
Ernst Eddy van Woerkom, mentored by Manuel
Chakravarty

The man in charge for the administrative work is Isaac
Jones 〈ĳones@syntaxpolice.org〉.

7

http://haskell.org/
http://haskell.org/haskellwiki/Mailing_Lists
http://haskell.org/pipermail/haskell/2006-April/017872.html
http://haskell.org/pipermail/haskell/2006-April/017872.html
http://code.google.com/soc/
http://code.google.com/soc/
http://hackage.haskell.org/trac/summer-of-code/
mailto: ijones at syntaxpolice.org

Further reading

◦ Students FAQ
http://code.google.com/soc/studentfaq.html

◦ Mentors FAQ
http://code.google.com/soc/mentorfaq.html

◦ Summer of Code 2005
http://code.google.com/summerofcode05.html

1.3 #haskell

Report by: Shae Erisson

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. #haskell
averages about one hundred eighty users. Point your
IRC client to irc.freenode.net and join the #haskell
channel.

The #haskell.se channel is the same subject but
discussion happens in Swedish. This channel tends to
have a lot of members from Gothenburg.

There is also a #darcs channel – if you want real-
time discussion about darcs (→ 6.6), drop by!

1.4 Haskell Weekly News

Report by: Don Stewart

The Haskell Weekly News (HWN) is a weekly newslet-
ter covering developments in Haskell. Content includes
announcements of new projects, discussions from the
various Haskell communities, notable project commit
messages, and more.

It is published in html form on The Haskell Se-
quence (→ 1.4.1), via mail on the Haskell mailing list,
and via RSS. Headlines are published on haskell.org (→
1.1).

Further reading

◦ Archives, and more information can be found at:
http://www.haskell.org/haskellwiki/Haskell_Weekly_
News

1.4.1 The Haskell Sequence

Report by: John Goerzen

The Haskell Sequence is a community-edited Haskell
news and discussion site. Its main feature is a slashdot-
like front page with stories and discussion about things
going on in the Haskell community, polls, questions,
or just observations. Submissions are voted on by the
community before being posted on the front page, sim-
ilar to Kuro5hin.

The Haskell Sequence also syndicates Haskell mailing
list posts, Haskell-related blogs, and other RSS feeds in
a single location. Free space for Haskell-related blogs,
which require no voting before being posted, is also
available to anyone.

Further reading

The Haskell Sequence is available at http://sequence.
complete.org.

1.5 The Monad.Reader

Report by: Shae Erisson

There are plenty of academic papers about Haskell,
and plenty of informative pages on the Haskell Wiki.
But there’s not much between the two extremes. The
Monad.Reader aims to fit in there; more formal than a
Wiki page, but less formal than a journal article.

Want to write about a tool or application that de-
serves more attention? Have a cunning hack that makes
coding more fun? Got that visionary idea people should
know about? Write an article for The Monad.Reader!

Further reading

See the TmrWiki for more information: http://www.
haskell.org/tmrwiki/FrontPage.

1.6 Books and tutorials

1.6.1 “Hitchhickers Guide to Haskell” tutorial

Report by: Dmitry Astapov
Status: work in progress

“Hitchhickers Guide to Haskell” is a tutorial aimed to
provide a “quick start into Haskell” for programmers
with solid experience of other languages under their
belt. Instead of “side by side” comparison between
Haskell and another language of choice (like C or Java),
the tutorial is built around case studies, which show
how typical tasks are performed in Haskell.

This is work in progress, only 5 chapters have been
written so far.

The tutorial is available on the Haskell wiki (URL
below) or from the darcs repository at http://adept.
linux.kiev.ua/repos/hhgtth.

Right now I am collecting ideas for subsequent chap-
ters, so any feedback from readers is appreciated more
than ever.

Further reading

http://www.haskell.org/haskellwiki/Hitchhikers_guide_
to_Haskell

8

http://code.google.com/soc/studentfaq.html
http://code.google.com/soc/mentorfaq.html
http://code.google.com/summerofcode05.html
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://sequence.complete.org
http://sequence.complete.org
http://www.haskell.org/tmrwiki/FrontPage
http://www.haskell.org/tmrwiki/FrontPage
http://adept.linux.kiev.ua/repos/hhgtth
http://adept.linux.kiev.ua/repos/hhgtth
http://www.haskell.org/haskellwiki/Hitchhikers_guide_to_Haskell
http://www.haskell.org/haskellwiki/Hitchhikers_guide_to_Haskell

1.6.2 New textbook – Programming in Haskell

Report by: Graham Hutton

The contract to publish the book with Cambridge Uni-
versity Press has recently been signed (including a
clause about film rights, so expect “Haskell the Movie”
in a couple of years :-)), and it is now entering the
final production stage, with an estimated publication
date in the last quarter of 2006. Further details, includ-
ing a preview of the first five chapters and powerpoint
lecture slides for all chapters, are available on the web
from http://www.cs.nott.ac.uk/~gmh/book.html.

1.6.3 Haskell Tutorial WikiBook

Report by: Paul Johnson

The Haskell Tutorial WikiBook has made considerable
progress over the last six months. It has now reached
the stage where a beginner to Haskell should find it
useful, although much still remains to be done.

Much of the recent work has been done by Eric Kow
(Kowey). Jeff Newburn also gave permission for his
“All About Monads” tutorial to be imported. Thanks
to these, and to all the other contributors.

Future work needs to focus on:
◦ Adding exercises and worked examples. The first sec-

tion in particular presents Haskell from the bottom
up with very little to explain how the material relates
to real world programming.

◦ Integrating the existing material. At present there
are three distinct sections that read like three differ-
ent tutorials, partly because that is how they started.
All contributions are welcome.

Further reading

http://en.wikibooks.org/wiki/Programming:Haskell

9

http://www.cs.nott.ac.uk/~gmh/book.html
http://en.wikibooks.org/wiki/Programming:Haskell

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones

We have been quite busy on GHC during the last six
months. Here are the highlights:

◦ We switched to darcs (→ 6.6) for our version control.
Thanks to all those who helped out, especially John
Goerzen who migrated the repository over from CVS
and helped with the initial setup.

Following the darcs switchover, the GHC source tree
has been reorganised and flattened, and the build
system simplified.

◦ The multiprocessor support has had an overhaul.
There are now per-CPU run queues, so thread affin-
ity should be better and the scheduler is lock-free in
the common case. There are some new RTS flags to
control thread migration (although there is still no
real load balancing). You don’t need a separate set
of libraries for running parallel code – the ordinary
libraries work (this required a small performance hit
for sequential code, unfortunately). The threaded
and SMP runtimes were merged, so only -threaded
is required for parallel now, -smp is a synonym for
-threaded.

◦ Better GC behaviour for IORefs/STRefs, STAr-
rays/IOArrays, and when there are a large number of
blocked threads. Now these objects are only scanned
during GC if they were mutated since the previous
GC. This alleviates some pathological cases of poor
GC performance, and gave GHC itself a performance
boost (GHC uses IORefs for type variables). Large
arrays are still scanned in their entirety; hopefully
we’ll improve this in the future.

◦ Refactoring in the compiler front-end (thanks to
Lemmih).

◦ Loosen the rules for instance declarations (thanks to
Ross Paterson).

http://www.haskell.org//pipermail/
glasgow-haskell-users/2006-February/009633.html

◦ Implementation of “boxy types” to support type in-
ference for impredicative types:

http://research.microsoft.com/~simonpj/papers/boxy

Huge thanks to Stephanie Weirich and Dimitrios Vy-
tiniotis for their work on this project.

◦ The design of lexically-scoped type variables has
changed, and will likely change further. These
changes have arisen out of the work with Stephanie
and Dimitrios; frankly we aren’t yet sure what the
exact design should be and, until we are, the imple-
mentation has rough edges.

◦ Name completion in GHCi. If you have readline,
then you can use the TAB key on the command line
to complete against names in scope.

◦ Full support for Unicode (UTF-8) source files. UTF-
8 is currently the only encoding supported by GHC,
we plan to add support for more encodings before
6.6 is released.

◦ Bang patterns are now implemented, as an experi-
mental feature
http://haskell.galois.com/cgi-bin/haskell-prime/trac.
cgi/wiki/BangPatterns

◦ The Data.ByteString (→ 4.6.3) library was added
(thanks particularly to Don Stewart and others who
contributed to the code).

◦ The native code generator can handle loops (thanks
Wolfgang Thaller).

◦ Performance improvements for x86_64: more argu-
ments are passed in registers.

◦ Experimental “breakpoint” feature in GHCi (thanks
Lemmih).

Release cycle

◦ 6.4.2 was released recently, with a significant number
of bugfixes relative to 6.4.1. Nevertheless, problems
have been found in 6.4.2; there is an unidentified bug
affecting MacOS X, and problems have been reported
in the threaded RTS on Solaris and FreeBSD (in fact,
these problems may have been present in 6.4.1 but
unnoticed until now, because in 6.4.2 GHC itself was
switched to the threaded RTS).

◦ There will probably be a 6.4.3, with a few important
fixes only.

◦ 6.6, with all the new features above, is scheduled for
sometime this summer. To get an idea of what is still
to do for 6.6, check the ticket system on the Trac:
http://hackage.haskell.org/trac/ghc/query?status=
new&status=assigned&status=reopened&milestone=
6.6&order=priority
Help is welcome as usual, and will probably speed
the release along!

10

http://www.haskell.org//pipermail/glasgow-haskell-users/2006-February/009633.html
http://www.haskell.org//pipermail/glasgow-haskell-users/2006-February/009633.html
http://research.microsoft.com/~simonpj/papers/boxy
http://haskell.galois.com/cgi-bin/haskell-prime/trac.cgi/wiki/BangPatterns
http://haskell.galois.com/cgi-bin/haskell-prime/trac.cgi/wiki/BangPatterns
http://hackage.haskell.org/trac/ghc/query?status=new&status=assigned&status=reopened&milestone=6.6&order=priority
http://hackage.haskell.org/trac/ghc/query?status=new&status=assigned&status=reopened&milestone=6.6&order=priority
http://hackage.haskell.org/trac/ghc/query?status=new&status=assigned&status=reopened&milestone=6.6&order=priority

Forthcoming excitements

◦ We are working hard on developing a data-parallel
extension to GHC, in collaboration with Gabriele
Keller, Manuel Chakravarty, and Roman Leshchin-
skiy. The basic idea was pioneered by Guy Blel-
loch in NESL, and subsequently developed in vari-
ous ways by Gabi, Manuel, and Roman; for exam-
ple, see http://www.cse.unsw.edu.au/~chak/papers/
CKLP01.html

◦ We plan to implement Associated Types during
the next few months: http://research.microsoft.com/
~simonpj/papers/assoc-types/

◦ Part of the reason that we have been slow to imple-
ment associated types is that they can’t be trans-
lated into System F (GHC’s internal language with-
out great difficulty). We have recently figured out a
new design for GHC’s internal language, which we
call System FC:

http://research.microsoft.com/~simonpj/papers/ext-f

Kevin Donnelly is spending the summer at Microsoft
as an intern, to implement FC in GHC.

◦ The multiprocessor GHC runs Haskell in parallel,
but when garbage collection happens only one pro-
cessor does the job. How embarrassing. Roshan
James, also an intern this summer, is going to build
a parallel garbage collector.

We are planning to run a “GHC Hackathon” just before
ICFP in Portland, in September 2006. We’ll give some
tutorials on how GHC works inside, and then spend
some time writing code together. If you are interested,
keep an eye on GHC’s web site.

2.2 Hugs

Report by: Ross Paterson
Status: stable, actively maintained, volunteers

welcome

The May 2006 release of Hugs was the first for over
three years to include a Windows distribution, thanks
to Neil Mitchell, who has also contributed a new version
of WinHugs, the Windows graphical interface to Hugs.
Other major features, already seen in the Unix-only
release, are support for the Cabal infrastructure (→
4.1.1), Unicode support (contributed by Dmitry Gol-
ubovsky) and lots of up-to-date libraries.

Obsolete non-hierarchical libraries (hslibs and Hugs-
specific libraries) have been removed from the default
search path, and will disappear altogether in the next
release.

The source distribution is available in two forms: a
huge omnibus bundle containing the Hugs programs

and lots of useful libraries, or a minimal bundle, with
most of the libraries hived off as separate Cabal pack-
ages.

There is also a new bug tracking system and devel-
opment wiki at http://hackage.haskell.org/trac/hugs.

As ever, volunteers are welcome.

2.3 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, compiler for Haskell’98.
It is in stable maintenance-only mode – the current
public release is version 1.18. Maintenance continues
in CVS at haskell.org. Recent news is that Niklas (the
original author of nhc13) has contributed a workaround
for the hi-mem bug which was preventing the compiler
from building on many recent Linux platforms. A new
release incorporating this patch is expected soon.

The Yhc (→ 2.4) branch of nhc98 is also making good
progress.

Further reading

http://haskell.org/nhc98

2.4 yhc

Report by: Tom Shackell
Status: work in progress

The York Haskell Compiler (yhc) is a backend rewrite
of the nhc98 (→ 2.3) compiler to support features such
as a platform independent bytecode and runtime sys-
tem.

It is currently work in progress, it compiles and cor-
rectly runs almost every standard Haskell 98 program
but FFI support is on going. Contributions are wel-
come.

Further reading

◦ Homepage:
http://www.cs.york.ac.uk/~ndm/yhc/

◦ Darcs (→ 6.6) repository:
http://www.cs.york.ac.uk/fp/darcs/yhc/

11

http://www.cse.unsw.edu.au/~chak/papers/CKLP01.html
http://www.cse.unsw.edu.au/~chak/papers/CKLP01.html
http://research.microsoft.com/~simonpj/papers/assoc-types/
http://research.microsoft.com/~simonpj/papers/assoc-types/
http://research.microsoft.com/~simonpj/papers/ext-f
http://hackage.haskell.org/trac/hugs
http://haskell.org/nhc98
http://www.cs.york.ac.uk/~ndm/yhc/
http://www.cs.york.ac.uk/fp/darcs/yhc/

3 Language

3.1 Variations of Haskell

3.1.1 Haskell on handheld devices

Report by: Anthony Sloane
Status: unreleased

Our work on running Haskell on handheld devices
based on Palm OS has taken a different direction
since the last report. Instead of basing our port on
nhc98 (→ 2.3) we are now using yhc (→ 2.4) as the ba-
sis. Overall everything is easier since yhc has a better
separation of compiler and runtime system. We have
also added a part-time programmer to this project so
more progress is being made. An alpha version is close
to working.

3.1.2 Vital: Visual Interactive Programming

Report by: Keith Hanna
Status: stable (latest release: April 2005)

Vital is a highly interactive, visual environment that
aims to present Haskell in a form suitable for use by en-
gineers, mathematicians, analysts and other end users
who often need a combination of the expressiveness and
robustness that Haskell provides together with the ease
of use of a ‘liveŠ graphical environment in which pro-
grams can be incrementally developed.

In Vital, Haskell modules are presented as ‘docu-
mentsŠ having a free-form layout and with expressions
and their values displayed together. These values can
be displayed either textually, or pictorially and can be
manipulated by an end user by point-and-click mouse
operations. The way that values of a given type are
displayed and the set of editing operations defined on
them (i.e., the ‘look and feel’ of the type) are defined
using type classes. For example, an ADT represent-
ing directed graphs could be introduced, with its val-
ues displayed pictorially as actual directed graphs and
with the end user provided with a menu of operations
allowing edges to be added or removed, transitive clo-
sures to be computed, etc. (In fact, although an end
user appears to be operating directly on values, it is
actually the Haskell program itself that is updated by
the system, using a specialised form of reflection.)

The present implementation includes a collection of
interactive tutorial documents (including examples il-
lustrating approaches to exact real arithmetic, pictorial
manipulation of DNA and the genetic code, animated
diagrams of mechanisms, and the composition and syn-
thesis of MIDI music).

The Vital system can be run via the web: a single
mouse-click is all that is needed!

Further reading

http://www.cs.kent.ac.uk/projects/vital/

3.1.3 Pivotal: Visual Interactive Programming

Report by: Keith Hanna
Status: active (first release: November 2005)

Pivotal 0.025 is a very early prototype of a Vital-like
environment (→ 3.1.2) for Haskell. Unlike Vital, how-
ever, Pivotal is implemented entirely in Haskell. The
implementation is based on the use of the hs-plugins li-
brary (→ 4.4.1) to allow dynamic compilation and eval-
uation of Haskell expressions together with the gtk2hs
library (→ 4.8.1) for implementing the GUI.

At present, the implementation is only in a skeletal
state but, nevertheless, it provides some useful func-
tionality. The Pivotal web site provides an overview
of its principles of operation, a selection of screen shots
(including a section illustrating image transforms in the
complex plane), and a (very preliminary!) release of the
Haskell code for the system.

A more extensive implementation (based on the use
of the GHC API (→ 2.1) for reflection, in place of the
hs-plugins (→ 4.4.1) mechanism) is planned as soon as
the required hooks are available in GHC 6.6.

Further reading

http://www.cs.kent.ac.uk/projects/pivotal/

3.1.4 House (formerly hOp)

Report by: Thomas Hallgren
Status: active development

House is a platform for exploring various ideas relating
to low-level and system-level programming in a high-
level functional language, or in short for building op-
erating systems in Haskell. House is based on hOp by
Sébastien Carlier and Jérémy Bobbio.

Recent work includes

◦ the introduction of H, the Hardware Monad, an API
on top of which various operating system features
(e.g., virtual memory management, user-space exe-
cution, device drivers and interrupt handling) can be
implemented in a fairly safe way. Key properties of

12

http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/

the H monad operations are captured as P-Logic as-
sertions in the code. This is described in more detail
in our ICFP 2005 paper.

The House demo system is now implemented on top
of the H monad. There is also work in progress on
implementing an L4 compatible micro-kernel on top
of H.

◦ adding support for parsing and rendering GIF im-
ages. This allowed us to use House to display the
slides for the talk at ICFP.

◦ adding support for scanning the PCI bus and iden-
tifying PCI devices.

Further reading

Further information, papers, source code, demos and
screenshots are available here: http://www.cse.ogi.edu/
~hallgren/House/

3.1.5 Camila

Report by: Alexandra Silva and Joost Visser

The Camila project explores how concepts from the
VDM++ specification language and the functional pro-
gramming language Haskell can be combined. On the
one hand, it includes experiments of expressing VDM’s
data types (e.g. maps, sets, sequences), data type
invariants, pre- and post-conditions, and such within
the Haskell language. On the other hand, it includes
the translation of VDM specifications into Haskell pro-
grams. Moreover, the use of the OOHaskell library (→
4.6.7) allows the definition of classes and objects and
enables important features such as inheritance. In
the near future, support for parallelism and automatic
translation of VDM++ specifications into Haskell will
be added to the libraries.

Currently, the project has produced first versions of
the Camila Library, both distributed as part of the
UMinho Haskell Libraries and Tools. The library re-
sorts to Haskell’s constructor class mechanism, and
its support for monads and monad transformers to
model VDM’s datatype invariants, and pre- and post-
conditions. It allows switching between different modes
of evaluation (e.g. with or without property checking)
by simply coercing user defined functions and opera-
tions to different specific types.

Further reading

The web site of Camila (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/Camila) provides documentation. Both
library and tool are distributed as part of the UMinho
Haskell Libraries and Tools.

3.1.6 HASP

Report by: Lemmih
Status: active

HASP is a fork of Niklas Broberg’s Haskell Server
Pages. Changes includes:
◦ support for all GHC extensions
◦ use of the GHC-api (→ 2.1) for byte-code compila-

tions
◦ front-end based on FastCGI instead of its own web

server
◦ minor bug fixes and performance tuning.

Some of the features implemented in HASP will be
ported back into the main HSP tree. However, experi-
mental features like byte code generation via the GHC
api will most likely stay in HASP.

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/hasp/

◦ Original HSP:
http://www.cs.chalmers.se/~d00nibro/hsp/

3.2 Non-sequential Programming

3.2.1 Data Parallel Haskell

Report by: Manuel Chakravarty
Status: active

Data Parallel Haskell is the codename for an exten-
sion to the Glasgow Haskell Compiler and its libraries
to support nested data parallelism with a focus to
utilise multi-core CPUs and other SMP hardware. The
project is still in its early stages. For more informa-
tion and code see http://www.cse.unsw.edu.au/~chak/
project/dph/.

3.2.2 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Abyd Al Zain, Greg

Michaelson, Kevin Hammond, Yang Yang,
Jost Berthold, Murray Gross

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

13

http://www.cse.ogi.edu/~hallgren/House/
http://www.cse.ogi.edu/~hallgren/House/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://darcs.haskell.org/~lemmih/hasp/
http://www.cs.chalmers.se/~d00nibro/hsp/
http://www.cse.unsw.edu.au/~chak/project/dph/
http://www.cse.unsw.edu.au/~chak/project/dph/
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html

System Evaluation and Enhancement

◦ We have developed an adaptive runtime environ-
ment (GRID-GUM) for GpH on computational
grids. GRID-GUM incorporates new load man-
agement mechanisms that cheaply and effectively
combine static and dynamic information to adapt
to the heterogeneous and high-latency environment
of a multi-cluster computational grid. We have
made comparative measures of GRID-GUM’s per-
formance on high/low latency grids and heteroge-
neous/homogeneous grids using clusters located in
Edinburgh, Munich and Galashiels. Results are pub-
lished in:

Al Zain A. Implementing High-Level Parallelism on
Computational Grids, PhD Thesis, Heriot-Watt Uni-
versity, 2006.

Al Zain A. Trinder P.W. Loidl H.W. Michaelson G.J.
Managing Heterogeneity in a Grid Parallel Haskell,
Journal of Scalable Computing: Practice and Expe-
rience 7(3), (September 2006).

◦ The design of a generic parallel runtime environment
encompassing both the Eden and GpH runtime en-
vironments is complete, but the implementation is
stalled at present.

◦ SMP-GHC, an implementation of GpH for multi-core
machines has been developed by Tim Harris, Simon
Marlow and Simon Peyton Jones (→ 2.1).

◦ At St Andrews GpH is being used as a vehicle for
investigating scheduling on the GRID.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universitat Mar-
burg.

GpH Applications

◦ GpH is being used to parallelise the GAP mathemat-
ical library in an EPSRC project (GR/R91298).

◦ As part of the SCIEnce EU FP6 I3 project (026133)
that started in April 2006 we will use GpH and Java
to provide access to Grid services from Computer Al-
gebra(CA) systems, including GAP and Maple. We
will both produce Grid-parallel implementations of
common CA library functions, and also wrap CA
systems as Grid services.

Implementations

The GUM implementation of GpH is available in two
development branches.

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

◦ The unstable branch (GUM-5.02, based on GHC-
5.02) is currently being tested on a Beowulf cluster.
The unstable branch is available from the GHC CVS
repository via tag gum-5-02-3.

Our main hardware platform are Intel-based Beowulf
clusters. Work on ports to other architectures is also
moving on (and available on request):

◦ A port to a Sun-Solaris shared-memory machine ex-
ists but currently suffers from performance problems.

◦ A port to a Mosix cluster has been built in the Metis
project at Brooklyn College, with a first version
available on request from Murray Gross (→ 7.3.4).

Further reading

◦ GpH Home Page:
http://www.macs.hw.ac.uk/~dsg/gph/

◦ Stable branch binary snapshot:
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.
06-snap-i386-unknown-linux.tar

◦ Stable branch installation instructions:
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM

Contact

〈gph@macs.hw.ac.uk〉, 〈mgross@dorsai.org〉

3.2.3 GdH – Glasgow Distributed Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Hans-Wolfgang Loidl, Jan

Henry Nyström, Robert Pointon

GdH supports distributed stateful interactions on mul-
tiple locations. It is a conservative extension of both
Concurrent Haskell and GpH (→ 3.2.2), enabling the
distribution of the stateful IO threads of the former on
the multiple locations of the latter. The programming
model includes forking stateful threads on remote loca-
tions, explicit communication over channels, and dis-
tributed exception handling.

Status

An alpha-release of the GdH implementation is avail-
able on request 〈gph@macs.hw.ac.uk〉. It shares sub-
stantial components of the GUM implementation of
GpH (Glasgow parallel Haskell) (→ 3.2.2).

Applications and Evaluation

◦ EPSRC project High Level Techniques for Dis-
tributed Telecommunications Software (GR/R88137)
has recently been completed (February 2006). The
project was collaboration between Heriot-Watt Uni-
versity and Motorola UK Research Labs, and

14

http://www.mathematik.uni-marburg.de/~eden/
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: mgross at dorsai.org
mailto: gph at macs.hw.ac.uk
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/

amongst other activities evaluated GdH and Erlang
as technologies for distributed telecoms software in
comparison to C++/CORBA. Previous publications
appear on the project page, and some recent results
are given in the papers below. The latter paper
compares Erlang, GdH and C++ for engineering a
medium-scale (14K lines of C++, 4K lines of Erlang,
and 0.5K lines of GdH) telecoms component.

Nystrom J.H. Trinder P.W. King D.J. Are High-level
Languages suitable for Robust Telecoms Software?
Proc. 24th Int. Conference on Computer Safety,
Reliability and Security (SAFECOMP’05), Fredrik-
stad, Norway (September 2005).

http://www.macs.hw.ac.uk/~dsg/telecoms/
publications/SafeComp2005.pdf

Nystrom, J.H., Trinder, P.W., King,D.J. A Compar-
ative Evaluation of Three High-level Distributed Lan-
guages for Telecoms Software. In preparation.

◦ There is a forthcoming Ph.D. thesis on the design,
implementation and use of GdH by Robert Pointon.

Further reading

◦ The GdH homepage:
http://www.macs.hw.ac.uk/~dsg/gdh/

3.2.4 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps Universität Marburg, Germany and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Clara Segura

in Marburg: Rita Loogen, Jost Berthold, Steffen
Priebe

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement
parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in parallel.

Process instantiation is expressed by the predefined in-
fix operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining skele-
tons, ranging from a simple parallel map to sophisti-
cated replicated-worker schemes. They have been used
to parallelise a set of non-trivial benchmark programs.

Eden has been implemented by modifying the paral-
lel runtime system GUM of GpH (→ 3.2.2). Differences
include stepping back from a global heap to a set of lo-
cal heaps to reduce system message traffic and to avoid
global garbage collection. The current (freely available)
implementation is based on GHC 5.02.3. A source code
version is available from the Eden web page. Installa-
tion support will be provided if required.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén and Ri-
cardo Peña: Parallel Functional Programming in
Eden, Journal of Functional Programming 15(3), 2005,
pages 431-475 (Special Issue on Functional Approaches
to High-Performance Parallel Programming)

Recent and Forthcoming Publications

◦ Jost Berthold, Rita Loogen: The Impact of Dynamic
Channels on Functional Topology Skeletons, Parallel
Processing Letters, to appear 2006.

◦ Steffen Priebe: Dynamic Task Generation and
Transformation within a Nestable Workpool Skeleton,
Euro-Par 2006, Dresden, to appear.

Current Activities

◦ Yolanda and Mercedes analyse Eden skeletons us-
ing an implementation of its operational semantics
in Maude.

◦ Jost continues his work on a more general implemen-
tation of parallel Haskell dialects in a shared runtime
system.

◦ Steffen continues his work on the polytypic skele-
ton library for Eden making use of the new meta-
programming facilities in GHC.

◦ Jost and Rita continue working on the skeleton li-
brary.

Further reading

http://www.mathematik.uni-marburg.de/~eden

15

http://www.macs.hw.ac.uk/~dsg/telecoms/publications/SafeComp2005.pdf
http://www.macs.hw.ac.uk/~dsg/telecoms/publications/SafeComp2005.pdf
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~dsg/gdh/
http://www.mathematik.uni-marburg.de/~eden

3.3 Type System/Program Analysis

3.3.1 Epigram

Report by: Conor McBride and Wouter Swierstra

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive
editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-
ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in ‘The view from the left’ by Conor McBride
and James McKinna (JFP 14 (1)).

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program won’t crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.

Specifically, Epigram is designed to support pro-
gramming with inductive datatype families indexed
by data. Examples include matrices indexed by
their dimensions, expressions indexed by their types,
search trees indexed by their bounds. In many ways,
these datatype families are the progenitors of Haskell’s
GADTs, but indexing by data provides both a con-
ceptual simplification – the dimensions of a matrix are
numbers – and a new way to allow data to stand as
evidence for the properties of other data. It is no good
representing sorted lists if comparison does not produce
evidence of ordering. It is no good writing a type-safe
interpreter if one’s typechecking algorithm cannot pro-
duce well-typed terms.

Programming with evidence lies at the heart of Epi-
gram’s design. Epigram generalises constructor pattern
matching by allowing types resembling induction prin-
ciples to express as how the inspection of data may
affect both the flow of control at run time and the text
and type of the program in the editor. Epigram ex-
tracts patterns from induction principles and induction
principles from inductive datatype families.

Current Status

Whilst at Durham, Conor McBride developed the Epi-
gram prototype in Haskell, interfacing with the xemacs
editor. Nowadays, a team of willing workers at the Uni-
versity of Nottingham are developing a new version of
Epigram, incorporating both significant improvements
over the previous version and experimental features
subject to active research.

The first steps have been made in collecting recur-
rent programs and examples in some sort of standard
library. There’s still a great deal of cleaning up to do,
but progress is being made.

The Epigram system has also been used succesfully
by Thorsten Altenkirch in his undergraduate course
on Computer Aided Formal Reasoning for two years
http://www.cs.nott.ac.uk/~txa/g5bcfr/. Several final
year students have successfully completed projects that
involved both new applications of and useful contribu-
tions to Epigram.

Peter Morris is working on how to build the datatype
system of Epigram from a universe of containers. This
technology would enable datatype generic program-
ming from the ground up. Central to these ideas is
the concept of indexed container that has been devel-
oped recently. There are ongoing efforts to elaborate
the ideas in Edwin Brady’s PhD thesis about efficiently
compiling dependently typed programming languages.

Joel Wright has started writing a stand alone editor
for Epigram using Gtk2Hs (→ 4.8.1). Thanks to a most
helpful visit from Duncan Coutts and Axel Simon, two
leading Gtk2Hs developers, we now have the beginnings
of a structure editor for Epigram 2.

There has also been steady progress on Epigram 2
itself. The type theoretic basis underpinning Epigram
has been further developed to incorporate observational
type theory. The lion’s share of the core theory has
already been implemented, but there is still plenty of
work to do.

Whilst Epigram seeks to open new possibilities
for the future of strongly typed functional program-
ming, its implementation benefits considerably from
the present state of the art. Our implementation makes
considerable use of applicative functors, higher-kind
polymorphism and type classes. Moreover, its denota-
tional approach translates Epigram’s lambda-calculus
directly into Haskell’s. On a more practical note, we
have recently shifted to the darcs version control sys-
tem and cabal framework.

Epigram source code and related research papers can
be found on the web at http://www.e-pig.org and its
community of experimental users communicate via the
mailing list 〈epigram@durham.ac.uk〉. The current im-
plementation is naive in design and slow in practice, but
it is adequate to exhibit small examples of Epigram’s
possibilities. The new implementation, whose progress
can be observed at http://www.e-pig.org/epilogue/ will
be much less rudimentary.

3.3.2 Chameleon project

Report by: Martin Sulzmann

Chameleon is a Haskell style language which integrates
sophisticated reasoning capabilities into a program-

16

http://www.cs.nott.ac.uk/~txa/g5bcfr/
http://www.e-pig.org
mailto: epigram at durham.ac.uk
http://www.e-pig.org/epilogue/

ming language via its CHR programmable type system.
Thus, we can program novel type system applications
in terms of CHRs which previously required special-
purpose systems.

Latest developments

Jeremy Wazny successfully defended his PhD thesis
on Type inference and type error diagnosis for Hind-
ley/Milner with Extensions. This thesis summarizes
to a large extent the theoretical underpinnings be-
hind Chameleon. A copy can be downloaded via http:
//www.comp.nus.edu.sg/~sulzmann/chameleon/.

The latest available Chameleon version is from July
2005. This version is known to have bugs. We are cur-
rently working on a much improved version which will
be available in the third quarter of 2006. An announce-
ment will be sent to the Haskell mailing list once the
new version is ready.

Further reading

http://www.comp.nus.edu.sg/~sulzmann/chameleon/

3.3.3 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu and

Martin Sulzmann

XHaskell is an extension of Haskell with XDuce style
regular expression types and regular expression pattern
matching. We have much improved the implementation
which can found under the XHaskell home-page.

Further reading

http://www.comp.nus.edu.sg/~luzm/xhaskell/

3.3.4 Constraint Based Type Inferencing at Utrecht

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Jurriaan Hage,

Doaitse Swierstra

With the generation of understandable type error mes-
sages in mind we have devised a constraint based type
inference method in the form of the Top library. This
library is used in the Helium compiler (for learning
Haskell) developed at Universiteit Utrecht. Our philop-
sophy is that no single type inferencer works best for
everybody all the time. Hence, we want a type infer-
encer adaptable to the programmer’s needs without the
need for him to delve into the compiler. Our goal is to
devise a library which helps compiler builders add this
kind of technology to their compiler.

The main outcome of our work is the Top library
which has the following characteristics:

◦ It uses constraints to build a constraint tree which
follows the shape of the abstract syntax tree.

◦ These constraints can be ordered in various ways into
a list of constraints

◦ Various solvers (specifically a fast greedy one, a
slower global one, and the chunky solver which com-
bines the two) exist to solve the resulting list of con-
straints.

◦ The library is easily extended with new constraints,
and the type graph implementation includes various
heuristics to find out what is the most likely source
of an inconsistency. Some of these heuristics are very
general, others are more tailored towards Haskell.
Some the heuristics are fixed, like a majority heuris-
tics which takes into account that there is ‘more’
evidence that a certain constraint is the root of an
inconsistency. In addition, there are also heuristics
specified from the outside. By means of a siblings
directive, a programmer may specify that his experi-
ences are that certain functions are often mixed up.
As a result, a compiler may give the hint that (++)
should be used instead of (:), because (++) happens
to fit in the context.

◦ It preserves type synonyms as much as possible,

◦ We have support for type class directives. It allows
programmers to for instance specify that certain in-
stances will never occur. The type inferencer can use
this information to give better error messages. Other
directives can be used to specify additional invariants
on type classes. For instance, that two type classes
do not share a common type (Fractional vs. Inte-
gral). A paper about this subject will find its way
into PADL 2005. Although we have implemented
this into Helium, the infrastructure applies as well
to other systems of qualified types.

◦ The various phases in type inferencing have now been
integrated by a slightly different, more general choice
of constraints.

An older version of the underlying machinery for the
type inferencer has been published in the Proceedings
of the Workshop of Immediate Applications of Con-
straint Programming held in October 2003 in Kinsale,
Ireland.

The entire library is parameterized in the sense that
for a given compiler we can choose which information
we want to drag around.

The library has been used extensively in the Helium
compiler, so that Helium can be seen as a case study
in applying Top in a real compiler. In addition to the
above, Helium also

◦ has a logging facility for building collections of cor-
rect and incorrect Haskell programs (including time
line information),

17

http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~luzm/xhaskell/

◦ has a run-time parameters for experimenting with
various solvers and constraint orderings.

◦ gives precise error location information,

◦ supports specialized type rules, which are a means
to override the order in which certain expressions
are inferenced and how the type error messages are
formulated (see our paper presented at ICFP ’03).
These type rules are especially useful for making the
type error messages for domain specific extensions to
Haskell correspond more closely to the domain, in-
stead of the underlying Haskell language structures.
The specialized type rules are automatically checked
for soundness and completeness with respect to the
original type system.

Further reading

◦ Project website:
http://www.cs.uu.nl/wiki/Top/WebHome

3.3.5 EHC, ‘Essential Haskell’ Compiler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Doaitse Swierstra
Status: active development

The purpose of the EHC project is to provide a descrip-
tion of a Haskell compiler which is as understandable
as possible so it can be used for education as well as
research.

For its description an Attribute Grammar system
(AG) is used as well as other formalisms allowing com-
pact notation like parser combinators. For the descrip-
tion of type rules, and the generation of an AG im-
plementation for those type rules, we recently started
using the Ruler system (→ 5.5.3) (included in the EHC
project).

The EHC project also tackles other issues:

◦ In order to avoid overwhelming the innocent reader,
the description of the compiler is organised as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus.

◦ Each step corresponds to an actual, that is, an exe-
cutable compiler. Each of these compilers is a com-
piler in its own right so experimenting can be done in
isolation of additional complexity introduced in later
steps.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Currently EHC already incorporates more advanced
features like higher-ranked polymorphism, partial type
signatures, class system, explicit passing of implicit pa-
rameters (i.e. class instances), extensible records, kind
polymorphism.

Part of the description of the series of EH compilers
is available as a PhD thesis, which incorporates previ-
ously published material on the EHC project.

The compiler is used for small student projects as
well as larger experiments such as the incorporation of
an Attribute Grammar system.

We also hope to provide a Haskell frontend dealing
with all Haskell syntactic sugar omitted from EHC.

Further reading

◦ Homepage:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

◦ Attribute grammar system:
http://www.cs.uu.nl/wiki/HUT/
AttributeGrammarSystem

◦ Parser combinators:
http://www.cs.uu.nl/wiki/HUT/ParserCombinators

3.4 Generic Programming

Report by: Johan Jeuring

Software development often consists of designing a (set
of mutually recursive) datatype(s), to which function-
ality is added. Some functionality is datatype specific,
other functionality is defined on almost all datatypes,
and only depends on the type structure of the datatype.

Examples of generic (or polytypic) functionality de-
fined on almost all datatypes are the functions that
can be derived in Haskell using the deriving construct,
storing a value in a database, editing a value, compar-
ing two values for equality, pretty-printing a value, etc.
Another kind of generic function is a function that tra-
verses its argument, and only performs an action at a
small part of its argument. A function that works on
many datatypes is called a generic function.

There are at least two approaches to generic pro-
gramming: use a preprocessor to generate instances of
generic functions on some given datatypes, or extend
a programming language with the possibility to define
generic functions. The techniques behind some of these
ideas are given in a separate subsection. In Comparing
approaches to generic programming in Haskell (in the
lecture notes of the Spring School on Datatype-Generic
Programming 2006, held in Nottingham, April 2006, to
appear in LNCS), Ralf Hinze, Johan Jeuring and An-
dres Löh compare 8 different approaches to generic pro-
gramming in Haskell, both lightweight approaches and
language extensions. Most of the approaches discussed

18

http://www.cs.uu.nl/wiki/Top/WebHome
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators

in this and previous versions of the Communities re-
port are addressed. In the same set of lecture notes,
Jeremy Gibbons discusses the various interpretations
of the word ‘generic’.

Preprocessors

DrIFT is a preprocessor which generates instances of
generic functions. It is used in Strafunski (→ 4.3.2)
to generate a framework for generic programming on
terms. New releases appear regularly, the latest is 2.2.0
from April 2006.

Languages

Light-weight generic programming There are a num-
ber of approaches to light-weight generic programming.

Generic functions for data type traversals can (al-
most) be written in Haskell itself (using many of the
extensions of Haskell provided by GHC), as shown by
Ralf Lämmel and Simon Peyton Jones in the ‘Scrap
your boilerplate’ (SYB) approach (http://www.cs.vu.
nl/boilerplate/). The SYB approach to generic pro-
gramming in Haskell has been further elaborated in
the recently published (in FLOPS ’06) paper “Scrap
Your Boilerplate” Reloaded and “Scrap Your Boiler-
plate” Revolutions (to appear in MPC’06). In these pa-
pers Ralf Hinze, Andres Löh, and Bruno Oliveira show,
amongst others, how by viewing the SYB approach in
a particular way, the choice of basic operators becomes
obvious.

In Open data types and open functions (to appear
at PPDP’06), Andres Löh and Ralf Hinze propose to
add extensible data types to Haskell, and they show
how to use these extensible data types to implement
generic functions in a light-weight approach to generic
programming.

In Generics as a Library, Bruno Oliveira, Ralf Hinze
and Andres Löh show how to extend Ralf Hinze’s
“Generic for the Masses” approach to be able to ex-
tend generic functions with ad-hoc behaviour for new
data types.

Finally, in Generic programming, NOW! (in the lec-
ture notes of the Spring School on Datatype-Generic
Programming 2006, held in Nottingham, April 2006,
to appear in LNCS), Ralf Hinze and Andres Löh
show how GADTs can be used to implement many of
the lightweight approaches to generic programming di-
rectly in Haskell.

Generic Haskell In Generic views on data types (to
appear in MPC’06) Stefan Holdermans, Johan Jeuring,
Andres Löh, and Alexey Rodriguez show how to add
views on data types to Generic Haskell. Using these
views, typical fixed-point functions such as determin-
ing the recursive children of a constructor of a recur-
sive data type can be combined with the usual Generic
Haskell programs in a single program. The Generic

Haskell compiler has been extended with views (avail-
able via svn).

Other In Generic Programming with Sized Types (to
appear in MPC’06), Andreas Abel defines a generic
programming language in which you can only define
terminating generic programs, by adding sizes to types.

In iData for the World Wide Web: programming in-
terconnected web forms (in FLOPS’06), Rinus Plas-
meĳer and Peter Achten show how to use the generic
programming extension of Clean for implementing web
forms.

Techniques

Jeremy Gibbons’ tutorial Design Patterns as Higher-
Order Datatype-Generic Programs from ECOOP
and OOPSLA 2005 has been written up as
a paper, http://www.comlab.ox.ac.uk/jeremy.gibbons/
publications/#hodgp. He and Bruno Oliveira
have also written about The Essence of the It-
erator Pattern as a higher-order datatype-generic
program (http://www.comlab.ox.ac.uk/jeremy.gibbons/
publications/#iterator), in terms of McBride and Pa-
terson’s idioms or applicative functors.

The Spring School on Datatype-Generic Program-
ming has taken place in Nottingham, UK, April 23 - 26,
see http://www.cs.nott.ac.uk/ssdgp2006/. There were
lectures about comparing approaches to generic pro-
gramming in Haskell, generic programming in Haskell
using GADTs, the implementation of patterns as
generic programs, generic programming in Omega (a
Haskell-like functional programming language with a
limited form of dependent types), and in Epigram (→
3.3.1) (a dependently typed programming language).

Current Hot Topics

Generic Haskell: finding transformations between data
types. Adding type inference to the compiler. Other:
the relation between generic programming and depen-
dently typed programming; the relation between coher-
ence and generic programming; methods for construct-
ing generic programs. Methods for testing generic pro-
grams.

Hopefully there will be papers about these top-
ics in the next Workshop on Generic Programming
(colocated with ICFP 2006): http://www.informatik.
uni-bonn.de/~ralf/wgp2006.html.

Further reading

◦ http://repetae.net/john/computer/haskell/DrIFT/
◦ http://www.cs.chalmers.se/~patrikj/poly/
◦ http://www.generic-haskell.org/
◦ http://www.cs.vu.nl/Strafunski/
◦ http://www.cs.vu.nl/boilerplate/

19

http://www.cs.vu.nl/boilerplate/
http://www.cs.vu.nl/boilerplate/
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#hodgp
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#hodgp
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#iterator
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#iterator
http://www.cs.nott.ac.uk/ssdgp2006/
http://www.informatik.uni-bonn.de/~ralf/wgp2006.html
http://www.informatik.uni-bonn.de/~ralf/wgp2006.html
http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/

4 Libraries

4.1 Packaging and Distribution

4.1.1 Hackage and Cabal

Report by: Isaac Jones

Background

The Haskell Cabal is a Common Architecture for Build-
ing Applications and Libraries. It is an API distributed
with GHC (→ 2.1), NHC98 (→ 2.3), and Hugs (→ 2.2)
which allows a developer to easily group together a set
of modules into a package.

HackageDB (Haskell Package Database) is an online
database of packages which can be interactively queried
by client-side software such as the prototype cabal-get.
From HackageDB, an end-user can download and in-
stall packages which conform to the Cabal interface.

The Haskell Implementations come with a good set
of standard libraries included, but this set is constantly
growing and is maintained centrally. This model does
not scale up well, and as Haskell grows in acceptance,
the quality and quantity of available libraries is becom-
ing a major issue.

It can be very difficult for an end user to manage a
wide variety of dependencies between various libraries,
tools, and Haskell implementations, and to build all the
necessary software at the correct version numbers on
their platform: previously, there was no generic build
system to abstract away differences between Haskell
Implementations and operating systems.

HackageDB and The Haskell Cabal seek to provide
some relief to this situation by building tools to assist
developers, end users, and operating system distribu-
tors.

Such tools include a common build system, a pack-
aging system which is understood by all of the Haskell
Implementations, an API for querying the packaging
system, and miscellaneous utilities, both for program-
mers and end users, for managing Haskell software.

Further reading

◦ http://www.haskell.org/cabal
◦ http://hackage.haskell.org/ModHackage/Hackage.hs?

action=home

4.2 General libraries

4.2.1 Hacanon-light

Report by: Lemmih
Status: usable, unmaintained

Hacanon-light is a lightweight FFI library that uses
the Data Interface Scheme (DIS) from Hacanon (http:
//haskell.org/hawiki/Hacanon) and Template Haskell
to provide a high level interface to marshaling/un-
marshaling. It differs from Hacanon taking a passive
role in the binding process; it won’t use or validate itself
from any foreign header files.

Hacanon-light is meant to be used together with Ze-
roth (→ 5.5.2).

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/hacanon-light

4.2.2 HODE

Report by: Lemmih
Status: usable, unmaintained

HODE is a binding to the Open Dynamics Engine.
ODE is an open source, high performance library for
simulating rigid body dynamics.

HODE uses Hacanon-light (→ 4.2.1) to simplify the
binding process and Zeroth (→ 5.5.2) to avoid linking
with Template Haskell.

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/hode

◦ ODE:
http://ode.org

4.2.3 PFP – Probabilistic Functional Programming
Library for Haskell

Report by: Martin Erwig
Status: active development

The PFP library is a collection of modules for Haskell
that facilitates probabilistic functional programming,
that is, programming with stochastic values. The prob-
abilistic functional programming approach is based on
a data type for representing distributions. A distri-
bution represent the outcome of a probabilistic event

20

http://www.haskell.org/cabal
http://hackage.haskell.org/ModHackage/Hackage.hs?action=home
http://hackage.haskell.org/ModHackage/Hackage.hs?action=home
http://haskell.org/hawiki/Hacanon
http://haskell.org/hawiki/Hacanon
http://darcs.haskell.org/~lemmih/hacanon-light
http://darcs.haskell.org/~lemmih/hode
http://ode.org

as a collection of all possible values, tagged with their
likelihood.

A nice aspect of this system is that simulations can
be specified independently from their method of execu-
tion. That is, we can either fully simulate or randomize
any simulation without altering the code which defines
it.

The library was developed as part of a simulation
project with biologists and genome researchers. We
plan to apply the library to more examples in this area.
Future versions will hopefully contain a more system-
atically documented list of examples.

Since the last report, the implementation has under-
gone only minor changes, and no new release has been
made yet. The web site has been updated slightly and
contains the latest papers on the subject.

Further reading

http://eecs.oregonstate.edu/~erwig/pfp/

4.2.4 Hmm: Haskell Metamath module

Report by: Marnix Klooster
Status: Hmm 0.1 released, slow-paced development

Hmm is a small Haskell library to parse and verify
Metamath databases.

Metamath (http://metamath.org) was conceived and
almost completely implemented by Norman Megill. It
a project for formalizing mathematics, a file format for
specifying machine-checkable proofs, and a program for
generating and verifying this file format. Already more
than 6000 proofs have been verified from the axioms of
set theory.

Version 0.1 of Hmm has been released on October
17th, 2005.

The development version can be found at http://
www.solcon.nl/mklooster/repos/hmm/. This is a darcs
repository (→ 6.6).

Hmm can’t currently do more than just read and
verify a Metamath file. However, the longer-term
goal is to generate calculational proofs from Meta-
math proofs. As an example, the Metamath proof
that cross-product distributes over union (see http:
//us.metamath.org/mpegif/xpundi.html) could be visu-
alized something like this:

((A X. B) u. (A X. C))
= "LHS of u.: (df-xp); RHS of u.: (df-xp)"

({ <. x, y >. | (x e. A /\ y e. B) }
u. { <. x, y >. | (x e. A /\ y e. C) })

= "(unopab)"
{ <. x, y >. | ((x e. A /\ y e. B)

\/ (x e. A /\ y e. C)) }
= "in pair comprehension: (andi)"

{ <. x, y >. | (x e. A
/\ (y e. B \/ y e. C))) }

= "in pair comprehension: RHS of /\: (elun)"

{ <. x, y >. | (x e. A
/\ y e. (B u. C)) }

= "(df-xp)"
(A X. (B u. C))

This proof format would make it easier to understand
Metamath proofs.

I am working towards this goal, slowly and step by
step.

Further reading

http://www.solcon.nl/mklooster/repos/hmm/

4.2.5 GSLHaskell

Report by: Alberto Ruiz
Status: active development

GSLHaskell is a high level functional interface to some
linear algebra computations and other numerical rou-
tines, internally implemented using the GNU Scientific
Library. The goal is to achieve the functionality and
performance of GNU-Octave or similar systems.

The library is in a preliminary status, but the binding
infrastructure is nearly finished and some simple appli-
cations requiring basic linear algebra (real svd and qr
factorizations, symmetric eigensystems, etc.), numeric
integration and differentiation, multidimensional mini-
mization, etc., can already be written.

The immediate developments include a testing suite,
updating the manual, writing additional illustrative ex-
amples, and some code refactoring. Then we can pro-
ceed to include the interface for the remaining func-
tions and implement, using additional libraries, some
useful algorithms in Octave not currently available in
the GSL.

Further reading

http://dis.um.es/~alberto/GSLHaskell

4.2.6 An Index Aware Linear Algebra Library

Report by: Frederik Eaton
Status: unstable; actively maintained

The index aware linear algebra library is a Haskell in-
terface to a set of common vector and matrix opera-
tions. The interface exposes index types and ranges
to the type system so that operand conformability can
be statically guaranteed. For instance, an attempt to
add or multiply two incompatibly sized matrices is a
static error. A prepose-style (i.e. following Kiselyov
and Chan’s “Implicit Configurations” paper) approach
is used for generating type-level integers for use in index
types. Vectors can be embedded in a program using a
set of template Haskell routines.

21

http://eecs.oregonstate.edu/~erwig/pfp/
http://metamath.org
http://www.solcon.nl/mklooster/repos/hmm/
http://www.solcon.nl/mklooster/repos/hmm/
http://us.metamath.org/mpegif/xpundi.html
http://us.metamath.org/mpegif/xpundi.html
http://www.solcon.nl/mklooster/repos/hmm/
http://dis.um.es/~alberto/GSLHaskell

Currently the library is in a “proof-of-concept” state.
The interface has an example implementation using Ar-
rays, but ultimately it should be primarily used with a
fast external linear algebra package such as ATLAS. I
would like to see it become part of Alberto Ruiz’s GSL
library (→ 4.2.5), which can be used with ATLAS, and
he has expressed an interest in adopting it. That is
why I haven’t given it a real name yet.

The original announcement is here:

Further reading

◦ Original announcement:
http://article.gmane.org/gmane.comp.lang.haskell.
general/13561

◦ Library:
http://ofb.net/~frederik/futility/src/Vector/Base.hs
http://ofb.net/~frederik/futility/src/Vector/Array.hs
http://ofb.net/~frederik/futility/src/Vector/
Template.hs
http://ofb.net/~frederik/futility/src/Domain.hs
http://ofb.net/~frederik/futility/src/Prepose.hs
http://ofb.net/~frederik/futility/src/Vector/
read-example.hs
http://ofb.net/~frederik/futility/src/Vector/examples.
hs

4.2.7 Ivor

Report by: Edwin Brady
Status: active development

Ivor is a tactic-based theorem proving engine with a
Haskell API. Unlike other systems such as Coq and
Agda, the tactic engine is primarily intended to be
used by programs, rather than a human operator. To
this end, the API provides a collection of primitive tac-
tics and combinators for building new tactics. This al-
lows easy construction of domain specific tactics, while
keeping the core type theory small and independently
checkable.

The primary aim of the library is to support research
into generative programming and resource bounded
computation in Hume (http://www.hume-lang.org/).
In this setting, we have developed a dependently typed
framework for representing program execution cost,
and used the Ivor library to implement domain specific
tactics for constructing programs within this frame-
work. However the library is more widely applicable,
some potential uses being:

◦ A core language for a richly typed functional lan-
guage.

◦ The underlying implementation for a theorem prover
(see first order logic theorem prover example at http:
//www.dcs.st-and.ac.uk/~eb/Ivor).

◦ An implementation framework for a domain specific
language requiring strong correctness properties.

Ivor features a dependent type theory similar to
Luo’s ECC with definitions, with additional (experi-
mental) multi-stage programming support. Optionally,
it can be extended with heterogenous equality, primi-
tive types and operations, new parser rules and user
defined tactics. By default, all programs in the type
theory terminate, but in the spirit of flexibility, the li-
brary can be configured to allow general recursion.

The library is in active development, although at an
early stage. Future plans include development of more
basic tactics (for basic properties such as injectivity
and disjointness of constructors, and elimination with
a motive), a compiler (with optimisations) and a larger
collection of standard definitions.

Further reading

http://www.dcs.st-and.ac.uk/~eb/Ivor

4.2.8 magic-haskell

Report by: John Goerzen
Status: active development

magic-haskell is a binding to the libmagic library. With
magic-haskell, you can determine the type of a file by
looking at its contents rather than its name. This li-
brary also can yield the MIME type of a file by looking
at its contents.

This is often a more useful method than looking at
a file’s name since it can yield correct results even if a
file’s extension is missing or misleading.

Further reading

http://quux.org/devel/magic-haskell

4.2.9 MissingH

Report by: John Goerzen
Status: active development

MissingH is a library designed to provide the little
“missing” features that people often need and end up
implementing on their own. Its focus is on list, string,
and IO features, but extends into other areas as well.
The library is 100% pure Haskell code and has no
dependencies on anything other than the standard li-
braries distributed with current versions of GHC and
Hugs.

In addition to the smaller utility functions, recent
versions of MissingH have added a complete FTP client
and server system, a virtualized I/O infrastructure sim-
ilar to Python’s file-like objects, a virtualized filesys-

22

http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://ofb.net/~frederik/futility/src/Vector/Base.hs
http://ofb.net/~frederik/futility/src/Vector/Array.hs
http://ofb.net/~frederik/futility/src/Vector/Template.hs
http://ofb.net/~frederik/futility/src/Vector/Template.hs
http://ofb.net/~frederik/futility/src/Domain.hs
http://ofb.net/~frederik/futility/src/Prepose.hs
http://ofb.net/~frederik/futility/src/Vector/read-example.hs
http://ofb.net/~frederik/futility/src/Vector/read-example.hs
http://ofb.net/~frederik/futility/src/Vector/examples.hs
http://ofb.net/~frederik/futility/src/Vector/examples.hs
http://www.hume-lang.org/
http://www.dcs.st-and.ac.uk/~eb/Ivor
http://www.dcs.st-and.ac.uk/~eb/Ivor
http://www.dcs.st-and.ac.uk/~eb/Ivor
http://quux.org/devel/magic-haskell

tem infrastructure, a MIME type guesser, a configu-
ration file parser, GZip decompression support in pure
Haskell, a DBM-style database virtualization layer, and
a modular logging infrastructure, complete with sup-
port for Syslog.

Future plans for MissingH include adding more net-
work client and server libraries, support for a general-
ized URL downloading scheme that will work across all
these client libraries, and enhancing the logging system.

This library is licensed under the GNU GPL.

Further reading

http://quux.org/devel/missingh

4.2.10 MissingPy

Report by: John Goerzen
Status: active development

MissingPy is really two libraries in one. At its lowest
level, MissingPy is a library designed to make it easy to
call into Python from Haskell. It provides full support
for interpreting arbitrary Python code, interfacing with
a good part of the Python/C API, and handling Python
objects. It also provides tools for converting between
Python objects and their Haskell equivalents. Memory
management is handled for you, and Python exceptions
get mapped to Haskell Dynamic exceptions.

At a higher level, MissingPy contains Haskell inter-
faces to some Python modules. These interfaces in-
clude support for the Python GZip and BZip2 modules
(provided using the HVIO abstraction from MissingH),
and support for Python DBM libraries (provided using
AnyDBM from MissingH (→ 4.2.9)). These high-level
interfaces look and feel just like any pure Haskell inter-
face.

Future plans for MissingPy include an expansion
of the higher-level interface to include such things as
Python regexp libraries, SSL support, and LDAP sup-
port.

This library is licensed under the GNU GPL.

Further reading

http://quux.org/devel/missingpy

4.3 Parsing and transforming

4.3.1 Utrecht Parsing Library and Attribute
Grammar System

Report by: Doaitse Swierstra
Status: Released as cabal packages

The Utrecht parsing Library and the associated At-
tribute Grammar System have been made available as

cabal packages (→ 4.1.1), and as such may be easier to
install.

The systems have been succesfully used by Niels van
der Velde, one of our Master students, as part of a
toolchain to assist in the parallelisation of C code. It
seems that the lazy evaluation used inside is requiring
quite some memory footprint.

One of our other master students, Joost Verhoog,
is about to complete the alternative path to code-
generation for the AG system, in which we fol-
low te more traditional multi-pass attribute gram-
mar evaluation schemes, as explained in the the-
sis of Joao Saraiva http://www.cs.uu.nl/wiki/Swierstra/
SupervisedTheses. Our hope is that this will alleviate
the aforementioned problem.

4.3.2 Strafunski

Report by: Joost Visser
Status: active, maintained
Portability: Hugs, GHC, DrIFT

Strafunski is a Haskell-based bundle for generic pro-
gramming with functional strategies, that is, generic
functions that can traverse into terms of any type while
mixing type-specific and uniform behaviour. This style
is particularly useful in the implementation of program
analyses and transformations.

Strafunski bundles the following components:
◦ the library StrategyLib for generic traversal and oth-

ers;
◦ precompilation support for user datatypes based on

DrIFT (→ 3.4);
◦ the library ATermLib for data exchange;
◦ the tool Sdf2Haskell (→ 5.2.6) for external parser and

pretty-print integration.
The Strafunski-style of generic programming can

be seen as a lightweight variant of generic program-
ming (→ 3.4) because no language extension is in-
volved, but generic functionality simply relies on a few
overloaded combinators that are derived per datatype.
By default, Strafunski relies on DrIFT to derive the ap-
propriate class instances, but a simple switch is offered
to rely on the “Scrap your boilerplate” (→ 3.4) model
as available in the Data.Generics library.

Strafunski is used in the HaRe project (→ 5.3.3) and
in the UMinho Haskell Libraries and Tools to provide
analysis and transformation functionality for languages
such as XML Schema, Java, VDM, SQL, spreadsheets,
and Haskell itself.

Further reading

http://www.cs.vu.nl/Strafunski/

23

http://quux.org/devel/missingh
http://quux.org/devel/missingpy
http://www.cs.uu.nl/wiki/Swierstra/SupervisedTheses
http://www.cs.uu.nl/wiki/Swierstra/SupervisedTheses
http://www.cs.vu.nl/Strafunski/

4.4 System

4.4.1 hs-plugins

Report by: Don Stewart
Status: active development

hs-plugins is a library for dynamic loading and run-
time compilation of Haskell modules, for Haskell and
foreign language applications. It can be used to im-
plement application plugins, hot swapping of modules
in running applications, runtime evaluation of Haskell,
and enables the use of Haskell as an application exten-
sion language. Version 1.0rc1 has been released.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hs-plugins/

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

4.4.2 ldap-haskell

Report by: John Goerzen
Status: active development

ldap-haskell is a Haskell binding to C-based LDAP li-
braries such as OpenLDAP. With ldap-haskell, you can
interrogate an LDAP directory, update its entries, add
data to it, etc. ldap-haskell provides an interface to all
the most common operations you would need to per-
form with an LDAP server.

Further reading

darcs get http://darcs.complete.org/ldap-haskell

4.4.3 Package “time” (formerly TimeLib)

Report by: Ashley Yakeley
Status: active development

The “time” package replaces the current library for
handling time. The “main” modules feature represen-
tation of UTC and UT1, as well as the proleptic Gre-
gorian calendar, time-zones, and functions for strftime-
style formatting. Additional “second-level” modules
handle TAI, leap-seconds, Julian, ISO 8601 week, and
“year and day” calendars, calculation of Easter, and
POSIX time. Modules are organised under Data.Time
to distinguish from the old System.Time.

The source is in the darcs (→ 6.6) repository “time”
in the current standard libraries, and is built by the

GHC library build process. Largely complete, remain-
ing work includes putting use examples in the docu-
mentation, and integrating existing unit tests into the
testsuite repository.

Further reading

http://semantic.org/TimeLib/

4.4.4 The libpcap Binding

Report by: Dominic Steinitz
Participants: Greg Wright, Dominic Steinitz

In case anyone is interested, I’ve put a darcsized copy
of the code here:

darcs get

http://www.haskell.org/networktools/src/pcap

◦ Install libpcap. I used 0.9.4.
◦ autoheader
◦ autoconf
◦ ./configure
◦ hsc2hs Pcap.hsc
◦ ghc -o test test.hs --make -lpcap -fglasgow-exts

All contributions are welcome.

4.4.5 Streams

Report by: Bulat Ziganshin
Status: beta, actively developed

Streams is the new I/O library developed to extend ex-
isting Haskell’s Handle-based I/O features. It includes:
◦ Hugs (→ 2.2) and GHC (→ 2.1) compatibility
◦ Lightning speed (up to 100 times faster)
◦ UTF-8 and other Char encodings for text I/O
◦ Various stream types (files, memory-mapped files,

memory and string buffers, pipes)
◦ Binary I/O and serialization facilities (see AltBinary

lib (→ 4.7.2))
◦ Support for streams working in IO, ST and other

monads
The main idea of the library is its clear class-based

design that allows to split all functionality into a set
of small maintainable modules, each of which supports
one type of streams (file, memory buffer . . .) or one
feature (locking, buffering, Char encoding . . .). The
interface of each such module is fully defined by some
type class (Stream, MemoryStream, TextStream), so
the library can be easily extended by third party mod-
ules that implement additional stream types (network
sockets, array buffers . . .) and features (overlapped
I/O . . .).

Further reading

◦ Documentation page:

24

http://www.cse.unsw.edu.au/~dons/hs-plugins/
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/
http://darcs.complete.org/ldap-haskell
http://semantic.org/TimeLib/
http://www.haskell.org/networktools/src/pcap

http://haskell.org/haskellwiki/Library/Streams
◦ Download:

http://freearc.narod.ru/Streams.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.5 Databases and data storage

4.5.1 CoddFish

Report by: Alexandra Silva and Joost Visser

The CoddFish library provides a strongly typed model
of relational databases and operations on them, which
allows for static checking of errors and integrity at com-
pile time. Apart from the standard relational database
operations, it provides normal form verification and
database transformation operations.

The library makes essential use of the HList li-
brary (→ 4.6.7), which provides arbitrary-length tu-
ples (or heterogeneous lists), and makes extensive use
of type-level programming with multi-parameter type
classes.

CoddFish lends itself as a sandbox for the design
of typed languages for modeling, programming, and
transforming relational databases.

Further reading

The web site of CoddFish (http://wiki.di.uminho.
pt/wiki/bin/view/PURe/CoddFish) provides documen-
tation and a stand-alone release.

4.5.2 Takusen

Report by: Alistair Bayley, Oleg Kiselyov
Status: active development

Takusen is a library for accessing DBMS’s. It is a low-
level library like HSQL, in the sense that it is used to
issue SQL statements. Takusen’s ‘unique-selling-point’
is a design for processing query results using a left-
fold enumerator. For queries the user creates an itera-
tee function, which is fed rows one-at-a-time from the
result-set. We also support processing query results us-
ing a cursor interface, if you require finer-grained con-
trol. Currently we fully support Oracle, Sqlite, and
PostgreSQL.

Since the last report we have implemented a new in-
ternal interface for prepared statements, and improved
the PostgreSQL back-end. We have also (very re-
cently!) moved from SourceForge to a darcs repo (→

6.6) at haskell.org, and hope to present a new release
soon from this repo.

Plans for the future include:
◦ support multiple result-sets (from nested cursors or

stored procedures)
◦ cabalise (→ 4.1.1)
◦ use Ashley Yakeley’s new Time library (→ 4.4.3) in-

stead of CalendarTime
◦ resurrect MS SQL Server backend
◦ ODBC backend

Further reading

http://darcs.haskell.org/takusen/devel/

4.5.3 HaskellDB

Report by: Björn Bringert
Status: active development and maintenance
Portability: GHC, Hugs, multiple platforms

HaskellDB is a library for accessing databases through
Haskell in a type safe and declarative way. It
completely hides the underlying implementation and
can interface with several popular database engines
through either HSQL or wxHaskell. HaskellDB was
originally developed by Daan Leĳen. This latest incar-
nation of HaskellDB was produced as part of a student
project at Chalmers University of Technology.

The current version supports:
◦ Completely type safe queries on databases
◦ Support for MySQL, PostgreSQL, SQLite and

ODBC through HSQL
◦ Support for ODBC through wxHaskell
◦ Automatic conversion between Haskell types and

SQL types
◦ Support for bounded strings
◦ Dynamic loading of drivers via hs-plugins (→ 4.4.1)

Future possible developments include:
◦ Support for more backends (Oracle)
◦ Support for non-SQL backends
◦ Driver-specific code generation. This is needed for

non-SQL backends, and we have discovered that no
SQL databases implement the standard in quite the
same way

There hasn’t been a new release for a while, but an
experimental Cabalized (→ 4.1.1) version is available in
the CVS repository. New developers are very welcome
to join the project.

Further reading

http://haskelldb.sourceforge.net/

25

http://haskell.org/haskellwiki/Library/Streams
http://freearc.narod.ru/Streams.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://wiki.di.uminho.pt/wiki/bin/view/PURe/CoddFish
http://wiki.di.uminho.pt/wiki/bin/view/PURe/CoddFish
http://darcs.haskell.org/takusen/devel/
http://haskelldb.sourceforge.net/

4.6 Data types and data structures

4.6.1 Standard Collection Libraries (formerly
Hierarchical Libraries Collections)

Report by: Jean-Philippe Bernardy
Status: stable, maintained

Haskell implementations come with modules to handle
Maps, Sets, and other common data structures. We
call these modules the Standard Collection Libraries.
The goal of this project is to improve those.

Beside incremental improvement of the current code
(stress testing, ironing bugs out, small improvements
of API, . . .), a package has been created to gather
collection-related code that would not fit in the base
package yet. This includes changes that are either po-
tentially de-stabilizing, controversial or otherwise ex-
perimental.

This new package features notably:

◦ New data structures, including AVL-tree based Maps
and Sets (thanks to Adrian Hey);

◦ A class-based framework for collection data-types,
equipped with polymorphic testsuite and bench-
marks.

I plan to submit this package to intensive testing and
review, in order to be able to include parts of it in the
standard.

Further reading

http://hackage.haskell.org/trac/ghc/wiki/
CollectionLibraries

4.6.2 The revamped monad transformer library

Report by: Iavor Diatchki
Status: mostly stable

Monads are very common in Haskell programs and yet
every time one needs a monad, it has to be defined
from scratch. This is boring, error prone and unnec-
essary. Many people have their own libraries of mon-
ads, and it would be nice to have a common one that
can be shared by everyone. Some time ago, Andy Gill
wrote the monad transformer library that has been dis-
tributed with most Haskell implementations, but he has
moved on to other jobs, so the library was left on its
own. I wrote a similar library (before I knew of the
existence of Andy’s library) and so i thought i should
combine the two. The “new” monadic library is not re-
ally new, it is mostly reorganization and cleaning up of
the old library. It has been separated from the “base”
library so that it can be updated on its own.

Since the last report, there has been a new major
release of the monad library (version 2.0), and a minor
update (version 2.0.1).

Users interested in using the library can download it
(with documentation) from the library’s website.

Further reading

http://www.cse.ogi.edu/~diatchki/monadLib/

4.6.3 Data.ByteString (formerly FPS (fast packed
strings))

Report by: Don Stewart
Status: active development

Data.ByteString (formerly FPS) provides packed
strings (byte arrays held by a ForeignPtr), along with a
list interface to these strings. It lets you do extremely
fast IO in Haskell; in some cases, even faster than typ-
ical C implementations, and much faster than [Char].
It uses a flexible “foreign pointer” representation, al-
lowing the transparent use of Haskell or C code to ma-
nipulate the strings.

Data.ByteString is written in Haskell98 plus the for-
eign function interface and cpp. It has been tested suc-
cesfully with GHC 6.4 and 6.5, and hugs March 2005.

Many improvements have been made over the last
6 months, including the new Data.ByteString.Lazy
module, successfully used on terabyte data quantities.
Data.ByteString will be part of the GHC base libraries
in the GHC 6.6 release.

Further reading

◦ Source and documentation can be found at
http://www.cse.unsw.edu.au/~dons/fps.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/fps

4.6.4 Edison

Report by: Robert Dockins
Status: active development

Edison, a library of efficient data structures for Haskell,
now has a new maintainer! A major update of the
library – version 1.2 – has just been released.
Major changes from Edison version 1.1 (released in
1999), include:
◦ API Typeclasses updated to use functional depen-

dencies
◦ Modules rearranged to use the hierarchical module

extension
◦ Documentation move from separate document to in-

line Haddock comments (→ 5.5.8)

26

http://hackage.haskell.org/trac/ghc/wiki/CollectionLibraries
http://hackage.haskell.org/trac/ghc/wiki/CollectionLibraries
http://www.cse.ogi.edu/~diatchki/monadLib/
http://www.cse.unsw.edu.au/~dons/fps.html
http://www.cse.unsw.edu.au/~dons/code/fps

◦ Source code is now managed in a darcs repository (→
6.6)

◦ New Cabal-based build system (→ 4.1.1)
◦ A full suite of unit tests, which covers the entire Edi-

son API, is now included
◦ Numerous additions to the Associated Collection

API
◦ Several new data structure implementations

Further reading

◦ The project home page may be found at:
http://www.eecs.tufts.edu/~rdocki01/edison.html

◦ The main darcs repository (→ 6.6) is located at:
http://www.eecs.tufts.edu/~rdocki01/edison/

4.6.5 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Henning Thielemann
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck properties,
superfluous super-classes like Show are removed, se-
mantic and representation-specific operations are sepa-
rated, the hierarchy of type classes is more fine grained,
and identifiers are adapted to mathematical terms.

There are both certain new type classes representing
algebraic structures and new types of mathematical ob-
jects.

Currently supported algebraic structures are
◦ group (additive),
◦ ring,
◦ principal ideal domain,
◦ field,
◦ algebraic closures,
◦ transcendental closures,
◦ module and vector space,
◦ normed space,
◦ lattice,
◦ differential algebra.

There is also a collection of mathematical object
types, which is useful both for applications and test-
ing the class hierarchy. The types are
◦ complex number,
◦ residue class,
◦ infinite precision number in an arbitrary positional

system (initial support),
◦ polynomial, power series, Laurent series
◦ root set of a polynomial,
◦ numbers equipped with units (dynamic checks only).

Using the revised system requires hiding some of the
standard functions provided by Prelude, which is for-

tunately supported by GHC (→ 2.1). The library has
basic Cabal (→ 4.1.1) support.

Future plans

Collect more Haskell code related to mathematics,
e.g. for linear algebra. Study of alternative numeric
type class proposals and common computer algebra
systems. Ideally each data type resides in a separate
module. However this leads to mutual recursive de-
pendencies, which cannot be resolved if type classes
are mutually recursive.

A still unsolved problem arises for e.g. residue
classes, matrix computations, infinite precision num-
bers and fixed point numbers. It should be possible to
assert statically that the arguments of a function are
residue classes with respect to the same divisor, or that
they are vectors of the same size. Possible ways out are
encoding values in types or local type class instances.
The latter one is still neither proposed nor implemented
in any Haskell compiler.

Further reading

http://darcs.haskell.org/numericprelude/

4.6.6 2-3 Finger Search Trees

Report by: Ben Franksen
Status: new library, not yet released

An efficient implementation of ordered sequences,
based on (external, node oriented) 2-3 finger search
trees as described in a recent paper by Ralf Hinze (see
below).

With regard to asymptotic complexity, 2-3 finger
search trees seem to be the best known purely func-
tional implementations of ordered sequences, with the
following amortized time bounds:

◦ member, insert, delete, split: O(log(min(d, n −
d)))

◦ minimum, maximum, deleteMin, deleteMax: O(1)

◦ merge: O(ns ∗ log(nl/ns))

where d is the distance from the smallest element, ns
is the size of the shorter, and nl the size of the longer
sequence. These bounds remain valid if the sequence is
used persistently.

The project started as an exercise to explore the in-
triguing possibilities of nested data types to statically
check data-structural invariants. One of my interests
was to find out how much this helps development in
practice. The results are nothing less than impressive
to me. I am sure I would never have been able to pro-
duce anything as complicated with such a (relatively)
low effort, had not the type system constantly guided
me in the right direction.

27

http://www.eecs.tufts.edu/~rdocki01/edison.html
http://www.eecs.tufts.edu/~rdocki01/edison/
http://darcs.haskell.org/numericprelude/

Meanwhile, I think this could evolve into a gener-
ally useful library. A lot of work remains to be done,
though: currently the library provides only the basic
functionality and I have just started to get into per-
formance measurements. I suspect some optimizations
are possible, but haven’t yet looked into it very deeply.
The code is mostly tested (and specified, thanks to
QuickCheck), but hasn’t been used in a real applica-
tion.

The library is not yet released, mainly because (lack-
ing a personal homepage) I don’t have a convenient
place on the web to host it. However, I plan to release
a first alpha version soon.

Further reading

◦ Ralf Hinze, Numerical Representations as Higher-
Order Nested Datatypes, Technical Report IAI-TR-
98-12, Institut für Informatik III, Universität Bonn,
December 1998
http://www.cs.bonn.edu/~ralf/publications/
IAI-TR-98-12.ps.gz

4.6.7 HList – a library for strongly typed
heterogeneous collections

Report by: Oleg Kiselyov
Developers: Oleg Kiselyov, Ralf Lämmel,

Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for strongly typed heterogeneous collections in-
cluding extensible records. HList is analogous of the
standard list library, providing a host of various con-
struction, look-up, filtering, and iteration primitives.
In contrast to the regular list, elements of HList do
not have to have the same type. HList lets the user
formulate statically checkable constraints: for exam-
ple, no two elements of a collection may have the same
type (so the elements can be unambiguously indexed
by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable labels. We have also used HList for type-safe
database access in Haskell. HList-based Records form
the basis of OOHaskell. The HList library relies on
common extensions of Haskell 98.

We added more examples of using HList: pattern-
matching on Records; defining a composition of func-
tions in a heterogenous list, using hFoldr. We have
incorporated checks for Function and Tuple types (sim-
ilar to IsFunction). We added a rule to the Makefile
for the precompilation of the HList library.

We are working on Cabalizing (→ 4.1.1) HList, ex-
panding on the work by Einar Karttunen, and convert-
ing HList repository to Darcs (→ 6.6).

Further reading

◦ HList:
http://homepages.cwi.nl/~ralf/HList/

◦ OOHaskell:
http://homepages.cwi.nl/~ralf/OOHaskell/

4.6.8 ArrayRef

Report by: Bulat Ziganshin
Status: beta

Includes:

◦ Unboxed references in IO and ST monads, that sup-
ports all simple datatypes and IORef/STRef-like in-
terface. This replaces widely used “fast unboxed
variables” modules.

◦ Monad-independent interface to boxed and unboxed
references, what allows to implement algorithms ex-
ecutable both in IO and ST monads

◦ Syntax sugar for references, mutable arrays and hash
tables (=:, +=, -=, .=, val, ref, uref)

◦ Refactored implementation of Data.Array.* modules.
Changes include support for dynamic (resizable) ar-
rays and polymorphic unboxed arrays

(http://www.haskell.org/pipermail/haskell-cafe/
2004-July/006400.html),

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/ArrayRef

◦ Download:
http://freearc.narod.ru/ArrayRef.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.7 Data processing

4.7.1 HsSyck

Report by: Audrey Tang
Status: active development

YAML is a straightforward machine parsable data se-
rialization format designed for human readability and
interaction with dynamic languages. It is optimized
for data serialization, configuration settings, log files,
Internet messaging and filtering.

Syck is an extension, written in C, for reading and
writing YAML swiftly in popular scripting languages.

28

http://www.cs.bonn.edu/~ralf/publications/IAI-TR-98-12.ps.gz
http://www.cs.bonn.edu/~ralf/publications/IAI-TR-98-12.ps.gz
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://www.haskell.org/pipermail/haskell-cafe/2004-July/006400.html
http://www.haskell.org/pipermail/haskell-cafe/2004-July/006400.html
http://haskell.org/haskellwiki/Library/ArrayRef
http://freearc.narod.ru/ArrayRef.tar.gz
mailto: Bulat.Ziganshin at gmail.com

It is part of core Ruby, and also has bindings for Perl 5,
Python, Lua, Cocoa, and Perl 6.

HsSyck provides Data.Yaml.Syck as an interface to
YAML structures, using Data.ByteString (→ 4.6.3) for
efficient textual data representation. Additionally, we
provide a set of DrIFT rules (→ 3.4) to dump and load
arbitrary Haskell data types in the YAML format.

Further reading

◦ Subversion repository
http://svn.openfoundry.org/pugs/third-party/HsSyck/

4.7.2 AltBinary

Report by: Bulat Ziganshin
Status: beta, actively developed

AltBinary is a part of the Streams library (→ 4.4.5).
AltBinary implements binary I/O and serialization fa-
cilities. It features:
◦ Hugs and GHC compatibility
◦ Lightning speed (3-20 times faster than GHC Bi-

nary)
◦ Classical get/put Binary class interface
◦ Full backward compatibility with NewBinary lib
◦ Byte-aligned and bit-aligned, low-endian and big-

endian serialization
◦ Serialization of all widely used types (integral,

enums, float, arrays, maps . . .)
◦ UTF8 encoding for strings/chars
◦ Ability to use TH to derive Binary instance for any

type
◦ Over 50 custom serialization routines (put-

Word32LE, putMArrayWith . . .)
◦ ability to serialize data to any Stream what im-

plements vPutByte/vGetByte operations, including
support for monads other than IO

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/AltBinary

◦ Download:
http://freearc.narod.ru/Streams.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.7.3 Compression-2005

Report by: Bulat Ziganshin
Status: stable

Features of the Compression-2005 Library:

◦ easy and uniform access to most competitive com-
pression algorithms as of April’05: LZMA, PPMd
and GRZip

◦ all input/output performed via user-supplied func-
tions (callbacks), so you can compress data in mem-
ory, files, pipes, sockets and anything else

◦ all parameters of compression algorithm are
defined with a single string, for example
"lzma:8mb:fast:hc4:fb32".

So, the entire compression program can be written
as a one-liner:

compress "ppmd:10:48mb" (hGetBuf stdin)
(\buf size ->

hPutBuf stdout buf size >> return size)

with decompressor program:

decompress "ppmd:10:48mb" (hGetBuf stdin)
(\buf size ->

hPutBuf stdout buf size >> return size)

You can replace "ppmd:10:48mb" with "lzma:16mb" or
"grzip" to get another two compressors – all three will
compress faster and better than bzip2.

Of course, the primary purpose of this library is to
give you a possibility to use state-of-the-art compres-
sion as an integral part of your Haskell programs.

The only change since the last report is that compre-
hensive documentation has been added to the library.

Further reading

◦ Documentation:
http://haskell.org/haskellwiki/Library/Compression

◦ Download:
http://http://freearc.narod.ru/CompressionLibrary.
tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.7.4 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The current release (3.0.3) includes a significant re-
write of the ASN.1 code and is now capable of sup-
porting X.509 attribute certificates as well as identity
certificates.

This release contains:
◦ DES
◦ Blowfish
◦ AES
◦ Cipher Block Chaining (CBC)
◦ PKCS#5 and nulls padding

29

http://svn.openfoundry.org/pugs/third-party/HsSyck/
http://haskell.org/haskellwiki/Library/AltBinary
http://freearc.narod.ru/Streams.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://haskell.org/haskellwiki/Library/Compression
http://http://freearc.narod.ru/CompressionLibrary.tar.gz
http://http://freearc.narod.ru/CompressionLibrary.tar.gz
mailto: Bulat.Ziganshin at gmail.com

◦ SHA-1
◦ MD5
◦ RSA
◦ OAEP-based encryption (Bellare-Rogaway)
◦ PKCS#1v1.5 signature scheme
◦ ASN.1
◦ PKCS#8
◦ X.509 Identity Certificates
◦ X.509 Attribute Certificates

All contributions are welcome.

Further reading

http://www.haskell.org/crypto

4.7.5 2LT: Two-Level Transformation

Report by: Joost Visser
Participants: Alcino Cunha, José Nuno Oliveira
Status: new

A two-level data transformation consists of a type-level
transformation of a data format coupled with value-
level transformations of data instances corresponding
to that format. Examples of two-level data transfor-
mations include XML schema evolution coupled with
document migration, and data mappings used for in-
teroperability and persistence.

A formal and type-safe treatment of two-level trans-
formations has been provided using Haskell, relying in
particular on generalized abstract data types (GADTs).
The treatment involves a strategic rewrite system, with
combinators reminiscent of Strafunski (→ 4.3.2) and
Scrap-your-boilerplate (→ 3.4) generics, that allows
type-changing rewrites rather than type-preserving or
type-unifying ones.

A release is available as part of the UMinho Haskell
Libraries, and as stand-alone release under the name
2LT. The release includes worked out examples of
schema evolution and hierarchical-relational mappings.

Efforts are underway to extend two-level transforma-
tions to include not only transformations of types and
their values, but also transformations of functions that
consume and/or produce such values.

Further reading

◦ Project URL:
http://wiki.di.uminho.pt/wiki/bin/view/PURe/2LT

◦ Paper: Alcino Cunha, José Nuno Oliveira, Joost
Visser. Type-safe Two-level Data Transformation.
Accepted for publication in Formal Methods 2006,
Lecture Notes in Computer Science, July 2006,
Springer.

4.8 User interfaces

4.8.1 Gtk2Hs

Report by: Axel Simon
Maintainer: Duncan Coutts and Axel Simon
Status: beta, actively developed

Gtk2Hs is a GUI Library for Haskell based on Gtk+.
Gtk+ is an extensive and mature multi-platform toolkit
for creating graphical user interfaces.

GUIs written using Gtk2Hs use themes to resemble
the native look on Windows and, of course, various
desktops on Linux, Solaris and FreeBSD. Gtk+ and
Gtk2Hs also support MacOS X (it currently uses the
X11 server but a native port is in progress).
Gtk2Hs features:
◦ automatic memory management (unlike some other

C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ anti-aliased drawing on screen, PDF, PS, etc. using

Cairo
◦ extensive reference documentation
◦ an implementation of the Paul Hudak’s Haskell

School of Expressions graphics API
◦ support for the Glade visual GUI builder
◦ bindings to some Gnome extensions: GConf, a source

code editor widget and a widget that embeds the
Mozilla, Firefox and xulrunner rendering engines

◦ an easy-to-use installer for Windows
◦ packages for Fedora Core (→ 7.4.2), Gentoo (→

7.4.4), Debian (→ 7.4.1), FreeBSD and ArchLinux
The Gtk2Hs library is actively maintained and devel-
oped. We are about to create a new release containing a
completely reworked interface for the list and tree wid-
gets where the contents of these are stored in Haskell
data structures. By implementing the interface for a
list or tree widget other data structures can be used; in
particular, it is possible to directly query a data base.
The releases of Gtk2Hs are tested to run on Windows,
Linux, MacOS X (PPC), FreeBSD, OpenBSD and So-
laris.
Other news since the last HCAR:

◦ Gtk2Hs is used for a GUI front-end by the Epigram
group (→ 3.3.1) at Nottingham

◦ SVG drawing in Cairo

◦ OpenGL drawing

◦ Bugs are now tracked using Trac at http://hackage.
haskell.org/trac/gtk2hs/report

We are about to streamline the handling of signals.
Once this is done, we plan to create a release and ensure
that the API is stable from that point.

30

http://www.haskell.org/crypto
http://wiki.di.uminho.pt/wiki/bin/view/PURe/2LT
http://hackage.haskell.org/trac/gtk2hs/report
http://hackage.haskell.org/trac/gtk2hs/report

Further reading

◦ News, downloads and documentation:
http://haskell.org/gtk2hs/

◦ Development version:
darcs get http://haskell.org/gtk2hs/darcs/gtk2hs/

4.8.2 hscurses

Report by: Stefan Wehr
Status: stable/beta

hscurses is a Haskell binding to the ncurses library, a
library of functions that manage an application’s dis-
play on character-cell terminals. hscurses also provides
some basic widgets implemented on top of the ncurses
binding, such as a text input widget and a table widget.

The binding was originally written by John Meacham
http://repetae.net/john/. Tuomo Valkonen http://
modeemi.fi/~tuomov/ and Don Stewart http://www.
cse.unsw.edu.au/~dons improved it and I finally added
some basic widgets and packed it up as a standalone
library.

The binding itself is stable; however, the widget li-
brary is still beta. I plan to improve and extend the
widget library in the next time. The build system will
use Cabal (→ 4.1.1) once GHC 6.6 is out.

Further reading

http://www.stefanwehr.de/haskell/

4.9 (Multi-)Media

4.9.1 HOpenGL – A Haskell Binding for OpenGL
and GLUT

Report by: Sven Panne
Status: stable, actively maintained

The goal of this project is to provide a binding for
the OpenGL rendering library which utilizes the spe-
cial features of Haskell, like strong typing, type classes,
modules, etc., but is still in the spirit of the official
API specification. This enables the easy use of the vast
amount of existing literature and rendering techniques
for OpenGL while retaining the advantages of Haskell
over lower-level languages like C. Portability in spite of
the diversity of Haskell systems and OpenGL versions
is another goal.

HOpenGL includes the simple GLUT UI, which is
good to get you started and for some small to medium-
sized projects, but HOpenGL doesn’t rival the GUI
task force efforts in any way. Smooth interopera-
tion with GUIs like gtk+hs or wxHaskell on the other
hand is a goal, see e.g. http://wxhaskell.sourceforge.net/
samples.html#opengl

Currently there are two major incarnations of
HOpenGL, differing in their distribution mechanisms
and APIs: The old one (latest version 1.05 from
09/09/03) is distributed as a separate tar ball and needs
GreenCard plus a few language extensions. Apart from
small bug fixes, there is no further development for this
binding. Active development of the new incarnation
happens in the fptools repository, so it is easy to ship
GHC, Hugs, and nhc98 with OpenGL/GLUT support.
The new binding features:
◦ Pure Haskell 98 + FFI
◦ No GreenCard dependency anymore
◦ Full OpenGL 1.5 support (NURBS currently only

partly implemented), OpenGL 2.0 features like
GLSL support are currently under development

◦ A few dozen extensions
◦ An improved API, centered around OpenGL’s notion

of state variables
◦ Extensive hyperlinked online documentation
◦ Supports freeglut-only features, too
HOpenGL is extensively tested on x86 Linux and
Windows, and reportedly runs on Solaris, FreeBSD,
OpenBSD (→ 7.4.3), and Mac OS X. Making the
OpenGL and GLUT packages available as separate Ca-
bal (→ 4.1.1) packages is planned.

The binding comes with all examples from the
Red Book and other sources, and Sven Eric Panitz
has written a tutorial using the new API (http://
www.tfh-berlin.de/~panitz/hopengl/), so getting started
should be rather easy.

Further reading

http://www.haskell.org/HOpenGL/

4.9.2 HOpenAL – A Haskell Binding for OpenAL
and ALUT

Report by: Sven Panne
Status: semi-stable, actively maintained

The goal of this project is to provide a binding for
OpenAL, a cross-platform 3D audio API, appropriate
for use with gaming applications and many other types
of audio applications. OpenAL itself is modeled after
the highly successful OpenGL API, and the Haskell
bindings for those libraries share “the same spirit”, too.

Just like OpenGL is accompanied by GLUT, HOpe-
nAL includes a binding for ALUT, the OpenAL Utility
Toolkit, which makes managing of OpenAL contexts,
loading sounds in various formats and creating wave-
forms very easy.

The OpenAL and ALUT packages are currently part
of the hierarchical libraries shipped with the various
Haskell implementations and will be available as sep-
arate Cabal (→ 4.1.1) packages soon. They cover the

31

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/darcs/gtk2hs/
http://repetae.net/john/
http://modeemi.fi/~tuomov/
http://modeemi.fi/~tuomov/
http://www.cse.unsw.edu.au/~dons
http://www.cse.unsw.edu.au/~dons
http://www.stefanwehr.de/haskell/
http://wxhaskell.sourceforge.net/samples.html#opengl
http://wxhaskell.sourceforge.net/samples.html#opengl
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/

latest specification releases, i.e. OpenAL 1.1 (EFX ex-
tension is under development) and ALUT 1.1.0, and
they work on every platform supporting OpenAL and
ALUT (Linux, Windows, Mac OS X, BSDs, . . .). They
are tested with GHC and Hugs and will probably work
with other Haskell systems, too, because they use only
H98 + FFI.

Further reading

http://www.openal.org/

4.9.3 hsSDL

Report by: Lemmih
Status: stable, maintained

hsSDL contains bindings to libSDL, libSDL_gfx, lib-
SDL_image, libSDL_mixer and libSDL_ttf. The
bindings can be installed independently of each other
and they all require hsc2hs to be built. Some of the
bindings are incomplete or lack proper documentation.
If you miss a feature please feel free to mail me (Lem-
mih) a request at 〈lemmih@gmail.com〉.

hsSDL differs from the other Haskell SDL bindings
by being more complete and properly Cabalized (→
4.1.1).

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/hsSDL/

◦ libSDL:
http://www.libsdl.org/

4.9.4 Haskore revision

Report by: Henning Thielemann and Paul Hudak
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e. without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design deci-
sions, and fixing bugs. Specific improvements include:

1. Basic Cabal (→ 4.1.1) support.

2. The Music data type has been generalized in the
style of Hudak’s “polymorphic temporal media.”

3. The Music data type has been made abstract by
providing functions that operate on it.

4. The notion of instruments is now very general.
There are simple predefined instances of the Music
data type, where instruments are identified by

Strings or General MIDI instruments, but any other
custom type is possible, including types with instru-
ment specific parameters.

5. Support for CSound orchestra files has been im-
proved and extended, thus allowing instrument de-
sign in a signal-processing manner using Haskell, in-
cluding feedback and signal processors with multiple
outputs.

6. Initial support for the real-time software synthesizer
SuperCollider through the Haskell interface.

7. The AutoTrack project has been adapted and in-
cluded.

8. Support for infinite Music objects is improved.
CSound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed
with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (→ 6.21).)

9. The test suite is now based on QuickCheck and HU-
nit.

Future plans

Allow modulation of instruments similar to the con-
trollers in the MIDI system. Generate note sheets,
say via Lilypond. Connect to other Haskore related
projects.

Further reading

◦ http://www.haskell.org/hawiki/Haskore
◦ http://darcs.haskell.org/haskore/

4.10 Web and XML programming

4.10.1 CabalFind

Report by: Dimitry Golubovsky
Status: experimental

CabalFind is an attempt to create a generalized inter-
face to Internet search engines and provide function-
ality to postprocess search engines’ HTML response
to extract the necessary information. Initially it was
written to collect information about Cabal (→ 4.1.1)
package descriptor files (.cabal) available over the In-
ternet by issuing specific queries to search engines such
as Google and Yahoo (hence the project name was cho-
sen), but may be used for any kind of automated in-
formation search, provided that the search criteria are
well defined.

CabalFind uses the Haskell XML Toolbox (→ 4.10.4)
to query search engines and parse HTML responses.

32

http://www.openal.org/
mailto: lemmih at gmail.com
http://darcs.haskell.org/~lemmih/hsSDL/
http://www.libsdl.org/
http://www.haskell.org/hawiki/Haskore
http://darcs.haskell.org/haskore/

Further reading

CabalFind is available as a Cabalized package:

darcs get

http://www.golubovsky.org/repos/cabalfind/

The Wiki page at http://haskell.org/hawiki/
CabalFind/ contains a brief description of the li-
brary internals and an example of its usage.

4.10.2 WebFunctions

Report by: Robert van Herk
Status: Released as result of my master’s thesis

project

Project Overview

WebFunctions is a DSEL for developing websites, im-
plemented in Haskell. WebFunctions is a domain spe-
cific embedded language for web authoring, imple-
mented in Haskell. The functionality of the WebFunc-
tions framework was inspired by Apple’s WebObjects
(http:// www.apple.com/WebObjects). We claim it is
easier to use since the Haskell type checker makes a
lot of extra checks, that are absent from the Apple
framework. Unfortunately we do not yet have all the
nice tooling and special editors, but we work on this.
Some important features of the WebFunctions system
are: loose coupling between model, view and controller
code, transparent handling of session and application
state, the ability to run the whole web application in-
side a single process, type safe HTML generation and
database interaction and abstracted database interac-
tion. For HTML generation, WASH/HTML (→ 4.10.5)
is used. HaskellDB (→ 4.5.3) is used for database inter-
action. An important difference from some of the other
Haskell software in the same field is that a WebFunc-
tions application comes with a built-in web server. Be-
cause of this, no CGI is used to handle the requests and
the state is persistent at the server. This also means
no serialization/deserialization of the state is needed.
Furthermore, a database abstraction mechanism is im-
plemented that provides the programmer with concur-
rency support, caching, and transaction management
per session. You can download WebFunctions from
http://www.cs.uu.nl/wiki/WebFunctions/Releases.

People

Robert van Herk, for whom the development was his
master thesis project Doaitse Swierstra, who super-
vised Robert. Atze Dĳkstra, who is one of our local
WebObjects experts.

Further reading

http://www.cs.uu.nl/wiki/WebFunctions/WebHome

4.10.3 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public stable release is 1.13, with support
for building via Cabal (→ 4.1.1).

In the unstable development version (currently at
1.15, also available through a darcs repository) we have
been experimenting successfully with improvements to
the secondary parsing stage, where the generic XML
tree is re-parsed into typed Haskell trees. We now get
good error messages if the parse fails, and the tools
DtdToHaskell and DrIFT (→ 3.4) have been updated
to use the new framework. Remaining work, before
this branch becomes the stable release, is mainly to
unify the internal representations of XML type infor-
mation, so that a generated DTD is accurate, no matter
whether the datatype was originally defined in Haskell
or in XML.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.cs.york.ac.uk/fp/HaXml-1.14
◦ http://www.ninebynine.org/Software/HaskellUtils/

4.10.4 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: fourth major release (current release: 5.5)

Description

The Haskell XML Toolbox is a collection of tools for
processing XML with Haskell. It is itself purely writ-
ten in Haskell 98. The core component of the Haskell
XML Toolbox is a validating XML-Parser that sup-
ports almost fully the Extensible Markup Language
(XML) 1.0 (Second Edition), There is validator based
on DTDs and a new more powerful validator for Relax
NG schemas.

The Haskell XML Toolbox bases on the ideas of
HaXml (→ 4.10.3) and HXML, but introduces a more
general approach for processing XML with Haskell.
Since release 5.1 there is a new arrow interface simi-
lar to the approach taken by HXML. This interface is
more flexible than the old filter approach. It is also
safer, type checking of combinators becomes possible
with the arrow interface.

Features

◦ validating XML parser
◦ very liberal HTML parser

33

http://www.golubovsky.org/repos/cabalfind/
http://haskell.org/hawiki/CabalFind/
http://haskell.org/hawiki/CabalFind/
http:// www.apple.com/WebObjects
http://www.cs.uu.nl/wiki/WebFunctions/Releases
http://www.cs.uu.nl/wiki/WebFunctions/WebHome
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-1.14
http://www.ninebynine.org/Software/HaskellUtils/

◦ XPath support
◦ full Unicode support
◦ support for XML namespaces
◦ flexible arrow interface with type classes for XML

filter
◦ package support for ghc
◦ native Haskell support of HTTP 1.1 and FILE pro-

tocol
◦ HTTP and access via other protocols via external

program curl
◦ tested with W3C XML validation suite
◦ example programs for filter and arrow interface
◦ Relax NG schema validator based on the arrows in-

terface
◦ A HXT Cookbook for using the toolbox and the ar-

row interface

Current Work

Currently a master student works on a project devel-
oping a dynamic web application server with servlet
functionality. XML and HXT with arrows will be used
for all internal data. This project will be finished and
the results will be available in September 2006.

In a second master thesis, once again, the develop-
ment of an XSLT system has been started. We hope
to finish this project with more success than with the
previous attempts.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML processing
using arrows and RDF documents, and master the-
sises describing the design of the toolbox, the DTD
validator and the arrow based Relax NG validator.

4.10.5 WASH/CGI – Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely
functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features
◦ complete interactive server-side script in one pro-

gram
◦ a monadic, type-safe interface to generating XHTML

output

◦ type-safe compositional approach to specifying form
elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

◦ documented preprocessor for translating markup in
syntax close to XHTML syntax into WASH/HTML

Completed Items are:
◦ fully cabalized (→ 4.1.1)
◦ WASH server pages with a modified version of Si-

mon Marlow’s hws web server; the current prototype
supports dynamic compilation and loading of WASH
source (via Don Stewart’s hs-plugins (→ 4.4.1)) as
well as the implementation of a session as a continu-
ally running server thread

◦ Transactional interface to server-side variables and to
databases. The interface is inspired by the work on
STM (software transactional memory), but modified
to be useful in the context of web applications. The
interface relies on John Goerzens hdbc package and
its PostgreSQL driver.

Current work includes
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/~thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

4.10.6 HAIFA

Report by: Simon Foster

HAIFA is a Web-Service and XML toolkit for Haskell
which enables users to both access Web-Service opera-
tions as functions in Haskell and publish Haskell func-
tions within Web-Services. The largest single part of
HAIFA, is a complex XML serializer library which at-
tempts to make the job of creating de/serializers for
Haskell data-types as painless as possible, via the use
of both “Scrap Your Boilerplate” lightweight generics
and Template Haskell. Our ultimate aim is to make the
Web-Service layer transparent with the help of tech-
nologies such as XML Schema and WSDL.

HAIFA has been undergoing some substantial work
since the last HCAR. Support for extensible hooks has
now been dropped, as this makes writing and invoking
serializers much simpler and its usefulness was ques-
tionable. Extensible hook support was designed pri-
marily as a method of encoding meta-data into a se-
rialization tree using type-classes unknown when the

34

http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

base serializers were written to bring in meta-data. Due
to Haskell’s static type-system it is unlikely this could
ever have been put to use, and most of its functionality
can probably be achieved with value-level generics via
meta-data tables.

Apart from this a lot of bugs have been fixed, and
HAIFA is now quite useful for doing SOAP services.
The library of TH aids for building serializers is also
growing, in order to make the job of constructing seri-
alizers for complicated data-types as concise as possi-
ble. The automatic serializer generator based on SYB
is also substantially more intelligent, for example it can
now automatically set cardinality constraints for Maybe
and [] typed terms of types automatically.

The newest release also includes some basic XML
Schema mapping support, though only from a small
subset of Haskell types to XML Schema at the present
time. Mapping in the other direction did work before
I removed hooks, and once I get round to adapting it,
that should work again.

I’ve also started work on adding support for WSDL,
and some of this can be seen in the developmental darcs
repository. Development is very slow at the moment
due to other commitments, and so I encourage anyone
who is interested to get involved in the project.

Further reading

For more information please see the HAIFA project
page at http://www.dcs.shef.ac.uk/~simonf/HAIFA.
html

4.10.7 HaXR – the Haskell XML-RPC library

Report by: Björn Bringert
Status: maintained

HaXR is a library for writing XML-RPC client and
server applications in Haskell. XML-RPC is a standard
for XML encoded remote procedure calls over HTTP.
The library is actively maintained and relatively stable.
Since the last report, the library has changed its name
to HaXR (thanks to Christopher Milton for the name
suggestion), moved its homepage and darcs repo (→
6.6) to haskell.org, and been Cabalized (→ 4.1.1).

Further reading

http://www.haskell.org/haxr/

35

http://www.dcs.shef.ac.uk/~simonf/HAIFA.html
http://www.dcs.shef.ac.uk/~simonf/HAIFA.html
http://www.haskell.org/haxr/

5 Tools

5.1 Foreign Function Interfacing

5.1.1 HSFFIG

Report by: Dimitry Golubovsky
Status: mostly stable

HSFFIG (HaSkell Foreign Function Interface Genera-
tor) is a tool to convert a C header file (.h) into Haskell
code containing FFI import statements for all entities
whose declarations are found in the header file.

A C header file is to be passed through the prepro-
cessor (CPP); output of the preprocessor is piped to
the HSFFIG standard input, and the standard output
of HSFFIG is to be processed by hsc2hs. The result-
ing Haskell code contains autogenerated FFI import
statements for function prototypes found in the header
file (and all header files it includes); #define state-
ments and enumerations are converted into haskellized
definitions of constants (where possible), and for each
structure/union, means are provided for read/write ac-
cess to members, and to determine amount of memory
occupied by the structure or union.

Conceptually, Haskell code generated by HSFFIG
gives the Haskell compiler which “connects” a foreign
library to an application written in Haskell the same
“vision” as the C compiler would have if it were “con-
necting” the same library to an application written in
C using the same header files.

Haskell code interfacing with foreign libraries using
HSFFIG may look “almost like C”, but under the strict
control of the Haskell type system: all information
about foreign functions’ type signatures is collected au-
tomatically.

HSFFIG is intended to be used with the Glasgow
Haskell Compiler (→ 2.1), and was only tested for such
use.

Known analogs are: c2hs (→ 5.1.3), hacanon.

Further reading

◦ The HSFFIG project home page:
http://hsffig.sourceforge.net/

◦ Tutorial:
http://haskell.org/hawiki/HsffigTutorial/

◦ The Examples page (Haskell code using HSFFIG
with detailed comments):
http://haskell.org/hawiki/HsffigExamples/

5.1.2 FFI Imports Packaging Utility

Report by: Dimitry Golubovsky
Status: pre-release

FFIPKG (FFI Imports Packaging Utility) is a tool to
prepare a Haskell package containing FFI imports for
building. It accepts locations of C header and foreign
library files as command line arguments and produces
Haskell source files with FFI declarations, a Make-
file, a Cabal (→ 4.1.1) package descriptor file, and a
Setup.hs file suitable for running the Cabal package
setup program. Standard process of building a package
with Cabal (e.g. runghc Setup.hs) is to follow
to actually build and register/install the package.

The utility is a recent addition to the HSFFIG (→
5.1.1) package.

Of the benefits of packaging FFI imports, all infor-
mation about (possibly multiple) C header files and
libraries (their names and locations) used by Haskell
applications is kept with package descriptor: it is only
name of the package that needs to be remembered.

The utility is built upon the code base of HSF-
FIG (→ 5.1.1), and acts as a “driver” running the C
preprocessor, the equivalent of the HSFFIG program,
and the source splitter.

FFIPKG is intended to be used with the Glasgow
Haskell Compiler (→ 2.1) (6.4 and higher), and was
only tested for such use.

Current Status

Pre-release. The utility is available from darcs repo (→
6.6) only. The package installs as HSFFIG-1.1. Up-
dated HSFFIG is also available from this package.

Further reading

◦ Announce of the pre-release (also contains the darcs
repo URL, as well as brief installation instructions):
http://article.gmane.org/gmane.comp.lang.haskell.
general/13262

◦ Wiki page (informal user’s guide):
http://www.haskell.org/haskellwiki/FFI_Imports_
Packaging_Utility

36

http://hsffig.sourceforge.net/
http://haskell.org/hawiki/HsffigTutorial/
http://haskell.org/hawiki/HsffigExamples/
http://article.gmane.org/gmane.comp.lang.haskell.general/13262
http://article.gmane.org/gmane.comp.lang.haskell.general/13262
http://www.haskell.org/haskellwiki/FFI_Imports_Packaging_Utility
http://www.haskell.org/haskellwiki/FFI_Imports_Packaging_Utility

5.1.3 C→Haskell

Report by: Manuel Chakravarty
Status: active

C→Haskell is an interface generator that simplifies the
development of Haskell bindings to C libraries. It reads
C header files to automate many tedious aspects of in-
terface generation and to minimise the scope of error
in translating C declarations to Haskell.

The last half year saw only minor changes to
C→Haskell, but the tool is already sufficiently mature
to be used in rather large projects, such as Gtk2Hs (→
4.8.1). The darcs repository (→ 6.6) of C→Haskell
is scheduled to move to http://darcs.haskell.org/ soon
with Duncan Coutts becoming a second maintainer.
Source and binary packages as well as a reference
manual are available from http://www.cse.unsw.edu.au/
~chak/haskell/c2hs/.

5.2 Scanning, Parsing, Analysis

5.2.1 Frown

Report by: Ralf Hinze
Status: beta, maintained

Frown is an LALR(k) parser generator for Haskell 98
written in Haskell 98.
Its salient features are:

◦ The generated parsers are time and space efficient.
On the downside, the parsers are quite large.

◦ Frown generates four different types of parsers. As
a common characteristic, the parsers are genuinely
functional (i.e. ‘table-free’); the states of the under-
lying LR automaton are encoded as mutually recur-
sive functions. Three output formats use a typed
stack representation, one format due to Ross Pater-
son (code=stackless) works even without a stack.

◦ Encoding states as functions means that each state
can be treated individually as opposed to a table
driven-approach, which necessitates a uniform treat-
ment of states. For instance, look-ahead is only used
when necessary to resolve conflicts.

◦ Frown comes with debugging and tracing facilities;
the standard output format due to Doaitse Swier-
stra (code=standard) may be useful for teaching LR
parsing.

◦ Common grammatical patterns such as repetition of
symbols can be captured using rule schemata. There
are several predefined rule schemata.

◦ Terminal symbols are arbitrary variable-free Haskell
patterns or guards. Both terminal and nonterminal
symbols may have an arbitrary number of synthe-
sized attributes.

◦ Frown comes with extensive documentation; several
example grammars are included.

Furthermore, Frown supports the use of monadic lex-
ers, monadic semantic actions, precedences and asso-
ciativity, the generation of backtracking parsers, mul-
tiple start symbols, error reporting and a weak form of
error correction.

Further reading

http://www.informatik.uni-bonn.de/~ralf/frown/

5.2.2 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a
parser generator (such as Happy) to build a complete
parser.
Recent changes:

◦ Alex is now in a Darcs repository (→ 6.6), here: http:
//cvs.haskell.org/darcs/alex.

◦ Happy has a new build system, based on Cabal.
If you have GHC 6.4.2 (or Cabal 1.1.4 or later),
then you should be able to build and install Alex
on any platform without requiring any build tools
apart from GHC itself.

Further reading

http://www.haskell.org/alex/

5.2.3 Happy

Report by: Simon Marlow
Status: stable, maintained

Happy is a tool for generating Haskell parser code from
a BNF specification, similar to the tool Yacc for C.
Happy also includes the ability to generate a GLR
parser (arbitrary LR for ambiguous grammars).

The latest release is 1.15, released 14 January 2005.
Since that release, the following changes have hap-

pened:

37

http://darcs.haskell.org/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.informatik.uni-bonn.de/~ralf/frown/
http://cvs.haskell.org/darcs/alex
http://cvs.haskell.org/darcs/alex
http://www.haskell.org/alex/

◦ Happy is now in a Darcs repository (→ 6.6), here:
http://darcs.haskell.org/happy.

◦ Happy has a new build system, based on Cabal. If
you have GHC 6.4.2 (or Cabal 1.1.4 or later), then
you should be able to build and install Happy on
any platform without requiring any build tools apart
from GHC itself.

◦ There are some new minor features: the error direc-
tive lets you define your own error-handling function,
and some new production forms to let you get hold
of the current token when parsing.

I plan to make a new release in the near future.

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

5.2.4 Attribute Grammar Support for Happy

Report by: Robert Dockins
Status: active development

I have hacked up Happy (→ 5.2.3) to support attribute
grammars. Attribute grammars are a way of annotat-
ing context-free grammars to support syntax directed
translation and the checking of context-sensitive prop-
erties.

What we have:
◦ Support for attribute grammars using a slight mod-

ification to the Happy grammar syntax.
◦ Haskell 98! No language extensions required.
◦ Support for all well-defined attribute grammars (con-

jecture, but I’m pretty sure).

What we don’t have:
◦ Support for GLR parsing (mostly because I don’t

completely understand it).
◦ Checks for proper attribute usage.

Simon Marlow, the Happy maintainer, has expressed
interest in the extension. I have submitted a
patch to him for review and am awaiting a re-
sponse. In the meantime the darcs patch may be
downloaded from http://www.eecs.tufts.edu/~rdocki01/
Happy-AttrGrammar.patch

5.2.5 BNF Converter

Report by: Markus Forsberg
Contributors: Björn Bringert, Paul Callaghan, Markus

Forsberg, Peter Gammie, Patrik Jansson,
Antti-Juhani Kaĳanaho, Michael Pellauer,

and Aarne Ranta
Status: active

The project started in 2002 as an experiment with
Grammatical Framework (GF) where we investigated
to what extent GF could be used to generate a compiler
front-end for Haskell, i.e. to generate modules such as a
lexer, an abstract syntax, and a parser from a GF gram-
mar. This was indeed possible, but we soon realized
that some extra special-purpose notation was needed
to avoid problems such as reflecting precedence levels
in the abstract syntax. To avoid cluttering GF with
this special-purpose notation, we wrote a new tool, and
hence, the BNF Converter (BNFC) tool was born.

The tool has been actively developed since 2002 and
has undergone major development. It is now a multi-
lingual compiler tool. BNFC accepts as input an LBNF
(Labelled BNF) grammar, a format we have developed,
and generates a compiler front-end (an abstract syntax,
a lexer, and a parser). Furthermore, it generates a case
skeleton usable as the starting point of back-end con-
struction, a pretty printer, a test bench, and a LATEX
document usable as language specification.

The program components can be generated in
Haskell, Java 1.4 and 1.5, C, and C++ using standard
parser and lexer tools. It also supports XML genera-
tion of the abstract syntax, which is usable for the ex-
change of data between systems. If the systems are im-
plemented in languages supported by BNFC, the com-
munication can be performed more directly through
pretty-printing and parsing the message.

Some highlights:
◦ used as teaching tool on several CS courses at

Chalmers.
◦ used to develop a telecommunications protocol lan-

guage compiler at Tieto-Enator.
◦ used to develop the GF v2.0 language.
◦ package included in Debian Linux distribution (→

7.4.1).
◦ mentioned in Datormagazin, 2005-05, one of the

biggest computer magazines in Sweden.

Further reading

◦ http://www.cs.chalmers.se/ markus/BNFC/
◦ M. Forsberg, A. Ranta. The BNF Converter:

A High-Level Tool for Implementing Well-Behaved
Programming Languages. NWPT’02 proceedings,
Proceedings of the Estonian Academy of Sciences,
December 2003, Tallin, Estonia.

◦ M. Pellauer, M. Forsberg, A. Ranta: BNF Con-
verter: Multilingual Front-End Generation from La-
belled BNF Grammars, Technical Report no.2004-

38

http://darcs.haskell.org/happy
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.eecs.tufts.edu/~rdocki01/Happy-AttrGrammar.patch
http://www.eecs.tufts.edu/~rdocki01/Happy-AttrGrammar.patch

09 in Computing Science at Chalmers University of
Technology and Gothenburg University.

◦ M. Forsberg, A. Ranta. Tool Demonstration: BNF
Converter. HW’2004, Proceedings of the ACM SIG-
PLAN 2004 Haskell Workshop, Snowbird, Utah.

5.2.6 Sdf2Haskell

Report by: Joost Visser
Status: maintained, actively used

Sdf2Haskell is a generator that takes an SDF gram-
mar as input and produces support for GLR parsing
and customizable pretty-printing. The SDF grammar
specifies concrete syntax in a purely declarative fash-
ion. From this grammar, Sdf2Haskell generates a set
of Haskell datatypes that define the corresponding ab-
stract syntax. The Scannerless Generalized LR parser
(SGLR) and associated tools can be used to produce
abstract syntax trees which can be marshalled into cor-
responding Haskell values.

The functionality of Sdf2Haskell also includes gen-
eration of pretty-print support. From the SDF gram-
mar, a set of Haskell functions is generated that de-
fines a pretty-printer that turns abstract syntax trees
back into concrete expressions. The pretty-printer is
updateable in the sense that its behavior can be mod-
ified per-type by supplying appropriate functions.

Further reading

Sdf2Haskell is distributed as part of the Strafunski
bundle for generic programming and language process-
ing (→ 4.3.2).

5.2.7 SdfMetz

Report by: Tiago Miguel Laureano Alves
Status: stable, maintained

SdfMetz supports grammar engineering by calculat-
ing grammar metrics and other analyses. Currently it
supports two different grammar formalisms (SDF and
DMS) from which it calculates size, complexity, struc-
tural, and ambiguity metrics. Output is a textual re-
port or in Comma Separated Value format. The addi-
tional analyses implemented are visualization, showing
the non-singleton levels of the grammar, or printing
the grammar graph in DOT format. The definition of
all except the ambiguity metrics were taken from the
paper A metrics suite for grammar based-software by
James F. Power and Brian A. Malloy. The ambigu-
ity metrics were defined by the tool author exploiting
specific aspects of SDF grammars.

A web-based interface is planned and more metrics
will be add. A front-end to other grammar formalism
(yacc and antlr) is also planed. The tool was devel-
oped in the context of the IKF-P project (Information

Knowledge Fusion, http://ikf.sidereus.pt/) to develop a
grammar for ISO VDM-SL.

Further reading

The web site of SdfMetz (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/SdfMetz) includes tables of metric val-
ues for a series of SDF grammar as computed by
SdfMetz. The tool is distributed as part of the UMinho
Haskell Libraries and Tools.

5.2.8 XsdMetz: metrics for XML Schema

Report by: Joost Visser
Status: new

The XsdMetz tool computes structure metrics and us-
age metrics for XML document schemas written in the
XML Schema format. The computed structure metrics
include tree impurity, coupling, cohesion, fan in and
out, instability, height, width, and (normalized) count
of strong componenents (see: Joost Visser, Structure
Metrics for XML Schema). The computed usage met-
rics include XSD-agnostic and XSD-aware counts (see:
Ralf Lämmel, Stan Kitsis, and Dave Remy, Analysis of
XML Schema Usage). The graphs constructed by Xs-
dMetz for the computation of structure metrics can be
exported to the dot format of GraphViz.

XsdMetz is available as part of the UMinho Haskell
Libraries and Tools. A stand-alone release is in prepa-
ration.

Further reading

http://wiki.di.uminho.pt/wiki/bin/view/PURe/XsdMetz

5.3 Transformations

5.3.1 The Programatica Project

Report by: Thomas Hallgren

One of the goals of the Programatica Project is to de-
velop tool support for high-assurance programming in
Haskell.

The tools we have developed so far are implemented
in Haskell, and they have a lot in common with a
Haskell compiler front-end. The code has the potential
to be reusable in various contexts outside the Progra-
matica project. For example, it has already been used
in the Haskell refactoring project at the University of
Kent (→ 5.3.3).

We also have a Haskell source code browser, which
displays syntax-highlighted source code where the user
can click on any identifier to display its type or jump
to its definition.

39

http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/XsdMetz

Further reading

◦ The Programatica Project, overview & papers:
http://www.cse.ogi.edu/PacSoft/projects/
programatica/

◦ An Overview of the Programatica Toolset:
http://www.cse.ogi.edu/~hallgren/Programatica/
HCSS04/

◦ Executable formal specification of the Haskell 98
Module System:
http://www.cse.ogi.edu/~diatchki/hsmod/

◦ A Lexer for Haskell in Haskell:
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/

◦ More information about the tools, source code,
downloads, etc:
http://www.cse.ogi.edu/~hallgren/Programatica/

5.3.2 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude / OBJ lan-
guages with special emphasis on the use of simple pro-
grammable strategies for controlling program execu-
tion and new commands enabling powerful execution
modes.

The tools have been developed at the Technical Uni-
versity of Valencia (UPV) as part of a number of re-
search projects. The following people is (or has been)
involved in the development of these tools: Beatriz
Alarcón, María Alpuente, Demis Ballis (Università di
Udine), Santiago Escobar, Moreno Falaschi (Univer-
sità di Siena), Javier García-Vivó, Raúl Gutiérrez, José
Iborra, Salvador Lucas, Pascal Sotin (Université du
Rennes).

Status

The previous work lead to the following tools:

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched on February 2002).

http://www.dsic.upv.es/~slucas/csr/termination/
muterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched on December 2002).

http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched on January 2003).

http://www.dsic.upv.es/users/elp/ondemandOBJ

http://www.dsic.upv.es/users/elp/GVerdi

◦ GVerdi: A Rule-based System for Web site Verifica-
tion (first version launched on January 2005).

All these tools have been written in Haskell (mainly
developed using Hugs and GHC) and use popular
Haskell libraries like hxml-0.2, Parsec, RegexpLib98,
wxHaskell.

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client / server applications (e.g., compil-
ers or complementary tools).

References

◦ Building .NET GUIs for Haskell applications. B.
Alarcón and S. Lucas. 6th International Conference
on .NET Technologies, to appear, 2006.

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1-16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting remote termination tools M. Alpuente
and S. Lucas 7th International Workshop on Termi-
nation, WST’04, pages 6–9, Technical Report AIB-
2004-07, RWTH Aachen, 2004.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200-209, Springer-
Verlag, Berlin, 2004.

◦ A Rule-based System for Web site Verification.
Demis Ballis and Javier García-Vivó. 1st In-
ternational Workshop on Automated Specification
and Verification of Web Sites, WWV’05, Valencia
(SPAIN). Electronic Notes in Theoretical Computer
Science, to appear, 2005.

40

http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~diatchki/hsmod/
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi

5.3.3 HaRe – The Haskell Refactorer

Report by: Huiqing Li, Chris Brown, Claus Reinke and
Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs has as
its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its third major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately. The version
about to be released (at the time of writing) works
with GHC 6.4.2.

In order to allow users to extend HaRe themselves,
the latest releases of HaRe include an API for users
to define their own program transformations, together
with Haddock (→ 5.5.8) documentation. Please let us
know if you are using the API.

There have been some recent developments for
adding program slicing techniques to HaRe. These
techniques include backward program slicing tech-
niques based on highlighting sub expressions. There
have also been some new refactorings added which work
on data types: adding a constructor to a data type and
converting a data type into a newtype. The immedi-
ate aim for the development of HaRe is to support a
number of type-based refactorings.

A snapshot of HaRe is available from our web page,
as are recent presentations from the group (including
LDTA 05, TFP05), and an overview of recent work
from staff, students and interns. Among this is an
evaluation of what is required to port the HaRe system
to the GHC API (→ 2.1), and a comparative study of
refactoring Haskell and Erlang programs.

The final report for the project appears there too,
together with an updated refactoring catalogue and the
latest snapshot of the system. Huiqing’s PhD thesis
will be available soon after her viva in early May 2006.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.4 Testing and Debugging

5.4.1 Tracing and Debugging

Report by: Olaf Chitil

There exist a number of tools with rather different ap-
proaches to tracing Haskell programs for the purpose
of debugging and program comprehension. There has
been little new development in the area within the last
year.

Hood and its variant GHood enable the user to ob-
serve the values of selected expressions in a program.
Both are easy to use, because they are based on a small
portable library. A variant of Hood is built into Hugs.

HsDebug is a gdb-like debugger that is only available
from a separate branch of GHC in CVS. The Concur-
rent Haskell Debugger CHD was extended to support
an automatic search for deadlocks.

Further reading

◦ Hood:
http://www.haskell.org/hood/
http://cvs.haskell.org/Hugs/pages/users_guide/
observe.html

◦ CHD:
http://www.informatik.uni-kiel.de/~fhu/chd/

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: several recent additions

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can be
viewed in various ways with several tools: hat-observe,
hat-trail, hat-detect, hat-delta, hat-explore, hat-cover,
hat-anim, black-hat, hat-nonterm . . . Some views are
similar to classical debuggers for imperative languages,
some are specific to lazy functional language features
or particular types of bugs. All tools inter-operate and
use a similar command syntax.

Hat can be used both with nhc98 (→ 2.3) and ghc (→
2.1). Hat was built for tracing Haskell 98 programs,
but it also supports some language extensions (FFI,
MPTC, fundeps, hierarchical libs). A tutorial explains
how to generate traces, how to explore them, and how
they help to debug Haskell programs.

Im May 2005, version 2.04 of Hat was released. Since
then numerous bugfixes, several new features and pro-

41

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hood/
http://cvs.haskell.org/Hugs/pages/users_guide/observe.html
http://cvs.haskell.org/Hugs/pages/users_guide/observe.html
http://www.informatik.uni-kiel.de/~fhu/chd/

totype viewing tools, in particular the extended algo-
rithmic debugger hat-delta, have been added in CVS.

Further reading

◦ Colin Runciman (ed.): Hat Day 2005: work in
progress on the Hat tracing system for Haskell, Tech.
Report YCS-2005-395, Dept. of Computer Science,
University of York, UK, October 2005.

http://www.cs.york.ac.uk/ftpdir/reports/
YCS-2005-395.pdf

◦ Tom Shackell and Colin Runciman: Faster produc-
tion of redex trails: The Hat G-Machine. Trends in
Functional Programming, TFP ’05, Symposium pro-
ceedings.

◦ A Theory of Tracing Pure Functional Programs;

http://www.cs.kent.ac.uk/~oc/traceTheory.html

◦ http://www.haskell.org/hat

5.4.3 buddha

Report by: Bernie Pope
Status: inactive

Buddha is a declarative debugger for Haskell 98. It
is based on program transformation. Each module in
the program undergoes a transformation to produce
a new module (as Haskell source). The transformed
modules are compiled and linked with a library for
the interface, and the resulting program is executed.
The transformation is crafted such that execution of
the transformed program constitutes evaluation of the
original (untransformed) program, plus construction of
a semantics for that evaluation. The semantics that
it produces is a “computation tree” with nodes that
correspond to function applications and constants.

Buddha is freely available as source and is licensed
under the GPL. There is also a Debian package (→
7.4.1), as well as ports to Free-BSD, Darwin and Gen-
too (→ 7.4.4).

Nothing new has been added to buddha since the last
report. A fairly comprehensive re-write is planned for
late 2006.

Further reading

http://www.cs.mu.oz.au/~bjpop/buddha/

5.5 Development

5.5.1 hmake

Report by: Malcolm Wallace
Status: stable, maintained

Hmake is an intelligent module-compilation manage-
ment tool for Haskell programs. It interoperates with
any compiler – ghc (→ 2.1), hbc, or nhc98 (→ 2.3) –
except jhc (which does not compile modules separately
anyway). A new public version was recently released:
3.11, which contains bugfixes and a new runhs com-
mand. Occasional maintenance and bugfixes continue
to the CVS tree at haskell.org.

Further reading

http://haskell.org/hmake/

5.5.2 Zeroth

Report by: Lemmih
Status: usable, unmaintained

A program using Template Haskell must link with the
TH library even if it contains no references to TH after
it has been compiled. Zeroth is a preprocessor which al-
lows modules to use TH without linking with the TH li-
brary. To do this, Zeroth evaluates the top level splices
from a module and saves the resulting code.

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/zerothHead/

5.5.3 Ruler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Doaitse Swierstra
Status: active development

The purpose of the Ruler system is to describe type
rules in such a way that a partial Attribute Gram-
mar implementation, and a pretty printed LATEX can
be generated from a description of type rules. The sys-
tem (currently) is part of the EHC (Essential Haskell
compiler) project (→ 3.3.5) and described in a tech-
nical paper, which is also included in the PhD thesis
describing the EHC project. The system is used to de-
scribe the type rules of EHC. The main objectives of
the system are:

◦ To keep the implementation and LATEX rendering of
type rules consistent.

◦ To allow an incremental specification (necessary for
the stepwise description employed by EHC).

Using the Ruler language (of the Ruler system) one
can specify the structure of judgements, called judge-
ment schemes. These schemes are used to ‘type check’
judgements used in type rules and generate the imple-
mentation for type rules. A minimal example, where
the details required for generation of an implementa-
tion are omitted, is the following:

42

http://www.cs.york.ac.uk/ftpdir/reports/YCS-2005-395.pdf
http://www.cs.york.ac.uk/ftpdir/reports/YCS-2005-395.pdf
http://www.cs.kent.ac.uk/~oc/traceTheory.html
http://www.haskell.org/hat
http://www.cs.mu.oz.au/~bjpop/buddha/
http://haskell.org/hmake/
http://darcs.haskell.org/~lemmih/zerothHead/

scheme expr =
holes [| e: Expr, gam: Gam, ty: Ty |]
judgespec gam :- e : ty

ruleset expr scheme expr =
rule app =

judge A : expr = gam :- a : ty.a
judge F : expr = gam :- f : (ty.a -> ty)
-
judge R : expr = gam :- (f a) : ty

This example introduces a judgement scheme for the
specification of type rules for expressions, and a type
rule for applications (as usually defined in λ-calculus).

Further reading

◦ Homepage (Ruler is part of EHC):
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
From here the mentioned documentation can be
downloaded.

5.5.4 cpphs

Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust Haskell replacement for the C pre-
processor. It has a couple of benefits over the tradi-
tional cpp – you can run it in Hugs when no C compiler
is available (e.g. on Windows); and it understands the
lexical syntax of Haskell, so you don’t get tripped up
by C-comments, line-continuation characters, primed
identifiers, and so on. (There is also a pure text mode
which assumes neither Haskell nor C syntax, for even
greater flexibility.)

Current release is now 1.2, with two new features:
an option to unliterate .lhs files during preprocessing,
and the ability to install cpphs as a library to call from
your own code, in addition to the stand-alone utility.

Further reading

http://haskell.org/cpphs

5.5.5 Visual Haskell

Report by: Simon Marlow and Krasimir Angelov
Status: in development

Visual Haskell is a plugin for Microsoft’s Visual Studio
development environment to support development of
Haskell code. It is tightly integrated with GHC, which
provides support for intelligent editing features, and
Cabal, which provides support for building and pack-
aging multi-module programs and libraries.

The first release of Visual Haskell, version 0.0, was
announced on 20 September 2005. It can be ob-
tained from the main Visual Haskell page, here: http:
//www.haskell.org/visualhaskell/. In order to use Visual
Haskell, you need an x86 machine running Windows,
and Visual Studio .NET 2003.

Following a relaxation in the license under which Mi-
crosoft’s Visual Studio SDK is released, we are now able
to distribute the source to the plugin under a BSD-style
license. The sources are in a darcs (→ 6.6) repository
here: http://darcs.haskell.org/vshaskell/. Why not take
a look and see what lengths you have to go to in order
to write Haskell code that plugs into Visual Studio!

Unfortunately there hasn’t been any progress on this
project since the release, as the developers have been
busy with other projects. We urgently need to update
the codebase to work with the latest GHC and make a
release that works with Visual Studio 2005. We would
be most grateful for any help.

Help is (still) welcome! Please drop us a
note: 〈simonmar@microsoft.com〉 and 〈kr.angelov@
gmail.com〉.

5.5.6 hIDE – the Haskell Integrated Development
Environment

Report by: Lemmih
Status: in the process

Through the dark ages many a programmer has longed
for the ultimate tool. In response to this most un-
nerving craving, of which we ourselves have had maybe
more than our fair share, the dynamic trio of #Haskel-
laniacs (dons, dcoutts and Lemmih) (→ 1.3) hereby an-
nounce, to the relief of the community, that a fetus has
been conceived:

hIDE – the Haskell Integrated Development
Environment.

So far the unborn integrates source code recognition
and a chameleon editor, presenting these in a snappy
gtk2 environment. Although no seer has yet predicted
the date of birth of our hIDEous creature, we hope that
the mere knowledge of its existence will spread peace
of mind throughout the community as oil on troubled
waters. More news will be dispersed as it arises.

5.5.7 Haskell support for the Eclipse IDE

Report by: Leif Frenzel
Status: working, though alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs, developed by an Open Source Project.
Our project extends it with tools to support Haskell
development.

43

http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://haskell.org/cpphs
http://www.haskell.org/visualhaskell/
http://www.haskell.org/visualhaskell/
http://darcs.haskell.org/vshaskell/
mailto: simonmar at microsoft.com
mailto: kr.angelov at gmail.com
mailto: kr.angelov at gmail.com

The aim is to develop an IDE for Haskell that pro-
vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of compilers, in-
terpreters, debuggers, documentation generators and
other Haskell development tools. Long-term goals in-
clude a language model with support for language-
aware IDE features, like refactoring and structural
search.

The current version is 0.9.1. The project is now
maintained by Thiago Arrais.

Every help is very welcome, be it in the form of code
contributions, docs or tutorials, or just any feedback
if you use the IDE. If you want to participate, please
subscribe to the development mailing list (see below).

Further reading

◦ http://eclipse.org
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop
◦ Project homepage: http://eclipsefp.sf.net

5.5.8 Haddock

Report by: Simon Marlow
Status: stable, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates doc-
umentation by parsing the Haskell source code di-
rectly, and including documentation supplied by the
programmer in the form of specially-formatted com-
ments in the source code itself. Haddock has direct
support in Cabal, and is used to generate the docu-
mentation for the hierarchical libraries that come with
GHC, Hugs, and nhc98 (http://www.haskell.org/ghc/
docs/latest/html/libraries).

The latest release is verison 0.7, released August 4
2005. Version 0.7 contained some major improvements
to the way Haddock decides where to hyperlink each
identifier in the documentation.

Recent changes:

◦ There is a new feature to add links to source code
and wiki pages from each entity in the Haddock doc-
umentation.

◦ Haddock is now in a Darcs repository (→ 6.6), here:
http://darcs.haskell.org/haddock.

◦ Happy has a new build system, based on Cabal. If
you have GHC 6.4.2 (or Cabal 1.1.4 or later), then
you should be able to build and install Haddock on
any platform without requiring any build tools apart
from GHC itself.

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here:
http://darcs.haskell.org/haddock/TODO

◦ Haddock’s home page is here:
http://www.haskell.org/haddock/

5.5.9 Hoogle – Haskell API Search

Report by: Neil Mitchell
Status: v3.0, beta release

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online.

Hoogle is still under active development, since the
last HCAR a complete rewrite has been performed to
create version 3, and another rewrite is under way for
version 4. Hoogle has moved onto haskell.org and the
range of libraries searched has expanded massively, now
including most of GHC’s libraries. Haddock (→ 5.5.8)
now supports generation of Hoogle data files. The fu-
ture plans are to speed up the program, improve sup-
port for libraries and fix some remaining bugs.

Hoogle is available as a web interface, a command
line tool and a lambdabot (→ 6.11) plugin.

Further reading

http://haskell.org/hoogle

44

http://eclipse.org
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://eclipsefp.sf.net
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://darcs.haskell.org/haddock
http://darcs.haskell.org/haddock/TODO
http://www.haskell.org/haddock/
http://haskell.org/hoogle

6 Applications

6.1 h4sh

Report by: Don Stewart
Status: active development

h4sh provides a set of Haskell List functions as normal
unix shell commands. This allows us to use Haskell in
shell scripts transparently.

Each program is generated from the function’s type.
The supported functions include: (!!) ($) (++)
(:) (\\) concat concatMap cycle delete drop
dropWhile elemIndices filter foldl foldr group
head id init insert intersect intersperse
iterate last length map maximum minimum nub
repeat reverse show sort tail take takeWhile
transpose unfoldr union words zip.

Higher order functions use runtime evaluation, al-
lowing arbitrary Haskell code to be passed to, e.g. map
and filter.

h4sh has been ported to the new Data.ByteString (→
4.6.3) api.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/h4sh.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/h4sh

6.2 Fermat’s Last Margin

Report by: Shae Erisson
Status: early beta

What is it?

A distributed decentralized wiki-based darcs-backed re-
search paper annotation tool called Fermat’s Last Mar-
gin.
The problem is that I want to read what other peo-
ple write in the margins of their research papers. The
solution is to share annotations in a darcs repository
along with urls to the original paper, thus allowing both
distributed operation and no redistribution copyright
problems.

How does it work?

In short, wget the pdf/ps, throw it into imagemagick,
create wiki pages for the resulting page images, and

save text annotations into the darcs repo. If your repo
is http accessible, anyone can grab your per-page an-
notations, and you can grab theirs.

Further reading

◦ Trac page:
http://thunderbird.ScannedInAvian.org/flm/

◦ Demonstration:
http://thunderbird.scannedinavian.com/~shae/
cgi-bin/Flippi?view=TestMargin

6.3 Conjure

Report by: Shae Erisson
Status: work in progress

Conjure is a project to write a Bittorrent client in
Haskell. The motivations are, a more declarative im-
plementation, better handling of large numbers of tor-
rents, but primarily an opportunity to do something
fun. Jesper Louis Andersen is the the primary orga-
nizer for Conjure.

Further reading

◦ Darcs (→ 6.6) repository:
http://j.mongers.org/pub/haskell/darcs/conjure/

6.4 DEMO – Model Checking for Dynamic
Epistemic Logic

Report by: Jan van Eĳck
Participants: Jan van Eĳck, Simona Orzan, Ji Ruan
Status: active development

DEMO is a tool for modelling change in epistemic logic
(the logic of knowledge). Among other things, DEMO
allows modeling epistemic updates, graphical display
of update results, graphical display of action models,
formula evaluation in epistemic models, translation of
dynamic epistemic formulas to PDL (propositional dy-
namic logic) formulas.

Development has started in 2004. DEMO is used
for modelling epistemic puzzles and for checking simple
communication protocols. Project participants are Jan
van Eĳck, Simona Orzan and Ji Ruan.

Source code and documentation are available from
the project web page.

Immediate plans are to extend the tool, to apply
it to model checking of more involved communication
protocols, and to improve the documentation.

45

http://www.cse.unsw.edu.au/~dons/h4sh.html
http://www.cse.unsw.edu.au/~dons/code/h4sh
http://thunderbird.ScannedInAvian.org/flm/
http://thunderbird.scannedinavian.com/~shae/cgi-bin/Flippi?view=TestMargin
http://thunderbird.scannedinavian.com/~shae/cgi-bin/Flippi?view=TestMargin
http://j.mongers.org/pub/haskell/darcs/conjure/

Further reading

http://www.cwi.nl/~jve/demo/

6.5 Pugs

Report by: Audrey Tang
Status: active development

Started on February 1st 2005, Pugs is an implemen-
tation of the Perl 6 language, including a full-fledged
parser and runtime, as well as compiler backends tar-
getting JavaScript, Perl 5 and the Parrot virtual ma-
chine. It also supports inline Haskell and Perl 5 code in
Perl 6 modules, as well as dynamic Haskell evaluation
through the hs-plugins (→ 4.4.1) package.

As of this writing, we are working closely with Larry
Wall and other language designer to synchronize the
specification with our implementation, so that Pugs
can become a fully-conforming self-hosting Perl 6 im-
plementation.

The Pugs team has over 200 committers from
Haskell, Perl, Python, Ruby, JavaScript and other lan-
guage communities; the Learning Haskell and Intro-
duction to Pugs set of talks, published at the Pugs
homepage, were also welcomed in several Open Source
conferences. Join us on irc.freenode.net #perl6 to par-
ticipate in the development!

Further reading

◦ Development journal
http://pugs.blogs.com/

◦ Pugs homepage
http://pugscode.org/

◦ Subversion repository
http://svn.openfoundry.org/pugs/

6.6 Darcs

Report by: David Roundy
Status: active development

Darcs is a distributed revision control system written
in Haskell. In darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a darcs repository to easily create their
own branch and modify it with the full power of darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, darcs remains very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.7 Arch2darcs

Report by: John Goerzen
Status: active development

Arch2darcs is a Haskell application designed to help
convert tla/Arch repositories to Darcs (→ 6.6) repos-
itories while preserving as much history as practical.
Arch2darcs is written in pure Haskell.

Further reading

darcs get http://darcs.complete.org/arch2darcs

6.8 downNova

Report by: Lemmih

‘downNova’ is a program designed for automating the
process of downloading TV series from mininova.org.
It will scan your downloaded files to find out what
your interests are and download missing/new episodes
to your collection. Advanced classification techniques
are used to interpret the file names and ‘downNova’ will
correctly extract series name, season number, episode
number and episode title in nigh all cases. This might
be abused for illegally downloading copyrighted ma-
terial. That is however not the intended use of this
program and I do not condone such activities.

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/downNova/

◦ mininova:
http://www.mininova.org/

6.9 HWSProxyGen

Report by: André Furtado

HWSProxyGen is a web services proxy generator
for the Haskell functional language, implemented in
Haskell and C#. The final purpose is to show that
Haskell and functional languages in general can be used
as a viable way to the implementation of distributed
components and applications, interacting with services
implemented in different languages and/or platforms.

The first beta version of HWSProxyGen (0.1) was
released in March/2005. It is restricted to generating
proxies only to web services created with Visual Studio
.NET. Other web services can work with HWSProxy-
Gen, but this is not assured by this first version, since

46

http://www.cwi.nl/~jve/demo/
http://pugs.blogs.com/
http://pugscode.org/
http://svn.openfoundry.org/pugs/
http://darcs.net
http://darcs.complete.org/arch2darcs
http://darcs.haskell.org/~lemmih/downNova/
http://www.mininova.org/

they can contain unsupported XML elements in their
description.

HWSProxyGen is free. Its binaries and source code
are available at the project website: http://www.cin.
ufpe.br/~haskell/hwsproxygen. The project was created
by the Informatics Centre of Federal University of Per-
nambuco (UFPE). Extensions and enhancements are
welcome.

In the last months, an English version of the
HWSProxyGen technical paper was created and is
available in the References section of the project web-
site. Although HWSProxyGen is being used experi-
mentally in some academic projects at UFPE, there
are no immediate plans for it and future versions are
still not planned yet.

Further reading

◦ Web Services Developer Center
http://msdn.microsoft.com/webservices/

◦ Microsoft.NET
http://www.microsoft.com/net

◦ World Wide Web Consortium
http://www.w3.org/

◦ The Haskell.NET Project
http://www.cin.ufpe.br/~haskell/haskelldotnet

◦ Haskell HTTP Module (by Gray W. & Bringert
B.) (→ 4.10.7)

6.10 Hircules, an irc client

Report by: Jens Petersen

Hircules is a gtk2-based IRC client built on gtk2hs (→
4.8.1) and code from lambdabot (→ 6.11). The last
release was version 0.3. I recently updated my tree to
build with the current releases of ghc and gtk2hs and
I am planning to import it to darcs.haskell.org soon to
make it easier for other people to contribute patches.

Further reading

http://haskell.org/hircules/

6.11 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell
evaluator, lambda calculus interpreter, unlambda in-
terpreter, pointfree programming, dictd client, fortune
cookies, Google search, online help and more. Version
3.1 of lambdabot has been tagged, and development

continues. Lambdabot reached the 10k lines of code
mark over the last 6 months.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/lambdabot.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/lambdabot

6.12 λFeed

Report by: Manuel Chakravarty
Status: active

Drive your blog with Haskell! λFeed generates RSS
2.0 feeds and corresponding HTML from a non-XML,
human-friendly format for channels and news items.
Currently, many desirable features are still missing.
However, the internal representation of RSS 2.0 feeds
is already rather feature-full; it includes, for exam-
ple, enclosure as needed for podcasts. More informa-
tion and the darcs repository is available from http:
//www.cse.unsw.edu.au/~chak/haskell/lambdaFeed/.

6.13 yi

Report by: Don Stewart
Status: maintained

yi is a project to write a Haskell-extensible editor. yi
is structured around an basic editor core, such that
most components of the editor can be overridden by
the user, using configuration files written in Haskell.
Version 0.1.0 has been released, and provides vim, vi
and nano emulation, through an ncurses interface. yi is
stable and maintained, though active development has
slowed.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/yi.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/yi/

6.14 Dazzle

Report by: Martĳn Schrage and Arjan van Ĳzendoorn

Dazzle is a graphical toolbox for Bayesian networks
that is developed by the Decision Support System
group of Utrecht University. It is written in Haskell

47

http://www.cin.ufpe.br/~haskell/hwsproxygen
http://www.cin.ufpe.br/~haskell/hwsproxygen
http://msdn.microsoft.com/webservices/
http://www.microsoft.com/net
http://www.w3.org/
http://www.cin.ufpe.br/~haskell/haskelldotnet
http://haskell.org/hircules/
http://www.cse.unsw.edu.au/~dons/lambdabot.html
http://www.cse.unsw.edu.au/~dons/lambdabot
http://www.cse.unsw.edu.au/~chak/haskell/lambdaFeed/
http://www.cse.unsw.edu.au/~chak/haskell/lambdaFeed/
http://www.cse.unsw.edu.au/~dons/yi.html
http://www.cse.unsw.edu.au/~dons/code/yi/

and uses wxHaskell as its GUI library. For inference it
uses the C++ library SMILE, developed by the De-
cision Systems Laboratory of Pittsburgh University.
Dazzle’s features include browsing cases, test selection,
logic sampling and sensitivity analysis. The application
runs on both Windows and Linux. The project has pro-
duced several spin-offs: a progress indicator for pure al-
gorithms, an abstraction for persistent documents, and
the XTC library for typed controls. The Dazzle tool-
box itself is closed source, but the spin-off libraries are
available from the web page.

Further reading

http://www.cs.uu.nl/dazzle/

6.15 Blobs

Report by: Malcolm Wallace
Status: experimental

Blobs is a diagram editor for directed graphs, written
in Haskell using the platform-independent GUI toolkit
wxHaskell. It is based on the Dazzle (→ 6.14) tool pre-
sented at the Haskell Workshop in Tallinn, but omitting
the proprietary Bayesian analysis algorithms. Blobs is
an open project, designed to be a capable (but fairly
generic) drawing and editing front-end, so we can share
the main GUI effort amongst several different back-end
analysis tools.

We are at a fairly early stage of development – if you
need a graph editor, please get involved and help to
improve it!

What can Blobs do?

◦ Draw nodes with textual labels, and optional extra
(polymorphic) information labels.

◦ Connect nodes together with edges. An edge has
optional extra information labels.

◦ You can create palettes of different node shapes, and
load a palette into the editor. (Currently, palette
creation is by hand, not graphical.)

◦ Graphs are stored in an XML file format.

◦ If you have a backend engine, you can send the graph
to it for analysis, receiving a graph back for viewing
as a result.

Further reading

http://www.cs.york.ac.uk/fp/darcs/Blobs

6.16 INblobs – Interaction Nets interpreter

Report by: Miguel Vilaca
Status: active, maintained
Portability: Windows, Linux and partially in Mac

(depends on wxHaskell)

INblobs is an editor and interpreter for Interaction Nets
– a graph-rewriting formalism introduced by Lafont,
inspired by Proof-nets for Multiplicative Linear Logic.

INblobs is built on top of the front-end Blobs (→
6.15) from Arjan van Ĳzendoorn, Martĳn Schrage and
Malcolm Wallace.

It’s in the first release but a bundle of new features
is ready to be added.

The tool is being developed using the repository sys-
tem Darcs (→ 6.6).

Further reading

http://haskell.di.uminho.pt/jmvilaca/INblobs/

6.17 Yarrow

Report by: Frank Rosemeier
Status: stable

From the Yarrow web pages:
“A proof-assistant is a computer program with which

a user can construct completely formal mathematical
proofs in some kind of logical system. In contrast to
a theorem prover, a proof-assistant cannot find proofs
on its own.

“Yarrow is a proof-assistant for Pure Type Systems
(PTSs) with several extensions. A PTS is a particular
kind of logical system, defined in

Henk P. Barendregt: Lambda Calculi with Types;
in D.M. Gabbai, S. Abramsky, and T.S.E.
Maibaum (editors): Handbook of Logic in Com-
puter Science, volume 1, Oxford University Press,
1992.

“In Yarrow you can experiment with various pure
type systems, representing different logics and pro-
gramming languages. A basic knowledge of Pure Type
Systems and the Curry-Howard-de Bruĳn isomorphism
is required. (This isomorphism says how you can inter-
pret types as propositions.) Experience with similar
proof-assistants can be useful.”
In 2003 Frank Rosemeier has ported Yarrow (writ-
ten by Jan Zwanenburg using Haskell 1.3, see http:
//www.cs.kun.nl/~janz/yarrow/) to Haskell 98. Now
the Haskell 98 source code is available from his web
page using the address

48

http://www.cs.uu.nl/dazzle/
http://www.cs.york.ac.uk/fp/darcs/Blobs
http://haskell.di.uminho.pt/jmvilaca/INblobs/
http://www.cs.kun.nl/~janz/yarrow/
http://www.cs.kun.nl/~janz/yarrow/

http://www.rosemeier.info/frank.prog.en.html.

The new Yarrow homepage is located at

http://www.haskell.org/yarrow/.

There you can find a copy of the homepage for the
Haskell 1.3 version as well as the Haskell 98 adaption.
Please let me know if you have some idea to improve the
webpages. From my homepage http://www.rosemeier.
info you can send an e-mail to me.

6.18 DoCon, the Algebraic Domain
Constructor

Report by: Serge Mechveliani

DoCon is a program for symbolic computation in math-
ematics, written in Haskell (using extensions such as
multiparametric classes, overlapping instances, and
other minor features). It is a package of modules dis-
tributed freely, with the source program and manual.

DoCon, the Algebraic Domain Constructor, version
2.08 has been released in 2005. It is available on the
public sites.

Real DoCon development has stopped before 2002.
At the moment, only the GHC system-dependent
changes are considered. Probably, there will be a new
release (version 2.09) which runs under GHC (→ 2.1)
6.4 or later. This is a matter of correcting the GHC
system usage in the manual.

Further reading

http://haskell.org/docon/

6.19 Dumatel, a prover based on
equational reasoning

Report by: Serge Mechveliani

Dumatel is a prover based on term rewriting and equa-
tional reasoning, written in Haskell (using extensions
such as multiparametric classes, overlapping instances).
It is a package of modules distributed freely, with the
source program and manual.

Dumatel, a prover based on equational reasoning,
version 1.02, has been released in 2005. It is available
on the public sites. The current 1.02 program appears
to have many bugs. A new, improved version is cur-
rently being prepared.

Also available is the copy of a talk given during
the Groebner Semester 2006 in Linz, Austria: Serge
D. Mechveliani, A design for predicate calculus prover
based on completion, http://www.ricam.oeaw.ac.at/srs/
groeb/program.php.

Further reading

http://haskell.org/dumatel/

6.20 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

The program is stable and can take on large docu-
ments.

Since the last HCAR, version 1.11 has been released,
that fixes a number of bugs and introduces some minor
new features. The program now comes with a library
of frequently used formatting directives. Development
continues slowly in the Subversion repository.

I would be interested to present some examples of
lhs2TEX formatting capabilities on the homepage, and
also to extend the lhs2TEX library of formatting di-
rectives. If you have written a document that demon-
strates nicely what lhs2TEX can do, or if you have de-
signed clever formatting instructions to trick lhs2TEX
into doing things previously deemed impossible, please
contact me.

Further reading

◦ http://www.cs.uu.nl/~andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/

lhs2TeX/trunk/

6.21 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project audio signals are processed using pure
Haskell code. The highlights are

◦ a simple signal synthesis backend for Haskore (→
4.9.4),

◦ experimental structures for filter networks,

49

http://www.rosemeier.info/frank.prog.en.html
http://www.haskell.org/yarrow/
http://www.rosemeier.info
http://www.rosemeier.info
http://haskell.org/docon/
http://www.ricam.oeaw.ac.at/srs/groeb/program.php
http://www.ricam.oeaw.ac.at/srs/groeb/program.php
http://haskell.org/dumatel/
http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/

◦ basic audio signal processing including some hard-
coded frequency filters,

◦ advanced framework for signal processing supported
by physical units, that is, the plain data can be
stored in a very simple number format, even fixed
point numbers, but the sampling parameters rate
and amplitude can be complex types, like numbers
with physical units,

◦ framework for inference of sample rate and ampli-
tude, that is, sampling rate and amplitude can be
omitted in most parts of a signal processing expres-
sion, they are inferred automatically, just as types
are inferred in Haskell’s type system. Although the
inference of signal parameters needs some prepro-
cessing, the framework preserves the functional style
of programming.

The library comes with basic Cabal (→ 4.1.1) sup-
port and requires the Numeric Prelude framework (→
4.6.5) of revised numeric type classes.

Future plans

Connect with the HaskellDSP library http://haskelldsp.
sourceforge.net/. Hope on faster code generated by
Haskell compilers. :-) Design a common API to the
Haskell synthesizer code, CSound support included in
Haskore (→ 4.9.4), and the SuperCollider interface.

Further reading

◦ http://darcs.haskell.org/synthesizer/
◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

50

http://haskelldsp.sourceforge.net/
http://haskelldsp.sourceforge.net/
http://darcs.haskell.org/synthesizer/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

7 Users

7.1 Commercial users

7.1.1 Galois Connections, Inc.

Report by: Andy Adams-Moran

Galois (aka Galois Connections, Inc.) is an employee-
owned software development company based in Beaver-
ton, Oregon, U.S.A. Galois began life in late 1999
with the stated purpose of using functional languages
to solve industrial problems. These days, we empha-
size the problem domains over the techniques, and the
theme of the recent Commercial User of Functional
Programming Workshop (see http://www.galois.com/
cufp/) exemplifies our approach: Functional program-
ming as a means not an end.

Galois develops software under contract, and every
project (bar two) that we have ever done has used
Haskell; the two exceptions used SML-NJ and OCaml,
respectively. We’ve delivered tools, written in Haskell,
to clients in industry and the U.S. government that are
being used heavily. Some diverse examples: Cryptol, a
domain-specific language for cryptography (with an in-
terpreter and a compiler, with multiple targets); a GUI
debugger for a specialized microprocessor; a special-
ized, high assurance web server, file store, and wiki for
use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.

So, why do we use Haskell? There are benefits to
moving to Java or C# from C++ or C, such as cleaner
type systems, cleaner semantics, and better memory
management support. But languages like Haskell give
you a lot more besides: they’re much higher level, so
you get more productivity, you can express more com-
plex algorithms, you can program and debug at the
“design” level, and you get a lot more help from the
type system. These arguments have been made time
and again though, and they’re also pretty subjective.

For Galois, it’s also a big bonus that Haskell is close
to its mathematical roots, because our clients care
about “high assurance” software. High assurance soft-
ware development is about giving solid (formal or semi-
formal) evidence that your product does what it should
do. The more functionality provided, the more diffi-
cult this gets. The standard approach has been to cut
out functionality to make high assurance development
possible. But our clients want high assurance tools
and products with very complex functionality. With-
out Haskell (or some similar language), we wouldn’t
even be able to attempt to build such tools and prod-
ucts.

At Galois, we’re happily able to solve real world
problems for real clients without having to give up on
using the tools and languages we worked on when we
were in the Academic world. In fact, we credit most of
our success with the fact that we can apply language
design and semantics techniques to our clients’ prob-
lems. Functional languages are an integral part that
approach, and a big part of the unique value that our
clients have come to known us for.

The good news is that our business is working quite
well. As of Fall 2005, Galois is 18 engineers strong,
with a support staff of 8. We’ve been profitable and
experienced solid growth each of the last three years.

This year, we’ve stepped up our community involve-
ment: cvs.haskell.org has moved to a new, much beefier
machine that will be funded and maintained by Ga-
lois. We’re supporting various community efforts on
that machine, such as the Hackage database. And we’re
going to be heavily involved in efforts to codify a new
standard Haskell.

We’re also trying to drum up support for an industry-
based consortium of companies and individuals that use
and rely upon Haskell. The stated purpose of the as yet
unformed consortium would be to ensure the long-term
viability of Haskell, to provide some back-up to the Si-
mons, and to stimulate the development of industrial-
grade tools for Haskell development. If you’re read-
ing this and are interested in getting involved, e-mail
〈moran at galois.com〉.

Further reading

http://www.galois.com/.

7.1.2 Aetion Technologies LLC

Report by: J. Garrett Morris

Aetion Technologies LLC is a small software developer
located in Columbus, Ohio, USA. We develop commer-
cial applications of a variety of artificial intelligence
techniques, particularly in the application of model-
based inference and simulation techniques to decision
support and situational awareness, both generating and
evaluating new strategies and monitoring and refining
existing ones. We are currently focused on defense,
with growing applications in finance, manufacturing,
and biotechnology.

Our business model requires that we be able to
rapidly prototype new systems as well as develop
generic software foundations that we can extend to new
markets as they open. We have found that Haskell fits

51

http://www.galois.com/cufp/
http://www.galois.com/cufp/
mailto: moran at galois.com
http://www.galois.com/

both of these purposes; the majority of our codebase is
written in Haskell and compiled using GHC.

We have been hiring aggressively over the past sev-
eral months, and hope to begin hiring again shortly.
As we continue to expand and need to build software
that is of more general interest to the community, we
hope to release it under a modified BSD license.

Further reading

http://www.aetion.com/

7.1.3 Linspire

Report by: Clifford Beshers

The OS team at Linspire, Inc. would like to announce
that we are standardizing on Haskell as our preferred
language for core OS development.

We are redoing a bunch of our infrastructure using
Haskell as our common standard language. Our first
task is redoing our Debian package builder (aka auto-
builder) in Haskell. Other tools such as ISO builders,
package dependency checkers are in progress. The goal
is to make a really tight simple set of tools that will
let developers contribute to Freespire, based on Debian
tools whenever possible. Our hardware detector, cur-
rently in OCaml, is on the block to be rewritten as
well.

There are four of us using Haskell, all CCed on this
message. All of us have been using functional languages
for quite some time. At Linspire, our choices have been
OCaml and Haskell. David Fox wrote the hardware
detector in OCaml and is now porting it to Haskell.
Jeremy Shaw has been doing various utilities in Haskell
for several years. Sean Meiners recently wrote an ap-
plication for managing his recipe collection and is now
hooked. I am porting our CD build procedure from
OCaml to Haskell.

We are interested in many other uses of Haskell.
The recent discussion about Haskell as a shell interests
greatly, for example, as we have all suffered through
years of bash code. We’d also like to make some Haskell
bindings for Qt and KDE, though at the moment we
don’t have a good plan to tackle that problem effi-
ciently.

To date, Linspire (formerly Lindows) has focused on
polishing Linux for the consumer market. I mentioned
Freespire, above. We announced Freespire recently
(www.freespire.org). Essentially it is a more open, de-
veloper friendly version of Linspire. http://freespire.
org/about/vision and http://freespire.org/support/faqs
have good overviews. Access through apt, open-source
CNR client and many other good things.

I mention Freespire because some of our colleagues
were concerned that using Haskell would isolate us from
the larger community of developers and make it hard
to find new employees skilled in Haskell, should we

need to. From our perspective, functional program-
ming makes us more effective and we think that getting
even a few people who know Haskell hacking with us is
a better combination than lots of Perl and bash.

Also, Linspire is based on Debian (→ 7.4.1). We’ve
talked a little with John Goerzen who announced his
MissingH library (→ 4.2.9) here a while back. We’ve
imported it and expect to pass updates back to him
as well as any other libraries and tools that he would
be interested in including in the Debian archive. Also,
it seems there are quite a few other libraries out there
which are either not debianized or stale. We are look-
ing into helping the folks on the debian-haskell list with
that, if possible, documenting and automating wher-
ever possible.

7.2 Haskell in Education

7.2.1 Functional programming at school

Report by: Walter Gussmann

A lot of computer science courses at universities are
based on functional programming languages combined
with an imperative language. There are many reasons
for this: the programming-style is very clear and there
are a lot of modern concepts – polymorphism, pattern
matching, guards, algebraic data types. There’s only
little syntax to learn, Finally, the programming code is
reduced to a minimum.

Conditions at school

I started teaching functional programming languages
at school about 8 years ago in different courses with
pupils at age of 16–19 years. Normally they already
know an imperative language like Pascal. A good point
to perform a paradigm shift to functional programming
is recursion.

During the last years I found that learning recursive
data structures (queue, stack, list, tree) with Haskell
were ideal for classes. They got a much deeper impres-
sion about the principles than in imperative or object
oriented languages like Pascal or Java.

Especially in high level courses the use of Haskell
paid off. The last course about cryptology and theo-
retical computer science was dominated by Haskell. We
implemented a simple RSA-algorithm (with very weak
keys) for encoding and decoding of textfiles and some
finite deterministic automata. At the end we were able
to implement a parser and interpreter for a Pascal-like
very simple programming language (not yet published).

52

http://www.aetion.com/
www.freespire.org
http://freespire.org/about/vision
http://freespire.org/about/vision
http://freespire.org/support/faqs

Haskell in tests

Haskell was a component of every test, including the
German Abitur. These problems seemed to be eas-
ier to solve for the pupils, and in tasks with optional
languages about 80% chose Haskell. When asked to ex-
plain their choice, most of them said that with Haskell
they could concentrate on the root of the matter and
simplify the problem through a suitable generalization.

Teamwork with Haskell

Last summer I started with a new advanced class.
All pupils already visited a one-year-beginners course
but they come from 5 different schools and so they
have learned five different imperative languages: Pas-
cal, Modula, Python, Java and Delphi. They already
knew something about computer science but they were
fixed on their first language.

So it was easy for me to start at a very easy level
of functional programming. This time I’ve been con-
centrating on recursion and developing some projects
based on teamwork. First we discussed the electoral
system in Germany (Hare-Niemeyer and d’Hondt).
Then we implemented a simple version of this system
by composing several functions. After designing the
structure of each function (with its signature) we im-
plemented them in groups. And we are proud of the
result: the main function resolved the problem imme-
diately.

After this positive experience we now do some more
complex works, like building the book-index, described
in “Haskell: The Craft of Functional Programming” by
S. Thompson. Another project draws some lines in a
text-window. The line-algorithm is based on a pure
recursion.

This kind of teamwork really motivated the pupils. I
was impressed about the very short time it took a group
of beginners to do such complex programs. We have
do some teamwork with Java - but all the projects was
much more difficult for the pupils than with Haskell.

What’s new?

A few weeks ago I started with an introduction to
databases. In the next weeks I’ll do some database im-
plementation with Haskell. For the first time we well
implement tables as lists of tuples an some SQL-like
functions. It’s a possibility to make extended use of
high-order-functions.

For a more complex example we will read data from
a textfile. We use a very short part of the Mondial
database, which is available online (http://www.dbis.
informatik.uni-goettingen.de/Mondial). This database
ist designed as XML-database but can be used as
MySQL-database too. The well-formed character of
a XML-file can be checked with Haskell.

What is coming in the future?

So there’s no question about that: Functional lan-
guages are suitable for school. I’m sure that over the
years there will be more and more teaching materials,
and other teachers will also be convinced of Haskell.
For some years I try to persuade other teachers to intro-
duce functional languages through regular workshops,
courses and teaching materials.

Today I’m convinced that pupils can understand ba-
sic concepts of computer science more easily if they
know functional languages like Haskell. The clarity of
the language and the modern concept lead to an in-
credible increase of learned material. My pupils choose
Haskell as their favorite of Pascal, C, Java, Haskell and
PHP.

Meanwhile the new framework for computer sci-
ence (in Berlin) includes the obligatory introduction
of a declarative language (functional or logical) for ad-
vanced courses.

Further reading

http://www.pns-berlin.de/haskell/

7.3 Research Groups

7.3.1 Foundations of Programming Group at the
University of Nottingham

Report by: Liyang Hu et al.

The Nottingham FoP group is perhaps unique in the
UK in bringing functional programming, type theory
and category theory together to tackle fundamental is-
sues in program construction. With a total of 25 peo-
ple, we have a spectrum of interests:

Automated Reasoning Louise Dennis and Matthew
Walton are exploring ways of exploiting automated rea-
soning techniques for dependently-typed programming
languages such as Epigram, with a view to extend its
verification capabilities. Interesting possibilities arise
from giving the programmer control over the techniques
used, as well as allowing the program itself to extend
the repertoire of available techniques.

Containers Nottingham is the home of the EPSRC
grant on containers which is a new model of datatypes.
We are currently developing the theory and applica-
tions of containers.

Datatype-Generic Design Patterns Ondrej Rypacek
together with Roland Backhouse and Henrik Nilsson
are working on formal reasoning about object-oriented

53

http://www.dbis.informatik.uni-goettingen.de/Mondial
http://www.dbis.informatik.uni-goettingen.de/Mondial
http://www.pns-berlin.de/haskell/
http://cs.nott.ac.uk/~lad/
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~oxr/
http://cs.nott.ac.uk/~rcb/
http://cs.nott.ac.uk/~nhn/

designs with emphasis on algebraic and datatype-
generic methods. Our goal is a sound programming
model expressive enough to capture object-oriented de-
sign patterns.

Dependently-Typed Haskell Supported by a Micro-
soft Research studentship, Robert Reitmeier is working
on integrating dependent types in Haskell under the
supervision of Thorsten Altenkirch, with advice from
Simon Peyton Jones. We are currently designing an
alternative dependently-typed intermediate language,
influenced by our experiences with Epigram.

Epigram Epigram (→ 3.3.1) is a dependently-typed
functional programming language in its second reincar-
nation, implemented in Haskell. Conor McBride heads
development with Thorsten Altenkirch, James Chap-
man, Peter Morris, Wouter Swierstra, Matthew Walton
and Joel Wright working on both practical and theo-
retical aspects of the language.

Quantum Programming Thorsten Altenkirch,
Jonathan Grattage and Alex Green are working on
quantum computation with the Haskell-like language
QML, which introduces quantum data and control
structures while integrating reversible and irreversible
quantum computation. Guided by its categorical
semantics, QML presents a constructive semantics of
irreversible quantum computations. A Haskell im-
plementation compiles QML programs into quantum
circuits.

Reasoning Catherine Hope, Liyang HU, Graham
Hutton and Joel Wright are working on formal rea-
soning for program correctness and efficiency, where
abstract machines play a central rôle.

Exceptions and interrupts are traditionally viewed as
being difficult from a semantic perspective. We relate
a minimal high-level and low-level semantics contain-
ing exceptions via a provably correct compiler, giving
greater confidence in our understanding.

Reasoning about intensional properties is compli-
cated by non-explicit evaluation order and higher-order
functions, but these are eliminated at the abstract ma-
chine level. From an evaluator, we can calculate a ma-
chine, instrument this with cost information, and back-
wards derive a high-level function giving space and time
usage.

Atomicity deserves particular attention given recent
developments in software transactional memory. We
are devising a low-level semantics featuring commits
and aborts, along with a framework to relate this to a
high-level stop-the-world view.

Short Cut Fusion Short Cut Fusion is used to im-
prove the efficiency of modular programs. Neil Ghani
with Tarmo Uustalu, Patricia Johann and Varmo

Vene have been developing its theoretical foundations,
with much success in both understanding and appli-
cation of the technique to previously out-of-reach data
types. Excitingly, Short Cut Fusion is derived from the
principles of initial algebra semantics which underpin
Haskell’s treatment of datatypes.

Stream Processing Infinite streams support a natu-
ral topology. One can represent continuous (with re-
spect to this topology) stream processing functions by
datatypes in which induction is nested within coinduc-
tion. Peter Hancock, Neil Ghani and Dirk Pattinson
have extended this from streams to final coalgebras for
a wide class of container functors.

Yampa Yampa is an implementation of functional
reactive programming, maintained by Henrik Nilsson.
Some interesting discussions may be found on the
yampa-users mailing list. A motion to reanimate
the Yampa code base, incorporating recent GADT-
based improvements has been submitted to Google’s
Summer-of-Code. We are hopeful of a new public re-
lease soon.

Teaching Haskell plays an important role in the un-
dergraduate programme in Nottingham, via modules
in Functional Programming, Advanced Functional Pro-
gramming, Mathematics for Computer Science, Prin-
ciples of Programming Languages, Compilers, and
Computer-Aided Formal Verification, among others.

Programming in Haskell Graham Hutton has re-
cently completed an introductory Haskell textbook (→
1.6.2), to be published by Cambridge University Press
before the end of 2006.

Events In April, Nottingham successfully played host
to the 2006 conferences of the European Types project
and Trends in Functional Programming. Invited speak-
ers included Bart Jacobs, Simon Peyton Jones and
Hongwei Xi. This was followed by the Spring School
on Datatype-Generic Programming, combining theory
with practical applications.

The Midlands Graduate School in the Foundations
of Computer Science (Easter 2007) will next take place
in Nottingham.

FP Lunch Every Friday, Nottingham’s functional
programmers gather for lunch with helpings of infor-
mal, impromptu-style whiteboard talks. Lecturers,
PhD students and visitors are invited to discuss recent
developments, problems or projects of relevance. We
blog summaries of recent talks.

In the afternoon the FoP group hold an hour-long
seminar. We’re always keen on speakers in any related
areas: do get in touch with Neil Ghani 〈nxg@cs.nott.ac.
uk〉 if you would like to visit our group. See you there!

54

http://cs.nott.ac.uk/~rxr/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~ctm/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~jjw/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jjg/
http://cs.nott.ac.uk/~asg/
http://cs.nott.ac.uk/~cvh/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~jjw/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~pgh/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~nhn/
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://cs.nott.ac.uk/~nxg/G51FUN05/fun.html
http://www.cs.nott.ac.uk/~gmh/afp.html
http://www.cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g51mcs/
http://www.cs.nott.ac.uk/Modules/0405/G53POP.html
http://www.cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/~nhn/G52CMP/
http://cs.nott.ac.uk/~txa/g5bcfr/
http://cs.nott.ac.uk/~gmh/
http://www.cs.nott.ac.uk/MGS/
http://www.cs.nott.ac.uk/MGS/
http://sneezy.cs.nott.ac.uk/fplunch/
http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~nxg/
mailto: nxg at cs.nott.ac.uk
mailto: nxg at cs.nott.ac.uk

Further reading

◦ Foundations of Programming Group:
http://cs.nott.ac.uk/Research/fop/

◦ Functional Programming at Nottingham:
http://sneezy.cs.nott.ac.uk/fp/

◦ Epigram:
http://www.e-pig.org/

◦ Quantum Programming:
http://sneezy.cs.nott.ac.uk/qml/

◦ Yampa:
http://haskell.org/yampa/

◦ Types 2006:
http://cs.nott.ac.uk/types06/

◦ Trends in Functional Programming 2006:
http://cs.nott.ac.uk/~nhn/TFP2006/

◦ Datatype-Generic Programming 2006:
http://cs.nott.ac.uk/ssdgp2006/

7.3.2 Artificial Intelligence and Software
Technology at JWG-University Frankfurt

Report by: David Sabel
Members: David Sabel, Manfred Schmidt-Schauß

DIAMOND

A current research topic within our DIAMOND project
is understanding side effects and Input/Output in
lazy functional programming languages using non-
deterministic constructs.

We introduced the FUNDIO calculus which proposes
a non-standard way to combine lazy functional lan-
guages with I/O. FUNDIO is a lazy functional core lan-
guage, where the syntax of FUNDIO has case, letrec,
constructors and an IO-interface: its operational se-
mantics is described by small-step reductions. A con-
textual approximation and equivalence depending on
the Input/Output behavior of normal order reduction
sequences have been defined and a context lemma has
been proved. This enables us to study a semantics and
semantic properties of the language. By using the tech-
nique of complete sets of reduction diagrams we have
shown a considerable set of program transformations
to be correct. Several optimizations of evaluation are
given, including strictness optimizations and an ab-
stract machine, and shown to be correct w.r.t. con-
textual equivalence. Thus this calculus has a potential
to integrate non-strict functional programming with a
non-deterministic approach to Input/Output and also
to provide a useful semantics for this combination.

We applied these results to Haskell by using the
FUNDIO calculus as semantics for the GHC core lan-
guage. Based on an extended set of correct program
transformations for FUNDIO, we investigated the lo-
cal program transformations, which are performed in
GHC. The result is that most of the transformations

are correct w.r.t. FUNDIO, i.e. retain sharing and do
not force the execution of IO operations that are not
needed. A detailed description of our investigation is
available as a technical report from the DIAMOND
project page. By turning off the few transformations
which are not FUNDIO-correct and those that have not
yet been investigated, we have achieved a FUNDIO-
compatible modification of GHC which is called Has-
Fuse.

HasFuse correctly compiles Haskell programs which
make use of unsafePerformIO in the common
(safe) sense, since the problematic optimizations
that are mentioned in the documentation of the
System.IO.Unsafe module (let floating out, com-
mon subexpression elimination, inlining) are turned
off or performed more restrictively. But HasFuse
also compiles Haskell programs which make use of
unsafePerformIO in arbitrary contexts. Since the
call-by-need semantics of FUNDIO does not prescribe
any sequence of the IO operations, the behavior of
unsafePerformIO is no longer ‘unsafe’. I.e. the
user does not have to undertake the proof obliga-
tion that the timing of an IO operation wrapped
by unsafePerfomIO does not matter in relation to
all the other IO operations of the program. So
unsafePerformIO may be combined with monadic IO
in Haskell, and since all the reductions and transforma-
tions are correct w.r.t. to the FUNDIO-semantics, the
result is reliable in the sense that IO operations will
not astonishingly be duplicated.

Recently, as a final year project Hermine Reichau
compared implementations of a natural language in-
terpreter based on the semantics of Montague in
Haskell using the Glasgow Haskell compiler and Has-
Fuse together with the underlying call-by-name and
call-by-need semantics in the presence of erratic non-
determinism. A result is that Montague’s natural lan-
guage semantics is more consistent with call-by-value
and call-by-need semantics than with call-by-name se-
mantics.

Non-deterministic Call-by-need Lambda Calculi

Mutual Similarity Important topics are to investigate
static analyses based on the operational semantics. In
order to do this, more inference rules are necessary for
equality in call-by-need lambda-calculi, e.g. a defini-
tion of behavioural equivalence. Matthias Mann has
established a soundness (w.r.t. contextual equivalence)
proof for mutual similarity in a non-deterministic call-
by-need lambda calculus.

Recently we have shown that Mann’s approach us-
ing an intermediate “approximation” calculus scales up
well to more expressive call-by-need non-deterministic
lambda calculi, i.e. similarity can be used as a co-
induction-based proof tool for establishing contextual
preorder in a large class of untyped higher-order call-
by-need calculi, in particular calculi with constructors,

55

http://cs.nott.ac.uk/Research/fop/
http://sneezy.cs.nott.ac.uk/fp/
http://www.e-pig.org/
http://sneezy.cs.nott.ac.uk/qml/
http://haskell.org/yampa/
http://cs.nott.ac.uk/types06/
http://cs.nott.ac.uk/~nhn/TFP2006/
http://cs.nott.ac.uk/ssdgp2006/

case, let, and non-deterministic choice.
Current research is aimed towards extensions of

these calculi towards Haskell, e.g. to investigate
calculi with a recursive let; to apply the method to
non-deterministic call-by-need calculi where a must-
convergence is part of the definition of the contextual
preorder and to adapt the method to typed languages.

Locally bottom-avoiding choice We investigated
a call-by-need lambda-calculus with recursive let,
seq, case, constructors and a non-deterministic amb-
operator, which is locally bottom-avoiding. As equa-
tional theory we used contextual equivalence based on
may- as well as must-convergence.

In contrast to other approaches our syntax as well
as semantics does not make use of a heap for sharing
expressions. Instead evaluation is defined as rewriting
of let-expressions.

We have shown that our equational theory takes fair-
ness into account, and that all deterministic reduction
rules and additional program transformations keep con-
textual equivalence, where the combination of a context
lemma together with complete sets of commuting and
forking diagrams turned out to be successful.

With the developed proof tools we are able to prove
correctness of further program transformations. An
analysis of non-terminating terms and subterms should
be subject to further investigations. By proving cor-
rectness of program transformations used in Haskell
compilers and switching off incorrect transformations
we could derive a correct compiler for Haskell extended
with amb.

Strictness Analysis using Abstract Reduction

The algorithm for strictness analysis using abstract re-
duction has been implemented at least twice: Once by
Nöcker in C for Concurrent Clean and on the other
hand by Schütz in Haskell in 1994. In 2005 we proved
correctness of the algorithm by using a call-by-need
lambda-calculus as a semantic basis. A technical re-
port is available from our website.

Most implementations of strictness analysis use set
constants like > (all expressions) or ⊥ (expressions that
have no weak head normal form). A current result is
that the subset relationship of coinductively defined set
constants is in DEXPTIME.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology
http://www.ki.informatik.uni-frankfurt.de

◦ DIAMOND – Direct-Call I/O Approach modelled
using Non-Determinism
http://www.ki.informatik.uni-frankfurt.de/research/
diamond

◦ HasFuse – Haskell with FUNDIO-based side effects
http://www.ki.informatik.uni-frankfurt.de/research/
diamond/hasfuse

7.3.3 Formal Methods at Bremen University

Report by: Christoph Lüth and Christian Maeder
Members: Christoph Lüth, Klaus Lüttich, Christian

Maeder, Achim Mahnke, Till Mossakowski,
Lutz Schröder

The activities of our group centre on formal meth-
ods and the Common Algebraic Specification Language
(CASL).

We are using Haskell to develop the Heterogeneous
tool set (Hets), which consists of parsers, static analyz-
ers and proof tools for languages from the CASL family,
such as CASL itself, HasCASL, CoCASL, CSPCASL
and ModalCASL, and additionally Haskell. HasCASL
is a language for specification and development of func-
tional programs; Hets also contains a translation from
an executable HasCASL subset to Haskell.

We use the Glasgow Haskell Compiler (GHC 6.4),
exploiting many of its extensions, in particular concur-
rency, multiparameter type classes, hierarchical name
spaces, functional dependencies, existential and dy-
namic types, and Template Haskell. Further tools ac-
tively used are DriFT (→ 3.4), Haddock (→ 5.5.8), the
combinator library Parsec, HaXml (→ 4.10.3) and Pro-
gramatica (→ 5.3.1).

Another project using Haskell is the Proof General
Kit, which designs and implements a component-based
framework for interactive theorem proving. The central
middleware of the toolkit is implemented in Haskell.
The project is the sucessor of the highly successful
Emacs-based Proof General interface. It is a cooper-
ation of David Aspinall from the University of Edin-
burgh and Christoph Lüth from Bremen.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.informatik.uni-bremen.de/cofi

◦ Heterogeneous tool set:
http://www.informatik.uni-bremen.de/cofi/hets

◦ Proof General Kit
http://proofgeneral.inf.ed.ac.uk/Kit

56

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/cofi
http://www.informatik.uni-bremen.de/cofi/hets
http://proofgeneral.inf.ed.ac.uk/Kit

7.3.4 Functional Programming at Brooklyn College,
City University of New York

Report by: Murray Gross

A grant has provided us with 6 new quad-processor
machines, which we are currently integrating into our
existing Linux/Mosix cluster. When the integration is
complete, we will be comparing the performance and
behavior of the Brooklyn College version of GpH (→
3.2.2) and the SMP facility of the latest release of
GHC (→ 2.1).

In the area of applications, we are working two AI
projects, three-dimensional tic-tac-toe (noughts and
crosses), and an extended version of the Sudoku puzzle.
We have also begun work on a parallel implentation of
Skibinski’s quantum simulator, which we intend to use
to study Grover’s fast search algorithm.

Contact

Murray Gross 〈magross@its.brooklyn.cuny.edu〉

7.3.5 Functional Programming at
Macquarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group
we are working on a number of projects with a Haskell
focus. Since the last report, work has progressed on
the following projects:

◦ We are close to finishing the first version of a port of
the yhc (→ 2.4) runtime to Palm OS handhelds (→
3.1.1).

◦ Kate Stefanov has generalised her work on off-the-
shelf compression technology for bytecode-based pro-
grams from Haskell (nhc98) to Java.

◦ Matt Roberts continues to focus on languages based
on Barry Jay’s pattern calculus. We are currently
working on semantics of a core language and compi-
lation to an abstract machine.

Further reading

Contact us via email to 〈plrg@ics.mq.edu.au〉 or find de-
tails on many of our projects at http://www.comp.mq.
edu.au/plrg/.

7.3.6 Functional Programming at the University of
Kent

Report by: Olaf Chitil

We are a group of about a dozen staff and students with
shared interests in functional programming. While our
work is not limited to Haskell, it provides a major focus
and common language for teaching and research.

Our members pursue a variety of Haskell-related
projects, many of which are reported in other sec-
tions of this report. Keith Hanna is continuing work
on Vital (→ 3.1.2), a document-centered programming
environment for Haskell, and on Pivotal (→ 3.1.3), a
GHC-based implementation of a similar environment.
Mark Callanan is working on type-secure visual edit-
ing operations for this kind of environment. Axel Si-
mon maintains the gtk2hs binding to the Gtk+ GUI
library (→ 4.8.1) in cooperation with Duncan Coutts,
Oxford University. Chris Ryder is improving his Met-
rics and Visualization library Medina. Huiqing Li, Si-
mon Thompson, Chris Brown and Claus Reinke have
released further snapshots of HaRe, the Haskell Refac-
torer (→ 5.3.3) and started to look at refactoring Er-
lang programs. Thomas Davie, Yong Luo and Olaf
Chitil are working together with the York functional
programming group on extending and improving the
Haskell tracer Hat (→ 5.4.2).

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

◦ Pivotal:
http://www.cs.kent.ac.uk/projects/pivotal/

◦ Gtk2Hs:
http://www.haskell.org/gtk2hs

◦ MEDINA:
http://www.cs.kent.ac.uk/~cr24/medina/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat:
http://www.haskell.org/hat/

57

mailto: magross at its.brooklyn.cuny.edu
mailto: plrg at ics.mq.edu.au
http://www.comp.mq.edu.au/plrg/
http://www.comp.mq.edu.au/plrg/
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/
http://www.haskell.org/gtk2hs
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/

7.3.7 Parallel and Distributed Functional Languages
Research Group at Heriot-Watt University

Report by: Phil Trinder
Members: Abyd Al Zain, Lu Fan, Zara Field, Gudmund

Grov, Robert Pointon, Greg Michaelson, Phil
Trinder, Jan Henry Nyström, Chunxu Liu,

Graeme McHale, Xiao Yan Deng

The Parallel and Distributed Functional Languages
(PDF) research group is part of the Dependable Sys-
tems Group in Computer Science at the School of
Mathematics and Computer Science at Heriot-Watt
University.

The group investigates the design, implementation
and evaluation of high-level programming languages
for high-performance, distributed and mobile computa-
tion. The group aims to produce notations with power-
ful yet high-level coordination abstractions, supported
by effective implementations that enable the construc-
tion of large high-performance, distributed and mobile
systems. The notations must have simple semantics
and formalisms at an appropriate level of abstraction
to facilitate reasoning about the coordination in real
distributed/mobile systems i.e. to transform, demon-
strate equivalence, or analyze the coordination proper-
ties. In summary, the challenge is to bridge the gap be-
tween distributed/mobile theories, like the pi and am-
bient calculi, and practice, like CORBA and the Globus
Toolkits.

Languages

The group has designed, implemented, evaluated and
used several high performance/distributed functional
languages, and continues to do so. High perfor-
mance languages include Glasgow parallel Haskell (→
3.2.2) and Parallel ML with skeletons (PMLS).
Distributed/mobile languages include Glasgow dis-
tributed Haskell (→ 3.2.3), Erlang (http://www.erlang.
org/), Hume (http://www-fp.dcs.st-and.ac.uk/hume/),
JoCaml, Camelot, Java Voyager and Java Go.

Projects

Current projects include

◦ High Level Techniques for Distributed Telecommu-
nications Software 2002–06 is an EPSRC project
(GR/R88137) to evaluate high-level distributed pro-
gramming techniques in a realistic telecommunica-
tions context.

◦ EmBounded Project EU IST-510255 2005–8 that
performs the automatic prediction of resource
bounds for embedded systems using Hume.

◦ BAe/DTC SEAS Project SEN 002 2005–7 that en-
gineers embedded software for autonomous vehicle
control using optical sensing, again using Hume.

◦ SCIEnce EU FP6 I3 project (026133) 2006-11 to
use GpH to provide access to Grid services from
Symbolic Computation systems, including GAP and
Maple.

Collaborations

Primary industrial collaborators include groups in Mi-
crosoft Research Labs (Cambridge), Motorola UK Re-
search labs (Basingstoke), Ericsson, Agilent Technolo-
gies (South Queensferry).

Primary academic collaborators include groups in
Complutense Madrid, JAIST, LMU Munich, Phillips
Universität Marburg, and St Andrews.

Further reading

http://www.macs.hw.ac.uk/~ceeatia/PDF/

7.3.8 Programming Languages & Systems at
UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New South
Wales has produced a couple of Haskell tools, including
the interface generator C→Haskell (→ 5.1.3), the hs-
plugins (→ 4.4.1) library for dynamically loaded type-
safe plugins, and the dynamic editor Yi (→ 6.13). Re-
cently, we contributed a new high-performance packed
string library Data.ByteString (→ 4.6.3), the curses-
based mp3 player hmp3, and the RSS 2.0 news feed
generator λFeed (→ 6.12).

In cooperation with Microsoft Research, Cambridge,
we introduced associated types for type classes as
a functional alternative to functional dependencies,
which are in fact relations, despite the name. Our lat-
est contribution to type-level programming is an im-
proved intermediate language for GHC that unifies the
implementation of guarded abstract data types, func-
tional dependencies, and associated types, while si-
multaneously broadening the range of programs that
we can translate. This is joint work with the Na-
tional University of Singapore and Microsoft Research,
Cambridge, available from http://www.cse.unsw.edu.
au/~chak/papers/SCP06.html and will be the basis for
the implementation of associated types in GHC.

Together with GHC HQ, we just started a new
project to finally bring nested data parallelism to GHC,
with a focus to utilise multi-core CPUs (→ 3.2.1).

Further details on PLS and the above mentioned ac-
tivities can be found at http://www.cse.unsw.edu.au/
~pls/.

58

http://www.erlang.org/
http://www.erlang.org/
http://www-fp.dcs.st-and.ac.uk/hume/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.embounded.org/
http://www.macs.hw.ac.uk/~greg/SEAS/
http://www.macs.hw.ac.uk/~ceeatia/PDF/
http://www.cse.unsw.edu.au/~chak/papers/SCP06.html
http://www.cse.unsw.edu.au/~chak/papers/SCP06.html
http://www.cse.unsw.edu.au/~pls/
http://www.cse.unsw.edu.au/~pls/

7.4 User groups

7.4.1 Debian Users

Report by: Isaac Jones

The Debian Haskell community continues to grow, with
both new users and developers appearing. Together
with work on Cabal and libraries (→ 4.1.1) we are work-
ing towards providing a much improved Haskell devel-
opment environment, and the number of applications
in Debian written in Haskell is also continuing to grow.
A summary of the current state can be found on the
Haskell Wiki (→ 1.1): http://www.haskell.org/hawiki/
DebianUsers.

For developers, we have a prototype policy for
packaging tools for Debian: http://urchin.earth.li/~ian/
haskell-policy/haskell-policy.html/.

dh_haskell is a tool by John Goerzen to help in
building Debian packages out of Cabal packages. It is
in the haskell-devscripts package.

For users and developers, we have also started
a mailing list: http://urchin.earth.li/mailman/listinfo/
debian-haskell.

In order to provide backports, bleeding edge ver-
sions of Haskell tools, and a place for experi-
mentation with packaging ideas, Isaac Jones and
Ian Lynagh have started the “Haskell Unsafe”
Debian archive (http://haskell-unsafe.alioth.debian.org/
haskell-unsafe.html) where a wide variety of packages
can be found. This was recently moved to a Debian
server.

7.4.2 Fedora Haskell

Report by: Jens Petersen

Fedora Haskell provides packages of certain Haskell
projects for Fedora Core in yum repositories. The
main news is that hugs98 (→ 2.2) and gtk2hs (→ 4.8.1)
have been added to in Fedora Extras (thanks to Gérard
Milmeister). Also ghc (→ 2.1) was updated to 6.4.2 and
darcs (→ 6.6) to 1.0.7. I hope more Haskell packages
submitted and accepted in Extras in the coming pe-
riod. There is a mailing list 〈fedora-haskell@haskell.org〉
for announcements and questions. Contributions are
needed, particular in the form of submissions and re-
viewing of packages for Fedora Extras.

Further reading

http://haskell.org/fedora/

7.4.3 OpenBSD Haskell

Report by: Don Stewart

Haskell support on OpenBSD continues. A page docu-
menting the current status of Haskell on OpenBSD is
at http://www.cse.unsw.edu.au/~dons/openbsd.

GHC (→ 2.1) is available for i386 and amd64.
nhc98 (→ 2.3) is available for i386 and sparc. Hugs (→
2.2) is available for the alpha, amd64, hppa, i386,
powerpc, sparc and sparc64. A number of other
Haskell tools and libraries are also available, includ-
ing alex (→ 5.2.2), happy (→ 5.2.3), haddock (→ 5.5.8)
and darcs (→ 6.6).

Support for the GHC head branch continues.

7.4.4 Haskell in Gentoo Linux

Report by: Andres Löh

Chris Parrot is the most recent addition to the Gentoo
Haskell team, and Lennart Kolmodin will soon become
the fifth member.

Most recent work has been centered around improv-
ing the ebuilds for GHC, offering Haskell ebuilds for
more platforms, and stabilizing packages that have
been in the ~arch part of the tree for quite some time.

We internally use a darcs (→ 6.6) overlay to exchange
and test new ebuilds, and coordinate development on
IRC (#gentoo-haskell on freenode).

In the overlay, there are some packages we consider
for addition to the main tree, plus other packages such
as a ghc-darcs live ebuild that are just provided as
unofficial extras.

New ebuilds, comments and suggestions are always
welcome. If you file bug reports at bugs.gentoo.org,
please make sure that you mention “Haskell” in the
subject of the report.

7.5 Individuals

7.5.1 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini-tutorials and
assorted small projects (http://pobox.com/~oleg/ftp/
Haskell/) – has received three additions:

Generic Zipper and a Zipper-based file server/OS

Zipper is a construction that lets us replace an item
deep in a complex data structure, e.g., a tree or a term,
without any mutation. The result will share as much of

59

http://www.haskell.org/hawiki/DebianUsers
http://www.haskell.org/hawiki/DebianUsers
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/mailman/listinfo/debian-haskell
http://urchin.earth.li/mailman/listinfo/debian-haskell
http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
mailto: fedora-haskell at haskell.org
http://haskell.org/fedora/
http://www.cse.unsw.edu.au/~dons/openbsd
bugs.gentoo.org
http://pobox.com/~oleg/ftp/Haskell/
http://pobox.com/~oleg/ftp/Haskell/

its components with the old structure as possible. The
old data structure is still available, and so the changes
can be instantly rolled back. Zipper lets us handle a
tree or any other enumerable data structure as if it were
a stream. Zipper is essentially an ‘update’ and yet pure
functional cursor into a data structure. Zipper can be
viewed as a delimited continuation reified as a data
structure.

Our treatment of zipper is quite different from that
of Huet (JFP, 1997) and Hinze and Jeuring (JFP 2001).
Our zipper is polymorphic over the data structure to
traverse, and the zipper creation procedure is generic
and does not depend on the data structure at all. Our
zipper is a derivative of a traversal function rather than
that of a data structure itself.

The articles referenced below introduce the generic
zipper and discuss the relationship between zippers and
(database) transactions of various isolation modes. We
show the updating enumerator and the corresponding
zipper that maximally preserve sharing and can walk
terms with directed loops. We demonstrate that a zip-
per can convert a (sequential) map to a fold.

As one of the applications, we present a file
server/OS that uses zipper to navigate within a term.
If the term in question is a finite map whose keys
are strings and values are either strings or other fi-
nite maps, the zipper-based file system looks almost the
same as the Unix file system. Unlike the latter, how-
ever, we offer: transactional semantics; undo of any file
and directory operation; snapshots; statically guaran-
teed the strongest, repeatable read, isolation mode for
clients; pervasive copy-on-write for files and directories;
built-in traversal facility; and just the right behavior for
cyclic directory references.

http://pobox.com/~oleg/ftp/Computation/
Continuations.html#zipper

http://pobox.com/~oleg/ftp/Computation/
Continuations.html#zipper-fs

Simple fair and terminating backtracking Monad
Transformer

The article http://pobox.com/~oleg/ftp/Computation/
monads.html#fair-bt-stream presents an implementa-
tion of MonadPlus and of MonadPlus transformer. The
back-tracking engine is a hybrid between depth-first
and breadth-first evaluators. The engine is complete: if
the solution exists, it shall be found – even when com-
bining multiple infinite streams (ie., infinitely backtra-
cable computations). The runM function also offers a
way to limit the search space by setting the maximum
number of back-tracking steps. The distinguishing fea-
ture of the implementation is its surprising simplicity.

Lightweight dependent typing: eliminating array
bound check

Haskell98 with higher-ranked types is already pow-
erful enough to express non-trivial static guarantees
such as safety of array index operations (i.e., the in-
dex being in range of the array bounds). Therefore,
we can safely use an efficient unsafeAt provided by
GHC seemingly for that purpose. Our examples in-
volve native Haskell arrays, index computations, and
general recursion. The code is efficient; the static as-
surances cost us no run-time overhead. The example
uses only Haskell98 + higher-ranked types. No new
type classes are introduced. The safety is based on:
Haskell type system, quantified type variables, and a
compact general-purpose trusted kernel.

Our most complex example is folding over multiple,
variously-sized arrays. This is like a fold over an array
– generalized to an arbitrary number of arrays, whose
lower and upper index bounds may differ. The index
ranges of some arrays do not even have to overlap and
may be empty. Neither the number of arrays to process
nor their index bounds are statically known. And yet
we can statically guarantee that whenever our code ac-
cesses any array element, the index is certainly within
the bounds of that array. Typing this example in a
genuinely dependent type system is probably going to
be quite challenging.

For contrast, the article http://pobox.com/~oleg/
ftp/Haskell/types.html#dependently-typed-append
presents an example of a “heavier-weight” dependent-
type programming: appending two lists, assuring that
the size of the output list is the sum of the sizes
of the two input lists. The lists must therefore be
described by a (dependent) type that carries the size
of the list. Unlike the lightweight approach, we do
not resort to a user-supplied trusted kernel: rather,
we exclusively rely on the type system to state and
guarantee non-trivial properties of terms.
http://pobox.com/~oleg/ftp/Haskell/types.
html#branding

7.5.2 Implementation of “How to write a financial
contract”

Report by: Alain Crémieux

The aim is to produce a reference implementation
of “Composing contracts: an adventure in finan-
cial engineering” (http://research.microsoft.com/Users/
simonpj/#contracts-icfp), which could be used as a ba-
sis for implementing other DSELs. At present the
implementation is divided in 5 layers, from “basic”
to “optimizing”. Now that GADTs are supported in
GHC (→ 2.1), it is possible to express a tagless in-
terpreter for the contract language in a very concise
way, even if it is still necessary to guide the type-
checker with some annotations. So the next step is

60

http://pobox.com/~oleg/ftp/Computation/Continuations.html#zipper
http://pobox.com/~oleg/ftp/Computation/Continuations.html#zipper
http://pobox.com/~oleg/ftp/Computation/Continuations.html#zipper-fs
http://pobox.com/~oleg/ftp/Computation/Continuations.html#zipper-fs
http://pobox.com/~oleg/ftp/Computation/monads.html#fair-bt-stream
http://pobox.com/~oleg/ftp/Computation/monads.html#fair-bt-stream
http://pobox.com/~oleg/ftp/Haskell/types.html#dependently-typed-append
http://pobox.com/~oleg/ftp/Haskell/types.html#dependently-typed-append
http://pobox.com/~oleg/ftp/Haskell/types.html#branding
http://pobox.com/~oleg/ftp/Haskell/types.html#branding
http://research.microsoft.com/Users/simonpj/#contracts-icfp
http://research.microsoft.com/Users/simonpj/#contracts-icfp

to use Omega, where these annotations are not neces-
sary thanks to the possibility of defining named kinds.
And to generalize the contract language to some typed
lambda-calculus, including staging. With this I can ob-
tain an optimised interpreter, valuating correctly finan-
cial options (the result is easy to check w.r.t. financial
books).

Code available on demand.

7.5.3 Inductive Programming

Report by: Lloyd Allison

Inductive Programming (IP): The learning of general
hypotheses from given data.

I am continuing to use Haskell to examine
what are the products (e.g. Mixture-models (un-
supervised classification, clustering), segmentation,
classification- (decision-) trees (supervised classifica-
tion), Bayesian/causal networks/models, time-series
models, etc.) of machine learning from a programming
point of view, that is how do they behave, what can be
done to each one, and how can two or more be com-
bined? The primary aim is the getting of understand-
ing, and that could be embodied in a useful Haskell li-
brary or prelude for artificial-intelligence / data-mining
/ inductive-inference / machine-learning / statistical-
inference.

A paper (see below) appeared (1/2006) describing
a case-study that defines a learner for the structure
and the parameters of a Bayesian network over mixed
variables (data attributes): discrete, continuous, and
even structured variables; the learner was applied to a
Search and Rescue data-set on missing people. This
data-set has many missing values which gives great
scope for bad puns. IP has also been used to anal-
yse ecological data (submitted) and mutation data on
a drug-resistant virus, two applications where IP’s flex-
ibility is very useful. A JFP paper (see below) describes
an early version of the project. Currently there are
types and classes for models (various probability dis-
tributions), function-models (regressions), time-series
(e.g. Markov models), mixture models, and classifica-
tion trees (plus regression trees and model trees).

Case-studies include mixtures of time-series,
Bayesian networks, time-series models and “the”
sequence-alignment dynamic-programming algorithm;
a spring-clean of the code is overdue.

Prototype code is available (GPL) at the URL below.

Future plans

‘Inductive programming’ seems to be the best name
suggested so far, by Charles Twardy, for this kind

of programming: ‘function’ is to ‘functional program-
ming’ as ‘statistical model’ is to ‘inductive program-
ming’?

External factors slowed progress in 2005 but I hope
that things are picking up again. I want to develop
time-series models further and am looking at template-
Haskell, and similar, for dealing with Excel csv-files in
a nice way.

Further reading

◦ L. Allison. A Programming Paradigm for Machine
Learning with a Case Study of Bayesian Networks.
ACSC, pages 103–111, January 2006.
http://crpit.com/confpapers/CRPITV48Allison.pdf

◦ L. Allison. Models for Machine Learning and Data
Mining in Functional Programming. J. Functional
Programming, 15(1), pages 15–32, January 2005.
http://dx.doi.org/10.1017/S0956796804005301

◦ Other reading is listed at the URL:
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

7.5.4 Bioinformatics tools

Report by: Ketil Malde

As part of my PhD work, I developed a handful of
(GPL-licensed) tools for solving problems that arise in
bioinformatics. I currently have a sequence clustering
tool, xsact (currently in revision 1.5), which I believe
is one of the more feature-rich tools of its kind. There
is also a sequence assembly tool (xtract). In addition,
there are various smaller tools that are or were useful
to me, and that may or may not be, useful to others.
Lately, I’ve also developed a tool for repeat detection
in EST data, called RBR. A beta version is available,
but it is fairly thoroughly tested, and I hope to put
together a real release soon.

Everything is – of course – available as darcs re-
pos (→ 6.6), at
http://www.ii.uib.no/~ketil/bioinformatics/repos.

Further reading

http://www.ii.uib.no/~ketil/bioinformatics

7.5.5 Using Haskell to implement simulations of
language acquisition, variation, and change

Report by: W. Garrett Mitchener
Status: experimental, active development

I’m a mathematician, with expertise in dynamical sys-
tems and probability. I’m using math to model lan-
guage acquisition, variation, and change. My current
project is about testing various hypotheses put forth by
the linguistics community concerning the word order

61

http://crpit.com/confpapers/CRPITV48Allison.pdf
http://dx.doi.org/10.1017/S0956796804005301
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://www.ii.uib.no/~ketil/bioinformatics/repos
http://www.ii.uib.no/~ketil/bioinformatics

of English. Old and Middle English had significantly
different syntax than Modern English, and the devel-
opment of English syntax is perhaps the best studied
case of language change in the world. My overall plan
is to build simulations of various stages of English and
test them against manuscript data, such as the Penn-
sylvania Parsed Corpus of Middle English (PPCME).

Currently, I’m using a Haskell program to simulate
a population of individual agents learning simplified
languages based on Middle English and Old French.
Mathematically, the simulation is a Markov chain with
a huge number of states. Future simulations will proba-
bly include sophisticated linguistic computations (pars-
ing and sentence generation) for which Haskell seems
to be particularly well-suited. I hope to eventually use
the parallel features of GHC to run larger simulations
on a PVM grid.

I use GHC and Hugs on Fedora Linux. Oddly
enough, the fastest machine in the department for run-
ning these computations is my laptop. It’s a Pentium
M at 1.7 GHz with 2 MB of cache, and for this pro-
gram, it consistently out-performs my desktop, which
is a Pentium 4 at 3 GHz with 1 MB of cache. I sus-
pect the cache size makes the biggest difference, but I
haven’t done enough experiments to say for sure.

I’m also working on a second Haskell project, which
is an interpreted language called Crouton. It’s based
very loosely on Haskell but without the type system
and with much more powerful pattern matching. It will
allow me to scan files from the PPCME and other cor-
pora in lisp-like formats, find particular constructions,
and transform them. Patterns can be as complex as
context free grammars, and apply to whole structures
as well as strings. I expect it to be a big help in the
data collection part of my language modeling.

Further reading

◦ http://www.math.duke.edu/~wgm
◦ http://www.crouton.org

62

http://www.math.duke.edu/~wgm
http://www.crouton.org

	General
	HaskellWiki and haskell.org
	haskell.org and Google Summer of Code 2006
	#haskell
	Haskell Weekly News
	The Haskell Sequence

	The Monad.Reader
	Books and tutorials
	``Hitchhickers Guide to Haskell'' tutorial
	New textbook -- Programming in Haskell
	Haskell Tutorial WikiBook

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	yhc

	Language
	Variations of Haskell
	Haskell on handheld devices
	Vital: Visual Interactive Programming
	Pivotal: Visual Interactive Programming
	House (formerly hOp)
	Camila
	HASP

	Non-sequential Programming
	Data Parallel Haskell
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell
	Eden

	Type System/Program Analysis
	Epigram
	Chameleon project
	XHaskell project
	Constraint Based Type Inferencing at Utrecht
	EHC, `Essential Haskell' Compiler

	Generic Programming

	Libraries
	Packaging and Distribution
	Hackage and Cabal

	General libraries
	Hacanon-light
	HODE
	PFP -- Probabilistic Functional Programming Library for Haskell
	Hmm: Haskell Metamath module
	GSLHaskell
	An Index Aware Linear Algebra Library
	Ivor
	magic-haskell
	MissingH
	MissingPy

	Parsing and transforming
	Utrecht Parsing Library and Attribute Grammar System
	Strafunski

	System
	hs-plugins
	ldap-haskell
	Package ``time'' (formerly TimeLib)
	The libpcap Binding
	Streams

	Databases and data storage
	CoddFish
	Takusen
	HaskellDB

	Data types and data structures
	Standard Collection Libraries (formerly Hierarchical Libraries Collections)
	The revamped monad transformer library
	Data.ByteString (formerly FPS (fast packed strings))
	Edison
	Numeric prelude
	2-3 Finger Search Trees
	HList -- a library for strongly typed heterogeneous collections
	ArrayRef

	Data processing
	HsSyck
	AltBinary
	Compression-2005
	The Haskell Cryptographic Library
	2LT: Two-Level Transformation

	User interfaces
	Gtk2Hs
	hscurses

	(Multi-)Media
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	HOpenAL -- A Haskell Binding for OpenAL and ALUT
	hsSDL
	Haskore revision

	Web and XML programming
	CabalFind
	WebFunctions
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell
	HAIFA
	HaXR -- the Haskell XML-RPC library

	Tools
	Foreign Function Interfacing
	HSFFIG
	FFI Imports Packaging Utility
	CHaskell

	Scanning, Parsing, Analysis
	Frown
	Alex version 2
	Happy
	Attribute Grammar Support for Happy
	BNF Converter
	Sdf2Haskell
	SdfMetz
	XsdMetz: metrics for XML Schema

	Transformations
	The Programatica Project
	Term Rewriting Tools written in Haskell
	HaRe -- The Haskell Refactorer

	Testing and Debugging
	Tracing and Debugging
	Hat
	buddha

	Development
	hmake
	Zeroth
	Ruler
	cpphs
	Visual Haskell
	hIDE -- the Haskell Integrated Development Environment
	Haskell support for the Eclipse IDE
	Haddock
	Hoogle -- Haskell API Search

	Applications
	h4sh
	Fermat's Last Margin
	Conjure
	DEMO -- Model Checking for Dynamic Epistemic Logic
	Pugs
	Darcs
	Arch2darcs
	downNova
	HWSProxyGen
	Hircules, an irc client
	lambdabot
	Feed
	yi
	Dazzle
	Blobs
	INblobs -- Interaction Nets interpreter
	Yarrow
	DoCon, the Algebraic Domain Constructor
	Dumatel, a prover based on equational reasoning
	lhs2TeX
	Audio signal processing

	Users
	Commercial users
	Galois Connections, Inc.
	Aetion Technologies LLC
	Linspire

	Haskell in Education
	Functional programming at school

	Research Groups
	Foundations of Programming Group at the University of Nottingham
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Parallel and Distributed Functional Languages Research Group at Heriot-Watt University
	Programming Languages & Systems at UNSW

	User groups
	Debian Users
	Fedora Haskell
	OpenBSD Haskell
	Haskell in Gentoo Linux

	Individuals
	Oleg's Mini tutorials and assorted small projects
	Implementation of ``How to write a financial contract''
	Inductive Programming
	Bioinformatics tools
	Using Haskell to implement simulations of language acquisition, variation, and change

