
Haskell Communities
and Activities Report
http://www.haskell.org/communities/

– first edition –

November 8, 2001

Claus Reinke (editor), University of Kent at Canterbury, UK
Manuel Chakravarty, University of New South Wales, Australia

Olaf Chitil, University of York, UK
Andy Gill, Galois Connections Inc., USA

Graham Hutton, University of Nottingham, UK
Johan Jeuring, Utrecht University, The Netherlands

Björn Lisper, Mälardalen University, Sweden
Rita Loogen and Steffen Priebe, University of Marburg, Germany
Jan-Willem Maessen, Massachusetts Institute of Technology, USA

Simon Marlow, Microsoft Research Cambridge, UK
Johan Nordlander, Oregon Graduate Institute, USA

Sven Panne, Beta Research, Germany
John Peterson, Yale University, USA

Simon Peyton Jones, Microsoft Research Cambridge, UK
Robert Pointon, Heriot-Watt University, UK

Chris Reade, Kingston University, UK
Martin Sulzmann, University of Melbourne, Australia

Phil Trinder, Heriot Watt University, UK
Malcolm Wallace, University of York, UK

http://www.haskell.org/communities/

Preface

Haskell has come a long way since the September of
1987, when a meeting at a functional programming
conference decided that more widespread use of the
class of non-strict purely functional languages was
being hampered by the lack of a common language.
It is a credit to everyone involved in the development
of Haskell that the language has achieved many of
the goals set out for it.

A problem with this success, however, is that try-
ing to keep up to date with what is going on within
the Haskell community as a whole is becoming more
and more difficult while the breadth of interests in
that community keeps expanding. Sub-communities
have formed, often with their own mailing lists, to
work on specific issues or just to provide foci for spe-
cialist discussion. While this is necessary to get some
work done, both specialists and the “just a Haskell
user” find it increasingly difficult to keep track of
what is going on behind the scenes of the main list.

Few people can afford spending their days reading
through all of the dozens of Haskell-related mailing
lists (this is not a joke: you’ll find about a dozen
“real” lists plus a similar number of cvs-watchlists
hosted at haskell.org alone, and that isn’t counting
the lists hosted elsewhere or the communities that
use small meetings to coordinate their work), and
a lot of information is usually passed on “behind
the scenes”, during breaks at conferences and work-
shops, at working group meetings, in private emails.

This first edition of the Haskell Communities and
Activities Report is the first result of an attempt to
try and organise some way of getting summaries of
what the various (sub-)communities are working on
and posting the results back to the main Haskell list
as well as on haskell.org.

The idea is as follows: twice a year, a call goes out
to the main Haskell mailing list, asking all Haskellers
to contribute brief summaries of their area of work,
be it language design, implementation, type system
extensions, standardisation of GUI APIs, applica-
tions of Haskell, or whatever. The summaries intro-
duce the area of work, the major achievements over
the previous six months, the current hot topics, and
the plans for the next six months. They also provide
links to further information.

So, every six months, all Haskellers should have a
bird’s-eye view of the Haskell community as a whole,

and pointers to more in-depth information.
Not only should this help everyone to keep in-

formed, it will also help the Haskell communities
to stay in touch as they delve ever deeper into their
own specialities. Once you know what’s cooking,
and where, it is easier to decide which communities
to join, and to contribute to the areas of work you
are interested in.

To the specialist communities, these bi-annual re-
ports offer an occasion for distributing discussion
documents to the main community, asking for feed-
back and for contributions. We have several interest-
ing developments of this kind in the present report.

Last, but not least, the Communities Reports
should also provide a forum for the creation of new
communities. The best place to start looking for
collaborators on completely new projects is probably
the haskell mailing list, backed up by by a note in the
job adverts section at haskell.org, and potentially
followed by the creation of a dedicated mailing list.
But topics evolve, and seeing reports from all areas
side by side might suggest useful re-arrangements of
existing boundaries, or highlight problems (see the
comments on the situation of individual Haskellers
around the world in the final chapter).

While compiling this report, the volunteers con-
tributing the summaries did most of the work –
thanks to all of them! Keeping to the spirit of lazy
evaluation, however, many summaries would not be
delivered unless inspected, so one of my main roles
was that of providing a strict evaluation context
(well, hyper-strict, I guess, unless you are happy
with the weak head normal form represented by
the table of contents;-). In spite of the wealth of
topics covered, this first edition does not cover all
current work on or with Haskell, and I hope that
more Haskellers will contribute summaries of their
favourite Haskell topics in the future.

I certainly learned one or two new things from this
project, and I hope you’ll find it an interesting read.
The real question, however, is what you are going to
do with this information: most of the communities
that report here are looking for contributions of one
kind or another (may it be bug fixes, bug reports,
co-workers, discussion partners, . . . or just generally
helpful user feedback).

Claus Reinke,
University of Kent at Canterbury, UK

1

Contents

1 General 4
1.1 Haskell Central - WWW and mailing lists . 4
1.2 Revised Haskell 98 Report . 4
1.3 Formal basis and Meta-programming support . 4
1.4 JFP special issue on Haskell . 5

2 Implementations 7
2.1 GHC . 7

2.1.1 Current status . 7
2.1.2 Future plans . 7
2.1.3 Gap-filling . 7
2.1.4 Performance . 7
2.1.5 New features . 7

2.2 Hugs . 8
2.3 nhc98 . 8
2.4 Eager Haskell . 8

3 Language Extensions 9
3.1 Foreign Function Interface . 9
3.2 Hierarchical Module Namespace . 9
3.3 Non-sequential Programming . 10

3.3.1 Concurrent Haskell . 10
3.3.2 GpH – Glasgow Parallel Haskell . 10
3.3.3 Glasgow Distributed Haskell . 10
3.3.4 Data Field Haskell . 10
3.3.5 O’Haskell . 11
3.3.6 pH (parallel Haskell) . 11
3.3.7 Eden . 11

3.4 Type system extensions and variants . 12
3.4.1 A General Type Class Framework based on Constraint Handling Rules 12

3.5 Generic Haskell . 12
3.5.1 Preprocessors . 12
3.5.2 Languages . 12

3.6 Other Developments . 12

4 Libraries 14
4.1 Foreign Function Interface . 14
4.2 Hierarchical Module Namespace . 14
4.3 Graphical User Interfaces . 14

4.3.1 GUI Library API Task Force . 14
4.3.2 Port of the Clean Object I/O library to Haskell . 15

4.4 Graphics . 16
4.4.1 HOpenGL – OpenGL Haskell Binding . 16

2

5 Tools 17
5.1 Foreign Function Interface . 17

5.1.1 C−>Haskell . 17
5.1.2 Java and Corba bridges . 17

5.2 Tracing and Debugging . 17
5.3 Scanning and Parsing . 18

5.3.1 Happy . 18

6 Applications, Groups, and Individuals 19
6.1 Commercial Applications . 19

6.1.1 Galois Connections, Inc. 19
6.2 Research Groups . 19

6.2.1 Functional Programming at Yale . 19
6.2.2 Functional Programming Research Group at Kingston Business School (Kingston University) 20
6.2.3 Functional Programming Research at UKC . 20

6.3 Individual Haskellers . 20

3

Chapter 1

General

1.1 Haskell Central - WWW and
mailing lists

Haskell’s central information resource is
http://www.haskell.org
It has the language and standard library definitions, links
to Haskell implementations, libraries, tools, books, tutorials,
people’s home pages, communities, projects, news, a wiki,
question&answers, applications, educational material, job ad-
verts, Haskell humour, and even merchandise.
haskell.org also hosts most of the Haskell-related mailing lists
and CVS repositories (15 mailing lists at a recent count, plus
about another dozen of CVS-related lists). While the overall
structure of the web site has been relatively stable for some
time now, the maintainers John Peterson and Olaf Chitil are
aiming to keep the contents in each part up to date.
Most Haskell-related information is reachable from
haskell.org, and anything that isn’t, should be. Do not
just wait for John or Olaf to pick URLs and infos from
lengthy messages in long-running threads on the Haskell
lists: send new or updated entries (category + link + short
description) directly to John or Olaf.
Perhaps we can all take the release of this first Communities
Report as an occasion for going through the information on
haskell.org relating to our own interests and sending in up-
dates, where appropriate? As its says on haskell.org: “This
web site is a service to the Haskell community. The site is
maintained by John Peterson and Olaf Chitil. Suggestions,
comments and new contributions are always welcome. If you
wish to add your project, compiler, paper, class, or anything
else to this site please contact us.”

1.2 Revised Haskell 98 Report

It has been a long and difficult revision, with a lot of surpris-
ing “features” being discovered and removed through a series
of draft documents and intensive discussions on the haskell
list. Simon Peyton Jones had taken on the job:

• To correct errors or inconsistencies.

• To add clarifying remarks where the Report is ambiguous
or obscure.

• With extreme reluctance, to make minor changes to the
language or its libraries.

The results can be found at:
http://research.microsoft.com/~simonpj/
haskell98-revised

“I have posted a draft version of both Reports approximately
monthly since April. Now I am posting what I hope are final
versions, but I want to give one last chance for you to improve
my wording. I do not want to do anything new; but I am
prepared to fix any errors in the changes I have made. I
urgently solicit feedback on these drafts, before the end of
November 2001.”

1.3 Formal basis and Meta-
programming support

The effective lack of a formal semantics for the whole of
Haskell (as opposed to academically interesting fragments)
has been a constant source of embarrassment (functional lan-
guages: solid theoretical basis, effective reasoning about pro-
grams, ...; Haskell: ???, ahem, oops).
Similarly, anyone wanting to do meta-programming on
Haskell source code, e.g., to prototype language extensions,
tended to write their own fragmentary Haskell frontend on
top of the few existing parsers for full Haskell.
On both these topics, there seems to have been some progress
recently:

• Karl-Filip Faxen, KTH Stockholm, has been working on
a formalisation of Haskell’s static semantics: “My static
semantics is finished and the final version delivered to
Graham Hutton for pulication in the JFP special issue
on Haskell [cf. section 1.4 (ed)].

There are a few omissions and one deviation (can’t use
qualified names to refer to top level bindings in the
same module, but these top level bindings shadow im-
ported bindings, so it is easy to translate a program from
Report-Haskell to KF-Haskell). The omissions are strict-
ness flags in datatypes, the newtype construct (which
is indistinguishable from ordinary algebraic data types
from a typing point of view) and deriving clauses (which
would probably have needed another ten pages or so to
specify, most of which would be conncerned with the dy-
namic semantics).”

4

http://www.haskell.org
http://research.microsoft.com/~simonpj/haskell98-revised
http://research.microsoft.com/~simonpj/haskell98-revised

• The functional programming group at York has been
working on various operational semantics for Haskell
to enable reasoning about space behaviour (Adam
Bakewell) and about computation traces (Olaf Chitil).

http://www.cs.york.ac.uk/fp/

• Andrew Tolmach, Portland State University, has been
working on a formal specification of GHC’s version of
core Haskell, the subset into which full Haskell is trans-
lated for definition, compilation and optimisation.

Old: “ “Core” is an intermediate language used inter-
nally by the GHC compiler. It does resemble a re-
duced Haskell (but with explicit higher-order polymor-
phic types) and GHC translates full Haskell 98 into it.
Currently Core has no rigorously defined external rep-
resentation, although by setting certain compiler flags,
one can get a (rather ad-hoc) textual representation to
be printed at various points in the compilation process.
(This is usually done to help debug the compiler).”

New: “The newly released GHC 5.02 supports an initial
version of a facility for dumping GHC’s intermediate code
(called Core) into a file for use by other tools. The Core
format has been given a formal syntax and semantics (the
latter in the form of a definitional interpreter). Details
are in

http://www.haskell.org/ghc/docs/papers/core.
ps.gz

At present, Core can only be dumped (using the -fext-
core flag to ghc); ultimately, we hope to be able to load it
as well, so that the output of other tools can be fed back
into GHC prior to code generation. Feedback on this fa-
cility (to glasgow-haskell-users and/or apt@cs.pdx.edu)
would be very welcome.”

• The Programatica project at OGI, Oregon, has been
working on an implementation of Haskell’s static seman-
tics in Haskell; this has already led to some clarifications
of ambiguities in the ongoing revisions of the Haskell 98
language report.

Thomas Hallgren: “The intended use is within the Pro-
gramatica project [1], where we want to be able work
with extended versions of Haskell. The parser (and the
abstract synax, I presume) is based on a Happy parser by
Simon Marlow and Sven Panne, and I guess it has some-
thing in common with the parser used in GHC. The ab-
stract syntax has then been refactored to separate struc-
ture and recursion, to make most of the types and related
functions reusable without change in extended versions
of the language. Tim Sheard talked about his unification
algorithm based on the same ideas at ICFP [2].

At the moment, the parser seems to be in descent shape,
although it does not yet handle infix operators in 100%
accordance with Haskell 98, since that also requires an
implementation of the module system...

The implementation of the modules system is close to
completion, so we will have something that can parse

Haskell 98 correctly within a couple of weeks, I guess.

There is some code for static analysis and type check-
ing, but it is not in good enough shape to be viewed by
external eyes yet...

Other than that, I refrain from saying anything definite.
My guess is that things will get done when they seem to
be needed to make progress in the project. After all, we
are lazy functional programmers :-)”

[1]http://www.cse.ogi.edu/PacSoft/projects/
programatica/default.htm

[2]http://cristal.inria.fr/ICFP2001/Abstracts/
13.html

• Bernard James Pope (http://www.cs.mu.oz.au/
~bjpop/), University of Melbourne: “A few of us at
Melbourne have been slowly creating a front end to
Mark Jones’ Typing Haskell in Haskell. It is getting
close to being useable. It is intended as a stand-alone
type inference/checking tool that can give detailed
information about static aspects of the program. It will
understand modules.

Given Mark’s approval I would like to make it available to
the Haskell community. I think seperating this element
of the language from the compilers is a useful thing to do,
especially for program transformations that need types.
It uses the Hsparser library for parsing. As for a standard
AST and interface, that would be lovely but I think it is
as much a language issue as a library issue.”

• Michael Sperber (http://www-pu.informatik.
uni-tuebingen.de/users/sperber/), University
of Tübingen: “Note that we also have most of a fron-
tend based on thih. It’s actually a translator between
hsparser’s output and thih’s input. It’s not very well
debugged or tested, but mostly complete, albeit sans
the modules stuff.”

The three Haskell in Haskell frontends developed indepen-
dently, using similar starting points. Now that they know
about each other, it would seem to make sense for the groups
to join forces, in order to make best use of sparse resources.
Bernie Pope has already indicated that he would be willing
to contribute to a joint effort, the other groups have yet to
comment. We’ll see how the story continues, but in any case,
the foundations for Haskell meta-programming have been im-
proved considerably by these projects.

1.4 JFP special issue on Haskell

The Journal of Functional Programming will be running a
special issue on Haskell (submission, refereeing and editing
done; expected publication sometime in 2002). Thanks to
Graham Hutton, guest editor for that special issue, we have
the titles, authors, and abstracts for the six papers that will
appear in it, and it looks to be a very interesting special issue.
CFP: http://www.cs.nott.ac.uk/~gmh/jfp.html

5

http://www.cs.york.ac.uk/fp/
http://www.haskell.org/ghc/docs/papers/core.ps.gz
http://www.haskell.org/ghc/docs/papers/core.ps.gz
http://www.cse.ogi.edu/PacSoft/projects/programatica/default.htm
http://www.cse.ogi.edu/PacSoft/projects/programatica/default.htm
http://cristal.inria.fr/ICFP2001/Abstracts/13.html
http://cristal.inria.fr/ICFP2001/Abstracts/13.html
http://www.cs.mu.oz.au/~bjpop/
http://www.cs.mu.oz.au/~bjpop/
http://www-pu.informatik.uni-tuebingen.de/users/sperber/
http://www-pu.informatik.uni-tuebingen.de/users/sperber/
http://www.cs.nott.ac.uk/~gmh/jfp.html

A Static Semantics for Haskell Karl-Filip Faxen
This paper gives a static semantics for Haskell 98, a non-strict
purely functional programming language. The semantics for-
mally specifies nearly all the details of the Haskell 98 type
system, including the resolution of overloading, kind infer-
ence (including defaulting) and polymorphic recursion, the
only major omission being a proper treatment of ambiguous
overloading and its resolution.
Overloading is translated into explicit dictionary passing, as
in all current implementations of Haskell. The target lan-
guage of this translation is a variant of the Girard-Reynolds
polymorphic lambda calculus featuring higher order polymor-
phism and explicit type abstraction and application in the
term language. Translated programs can thus still be type
checked, although the implicit version of this system is im-
predicative.
A surprising result of this formalization effort is that the
monomorphism restriction, when rendered in a system of in-
ference rules, compromises the principal type property.

Developing a High-Performance Web Server in Con-
current Haskell Simon Marlow
Server applications, and in particular network-based server
applications, place a unique combination of demands on a
programming language: lightweight concurrency, high I/O
throughput, and fault tolerance are all important.
This paper describes a prototype web server written in Con-
current Haskell (with extensions), and presents two useful
results: firstly, a conforming server could be written with
minimal effort, leading to an implementation in less than
1500 lines of code, and secondly the naive implementation
produced reasonable performance. Furthermore, making mi-
nor modifications to a few time-critical components improved
performance to a level acceptable for anything but the most
heavily loaded web servers.

A Typed Representation for HTML and XML Docu-
ments in Haskell Peter Thiemann
We define a family of embedded domain specific languages
for generating HTML and XML documents. Each language
is implemented as a combinator library in Haskell. The gen-
erated HTML/XML documents are guaranteed to be well-
formed. In addition, each library can guarantee that the
generated documents are valid XML documents to a certain
extent (for HTML only a weaker guarantee is possible). On
top of the libraries, Haskell serves as a meta language to de-
fine parameterized documents, to map structured documents
to HTML/XML, to define conditional content, or to define
entire web sites.
The combinator libraries support element-transforming style,
a programming style that allows programs to have a visual
appearance similar to HTML/XML documents, without mod-
ifying the syntax of Haskell.

Secrets of the Glasgow Haskell Compiler Inliner Simon
Peyton Jones and Simon Marlow
Higher-order languages, such as Haskell, encourage the pro-

grammer to build abstractions by composing functions. A
good compiler must inline many of these calls to recover an
efficiently executable program.
In principle, inlining is dead simple: just replace the call of
a function by an instance of its body. But any compiler-
writer will tell you that inlining is a black art, full of delicate
compromises that work together to give good performance
without unnecessary code bloat.
The purpose of this paper is, therefore, to articulate the key
lessons we learned from a full-scale “production” inliner, the
one used in the Glasgow Haskell compiler. We focus mainly
on the algorithmic aspects, but we also provide some indica-
tive measurements to substantiate the importance of various
aspects of the inliner.

Faking It: Simulating Dependent Types in Haskell
Conor McBride
Dependent types reflect the fact that validity of data is often
a relative notion by allowing prior data to affect the types of
subsequent data. Not only does this make for a precise type
system, but also a highly generic one: both the type and the
program for each instance of a family of operations can be
computed from the data which codes for that instance.
Recent experimental extensions to the Haskell type class
mechanism give us strong tools to relativize types to other
types. We may simulate some aspects of dependent typing by
making counterfeit type-level copies of data, with type con-
structors simulating data constructors and type classes simu-
lating datatypes. This paper gives examples of the technique
and discusses its potential.

Parallel and Distributed Haskells P.W. Trinder, H-W.
Loidl and R.F. Pointon
Parallel and distributed languages specify computations on
multiple processors and have a computation language to de-
scribe the algorithm, i.e. what to compute, and a coordination
language to describe how to organise the computations across
the processors. Haskell has been used as the computation lan-
guage for a wide variety of parallel and distributed languages,
and this paper is a comprehensive survey of implemented lan-
guages. We outline parallel and distributed language concepts
and classify Haskell extensions using them. Similar example
programs are used to illustrate and contrast the coordination
languages, and the comparison is facilitated by the common
computation language. A lazy language is not an obvious
choice for parallel or distributed computation, and we ad-
dress the question of why Haskell is a common functional
computation language.

6

Chapter 2

Implementations

2.1 GHC

Report by: Simon Peyton-Jones

The Team

Simon Peyton Jones, Simon Marlow, Julian Seward, Reuben
Thomas, (with particular help recently from Marcin Kowal-
czyk, Sigbjorn Finne, Ken Shan)

2.1.1 Current status

In early October we released GHC 5.02. This is the first
version of GHC that works really solidly on Windows, and it
also has a much more robust implementation of GHCi, the
interactive version of GHC. Compared to earlier releases our
test infrastructure is in much better shape, and we were pretty
confident about its reliability. Perhaps in response to this
rash claim, lots of people started to use it and, sure enough, a
significant collection of bugs were reported. So we will release
GHC 5.02.1 early in November. [this has just happened (ed)]
Simon PJ has spent quite a bit of time on a new demand anal-
yser that now replaces the old strictness analyser and CPR
analyser. The new thing is much faster, and much smaller
(lines of code) than the analysers it replaces. Hopefully a
paper will follow.
Simon M wrote a new compacting garbage collector that re-
duces the amount of real memory you need to run big pro-
grams.
Ken Shan has heroically done a fine Alpha port of GHC.

2.1.2 Future plans

Sadly, Reuben leaves at the end of October, and Julian at
the end of Feb 02, when the grant that funds them runs out.
That will leave the two Simons on GHC duty. So the tempo
of GHC activity will reduce; we have no new sources of money
in our sights. GHC is, and remains, an open-source project,
and we welcome contributions from others. (Thanks to Ken,
Sigbjorn, Marcin, and others who have pitched in recently.)
So our current short-term objective is to get GHC into a really
solid, robust state — rather than adding lots of new features.
In particular, we plan to spend the autumn on

• gap-filling
• improve performance

2.1.3 Gap-filling

There is a never-ending task of filling in things that nearly
work and but don’t quite do it right. E.g. warning about
unused bindings isn’t quite right; generics are incomplete;
derived read on unboxed types doesn’t work; derived Read
generates obscene amounts of code; and so on. This is a bit
of a thankless task, and we’re much more motivated to get
on with things that are actually holding people up. So please
tell us.

2.1.4 Performance

We have not paid serious attention to the quality of the code
GHC produces, or the speed at which it produces it, or the
space it eats (esp GHCi), for quite a while. So we’re going to
work on

• improving the profiling tools that come with GHC

• applying them to GHC itself (speed and space)

In particular, Sunwoo Park, a summer intern from CMU, built
a prototype implementation of lag/drag/void profiling, and
retainer profiling. We plan to integrate these into our main
release.

2.1.5 New features

Having said we’re not concentrating on new stuff, here are
the things that are floating around in our brains. Vote now!

• Libraries – the new hierarchical libraries story is mostly
implemented already. We’ll complete this and make it
part of the next major release.

• GHC.NET – a back end for GHC that targets Microsoft’s
.NET platform. This is pretty well advanced.

• Higher ranked types a la Odersky/Laufer.

• Views – Ralf has been bullying Simon

• Syntax for arrows – Ross has been bullying Simon

• Meta Haskell – Tim has been bullying Simon

Further reading:

http://www.haskell.org/ghc/

7

http://www.haskell.org/ghc/

2.2 Hugs

Report by: Johan Nordlander
Project status: maintenance mode, volunteers needed
Hugs 98 is a small and fast interactive programming system,
that offers an almost complete implementation of Haskell 98.
Its main strengths are

• Short compilation times.

• Runs on many different platforms.

• Easily portable sources, written in C.

• An array of experimental extensions.

Hugs 98 is open source, and thus dependent on volunteering
efforts for its development. In particular, Hugs isn’t main-
tained or supported by OGI anymore. An active mailing
list, and the Hugs cvs archive, can both be reached from
haskell.org. The new FFI is partially supported in the cur-
rent release. A new release (tentatively scheduled for Nov.
30), that will include hierarchical module names and the re-
arranged hslibs, is currently being put together by Sigbjorn
Finne, Alastair Reid, Jeff Lewis, and Johan Nordlander.

Further reading:

http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users

2.3 nhc98

Report by: Malcolm Wallace
The particular strengths of the nhc98 compiler are portability,
space-efficiency, close adherence to Haskell’98, and extensive
tool support to help you to engineer better programs.

Tool support:

• The Hat tracing/debugging project is currently hosted in
nhc98 – further details of the state-of-the-art are listed
under the ‘Tracing’ topic.

• nhc98 still has the best heap-profiling support of any
Haskell system, and its time-profiler was recently im-
proved to make it more accurate in attributions of costs.

• nhc98 has an interactive development environment, much
like Hugs and ghci, based on the hmake compilation man-
ager. This was added about one year ago.

Future developments:

• nhc98 currently implements the same FFI as Ghc and
Hugs. Recently, the standard FFI specification has un-
dergone some minor syntactic changes, and the helper
libraries have been finalised. We hope to incorporate
these changes into nhc98 in the near future.

• The extended module namespaces proposal has been im-
plemented in nhc98 for nearly a year. Now that the ‘core’
set of extended libraries is pretty-much agreed, we intend
to package these with the compiler pretty soon.

• If anyone would like to contribute to the development of
nhc98, there are some self-contained projects that need
attention: porting to any 64-bit architecture; permitting
non-simple contexts, higher kinds, multi-parameter type-
classes, and other type-system hacking; etc.

Further reading:

http://www.cs.york.ac.uk/fp/nhc98/

2.4 Eager Haskell

Report by: Jan-Willem Maessen
Project status: new project
Compiles arbitrary Haskell programs, but happens to run
them eagerly using resource-bounded execution. There
should be no difference in observed program behavior—every
Haskell program is a valid Eager Haskell program (except
that our compiler doesn’t yet cover all of Haskell 98—we’re
missing qualified names and field names).
Except for the missing bits of language and libraries, this is
a real honest-to-goodness Haskell implementation. It’s even
easy to hack.

Goals:

Make it easy to write efficient programs (eg tail-recursive
loops) in Haskell. Explore the efficiency tradeoffs between
eager and lazy execution. Extract parallelism from ordinary
haskell programs without annotating them.

Release double-oh-negative-integer:

Within weeks. Perhaps days.

People:

me. Thus the stealthy pace.

Further reading:

http://csg.lcs.mit.edu/~earwig/eager-haskell.html

8

http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users
http://www.cs.york.ac.uk/fp/nhc98/
http://csg.lcs.mit.edu/~earwig/eager-haskell.html

Chapter 3

Language Extensions

3.1 Foreign Function Interface

Report by: Manuel Chakravarty
Version 1.0 of the Haskell 98 FFI Addendum is nearing publi-
cation. This version of the addendum only covers interaction
between Haskell and C code in detail, but is designed to be
easily extensible with support for other languages, such as
C++ and Java. The current draft is available from
http://www.cse.unsw.edu.au/~chak/haskell/ffi.ps.gz
The document is complete and if approved in its current form
on the FFI mailing list will be circulated on the main Haskell
list for comments from the community. The functionality of
the FFI as defined in the addendum is currently available
in GHC and NHC98; however, there are still syntactic dif-
ferences between the definition and those implementations.
They are expected to be resolved in the near future.

Further reading:

http://haskell.org/mailman/listinfo/ffi

3.2 Hierarchical Module Namespace

Report by: Simon Marlow
Back in February of this year, Malcolm Wallace proposed an
extension to Haskell to support a hierarchical module names-
pace, and gave some suggestions as to how Haskell might use
the extended namespace. The original message is here:
http://www.mail-archive.com/haskell@haskell.org/
msg08187.html
At the same time, a mailing list for discussion of the changes
was set up, libraries@haskell.org. The archives are here:
http://www.haskell.org/pipermail/libraries/
This report details the current status of the proposal, and
outlines what we’ve been up to on the mailing list. There is
also an evolving document describing the current proposal;
an HTML version can be found here:
http://www.haskell.org/~simonmar/libraries/
libraries.html

The Language Extension

A minimal extension to Haskell 98 has been agreed, namely to
allow ’.’ as a valid character in a module name. The extension

is supported by released versions of GHC and nhc98, and will
be supported by a future release of Hugs. The mapping from
module names to file names, although not part of the Haskell
98 standard, will also be similar between the implementations.
Further extensions have been suggested, such as those to allow
importing or renaming of multiple modules simultaneously,
but none has been settled on. We’re waiting until we have
more experience with using the hierarchical scheme before
deciding what further extensions, if any, are necessary.

The Hierarchy

We settled on a rough outline of what the hierarchy should
look like to a Haskell programmer. The guiding principle we
agreed on was that the hierarchy should reflect functional-
ity, so libraries with similar functionality should be grouped
together. One consequence of this decision is that whether
a library is “standard” or not should not be reflected in its
name or its position in the hierarchy.

The Libraries

We came to the conclusion that there ought to be a single
set of “core” libraries used by all the implementations, with
sources kept in a single place. Several issues surrounding
the core libraries, such as licensing, versioning, portability &
stability have been discussed; the current working proposals
are detailed in the working document (URL above).
Work has begun on constructing the core libraries. The cur-
rent sources can be perused in the CVS repository, here:
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
libraries/
The current status is that most of GHC’s old hslibs libraries
have been migrated into the new framework, with the excep-
tion of posix, edison, HaXml, Parsec and a few others. GHC
runs with the new libraries, but the development version of
GHC hasn’t fully switched over to the new scheme yet - this
is expected to happen before the next major release of GHC.

TODO Much remains to be done, and there’s ample scope
for contribution: providing implementations of libraries, de-
signing interfaces to libraries, pointing out problems and in-
consistencies in existing libraries, testing implementations,
porting the core libraries to other compilers/platforms, and
so on.

9

http://www.cse.unsw.edu.au/~chak/haskell/ffi.ps.gz
http://haskell.org/mailman/listinfo/ffi
http://www.mail-archive.com/haskell@haskell.org/msg08187.html
http://www.mail-archive.com/haskell@haskell.org/msg08187.html
http://www.haskell.org/pipermail/libraries/
http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/~simonmar/libraries/libraries.html
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/libraries/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/libraries/

3.3 Non-sequential Programming

3.3.1 Concurrent Haskell

Report by: Simon Marlow
Concurrent Haskell is a set of extensions to Haskell to sup-
port concurrent programming. The concurrency API (Con-
current) has been stable for some time, and is supported in
two forms: with a preemptive implementation in GHC, and
a non-preemptive implementation in Hugs. The Concurrent
API is described here:
http://www.haskell.org/ghc/docs/latest/set/
sec-concurrent.html
There has been some recent activity concerning the interac-
tion between concurrency and exceptions, the result being the
asynchronous exception API provided by GHC:
http://www.haskell.org/ghc/docs/latest/set/
sec-exception.html#SEC-ASYNCHRONOUS-EXCEPTIONS
A future goal is to specify and standardise the Concurrent
Haskell extension as a Haskell 98 addendum.

3.3.2 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
GpH is a minimal, conservative extension of Haskell’98 to
support parallelism. Experience has shown that it is partic-
ularly good for constructing symbolic applications, especially
those with irregular parallelism, e.g. where the size and num-
ber of tasks is dynamically determined. The project has been
ongoing since 1994, initially at Glasgow, and now at Heriot-
Watt and St Andrews Universities.
GpH extends Haskell’98 with parallel composition: par. Par-
allel and sequential composition are abstracted over as eval-
uation strategies to specify more elaborate parallel coordina-
tion, e.g. parList s applies strategy s to every element of
a list in parallel. Evaluation strategies are lazy higher-order
polymorphic functions that enable the programmer to sep-
arate the algorthmic and coordination parts of a program.
A number of realistic programs have been parallelised using
GpH, including a Haskell compiler and a natural language
processor.
GpH is publicly available from the page below, and is imple-
mented on GUM, a sophisticated runtime system that extends
the standard GHC runtime system to manage dynamically
much of the parallel execution, e.g. task and data placement.
GUM is portable: using C and standard communication li-
braries (PVM or MPI), and hence GpH is available on a range
of platforms, including shared-memory, distributed memory
and workstation clusters, e.g. Beowulf. GpH shares imple-
mentation technology with the Eden and GdH languages.
Current work includes making GpH architecture indepen-
dent, i.e. deliver good parallel performance on a range of
platforms. Improved parallel profiling, parallel semantics and
abstract machines, and performance comparison with other
languages.

Further reading:

http://www.cee.hw.ac.uk/~dsg/gph/

3.3.3 Glasgow Distributed Haskell

Report by: Robert Pointon
Robert Pointon, of Heriot-Watt University, has been work-
ing on Glasgow Distributed Haskell (GdH): GdH combines
the multiple processes of Concurrent Haskell with the multi-
ple processing elements of Glasgow Parallel Haskell (GpH).
In summary the language is a minimal super-set of GpH and
Concurrent Haskell and so maintains full backwards compat-
ibility.
To support distribution we have only introduced the notion
of “location”:

• Location awareness - with explicitly placed I/O threads
making use of the individual resources of each machine.

• Location independence - once created any location de-
pendent object such as a thread or MVar can be used
without worrying about where it is.

We have used GdH to write applications which include: a dis-
tributed file server, multiplayer games, and parallel skeletons.
In terms of ongoing research, GdH is actively being used by
the group here for looking at:

• The issues of lazy communication.

• Fault tolerance - recovering from failed remote computa-
tions.

• Mobile computing.

Oh, and the implementation is almost ready for public release!

Further reading:

http://www.cee.hw.ac.uk/~dsg/gdh/

3.3.4 Data Field Haskell

Report by: Björn Lisper
Project status: dormant
The continuing advances in semiconductor and hardware
technology are leading to a situation where transistors are free
and communication costly. This will make parallel systems-
on-a-chip standard. These systems must be specified and pro-
grammed: this requires parallel programming and specifica-
tion languages. The prevailing, process-parallel programming
paradigms are however hard to master for many applications.
Thus, efficient system and software development for these ap-
plications, on this kind of systems, will require simpler models
on a higher level.
One such model is the data parallel model, which provides
operations directly on aggregate data structures. These op-
erations are often highly parallel. The data parallel model is
particularly apt for data-intensive, computation-oriented ap-
plications like image and signal processing, neural network
computations, etc. The Data Field Model is an attempt to
create a formal, data parallel model that is suitable as a basis
for high-level data parallel programming and specification.
Data fields generalize arrays: they are pairs (f,b) where f
is a function and b is a “bound”, an entity which can be

10

http://www.haskell.org/ghc/docs/latest/set/sec-concurrent.html
http://www.haskell.org/ghc/docs/latest/set/sec-concurrent.html
http://www.haskell.org/ghc/docs/latest/set/sec-exception.html#SEC-ASYNCHRONOUS-EXCEPTIONS
http://www.haskell.org/ghc/docs/latest/set/sec-exception.html#SEC-ASYNCHRONOUS-EXCEPTIONS
http://www.cee.hw.ac.uk/~dsg/gph/
http://www.cee.hw.ac.uk/~dsg/gdh/

interpreted as a predicate (or set). The model postulates
some operations of bounds, with certain properties. Com-
mon collection-oriented primitives can be defined in terms of
these operations, without referring to the actual form of the
bounds. Data fields thus make a very generic form of data
parallelism possible, where algorithms become less dependent
on the actual data parallel data structure.
Data Field Haskell (DFH) is a dialect of the functional pro-
gramming language Haskell that provides an instance of data
fields. This language can be used for rapid prototyping of
parallel algorithms, and for parallel high-level specification
of systems. DFH provides data fields with “traditional” ar-
ray bounds and with sparse bounds, infinite data fields with
predicates as bounds, and data fields with cartesian product
bounds. There is a rich set of operations on data fields and
bounds. A forall construct, similar to lambda-abstraction,
can be used to define data fields in a succinct and generic
manner.
The current version of DFH extends Haskell 98. Its imple-
mentation is a modified version of nhc98 pre-release 19 (2000-
06-05), originally from the functional programming group at
York. Although much of DFH is defined in Haskell itself, a
few crucial things aren’t, so the implementation is not easily
portable to other Haskell systems.
Currently, the project is dormant. One M. Sc. thesis project
was recently carried out within the project: Data Field
Haskell 98, where an earlier implementation of DFH was
ported to Haskell 98.

Major Goals:

If this project is revived (or somebeody else picks up the
thread), then the following is on the wish list:

• Case studies

• More portable architecture of the implementation (not
relying on nhc)

• Some generalizations of the data fields provided by DFH

• Implementation of data field specific optimizations

• Parallel implementation

Further reading:

http://www.mrtc.mdh.se/projects/DFH/
http://www.mds.mdh.se/~dal96asn/dfh98.htm

This activity is a continuation of the Data Fields project at
KTH, where also the first prototype implementation of Data
Field Haskell was developed:
http://www.it.kth.se/labs/paradis/
project-datafields.html

3.3.5 O’Haskell

Report by: Johan Nordlander
O’Haskell extends Haskell with support for monadic reac-
tive objects and polymorphic subtyping. An implementation,

O’Hugs, is available, which is an interactive programming sys-
tem derived from Hugs 1.3b. O’Hugs also comes with reactive
network programming APIs, and a fairly complete interface
to the Tk graphical toolkit.
O’Hugs is maintained (although at a slow pace) by Jo-
han Nordlander, Magnus Carlsson, and Björn von Sydow.
New O’Haskell-related developments are currently directed
towards the language Timber, which is a strict language with
real-time capabilities that has inherited many of O’Haskell’s
features.

Further reading:

http://www.cs.chalmers.se/~nordland/ohaskell/
http://www.cse.ogi.edu/PacSoft/projects/Timber/
Default.htm

3.3.6 pH (parallel Haskell)

Report by: Jan-Willem Maessen
An implicitly parallel dialect of Haskell, with provisions for
side effects and special constructs for looping and for detect-
ing termination. Uses a superset of the Eager Haskell parser,
so the caveats about missing Haskell 98 features apply here
too.
The ideas behind pH are best embodied in Arvind and
Nikhil’s book, “Implicit Parallel Programming in pH”
(Morgan-Kaufman, 2001). There’s a compiler release avail-
able, but it doesn’t match the book as Nikhil never had the
chance to make the necessary changes.
People: Alejandro Caro, myself, Arvind, Nikhil, Jacob
Schwartz, Mieszko Lis, Lennart Augustsson, etc. I’m the only
one of the above currently in academia, and I’m working full-
time on Eager Haskell.

Further reading:

(I don’t have write bits on this anymore, or I would have
thrown most of it out and re-written it as it’s so old)
http://csg.lcs.mit.edu/projects/ph/

3.3.7 Eden

Report by: Rita Loogen and Steffen Priebe
Eden extends Haskell by a small set of syntactic constructs for
explicit process specification and creation. While providing
enough control to implement parallel algorithms efficiently it
frees the programmer from the tedious task of managing low-
level details by introducing automatic communication (via
head-strict lazy lists), synchronisation, and process handling.
Eden’s main constructs are process abstractions and process
instantiations. The expression process x -> e of a prede-
fined polymorphic type Process a b defines a process ab-
straction mapping an argument x::a to a result expression
e::b. Process abstractions of type Process a b can be com-
pared to functions of type a -> b, the main difference being
that the former, when instantiated, are executed in parallel.

11

http://www.mrtc.mdh.se/projects/DFH/
http://www.mds.mdh.se/~dal96asn/dfh98.htm
http://www.it.kth.se/labs/paradis/project-datafields.html
http://www.it.kth.se/labs/paradis/project-datafields.html
http://www.cs.chalmers.se/~nordland/ohaskell/
http://www.cse.ogi.edu/PacSoft/projects/Timber/Default.htm
http://www.cse.ogi.edu/PacSoft/projects/Timber/Default.htm
http://csg.lcs.mit.edu/projects/ph/

Process instantiation is achieved by using the predefined infix
operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining higher-order
functions over these basic constructs. Such skeletons, ranging
from a simple parallel map to sophisticated replicated-worker
schemes, have been used to parallelise a set of non-trivial
benchmark programs.
Eden has been implemented by modifying the parallel runtime
system GUM of GpH. Differences include stepping back from
a global heap to a set of local heaps to reduce system message
traffic and avoid global garbage collection. The current (freely
available) implementation is based on GHC 3.xx. An Eden
implementation based on GHC 5.xx will be available in the
near future.
Eden has been jointly developed by two groups at Philipps
Universität Marburg, Germany and Universidad Com-
plutense de Madrid, Spain. The project has been ongoing
since 1996.
Current and future topics include program analysis, skeletal
programming, and polytypic extensions.

Further reading:

http://www.mathematik.uni-marburg.de/inf/eden

3.4 Type system extensions and
variants

3.4.1 A General Type Class Framework
based on Constraint Handling Rules

Report by: Martin Sulzmann
We use Constraint Handling Rules (CHRs) to describe various
type class extensions. Under sufficient conditions on the set
of CHRs, we have decidable operational checks which enable
type inference and ambiguity checking for type class systems.
Current work includes, the combination of open/closed-world
style overloading and a general coherence result.
TIE, a CHR-based type inference engine, and the underlying
CHR-solver have been implemented in Haskell (it’s only a
prototype yet, but we’re working on extending TIE).

Further reading:

http://www.cs.mu.oz.au/~sulzmann/chr/

3.5 Generic Haskell

Report by: Johan Jeuring
Software development often consists of designing a datatype,
to which functionality is added. Some functionality is
datatype specific, other functionality is defined on almost all
datatypes, and only depends on the type structure of the
datatype. Examples of generic (or polytypic) functionality
defined on almost all datatypes are the functions that can
be derived in Haskell using the deriving construct, storing a

value in a database, editing a value, comparing two values for
equality, pretty-printing a value, etc. A function that works
on many datatypes is called a generic function.
There are at least two approaches to generic programming:
use a preprocessor to generate instances of generic functions
on some given datatypes, or extend a programming language
with the possibility to define generic functions.

3.5.1 Preprocessors

DrIFT (http://www.cs.york.ac.uk/fp/DrIFT/) is a pre-
processor which generates instances of generic functions. It
is used in Strafunski (http://www.cs.vu.nl/Strafunski/)
to generate a framework for generic programming on terms.

3.5.2 Languages

PolyP (http://www.cs.chalmers.se/~patrikj/poly/) is
an extension of a subset of Haskell in which generic func-
tions can be defined and type checked. Polyp allows the def-
inition of polytypic functions on a limited set of datatypes.
Hinze has shown how to overcome some of the limitations of
Polyp by extending Haskell with a construct for defining type-
indexed functions with kind-indexed types. Generic Haskell
(http://www.generic-haskell.org/) is based on Hinze’s
ideas. Also GHC has an extension that uses Hinze’s idea
to add derivable type classes to Haskell.

Current hot topics:

Generic Haskell: Type-indexed data types; different ways to
define generic functions; defining generic functions on partic-
ular types, and particular constructors, XML tools as generic
programs.
[Generic Haskell version 0.99 has just been released (ed)]

Major Goals:

Extend Generic Haskell with constructs for defining generic
functions on particular types and constructors.

Further reading:

http://www.cs.york.ac.uk/fp/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
There is a mailing list for Generic Haskell: generic-
haskell@cs.uu.nl. See the homepage for how to join.

3.6 Other Developments

In other news (as they say on tv;-), Mark Shields and Simon
Peyton Jones have taken another go at the topic of “First-
Class Modules for Haskell”:
http://research.microsoft.com/Users/simonpj/
papers/first-class-modules/index.htm

12

http://www.mathematik.uni-marburg.de/inf/eden
http://www.cs.mu.oz.au/~sulzmann/chr/
http://www.cs.york.ac.uk/fp/DrIFT/
http://www.cs.vu.nl/Strafunski/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.york.ac.uk/fp/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://research.microsoft.com/Users/simonpj/papers/first-class-modules/index.htm
http://research.microsoft.com/Users/simonpj/papers/first-class-modules/index.htm

From their abstract: “In this paper we refine Haskell’s core
language to support first-class modules with many of the fea-
tures of ML-style modules. Our proposal cleanly encodes sig-
natures, structures and functors with the appropriate type
abstraction and type sharing, and supports recursive mod-
ules. All of these features work across compilation units, and
interact harmoniously with Haskell’s class system. Coupled
with support for staged computation, we believe our proposal
would be an elegant approach to run-time dynamic linking of
structured code.
Our work builds directly upon Jones’ work on parameterised
signatures, Odersky and Laufer’s system of higher-ranked
type annotations, Russo’s semantics of ML modules using or-
dinary existential and universal quantification, and Odersky
and Zenger’s work on nested types. We motivate the system
by examples, and include a more formal presentation in the
appendix. ”

13

Chapter 4

Libraries

4.1 Foreign Function Interface

Report by: Manuel Chakravarty
Support for Haskell’s Foreign Function Interface is separated
into language extensions, support libraries built on top of
these, and tools that make use of the libraries and extensions.
The support libraries are covered in the draft Haskell 98 FFI
Addendum, discussed in section 3.1 of this report.

4.2 Hierarchical Module Namespace

Report by: Simon Marlow
The language extension that permits hiearchical module
namespaces was motivated by the need to organise the grow-
ing body of Haskell libraries, both user-contributed and those
supported across Haskell implementations. See the subsec-
tions on “The Hierarchy” and “The Libraries” in section 3.2.

4.3 Graphical User Interfaces

4.3.1 GUI Library API Task Force

Report by: Manuel Chakravarty
Project status: new project

Goals

• Development of a GUI library API for Haskell
that is portable across Haskell systems and operat-
ing/windowing systems

• The library focuses on graphical *user interfaces* (ie,
buttons, menus, scrollbars, selection lists, etc) as op-
posed to drawing and animation routines.

• Verification of the design by at least one implementation
of a library that exports the GUI API

• Minimal use of features that are not included in Haskell
98 (in fact, we currently believe that we can keep the
API completely free of any non-H98 features; however,
application programs that use the API will need some
non-H98 functionality)

• While we do not require support of concurrency by
Haskell systems implementing the API, the use and be-

haviour of the API must be well-defined on systems that
do support concurrency

• Core library:

– Due to the complexity of modern GUIs, we cannot
hope to cover a fully-fledged GUI library in reason-
able time and with reasonably effort; thus, we con-
centrate on a core library (what exactly constitutes
the core remains to be defined)

– The core library needs to provide a migration path
to at least one fully-fledged GUI library

• Openness for tools support; for example, it should be
possible to support graphical interface builders (such
tools are not part of the API, but we need to ensure
that we do not seriously complicate the construction of
such tools)

Non-goals

• We will not design a fully-fledged GUI library from
scratch: Just as a reference point, GTK+ has 93 differ-
ent widgets (and that’s just the base set) and probably
over 1000 functions. Moreover, there are surely 100-200
different types of callbacks. I am pretty sure that Qt,
the Win32 GUI API, and the MacOS are of similar size.

This is well beyond the scope of what we can achieve
with our resources.

• We will not design a “purely functional GUI”:

– The pragmatic reason: H98 textual I/O works via
the IO monad; so what’s the problem with having
graphical I/O in the IO monad?

– The state-of-the-art reason: There doesn’t seem to
be a clear favourite in the proposals for purely func-
tional GUIs. Moreover, it has yet to be shown that
any of the proposals scales to real-life GUI applica-
tions.

We do not intend to solve sophisticated research prob-
lems here. We want to get a workable solution quickly.
Always remember: Worse is Better http://www.jwz.
org/doc/worse-is-better.html.

14

http://www.jwz.org/doc/worse-is-better.html
http://www.jwz.org/doc/worse-is-better.html

The Plan

• Handling of state altered by both the application and by
GUI widgets:

– The GUI API will be kept free of any commitment
as to which mechanism to use here.

– The simplest solution, for a single-threaded appli-
cation, is to use ‘IORef’s and, for a multi-threaded
application, is to use ‘MVar’s (or primitives that are
defined in terms of these).

– Advantages of this design:

∗ Doesn’t require Haskell systems that want to
provide the GUI library to also support con-
currency

∗ Doesn’t preclude the use concurrency (where it
is available)

∗ ‘IORef’s are very easy to implement if any sys-
tem doesn’t have them yet

∗ More sophisticated approaches (that often re-
quire language extensions or are still experi-
mental) can be implemented on top of this basic
API - eg, FranTk, Yahu, Fruit, iHaskell, etc.

– It is possible to write reasonably nice Haskell pro-
grams in this approach; for an example, see
http://www.cse.unsw.edu.au/~chak/haskell/
gtk/BoolEd.html

(Note how many of the functions need to be in the
IO monad anyway, because they need to perform
file I/O.)

• Start from the API of GTK+ as a base line:

– This is an API that has a proven track record of
being suitable for small, medium, and large-scale
applications

– The API does not overly rely on object-oriented lan-
guage features

– A large body of free documentation exists for the
API, which can be adapted to our purpose

– A working Haskell binding exists that can be ex-
tended to provide a first implementation of the
Haskell GUI API

– A clear migration path exists for applications that
need more sophisticated features than the core API
provided by the Haskell GUI

– GTK+ itself is already reasonably platform inde-
pendent

• Ensure platform independence:

The Haskell GUI will be restricted to GTK+ features
that can be implemented on other major platforms with
reasonable effort

• Haskell-ise the API:

– C-ish functionality will be cut out

– Full use will be made of Haskell’s type system and,
in particular, type classes

• Convenience libraries

The API will include a set of convenience libraries on top
of the basic API (eg, by providing layout combinators)

Comments

The effort by the GUI Task Force is *not* meant to preempt
any other GUI efforts for Haskell. The goal of the GUI Task
Force is very limited, so that we arrive at a workable solution
quickly. It’s purpose is merely to provide some baseline func-
tionality that any Haskell user can rely on having available.
The relation to other GUI projects can be as twofold:

• Simple bindings to GUI libraries (such as Gtk+HS) could
provide the standard GUI API as one way to access the
library.

• High-level approaches (such as FranTk or Yahu) could
be implemented on top of the GUI API.

The combination of the two would lead to the nice situation
where we can use different high-level APIs on different widgets
sets.

Further reading:

http://www.haskell.org/mailman/listinfo/gui

4.3.2 Port of the Clean Object I/O library
to Haskell

Back in February, Simon Peyton-Jones issued a rather un-
usual call to the Haskell mailing list, titled “A GUI toolkit
looking for a friend”. He was referring to a promising port of
the well-known Clean Object I/O library to Haskell:
“Peter Achten, its author, spent a few weeks in Cambridge,
porting the Clean library to Haskell. The results are very
promising. The main ideas come over fine, translating unique-
types to IO monad actions, and the type structure gets a bit
simpler.
So what we need now is to complete the port. Peter didn’t
have time to bring over all the widgets, nor did he have time to
clean up the Haskell/C interface. (Clean’s FFI is not as well-
developed as Haskell’s, so the interface can be made much
nicer.) The other significant piece of work would be to make it
work on Unix, perhaps by re-mapping it to GTK or TkHaskell
or something.
So the main burden of this message is:
Would anyone be interested in completing the port?
Fame (if not fortune) await you! The prototype that Peter
developed in is the hslibs/ CVS repository, and the GHC
team would be happy to work with you to support your work.
(The more compiler-independent we can make the library, the
better.) Peter Achten is willing to play consultant too. The
Clean team are happy for the code to be open source – indeed,
all the hslibs/ code is BSD-licensed.

15

http://www.cse.unsw.edu.au/~chak/haskell/gtk/BoolEd.html
http://www.cse.unsw.edu.au/~chak/haskell/gtk/BoolEd.html
http://www.haskell.org/mailman/listinfo/gui

It would not be the work of a moment. There are subtle issues
involved (especially involving concurrency), and the design is
not complete, so it isn’t just boring hacking. So it should
fun.”
Krasimir Angelov has been the first volunteer to accept that
challenge, with all the small print attached. He has been
pretty active in the last few weeks:
“At this time the project is near its completion. The
Haskell/C interface is completed. The library supports win-
dows, dialogs and various kinds of controls. However, there
are other items that are meant to be completed (menus,
timers and other). It can already be used for simple GUI
applications. My idea is not only to port the library, but also
to extend it with various items.

• The library needs a backend that targets GTK. I also
plan to extend the library with many new controls such
as: ListBox, Grid, formatted edit controls and other dif-
ferent database oriented controls (I will use modified ver-
sion of HaSQL).

• I want to bind ObjectIO and HOpenGL. This will allow
the developing of graphic oriented applications.

• Similar to Delphi and Microsoft Visual Basic in Objec-
tIO every object has a list of its own attributes. That’s
why I think it is a good platform for developing a similar
builder for Haskell. There is a need of good interactive
development environment for Haskell and I think that
one front-end of GHCi based on ObjectIO is a good al-
ternative. This is my final aim.

Everyone is welcome to help, especially for porting to GTK.
Current sources are in CVS repository.

Further reading:

CVS: http://cvs.haskell.org/cgi-bin/cvsweb.cgi/
fptools/hslibs/object-io/

4.4 Graphics

4.4.1 HOpenGL – OpenGL Haskell Binding

Report by: Sven Panne
Project status: Has been used by a handful users over the
last two years and gains some momentum recently
The goal of this project is to provide a binding for the
OpenGL rendering library which utilizes the special features
of Haskell, like strong typing, type classes, modules, etc., but
still has the “flavour” of the ubiquitous C binding. This en-
ables the easy use of the vast amount of existing literature
and rendering techniques for OpenGL while retaining the ad-
vantages of Haskell over C. Portability in spite of the diversity
of Haskell systems and OpenGL versions is another goal.
HOpenGL includes the simple GLUT UI, which is good to
get you started and for some small to medium-sized projects,
but HOpenGL doesn’t rival the GUI task force efforts in any
way. Smooth interoperation with GUIs like gtk+hs on the
other hand *is* a goal.

The short-term objectives are ironing out the remaining small
portability problems and enhance the packaging of the current
distribution. HOpenGL has been reportedly tested on Intel-
Linux, Windows 98, and Sparc-Solaris with OpenGL versions
ranging from 1.0 to 1.2.1, but there are probably still some
combinations which don’t work smoothly yet.
A medium-term objective is more or less a rewrite of OpenGL.
After some experimentation the best route is probably as fol-
lows: There is an official description of the OpenGL API
(including all extensions)
http://oss.sgi.com/projects/ogl-sample/registry/
http://oss.sgi.com/cgi-bin/cvsweb.cgi/projects/
ogl-sample/main/doc/registry/specs/
in the form of a specialized IDL from which a complete
low-level binding could be generated automatically. A layer
above this should make this a bit more Haskell-like. Cur-
rently a prototype which generates all data types including
(un)marshaling functions already exists, but a translator for
the API calls themselves has not been written yet.
Currently the coding is almost exclusively done by Sven
Panne, but people are invited to join. Anyway, proposals for
the user API (the 2nd layer mentioned above) and comments
on the current API are much more urgent.
HOpenGL needs the new FFI and complex instance heads,
but the latter non-H98 requirement is not really crucial and
should be the topic of some debate.

Further reading:

http://www.haskell.org/mailman/listinfo/hopengl
http://www.cin.ufpe.br/~haskell/hopengl/

16

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/hslibs/object-io/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/hslibs/object-io/
http://oss.sgi.com/projects/ogl-sample/registry/
http://oss.sgi.com/cgi-bin/cvsweb.cgi/projects/ogl-sample/main/doc/registry/specs/
http://oss.sgi.com/cgi-bin/cvsweb.cgi/projects/ogl-sample/main/doc/registry/specs/
http://www.haskell.org/mailman/listinfo/hopengl
http://www.cin.ufpe.br/~haskell/hopengl/

Chapter 5

Tools

5.1 Foreign Function Interface

5.1.1 C−>Haskell

Report by: Manuel Chakravarty
Project status: beta release
C−>Haskell is an interface generator that simplifies the devel-
opment of Haskell bindings to C libraries. The current stable
release is version 0.9.9, which is available in source and binary
form for a range of platforms. There is a concise tutorial and
the Gtk+HS binding shows that the tool is ready for serious
use.
The most recent improvement is support for single-
inheritance class hierarchies as they occur in C APIs that
use a limited form of object-oriented design (this is currently
available from CVS only, version 0.10.x). For the near fu-
ture, simplified marshalling for common signatures as well as
an example-based tutorial are planned. Updates on recent
developments are available from the project homepage.

Further reading:

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

5.1.2 Java and Corba bridges

There have been some new or renewed activities in connecting
Haskell to other languages recently. Two of these have their
files at http://sourceforge.net.
The introduction to Zoltan Varga’s Haskell-Corba interface
says: “This software package implements an interface between
the Haskell programming language and the MICO CORBA
implementation. It allows Haskell programmers to write
CORBA clients and servers in Haskell. It defines a language
mapping from the IDL language used by CORBA to Haskell.
It contains an IDL-TO-Haskell compiler which generates the
necessary stub and skeleton routines from the IDL files.
The original version of this software was written in Clean
as my Master’s thesis. This package is inspired by Combat
(formerly tclMico), which is a TCL-MICO interface program.
Being the result of a thesis means that it is incomplete and
emphasis was put on simplicity of implementation instead of
performance.
The current version only works with MICO, but it is possible
to port it to other ORBs. A port to ORBacus is partly done.”

No separate information appears to be available for Ashley
Yakeley’s Haskell to Java VM Bridge, but the source code is
in CVS at sourceforge.

Further reading:

http://haskell-corba.sourceforge.net/
http://sourceforge.net/projects/jvm-bridge/

5.2 Tracing and Debugging

Report by: Olaf Chitil
There have been and still are a large number of research
projects on tracing lazy functional programs for the purpose
of debugging and program comprehension. Most of these
projects did not yield tools that can be used for Haskell pro-
grams in practice, but in the last few years the number of
tracing tools for Haskell has increased.
Freja provides algorithmic debugging of Haskell programs
but supports only a subset of Haskell and runs only on
Sparc/Solaris. Hood is a portable library that permits to ob-
serve data structures at given program points. The February
2001 release of Hugs directly supports a variant of Hood, mak-
ing observation of user defined data structures easier. GHood
extends Hood by a graphical backend which can animate ob-
servations, giving insight into dynamic program properties
(animations can be added to web pages). There are no con-
crete plans for further development of these systems in the
near future.
The development of the algorithmic debugger Buddha (not
currently available) is an ongoing research project.
The Haskell tracing system Hat is based on a multi-purpose
trace file. The specially compiled Haskell program creates at
runtime a trace file. Hat includes tools to view the trace in
various ways: algorithmic debugging a la Freja; Hood-style
observation of top-level functions; stack-trace on program
abortion; backwards exploration of a computation, starting
from (part of) a faulty output or an error message. Hat is
developed within an active research project. Hat is currently
integrated in nhc98 but in a few months a version that will
work together with any Haskell compiler will be available.
Hat shall enable tracing of any Haskell98 program, the few
remaining language limitations will be lifted. It is already
possible to invoke other viewing tools from some of the view-

17

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://sourceforge.net
http://haskell-corba.sourceforge.net/
http://sourceforge.net/projects/jvm-bridge/

ing tools but further integration and general improvement of
the viewing tools is planned.

Further reading:

http://www.haskell.org/libraries/#tracing

5.3 Scanning and Parsing

5.3.1 Happy

Report by: Simon Marlow
Happy is very much in maintenance mode. It is heavily used
in GHC and is relatively bug-free, but maintenance releases
are still made occasionally. The latest release is 1.11 (Septem-
ber 2001). Happy’s web page is at
http://www.haskell.org/happy/

18

http://www.haskell.org/libraries/#tracing
http://www.haskell.org/happy/

Chapter 6

Applications, Groups, and Individuals

The format of this chapter is still in flux, and its potential
usefulness became apparent too late to expect good coverage
in the first edition of this report, but you might want to think
about adding a bit about your own use of Haskell to the next
edition, due in about six months.

6.1 Commercial Applications

6.1.1 Galois Connections, Inc.

Report by: Andy Gill
Haskell is Galois Connection’s “not so secret” weapon. We
use it to help meet the various demands of our clients in a
number of ways:

1. High Assurance Software Development

All clients want programs that do what they should be
doing. Haskell gives us a significant head start towards
achieving high assurance. Between leveraging the type
system, writing programs that are concise enough to ac-
tually understand, and writing versions of client code
that has the look-and-feel of a specification, we find
Haskell a *practical* language to write our programs in.

2. Domain Specific Languages

Domain Specific Language systems are just special pur-
pose compilers, and Haskell excels at writing compilers.

3. Translators

Galois recently had a project to help a client change how
an API was used over a large code base. We wrote a
translator, based on the SML/C-Kit, that did the trans-
lation using a type inference algorithm. OK, SML is not
Haskell, but next time we’ll use Haskell :-)

The basic idea behind Galois is solving difficult problems
using functional languages. Furthermore, we believe that
Haskell is the right language for handling the complex prob-
lems that arise in many parts of software engineering.

Further reading:

http://www.galois.com

6.2 Research Groups

Many research groups have already been covered by their
larger projects in other parts of this report, especially if they
work almost exclusively on Haskell-related projects, but there
are more groups out there who count some Haskell-related
work among their interests.

6.2.1 Functional Programming at Yale

Report by: John Peterson
The functional programming group at Yale is using Haskell
and general functional language principals to design domain-
specific languages. We are particularly interested in domains
that incorporate time flow. Examples of the domains that
we have addressed include robotics, user interfaces, computer
vision, and music. The languages we have developed are
usually based on Functional Reactive Programming (FRP).
FRP was originally developed by Conal Elliott as part of the
Fran animation system. It has three basic ideas: continous-
time signals (behaviors), discrete-time signals (messages), and
switching. FRP is particularly useful in hybrid systems: ap-
plications that have both continuous time and discrete time
aspects.
FRP is a work in progress: there are many decision points
in the FRP design space and we view FRP as a family of
languages rather than a specific one. We have recently used
arrows to build a new implementation of FRP that has a num-
ber of operational advantages. Although FRP has tradition-
ally been implemented in Haskell, we have also been looking
at direct compilation of FRP programs. We are particularly
interested in compilation for resource-limited systems such as
embedded controllers.
We have not yet released a version of FRP or our FRP-based
languages such as Frob or FVision, but we expect to release
software before the end of the year.
At present, the members of our group are Paul Hudak, John
Peterson, Henrik Nilsson, Walid Taha, Antony Courtney,
Zhanyong Wan, and Liwen Huang.

Further reading:

http://haskell.org/frp
http://www.haskell.org/yale/

19

http://www.galois.com
http://haskell.org/frp
http://www.haskell.org/yale/

6.2.2 Functional Programming Research
Group at Kingston Business School
(Kingston University)

Report by: Chris Reade
Application Area: Internet applications
Members:
(Kingston) Chris Reade, Dan Russell, Phil Molyneux, Barry
Avery, David Martland
(British Airways) Dominic Steinitz
Contact: Dan Russell D.Russell@kingston.ac.uk
This is a relatively new community which has been developing
internet applications using advanced language features (func-
tional, typed and higher order). Part of our motivation is to
investigate advantages of a functional approach to such ap-
plication areas, but also to identify areas for further language
and library development.
We have built an LDAP client with a web user interface en-
tirely in Haskell (reported at the 3rd Scottish Functional Pro-
gramming Workshop in August 2001). This is being further
developed to include asynchronous processes (using Concur-
rent Haskell).
Over the next year we hope to provide libraries for the Haskell
community to work in this area and to attract funding to
expand the research.

Further reading:

FP Group: http://www.kingston.ac.uk/~bs_s075/
Research/fpres.html
Chris Reade: http://www.kingston.ac.uk/~bs_s075

6.2.3 Functional Programming Research at
UKC

Report by: Claus Reinke
Here at the University of Kent at Canterbury, about half a
dozen people pursuing research interests in functional pro-
gramming have formed a functional programming interest
group. Our projects are not limited to Haskell, so not all
of them are mentioned here, but there are still quite a few
Haskell-related activities:
Keith Hanna is working on bringing together the intuitive
graphical interface of spreadsheet-like systems with the ex-
pressiveness and type-security of Haskell. A prototype sys-
tem, named Vital, and an overview paper are available. Ste-
fan Kahrs is interested in the boundaries of type system ex-
pressiveness, and has been looking at what one can or cannot
do with Haskell types & classes. Chris Ryder’s current topic
are software metrics for Haskell programs and their visuali-
sation. Simon Thompson, apart from producing educational
material to help others learn Haskell (such as “The Craft of
Functional Programming”), is working mostly where logic,
types, programming, and verification come together.
Tony Daniels still looks at the semantics of time in Fran ev-
ery now and then. Leonid Timochuk has been working on a
Haskell implementation of Aldor--, a functional subset of the
dependently typed Aldor language, originally developed for

the purpose of computer algebra. Claus Reinke (yours truly),
after a stint in the visualisation of Haskell program obser-
vations (GHood), has been trying to bring together virtual
worlds (in the form of the standard Virtual Reality Modeling
Language VRML’97) and functional programming (Haskell,
with some FRP ideas) in a project named FunWorlds. More
recently, he has also been seen chasing Haskell Community re-
ports. Axel Simon has just joined us on one of the positions
we advertised in the Job Adverts part on haskell.org.
In latest developments, Simon and Claus have been inves-
tigating the potential for refactoring functional programs.
Refactoring means changing the structure of existing pro-
grams without changing their functionality, and has become
popular in the object-oriented and extreme programming
communities as a means to achieve continuous evolution of
program designs. We want to explore the wealth of func-
tional program transformation research to bring refactoring
to Haskell programmers. We have just received confir-
mation of funding and will be advertising for a post-
doctoral researcher soon, but if you are interested,
please get in touch with us now!

Further reading:

FP group (informal page;-): http://www.cs.ukc.ac.uk/
people/staff/acd/fp-group.html
Haskell metrics: http://www.cs.ukc.ac.uk/people/rpg/
cr24/medina/
GHood: http://www.cs.ukc.ac.uk/people/staff/cr3/
toolbox/haskell/GHood/
FunWorlds: http://www.cs.ukc.ac.uk/people/staff/
cr3/toolbox/haskell/FunWorlds/
Vital: http://www.cs.ukc.ac.uk/people/staff/fkh/
Vital/
Some initial info about Refactoring Functional Programs:
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/
index.html

6.3 Individual Haskellers

As it turns out, many Haskellers do not currently have the
benefit of being in a large group of like-minded people. Fol-
lowing the large numbers of students being introduced to
Haskell, this group of individuals around the world might
well be the largest group of Haskell users and, in fact, many
of those students who decide that knowing Haskell is a skill
too useful to forget might find themself isolated after leaving
their university. As Hal Daume suggests:
“It seems to me that many people are in this situation, which
is rather unfortunate. If not only for the ability to walk down
the hall and ask someone if they could look over my code. One
thing that may perhaps be useful would be to identify serious
Haskellers (say people with >10k LOC in Haskell under their
belts) who happen to be the only people in their organizations
who use Haskell and try to form little groups of maybe 5
people with similar research (or applications).

20

http://www.kingston.ac.uk/~bs_s075/Research/fpres.html
http://www.kingston.ac.uk/~bs_s075/Research/fpres.html
http://www.kingston.ac.uk/~bs_s075
http://www.cs.ukc.ac.uk/people/staff/acd/fp-group.html
http://www.cs.ukc.ac.uk/people/staff/acd/fp-group.html
http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/
http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/
http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/GHood/
http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/GHood/
http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/FunWorlds/
http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/FunWorlds/
http://www.cs.ukc.ac.uk/people/staff/fkh/Vital/
http://www.cs.ukc.ac.uk/people/staff/fkh/Vital/
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/index.html
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/index.html

This would probably cut down on the “what’s wrong with my
code” posts to the mailing lists and would also give a more
personal avenue for discussing issues (I know that personally,
since I deal with tons of data in large files, memory man-
agement issues, strictness issues, etc. are of prime concern.
Other people might have more problems related to, say, mul-
tiparameter type classes and whatnot, if their field is more in
that direction – hard to say).
Anyway, that’s just off the top of my head...I don’t know
whether it would actually be useful...one of the niceties about
having someone down the hall is you can concurrently look at
the code and find the problem (or the necessary optimization,
as is often my desire). Whether something like this could work
online, I don’t know.”

Well for a start, here are brief statements by the first few
Haskellers to respond to my very late call for “micro-reports”,
in the hope of finding other Haskellers working in related ar-
eas. I hope this section will expand in future reports, and
that the Haskell community finds other good ways to sup-
port its members. The main Haskell mailing lists (haskell,
haskell-cafe) are certainly a good place to start organising
more local (or networked, smaller) Haskell interest groups.
In some cases, a re-organisation of the current mailing lists
might also help - I could imagine a list on optimising and pro-
filing (tools, techniques, and problems). Also, the currently
rather inactive group on debuggers could become more lively
if it widened its scope to debugging (again, covering tools,
techniques, and problems).
The idea here, as in the earlier sections, is to let others know
what you are working on, so that Haskellers with related in-
terests can find together for the purposes of cooperation or
technical discussions.

Hal Daume (http://www.isi.edu/~hdaume/) is currently a
first year PhD student in Computer Science at the University
of Southern California: “My research interests are in the area
of computational linguistics, which is, naively, the study of
getting computers to understand natural languages (like En-
glish). I’m currently using Haskell exclusively to do statistical
natural language processing research applications (mostly in
summarization and aggregation).”

John Heron (jheron@enteka.com) has been working sporadi-
cally on a couple of projects: “None of them are at a stage
where there’s a whole lot more than talk, but I’ve done some
of thinking about them:
NetInfer takes a router topology expressed in an adjacency
matrix and Cisco router configurations. Using this informa-
tion it infers network reachability information for static routes
and RIPv1&2.
dbkit is an interactive, in-memory implementation of Codds
Relational Algebra and Tuple Calculus. Initially based on
Andrew Rock’s RelationalDB module, the emphasis will be
on finding an formulation which reflects the theoretical defi-
nitions clearly.
Based on my schedule between now and the end of the year,
I expect that I can have these two bits working by the end

of the year. At that point, perhaps I can spark some interest
in the community in helping me out. For now, just talking
about them publicly, and public speech’s implied burden of
clarity is most of the help I need.”
John also has some longer-term visions attached to these con-
crete projects. Check out his projects page at
http://jheron.best.vwh.net/projects.html

21

http://www.isi.edu/~hdaume/
http://jheron.best.vwh.net/projects.html

	General
	Haskell Central - WWW and mailing lists
	Revised Haskell 98 Report
	Formal basis and Meta-programming support
	JFP special issue on Haskell

	Implementations
	GHC
	Current status
	Future plans
	Gap-filling
	Performance
	New features

	Hugs
	nhc98
	Eager Haskell

	Language Extensions
	Foreign Function Interface
	Hierarchical Module Namespace
	Non-sequential Programming
	Concurrent Haskell
	GpH -- Glasgow Parallel Haskell
	Glasgow Distributed Haskell
	Data Field Haskell
	O'Haskell
	pH (parallel Haskell)
	Eden

	Type system extensions and variants
	A General Type Class Framework based on Constraint Handling Rules

	Generic Haskell
	Preprocessors
	Languages

	Other Developments

	Libraries
	Foreign Function Interface
	Hierarchical Module Namespace
	Graphical User Interfaces
	GUI Library API Task Force
	Port of the Clean Object I/O library to Haskell

	Graphics
	HOpenGL -- OpenGL Haskell Binding

	Tools
	Foreign Function Interface
	C---->Haskell
	Java and Corba bridges

	Tracing and Debugging
	Scanning and Parsing
	Happy

	Applications, Groups, and Individuals
	Commercial Applications
	Galois Connections, Inc.

	Research Groups
	Functional Programming at Yale
	Functional Programming Research Group at Kingston Business School (Kingston University)
	Functional Programming Research at UKC

	Individual Haskellers

