
Haskell Communities and Activities Report
http://www.haskell.org/communities/

– third edition –

November 11, 2002

Claus Reinke (editor), University of Kent at Canterbury, UK
Krasimir Angelov, Bulgaria

Sengan Baring-Gould, National Semiconductor Corporation
Andrew Bromage, RMIT University, Melbourne, Australia

Manuel Chakravarty, University of New South Wales, Australia
Olaf Chitil, The University of York, UK

Duncan Coutts, Oxford, UK
Joe English, Advanced Rotorcraft Technology, Inc., USA

Levent Erkok, OGI School of Science and Engineering, OHSU, USA
Andre W B Furtado, Federal University of Pernambuco, Brazil

Murray Gross, City University of New York, USA
Kevin Hammond, University of St Andrews, Scotland

Dean Herington, University of North Carolina at Chapel Hill, USA
John Hughes, Chalmers University, Sweden

Patrik Jansson, Chalmers University, Sweden
Johan Jeuring, Utrecht University, The Netherlands
Jose Emilio Labra Gayo, University of Oviedo, Spain

Ralf Lämmel, VU and CWI, Amsterdam, The Netherlands
Rita Loogen and Steffen Priebe, University of Marburg, Germany

Christoph Lüth, George Russell, and Christian Maeder, University of Bremen, Germany
John Meacham - California Institute of Technology, Alum., USA
Jan-Willem Maessen, Massachusetts Institute of Technology, USA

Simon Marlow, Microsoft Research Cambridge, UK
John Peterson, Yale University, USA
Rex Page, Oklahoma University, USA

Ross Paterson, City University London, UK
Simon Peyton Jones, Microsoft Research Cambridge, UK

Bernie Pope, University of Melbourne, Australia
Chris Reade, Kingston University, UK

Alastair Reid, Reid Consulting (UK) Ltd., UK
Chris Ryder, University of Kent at Canterbury, UK

Uwe Schmidt, Fachhochschule Wedel, Germany
Axel Simon, University of Kent at Canterbury, UK

Satnam Singh, Xilinx Inc, USA
Doaitse Swierstra, Utrecht University, The Netherlands

Martin Sulzmann, National University of Singapore, Singapore
Peter Thiemann, University of Freiburg, Germany

Phil Trinder, Heriot Watt University, Scotland
Eelco Visser, Utrecht University, The Netherlands

Malcolm Wallace, The University of York, UK
Ashley Yakeley, Seattle WA, USA

http://www.haskell.org/communities/

Preface

Let me start with an early reminder, for the few of
us who to whom these 6-monthly reports still come
as such a surprise that they have problems schedul-
ing the time they would need to contribute (perhaps
even before the target deadline?-) – because there
are a few summaries I had hoped for that have failed
to materialize. . .

Less than 6 months left until the next edition! In
April 2003, you will be invited to contribute to the
May 2003 edition of this report!

In spite of such organisational difficulties, this
third edition of the Haskell Communities and Activ-
ities Report is the biggest yet – even though many
regular contributors have already agreed to condense
the descriptive parts of their summaries to make
room for new developments. So, while our first
editions necessarily had the form of activity snap-
shots, having to introduce the groups and projects
out there, we are now moving towards collecting up-
dates relative to previous editions. Projects men-
tioned here for the first time will still have a bit
more space for an introductory description.

For those who keep track of anniversaries: it is
just a few weeks and 15 years after Haskell’s concep-
tion in a meeting “held at the conference on Func-
tional Programming Languages and Computer Ar-
chitecture (FPCA ’87) in Portland, Oregon” (so the
language report tells us), and this edition of our re-
port shows the Haskell community being more active
than ever, busily pursueing and realising the goals
set out by the first Haskell committee.

A look at this report’s table of contents give us a
hint that much of the new activity is coming from
applications of Haskell, in research and industry, by
groups and by individuals (chapter 6). These appli-
cations need tools (chapter 5) and libraries (chapter
4), and the Haskell community is also working to
develop those. And all this activity is in addition to
continued development of Haskell implementations
(4 reported in this edition; chapter 2), and it has not
stopped experimental work on language extensions
(chapter 3), either. On the contrary, development
of implementations and language extensions is now
often driven by the needs of applications, tools, and
libraries, and oft-used extensions are well on their
way of being supported across major implementa-

tions.
Even as the (now thoroughly;-) revised Haskell 98

report is being readied for publication (section 1.2),
the community is looking for more pragmatic ap-
proaches to language standardisation. Instead of
trying to do everything at once, language exten-
sions are now permitted to ripe separately, as ad-
denda to the report. Addenda specifying practically
indispensible language extensions such as the for-
eign function interface (section 3.1) or the hierar-
chical namespaces (section 3.2) are converging on
standardisation, and implementations are tracking
the release candidates of the specifications or exten-
sion proposals. No longer is there a single Haskell
committee working on everything, instead such ex-
tensions are now driven by separate interest groups
of implementers and users. Discussions take place on
open mailing lists, and release candidates and pro-
totype implementations are presented to the main
community for review.

Overall, it is an exciting time for Haskell develop-
ment, and most of it driven by the efforts of volun-
teers, of which there can never be enough – a big
thanks to all of you who are contributing to this
drive in some way. Which brings us back to this re-
port: just as users would like to keep up to date
with implementations, tools, and libraries, imple-
mentors like to hear about all the interesting things
that Haskellers feel enabled to do using these imple-
mentations, tools, and libraries. And non-Haskellers
interested in the language would like to know what
this is all about, and seeing that they would not be
on their own if they decided to give Haskell a whirl in
their next project should make that decision easier!

And so these 6-monthly overviews/ snapshots/ up-
dates of Haskell communities and activities try to
help by reflecting and summarizing some of what is
going on out there, thanks to those of you who have
contributed summaries to this report. Each sum-
mary introduces the area of work, the major achieve-
ments over the previous six months, the current hot
topics, and the plans for the next six months. They
also provide links to further information. By now,
the HC&A reports are established additions to the
more permanent haskell.org and the more fleeting
various Haskell-related mailing lists.

But now you must be eager to read it, so – enjoy!-)

Claus Reinke,
University of Kent at Canterbury, UK

1

Contents

1 General 4
1.1 Haskell.org . 4
1.2 Revised Haskell 98 Report . 4

1.2.1 Publication . 5
1.2.2 Copyright . 5

1.3 Tips, Tricks, Tours and Tutorials . 5
1.4 Haskell-related Publications . 5

2 Implementations 7
2.1 The Glasgow Haskell Compiler . 7
2.2 Hugs . 8
2.3 nhc98 . 8
2.4 Eager Haskell . 8

3 Language Extensions 10
3.1 Foreign Function Interface . 10
3.2 Hierarchical Module Namespace . 10
3.3 Non-sequential Programming . 10

3.3.1 Concurrent Haskell . 10
3.3.2 GpH – Glasgow Parallel Haskell . 10
3.3.3 Eden . 11

3.4 Type System/Program Analysis . 11
3.4.1 Chameleon/A General Type Class Framework based on Constraint Handling Rules 11
3.4.2 Program Analysis for Haskell . 12

3.5 Generic Programming . 12
3.5.1 Preprocessors . 12
3.5.2 Languages . 12

3.6 Meta Programming . 13
3.6.1 Template Haskell . 13

3.7 Syntactic Sugar . 13
3.7.1 Recursive do notation . 13
3.7.2 Arrow Notation . 13

4 Libraries 14
4.1 Hierarchical Libraries . 14
4.2 Data and Control Structures . 14

4.2.1 Haskell Foundation Library . 14
4.2.2 Strafunski . 14

4.3 Graphical User Interfaces . 15
4.3.1 HTk . 15
4.3.2 Object I/O for Haskell . 15
4.3.3 Gtk+HS . 15
4.3.4 Gtk2hs . 15

4.4 Graphics . 16
4.4.1 HGL Graphics Library . 16
4.4.2 FunGEn – A game engine for Haskell . 16

2

4.4.3 FunWorlds – Functional Programming and Virtual Worlds . 17
4.5 Tool Frameworks . 17

4.5.1 Medina – Metrics for Haskell . 17
4.6 Web Programming . 17

4.6.1 HaXml . 17
4.6.2 HXml . 17
4.6.3 Haskell XML Toolbox . 18
4.6.4 WASH/CGI – Web Authoring System for Haskell . 18

5 Tools 19
5.1 Foreign Function Interface . 19

5.1.1 C–>Haskell . 19
5.1.2 GreenCard . 19
5.1.3 Java VM Bridge . 19

5.2 Meta Programming . 19
5.2.1 Haskell Preprocessors . 20
5.2.2 Scanning, Parsing, and Analysis . 20
5.2.3 Haskell Transformations . 20

5.3 Program Development . 20
5.3.1 Tracing and Debugging . 20
5.3.2 Development Environments . 21
5.3.3 Refactoring . 21
5.3.4 Testing . 22
5.3.5 Documentation . 22

6 Applications, Groups, and Individuals 23
6.1 Non-Commercial Applications . 23

6.1.1 HScheme . 23
6.1.2 Hume: a Language for Embedded Real-Time Systems . 23
6.1.3 ParaGAP: Parallel Symbolic Computer Algebra . 23
6.1.4 Knit . 24

6.2 Commercial Applications . 24
6.2.1 Reid Consulting Ltd . 24
6.2.2 Binary Parser . 24
6.2.3 Extending Lava for System on Chip Designs . 25

6.3 Haskell in Education . 25
6.3.1 Beseme Project . 25
6.3.2 Idefix Project . 25

6.4 Research Groups . 25
6.4.1 Functional Programming at Chalmers . 26
6.4.2 Formal Methods at Bremen University . 26
6.4.3 The Yale Haskell Group . 26
6.4.4 Functional Programming at Brooklyn College, City University of New York 27
6.4.5 Functional Programming at Utrecht University . 27
6.4.6 Functional Programming at UKC . 29
6.4.7 Functional Programming Research Group at Kingston Business School (Kingston University) 29

6.5 Individual Haskellers . 29

3

Chapter 1

General

1.1 Haskell.org

Report by: John Peterson
Haskell.org belongs to the entire Haskell community - we all
have a stake in keeping it as useful and up-to-date as possi-
ble. Anyone willing to help out at haskell.org should contact
John Peterson (peterson-john@cs.yale.edu) to get access to
this machine. There is plenty of space and processing power
for just about anything that people would want to do there.
What can haskell.org do for you? There are a lot of things we
can do that are of use to members of the haskell community:

• Advertise your work: whether you’re developing a new
application, a library, or have written some really good
slides for your class you should make sure haskell.org has
a pointer to your work.

• Hosting: if you don’t have a stable site to store your
work, just ask and you’ll own haskell.org/yourproject.

• Mailing lists: we can set up a mailman-based list for you
if you need to email your user community.

• Sell merchandise: give us some new art for the cafepress
store. Publicize your system with a T-shirt.

The biggest problem with haskell.org is that it is difficult to
keep the information on the site current. At the moment,
we make small changes when asked but don’t have time for
any big projects. Perhaps the biggest problem is that most
parts (except the wiki) cannot be updated interactively by
the community. There’s no easy way to add a new library or
project or group or class to haskell.org without bothering the
maintainers. The most successful sites are those in which the
community can easily keep the content fresh. We would like
to do something similar for haskell.org.
Just what can you do for haskell.org? Here are a few ideas:

• Haskell programmers are not graphic designers. Just
about anyone could make haskell.org look nicer and more
professional.

• Make the site more interactive. Allow people to add new
libraries, links, papers, or whatever without bothering
the maintainers. Allow people to attach comments to
projects or libraries so others can benefit from your ex-
perience. Help tell everyone which one of the graphics
packages or GUI’s or whatever is really useful.

• Install a better wiki and move the current content over
there.

• Develop a system where the pages for haskell.org live in
a CVS repository so that we can more easily share out
maintenance.

• Add searching capability to haskell.org.

• Take over the cafepress store and get more merchandise
in there.

• Come up with better spam defenses for our mailing lists.

Some of these ideas would be good student projects. Be lazy
- get students to do your work for you.

Further reading:

http://www.haskell.org
http://www.haskell.org/mailinglist.html

1.2 Revised Haskell 98 Report

Report by: Simon Peyton Jones
The good news is that the Haskell 98 Report is finally done.
The original Haskell 98 report came out in February 1999.
Soon afterwards, in 2000, I began to collect “typos”. It soon
became apparent that more than just typographical errors
were involved. My goals became:

• Correct actual errors.

• Resolve inconsistencies.

• Resolve ambiguity and under-specification.

• Improve explanations.

• With extreme reluctance, make ”improvements”. (The
biggest example of this is the new genRange method in
the Random class.)

The Haskell committee per se no longer existed, so I have
consulted the Haskell mailing list about every change.
Two years on, I have accumulated over 2000 email messages,
almost all of which have required careful reading on my part.
They led to more than 230 individually-documented changes,
plus dozens of more minor corrections. At times it seemed
that each time I put out a draft, people would spot a new raft
of issues, but the process does now seem to have converged.

4

http://www.haskell.org
http://www.haskell.org/mailinglist.html

I am still making tiny changes but, from a content point of
view, it’s all over bar the shouting. A lot of people have now
looked hard at the Report and, for all its flaws, it’s now in
pretty good shape.

1.2.1 Publication

It would be a very good thing for our community if the Report
(both language and libraries) was available as a physical book.
I made enquiries with several publishers, who declined po-
litely. (They want to print high-volume undergraduate texts.)
However, Cambridge University Press have agreed to publish
it! It will come out both as Volume 13(1) (Jan 2003) of the
Journal of Functional Programming, and as a separate book.
It is being typeset now.

1.2.2 Copyright

The question of copyright remains open at the time of writ-
ing. CUP normally take copyright of what they publish, but
the Haskell report is rather different, because it belongs to
all of us, not just to me. What is definitely agreed is that
the Report will continue to be available online, and that it
can freely be reproduced for non-commercial purposes. But is
that enough? The Haskell workshop was a good opportunity
to have an open discussion about this question. There was a
strong sentiment that we would much prefer the Report to be
entirely unrestricted (as it has been to date). For example,
would Debian distribute the Report as they do now? Prob-
ably not. Would the just-pre-publication online version be
completely unrestricted? Presumably so. Would electronic
distribution be OK? Unclear. And so on.
On the other hand, there was also strong feeling that pub-
lishing a book would be a Really Good Thing; that CUP will
probably lose money on the exercise; and that they are being
much more flexible already than their normal terms. (John
Reppy tells me that the Standard ML Basis Library book is
much more restricted.)
In the end, we took a straw poll, to get the sense of the
meeting. Here’s what happened.
(A) 30 Would like there to be a book, even if we have

to accept that commercial reproduction would
require negotiation with CUP.

(B) 14 Cannot accept (A) but would accept that com-
mercial non-electronic reproduction would be at
CUP’s discretion.

(C) 7 Cannot accept (A) or (B): publish a book only
if there is no limit whatsoever on reproduction.

18 abstain
69 TOTAL

While many people have strongly-held views, it was a polite
debate that generated at least as much light as heat. While
there isn’t a consensus of opinion about A/B/C, there was
a consensus that views can legitimately differ on this point,
and we should go with a majority view. So the outcome was
that I should present as strong a case as possible to CUP for
completely open publication; failing that, for open electronic

publication; but failing that, publish anyway. This I have
done, and CUP are considering it as I write.
I hope this is acceptable to the Haskell community. The
Haskell workshop is not everyone with a stake, by any means,
but there were enough people present to be reasonably rep-
resentative.

Further reading:

http://www.haskell.org/definition/

1.3 Tips, Tricks, Tours and Tutorials

Some Haskellers have documented their own hard-won expe-
rience to help others. They have been working on web pages,
short papers, tours, and tutorials touching on introductory
examples of monads&co, giving guided tours and explana-
tions of prelude, libraries & syntax, or tips about program-
ming and resource tuning, even explaining the internals of
GHC (scary;), or interpreting Hugs error messages.
Ultimately, all these things should be linked from the Haskell
bookshelf (have another look, it is not limited to books:):
http://www.haskell.org/bookshelf/
Following on from our last edition, this section tries to en-
hance the visibility of such valuable resources, by introducing
new additions.

Hal Daume mentions the “Yet Another Haskell Tutorial”
project: http://www.isi.edu/~hdaume/htut/
“The goal of Yet Another Haskell Tutorial is to provide a
complete intoduction to the Haskell programming language.
It assumes knowledge neither of the Haskell language nor of
functional programming in general. However, general famil-
iarity with programming concepts (such as algorithms) will
be helpful. This is not intended to be an introduction to
programming in general; rather, to programming in Haskell.”

Alastair Reid is working on a tutorial for the new Foreign
Function Interface
http://reid-consulting-uk.ltd.uk/docs/ffi.html
“The goal is to collect together all the useful resources, com-
pare the various ffi tools and implementations, provide tips
and tricks for dealing with common awkward cases, etc. but
the reality falls far behind the dream at present.”

For those always-on Haskellers who can find spare moments
between following the dozens of Haskell mailing lists, An-
drew Bromage points out that there is a semi-official Haskell
IRC channel on the freenode network. You can get there by
pointing your IRC client at irc.freenode.net and joining
#haskell. Logs are available here:
http://tunes.org/~nef/logs/haskell/

1.4 Haskell-related Publications

In this section, we try to give pointers to and perhaps short
descriptions of recent Haskell-related publications (books,
conference proceedings, special issues in journals, PhD theses,

5

http://www.haskell.org/definition/
http://www.haskell.org/bookshelf/
http://www.isi.edu/~hdaume/htut/
http://reid-consulting-uk.ltd.uk/docs/ffi.html
http://tunes.org/~nef/logs/haskell/

etc.), with brief abstracts. For a more exhaustive overview of
Haskell publications, see Jim Bender’s “Online Bibliography
of Haskell Research” (http://haskell.readscheme.org).
Please make sure to keep him up to date about new (and
not so new) Haskell-related publications!
And if you still haven’t come across the Haskell bookshelf,
you’ll find it at http://www.haskell.org/bookshelf/. It
lists textbooks, papers (especially of tutorial nature), pro-
ceedings of the “Advanced Functional Programming” summer
and spring schools, as well as reference material, often created
in the context of Haskell courses (see also our tips&tricks sec-
tion 1.3).

In case you hadn’t noticed, the JFP special issue on Haskell
has finally appeared: Volume 12 – Issue 05 – July 2002 (we
had it’s abstracts in our November 2001 edition;-). If you
or your institution has a subscription, you can also get it
online via the journal’s home page http://www.dcs.gla.ac.
uk/jfp/, otherwise check out your nearest University library.
The 2002 Haskell Workshop proceedings are now online, in
the ACM digital library, see the workshop home page for link
and titles: http://www.cse.unsw.edu.au/~chak/hw2002/.
Functional and Declarative Programming in Education,
FDPE02, was a workshop at PLI02, Pittsburgh. Many of its
papers are relevant to Haskell based courses, and the proceed-
ings are available at http://www.informatik.uni-kiel.de/
~mh/publications/reports/fdpe02/.

“Value Recursion in Monadic Computations”, Levent Erkok,
PhD Thesis , OGI/OHSU, October 2002 (Advisor: John
Launchbury).
This thesis addresses the interaction between recursive decla-
rations and computational effects modeled by monads. More
specifically, we present a framework for modeling cyclic def-
initions resulting from the values of monadic actions. We
introduce the term “value recursion” to capture this kind of
recursion.
Our model of value recursion relies on the existence of partic-
ular fixed-point operators for individual monads, whose be-
havior is axiomatized via a number of equational properties.
These properties regulate the interaction between monadic
effects and recursive computations, giving rise to a charac-
terization of the required recursion operation. We present a
collection of such operators for monads that are frequently
used in functional programming, including those that model
exceptions, non-determinism, input-output, and stateful com-
putations.
In the context of the programming language Haskell, practical
applications of value recursion give rise to the need for a new
language construct, providing support for recursive monadic
bindings. We discuss the design and implementation of an
extension to Haskell’s do-notation which allows variables to
be bound recursively, eliminating the need for programming
with explicit fixed-point operators.
Details (including downloadable text of the thesis) are avail-
able at: http://www.cse.ogi.edu/PacSoft/projects/rmb
(see also section 3.7.1)

“A Formal Specification of the Haskell 98 Module System”
Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren
Many programming languages provide means to split large
programs into smaller modules. The module system of a
language specifies what constitutes a module and how mod-
ules interact. This paper presents a formal specification of
the module system for the functional programming language
Haskell. Although many aspects of Haskell have been sub-
jected to formal analysis, the module system has, to date,
been described only informally as part of the Haskell lan-
guage report. As a result, some aspects of it are not well un-
derstood or are under-specified; this causes difficulties in rea-
soning about Haskell programs, and leads to practical prob-
lems such as inconsistencies between different implementa-
tions. One significant aspect of our work is that the specifi-
cation is written in Haskell, which means that it can also be
used as an executable test-bed, and as a starting point for
Haskell implementers.
Available at http://www.cse.ogi.edu/~diatchki/hsmod/

6

http://haskell.readscheme.org
http://www.haskell.org/bookshelf/
http://www.dcs.gla.ac.uk/jfp/
http://www.dcs.gla.ac.uk/jfp/
http://www.cse.unsw.edu.au/~chak/hw2002/
http://www.informatik.uni-kiel.de/~mh/publications/reports/fdpe02/
http://www.informatik.uni-kiel.de/~mh/publications/reports/fdpe02/
http://www.cse.ogi.edu/PacSoft/projects/rmb
http://www.cse.ogi.edu/~diatchki/hsmod/

Chapter 2

Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones
Simon Marlow and Simon Peyton Jones continue to hack
away on GHC, aided by many others (see http://www.
haskell.org/ghc/contributors.html). In the last six
months we have been working on three major new areas:

1. The new hierarchical libraries are now fully available. As
Haskell has become more widely used, the flat module
namespace of Haskell 98 has proved increasingly trou-
blesome. Using a hierarchical namespace for modules (a
la Java) is a straightforward enough idea, but the idea
has to be populated with an actual module hierarchy,
and the agreed hierarchy has to be populated with real,
properly documented implementations. The new module
system has in turn had some impact on GHC’s package
mechanism (a way to group modules together for distri-
bution purposes), and that is still setting down. At all
events, GHC 5.04 came out with the new libraries as the
primary library base. (Hugs and NHC are moving in the
same direction, incidentally.)

2. Template Haskell (see section 3.6.1) led to a heart-and-
lung transplant for GHC. Template Haskell lets you write
meta-progams: Haskell code that runs at compile time
and generates Haskell code, which is then compiled. Gen-
erating instance declarations from data type declarations
is a typical application, but there are many others. Tem-
plate Haskell forces a more intimate coupling of GHC’s
renamer (which establishes lexical scopes) and the type-
checker than was previously the case. No difficulty in
principle, but a lot of new plumbing was required.

Template Haskell isn’t in any released GHC, but it is
available and working in the HEAD, for those who care
to check out source code.

3. GHC has always used the push-enter evaluation model,
in which function application goes like this: push the ar-
guments on the stack, and then enter the function (which
might be a thunk). The alternative is the eval-apply
model: evaluate the function and call the resulting func-
tion closure, passing the (correct number of) arguments.
Both eval-apply and push-enter can be used for both call-
by-need and call-by-value languages, but in practice only
lazy languages use push-enter.

Push-enter looks very attractive for lazy languages, but
it has many small costs scattered through the code gen-
erator and run-time system. For one thing, it seems to
be practically impossible to compile it into C--, even
though C-- was designed to be as flexible a code genera-
tor as possible (http://www.cminusminus.org): we just
couldn’t think of a clean way to design C-- to deal with
push-enter. (Except by using C-- in the unsatisfactory
way we currently use C, namely ignoring the C stack and
using an explicitly-managed stack instead.)
So we have spent quite a bit of effort rejigging GHC’s
back end and run-time system to use eval-apply instead
of push-enter. So far it seems that performance is pretty
much unchanged; the number of lines of code in the
runtime system and code generator is pretty much un-
changed; but the complicated stuff is concentrated in a
few places rather than being thinly distributed. And it
makes the native C-- route possible. This stuff isn’t even
in the repository yet, but it will be.

Other excitements

• On the type-system front, as well as big headline things
(like functional dependencies or implicit parameters)
GHC has accumulated quite a useful set of simple gen-
eralisations to the Haskell type system, not all of which
are widely known. For example:

– Infix type constructors
data a :+: b = Inl a | Inr b

– Type synonyms can contain foralls
type Foo b = forall a. (a,b) -> (b,a)

– A forall can appear to the right of an arrow
f :: b -> Foo b In this case the
forall is ’lifted’ to the front; it is just as if you had
written f :: forall a b. b -> (a,b) -> (b,a)

– A forall can appear to the left of an arrow
h :: (forall a. a->a) -> Int This can
happen arbitrarily nested; arbitrary-rank polymor-
phism, not just rank 2.

– Data type declarations can be explicitly kinded,
which is useful when kind inference does not do the
Right Thing data T (a :: *->*) = T Int

On their own many of these features look a bit unnece-
sary, but Haskell encourages virtuoso programming with

7

http://www.haskell.org/ghc/contributors.html
http://www.haskell.org/ghc/contributors.html
http://www.cminusminus.org

types, and it can make all the difference to be able to say
what you mean in the type language.

• GHC can now read, as well as write, External Core files.
The idea is to make it easier for people to use GHC as
a front end (generating External Core) or a back end
(consuming External Core) or both. External Core is still
a bit clunky, and we welcome suggestions for improving
it.

• Recursive do notation, also known as ’mdo’, is imple-
mented (see section 3.7.1). Implicit parameters are now
bound with “let” or “where”, not “with”; and that in-
cludes the “let” bindings in list comprehensions and do-
notation.

• “Rebindable syntax” works for do-notation as well
as numerics. The idea here is that when you
say -fno-implicit-prelude all the numeric and do-
notation syntax uses whatever (+), fromInteger, (>>=),
return, etc are in scope, rather than using the Prelude
functions (which the language report specifies). This al-
lows you to completely replace the numeric or monadic
infrastructure, which you just can’t do in Haskell 98.

• Rewrite RULE pragmas have a more flexible way to specify
in which compiler phases they apply.

• Interface files are stored in binary format now. To read
them you have to use ghc --show-iface. At the same
time, the format of “.hi-boot” files (used for breaking
recursive-module loops) has been made more like regu-
lar Haskell and less like machine code (and hence more
stable).

Further reading:

http://www.haskell.org/ghc/

2.2 Hugs

Report by: Alastair Reid

Team / status

The Hugs98 interpreter is now maintained by Sigbjorn Finne
and Jeffrey Lewis, both of Galois Connections, with help from
Alastair Reid of Reid Consulting and Ross Paterson of City
University London and others.
At the time of writing, a new major release is on the brink of
being released. Feature highlights of this new release will be:

• Much improved FFI support (contributed by Alastair
Reid), implementing almost all of the Haskell FFI spec-
ification.

• Support for the new Haskell hierarchical library specifi-
cation (contributed by Johan Nordlander).

• Adoption of a significant subset of GHC’s hierarchical
libraries (contributed by Ross Paterson.)

• An (allegedly) complete implementation of the Haskell98
module system (Sigbjorn Finne).

• Numerous bug fixes since the previous major release in
Dec 2001.

Future plans

Our primary goal is for Hugs to continue its move to greater
compatability with Haskell98, GHC and NHC. This will be
helped enormously by our mutual support for the FFI and
hierarchical library specification and adoption of a common
codebase for the libraries.
This release adds a lot of new functionality whilst maintaining
compatibility with previous releases; future releases will drop
some of this backwards compatibility.

Further reading:

http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users/

2.3 nhc98

Report by: Malcolm Wallace

Current Status

We released nhc98 version 1.14 in June 2002, and hmake 3.06
in August. Since both the language and the compiler are
now very stable, these were mainly bugfix releases. One new
feature is a ‘package’ mechanism closely based on the ghc
model, so third-party libraries can be easily added and re-
moved. (hmake’s handling of packages has also improved
significantly.) Platform support now includes MacOS-X, in
addition to just about every other Unix-like environment.

Future Plans

The next release (1.16) will probably arrive towards the very
end of the year. Its main new features will be support for
the latest most stable version of the standard FFI, and for
the new library packages already supported by ghc and Hugs,
both of which we have been promising for a long time now.

Further reading:

http://www.cs.york.ac.uk/fp/nhc98
http://www.haskell.org/hmake

2.4 Eager Haskell

Report by: Jan-Willem Maessen
The Eager Haskell compiler runs ordinary Haskell programs
using resource-bounded eager evaluation. Project details are
available from
http://www.csg.lcs.mit.edu/projects/index.php?
link=eH.txt
The best overview of the current system can be found in my
recent Haskell Workshop paper:

8

http://www.haskell.org/ghc/
http://www.haskell.org/hugs/
http://haskell.org/mailman/listinfo/hugs-users/
http://www.cs.york.ac.uk/fp/nhc98
http://www.haskell.org/hmake
http://www.csg.lcs.mit.edu/projects/index.php?link=eH.txt
http://www.csg.lcs.mit.edu/projects/index.php?link=eH.txt

http://www.csg.lcs.mit.edu/~earwig/
haskell-workshop.pdf

Status:

The Eager Haskell compiler is now available as source code
runnable on Linux x86. It’s already in use by about 15
MIT students taking Arvind’s course. Installation should
only require gcc 2.95.3 or later; hacking the compiler itself
will require a working Haskell 98 compiler. See the project
homepage for more information and a download link. Porting
should be extremely easy if your system has gcc; x86 Linux
is simply the only machine we’ve tested on.
The present compiler unifies the Eager Haskell and pH com-
pilers under a single umbrella; the language in use can be
selected by a compile-time switch. By default, phc is an or-
dinary haskell compiler.

9

http://www.csg.lcs.mit.edu/~earwig/haskell-workshop.pdf
http://www.csg.lcs.mit.edu/~earwig/haskell-workshop.pdf

Chapter 3

Language Extensions

3.1 Foreign Function Interface

Report by: Manuel Chakravarty
Project status: Version 1.0 (RC7)
The Haskell 98 FFI Addendum is meanwhile up to Release
Candidate 7 and recently triggered an involved technical dis-
cussion on what is the right interface for finalizers for foreign
objects. For details, see the archive of the FFI mailing list:
http://haskell.org/pipermail/ffi/
After the finalizer debate has settled, there will be another re-
lease for public review. The current version of the addendum
is available from
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
GHC supports the FFI extension as defined in the addendum,
in addition to the pre-standard syntax for backward compat-
ibility. Hugs’ FFI support has recently been overhauled and
mostly brought in line with the FFI Addendum by Alastair
Reid. Work on bringing nhc98 closer to the proposed stan-
dard is underway.

Further reading:

http://haskell.org/mailman/listinfo/ffi/

3.2 Hierarchical Module Namespace

Report by: Simon Marlow
Activity has shifted towards populating and supporting the
new hierarchical libraries (4.1).

3.3 Non-sequential Programming

3.3.1 Concurrent Haskell

Report by: Simon Marlow
Project status: maintained, stable
Concurrent Haskell is a set of extensions to Haskell to sup-
port concurrent programming. The concurrency API (Con-
current) has been stable for some time, and is supported in
two forms: with a preemptive implementation in GHC, and
a non-preemptive implementation in Hugs. The Concurrent
API is described here:
http://www.haskell.org/ghc/docs/latest/html/base/
Control.Concurrent.html

3.3.2 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder

The Team: Phil Trinder, Kevin Hammond, Hans-
Wolfgang Loidl, Alvaro Rebon Portillo, Andre Rauber du
Bois, Mustafa Aswad, Abyd Al Zain.

Status: Steaming Ahead!
GpH aims to provide low-pain parallelism, i.e. acceptable
performance with minimal programming effort. It does so
by introducing a single new primitive combinator: par x y
that returns y but may create a thread to evaluate x de-
pending on machine load. Evaluation strategies are higher-
order polymorphic functions that abstract over par and seq
to provide high level constructs to coordinate parallelism, e.g.
parList s applies strategy s to every element of a list.
The project has been running since 1994 initially
at Glasgow and subsequently at Heriot-Watt and
St Andrews Universities. Recent work covers lan-
guage, system and applications aspects, and consis-
tently emphasises the architecture independence (cf.
http://www.cee.hw.ac.uk/~dsg/gph/arch-indep.html)
of our approach. A robust version of GpH (GUM-4.06)
is available for RedHat-based Linux machines (binary
snapshot ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.
06-snap-i386-unknown-linux.tar; installation instruc-
tions ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM).
Versions for Sun shared-memory machines, Debian, and an
alpha-release based on GHC 5.02 are available on request
<gph@cee.hw.ac.uk>.

Language: We have recently produced a truly paral-
lel implementation of a referentially transparent bottom-
avoiding choice operator (http://www.cee.hw.ac.uk/~dsg/
gph/papers/drafts/flops-submitted.ps.gz) and used it
to explore a new class of parallel algorithms in GpH, namely
branch-and-bound. It reveals an interesting relationship be-
tween non-strict and speculative parallel evaluation.

System: We are developing the GUM implementation of
GpH in the following ways. We are investigating the chal-
lenges posed by porting GUM to a computational GRID. To
improve the architecture independent performance of GpH

10

http://haskell.org/pipermail/ffi/
http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://haskell.org/mailman/listinfo/ffi/
http://www.haskell.org/ghc/docs/latest/html/base/Control.Concurrent.html
http://www.haskell.org/ghc/docs/latest/html/base/Control.Concurrent.html
http://www.cee.hw.ac.uk/~dsg/gph/arch-indep.html
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/flops-submitted.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/flops-submitted.ps.gz

we have added new features to its implementation (GUM).
The load balancing (http://www.cee.hw.ac.uk/~dsg/gph/
papers/drafts/sfp01-gum.ps.gz) in GUM has been made
more flexible by implementing low- and high-watermarks
on the spark pools, which represent potential parallelism.
Thread migration is being implemented as a technique of
avoiding gross load imbalance in applications with a small
amount of parallelism. For a better control of data local-
ity in GpH programs we are currently exploring language
constructs with explicit placement parameters as well as ab-
stractions over these basic constructs. We have improved the
distributed shared memory performance (http://www.cee.
hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz) of GUM, in
particular global address management and the graph pack-
ing, enabling the user to optimise the parallel execution for
execution time or heap space.
An implementation of a time and space static analysis is near-
ing completion. Although the current analysis is for a strict
language, the intention is to use the result of the analysis to
select appropriate computations for parallel evaluation.

Applications: We have produced detailed compar-
isons of three parallel functional languages : GpH (
http://www.cee.hw.ac.uk/~dsg/gph/), Eden (http:
//www.mathematik.uni-marburg.de/~loogen/eden.html),
PMLS (http://www.cee.hw.ac.uk/Research/funct_
prog.html), discussing language and implementation dif-
ferences (http://www.cee.hw.ac.uk/~dsg/gph/papers/
drafts/hosc-submitted.ps.gz). Detailed performance
results of several parallel programs on a Beowulf cluster are
given. A survey of parallel and distributed Haskells (http:
//www.cee.hw.ac.uk/~dsg/gph/papers/ps/jfp01.ps.gz)
has just appeared in the JFP special issue.
We are investigating the architecture independence of GpH by
developing a significant application (genetic alignment) for a
variety of parallel architectures: a Beowulf cluster, a Sun-
Server SMP. We have also published careful measurements of
the Naira parallel Haskell compiler.

Further reading:

http://www.cee.hw.ac.uk/~dsg/gph/

3.3.3 Eden

Report by: Rita Loogen and Steffen Priebe
Project status: updated from GHC 3.x to GHC 5.x
Eden extends Haskell by a small set of syntactic constructs for
explicit process specification and creation. While providing
enough control to implement parallel algorithms efficiently it
frees the programmer from the tedious task of managing low-
level details by introducing automatic communication (via
head-strict lazy lists), synchronisation, and process handling.
Eden’s main constructs are process abstractions and process
instantiations. The expression process x -> e of a prede-
fined polymorphic type Process a b defines a process ab-
straction mapping an argument x::a to a result expression

e::b. Process abstractions of type Process a b can be com-
pared to functions of type a -> b, the main difference being
that the former, when instantiated, are executed in parallel.
Process instantiation is achieved by using the predefined infix
operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining higher-order
functions over these basic constructs. Such skeletons, ranging
from a simple parallel map to sophisticated replicated-worker
schemes, have been used to parallelise a set of non-trivial
benchmark programs.
Eden has been implemented by modifying the parallel run-
time system GUM of GpH. Differences include stepping back
from a global heap to a set of local heaps to reduce system
message traffic and to avoid global garbage collection. The
current (freely available) implementation is based on GHC
5.00.2 (beta release). It comprises a library which provides
predefined Eden skeletons for many parallel computation pat-
terns like task farms, work-pools, divide-and-conquer etc.
Eden has been jointly developed by two groups at Philipps
Universität Marburg, Germany and Universidad Com-
plutense de Madrid, Spain. The project has been ongoing
since 1996.
Current and future topics include program analysis, skeletal
programming, optimisations and polytypic extensions.

Further reading:

http://www.mathematik.uni-marburg.de/inf/eden

3.4 Type System/Program Analysis

3.4.1 Chameleon/A General Type Class
Framework based on Constraint Han-
dling Rules

Report by: Martin Sulzmann
Project status: on-going
We use Constraint Handling Rules (CHRs) to describe various
type class extensions. Under sufficient conditions on the set
of CHRs, we have decidable operational checks which enable
type inference and ambiguity checking for type class systems.
We have incorporated the ideas of the CHR-based overload-
ing approach into an actual programming language called
Chameleon. The syntax of Chameleon follows mostly Haskell.
We plan to use Chameleon as an experimental test-bed for
possible type system extensions.

Recent developments:

• Chameleon now comes with a declarative type debugging
interface.

• We are currently working on an the Chameleon back-end
(i.e. evidence translation)

Further reading:

http://www.comp.nus.edu.sg/~sulzmann/chr/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/

11

http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/sfp01-gum.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/sfp01-gum.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/
http://www.mathematik.uni-marburg.de/~loogen/eden.html
http://www.mathematik.uni-marburg.de/~loogen/eden.html
http://www.cee.hw.ac.uk/Research/funct_prog.html
http://www.cee.hw.ac.uk/Research/funct_prog.html
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/hosc-submitted.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/drafts/hosc-submitted.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/jfp01.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/papers/ps/jfp01.ps.gz
http://www.cee.hw.ac.uk/~dsg/gph/
http://www.mathematik.uni-marburg.de/inf/eden
http://www.comp.nus.edu.sg/~sulzmann/chr/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/

3.4.2 Program Analysis for Haskell

Report by: Martin Sulzmann
Project status: on-going; no significant updates recently
Our goal is to develop a generic constraint-based program
analysis framework for Haskell. We have designed and imple-
mented a binding-time, strictness and exception analysis for
Haskell and incorporated both analyses into the GHC com-
piler. The analysis deals with all features of Haskell such as
polymorphic programs and structured data.

The team: Kevin Glynn, Harald Sondergaard, Peter
Stuckey, Martin Sulzmann

Further reading:

http://www.comp.nus.edu.sg/~sulzmann/mupag/

3.5 Generic Programming

Report by: Johan Jeuring
Software development often consists of designing a (set of mu-
tually recursive) datatype(s), to which functionality is added.
Some functionality is datatype specific, other functionality is
defined on almost all datatypes, and only depends on the type
structure of the datatype.
Examples of generic (or polytypic) functionality defined on
almost all datatypes are the functions that can be derived
in Haskell using the deriving construct, storing a value in a
database, editing a value, comparing two values for equality,
pretty-printing a value, etc. Another kind of generic function
is a function that traverses its argument, and only performs
an action at a small part of its argument. A function that
works on many datatypes is called a generic function.
There are at least two approaches to generic programming:
use a preprocessor to generate instances of generic functions
on some given datatypes, or extend a programming language
with the possibility to define generic functions.

3.5.1 Preprocessors

DrIFT (section 5.2.1) is a preprocessor which generates in-
stances of generic functions. It is used in Strafunski (section
4.2.2) to generate a framework for generic programming on
terms.

3.5.2 Languages

Light-weight generic programming: Generic functions for
data type traversals can (almost) be written in Haskell it-
self, as shown by Ralf Laemmel and Simon Peyton Jones
in ‘Scrap your boilerplate’ (http://research.microsoft.
com/Users/simonpj/papers/hmap/). In ‘Strategic polymor-
phism requires just two combinators!’ (http://www.cwi.nl/
~ralf/ifl02/), Ralf Laemmel further develops these ideas.
Another light-weight approach, using type representations
inside Haskell, was presented by Cheney and Hinze at the
Haskell workshop.

Generic programs can also be implemented in a language
with dependent types, as shown by McBride and Altenkirch
in a paper in WCGP’02, see http://www.dur.ac.uk/c.t.
mcbride/generic/. More about generic programming and
type theory (‘Generic Haskell in type theory’) can be found
in Ulf Norells recent MSc thesis http://www.cs.chalmers.
se/~ulfn.
The Generic Haskell release of last summer supports type-
indexed data types, dependencies between generic functions,
and special cases for constructors (besides the ‘standard’
type-indexed functions and kind-indexed types). These ex-
tensions are described in the “Type-indexed data types” pa-
per presented at MPC’02, and the “Generic Haskell, Specifi-
cally” paper at WCGP’02. The new Generic Haskell release
was used in the Summer School in Generic Programming in
Oxford last August, at which Ralf Hinze and Johan Jeuring
presented two tutorials: Generic Haskell - theory and prac-
tice, and Generic Haskell - applications. The former tutorial
introduces Generic Haskell, and gives some small examples,
the latter paper discusses larger applications such as an XML
compressor. More XML tools are described in Paul Hagg’s
MSc thesis on a framework for developing generic XML tools.

Patrik Jansson adds that there is still a small group at
Chalmers working under the slogan “Functional Generic
Programming - where type theory meets functional program-
ming” (http://www.cs.chalmers.se/~patrikj/poly/),
and that while PolyP is not really actively developed any-
more, a new version could come out if somebody showed
interest.

Current Hot Topics: Generic Haskell: implementing the
show and read functions from HaXml (section 4.6.1) as
generic programs (also for a SchemaToData and XQueryTo-
Data tool), an implementation of type checking and infer-
encing, implementing explicitly recursive generic functions.
Other: the relation between generic programming and de-
pendently typed programming; the relation between generic
programming and Template Haskell (section 3.6.1).

Major Goals: Smaller: Extend Generic Haskell with type-
checking. Next release of Generic Haskell: somewhere at the
beginning of 2003. Larger: Smoothly integrate generic pro-
gramming with Haskell programming.

Further reading:

http://repetae.net/john/computer/haskell/DrIFT/

http://www.cs.chalmers.se/~patrikj/poly/

http://www.generic-haskell.org/

http://www.cs.vu.nl/Strafunski/

There is a mailing list for Generic Haskell: <generic-
haskell@cs.uu.nl>. See the homepage for how to join.

12

http://www.comp.nus.edu.sg/~sulzmann/mupag/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://www.cwi.nl/~ralf/ifl02/
http://www.cwi.nl/~ralf/ifl02/
http://www.dur.ac.uk/c.t.mcbride/generic/
http://www.dur.ac.uk/c.t.mcbride/generic/
http://www.cs.chalmers.se/~ulfn
http://www.cs.chalmers.se/~ulfn
http://www.cs.chalmers.se/~patrikj/poly/
http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/

3.6 Meta Programming

3.6.1 Template Haskell

Report by: Simon Peyton Jones

Team: Simon Peyton Jones, Tim Sheard
Template Haskell is an extension to Haskell that supports
compile-time meta-programming. The idea is to make it really
easy to write Haskell code that executes at compile time, and
generates the Haskell program you want to compile.
The ability to generate code at compile time allows the pro-
grammer to implement such features as conditional compi-
lation, polytypic programs, macro-like expansion, and the
generation of supporting data structures and functions from
existing data structures and functions (e.g. the ’deriving’
clause).
Here’s a tiny example of conditional compilation:

assert :: String -> Expr
assert s | wantAsserts = [| \b v -> if b

then v
else error s |]

| otherwise = [| \b v -> v |]

To use ’assert’, do this:

foo x = $(assert "Uh ho") (x>3) (..foo’s rhs..)

The $(...) construct is a splice that says “evaluate this at
compile time, and splice in the code returned in place of the
splice”. The [| ... |] is a quotation that lets you return a
chunk of code as a result.
All this is based on the ideas first put forth by Tim Sheard
in MetaML (http://www.cse.ogi.edu/PacSoft/projects/
metaml/), with the following big difference: Template Haskell
is a compile-time-only system, so there is no execution-time
cost. As a direct result TH’s type system is more generous,
and lets you write programs that MetaML would reject.
TH is described in our Haskell Workshop paper
(http://research.microsoft.com/~simonpj/papers/
meta-haskell) and is implemented in GHC. It doesn’t
appear in any released version yet, but it’s in the CVS
HEAD and will be in the next release.
Our hope is that by making TH available as part of GHC,
people will start to use it for purposes we haven’t even dreamt
of. Please tell us!

3.7 Syntactic Sugar

3.7.1 Recursive do notation

Report by: Levent Erkok
Project status: Implemented in both Hugs and GHC

People: Levent Erkok, John Launchbury
The do-notation of Haskell does not allow recursive bindings,
that is, the variables bound in a do-expression are visible
only in the textually following code block. Compare this to

a let-expression, where bound variables are visible in the
entire binding group. It turns out that several applications
can benefit from recursive bindings in the do-notation, and
this extension provides the necessary syntactic support.
If recursive bindings are required for a monadic computation,
then the underlying monad should be made an instance of
the MonadFix class, whose declaration looks like:

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

The operator mfix is required to satisfy several axioms; de-
tails can be found on the web-page.
The following instances of MonadFix are automatically pro-
vided: Maybe, [], IO, and ST (both lazy and strict).
Jeff Lewis and Sigbjorn Finne helped with the Hugs imple-
mentation. GHC implementation was mainly done by Simon
Peyton Jones.

Further reading:

http://www.cse.ogi.edu/PacSoft/projects/rmb/

3.7.2 Arrow Notation

Report by: Ross Paterson
The preprocessor is being maintained, but is now quite stable.
It is used by the Yampa (http://www.haskell.org/yampa/)
system from Yale (section 6.4.3). I’m still taking requests, and
am very keen to hear from any users.
http://www.haskell.org/arrows/

13

http://www.cse.ogi.edu/PacSoft/projects/metaml/
http://www.cse.ogi.edu/PacSoft/projects/metaml/
http://research.microsoft.com/~simonpj/papers/meta-haskell
http://research.microsoft.com/~simonpj/papers/meta-haskell
http://www.cse.ogi.edu/PacSoft/projects/rmb/
http://www.haskell.org/yampa/
http://www.haskell.org/arrows/

Chapter 4

Libraries

4.1 Hierarchical Libraries

Report by: Simon Marlow
Development continues on the hierarchical libraries, although
it has slowed somewhat over the last 6 months. GHC 5.04
shipped this year with the hierarchical libraries, and Hugs is
also expected to ship a new version shortly with the hierar-
chical libraries.
The libraries are now mostly documented with Haddock (sec-
tion 5.3.5), although we’re still missing documentation for
many of the “standard” libraries (those that came originally
from the Haskell 98 language & library reports). Contribu-
tions of more documentation would be gratefully received; it’s
often just a case of cut-n-paste from the appropriate report
adding Haddock syntax as appropriate.
Work on a hierarchical replacement for the aging Posix li-
brary is underway, the work in progress can be seen in
fptools/libraries/unix in the CVS repository. The gen-
eral plan is to increase portability by using only the FFI (sec-
tion 3.1) and hsc2hs (the old Posix library used GHC ex-
tensions), and to update the library to support functionality
from the POSIX 1003.1-2001 standard.
The old hslibs libraries are now almost completely deprecated.
GHC itself no longer requires any of them; if you have any
code that uses libraries from hslibs (with certain exceptions
for those libraries which don’t as yet have a hierarchical re-
placement) then you’re encouraged to port your code over to
the new libraries - another benefit is that your code will then
port to the new release of Hugs much more easily too. For
GHC we’ll probably do one more major release with hslibs
before removing them.

Further reading:

http://www.haskell.org/~simonmar/libraries/libraries.

html

http://www.haskell.org/~simonmar/lib-hierarchy.html

http://www.haskell.org/mailman/listinfo/libraries/

4.2 Data and Control Structures

4.2.1 Haskell Foundation Library

Report by: Andrew Bromage
The intention of the project is to produce a set of founda-
tion libraries suitable for eventual standardisation. At the

moment, most of the effort is going into producing and sup-
porting a forked version of Chris Okasaki’s Edison library,
updated to use post-H98 features.
It’s not very complete and only works under GHC at the time
of writing. We pretty much have taken over Edison. Or, more
correctly, we have forked Edison and are (according to Chris)
the only ones actively maintaining an Edison derivative (the
interface has changed enough that it’s not quite Edison any
more).

Further reading:

http://sourceforge.net/projects/hfl/

For further information, contact:
<hfl-devel@lists.sourceforge.net>

4.2.2 Strafunski

Report by: Ralf Lämmel
Project status: active, maintained
Portability: Hugs, GHC, DrIFT
Strafunski is a Haskell-based bundle for generic programming
with functional strategies, that is, generic functions that can
traverse into terms of any type while mixing type-specific and
uniform behaviour. This style is particularly useful in the
implementation of program analyses and transformations.
Strafunski bundles a Haskell library StrategyLib and some
tools along with it, most notably a precompiler for user-
supplied datatypes. The StrategyLib provides themes such
as simple traversal schemes and generic algorithms for name
analysis. The precompiler is simply a customised version of
DrIFT (section 5.2.1).
The Strafunski-style of generic programming can be seen as
a lightweight variant of generic programming (section 3.5)
Pros: simplicity (no language extension, generic functional-
ity just relies on a few original combinators), domain sup-
port (program transformation and analysis is addressed by
the library and various examples). Cons: restrictions (focus
on term traversal). Generic Haskell (section 3.5) provides a
more powerful language for polytypic programming, think of
anamorphisms, functorial maps, and type-indexed dataypes.

Further reading:

http://www.cs.vu.nl/Strafunski/

14

http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/~simonmar/lib-hierarchy.html
http://www.haskell.org/mailman/listinfo/libraries/
http://sourceforge.net/projects/hfl/
http://www.cs.vu.nl/Strafunski/

4.3 Graphical User Interfaces

4.3.1 HTk

Report by: Christoph Lüth and George Russell
Project status: beta release
HTk is an encapsulation of the graphical user interface toolkit
and library Tcl/Tk for the functional programming language
Haskell. It allows the creation of high-quality graphical user
interfaces within Haskell in a typed, abstract, portable man-
ner. HTk is known to run under Linux, Solaris, Windows 98,
Windows 2k, and will probably run under many other POSIX
systems as well. HTk works with GHC, versions 5.02.3 and
later.

Further reading:

http://www.informatik.uni-bremen.de/htk

4.3.2 Object I/O for Haskell

Report by: Krasimir Angelov
Project status: completed, maintained; port needed
The Object I/O is a flexible library for building rich user inter-
faces. It is a port of the popular Clean Object I/O to Haskell
(http://www.cs.kun.nl/~clean/). The current implemen-
tation for Clean and Haskell supports only the Windows plat-
form but the library is done keeping in mind its portability.
The aim is to create a highly portable GUI library, so that
programs will be translated to different platforms without
rewriting while giving the programs a native look and feel for
the target platform. The main difference between Object I/O
and TclHaskell, FranTk and some other, is that Object I/O
uses a native interface (Win32 API for Windows and GTK+
for Linux) instead of a scriptable interface (Tcl/Tk). This is
more difficult to implement but is more effective.
The library uses nonstandard type system extensions: explicit
universal quantification and existentially quantified data con-
structors. The current implementation works only with GHC-
5.02 or higher compatibles and has moved from the hslibs
collection to the new libraries. The package is distributed
together with the port of original examples contributed with
Clean Object I/O. These examples help the customers under-
stand how to work with the library and how to understand
the differences between the implementation for Haskell and
Clean (for these who have experience with Clean). There is
also a draft of Object I/O quick reference.
The library is functionally completed, but the attempt to port
the library to Gtk (as the basis for a Linux version) turned
out too difficult and is still unfinished. Also no attempt has
been made to build the library with nhc or hugs. Krasimir is
still available for bug fixes, but apart from those, he has now
moved on to other projects, building on Object I/O, but also
trying some new ideas about GUI library design (more about
those in the next edition;-). He would be happy to assist, if
someone else would come forward to complete the Gtk port.

Further reading:

http://www.haskell.org/ObjectIO/

4.3.3 Gtk+HS

Report by: Manuel Chakravarty
Project status: beta release
Gtk+HS is a Haskell binding to the GTK+ GUI toolkit http:
//www.gtk.org/, which is the toolkit on which the Gnome
desktop is based. GTK+ is a fully-fledged modern widget
set and all its basic and some of its advanced functionality
is already available from Haskell. The current binding is to
GTK+ 1.2. Support for the new GTK+ 2.0 API is the next
item on the todo list.
The binding is currently at version 0.14.10, which is a full
binary release published in September 2002. More details as
well as source and binaries packages are at

Further reading:

http://www.cse.unsw.edu.au/~chak/haskell/gtk/

4.3.4 Gtk2hs

Report by: Axel Simon
Project status: beta
Gtk2hs is a wrapper around the latest Gtk release (Version 2.0
or Gtk 2 for short). Although it provides a similar low level
veneer like Gtk+HS (section 4.3.3), it is completely rewrit-
ten from scratch, circumventing some of the problems the
Gtk+HS has:

• To retain backwards compatibility, Gtk+HS does not
make use of ForeignPtr which moves the burden of mem-
ory management onto to the application developer. This
defeats the benefits of the automatic memory manage-
ment of Haskell and makes Gtk+HS unsuitable for larger
applications. The interface of Gtk2hs ensures that all
objects and structures are reference-counted and freed
properly. The implementation became much easier since
Gtk 2 turned most structures into GObjects (a root
class like Java’s Object) which allows us to use the same
well-tested infrastructure for memory management. The
downside is that our library only supports GHC 5.02 and
higher as it is the only compiler implementing the FFI
(section 3.1) to the extent that we need.

• While signals (call-backs from Gtk to the user applica-
tion) in Gtk+HS are handled in an ad-hoc fashion for
each widget, Gtk2hs uses a list of prototypes which ships
with Gtk+ to automatically generate appropriate glue
code. This code makes it possible to bind a signal with
just one line. As a result, Gtk2hs provides access to many
more signals than Gtk+HS.

• The type of a widget is expressed in the same way as it
is in Gtk+HS. But while the class and instance defini-
tions are written by hand in Gtk+HS, we use a simple
text file depicting the hierarchy of the widgets (which is
included with the Gtk documentation) and generate the
definitions automatically. This enabled us in the past
to quickly change names (e.g. we got rid of the Gdk
namespace) and to add casting functions.

15

http://www.informatik.uni-bremen.de/htk
http://www.cs.kun.nl/~clean/
http://www.haskell.org/ObjectIO/
http://www.gtk.org/
http://www.gtk.org/
http://www.cse.unsw.edu.au/~chak/haskell/gtk/

• Only the new version of Gtk has actually a port to the
Windows platform.

Beyond these technical differences, Gtk2hs strives for the fol-
lowing goals:

• Provide a complete binding to the Gtk library. We es-
timate that 80-90% of the functionality is already avail-
able.

• Provide the first portable binding to a single GUI toolkit.
We know there is ghc and Gtk2 for Win32 platforms, but
we haven’t tried yet.

• Provide a well-documented library. A first attempt of
documentation can be viewed at http://www.cs.ukc.
ac.uk/people/staff/as49/gtk2hs

• A thin convenience wrapper called Mogul provides useful
abstractions that go beyond the pure binding. Specifi-
cally it allows users to look up widgets by name (like
libglade).

• We have a small tool in preparation which generates
Haskell code from the output of the Glade GUI builder.
This approach seems to be much more usable than a
binding to libglade.

Our current work is done in a CVS repository which can be
found on http://sourceforge.net/projects/gtk2hs/. We
plan to finish the library by Summer next year.

4.4 Graphics

4.4.1 HGL Graphics Library

Report by: Alastair Reid
Project status: Maintained, stable
The HGL gives the programmer access to the most inter-
esting parts of the Win32 and X11 library without exposing
the programmer to the pain and anguish usually associated
with using these interfaces. The library is distributed as open
source and is suitable for use in teaching and in applications.
The library currently supports:

• Filled and unfilled 2-dimensional objects (text, lines,
polygons, ellipses); bitmaps (Win32 version only, for
now); control over text alignment, fonts, color.

• Simple input events (keyboard, mouse, window resize) to
support reactivity; timers and double-buffering to sup-
port simple animation.

• Use of concurrency to avoid the usual inversion of the
code associated with event-loop programming.

• Multiple windows may be handled at one time.

To keep the library simple and portable, the library makes no
attempt to support:

• User interface widgets (menus, toolbars, dialog boxes,
etc.); palette manipulation and other advanced features.

• Many kinds of input event.

Status: The library works on both Win32 and X11 under
Hugs and (unsupported) GHC. The API is stable and the li-
brary is used throughout Paul Hudak’s ‘School of Expression’
textbook (http://haskell.org/soe/). The last release was
2.0.4 in December 2001. A release that works better with the
new release of Hugs (notably the support for hierarchial mod-
ule namespace) and current releases of GHC will be available
soon.

Further reading:

HGL web page: http://haskell.org/graphics/

School of Expression web page: http://haskell.org/soe/

Author’s web page:
http://www.reid-consulting-uk.ltd.uk/alastair/

4.4.2 FunGEn – A game engine for Haskell

Report by: Andre W B Furtado
Project status: being rebuilt
The objective of the FunGEn project is to create a high-level
game engine in and for Haskell. A game engine, roughly
speaking, is a tool intended to help a game programmer to
develop games in a faster and automated way, avoiding him
to worry about low-level implementation details. The main
advantage of using a game engine is that, if it is built in a
general and modular architecture, it can be used to develop
many different (types of) games.
The first release of FunGEn (April/2002) consisted of a 2D
platform-independent game engine, which implementation
was based in HOpenGL (Haskell Open Graphics Library).
It supported:

• Initialization, updating, removing, rendering and group-
ing routines for game objects; definition of a game back-
ground (or map), including texture-based maps and tile
maps; loading and displaying of 24-bit bitmap files;

• Reading and interpretation of the player’s keyboard in-
put; collision detection; time-based functions and pre-
defined game actions; a few debugging and game perfor-
mance evaluation facilities;

• Sound support (for windows platforms only... :-[)

Some feedback indicated that the first version of FunGEn was
not as “functional” as it was desired: some game issues were
still being dealt through an imperative fashion. This way,
the authors of this project decided to change the game en-
gine philosophy: programmers should describe a game as a
set of “specifications” rather than defining its behavior imper-
atively. One plausible alternative for accomplishing this task
is porting the Clean Game Library (CGL) to Haskell, adding
some FunGEn specific features. Hence, this is the actual sta-
tus of the FunGEn project: it is being rebuilt in order to
provide game programming mechanisms following the CGL
concepts. This really demands some time, but the authors
expect a new version to be released soon.

16

http://www.cs.ukc.ac.uk/people/staff/as49/gtk2hs
http://www.cs.ukc.ac.uk/people/staff/as49/gtk2hs
http://sourceforge.net/projects/gtk2hs/
http://haskell.org/soe/
http://haskell.org/graphics/
http://haskell.org/soe/
http://www.reid-consulting-uk.ltd.uk/alastair/

The final objective of FunGEn is to support both 2D and 3D
enviroments, some game programming tools (such as map ed-
itors) and advanced game functionalities (such as multiplayer
networking), although it is actually far away from that.
FunGEn is being maintained at the Informatics Center of the
Federal University of Pernambuco, by Andre W B Furtado
(assisted by lecturer Andre Santos), and it’s wide open for
any implementation contributions. We would like to thank
Mike Wiering, the creator of Clean Game Library.

Further reading:

http://www.cin.ufpe.br/~haskell/fungen/

http://www.cin.ufpe.br/~haskell/hopengl/

http://www.haskell.org/HOpenGL/

4.4.3 FunWorlds – Functional Programming
and Virtual Worlds

Report by: Claus Reinke
Project status: being rebuilt
FunWorlds is an ongoing experiment to investigate language
design issues at the borderlines between concurrent systems,
animated interactive 2&3d graphics, and functional program-
ming. One of the aims is to get a suitable platform for ex-
pressing such things, preferably from Haskell.
Our earlier prototypes translated scene descriptions from
a Haskell-embedded DSL combining ideas from Fran and
VRML into standard VRML+ECMAScript (reported at
IFL’2001), but due to some cumbersome VRML restrictions,
this is currently being reimplemented. The new prototypes
are built on Sven Panne’s HOpenGL Haskell binding to
OpenGL. This means that it is no longer easy to import
ready-made high-level functionality from VRML-browsers,
but we’ve got access to functional programming concepts at
runtime, not just at compile time.
The focus so far, as reported at the recent IFL’2002, has been
on a redesign of some fundamental Fran concepts, towards a
simpler operational semantics as a basis for uncomplicated
implementations with more predictable performance charac-
teristics. At the same time, we don’t want to throw out too
much of Fran’s high-level modeling approach.
An initial release is planned for later this year; this will not
have substantially more functionality than the snapshot used
for IFL’2002, so it will be pretty basic. The main obstacle
on the way is to write some form of introductory tutorial on
the new DSEL design and how one might use it. Once we’ve
got some more experience with the language basics, graphics
functionality will be added on demand.

Further reading:

http://www.cs.ukc.ac.uk/people/staff/cr3/
FunWorlds/

4.5 Tool Frameworks

Instead of developing fixed tools, it is sometimes possible to
generalize the code implementing the tool functionality into
a library, so that the code can be reused for a family of tools.

4.5.1 Medina – Metrics for Haskell

Report by: Chris Ryder
The Medina library is a Haskell library for GHC that provides
tools and abstractions with which to build software metrics
for Haskell. The library includes a parser and several ab-
stract representations of the parse trees, some visualisation
systems including pretty printers and HTML generation, and
now includes some integration with CVS to allow temporal
operations such as measuring a metric value over time. This
is linked with some simple visualisation mechanisms to al-
low exploring such data. Recently support for generating call
graphs of programs has been added, including a visualisation
system to browse such call graphs. A case study has been
started to work towards some validation of metrics by look-
ing at the change history of a program and how various metric
values evolve with those changes.
The Medina project collaborates with the Refactoring project
(section 5.3.3), also at UKC.

Further reading:

http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/

4.6 Web Programming

4.6.1 HaXml

Report by: Malcolm Wallace
Project status: stable, maintained
The HaXml project is still alive, in stable maintenance mode,
now at version 1.07b. HaXml provides many facilities for us-
ing XML from Haskell. The most user-visible change recently
has been to convert the HaXml libraries to the new hierar-
chical namespace. We have also recently provided a validator
for checking documents against a DTD.

Further reading:

http://www.haskell.org/HaXml

4.6.2 HXml

Report by: Joe English
Project status: pre-beta, version 0.2
HXML is a non-validating XML parser written in Haskell.
It is designed for space-efficiency, taking advantage of lazy
evaluation to reduce memory requirements. HXML may be
used as a drop-in replacement for the HaXml (section 4.6.1)
parser in existing programs. HXML includes a module with
functionality similar to HaXml’s ’Combinator’ module, but
recast in an Arrow-based (section 3.7.2) framework.

17

http://www.cin.ufpe.br/~haskell/fungen/
http://www.cin.ufpe.br/~haskell/hopengl/
http://www.haskell.org/HOpenGL/
http://www.cs.ukc.ac.uk/people/staff/cr3/FunWorlds/
http://www.cs.ukc.ac.uk/people/staff/cr3/FunWorlds/
http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/
http://www.haskell.org/HaXml

HXML also provides multiple representations for XML doc-
uments: a simple algebraic data type containing only the es-
sentials (elements, attributes, and text), a tree representation
which exposes most of the full XML Information Set, and a
navigable tree representation supporting all of the principal
XPath axes (ancestors, following-siblings, etc).
HXML has been tested with GHC 5.02, GHC 5.04, NHC 1.12,
and most recent versions of Hugs. NHC 1.10 requires a patch.
HXML is basically in maintenance mode right now until I can
find some spare time; support for XML Namespaces is next
on the TODO list.

Further reading:

http://www.flightlab.com/~joe/hxml/

4.6.3 Haskell XML Toolbox

Report by: Uwe Schmidt (uwe@fh-wedel.de)
Project status: first release
The Haskell XML Toolbox is a collection of tools for process-
ing XML with Haskell. It is itself purely written in Haskell.
The core component of the Haskell XML Toolbox is a vali-
dating XML-Parser that supports almost fully the Extensible
Markup Language (XML) 1.0 (Second Edition).
The Haskell XML Toolbox bases on the ideas of HaXml (sec-
tion 4.6.1) and HXML (section 4.6.2), but introduces a more
general approach for processing XML with Haskell. The
Haskell XML Toolbox uses a generic data model for repre-
senting XML documents, including the DTD subset and the
document subset, in Haskell. This data model makes it pos-
sible to use filter functions as a uniform design of XML pro-
cessing applications. The whole XML parser including the
validator parts was implemented using this design. Libraries
with filters and combinators are provided for processing the
generic data model.

Features:

• validating XML parser

• full Unicode support

• uniform data modell for DTDs and XML content

• support of http: and file: protocol

• tested with W3C XML validation suite

Current Work:

• XPath implementation

• XSLT implementation

• better error reporting

Further reading:

The Haskell XML Toolbox Webpage http://www.fh-wedel.
de/~si/HXmlToolbox/index.html includes downloads, on-
line documentation and a master thesis describing the design
of the toolbox.

4.6.4 WASH/CGI – Web Authoring System
for Haskell

Report by: Peter Thiemann
WASH/CGI is an embedded DSL (read: a Haskell library)
for server-side Web scripting based on the purely functional
programming language Haskell. Its implementation is based
on the portable common gateway interface (CGI) supported
by virtually all Web servers. WASH/CGI offers a unique and
fully-typed approach to Web scripting. It offers the following
features

• a monadic interface to generating HTML output

• type-safe compositional approach to specifying form ele-
ments; callback-style programming interface for forms

• automatic error detection

• complete interactive script in one program

• type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persistent
server-side

• integration with CSS yields compositional style descrip-
tions

• on-the-fly generated graphics

• high-level interface to email generation

Current work includes

• new version with Haddock-generated documentation
is upcoming; in consequence, some things have been
streamlined and some obsolete entry points have been
removed

• support for hooking directly into Simon Marlow’s Haskell
Webserver (so that I can finally get started on imple-
menting authentication)

• support for generating forms that can be stored in files
or sent via email or news. Anyone picking up the form
can resume the interaction.

• probably support for frames in some form

• beyond-Haskell98 interface: some additional guarantees
can be gained by using multi-parameter type classes and
rank-2 polymorphism in two places.

Items still on the to do list

• incorporation of WASH/HTML, a typed interface for
generating mostly valid HTML documents

• preprocessor for translating markup in XML syntax into
WASH/HTML

• database interface

• authentication

• user manual

Further reading:

WASH Webpage http://www.informatik.uni-freiburg.
de/~thiemann/WASH/ includes examples, a tutorial, papers
about the implementation.

18

http://www.flightlab.com/~joe/hxml/
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

Chapter 5

Tools

5.1 Foreign Function Interface

5.1.1 C–>Haskell

Report by: Manuel Chakravarty
Project status: beta release
C–>Haskell is an interface generator that simplifies the devel-
opment of Haskell bindings to C libraries. The latest binary
release, version 0.10.17, was published in September 2002.
The tool significantly simplifies binding development by au-
tomatically translating C types and enums into Haskell data
types, managing access to C structs, and semi-automatically
generating marshalling code for arguments and results of C
functions. It has been stress tested in the development of
the Gtk+HS GUI library (section 4.3.3). Source and binary
packages as well as a reference manual are available from

Further reading:

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

5.1.2 GreenCard

Report by: Alastair Reid
Project status: Maintained, stable
Portability: Hugs, GHC, NHC and C, C++
GreenCard is a foreign function interface preprocessor for
Haskell and has been used (amongst other things) for the
Win32 and X11 bindings used by Hugs and GHC. Source and
binary releases (Win32 and Linux) are available. The last re-
lease was 2.0.4 (August 2002). A release that provides access
to and takes advantage of the new Foreign Function Interface
libraries will be available soon.

Further reading:

http://www.haskell.org/greencard/

5.1.3 Java VM Bridge

Report by: Ashley Yakeley
Java VM Bridge is a GHC package intended to allow full
access to the Java Virtual Machine from Haskell, as a simple
way of providing a wide range of imperative functionality. Its
big advantage over earlier attempts at this is that it includes a
straightforward way of creating Java classes at run-time that

have Haskell methods (using DefineClass and the Java Class
File Format). It also features reconciliation of thread models
without requiring GPH.
It is intended to make writing “Java in Haskell” as straight-
forward as possible. To this end, each Java class is a separate
type, and the argument lists of methods of automatically-
generated interfaces to Java classes make use of subtype class
relations to minimise explicit upward casting. Java exceptions
are represented as Haskell monadic exceptions, and may be
caught or thrown accordingly. Also, the two garbage collec-
tors are integrated in such a way that cross-collector reference
loops won’t happen.
As a point of cleanliness and principle, it makes no use of
“unsafe” Haskell calls (or pure function FFI). The layered
design allows access to either lifted monads that keep track
of context data (specifically, the JNIEnv pointer) and do all
the work of preloading for you, or “IO”-based functions if you
want to do all that yourself.

Current Status: A beta-quality 0.1 was released in De-
cember 2001, for x86 Unix only. Release 0.2 will also be
available for Windows and MacOS X, sometime in Novem-
ber.

Contact: Ashley Yakeley <ashley@semantic.org>

Further reading:

http://sourceforge.net/projects/jvm-bridge/

5.2 Meta Programming

“Why write a program when you can write a program to write
a program?” (author unknown).
Even in a language where functions are first-class citizens, you
sometimes want to write programs at a meta level, be it to
get that extra leverage in productivity, to test some ideas for
language extensions, for debugging/instrumenting your code,
or for analyses and transformations. Unfortunately, generic
tool support for this kind of tasks has been somewhat lacking,
so that Haskell meta-programmers currently have to imple-
ment their tools almost from scratch (Drift, HAT, Sugar for
Arrows, Haddock, labelled fields before they became part of
the language, . . .).

19

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.haskell.org/greencard/
http://sourceforge.net/projects/jvm-bridge/

Not only is this a sub-optimal use of precious developer time,
it also carries the risk of tools representing substantial invest-
ments being left behind as their developers move on to other
commitments. The latest example is Hatchet, a Haskell-in-
Haskell frontend incorporating not only parsing and pretty-
printing, but also a type system. Introduced only in our pre-
vious edition, it is now looking for a new home (please contact
Bernie Pope if you are interested).
In this section, we hope to document any progress being made
in this area, but see also the language extensions chapter for
Template Haskell (section 3.6.1).

5.2.1 Haskell Preprocessors

DrIFT

Report by: John Meacham
DrIFT is a type sensitive preprocessor for Haskell. It extracts
type declarations and directives from modules. The directives
cause rules to be fired on the parsed type declarations, gener-
ating new code which is then appended to the bottom of the
input file. The rules are expressed as Haskell code, and it is
intended that the user can add new rules as required.
DrIFT automates instance derivation for classes that aren’t
supported by the standard compilers. In addition, instances
can be produced in separate modules to that containing the
type declaration. This allows instances to be derived for a
type after the original module has been compiled. As a bonus,
simple utility functions can also be produced from a type.
DrIFT is very close to the big 2.0 release once I fix a couple
known bugs.

Further reading:

http://repetae.net/john/computer/haskell/DrIFT/

5.2.2 Scanning, Parsing, and Analysis

See also constraint-based program analysis (section 3.4.2),
and the group of tools developed in Utrecht (section 6.4.5).

Happy

Report by: Simon Marlow
Project status: stable, maintained
Happy has seen one new release, 1.13, in June of this year,
which was mainly a bugfix release.
On the development front, there’s nothing major to report,
except that the changes for GLR parsing are still waiting
in the wings and I’m talking to the author of Alex (Chris
Dornan) about a possible merge of Happy & Alex at some
point.

Further reading:

http://www.haskell.org/happy/

5.2.3 Haskell Transformations

Report by: Eelco Visser

HSX The HSX framework is a prototype for experimen-
tation with the application of rewriting strategies using the
transformation language Stratego to program optimization.
Although the syntax is for complete Haskell (without layout),
the transformations are done on a core-like subset only. The
framework was used to implement the Warm Fusion transfor-
mation for deforestation that turns recursive function defini-
tions into build/cata form. This form makes deforestation,
the fusion of a composition of data structure producing and
consuming functions, a piece of cake. Extension of the work
to full Haskell was not continued by lack of a reusable Haskell
front-end.

HsOpt Recently we have started to work on a new ver-
sion of the framework called HsOpt. This is a transforma-
tion framework for Helium, a proper (light) subset of Haskell
developed at Utrecht University (section 6.4.5). We reuse
the parser, prettyprinter, and typechecker from the Helium
project. The first target is the specification of a GHC style
simplifier in Stratego. The Haskell ATerm library is used to
interface Haskell components and Stratego components.

Further reading:

http://www.stratego-language.org/Stratego/HSX
http://www.stratego-language.org/Stratego/HsOpt

5.3 Program Development

5.3.1 Tracing and Debugging

Report by: Olaf Chitil and Bernie Pope
There are a number of tools with rather different approaches
to tracing Haskell programs for the purpose of debugging and
program comprehension. In particular Hood and Hat seem
to become increasingly popular.
Both Hood, the portable library for observing data struc-
tures at given program points, and GHood, the graphical
variant for animated observations have remain unchanged for
over a year.
On 14 June version 2.00 of Hat, the Haskell tracing (and
debugging) system, was released. It is distributed separate
from nhc98 and can be used both with nhc98 and ghc. The
compiled program generates a trace file alongside its compu-
tation. With several improved tools the trace can be viewed
in various ways: algorithmic debugging a la Freja; Hood-style
observation of top-level functions; backwards exploration of
a computation, starting from (part of) a faulty output or an
error message. All tools inter-operate and use a similar com-
mand syntax. A tutorial explains how to generate traces,
how to explore them, and how they help to debug Haskell
programs. Hat 2.00 requires programs to strictly conform to
the Haskell 98 standard. A new release that supports hierar-
chical modules, more libraries, multi-parameter classes with

20

http://repetae.net/john/computer/haskell/DrIFT/
http://www.haskell.org/happy/
http://www.stratego-language.org/Stratego/HSX
http://www.stratego-language.org/Stratego/HsOpt

functional dependencies and improved performance with ghc
will appear by the end of the year.
Buddha is a declarative debugger for Haskell 98. Each mod-
ule in the program undergoes a transformation to produce
a new module (as Haskell source). The transformed mod-
ules are compiled and linked with a library for the interface,
and the resulting program is executed. The transformation is
crafted such that execution of the transformed program con-
stitutes evaluation of the original (untransformed) program,
plus construction of a semantics for that evaluation. The se-
mantics that it produces is a tree with nodes that correspond
to function applications.
Currently buddha works with GHC version 5.04 or greater.
No changes to the compiler are needed. There are no plans
to port it to other Haskell implementations, though there are
no significant reasons why this could not be done.
Version 0.1 of buddha is freely available as source. This ver-
sion supports most of Haskell 98, however there are a few
small items that are not supported. These are listed in the
documentation. Future releases will include support for the
missing features, and a much improved user interface.
At IFL 2002, Frank Huch and Thomas Boettcher presented
a debugger for Concurrent Haskell (section 3.3.1). It has a
graphical user interface for visualising the state of threads
and communication abstractions. It is based on replacing
the Concurrent library by a library ConcurrentDebug with
the same interface. A first public release will appear soon at
http://www.informatik.uni-kiel.de/~fhu/chd/
Also at IFL 2002, Alcino Cunha, Jose Barros and Joao Saraiva
presented the prototype of a tool for graphically animating
the evaluation of recursive Haskell functions.

Further reading:

http://www.haskell.org/libraries/#tracing
http://www.cs.mu.oz.au/~bjpop/buddha

5.3.2 Development Environments

hIDE

Report by: Duncan Coutts
Project status: being rewritten
hIDE is an integrated development environment for Haskell
(primary author: Jonas Svensson).
In the last 6 months, hIDE in its current form has been frozen.
A complete rewrite is now underway which aims to provide
an attractive gtk2 interface and a plugin system. For people
reading this report, the plugin system is probably the most
important new feature.
The significance of this is that you will be able to use a Haskell
IDE with Haskell as its extension language. No longer will you
have to delve into emacs’ elisp or another foreign languages to
get your favourite tool to work with your editor. Ultimately,
we would love to see plugins for many of the excelent tools
listed in this report.
Development has been a little slow recently as we work out
the basic architecture. Help would be welcomed. We will

announce a development release when the core is finished and
the API for plugins is more stable.

Further reading:

http://www.dtek.chalmers.se/~d99josve/hide/
http://sourceforge.net/projects/haide
haide-devel@lists.sourceforge.net

5.3.3 Refactoring

Report by: Claus Reinke
Team: Simon Thompson, Huiqing Li, Claus Reinke
Refactoring means changing the structure of existing pro-
grams without changing their functionality, and has become
popular in the object-oriented and extreme programming
communities as a means to achieve continuous evolution of
program designs. Like most Haskellers, we had developed a
habit of refactoring our programs on a small scale long before
we learned that others would call this refactoring. And in a
functional language like Haskell, we are much more adventur-
ous about the scale of program transformations we will try
to improve our code. Without proper tool support, however,
this soon gets out of hand, and only backups and undo come
to the rescue of the over-zealous code-improver.
We want to explore the wealth of functional program transfor-
mation research to bring refactoring to Haskell programmers.
Our project finally got underway this July, and apart from
the usual background work – (re-)reading existing work on
refactoring catalogues and tools, surveying Haskellers’ editing
habits, and doing some casestudies – we have now started to
experiment with Haskell frontends (parsing, pretty-printing,
type-checking) and other tools (strategic programming) that
could form the foundations for actually implementing a refac-
toring tool for Haskell.
Tools we’ve looked at so far include HsParser, Haddock’s
parser (section 5.3.5), Hatchet (section 3.6), parts of Pro-
grammatica, and Strafunski (section 4.2.2). While all of these
are helpful in different ways, they are also limited in different
ways – chosing some of them and making them work together
on real-world Haskell sources to the extent required for our
project has proven to be challenging so far. This is partially
due to the tools being relatively new, partially due to each of
them focussing only on a specific job that might not match
our more general requirements.
The issues relating to infrastructure for Haskell meta-
programming (section 3.6) require, and would merit, more
attention and further development. Because of the lack of
a standard interface to Haskell frontend information (com-
pare, e.g., ADA’s Semantic Interface Specification http:
//www.acm.org/sigada/wg/asiswg/), Haskell tool and IDE
developers keep reinventing wheels and unsatisfactory hacks.
We are also looking into XML/XSLT support for organising
and maintaining our database of functional refactorings, and
we collaborate with the Medina project (section 4.5.1).

Further reading:

http://www.cs.ukc.ac.uk/research/groups/tcs/fp/
Refactor/

21

http://www.informatik.uni-kiel.de/~fhu/chd/
http://www.haskell.org/libraries/#tracing
http://www.cs.mu.oz.au/~bjpop/buddha
http://www.dtek.chalmers.se/~d99josve/hide/
http://sourceforge.net/projects/haide
haide-devel@lists.sourceforge.net
http://www.acm.org/sigada/wg/asiswg/
http://www.acm.org/sigada/wg/asiswg/
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/Refactor/
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/Refactor/

5.3.4 Testing

HUnit

Report by: Dean Herington
Project status: maintained, no major changes
Hunit is a unit testing framework for Haskell similar to JUnit
for Java. With HUnit, a Haskell programmer can easily create
tests, name them, group them into suites, and execute them,
with the framework checking the results automatically. Test
specification is concise, flexible, and convenient.
A minor revision (HUnit 1.1) is in the works and should be
out soon (1-2 weeks). Its main purpose is to adapt to recent
GHC (5.04) and Hugs (Oct. 2002) versions.
HUnit is free software that is written in Haskell 98 and runs
on Haskell 98 systems. The software and documentation can
be obtained at http://hunit.sourceforge.net.

QuickCheck

Report by: John Hughes
Project status: maintained, new features
QuickCheck is a tool for testing Haskell programs automat-
ically. The programmer provides a specification of the pro-
gram, in the form of properties which functions should sat-
isfy, and QuickCheck then tests that the properties hold in
a large number of randomly generated cases. Specifications
are expressed in Haskell, using combinators defined in the
QuickCheck library. QuickCheck provides combinators to de-
fine properties, observe the distribution of test data, and de-
fine test data generators.
We have been using QuickCheck to test monadic code, es-
pecially in the ST monad, and there is a new version avail-
able with combinators for defining “monadic properties”. Our
Haskell Workshop paper explains how to use them.
We are also experimenting with combinators to make test
data generators easier to write, with using Generic Haskell
(section 3.5) for the same purpose, and with integration with
the Hat tracer. Some of this was presented at the Advanced
Functional Programming summer school this year.
We’ve been planning for a while to combine all our experi-
mental versions into one stable new version, but teaching has
got in the way.

Further reading:

http://www.cs.chalmers.se/~rjmh/QuickCheck/

5.3.5 Documentation

Haddock

Report by: Simon Marlow

Haddock saw many improvements in features and stability
culminating in the 0.4 release at the end of July this year.
This release of Haddock is used to generate the documen-
tation for the hierarchical libraries distributed with recent
releases of GHC.

Haddock is now described in a paper, which appeared at the
Haskell Workshop 2002:
http://www.haskell.org/~simonmar/papers/haddock.
ps.gz
At this point I consider Haddock to have most of the main
feature set I had originally intended. There is however still a
long list of things to do: see the file TODO in the Haddock
source tree, and comments/contributions are of course always
welcome.

Further reading:

http://www.haskell.org/haddock/

22

http://hunit.sourceforge.net
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://www.haskell.org/~simonmar/papers/haddock.ps.gz
http://www.haskell.org/~simonmar/papers/haddock.ps.gz
http://www.haskell.org/haddock/

Chapter 6

Applications, Groups, and Individuals

6.1 Non-Commercial Applications

This section lists applications developed in Haskell, be it in
academia, in industry, or just for fun, which achieve some
non-Haskell-related end.

6.1.1 HScheme

Report by: Ashley Yakeley
HScheme is a Scheme interpreter written in Haskell. There’s
a stand-alone interpreter program, or you can attach the li-
brary to your program to provide “Scheme services”. It’s
very flexible and general with types, and you can pick the
“monad” and “location” types to provide such things as a
purely functional Scheme, or a continuation-passing Scheme
(that allows call-with-current-continuation), or a fixed-point
Scheme (that allows call-with-result), etc.
Current status: It’s close to R5RS, but it’s currently miss-
ing certain functionality such as inexact numbers and vec-
tors. There have been no releases: you’ll have to download
and build from CVS if you want to use it. But you can
play with the interpreter on the web at http://hscheme.
sourceforge.net/interpret.html.
It’s not particularly fast.

Further reading:

http://hscheme.sourceforge.net/
Contact: <ashley@semantic.org>

6.1.2 Hume: a Language for Embedded
Real-Time Systems

Report by: Kevin Hammond
Project status: ongoing
Hume is a strict functionally-based concurrent language in-
corporating high-level coordination constructs. The language
is aimed at hard real-time, low memory (e.g. embedded sys-
tems) settings. The expression layer is purely functional, with
a syntax that is similar to that of Haskell.
Hume programs are short and have a small footprint (< 64K
including RTS and heap is possible on RTLinux). Compared
with Java KVM (which is aimed at embedded systems), Hume
programs are 10x faster, and require about 50% of the mem-
ory. It is possible to statically cost memory requirements for a

restricted (but usable) subset of the language. We are work-
ing on improving this using a novel type-and-effect system.
We have already demonstrated hard real-time capability on
RTLinux and are now working towards a complete embedded
systems implementation on e.g. Lego Mindstorms robots, or
semi-autonomous vehicles.
The front-end tools (lexer, parser, cost modeller etc.) are all
Haskell-based, using Alex and Happy (section 5.2.2) as appro-
priate. There is a reference interpreter written in Haskell and
an abstract machine (bytecode) compiler/interpreter. The
compiler is written in Haskell, with the bytecode interpreter
written in C for portability and performance. We are now
working on improved code generators, using e.g. threaded
code. These tools should be seen as research-quality! We
have been impressed by Haskell’s ease/speed of construc-
tion/modification, conciseness and robustness (this is an in-
teresting experience for a language designer/implementor!).

Further reading:

http://www.hume-lang.org

6.1.3 ParaGAP: Parallel Symbolic Com-
puter Algebra

Report by: Kevin Hammond
Project status: new project
This project aims to provide parallel programming support
for the GAP computer algebra system on a range of parallel
architectures. This will be achieved by calling GpH library
functions (section 3.3.2) from within GAP code. We antici-
pate two useful outcomes for the Haskell community:

1. libraries of functions to manage groups and permutations
using the latest computer algebra technology;

2. a new user base.

Further reading:

http://www.dcs.st-and.ac.uk/~kh/paraGAP.pdf

23

http://hscheme.sourceforge.net/interpret.html
http://hscheme.sourceforge.net/interpret.html
http://hscheme.sourceforge.net/
http://www.hume-lang.org
http://www.dcs.st-and.ac.uk/~kh/paraGAP.pdf

6.1.4 Knit

Report by: Alastair Reid
Project status: Active, maintained, no recent news
Portability: GHC (maybe Hugs, still), Linux, FreeBSD
Knit is a component definition and linking language for sys-
tems programming based on the Unit component program-
ming model. Knit lets you turn ordinary C code (e.g., bits
of the Linux kernel) into components and link them together
to build new programs. Since the freedom to do new things
brings with it the freedom to make new errors, Knit pro-
vides a simple constraint system to catch component config-
uration errors. Knit also provides a cross-component inliner
and schedules initialization and finalization of components.
Knit is released under a BSD-style license, is written in
Haskell (and a little C) and includes a C parser and pretty-
printer. A useful little utility included in the distribution is
a tool for renaming symbols in ELF-format object files.
Current work aims to extend error checking into the real-time
domain, to automate generation of components, and to turn
Knit into an architecture description language (ADL) instead
of just a module interconnection language (MIL).

Further reading:

http://www.cs.utah.edu/flux/alchemy/

6.2 Commercial Applications

6.2.1 Reid Consulting Ltd

Report by: Alastair Reid
Many companies are starting to allow their programmers to
develop small prototypes in Haskell but few are willing to
take a chance on using Haskell on a large project. The risks
to these companies include lack of support for tools, lack of
tutorials and training courses, gaps in the set of available
libraries, and lack of ‘gurus’ to call on when things go wrong.
Reid Consulting can meet those needs. Our background and
continuing involvement in the development of Haskell tools
and compilers (GreenCard, Hugs, GHC, etc.) and the Haskell
language and library design (the Haskell report, the Standard
libraries, the Hugs-GHC libraries, the Foreign Function Inter-
face and the HGL Graphics Library) and our use of Haskell
to develop large systems, provide the experience and the con-
tacts needed for effective support of real projects.
Where acceptable to clients, we have a policy of releasing any
fixes or developed code as OpenSource for use by the wider
Haskell community.

Further reading:

For more information, see http://www.
reid-consulting-uk.ltd.uk/ or contact Alastair Reid
<alastair@reid-consulting-uk.ltd.uk>

6.2.2 Binary Parser

Report by: Sengan Baring-Gould
Sengan Baring-Gould <Sengan.Baring-Gould@nsc.com> at
National Semiconductor is developing a binary parser which
given a grammar is able to extract fields from values. This is
used as part of an internal ICE (hardware debugger).
The declarations follow the format:

declaration :: supertype
= { fields in order, msb first,

allowing bitslicing }
: { local fields if any, and

their types or lengths };

For instance the definition of the eax register on a x86 is:

eax = { ex, ax } : { ex[16] };
ax = { ah, al };

The grammar provides types that can be arranged into a hi-
erarchy so that fields whose location moves depending on bits
within the value can be automatically found, and referenced.
For instance cs is a descriptor and there are 20 kinds of de-
scriptors, two of which are illustrated below.

cs :: Descriptor32;

Small_Code_Segment
:: Descriptor32
= { base[31:24], 1’b0, is_32_bit, 1’bx,

available, limit[19:16], present, dpl,
2’b11, conforming, readable, a,
base[23:0], limit[15:0] }

: { is_32_bit[1], present[1], conforming[1],
readable[1], a[1], dpl[2], available[1],
base[32], LimitBytes limit };

Small_Data_Segment
:: Descriptor32
= { base[31:24], 1’b0, is_32_bit, 1’bx,

available, limit[19:16], present, dpl,
2’b10, expand_down, writable, a,
base[23:0], limit[15:0] }

: { is_32_bit[1], present[1], expand_down[1],
writable[1], a[1], dpl[2], available[1],
base[32], LimitBytes limit };

In all cases cs.dpl will access the relevant field even if it were
in different places.
Binary parser provides the ability to reference by name val-
ues which may be composed of other values. It goes one
step further in that the client program does not need to know
where particular value is buried, only what its value is. Binary
parser grammars are intended to enable non-programmers to
access fields of their registers, without requiring the ICE-
developer to write explicit code to do so. For instance a
technical writer could write a binary parser grammar for a
device of which the ICE developer has never heard. Stress

24

http://www.cs.utah.edu/flux/alchemy/
http://www.reid-consulting-uk.ltd.uk/
http://www.reid-consulting-uk.ltd.uk/

has been put on generality and simplicity, rather than effi-
ciency. For instance binary parser allows multiple definitions,
cyclic definitions, etc.
Binary Parser is implemented in Haskell whereas the current
ICE is not (C++) – but the next generation will be. Currently
communication is achieved using pipes so as to be compati-
ble with both windows and unix (binary parser is used by 2
internal tools, one is unix one is windows).
Binary parser simplifies the porting of the ICE from chip to
chip where the location of register-fields may change but their
functionality does not.

6.2.3 Extending Lava for System on Chip
Designs

Report by: Satnam Singh
Lava is a set of Haskell modules that define a domain spe-
cific hardware description language for producing circuits
for implementations on Field Programmable Gate Arrays
(http://www.xilinx.com) (FPGAs). Previous work has fo-
cused on designing and implementing a robust and practical
system for realizing structural (graph based) circuit descrip-
tions using combinations (higher order functions or connec-
tion patterns) to compose circuits in interesting ways.
We have now turned our attention to capturing system level
information in Lava. In particular we would like to describe
the architecture of bus-based systems were components com-
municate not through directly connected wires but instead use
a protocol for communication over a bus. Ideally we would
like to define some kind of embedded type system that cap-
tures not only what information is communicated but how
it is communicated (direct connection, bus, FIFO, shared
memory, interrupt etc.). This could allow much higher level
descriptions of “System on Chip” (SoC) systems and allows
for the possibility of automatically generating interfacing cir-
cuitry. As our focus changes from computation (what the
gates do) to communication (how to compose large modules)
we expect to produce interesting requirements for a type sys-
tem for hardware description languages intended for designing
SoCs.

Further reading:

http://www.xilinx.com/labs/lava/

6.3 Haskell in Education

At the recent workshop on functional and declarative lan-
guages in education (FDPE 2002), there seemed to be a con-
sensus that functional programming in first year computer
science courses works best if it focusses on general program-
ming and computer science concepts, i.e. uses functional pro-
gramming as a tool, not as a goal or main topic.
While preparing the ground for a more ambitious initiative
(creating a formally based software engineering program at
his University), Rex Page has been collecting empirical evi-
dence on using Haskell as a tool for familiarizing students with

the idea of reasoning about software artifacts. Jose Labra
introduces a new project to develop a generic web based pro-
gramming environment to teach Haskell and other program-
ming languages. See also the EDSL project at Yale (section
6.4.3), developing domain-specific languages for use in high-
school education.

6.3.1 Beseme Project

Report by: Rex Page
Studying connections between programming effectiveness and
practice in reasoning about software.
The test and debug cycle accounts for the entire defect pre-
vention strategy in most software projects. What difference
might it make if software developers had some experience
in reasoning about software artifacts using methods from
mathematical logic? The Beseme Project (three syllables,
all rhyming with “eh”) is gathering some evidence bearing
on this question by introducing students in a discrete mathe-
matics course to logic through examples based entirely on rea-
soning about software, most of which is expressed as Haskell
equations. The subsequent performance of these students in a
programming-intensive course is compared to that of students
who have gone through a traditional discrete mathematics
course. Progress reports and course materials including over
350 lecture slides, homework, exams, solutions, and software
tools are available through the Beseme website:
http://www.cs.ou.edu/~beseme/

6.3.2 Idefix Project

Report by: Jose Labra
I have started a project called IDEFIX where we want to
develop a generic web based programming environment to
teach Haskell and other programming languages.
The first steps of the system were presented in the con-
ference “Implementation of Functional Programming lan-
guages”, 2002 (Madrid).

Contact person: Jose Emilio Labra Gayo http://www.
di.uniovi.es/~labra

Further reading:

http://www.di.uniovi.es/aplt/idefix

6.4 Research Groups

Many research groups have already been covered by their
larger projects in other parts of this report, especially if they
work almost exclusively on Haskell-related projects, but there
are more groups out there who count some Haskell-related
work among their interests. Unfortunately, we don’t seem to
reach some of them yet, so if you’re reading this, please make
sure that your group is represented in the next edition!

25

http://www.xilinx.com
http://www.xilinx.com/labs/lava/
http://www.cs.ou.edu/~beseme/
http://www.di.uniovi.es/~labra
http://www.di.uniovi.es/~labra
http://www.di.uniovi.es/aplt/idefix

6.4.1 Functional Programming at Chalmers

Report by: Patrik Jansson
Here is some input on Haskell-related research at
CS.Chalmers.se. This is by no means complete - we do other
Haskell-related stuff as well, including the work on generic
programming (3.5) and QuickCheck (5.3.4) . . .
A bigger project is just about to start: (in addition to the
professors listed below, Marcin Benke, Koen Claessen, Patrik
Jansson and Ulf Norell will also be involved)

Combining Verification Methods in Software Devel-
opment Thierry Coquand, Peter Dybjer, John Hughes,
Mary Sheeran
The goal of this programme is to develop methods for improv-
ing software quality. The approach is to integrate a variety of
verification methods into a framework which permits a smooth
progression from hacking code to fully formal proofs of cor-
rectness. By a pragmatic integration of different techniques
in a next-generation program development tool, we hope to
handle systems on a much larger scale than hitherto.
This proposal builds on and combines our extensive and inter-
nationally well-known research in interactive theorem provers,
formal methods, program analysis and transformation, and
automatic testing. Our long experience with functional lan-
guages, which we use both as implementation tools and a
test-bed, improves our chances of success in tackling these
difficult problems.

Further reading:

http://www.cs.chalmers.se/Cs/Research/Functional/

6.4.2 Formal Methods at Bremen University

Report by: Christoph Lüth and Christian Maeder

Members: Christoph Lüth, Klaus Lüttich, Christian
Maeder, Achim Mahnke, Till Mossakowski, Markus Roggen-
bach, George Russell, Lutz Schröder
The activities of our group are centered on the UniForM work-
bench and the Common Algebraic Specification Language
(CASL).
The UniForM workbench is an integration framework
mainly geared towards tools for formal methods. It uses a
simple, powerful and flexible notion of events to model all
interactions between tools and users. In particular, the work-
bench provides HTk, an encapsulation of Tcl/Tk based on
our event model (see HTk under Graphical User Interfaces).
The workbench is actively used in the MMiSS project (http:
//www.mmiss.de). It currently contains about 70k lines of
Haskell code (plus a few hundred lines of C), and compiles
with the Glasgow Haskell Compiler, making use of many of
its extensions, in particular concurrency.
We are also using GHC to develop tools, like parsers and
static analysers, for languages from the CASL family.
Several parsers have been written using the combinator li-
brary Parsec. (Annotated) terms (from the ATerm Library)

are used as a data exchange format and we use DrIFT (sec-
tion 5.2.1) to derive instances for conversions. For vari-
ous graph data structures we use the Functional Graph Li-
brary (FGL). Documentation will be generated using Had-
dock (section 5.3.5). (for Parsec, ATerm, and FGL, see
http://haskell.org/libraries/)
One extension of CASL, namely HasCASL, strives to
combine CASL and Haskell. The HasCASL development
paradigm (from requirements to functional programs) has
been presented at the recent IFL’02 Workshop in Madrid.
The language HetCASL is a combination of several specifi-
cation languages used in formal methods, such as CSP, CASL,
HasCASL, and Modal and Temporal Logic. We exploit Glas-
gow Haskell’s multiparameter type classes and functional de-
pendencies to provide a type-safe interface to analysis tools
for particular languages. Specifications involving several lan-
guages can be processed using existential and dynamic types.

Further reading:

Group activities overview: http://www.informatik.
uni-bremen.de/agbkb/forschung/formal_methods/
UniForM workbench

http://www.informatik.uni-bremen.de/uniform/wb
HTk

http://www.informatik.uni-bremen.de/htk
CASL

http://www.informatik.uni-bremen.de/cofi

6.4.3 The Yale Haskell Group

Report by: John Peterson
The members of our group are Paul Hudak, John Peterson,
Henrik Nilsson, Antony Courtney, and Liwen Huang.
The functional programming group at Yale is using Haskell
and general functional language principals to design domain-
specific languages. We are particularly interested in domains
that incorporate time flow. Examples of the domains that
we have addressed include robotics, user interfaces, computer
vision, and music. The languages we have developed are usu-
ally based on Functional Reactive Programming (FRP). Par-
ticular examples are Frob (Functional Robotics) and FVision
(Functional Vision). FRP was originally developed by Conal
Elliott as part of the Fran animation system. It has three
basic ideas: continuous- and discrete-time signals, functions
from signals to signals, and switching. FRP is particularly
useful in hybrid systems: applications that have both contin-
uous time and discrete time aspects.

Functional Reactive Programming

Yampa is the culmination of our efforts to provide domain-
specific embedded languages for the programming of hybrid
systems. Yampa differs from previous FRP based system in
that it is structured using the arrow combinators (section
3.7.2). This greatly reduces the chance of introducing space
and time leaks into reactive, time-varying systems.

26

http://www.cs.chalmers.se/Cs/Research/Functional/
http://www.mmiss.de
http://www.mmiss.de
http://haskell.org/libraries/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/uniform/wb
http://www.informatik.uni-bremen.de/htk
http://www.informatik.uni-bremen.de/cofi

We have released a preliminary version of Yampa that con-
tains:

• The Yampa Base Library, containing generic functions
for the expression of continuous behaviors, discrete
events, and the interactions between behaviors and
events.

• The Yampa Robotics Library, containing entities tai-
lored for controlling mobile robots, both real and sim-
ulated, in the style of Frob, our FRP-based robotics lan-
guage. The simulator is written using Yampa’s Base and
HGL, the Haskell Graphics Library (section 4.4.1), and
performs physical modelling of mobile differential-drive
robots equipped with several kinds of sensors. A pre-
configured version of the simulator allows one to play
RoboCup Soccer.

With the Base Library and HGL (or any other graphics li-
brary), it is easy to write reactive animation programs in the
style of Fran. Thus there is no need for a special library to
support graphics and animation.
Antony Courtney is working on yet another graphics library
for Haskell to provide capabilities similar to the Java 2-D
graphics library.

Domain Specific Languages for Education

The goal of this project is to use computers to assist students
in understanding fundamental concepts within the core of the
high school (ages 12 - 18) curriculum. In our approach, stu-
dents must be able to describe objects in a learning domain
in a formal manner that looks suspiciously like Haskell code.
These abstract objects may be mathematical functions, physi-
cal laws, computational processes, or other intangible entities.
Once the computer knows what the student is expressing, it
can then realize the object in ways that help the student to
explore and understand its properties.
We are currently working with on languages: one for mathe-
matical visualization (Pan) and another for algorithmic music
composition (Haskore). We don’t have an educational version
of Haskore yet but have used it (and Hugs) on high school
students with good results.
We are about to release a new version of Conal Elliott’s Pan
system, Pan#, in a version that no longer requires the user to
use a Haskell compiler. We use a subset of Haskell (“friendly
Haskell”) supplemented with primitives for color manipula-
tion to describe images. This system depends on C# and
Microsoft’s .NET at the moment. A “hackers” version of the
software is available now on the web and a formal release
should occur around December 1.

Further reading:

http://www.haskell.org/yale

http://haskell.org/yampa

http://www.haskell.org/edsl

6.4.4 Functional Programming at Brooklyn
College, City University of New York

Report by: Murray Gross
One prong of the Metis Project at Brooklyn College, City Uni-
versity of New York, is research on and with Parallel Haskell
(section 3.3.2) in a Mosix-cluster environment. In fact, al-
though we are just starting up, we want to both use and work
on Haskell–we are gathering a number of smaller research ef-
forts under a single umbrella.
At the present time, with the assistance of the group at Heriot
Watt University (Edinburgh), we are working on implement-
ing the parallel run-time system (GUM) for release 5 of GHC.
We would be most interested in forming additional coopera-
tive relationships with other academic and industrial research
partners.

Contact: Murray Gross, <magross@its.brooklyn.cuny.edu>

6.4.5 Functional Programming at Utrecht
University

Report by: Doaitse Swierstra

All UU Software (http://www.cs.uu.nl/groups/ST/)
We are well on our way to make all our Haskell modules mu-
tually consistent and to make them available through a CVS
server at cvs.cs.uu.nl, in the directory uust. Currently
included are our parser combinators, pretty printers and at-
tribute grammar system. Further software will be added in
the near future.

Parser Combinators (Doaitse Swierstra, Arthur Baars,
Rui Guerra)
The current version of the parser combinators constructs an
online result, in the sense that parts of the result can be ac-
cessed even when parsing has not yet finished. This is espe-
cially useful when parsing and processing large files of similar
information. Furthermore error messages are displayed while
parsing (using unsafePerformIO). The underlying mecha-
nism for achieving this is relatively costly, although parsing
speed is not much slower than that of parsers generated off
line using Frown or Happy (section 5.2.2). We plan to con-
struct a companion module (based on an earlier approach)
that contains a more strict result, and which we expect to be
running even faster. Furthermore the module structure may
be changed by making it possible for the user of the library to
tune the internals of the machine even more using classes. In
order to make the everyday use of the combinators not suffer
from these changes we have separated the interface and the
extensions from the basic implementation, so future changes
can relatively easily be made.
Furthermore three special modules were constructed, since
they contain far more complex combinators, that may prob-
ably not be used by most people. Two of the combinators
enable the construction of a parser that reorders the elements
it has recognized (merging or permutation parsing) and keep

27

http://www.haskell.org/yale
http://haskell.org/yampa
http://www.haskell.org/edsl
http://www.cs.uu.nl/groups/ST/

track of this reordering by returning a function that can be
used to reconstruct the original order. Inspiration for this
came from the wish to be able to record the original input
in such a way that error messages can be easily added to
it. The third module can be used to construct parsers for
languages that follow the Haskell off side rule when parsing.
This turned out to be quite complicated since the precise
parsing rules have been defined in terms of parse errors, and
our combinators have a standard way of handling such errors;
as a consequence we had to afflict some brain-damage.

Helium (Arjan van IJzendoorn, Bastiaan Heeren, Daan
Leijen, Rijk-Jan van Haaften)
The purpose of the Helium project is to construct a light-
weight compiler for a subset of Haskell that is especially di-
rected to beginning programmers. We try to give useful feed-
back for oft occurring mistakes. Included in the Helium com-
piler are the type error determining techniques described in
the next section. One of the aspects of the compiler is that it
also logs errors, so we can track the kind of problems students
are having, and improve the error messages and hints. The
compiler uses Daan Leijen’s LVM (Lazy Virtual Machine) as
back-end. The complete type checker and code generator has
been constructed with our AG (attribute grammar system).
As a side effect of the Helium project a data type was defined
for the internal representation of Haskell programs, around
which we try to focus our activities.

Improving Type Errors (Bastiaan heeren, Jurriaan
Hage, Doaitse Swierstra)
As everyone has experienced it is not always the case that
error messages coming from the type inferencer point at the
point in the program where the actual corrections have to
be made. We constructed a constraint based solver that is
used to pinpoint the most likely location. We will extend this
solver with the possibility to oft occurring erroneous patterns,
that stem from commonly made mistakes, in order to provide
more specific feedback.

The attribute grammar system AG (Arthur Baars,
Doaitse Swierstra)
The system has been bootstrapped, and now provides exten-
sive error messages in case the attribute grammar contains
errors. Only the type checking of the semantic functions is
postponed to the Haskell compiler that is processing the out-
put of the system. In a newer version we have added the
conventional data flow analyses, so we may point at circu-
larities, and can do experiments with generating more strict
evaluators, of which we hope they will run even faster. The
system is used in the course on Implementation of Program-
ming Languages.

Type Checker for Extended Haskell (Atze Dijkstra,
Doaitse Swierstra)
As a companion to Mark Jones’ “Typing Haskell in Haskell”
we are constructing a type inferencer for full (extended)

Haskell. Some of its features are a consistent way of han-
dling existential and polymorphic types, and the use of poly-
morphic kinds (if you want to know what they are good
for read the “Typing Dynamic Typing” paper presented
at the ICFP2002, http://www.cs.uu.nl/people/arthurb/
dynamic.html). We are currently rounding of this construc-
tion with the less interesting, but more laborious parts of full
Haskell. We plan to use this material later this year in a
course on “Type Systems”.

Pretty Printing (Pablo Azero, Doaitse Swierstra)
Our pretty printing combinators have been silently doing their
work over the years. Currently we are updating them, so they
can be generated by the new version of the AG system. They
too will have a more flexible interface allowing naming of
subformats by using a monadic top layer.

Proxima (Martijn Schrage, Johan Jeuring, Lambert
Meertens, Doaitse Swierstra)
Proxima is a generic graphical structure editor with sup-
port for free editing (ie. normal typing instead of selecting
transformations from menus) and computations over the data
structure. The system has a layered architecture, which is de-
scribed and implemented using a library of architecture com-
binators. For the presentation of the document data struc-
ture, the graphical presentation combinator library Xprez has
been developed. The user interface is implemented using
the ported ObjectIO library (section 4.3.2), stemming from
Clean.
One of the intended applications of Proxima is an editor/IDE
for the language Helium. It will support editable pretty
printed code in which types and error messages can be shown.
Sources can be edited by normal typing (also for changing lay-
out) as well as by performing structural edit commands.
A prototype of Proxima is expected to be ready in the first
half of 2003.

Syntax Macros (Arthur Baars, Doaitse Swierstra)
The syntax macros are now in a state that one gets a macro
mechanism for free when using our attribute grammar sys-
tem and parser combinators in constructing a front end of a
compiler. Most of the necessary glueing code is automatically
generated. The syntax macros make it possible to extend the
context free grammar of a language on a per program ba-
sis. Examples of constructs that no longer have to be part
of the standard language, but could have been defined us-
ing our macro mechanism are the do-notation, and the no-
tation for list comprehensions. An open question, on which
we work, is how to provide feedback to the user in terms
of his original program. The current version is available at:
http://www.cs.uu.nl/people/arthurb/macros.html

C-front end and Type Checker (Alexey Rodriguez)
As part of an abstract interpreter for C a parser and type
checker for C have been produced. They are being brought in
line with the modules in the CVS repository, and will appear
there when consistent. The parser is interesting because it

28

http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.cs.uu.nl/people/arthurb/macros.html

shows how to deal with some weird aspects of the C context
free grammar (parsing e.g. a * b).

First Class Attribute Grammars (Arthur Baars,
Doaitse Swierstra)
We are investigating how to make language definitions more
compositional, and how to capture recurring patterns of
analysis and dat flow in compilers. Ideally we should like
to have so-called first class aspects. It is a matter of re-
search however how to integrate type checking and aspect
oriented programming. Attempts using extendible records
almost seem to do the job, but unfortuantely incorrect use
leads to pages of error messages. We hope that following
the techniques explained in http://www.cs.uu.nl/people/
arthurb/dynamic.html may help to solve the problem.

6.4.6 Functional Programming at UKC

Report by: Claus Reinke
Here at the University of Kent at Canterbury, the functional
programming interest group now includes about a dozen peo-
ple (yes, we’re growing;-) pursuing research interests in func-
tional programming. Haskell is a major focus of teaching and
research, although we also look at other languages (such as
Erlang http://www.erlang.org;-).
Most of our Haskell projects have now moved into their
own sections, such as the Haskell binding for Gtk2 (Axel
Simon; 4.3.4), the Metrics and Visualization project Med-
ina (Chris Ryder; 4.5.1), the functional refactoring project
(Simon Thompson, Claus Reinke, Huiqing Li; 5.3.3), or the
project combining functional programming and virtual worlds
(Claus Reinke; 4.4.3).
Keith Hanna is continuing work on Vital, an implemen-
tation of Haskell intended for end-users in other disciplines
(engineering, finance, maths, etc.). Its distinguishing fea-
tures are that Haskell values are represented graphically in
a workspace, that their look-and-feel is determined by a
stylesheet, and that these values may be edited graphically
(with changes being reflected back in the original Haskell pro-
gram). The system was demonstrated at the recent ICFP
conference in Pittsburgh (there’s a paper in the proceedings
as well).
At present, work is concentrated on allowing parametrised
stylesheets so that, for instance, the look-and-feel of the ele-
ments of a datastructure can be varied independently of that
of the overall datastructure. The next release of Vital is
planned for mid 2003.

Further reading:

FP group:
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/
Vital:
http://www.cs.ukc.ac.uk/people/staff/fkh/Vital/
Gtk2HS: http://gtk2hs.sourceforge.net/
FunWorlds:
http://www.cs.ukc.ac.uk/people/staff/cr3/FunWorlds/

Haskell metrics:
http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/
Refactoring Functional Programs:
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/
Refactor/

6.4.7 Functional Programming Research
Group at Kingston Business School
(Kingston University)

Report by: Chris Reade

Application Area: Internet applications

Members: (Kingston) Chris Reade, Dan Russell, Phil
Molyneux, Barry Avery, David Martland
(Royal Bank of Scotland) Dominic Steinitz

Contact: Dan Russell <D.Russell@kingston.ac.uk>
This community has been developing internet applications us-
ing advanced language features (functional, typed and higher
order). Part of our motivation is to investigate advantages of
a functional approach to such application areas, but also to
identify areas for further language and library development.
We have built an LDAP client with a web user interface en-
tirely in Haskell (reported at the 3rd Scottish Functional Pro-
gramming Workshop in August 2001). This has been further
developed to include asynchronous processes (using Concur-
rent Haskell).
Libraries for the LDAP, ASN.1 and BER will be made avail-
able as open source by the end of November 2002. Future
plans include analysis of other internet applications from a
concurrency and mobility perspective to inform functional li-
brary designs.
Work has also started on a Case Tool to support a functional
methodology.

Further reading:

FP Group: http:
//www.kingston.ac.uk/~ku07009/Research/fpres.html
Chris Reade: http://www.kingston.ac.uk/~ku07009/

6.5 Individual Haskellers

“What are you using Haskell for?” – the implementation
mailing lists are full of people sending in bug reports and fea-
ture suggestions, stretching the implementations to their lim-
its. Judging from the “reduced” examples sent in to demon-
strate problems, there must be quite a few Haskell applica-
tions out there that haven’t been announced anywhere (prob-
ably because Haskell is “just” the tool, not the focus of those
projects).
If you’re one of those serious Haskell users, why not write a
sentence or two about your application? We’d be particularly
interested in your experience with the existing tools (e.g., that

29

http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.cs.uu.nl/people/arthurb/dynamic.html
http://www.erlang.org
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/
http://www.cs.ukc.ac.uk/people/staff/fkh/Vital/
http://gtk2hs.sourceforge.net/
http://www.cs.ukc.ac.uk/people/staff/cr3/FunWorlds/
http://www.cs.ukc.ac.uk/people/rpg/cr24/medina/
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/Refactor/
http://www.cs.ukc.ac.uk/research/groups/tcs/fp/Refactor/
http://www.kingston.ac.uk/~ku07009/Research/fpres.html
http://www.kingston.ac.uk/~ku07009/Research/fpres.html
http://www.kingston.ac.uk/~ku07009/

all-time-favourite: how difficult was it to tune the resource
usage to your needs, after you got your application working?
Which tools/libraries where useful to you? What is missing?).

Hal Daume <hdaume@ISI.EDU> writes: I use Haskell
for statistical natural language processing: specifically, auto-
matic document summarization (machine learning for how to
do summarization by reading pairs of documents and human-
created summaries of them). This will undoubtedly be the
topic of my thesis. I have also implemented an unsupervised
learning system in Haskell, available off my web page.
I also use Haskell for Haskell’s sake and am currently working
on a project which will convert Haskell code into (strict) ML
code. It is not meant to be “industrial strength” but already
it will convert the larger part of the Prelude. It is intended
to allow analysis of under what circumstances laziness hurts
us.

Tom Pledger <Tom.Pledger@peace.com> writes:
“Since 2001 I’ve mainly been working on a Haskell-like lan-
guage for business data processing. It has a lot in common
with discrete Functional Reactive Programming. A proto-
type of the runtime virtual machine, implemented in Haskell,
passed some initial tests in April 2002. Now I’m concentrating
on the database interface and the front end of the interpreter,
and sketching some ideas for an Integrated Development En-
vironment.
I take care not to ask for related free advice on the Haskell
mailing lists, because my employer expects to own and profit
from what I produce.”

In our previous edition, Johannes Waldmann
<joe@isun.informatik.uni-leipzig.de> reported on two
projects in the context of his university teaching (not only
Haskell), autotool (automatic assessment of theoretical
computer science homework via Haskell DSELs) http:
//theopc.informatik.uni-leipzig.de/~autotool/, and
a framework for board game programming contests (latest
instance: http://theopc.informatik.uni-leipzig.de/
~joe/phutball/). Both are still in use, but haven’t seen any
new development over the last six months. The proceedings
of the recent FDPE 2002 workshop (1.4) include a paper on
autotool.

Oleg Kiselyov <oleg@pobox.com> continues to extend
his collection of Haskell programming miscellanea (we men-
tioned it in the tips&tricks section last time), exploring
algorithms and programming techniques, with extensively
commented example code http://pobox.com/~oleg/ftp/
Haskell/misc.html. One recent addition is a discussion
of programming with cyclic data structures “Pure-functional
transformations of cyclic graphs and the Credit Card Trans-
form.” – illustrated by considering the problem of printing
out a non-deterministic finite automaton (NFA) and trans-
forming it into a deterministic finite automaton (DFA). Both
NFA and DFA are represented as cyclic graphs.
“I’d also like to point out a Haskell project that I’ll be
developing further and further: a pure-functional lambda-
calculator:

http://pobox.com/~oleg/ftp/Haskell/Lambda_calc.lhs
The present calculator implements what seems to be an ef-
ficient and elegant algorithm of normal order reductions.
The algorithm is “more functional” than the traditionally
used approach. The algorithm seems identical to that em-
ployed by yacc sans one critical difference. The calculator
also takes a more “functional” approach to the hygiene of
beta-substitutions, which is achieved by coloring of identifiers
where absolutely necessary. This approach is “more func-
tional” because it avoids a “global” counter or the threading
of the paint bucket through the whole the process. The in-
tegration of the calculator with Haskell lets us store terms in
variables and easily and intuitively combine them.
The calculator is fully functional (pun intended). I use it rou-
tinely to play with Lambda Calculus. One interesting twist
is that lambda-calculus reductions seem to be closely related
to LALR-like parsing.”

Mike Thomas <mthomas@gil.com.au> writes: “I’m work-
ing on small bindings to the MPICH (open source parallel
processing by message passing) and Proj (open source map
projection) libraries in conjunction with a Haskell library to
read, write, display and process GRASS (an open source geo-
graphic information system) mapsets and of doing some geo-
chemical modelling, hopefully with the ability to distribute
large map computations with MPICH.
The Windows version of GHC is my compiler of choice and
I rely heavily on the Parsec and ObjectIO libraries, each of
which I believe to be excellent development tools.
In the last HC&A Report, work had just commenced and con-
tinues in whatever non-family, non-work, non-other-project
time I can find. My focus has been on low-level libraries,
refining the handling of large images and adding support for
more GRASS data formats. The next step (amongst many) is
to make a map description data format and to use it to make
nice maps from GRASS data. This work is not available on
the web as it is relatively incomplete and I have not decided
on a release model. More information on GRASS may be
found at:
http://grass.itc.it
And MPICH:
http://www-unix.mcs.anl.gov/mpi/mpich/

30

http://theopc.informatik.uni-leipzig.de/~autotool/
http://theopc.informatik.uni-leipzig.de/~autotool/
http://theopc.informatik.uni-leipzig.de/~joe/phutball/
http://theopc.informatik.uni-leipzig.de/~joe/phutball/
http://pobox.com/~oleg/ftp/Haskell/misc.html
http://pobox.com/~oleg/ftp/Haskell/misc.html
http://pobox.com/~oleg/ftp/Haskell/Lambda_calc.lhs
http://grass.itc.it
http://www-unix.mcs.anl.gov/mpi/mpich/

	General
	Haskell.org
	Revised Haskell 98 Report
	Publication
	Copyright

	Tips, Tricks, Tours and Tutorials
	Haskell-related Publications

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	Eager Haskell

	Language Extensions
	Foreign Function Interface
	Hierarchical Module Namespace
	Non-sequential Programming
	Concurrent Haskell
	GpH -- Glasgow Parallel Haskell
	Eden

	Type System/Program Analysis
	Chameleon/A General Type Class Framework based on Constraint Handling Rules
	Program Analysis for Haskell

	Generic Programming
	Preprocessors
	Languages

	Meta Programming
	Template Haskell

	Syntactic Sugar
	Recursive do notation
	Arrow Notation

	Libraries
	Hierarchical Libraries
	Data and Control Structures
	Haskell Foundation Library
	Strafunski

	Graphical User Interfaces
	HTk
	Object I/O for Haskell
	Gtk+HS
	Gtk2hs

	Graphics
	HGL Graphics Library
	FunGEn -- A game engine for Haskell
	FunWorlds -- Functional Programming and Virtual Worlds

	Tool Frameworks
	Medina -- Metrics for Haskell

	Web Programming
	HaXml
	HXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell

	Tools
	Foreign Function Interface
	C-->Haskell
	GreenCard
	Java VM Bridge

	Meta Programming
	Haskell Preprocessors
	Scanning, Parsing, and Analysis
	Haskell Transformations

	Program Development
	Tracing and Debugging
	Development Environments
	Refactoring
	Testing
	Documentation

	Applications, Groups, and Individuals
	Non-Commercial Applications
	HScheme
	Hume: a Language for Embedded Real-Time Systems
	ParaGAP: Parallel Symbolic Computer Algebra
	Knit

	Commercial Applications
	Reid Consulting Ltd
	Binary Parser
	Extending Lava for System on Chip Designs

	Haskell in Education
	Beseme Project
	Idefix Project

	Research Groups
	Functional Programming at Chalmers
	Formal Methods at Bremen University
	The Yale Haskell Group
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Utrecht University
	Functional Programming at UKC
	Functional Programming Research Group at Kingston Business School (Kingston University)

	Individual Haskellers

