
Haskell Communities and Activities Report
http://www.haskell.org/communities/

– fifth edition –

November 11, 2003

Claus Reinke (editor), University of Kent, UK
Krasimir Angelov, Bulgaria

Sengan Baring-Gould, AMD, USA
Mark T.B. Carroll, Aetion Technologies LLC, USA

Manuel Chakravarty, University of New South Wales, Australia
Olaf Chitil, The University of York, UK

Iavor Diatchki, OGI School of Science and Engineering, OHSU, USA
Shae Erisson, Sweden

Levent Erkok, OGI School of Science and Engineering, OHSU, USA
Andrew Frank, Institute for Geoinformation, TU Vienna, Austria

Murray Gross, City University of New York, USA
Walter Guttmann, University of Ulm, Germany

Jurriaan Hage, Utrecht University, The Netherlands
Thomas Hallgren, Pacific Software Research Center, OGI/OHSU, USA

Keith Hanna, University of Kent, UK
Johan Jeuring, Utrecht University, The Netherlands

Isaac Jones, Aetion Technologies LLC, USA
Daan Leijen, Utrecht University, The Netherlands

Rita Loogen, University of Marburg, Germany
Christoph Lüth, George Russell, and Christian Maeder, University of Bremen, Germany

Matthias Mann and David Sabel, JWG-University Frankfurt, Germany
Simon Marlow, Microsoft Research Cambridge, UK
Henry Nyström, Heriot-Watt University, Scotland

Rex Page, Oklahoma University, USA
Sven Panne, Germany

Ross Paterson, City University London, UK
Jens Petersen, Red Hat, Japan

John Peterson, Yale University, USA
Simon Peyton Jones, Microsoft Research Cambridge, UK

Bernie Pope, University of Melbourne, Australia
Frank Rosemeier, FernUniversität in Hagen, Germany

Alastair Reid, Reid Consulting (UK) Ltd., UK
David Roundy, MIT, USA

Chris Ryder, University of Kent, UK
Uwe Schmidt, Fachhochschule Wedel, Germany

Sean Seefried, University of New South Wales, Australia
Axel Simon, University of Kent, UK

Ganesh Sittampalam, Oxford University, UK
Anthony Sloane, Macquarie University, Australia

Dominic Steinitz, UK
Doaitse Swierstra, Utrecht University, The Netherlands

Martin Sulzmann and Jeremy Wazny, National University of Singapore, Singapore
Wolfgang Thaller, Graz, Austria

Peter Thiemann, University of Freiburg, Germany
Phil Trinder, Heriot-Watt University, Scotland

Eelco Visser, Utrecht University, The Netherlands
Malcolm Wallace, The University of York, UK

Ashley Yakeley, Seattle WA, USA

http://www.haskell.org/communities/

Preface

Months of work, hundreds of emails, and weeks of
collecting material, all condensed for you to read
through over a weekend, and all about Haskell!-)
That, in essence, are the Haskell Communities and
Activities Reports, now in their fifth edition. Twice
a year, they attempt to provide overviews of all
things Haskell over the last 6 months, particularly
focussing on recent and current activities and plans.

The reports are created by inviting all Haskellers
to contribute brief summaries of their recent Haskell
activities and collecting all contributions in a sin-
gle document. In spite of the format, they are ba-
sically an email survey of the Haskell mailing list,
and you are invited to send in your contributions.
Please make a note in your diary now: your en-
tries for the May 2004 edition should reach
the editor in the last two weeks of April 2004!
If you come across any interesting Haskell imple-
mentations, extensions, libraries, tools, papers, user
groups, applications etc. in the coming 6 months,
please make sure they are reflected in the next edi-
tion, by prompting the people responsible.

What you’ll find in this report are updates on re-
cent activities in your favourite Haskell groups and
projects, confirmations by authors and maintainers
that their software is still actively maintained and,
of course, some stuff you may not have come across
before!-) In many cases, you will be invited to review
the process that has been made in specialist groups,
and to provide feedback, or to contribute your time
and efforts to keep good projects going or get new
projects off the ground. Remember, nearly every-
thing you see here is the result of volunteer efforts,
and depends on your contributions.

One example are these reports: more than two
years ago, one frustrated Haskell user complained at
a Haskell workshop that it had become impossible
to follow the developments in the various specialist
Haskell lists and groups, and was promptly asked
whether he’d be willing to do something about it.
Well, he was, and the resulting reports are by now
firmly established as a means to keep up to date
with increasingly diverse Haskell groups and activi-
ties. However, we all have other projects that need
our time and, after two years and four editions, this
year’s Haskell workshop saw me looking for a suc-
cessor in the editor role.

Demonstrating once again that Haskellers are not
shy to contribute their efforts, we already have a
candidate, Andres Löh (thanks!), who is currently
studying for his PhD at Utrecht University. So it
might seem that you will have to volunteer for one
of the many other jobs mentioned in this report;-)

However, there’s a small hitch, in that Andres is
sensible enough not to want to start this in the final
phase of his PhD: he will first be available to edit
the November 2004 edition. If you read this, the
November 2003 edition will finally have made its way
out, defeating numerous delays and obstacles, but
we still need someone to take on the May 2004
edition. If you can bring in a natural curiosity, good
email- and text-processing tools, and are willing to
invest some of your time for the benefit of the Haskell
community, please get in touch with me! It may even
be a good idea to have two editors alternating in
their duties for the May and November editions, to
reduce the impact on any one person’s time budget.

Oh, and last but not least, these reports are not
just meant for your next weekend: they are also
an opportunity to present a glimpse of the strange
world you live and work in to outsiders, be it that
you want to show your students that there is more
to Haskell than obscure type class error messages,
or be it that you want to convince your boss that,
yes, there are implementations, tools, and libraries,
lots of people working on them, and there are com-
panies using Haskell, and there are even companies
and consultants specialising in Haskell (we certainly
haven’t covered them all here).

The most recent edition is also always a good entry
point for Haskell newcomers, giving them a chance
to find their way around – so if you find yourself an-
swering the same questions on projects, implementa-
tions, libraris, tools, status, and plans over and over
again, you might find it convenient to direct them
towards http://www.haskell.org/communities/.

But now sit back and enjoy the read, then follow
the pointers and try things out, give the authors
feedback on their work, discuss, contribute, collabo-
rate, or start your own little projects and excursions
into Haskell land. And, please, remember to come
back in 6 months and report!-)

As always, this edition is the result of your work
and contributions, and so I’d like to close with a big
thanks to all contributors!

Claus Reinke, University of Kent, UK

1

http://www.haskell.org/communities/

Contents

1 General 5
1.1 haskell.org . 5
1.2 Tips, Tricks, Tours and Tutorials . 5
1.3 Haskell-related Publications . 5

1.3.1 Haskell-related Events . 6

2 Implementations 7
2.1 The Glasgow Haskell Compiler . 7
2.2 Hugs . 7
2.3 nhc98 . 8
2.4 hmake . 8
2.5 Domain-specific variations . 8

2.5.1 Haskell on Handheld Devices . 8
2.5.2 Helium . 8
2.5.3 Educational Domain Specific Languages . 9
2.5.4 Vital: Visual Interactive Programming . 9

3 Language Extensions 10
3.1 Foreign Function Interface . 10
3.2 Non-sequential Programming . 10

3.2.1 Concurrent Haskell . 10
3.2.2 GpH – Glasgow Parallel Haskell . 10
3.2.3 GdH – Glasgow Distributed Haskell . 11
3.2.4 Eden . 11

3.3 Type System/Program Analysis . 12
3.3.1 Chameleon/A General Type Class Framework based on Constraint Handling Rules 12
3.3.2 Constraint-based Type Inferencing . 13

3.4 Generic Programming . 13
3.5 Syntactic Sugar . 14

3.5.1 Recursive do notation . 14
3.5.2 Arrow Notation . 14

4 Libraries 16
4.1 Packaging and Distribution . 16

4.1.1 Library Infrastructure Project . 16
4.1.2 RPM Packaging of Haskell projects . 16
4.1.3 Haskell User-Submitted Libraries . 16

4.2 Hierarchical Libraries . 17
4.2.1 A redesigned IO library . 17
4.2.2 System.Process: a platform-independent API for external process control 17
4.2.3 System.Time: a redesigned Time library . 17

4.3 Data and Control Structures . 18
4.3.1 The Haskell Cryptographic Library . 18
4.3.2 HSQL . 18
4.3.3 Strafunski . 18
4.3.4 Parsec . 18

2

4.3.5 UPC – Utrecht Parser Combinators . 18
4.3.6 Yampa . 19
4.3.7 The revamped monad transformer library . 19
4.3.8 DData . 20
4.3.9 HBase . 20

4.4 FFI . 20
4.4.1 Template Greencard . 20

4.5 Graphical User Interfaces . 20
4.5.1 The Common GUI Library Task Force . 20
4.5.2 HTk . 21
4.5.3 HToolKit . 21
4.5.4 wxHaskell . 21
4.5.5 Gtk+HS . 21
4.5.6 Gtk2hs . 21

4.6 Graphics . 22
4.6.1 HGL Graphics Library . 22
4.6.2 HSX11 . 22
4.6.3 PanTHeon . 22
4.6.4 HOpenGL – A Haskell Binding for OpenGL and GLUT . 22
4.6.5 FunWorlds – Functional Programming and Virtual Worlds . 23

4.7 Tool Frameworks . 23
4.7.1 Medina – Metrics for Haskell . 23

4.8 XML and Web Programming . 23
4.8.1 HaXml . 23
4.8.2 Haskell XML Toolbox . 23
4.8.3 WASH/CGI – Web Authoring System for Haskell . 24

5 Tools 25
5.1 Foreign Function Interface . 25

5.1.1 C–>Haskell . 25
5.1.2 GreenCard . 25
5.1.3 JVM Bridge . 25

5.2 Meta Programming . 25
5.2.1 Scanning, Parsing, and Analysis . 25

Alex version 2 . 25
Happy . 25
The Utrecht attribute grammar system UAG . 26

5.2.2 Haskell Transformations . 26
MAG . 26
HsOpt: Helium/LVM Optimization in Stratego . 26
Ultra . 26

5.2.3 Haskell Frontends . 26
The Programatica Project . 26

5.3 Program Development . 27
5.3.1 Tracing and Debugging . 27

buddha . 27
5.3.2 HaRe – The Haskell Refactorer . 27
5.3.3 VS Haskell . 28
5.3.4 Documentation . 28

Haddock . 28

6 Applications, Groups, and Individuals 29
6.1 Non-Commercial Applications . 29

6.1.1 HScheme . 29
6.1.2 Analysis Tools for Rosetta . 29
6.1.3 Hircules, an IRC client . 29
6.1.4 Darcs—David’s Advanced Revision Control System . 29
6.1.5 Yarrow, a proof-assistant for Pure Type Systems . 30

3

6.2 Commercial Applications . 30
6.2.1 Reid Consulting Ltd . 30
6.2.2 Aetion Technologies LLC . 30
6.2.3 Binary Parser . 30

6.3 Haskell User Groups . 31
6.3.1 Debian Users . 31

6.4 Haskell in Education . 31
6.4.1 Beseme Project . 31

6.5 Research Groups . 31
6.5.1 Artificial Intelligence and Software Technology at JWG-University Frankfurt 31
6.5.2 Formal Methods at Bremen University . 32
6.5.3 Functional Programming at Brooklyn College, City University of New York 32
6.5.4 Functional Programming at Macquarie University . 32
6.5.5 Functional Programming at Utrecht University . 33
6.5.6 Functional Programming at the University of Kent . 33
6.5.7 Programming Languages & Systems at UNSW . 34
6.5.8 Institute for Geoinformation at TU Vienna . 34

6.6 Individual Haskellers . 35

4

Chapter 1

General

1.1 haskell.org

Report by: John Peterson
haskell.org belongs to the entire haskell community - we all
have a stake in keeping it as useful and up-to-date as possible.
Anyone willing to help out at haskell.org should contact
John Peterson (<peterson-john@cs.yale.edu>) to get access
to this machine. There is plenty of space and processing power
for just about anything that people would want to do there.
What can haskell.org do for you?

• advertise your work: whether you’re developing a new
application, a library, or have written some really good
slides for your class you should make sure haskell.org
has a pointer to your work.

• hosting: if you don’t have a stable site to store your work,
just ask and you’ll own haskell.org/yourproject.

• mailing lists: we can set up a mailman-based list for you
if you need to email your user community.

• sell merchandise: give us some new art for the cafepress
store. publicize your system with a t-shirt.

The biggest problem with haskell.org is that it is difficult
to keep the information on the site current. At the moment,
we make small changes when asked but don’t have time for
any big projects. Perhaps the biggest problem is that most
parts (except the wiki) cannot be updated interactively by
the community. There’s no easy way to add a new library or
project or group or class to haskell.org without bothering the
maintainers. the most successful sites are those in which the
community can easily keep the content fresh. We would like
to do something similar for haskell.org.
Just what can you do for haskell.org? Here are a few ideas:

• haskell programmers are not graphic designers. just
about anyone could make haskell.org look nicer and
more professional.

• make the site more interactive. allow people to add new
libraries, links, papers, or whatever without bothering
the maintainers. allow people to attach comments to
projects or libraries so others can benefit from your ex-
perience. help tell everyone which one of the graphics
packages or gui’s or whatever is really useful.

• develop a system where the pages for haskell.org live
in a cvs repository so that we can more easily share out
maintenance.

• add searching capability to haskell.org.

• take over the cafepress store and get more merchandise
in there.

Some of these ideas would be good student projects. Be lazy
- get students to do your work for you.

Further reading:

http://www.haskell.org
http://www.haskell.org/mailinglist.html

1.2 Tips, Tricks, Tours and Tutorials

Alastair Reid continues to add to his guide to the new Foreign
Function Interface
http://www.reid-consulting-uk.ltd.uk/docs/ffi.html

1.3 Haskell-related Publications

In this section, we try to give pointers to and perhaps short
descriptions of recent Haskell-related publications (books,
conference proceedings, special issues in journals, PhD theses,
etc.), with brief abstracts. For a more exhaustive overview of
Haskell publications, see Jim Bender’s “Online Bibliography
of Haskell Research” (http://haskell.readscheme.org).
Please make sure to keep him up to date about new (and
not so new) Haskell-related publications!
And if you still haven’t come across the Haskell bookshelf,
you’ll find it at http://www.haskell.org/bookshelf/. It
lists textbooks, papers (especially of tutorial nature), pro-
ceedings of the “Advanced Functional Programming” sum-
mer and spring schools, as well as reference material, often
created in the context of Haskell courses.

In “Discriminative Sum Types Locate the Source of Type
Errors” (ICFP’03, http://doi.acm.org/10.1145/944705.
944708), Neubauer and Thiemann describe a new approach
to locating type errors in Haskell using a non-standard type
system which is based on the theory of discriminative sum

5

http://www.haskell.org
http://www.haskell.org/mailinglist.html
http://www.reid-consulting-uk.ltd.uk/docs/ffi.html
http://haskell.readscheme.org
http://www.haskell.org/bookshelf/
http://doi.acm.org/10.1145/944705.944708
http://doi.acm.org/10.1145/944705.944708

types. A type derivation in this system contains sufficient in-
formation to highlight the program locations that participate
in a type error; a browser based on a type inference procedure
for that system is currently under development.

Daan Leijen has finished his PhD Thesis at Utrecht Uni-
versity: “The λ Abroad - A Functional Approach to Soft-
ware Components”, November 2003. http://www.cs.uu.nl/
~daan/download/papers/phd-thesis.pdf

Simon Peyton Jones and Mark Shields are working on “Prac-
tical type inference for arbitrary-rank types”: This paper, long
in gestatation, describes the approach that GHC takes to
type inference for higher-rank types. It has a strongly tu-
torial flavour, and comes with an executable implementation.
Feedback on this paper would be very welcome.
http://research.microsoft.com/Users/simonpj/
papers/putting/

1.3.1 Haskell-related Events

In the following pages, you will see various references to
acronyms like ICFP, IFL, HIM, etc., so it might be useful
to know about some standard and not so standard events
that have featured Haskell-related presentations or publica-
tions recently, especially if you want to follow the common
practice of going through their programmes and trying to
find the papers or slides for the talks that interest you on the
author’s homepages:

ICFP 2003 – 8th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2003) Uppsala, Sweden:
25-29 August 2003.
http://www-users.cs.york.ac.uk/~colin/icfp2003.
html
Proceedings online in the ACM digital library:
http://portal.acm.org/toc.cfm?id=944705&type=
proceeding&coll=GUIDE&dl=ACM&CFID=
13941416&CFTOKEN=10629846

Haskell Workshop 2003 – ACM SIGPLAN 2003 Haskell
Workshop Uppsala, Sweden: August 28, 2003
http://www.cs.uu.nl/~johanj/HaskellWorkshop/cfp03.
html
Proceedings online in the ACM digital library:
http://portal.acm.org/toc.cfm?id=871895&type=
proceeding&coll=portal&dl=ACM&CFID=
13941416&CFTOKEN=10629846

HIM 2003 – Haskell Implementor’s Meeting 2003, Stock-
holm, Sweden: 29/30 August (by-invitation only, but web-
page has slides of several talks you might be interested in):
http://cs-www.cs.yale.edu/homes/nilsson/HIM/

IFL 2003 – 15th International Workshop on the Implementa-
tion of Functional Languages Edinburgh, Scotland September
8th - 10th, 2003.
http://www.macs.hw.ac.uk/~ifl03/

TFP 2003 – Fourth symposium on Trends in Functional Pro-
gramming September 11th-12th 2003, Edinburgh, Scotland
http://homepages.inf.ed.ac.uk/stg/workshops/TFP/

SBLP 2003 – 7th Brazilian Symposium on Programming
Languages Ouro Preto, MG, Brazil - May 28-30, 2003
http://www.inf.pucminas.br/sblp2003/

LL3 – Lightweight Languages 2003 Nov. 8, 2003 MIT, Cam-
bridge MA featured a number of Haskell offspring this year,
such as WASH/CGI (section 4.8.3), the BlueSpec hardware
description language, and Functional Reactive Programming,
ported to Scheme. Instead of proceedings, there are webcast
recordings, and a mailing list with keyword-style notes from
the event:
http://ll3.ai.mit.edu/

6

http://www.cs.uu.nl/~daan/download/papers/phd-thesis.pdf
http://www.cs.uu.nl/~daan/download/papers/phd-thesis.pdf
http://research.microsoft.com/Users/simonpj/papers/putting/
http://research.microsoft.com/Users/simonpj/papers/putting/
http://www-users.cs.york.ac.uk/~colin/icfp2003.html
http://www-users.cs.york.ac.uk/~colin/icfp2003.html
http://portal.acm.org/toc.cfm?id=944705&type=proceeding&coll=GUIDE&dl=ACM&CFID=13941416&CFTOKEN=10629846
http://portal.acm.org/toc.cfm?id=944705&type=proceeding&coll=GUIDE&dl=ACM&CFID=13941416&CFTOKEN=10629846
http://portal.acm.org/toc.cfm?id=944705&type=proceeding&coll=GUIDE&dl=ACM&CFID=13941416&CFTOKEN=10629846
http://www.cs.uu.nl/~johanj/HaskellWorkshop/cfp03.html
http://www.cs.uu.nl/~johanj/HaskellWorkshop/cfp03.html
http://portal.acm.org/toc.cfm?id=871895&type=proceeding&coll=portal&dl=ACM&CFID=13941416&CFTOKEN=10629846
http://portal.acm.org/toc.cfm?id=871895&type=proceeding&coll=portal&dl=ACM&CFID=13941416&CFTOKEN=10629846
http://portal.acm.org/toc.cfm?id=871895&type=proceeding&coll=portal&dl=ACM&CFID=13941416&CFTOKEN=10629846
http://cs-www.cs.yale.edu/homes/nilsson/HIM/
http://www.macs.hw.ac.uk/~ifl03/
http://homepages.inf.ed.ac.uk/stg/workshops/TFP/
http://www.inf.pucminas.br/sblp2003/
http://ll3.ai.mit.edu/

Chapter 2

Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones

GHC status (October 2003) Quite a bit is happening
on the GHC front. As ever, we are grateful to the many
people who submit polite and well-characterised bug reports.
We’re even more grateful to folk who actually help develop
and maintain GHC. The more widely-used GHC becomes,
the more Simon M and I rely on you to help solve people’s
problems, and to maintain and develop the code. We won’t
be around for ever, so the more people who are involved the
better. If you’d like to join in, please let us know.
Here are some highlights from the last few months.

• Simon PJ has been busy re-working chunks of the type-
checker, partly as a clean-up sweep, but also to consoli-
date it for further Template Haskell developments. The
big change is that supporting definitions are now sucked
from interface files lazily (rather than eagerly as before);
this should greatly reduce the quantity of interface files
read. The version tracking for separately-compiled mod-
ules is also somewhat more refined, reducing the size of
interface files.

• Simon M has been working on a Visual Studio plug-in, so
that GHC can be hosted in Visual Studio (section 5.3.3).
Nothing fancy yet (syntax colouring etc). The next stage
is to add much more detailed location information to the
syntax tree, something we have been meaning to do for
ages.

• With heroic help from Ross Paterson, GHC now supports
the syntactic sugar that Ross invented for John Hughes’s
“arrows”. It’s more than just sugar: the arrow syntax is
type-checked directly, so that errors are reported in terms
of arrow syntax, not some complex desugaring thereof
(section 3.5.2).

• Sigbjorn Finne has added experimental support for .NET
interop.

• Simon M has replaced GHC’s hand-written lexer by an
Alex-generated lexer. He had to beef up Alex quite a bit
to do this (section 5.2.1).

• Quite a bit of work has been done to make GHC easier to
port. Donald Stewart and others are hard at work doing
64-bit ports of GHC.

• Ralf Lämmel has extended the “scrap your boilerplate”
libraries (Data.Generics) so that they elegantly support
‘read’ and ‘show’, which earlier versions did not (cf. sec-
tions 3.4 and 4.3.3). Paper forthcoming.

Upcoming excitements:

• We’re planning a big clean up in the back end, combining
Abstract C with Stix. This is desirable in its own right,
but it’s also on the path to generating C-- from GHC,
which we want to do now that C-- is available (http:
//www.cminusminus.org).

• Tim Sheard and Simon are hatching a collection of
improvements to Template Haskell (http://research.
microsoft.com/~simonpj/tmp/notes2.ps). Template
Haskell hasn’t had much attention over the summer,
what with holidays and ICFP.

• We will adapt GHC to work with whatever scheme Isaac
comes up with for library packaging (section 4.1.1).

Releases 6.2 is coming out soon, so all the major overhaul
referred to will be in 6.4, not 6.2 – no date planned yet.

Further reading:

http://www.haskell.org/ghc/

2.2 Hugs

Report by: Ross Paterson
Status: Stable, actively maintained, volunteers welcome
Hugs is a very portable, easily installed Haskell-98 compliant
interpreter that supports a wide range of type-system and
runtime-system extensions including typed record extensions,
implicit parameters, the foreign function interface extension
and the hierarchical module namespace extension.

Current state At the time of writing, a new major release
of Hugs is almost ready.
With this release, Hugs will rely exclusively on the Haskell
hierarchical libraries. This reduces the amount of Haskell
code to be maintained with Hugs, and also increases com-
patibility with the other implementations. Coverage has also

7

http://www.cminusminus.org
http://www.cminusminus.org
http://research.microsoft.com/~simonpj/tmp/notes2.ps
http://research.microsoft.com/~simonpj/tmp/notes2.ps
http://www.haskell.org/ghc/

improved – Hugs now supports imprecise exceptions (but not
asynchronous ones), unboxed arrays and more. Compatibil-
ity stubs for old libraries are also provided as a transitional
measure, but some day these will disappear.
With these library improvements, together with Hugs’s long-
standing support for various Haskell extensions and the recent
addition of FFI support, code developed with GHC can often
be made to work with Hugs too with a little effort. Sven
Panne has done this with his GLUT and OpenGL packages
(section 4.6.4), and we would encourage other developers to
do the same.
Interoperation with .NET (on Windows platforms), formerly
a separate add-on, has been enhanced and is now integrated
with Hugs. You can instantiate and use .NET objects from
within Haskell, and call and use Haskell functions from any
.NET language.
Assorted fragments of documentation have been re-organized
and augmented as a Users’s Guide describing the current state
of Hugs. It is however less complete than we would like in
places. Contributions are welcome.

Future plans Hugs will continue to improve its coverage
of the libraries. Older interfaces will disappear.
Sven Panne intends to modernize the configuration system,
which is currently creaking with age, and duplicates parts of
the fptools configuration system.
The manpower available for Hugs development and mainte-
nance is very limited. Former maintainers Sigbjorn Finne and
Jeffrey Lewis are now very busy with other things, but help
out when they can. Alastair Reid has also been very busy in
the last 6 months.
Contributions from volunteers are welcome. For example,
Dimitry Golubovsky <dimitry@golubovsky.org> is working
on adding optional Unicode support to Hugs. People who
test the CVS version are also a great help.

Further reading:

http://www.haskell.org/hugs/

2.3 nhc98

Report by: Malcolm Wallace
Project status: stable, maintained
nhc98 remains a small, easy to install, standards-compliant
compiler for Haskell 98. Its implementation is stable and the
public release remains at version 1.16 for the moment. Main-
tenance and bugfixes continue to the CVS tree at haskell.org.
When sufficient serious fixes have accumulated, a new public
release will be forthcoming. No innovative new features are
currently planned.

Further reading:

http://www.haskell.org/nhc98/

2.4 hmake

Report by: Malcolm Wallace
Project status: stable, maintained
Hmake is an intelligent compilation management tool for
Haskell programs. It is stable at public release version 3.07,
with occasional maintenance and bugfixes to the CVS tree at
haskell.org.

Future plans In the last issue of the HC&A report, it was
suggested that hmake should allow the external configuration
of source code preprocessors. (Known preprocessors are cur-
rently hard-coded.) This is still on the to-do list, together
with some other feature enhancements suggested by users.
New suggestions always welcome.

Further reading:

http://www.haskell.org/hmake/

2.5 Domain-specific variations

2.5.1 Haskell on Handheld Devices

Report by: Anthony Sloane
We are making further progress on our port of nhc98 to Palm
OS but other activities (section 6.5.4) have slowed us down
somewhat. We are in the process of bringing it up to the latest
version of nhc98. A paper on this project was presented at
the Implementation of Functional Languages workshop this
year. Our revised schedule for the public release of a beta
version is sometime over the (southern hemisphere) summer.

2.5.2 Helium

Report by: Daan Leijen
(Arjan van IJzendoorn, Bastiaan Heeren, Daan Leijen, Rijk-
Jan van Haaften)
The purpose of the Helium project is to construct a light-
weight compiler for a subset of Haskell that is especially di-
rected to beginning programmers (see “Helium, for learning
Haskell”, Bastiaan Heeren, Daan Leijen, Arjan van IJzen-
doorn, Haskell Workshop 2003). We try to give useful feed-
back for often occurring mistakes. To reach this goal, He-
lium uses a sophisticated type checker described in section
3.3.2 (see also “Scripting the type inference process”, Basti-
aan Heeren, Jurriaan Hage and S. Doaitse Swierstra, ICFP
2003). Helium now has a simple graphical user interface that
provides online help. We plan to extend this interface to a full
fledged learning environment for Haskell. The complete type
checker and code generator has been constructed with the at-
tribute grammar (AG) system developed at Utrecht Univer-
sity (section 6.5.5) One of the aspects of the compiler is that
it also logs errors, so we can track the kind of problems stu-
dents are having, and improve the error messages and hints.
The compiler uses the LVM (Lazy Virtual Machine) as back-
end. The LVM uses a portable instruction set and file format

8

http://www.haskell.org/hugs/
http://www.haskell.org/nhc98/
http://www.haskell.org/hmake/

that is specifically designed to execute lazy higher-order lan-
guages, and is formally described in the PhD thesis of Daan
Leijen (section 1.3).

Further reading:

http://www.cs.uu.nl/research/projects/helium/

2.5.3 Educational Domain Specific Lan-
guages

Report by: John Peterson
Project status: maintained, stable
The goal of this project is to bring functional programming
to users that are not trained computer scientists or program-
mers. We feel that the simplicity of functional programmi-
ung makes it an ideal way to introduce programming lan-
guage concepts and encourage a basic literacy in computa-
tional principles. Languages can also be used as part of
a domain-centered learning experience, allowing functional
programming to assist in the instruction of subjects such as
mathematics or music.
Our languages are media oriented. They allow students to
explore the basic principles of functional programming while
creating artifacts such as images, animations, and music.
These languages have been used for high school mathemat-
ics education, an introduction to functional programming for
students in high school programming classes, and as a gen-
tle way to present functional programming in a programming
language survey class. The graphics language, Pan#, runs
all of the examples in Conal Elliott’s Fun of Programming
chapter with only a few minor changes. It also runs many of
the examples found in Jerzy Karczmarczuk’s Clastic system.
There are two languages under development. The first is
Pan#, a port of Conal Elliott’s Pan compiler to the C# lan-
guage. This runs on Windows using .NET and is easy to
install and use. This probably would run on Linux using
Mono (.NET for other platforms) but we have not attempted
this yet. The front end of this system is a mini-Haskell in-
terpreter which is currently somewhat unsophisticated - we
plan to customize Helium (section 2.5.2) for this purpose in
a future release. Our website contains a number of examples
produced by this language and some instructional materials.
A new release of Pan# is expected in November, 2003. This
will add many new examples, including all of the Fun of Pro-
gramming programs and many Clastic examples, as well as
offer significant improvements to the viewer. Random tex-
tures are also included in this new release.
Our second language describes music using Paul Hudak’s
Haskore system. We are currently re-packaging Haskore to
simplify the language somewhat and add a few new capabil-
ities, including support for randomized music. We are cur-
rently working on a tutorial for the system and should have
a release ready in December 2003.

Further reading:

http://haskell.org/edsl/

2.5.4 Vital: Visual Interactive Program-
ming

Report by: Keith Hanna
Project status: new release imminent
Vital is a Haskell-based, visual environment intended for
the interactive, exploratory development of programs by non
computer-specialist end-users (engineers, analysts, etc.): each
Haskell module is associated with a worksheet on which its
declarations and expressions may be located and their values
graphically displayed (in a form determined by a type-indexed
stylesheet).
The Vital environment embodies the principles of direct ma-
nipulation. In particular, it allows the graphical displays to
be edited by mouse gesture (for example, the values in an
array or the shape of a tree might be changed) with such
changes being reflected in the Haskell source code.
A release of a fairly comprehensive implementation of Vital
is planned for later this month.

Further reading:

http://www.cs.kent.ac.uk/projects/vital/

9

http://www.cs.uu.nl/research/projects/helium/
http://haskell.org/edsl/
http://www.cs.kent.ac.uk/projects/vital/

Chapter 3

Language Extensions

3.1 Foreign Function Interface

Report by: Manuel Chakravarty
Project status: Version 1.0 (RC13)
Release Candidate 13 of the Haskell 98 FFI Addendum has
been released and is, modulo errata, what will become Version
1.0 of the Addendum. The definition is available from
http://www.cse.unsw.edu.au/~chak/haskell/ffi/

3.2 Non-sequential Programming

3.2.1 Concurrent Haskell

The discussion about Concurrent Haskell and OS threads
has been continued. A solution to the problems posed by
integrating lightweight threads, OS threads and foreign li-
braries that use OS-thread-local state has been presented at
the Haskell Implementor’s Meeting in Stockholm (slides avail-
able at http://cs-www.cs.yale.edu/homes/nilsson/HIM/
Slides/Thaller-BoundThredadsPresentation.pdf); that
mechanism is implemented in the CVS version of GHC 6.4;
whether it will be merged into the upcoming GHC 6.2 is yet
to be determined. The mechanism is documented in the li-
brary documentation for Control.Concurrent (in CVS), and
there will be a more formal document that will be proposed
as an addendum to the Haskell report and FFI addendum.
The Concurrent API is described here:
http://www.haskell.org/ghc/docs/latest/html/base/
Control.Concurrent.html

3.2.2 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder

The Team Phil Trinder, Kevin Hammond, Hans-Wolfgang
Loidl, Abyd Al Zain, Jost Berthold, Xiao Yan Deng, Murray
Gross, Andre Rauber du Bois, Alvaro Rebon Portillo, Leonid
Timochouk.

Status A complete, GHC-based implementation of the par-
allel Haskell extension GpH and of evaluation strategies
is available. Extensions of the runtime-system and lan-
guage modules, to improve performance and support for
architecture-independence, are under development.

Implementations The GUM implementation of GpH is
available in two development branches.

• The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines: bi-
nary snapshot (ftp://ftp.macs.hw.ac.uk/pub/gph/,
see README.GUM for installation instructions). The
stable branch is also available from the GHC CVS repos-
itory via tag gum-4-06.

• The unstable branch (GUM-5.02, based on GHC-5.02) is
currently being tested on a Beowulf cluster. Most of our
test programs run already, with minor issues left to be
resolved before this version will become our main devel-
opment version. The unstable branch is available from
the GHC CVS repository via tag gum-5-02-3.

Our main hardware platform are Intel-based Beowulf clusters.
Work on ports to other architectures is also moving on (and
available on request):

• A port to a Sun-Solaris shared-memory machine exists
but currently suffers from performance problems, which
we are trying to track down.

• A port to a Mosix cluster has been built in the Metis
project at Brooklyn College (section 6.5.3), with a first
version available on request from Murray Gross.

• The Eden version from the GHC CVS(tag eden-5-02-3)
supports both GpH and Eden languages (section 3.2.4).

System Evaluation and Enhancement

• We have ported GUM to computational GRIDs, replac-
ing the current PVM layer with IMPICH-G2. We have
measured programs on a single grid-enabled cluster, and
are very close to measuring programs on more than 1
cluster.

• We are teaching GpH to students at Heriot-Watt
http://www.macs.hw.ac.uk/~trinder/ParDistr/
and Phillips Universitat Marburg http://www.
mathematik.uni-marburg.de/~loogen/Lehre/ws02/
pfp/vor02WSpfp.shtml.

• We are designing a combined, modular Eden/GpH im-
plementation.

10

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://cs-www.cs.yale.edu/homes/nilsson/HIM/Slides/Thaller-BoundThredadsPresentation.pdf
http://cs-www.cs.yale.edu/homes/nilsson/HIM/Slides/Thaller-BoundThredadsPresentation.pdf
http://www.haskell.org/ghc/docs/latest/html/base/Control.Concurrent.html
http://www.haskell.org/ghc/docs/latest/html/base/Control.Concurrent.html
ftp://ftp.macs.hw.ac.uk/pub/gph/
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml

• We have compared the implementation designs of
GpH and PMLS http://www.macs.hw.ac.uk/~dsg/
gph/papers/drafts/ifl03.ps.

GpH Applications We have outlined a methodology
for developing parallel programs in an architecture in-
dependent fashion http://www.macs.hw.ac.uk/~trinder/
papers/cameraready.pdf.

Language We have constructed efficient implementations
of several algorithmic skeletons in GdH (section 3.2.3), show-
ing that they are more efficient, but less flexible than evalu-
ation strategies.

Further reading:

GpH Home Page http://www.macs.hw.ac.uk/~dsg/gph/
Mailing list <gph@macs.hw.ac.uk>
http://www.macs.hw.ac.uk/~dsg/gph/papers/
abstracts/strategies.html

3.2.3 GdH – Glasgow Distributed Haskell

Report by: Henry Nyström

The Team: Phil Trinder, Hans-Wolfgang Loidl, Jan Henry
Nystrm, Robert Pointon, Andre Rauber du Bois.

Status: Steaming Ahead!

Implementation: An alpha-release of the GdH implemen-
tation is available on request <gph@macs.hw.ac.uk>. It
shares substantial components of the GUM implementation
of GpH (Glasgow parallel Haskell; section 3.2.2).

GdH Applications and Evaluation

• An EPSRC project High Level Techniques for Distributed
Telecommunications Software (http://www.macs.hw.
ac.uk/~dsg/telecoms/, GR/R88137) is now underway
and is entering its first GdH phase. The project evalu-
ates GdH and Erlang in a telecommunications context,
the work is collaboration between Heriot-Watt Univer-
sity and Motorola UK Research Labs.

• GdH has been used in a MSc project at Heriot-Watt to
construct efficient implementations of algorithmic skele-
tons for use in parallel GdH programs (see http://www.
macs.hw.ac.uk/~dsg/gdh/#papers).

• There is a forthcoming Ph.D. thesis on the design, im-
plementation and use of GdH by Robert Pointon (http:
//www.macs.hw.ac.uk/~rpointon/).

• GdH and Eden (section 3.2.4) are being compared, based
on a distributed file server constructed in both.

Further reading:

http://www.macs.hw.ac.uk/~dsg/gdh/

3.2.4 Eden

Report by: Rita Loogen

Description. Eden has been jointly developed by two
groups at Philipps Universität Marburg, Germany and Uni-
versidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists of the
following people:

Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Alberto de la Encina, Mercedes Hidalgo,
Rafael Mart́ınez, Clara Segura

Marburg: Rita Loogen, Jost Berthold, Steffen Priebe

Eden extends Haskell with a small set of syntactic constructs
for explicit process specification and creation. While pro-
viding enough control to implement parallel algorithms effi-
ciently, it frees the programmer from the tedious task of man-
aging low-level details by introducing automatic communica-
tion (via head-strict lazy lists), synchronisation, and process
handling.
Eden’s main constructs are process abstractions and pro-
cess instantiations. The function process :: (a -> b) ->
Process a b embeds a function of type (a -> b) into a pro-
cess abstraction of type Process a b which, when instanti-
ated, will be executed in parallel. Process instantiation is ex-
pressed by the predefined infix operator (#) :: Process
a b -> a -> b. Higher-level coordination is achieved by
defining skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been used
to parallelise a set of non-trivial benchmark programs.

Eden has been implemented by modifying the parallel run-
time system GUM of GpH (section 3.2.2). Differences include
stepping back from a global heap to a set of local heaps to
reduce system message traffic and to avoid global garbage
collection. The current (freely available) implementation is
based on GHC 5.02.3. A source code version is available via
the ghc CVS repository with tag eden-5-02-3. We are eager
to catch up to the current ghc version.

Recent Publications

skeleton-based automatic parallelisation:
Kevin Hammond, Jost Berthold and Rita Loogen: Auto-
matic Skeletons in Template Haskell, 2nd International
Workshop on High-level Parallel Programming and Ap-
plications (HLPP) 2003. Paris, France, June 2003.

layered structure of the Eden runtime system:
Jost Berthold, Ulrike Klusik, Rita Loogen, Steffen Priebe
and Nils Weskamp: High-level Process Control in Eden,
Euro-Par 2003 Parallel Processing, Klagenfurt, Austria,
August 2003, LNCS 2790, Springer 2003, 732–741.

runtime-system level communication optimisation:
Jost Berthold: Effects of Message Passing Mechanisms
in Eden, Draft Proceedings of Implementation of Func-
tional Languages, IFL 2003, Edinburgh (UK), September
2003.

11

http://www.macs.hw.ac.uk/~dsg/gph/papers/drafts/ifl03.ps
http://www.macs.hw.ac.uk/~dsg/gph/papers/drafts/ifl03.ps
http://www.macs.hw.ac.uk/~trinder/papers/cameraready.pdf
http://www.macs.hw.ac.uk/~trinder/papers/cameraready.pdf
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/papers/abstracts/strategies.html
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/gdh/#papers
http://www.macs.hw.ac.uk/~dsg/gdh/#papers
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~dsg/gdh/

Eden-Maple interface:

R. Mart́ınez and R. Peña: Building an Interface Be-
tween Eden and Maple: Towards an Easy Paralleliza-
tion of Computer Algebra Algorithms, Draft Proceedings
of Implementation of Functional Languages, IFL 2003,
Edinburgh (UK), September 2003, 223–238.

non-determinism analyses:

Clara Segura and Ricardo Peña: Correctness of Non-
determinism Analyses in a Parallel Functional Language,
Draft Proceedings of Implementation of Functional Lan-
guages, IFL 2003, Edinburgh (UK), September 2003.

continuation-based semantics:

M. Hidalgo-Herrero and Y. Ortega-Mallén: Continuation
Semantics for Parallel Haskell Dialects, APLAS’03 First
Asian Symposium on Programming Languages and Sys-
tems, Beijing, China, November 27–29, Springer LNCS.

Current Activities

• Yolanda and Mercedes continue their work on the de-
notational semantics for Eden which is based on a
continuation-based model for process creation and single-
value communication. In particular, they want to extend
the model to deal with streams and non-determinism.

• Rafael and Ricardo do experiments with computation-
intensive computer-algebra algorithms on the recently
developed Eden-Maple interface.

• Jost has started working on a new, more general imple-
mentation of parallel Haskell dialects in a shared run-
time system. Starting point is the support for Eden in
GHC 6.x, but the overall target is a generic parallel plat-
form that can support multiple high-level languages and
that offers implicit control of key runtime aspects such
as thread management, synchronisation and communica-
tion.

• The use of Template Haskell to improve or simplify the
compilation of Eden programs will be investigated by
the Marburg group. In particular, Steffen’s work on the
polytypic skeleton library for Eden benefits from the new
meta-programming facilities.

Further reading:

http://www.mathematik.uni-marburg.de/inf/eden

3.3 Type System/Program Analysis

3.3.1 Chameleon/A General Type Class
Framework based on Constraint Han-
dling Rules

Report by: Martin Sulzmann and Jeremy Wazny
Project status: on-going
Participants: Gregory J. Duck, Simon Peyton Jones, Peter
J. Stuckey, Martin Sulzmann, Jeremy Wazny

We use Constraint Handling Rules (CHRs) to describe user-
programmable type class extensions. In previous work, we
identified sufficient conditions on the set of CHRs under which
type inference is sound and decidable, and the meaning of
type classes is unambiguous.
In our latest efforts, we make use of CHRs to explore and
consolidate the design space for functional dependencies, and
to provide for a powerful type debugging scheme.

• Functional dependencies (FDs) are a popular and useful
extension to Haskell style type classes. We gave a refor-
mulation of functional dependencies in terms of CHRs
which has the following merits:

– CHRs give us a language in which to explain more
precisely what functional dependencies are. In par-
ticular, we are able to make the so-called “improve-
ment rules” implied by FDs explicit in terms of
CHRs.

– Based on this understanding, we provide the first
concise proof that the restrictions imposed by
Jones on functional dependencies (described in his
ESOP’00 paper) ensure sound and decidable type
inference.

– Jones’s restrictions can be very limiting. We pro-
pose “more liberal FDs” which seem to be a de-
sirable extension. We establish some concise condi-
tions under which liberal FDs are sound. In general,
liberal FDs are undecidable. Therefore, we impose
a novel termination check on CHRs. We identify
sufficient conditions under which CHRs are guaran-
teed to terminate.

• Type debugging:

The Chameleon programming system incorporates a type
debugger. This is an interactive tool for exploring types
within a program, with a view to aiding programmers
debug type errors. The debugger has the following fea-
tures:

– Type inference for arbitrary locations. Queries are
not restricted to top-level definitions.

– Type conflict highlighting. Type errors are re-
ported as conflicts involving a number of program
locations. Such reports contain a complete set of
possibly-incorrect locations, and avoid bias inher-
ent in traditional inference algorithms which report
a single error site.

– Type explanation. The system can explain an er-
roneous type by reference to the program locations
which combine to give rise to that type.

– Full support for the Haskell type system, including
type classes, and experimental extensions like func-
tional dependencies.

Current work involves improving the nature of error re-
ports generated by the system as well as suggesting prob-
able fixes for type errors. In particular, we are focused

12

http://www.mathematik.uni-marburg.de/inf/eden

on reporting fixes for subsumption errors, which can be
extremely opaque when type classes are involved.

Further reading:

http://www.comp.nus.edu.sg/~sulzmann/chr/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/

3.3.2 Constraint-based Type Inferencing

Report by: Jurriaan Hage

Participants: Bastiaan Heeren, Jurriaan Hage, Doaitse
Swierstra
With the generation of understandable Haskell error messages
in mind we have devised a constraint based type inference
method which is currently being used in the Helium compiler
(section 2.5.2) developed at Universiteit Utrecht.
The main characteristics of the inferencer are the following.

• Our philopsophy is that no single type inferencer works
best for everybody all the time. Hence, we want a tun-
able type inferencer adaptable to the programmer’s needs
without the need for him to delve into the compiler.

• We generate precise position information and preserve
type synonyms in error messages.

• The programmer can choose the type inference strategy
of his liking (M and W and other greedy variants, and the
unbiased type graph based implementations have been
implemented).

• The type graph implementation uses quite a number of
heuristics to decide what is the most likely source of the
error.

• A logging facility is available in Helium which has given
us a large amount of correct and erroneous Haskell pro-
grams which can be used to improve our type inferencer.
In the future these programs can also be used for bench-
marking optimizations and many other purposes. The
programs have been anonymized, but the relation be-
tween programs by the same programmer has been kept
intact. Various questions can then be answered: Do our
hints help? Are they used? It is easy to come up with
many interesting questions. Currently we have about
300 MB of sources from a single functional programming
course.

• A major innovation is the ability for a programmer to
develop his domain specific type rules for a combinator
library he might be writing. In addition, he may specify
that his experiences are that certain functions are often
mixed up. As a result, a compiler may give the hint
that (++) should be used instead of (:), because (++)
happens to fit in the context.

The domain specific type inference rules are automati-
cally checked for soundness, and a programmer does not
have to be familiar with the process of type inferencing
as it currently takes place within the compiler.

An article on this facility can be found in the ICFP ’03
proceedings (section 1.3).

Since the report of May 2003

• support for Haskell 98 type classes is now available.

• support for kind inferencing is now available. It has been
added by simple reusing the machinery for types. Gener-
ating good kind error messages is still work in progress.

More future work

• we plan to develop type inference directives that apply
especially to type classes. For instance, a directive that
says that Bool will never be in the Num class and which
then helps the compiler to decide where the error lies.

• lending support for the specification of type inference
directives

• abstraction/modularization and reuse in type inference
directives (type inference directives tend to be rather ver-
bose while their are quite a few commonalities between
rules for different expressions).

A new project is to extend our constraint based type infer-
encer to include rank-n types. This is work done with Andres
Loeh and seems to work quite well. No work has been done
on type error messages here.

Further reading:

Project website:
http://www.cs.uu.nl/research/projects/top/

3.4 Generic Programming

Report by: Johan Jeuring
Software development often consists of designing a (set of mu-
tually recursive) datatype(s), to which functionality is added.
Some functionality is datatype specific, other functionality is
defined on almost all datatypes, and only depends on the type
structure of the datatype.
Examples of generic (or polytypic) functionality defined on
almost all datatypes are the functions that can be derived
in Haskell using the deriving construct, storing a value in a
database, editing a value, comparing two values for equality,
pretty-printing a value, etc. Another kind of generic function
is a function that traverses its argument, and only performs
an action at a small part of its argument. A function that
works on many datatypes is called a generic function.
There are at least two approaches to generic programming:
use a preprocessor to generate instances of generic functions
on some given datatypes, or extend a programming language
with the possibility to define generic functions.

Preprocessors DrIFT is a preprocessor which generates
instances of generic functions. It is used in Strafunski (section
4.3.3) to generate a framework for generic programming on
terms.

13

http://www.comp.nus.edu.sg/~sulzmann/chr/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.cs.uu.nl/research/projects/top/

Languages Light-weight generic programming: Generic
functions for data type traversals can (almost) be written
in Haskell itself, as shown by Ralf Lämmel and Simon
Peyton Jones in ‘Scrap your boilerplate’ (http://research.
microsoft.com/Users/simonpj/papers/hmap/). The
‘Scrap your boilerplate’ approach to generic programming in
Haskell has been further elaborated. All information is now
available at http://www.cs.vu.nl/boilerplate/ including
an example suite and the documented sources. The recent
extensions include functions like generic equality, read, and
show. To this end, the Data class has been fully worked out
to accommodate members for retrieving constructor and type
information as well as for building terms from constructors.
GHC version 6.2 (section 2.1) supports the derivation of the
new extended Data class and comes with an accordingly ex-
tended library Data.Generics. A forthcoming paper by Ralf
Lämmel and Simon Peyton-Jones discusses corresponding
applications of scrapping even more boilerplate.
Generic Haskell: ‘Dependency-style’ Generic Haskell intro-
duces a new type system for Generic Haskell that at the
same time simplifies the syntax and provides greater expres-
sive power, see the ICFP paper by Andres Löh, Dave Clarke
and Johan Jeuring for a description. A type-checker has been
implemented for dependency-style Generic Haskell.
Generic Haskell is used in ‘Scripting XML with Generic
Haskell’ by Frank Atanassow, Dave Clarke and Johan Jeur-
ing (Proceedings SBLP’03) to implement generic XML tools,
and to implement a Haskell-XML data binding from XML
Schemas to Haskell. Atanassow and Jeuring show how to use
this data binding together with legacy code in ‘Type Isomor-
phisms simplify XML Programming’ (submitted for publica-
tion).
A new generation of PolyP has seen the light of day accompa-
nied by a paper ‘Generic programming in Haskell’ by Norell
and Jansson (in submission - presented at IFL’03). The new
approach embeds polytypic functions in Haskell using type
classes. This means that PolyLib, the library of polytypic
functions, is now available as a Haskell library. Thus the sep-
arate PolyP compiler is not strictly needed anymore. (The
compiler provides a more convenient syntax for definition of
new polytypic functions and it automatically derives instances
for regular datatypes.)
On the more theoretical side the connection with type the-
ory has been investigated in ‘Universes for Generic Programs
and Proofs in Dependent Type Theory’ by Benke, Dybjer and
Jansson (to appear in Nordic Journal of Computing).
Roland Backhouse and Jeremy Gibbons have started a
project on datatype-generic programming in August 2003,
see http://web.comlab.ox.ac.uk/oucl/research/areas/
ap/dgp/. The goal of this project is, amongst others, to de-
velop a methodology for constructing generic programs.

Current Hot Topics: Generic Haskell: further develop-
ment of the type theory and the relation between XML tools
and Generic Haskell. Other: the relation between generic pro-
gramming and dependently typed programming; the relation
between generic programming and Template Haskell (which

in prototype form has been implemented in GHC, email
<template-haskell@haskell.org> to gather feedback, and see
section 2.1); methods for constructing generic programs.

Major Goals: A new experimental implementation of
dependency-style Generic Haskell: hopefully beginning of
next year. Efficient generic traversal based on type-
information for premature termination (see the Strafunski
project). Exploring the differences in expressive power be-
tween the lightweight approaches and the language exten-
sion(s).

Further reading:

http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/
http://web.comlab.ox.ac.uk/oucl/research/areas/ap/
dgp/
There is a mailing list for Generic Haskell: <generic-
haskell@cs.uu.nl>. See the homepage for how to join.

3.5 Syntactic Sugar

3.5.1 Recursive do notation

Report by: Levent Erkok
Project status: Implemented in both Hugs and GHC

People: Levent Erkok, John Launchbury
The recursive do-notation (a.k.a. the mdo-notation) is sup-
ported by all Hugs releases since February’01, and GHC ver-
sions 6.0 and newer. (In the GHC implementation, the re-
cursive blocks can also be marked by the keyword rec) Both
implementations are stable and actively supported.

Further reading:

http://www.cse.ogi.edu/PacSoft/projects/rmb/

3.5.2 Arrow Notation

Report by: Ross Paterson
“GHC is full.” Simon M. (before arrow notation was added)
Arrow notation allows one to program using John Hughes’s
“arrows”, a generalization of monads, without being con-
strained to a point-free style. It has been supported for some
time by a preprocessor, written in Haskell 98 and generating
Haskell 98. This approach is portable, but makes it difficult
for users of the notation to track their errors back to their
original source. Simon Peyton Jones and I have now added
direct support for arrow notation to GHC; it will be part of
the upcoming 6.2 release. The notation supported differs a lit-
tle from earlier versions, mainly in advanced features, and the
preprocessor has been updated to match. Thus GHC will be
a comfortable environment for developing arrows programs,

14

http://research.microsoft.com/Users/simonpj/papers/hmap/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://www.cs.vu.nl/boilerplate/
http://web.comlab.ox.ac.uk/oucl/research/areas/ap/dgp/
http://web.comlab.ox.ac.uk/oucl/research/areas/ap/dgp/
http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/
http://web.comlab.ox.ac.uk/oucl/research/areas/ap/dgp/
http://web.comlab.ox.ac.uk/oucl/research/areas/ap/dgp/
http://www.cse.ogi.edu/PacSoft/projects/rmb/

but they will still be runnable on other Haskell implementa-
tions, via the preprocessor.
There is also an experimental arrow transformer library in
the Haskell CVS repository, and also on the arrows page.
The combinators in this library are designed to work with
the notation, but do rely on type class extensions currently
available only in GHC and Hugs. The interface is likely to
evolve. Any feedback would be welcome.

Further reading:

http://www.haskell.org/arrows/

15

http://www.haskell.org/arrows/

Chapter 4

Libraries

4.1 Packaging and Distribution

There are various related efforts to collect libraries or to make
them more visible, more easily accessible. See the following,
and also the Debian Users group entry (section 6.3.1).

4.1.1 Library Infrastructure Project

Report by: Isaac Jones

Background: The Library Infrastructure Project is an ef-
fort to provide a framework for developers to more effectively
contribute their software to the Haskell community.
The Haskell Implementations come with a good set of stan-
dard libraries included, but this set is constantly growing and
is maintained centrally. This model does not scale up well,
and as Haskell grows in acceptance, the quality and quantity
of available libraries is becoming a major issue.
It can be very difficult for an end user to manage a wide va-
riety of dependencies between various libraries and Haskell
implementations, and to build all the necessary software at
the correct version numbers on their platform: there is cur-
rently no generic build system to abstract away differences
between Haskell Implementations and operating systems
The Library Infrastructure Project seeks to provide some re-
lief to this situation by building tools to assist developers, end
users, and operating system distributers.
Such tools include a common build system, a packaging sys-
tem which is understood by all of the Haskell Implementa-
tions, an API for querying the packaging system, and mis-
cellaneous utilities, both for programmers and end users, for
managing Haskell software.

Status: The project is still in its infancy. A tiny prototype
was implemented, along with some of the basic APIs. Con-
sensus is gathering, however, and a document describing in
detail what we intend to build is available on the project web
page.

Further reading:

http://www.haskell.org/libraryInfrastructure/
http://www.haskell.org/libraryInfrastructure/
proposal/

4.1.2 RPM Packaging of Haskell projects

Report by: Jens Petersen
RPM packages are commonly used in many Linux distribu-
tions these days. While this “project” hasn’t really be for-
mally announced, since June I have started putting RPM
packages of various pieces of Haskell software that I use or find
interesting up on http://haskell.org/~petersen/rpms/,
and announced their release on the haskell list. Starting
with packages of ghc, there are by now RPMs of gtk2hs, hat,
hmake, greencard, HSX11, HSHGL, HaXmL, c2hs, gtk+hs,
wxHaskell, hircules and darcs available. Unfortunately they
are not all up to date, but if the package you want isn’t you
can download the older source RPM package and it should
be easy to update it to the latest version: contributed rpms
are very welcome. (You can of course also try poking me to
get the package updated too.) It would be nice to add a apt-
get/yum infrastructure, and a real webpage for the project.
Also I’m considering contributing some of the major packages
like ghc to the Fedora Extras project (formerly Fedora Linux
project) to promote the wider acceptance and use of Haskell.

4.1.3 Haskell User-Submitted Libraries

Report by: Shae Erisson
The haskell-libs project is a code repository (a kind of cvs-
wiki) where Haskell users can store their Haskell code and co-
ordinate development, including documentation, releases, and
bug tracking. The purpose of this repository is to centralize
resources for both developers and users of Haskell software.
This sourceforge project is open for any haskell develop-
ers who wish to contribute: http://sf.net/projects/
haskell-libs/

We also have an experimental darcs repository (section 6.1.4)
on http://www.ScannedInAvian.org/repos/hlibs/

Some current projects that are available there:

lambdabot - an IRC bot

hws-wp - the hws webserver extended with plugins

brainfuck - a brainfuck interpreter

wiwiwi - a blog/wiki written in Haskell

pdflib - a binding to PDFLib Lite

16

http://www.haskell.org/libraryInfrastructure/
http://www.haskell.org/libraryInfrastructure/proposal/
http://www.haskell.org/libraryInfrastructure/proposal/
http://haskell.org/~petersen/rpms/
http://sf.net/projects/haskell-libs/
http://sf.net/projects/haskell-libs/
http://www.ScannedInAvian.org/repos/hlibs/

4.2 Hierarchical Libraries

Report by: Malcolm Wallace
Apart from actually writing libraries that do stuff, recent
meta-activity in the libraries community has concentrated on
plans for making libraries easier to install, to distribute, to
maintain, and therefore also easier to write and contribute to
Haskellers at large.
Isaac Jones <ijones@syntaxpolice.org> has been leading the
effort in bringing together a proposal for a common distribu-
tion/installation mechanism (section 4.1.1). The aim is for a
general framework that can be re-used by anyone wanting to
contribute a library, so that they can be sure it will work uni-
formly across all the compilers/interpreters without too much
effort. It covers such areas as automated configure/build, li-
brary registration, dependencies on other library packages,
and automatic re-installation when a compiler version is up-
dated.
Meanwhile, the two Simons at GHC-HQ have been propos-
ing an improved ‘package’ mechanism for the compil-
ers/interpreters themselves. This proposal aims to create a
more flexible ‘backend’ for library usage, such that libraries
can be re-located within the hierarchy, and different versions
of a library can co-exist together.
http://www.haskell.org/~simonmar/packages.html
In other recent news, the common ‘base’ package of libraries
has recently been subdivided to separate off non-core func-
tionality, making the core more stable, whilst enabling inde-
pendent evolution of the other libraries. The split-off pack-
ages include parsec, QuickCheck, and the monad transform-
ers. Other packages resident in the haskell.org CVS tree
include OpenGL, GLUT, HaXml, Japi (Java API), Objec-
tIO, Win32, X11, HGL (Haskell Graphics Library), arrows,
haskell-src, network, readline, and unix.

Further reading:

http://www.haskell.org/~simonmar/libraries/libraries.html

http://www.haskell.org/ghc/docs/latest/html/libraries.html

http://www.haskell.org/mailman/listinfo/libraries/

4.2.1 A redesigned IO library

Report by: Simon Marlow
Contributors:
Ben Rudiak-Gould <benrg@dark.darkweb.com>, Simon Mar-
low <simonmar@microsoft.com> and others.
There has been an effort underway on the li-
braries@haskell.org list to design a replacement for the
IO library. The main aims are:

• To separate underlying IO objects (files, pipes, sockets
etc.), from a general notion of Streams, providing im-
proved

1. Type Safety: certain operations only make sense for
certain kinds of IO objects. For example hFileSize
only makes sense on files, not sockets. Also, input
streams would be separate from output streams.

2. Generality: Under this scheme, programmers would
be able to implement their own Streams (something
which cannot be done with Handles).

• To allow translations to be layered on top of Streams in
a general way. The most common type of translation is
a text encoding, which translates between the external
encoded form of text (say, UTF-8) and Haskell’s Uni-
code Char type. This addresses a serious defficiency in
Haskell’s current IO library, namely the lack of support
for specifying a character translation.

• More features: eg. mapped file support.

See the libraries archives for the discussion, eg.
http://haskell.org/pipermail/libraries/2003-July/001298.html

http://haskell.org/pipermail/libraries/2003-July/001299.html

http://haskell.org/pipermail/libraries/2003-August/001313.

html

I (Simon M.) have been hacking a little on a prototype, but
don’t have anything significant working yet.

4.2.2 System.Process: a platform-
independent API for external process
control

Report by: Simon Marlow
A proposal for a System.Process library was posted to the
libraries@haskell.org list:
http://haskell.org/pipermail/libraries/2003-May/000958.html

HTML documentation is here:
http://www.haskell.org/~simonmar/System.Process.html

This library is currently awaiting implementation, although I
wouldn’t be surprised if there were also some changes to the
proposed API before it is unleashed (eg. the createPipeEx
function looks a bit strange).

4.2.3 System.Time: a redesigned Time li-
brary

Report by: Simon Marlow
There has been much discussion about a replacement for the
current Time library, because of certain problems with the
existing library:

• the lack of support for leap seconds and the consequent
inaccuracy of ClockTime

• the underspecified behaviour of TimeDiff /
diffClockTimes / addToClockTime

The latest proposal was posted to the libraries@haskell.org
mailing list, and can be found in the archives here:
http://haskell.org/pipermail/libraries/2003-July/001290.html

to get up to date on the discussion, be sure to read the
threads which lead up to this. The majority of the discussion
took place in June 2003:
http://haskell.org/pipermail/libraries/2003-June/thread.html

Currently, the discussion has stalled again. The leap seconds
issue is something of a sticking point, and there are some
implementability question marks over other parts of the API.
Contribution to (any aspect of) the discussion is welcomed.

17

http://www.haskell.org/~simonmar/packages.html
http://www.haskell.org/~simonmar/libraries/libraries.html
http://www.haskell.org/ghc/docs/latest/html/libraries.html
http://www.haskell.org/mailman/listinfo/libraries/
http://haskell.org/pipermail/libraries/2003-July/001298.html
http://haskell.org/pipermail/libraries/2003-July/001299.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/pipermail/libraries/2003-May/000958.html
http://www.haskell.org/~simonmar/System.Process.html
http://haskell.org/pipermail/libraries/2003-July/001290.html
http://haskell.org/pipermail/libraries/2003-June/thread.html

4.3 Data and Control Structures

4.3.1 The Haskell Cryptographic Library

Report by: Dominic Steinitz
Since this is the first report for the library, it contains infor-
mation on both the first and second releases. The current
release is 0.3.3.
This library collects together existing Haskell cryptographic
functions and augments them so that they:

• Have common type signatures.

• Can be used with the standard mode and padding algo-
rithms (in the case of block mode ciphers).

The library now supports: DES, Blowfish, Cipher Block
Chaining (CBC) mode, PKCS5 and nulls padding, SHA-1,
RSA and OAEP. The latter two based on the work done by
David Sankel. In particular, you can generate key pairs using
your favourite method (openssl, for example) and then use
them in Haskell to encrypt and have other software decrypt
and vice versa.
The library follows the hierarchical standards and has Had-
dock style documentation. There are demo / test programs
using published test vectors and instructions on how to use
RSA in Haskell and inter-work with openssl. Getting the keys
into Haskell is still too manual and one of the many planned
enhancements is to support PKCS12 although it may be eas-
ier to support PKCS8 first and use openssl to convert to /
from PKCS12.
There is still plenty of existing code that should be incorpo-
rated such as RC4 (courtesy of Doug Hoyte).
Since it is based on existing code, it currently only works with
GHC 5.04.1 or above.

Further reading:

http://www.haskell.org/crypto/ReadMe.html

4.3.2 HSQL

Report by: Krasimir Angelov
The HSQL is a simple library for database access from
Haskell. Currently supported backends are ODBC, MySQL
and PostgreSQL. For each backend the HSQL provides a thin
FFI wrapper which allows us to connect/disconnect to a spe-
cific server and to execute SQL queries. The wrappers are
designed following the same pattern, but the user can see
that there are some differences which are consequences from
the differences in the backend libraries. The library is writ-
ten as part of my work in SmartPro Ltd but it is also free
software and is available at HToolkit home page.

Further reading:

http://htoolkit.sourceforge.net

4.3.3 Strafunski

Report by: Ralf Lämmel
Project status: no change, active, maintained
Portability: Hugs, GHC, DrIFT
Strafunski is a Haskell-based bundle for generic programming
with functional strategies, that is, generic functions that can
traverse into terms of any type while mixing type-specific and
uniform behaviour. This style is particularly useful in the
implementation of program analyses and transformations.
Strafunski bundles the following components:

• the library StrategyLib for generic traversal and others;

• precompilation support for user datatypes based on
DrIFT (section 3.4);

• the library ATermLib for data exchange;

• the tool Sdf2Haskell for external parser integration.

The Strafunski-style of generic programming can be seen as
a lightweight variant of generic programming (section 3.4)
because no language extension is involved, but generic func-
tionality simply relies on a few overloaded combinators that
are derived per datatype.
A recent application of Strafunski’s StrategyLib is HaRE —
the Haskell refactoring tool from Kent (section 5.3.2). It uses
a good amount of functional strategies to perform transfor-
mations and helper analyses on Haskell programs.
Strafunski is currently moving to sourceforge.net. The aspi-
ration is to simplify the distribution and to make use of the
boilerplate extensions of GHC (section 2.1) as another model
of functional strategies.

Further reading:

http://www.cs.vu.nl/Strafunski/

4.3.4 Parsec

Report by: Daan Leijen
Parsec is a practical parser combinator library for Haskell
that is well documented, has extensive libraries, and good
error messages. It is currently part of the standard Haskell li-
braries (in Text.ParserCombinators.Parsec) and has been
stable for a while now. We plan to add a module that adds
combinators to parse according to the (full) Haskell layout
rule (available on request).

Further reading:

http://www.cs.uu.nl/~daan/parsec.html

4.3.5 UPC – Utrecht Parser Combinators

Report by: Doaitse Swierstra
(Doaitse Swierstra, Arthur Baars, Rui Guerra)
The current version of the parser combinators constructs an
online result, in the sense that parts of the result can be ac-
cessed even when parsing has not yet finished. This is espe-
cially useful when parsing and processing large files of similar

18

http://www.haskell.org/crypto/ReadMe.html
http://htoolkit.sourceforge.net
http://www.cs.vu.nl/Strafunski/
http://www.cs.uu.nl/~daan/parsec.html

information. Furthermore error messages are displayed while
parsing (using unsafePerformIO). The underlying mechanism
for achieving this is relatively costly, although parsing speed is
not much slower than that of parsers generated off line using
Frown or Happy (section 5.2.1). We plan to construct a com-
panion module (based on an earlier approach) that contains
a more strict result, and which we expect to be running even
faster. Furthermore the module structure may be changed
by making it possible for the user of the library to tune the
internals of the machine even more using classes. In order
to make the everyday use of the combinators not suffer from
these changes we have separated the interface and the exten-
sions from the basic implementation, so future changes can
relatively easily be made.
Furthermore three special modules were constructed, since
they contain far more complex combinators, that may prob-
ably not be used by most people. Two of the combinators
enable the construction of a parser that reorders the elements
it has recognized (merging or permutation parsing) and keep
track of this reordering by returning a function that can be
used to reconstruct the original order. Inspiration for this
came from the wish to be able to record the original input
in such a way that error messages can be easily added to
it. The third module can be used to construct parsers for
languages that follow the Haskell off side rule when parsing.
This turned out to be quite complicated since the precise
parsing rules have been defined in terms of parse errors, and
our combinators have a standard way of handling such errors;
as a consequence we had to afflict some brain-damage.

Further reading:

http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/

4.3.6 Yampa

Report by: John Peterson
Yampa is the culmination of the Yale Haskell Group’s ef-
forts to provide domain-specific embedded languages for the
programming of hybrid systems. Yampa differs from previ-
ous FRP based system in that it makes a strict distinction
between signals (time-varying values) and functions on sig-
nals. This greatly reduces the chance of introducing space
and time leaks into reactive, time-varying systems. Another
difference is that Yampa is structured using the arrow combi-
nators. Among other benefits, this allows Yampa code to be
written employing the syntactic sugar for arrows.
We have released a preliminary version of Yampa that con-
tains:

• The Yampa Base Library, containing generic func-
tions for the expression of signal functions operating
on continuous as well as discrete signals, and advanced
switching constructs for the interaction between the con-
tinuous and discrete worlds.

• The Yampa Robotics Library, containing entities tai-
lored for controlling mobile robots, both real and simu-
lated, in the style of Frob, our FRP-based robotics lan-

guage. The simulator is written using Yampa’s Base and
HGL, the Haskell Graphics Library (section 4.6.1), and
performs physical modelling of mobile differential-drive
robots equipped with several kinds of sensors. A pre-
configured version of the simulator allows one to play
RoboCup Soccer.

• A tutorial (from the 2002 Summer School on Advanced
Functional Programming, Oxford, UK).

With the Base Library and HGL (or any other graphics li-
brary), it is easy to write reactive animation programs in the
style of Fran. Thus there is no need for a special library to
support graphics and animation.
In the near-term future, we aim at releasing a slightly up-
dated version of Yampa with better documentation and more
examples, including the Space Invaders game from the Haskell
2003 workshop, some minor new features to support these ex-
amples, and support for Functional Automatic Differentiation
and Dirac Impulses.

Further reading:

http://www.haskell.org/yampa

4.3.7 The revamped monad transformer li-
brary

Report by: Iavor Diatchki (<diatchki@cse.ogi.edu>)
Monads are very common in Haskell programs and yet every
time one needs a monad, it has to be defined from scratch.
This is boring, error prone and unnecessary. Many people
have their own libraries of monads, and it would be nice to
have a common one that can be shared by everyone. Some
time ago, Andy Gill wrote the monad transformer library that
has been distributed with most Haskell implementations, but
he has moved on to other jobs, so the library was left on its
own. I wrote a simillar library (before I knew of the exis-
tance of Andy’s library) and so i thought i should combine
the two. The “new” monadic library is not really new, it is
mostly reorganization and cleaning up of the old library. It
has been separated from the “base” library so that it can be
updated on its own. It is available from the Haskell CVS (fp-
tools/libraries/monads). It is mostly documented with had-
dock (section 5.3.4). Besides reorganizing the transformers,
the main changes include a new experimental transformer for
non-determinism, renaming of some functions, and some new
functionality here and there. There is also experimental sup-
port for resumptions, and continuations, but their interaction
with the other transformers is not quite clear at the moment.
If there are questions please contact me.

Further reading:

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
libraries/monads/

19

http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://www.haskell.org/yampa
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/libraries/monads/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/libraries/monads/

4.3.8 DData

Report by: Daan Leijen
DData is a library of efficient data structures and algorithms
for Haskell (Set, Bag, and Map). It is actively maintained and
stable. We plan to add the library to the hierarchical module
name space (i.e. Data.DData.Set) in the near future.

Further reading:

http://www.cs.uu.nl/~daan/ddata.html

4.3.9 HBase

Report by: Ashley Yakeley (<ashley@semantic.org>)
HBase is a large collection of library code, compiled
“-fno-implicit-prelude”, intended as an experimen-
tal/alternative reorganised interface to the existing standard
libraries making full use of GHC’s extensions. HBase devel-
opment is driven by HScheme (section 6.1.1) and my other
Haskell projects, and sometimes by whatever interests occur
to me. Right now it includes:

• a library of various classes of Functors and Monads,

• transformation, encoding and property functions for Uni-
code,

• types and classes for parsing,

• functions for parsing XML and RDF,

• code for constructing SQL queries,

...and much else. I’m hoping some of the ideas might even-
tually make their way into standard libraries, or perhaps the
standard libraries of some future extended “Haskell 2”.

Further reading:

http://sourceforge.net/projects/hbase/

4.4 FFI

4.4.1 Template Greencard

Report: Alastair Reid <alastair@reid-consulting-uk.ltd.uk>
Project status: Experimental/unstable
Last release: 0.1 (15 Sept 2003)
Hierarchical libraries: No
Portability: GHC only (requires Template Haskell), Unix

Template Greencard is an experimental reimplementation of
Greencard (section 5.1.2) using Template Haskell.
TG is still very much under development. At present, its
advantages are:

• It is very much smaller than Greencard (or any other ffi
tool we know of) which should make it easier to extend
and maintain than other tools.

• It is a library not a preprocessor which makes it more
flexible than using a preprocessor.

• Even this early version is quite powerful.

On the downside, Template Greencard isn’t as easy to use
as Greencard: the syntax is worse and error messages are
worse. We are not currently recommending that you stop
using Greencard but, if you want to play with it a bit, feel
free to look around.

Further reading:

http://www.reid-consulting-uk.ltd.uk/projects/tg.html

4.5 Graphical User Interfaces

4.5.1 The Common GUI Library Task Force

Report by: Axel Simon
The development of Haskell applications with a graphical user
interface has long been complicated by the large number of
mostly incomplete libraries. In spring of this year people tried
to focus the development effort and came up with the idea of a
Common GUI API (CGA for short) which should define an in-
tersection of three major platform APIs (Win32, Gnome/Gtk
and Mac OS X) and that addresses the requirements of the
platform’s style guide (or human interface guidelines). The
process of defining this CGA is a major undertaking. The
alternative is to use a readily available cross-platform API,
like wxWindows, at the expense of creating applications that
might violate a platform’s style guide and cannot make use
of platform specific functionality. A quick poll at the Haskell
workshop revealed that 1/3 of the people thought that the
CGA approach is worthwhile, 2/3 thought that the cross-
platform approach is adequate. Hence the CGA idea as it
stands right now will not be pursued.
The discussions at the Haskell Implementor Meeting (HIM)
yielded some interesting options (or compromises) that could
help to target and unify the development effort of the different
library maintainers. In particular we would like to

• focus development on wxWindows (in form of wxHaskell;
section 4.5.4) as this cross-platform toolkit should be ad-
equate for most needs;

• move the programming model of Yahu (At-
tribute/set/get functionality) into the Haskell library
hierarchy so that other (GUI) libraries can use it;

• exploit wxWindow’s capability to extract platforms spe-
cific handles/objects. The goal is to use other libraries
(like gtk+hs, section 4.5.5; gtk2hs, section 4.5.6; Mocca,
etc.) if wxWindows does not provide the needed func-
tionality.

• mention the names of the maintainers of each GUI library
on the Haskell web site so that programmers can estimate
how well-maintained a library is. Update these names
regularly.

In case people feel inclined to still pursue the CGA idea, one
of the following two routes could be taken:

• re-expose parts of wxHaskell in a way that forces the
user to write applications that look and feel native on

20

http://www.cs.uu.nl/~daan/ddata.html
http://sourceforge.net/projects/hbase/
http://www.reid-consulting-uk.ltd.uk/projects/tg.html

different platforms, i.e. a “Common GUI API on top of
wxWindows.”

• write a GUI Builder application for Haskell; it would
surely make Haskell itself more attractive as a rapid
development language (such a Builder could also cater
for the look-and-feel requirements of the different plat-
forms).

Please send any comments or critics to <gui@haskell.org>.
All input (and development effort) is welcome.

Further reading:

http://www.haskell.org/mailman/listinfo/gui/

4.5.2 HTk

Report by: Christoph Lüth and George Russell
Project status: no changes, actively maintained
HTk is an encapsulation of the graphical user interface toolkit
and library Tcl/Tk for the functional programming language
Haskell. It allows the creation of high-quality graphical user
interfaces within Haskell in a typed, abstract, portable and
fully concurrent manner. HTk is known to run under Linux,
Solaris, Windows 98, Windows 2k, and will probably run un-
der many other POSIX systems as well. It works with GHC,
versions 5.02.3 and later.

Further reading:

http://www.informatik.uni-bremen.de/htk

4.5.3 HToolKit

Report by: Krasimir Angelov
The HToolkit is a platform independent package for Graphi-
cal User Interface. The package is split into two libraries GIO
and Port. The Port is a low-level Haskell 98+FFI compati-
ble API, while GIO is a high-level user friendly interface to
Port. The primary goal of HToolkit is to provide a native
look and feel for each target platform. The currently sup-
ported platforms are Windows and Linux/GNOME. The 1.2
version of HToolkit supports most of the standard GUI con-
trols and events existing in both Windows and GNOME. The
current plan is to provide a full set of controls in versions up
to 2.0. Some special kind of windows like: Wizards, Property
sheets, Dockable Windows and simple HTML browser (based
on IE explorer and GtkHTML) are also planned. Special at-
tention will be paid to the data based controls. These are a
special kind of controls which are usually not included in the
standard set but are very useful in business oriented applica-
tions. An abstract document interface is planed for version
2.0. It will provide a framework to Open/Save/Edit files in
accordance with the native look and feel for each platform.

Further reading:

http://htoolkit.sourceforge.net

4.5.4 wxHaskell

Report by: Daan Leijen
Project status: beta, and actively developed.
wxHaskell is a portable GUI library for Haskell. The goal of
the project is to provide an industrial strength portable GUI
library, but without the burden of developing (and maintain-
ing) one ourselves.
wxHaskell is therefore build on top of wxWindows – a com-
prehensive C++ library that is portable across all major GUI
platforms; including GTK, Windows, X11, and MacOS X.
Furthermore, it is a mature library (in development since
1992) that supports a wide range of widgets with native look-
and-feel, and it has a very active community (ranked among
the top 25 most active projects on sourceforge). Many other
languages have chosen wxWindows to write complex graph-
ical user interfaces, including wxEiffel, wxPython, wxRuby,
and wxPerl.
Since most of the interface is automatically generated from
the wxEiffel binding, the latest release of wxHaskell already
supports about 85% of the wxWindows functionality – 2875
methods in 513 classes with 1347 constant definitions. wx-
Haskell has been build with GHC 6.0/6.01 on Windows,
MacOS X and Unix systems with GTK. A binary distribution
is available for Windows and MacOS X.
The library has improved a lot since the last community re-
port, and supports many more features, including tree con-
trols, toolbars, splitter windows, audio playback, openGL
windows, and extensive ODBC database support.

Further reading:

You can read more about wxHaskell at http://wxhaskell.
sourceforge.net and on the wxHaskell mailing list at http:
//sourceforge.net/mail/?group_id=73133.

4.5.5 Gtk+HS

Report by: Manuel Chakravarty
Project status: beta release
There has been no further development of Gtk+HS since the
last HC&A Report. More details on the current version as
well as source and binaries packages are at
http://www.cse.unsw.edu.au/~chak/haskell/gtk/

4.5.6 Gtk2hs

Report by: Axel Simon
Project status: beta
Gtk2hs is a wrapper around the latest Gtk release (Version 2.2
or Gtk 2 for short). Reasons for using this binding instead of,
say, wxHaskell is the support of Gtk 2 specific features and
the fact that gtk2hs does automatic memory management.
At the moment the API is a low level veneer like Gtk+HS,
but I hope to generate a Yaho/Ports-like API on top of the
low level functions. It would be interesting to see if widget
handles can be exchanged with wxHaskell so that applications
can make use of the advanced features of Gtk 2 if they run

21

http://www.haskell.org/mailman/listinfo/gui/
http://www.informatik.uni-bremen.de/htk
http://htoolkit.sourceforge.net
http://wxhaskell.sourceforge.net
http://wxhaskell.sourceforge.net
http://sourceforge.net/mail/?group_id=73133
http://sourceforge.net/mail/?group_id=73133
http://www.cse.unsw.edu.au/~chak/haskell/gtk/

on the Gnome platform. Recently Duncan Coutts has added
a binding to the Gtk sourceview library.
Our current work is done in a CVS repository which can be
found on http://sourceforge.net/projects/gtk2hs/.

4.6 Graphics

4.6.1 HGL Graphics Library

Report: Alastair Reid <alastair@reid-consulting-uk.ltd.uk>
Project status: Maintained, stable
Last release: 3.00 (6 June 2003)
Hierarchical libraries: Yes
Portability: GHC, Hugs, Linux, FreeBSD, Solaris, MacOS X,

Windows

The HGL provides an easy to use, portable interface to Win32
and X11 which supports simple 2-dimensional graphics, key-
board, mouse and timer input events and multiple windows.
The library is distributed as open source and is suitable for
use in teaching and in applications.
The library works on both Win32 and X11 under Hugs and
GHC. The API is stable and the library is used through-
out Paul Hudak’s ‘School of Expression’ textbook (http:
//haskell.org/soe/). The last release was 2.0.4 in Decem-
ber 2001.

Further reading:

http://haskell.org/graphics/

4.6.2 HSX11

Report: Alastair Reid <alastair@reid-consulting-uk.ltd.uk>
Project status: Maintained, stable
Last release: 1.00 (6 June 2003)
Hierarchical libraries: Yes
Portability: GHC, Hugs, Linux, FreeBSD, Solaris, MacOS X

The Xlib library is a set of bindings to over 300 functions in
the standard Xlib C library.

Further reading:

http://www.reid-consulting-uk.ltd.uk/projects/
HSX11.html

4.6.3 PanTHeon

Report by: Sean Seefried
PanTHeon is re-implementation of Pan, a DSL embedded in
Haskell, for the generation of two dimensional images and
animations. (Pan was originally developed by Conal Elliott,
Oege de Moor and Sigbjorn Finne.)
However this implementation differs from the former in that
it is cross-platform and implemented in an entirely new way
through Template Haskell (section 2.1). It is built on top
of the Simple DirectMedia Layer (SDL) http://libsdl.org
and has been successfully built on Mac OS X and Linux so
far.
Instead of embedding a compiler as the original authors
did (mainly for reasons of efficiency), we have opted to use

the compile-time meta-programming facilities of Template
Haskell to perform domain specific optimisations. This has
resulted in an implementation that rivals the speed of the
original, while being implemented in far fewer lines of code.

What is its status? It’s almost ready for release. A pa-
per about it can be found at http://www.cse.unsw.edu.au/
~sseefried/papers.html

Can others get it? Unfortunately, it is not quite ready
for release yet, due to problem with the current Template
Haskell implementation that will be fixed in the next iter-
ation. There are also a few features of the original library
that require implementation. It retains the interactive na-
ture of the original, unlike other re-implementations, such as
Pancito, http://www.acooke.org/jara/pancito/.

What are the immediate plans? I plan to continue
working on the interface to give it equivalent functionality
to the original. Once the new version of Template Haskell
comes out I will then fix the remaining problem with it which
are detailed in the paper I have written on it.

4.6.4 HOpenGL – A Haskell Binding for
OpenGL and GLUT

Report by: Sven Panne
Project status: active, maintained
The goal of this project is to provide a binding for the
OpenGL rendering library which utilizes the special features
of Haskell, like strong typing, type classes, modules, etc., but
is still in the spirit of the official API specification. This en-
ables the easy use of the vast amount of existing literature and
rendering techniques for OpenGL while retaining the advan-
tages of Haskell over lower-level languages like C. Portability
in spite of the diversity of Haskell systems and OpenGL ver-
sions is another goal.
HOpenGL includes the simple GLUT UI, which is good to
get you started and for some small to medium-sized projects,
but HOpenGL doesn’t rival the GUI task force efforts in any
way. Smooth interoperation with GUIs like gtk+hs on the
other hand is a goal.
Currently there are two major incarnations of HOpenGL, dif-
fering in their distribution mechanisms and APIs: The old
one (latest version 1.05 from 09/09/03) is distributed as a
separate tar ball and needs GreenCard plus a few language
extensions. Apart from small bug fixes, there is no further
development for this binding. Active development of the new
incarnation happens in the fptools repository, so it is easy to
ship GHC, Hugs, and nhc98 with OpenGL/GLUT support.
The new binding features:

• Pure Haskell98 + FFI

• No GreenCard dependency anymore

• Full OpenGL 1.4 support (texturing and NURBS not
finished yet)

22

http://sourceforge.net/projects/gtk2hs/
http://haskell.org/soe/
http://haskell.org/soe/
http://haskell.org/graphics/
http://www.reid-consulting-uk.ltd.uk/projects/HSX11.html
http://www.reid-consulting-uk.ltd.uk/projects/HSX11.html
http://libsdl.org
http://www.cse.unsw.edu.au/~sseefried/papers.html
http://www.cse.unsw.edu.au/~sseefried/papers.html
http://www.acooke.org/jara/pancito/

• Some ARB extensions

• An improved API, centered around OpenGL’s notion of
state variables

• Extensive hyperlinked online documentation

HOpenGL is extensively tested on x86 Linux and Windows,
and reportedly runs on Solaris, FreeBSD, OpenBSD, and Mac
OS X.
Sven Eric Panitz has written a tutorial using the new API:
http://www.tfh-berlin.de/~panitz/hopengl/

Further reading:

http://www.haskell.org/HOpenGL/

4.6.5 FunWorlds – Functional Programming
and Virtual Worlds

Report by: Claus Reinke
Project status: stalled, basic snapshot available
FunWorlds is an “ongoing” experiment to investigate lan-
guage design issues at the borderlines between concurrent sys-
tems, animated reactive 2&3d graphics, and functional pro-
gramming. The only progress over the last six months (sic)
has been the basic snapshot of the old system I promised in
the last edition. I still hope to get back to this before Christ-
mas, but that’s what I thought last month.. so, please stay
tuned, but don’t hold your breath.

Further reading:

http://www.cs.kent.ac.uk/~cr3/FunWorlds/

4.7 Tool Frameworks

4.7.1 Medina – Metrics for Haskell

Report by: Chris Ryder
The Medina library is a Haskell library for GHC that provides
tools and abstractions with which to build software metrics
for Haskell programs.
The library includes a parser and several abstract representa-
tions of the parse trees and some visualisation systems includ-
ing pretty printers, HTML generation and callgraph brows-
ing. The library has some integration with CVS to allow tem-
poral operations such as measuring a metric value over time.
This is linked with some simple visualisation mechanisms to
allow exploring such temporal data. These visualisation sys-
tems will be expanded in the near future.
We have carried out case studies to provide some validation
of metrics by looking at the change history of a program and
how various metric values evolve in relation to those changes.
In order to do this we implemented several metrics using the
library, which has given some valuable ideas for improvements
to the library.
We are currently in the process of improving the visualisation
systems and implementing some of the ideas from the case

studies, as well as looking at ways to integrate this work with
the work of the Kent FP Refactoring group.

Further reading:

http://www.cs.kent.ac.uk/~cr24/medina/

4.8 XML and Web Programming

4.8.1 HaXml

Report by: Malcolm Wallace
Project status: stable, maintained
HaXml provides many facilities for using XML from Haskell.
The public release is due to be updated within the next few
months to version 1.10, incorporating one major bugfix to
the DtdToHaskell tool, a couple of minor new facilities, and
re-establishing support for Hugs. Ongoing maintenance is to
the CVS tree at haskell.org.

Further reading:

http://www.haskell.org/HaXml

4.8.2 Haskell XML Toolbox

Report by: Uwe Schmidt (uwe@fh-wedel.de)
Project status: third major release
The Haskell XML Toolbox is a collection of tools for process-
ing XML with Haskell. It is itself purely written in Haskell.
The core component of the Haskell XML Toolbox is a vali-
dating XML-Parser that supports almost fully the Extensible
Markup Language (XML) 1.0 (Second Edition).
The Haskell XML Toolbox bases on the ideas of HaXml and
HXML, but introduces a more general approach for process-
ing XML with Haskell. The Haskell XML Toolbox uses a
generic data model for representing XML documents, includ-
ing the DTD subset and the document subset, in Haskell.
This data model makes it possible to use filter functions as a
uniform design of XML processing applications. The whole
XML parser including the validator parts was implemented
using this design. Libraries with filters and combinators are
provided for processing the generic data model.
Features:

• validating XML parser

• very liberal HTML parser

• XPath support

• full Unicode support

• support for XML namespaces

• uniform data model for DTDs and XML content

• native Haskell support of HTTP1.1 and FILE protocol

• HTTP and access via other protocols via external pro-
gram curl

• tested with W3C XML validation suite

23

http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/
http://www.cs.kent.ac.uk/~cr3/FunWorlds/
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.haskell.org/HaXml

• example programs

Current Work:

• XSLT implementation

Further reading:

The Haskell XML Toolbox Webpage http://www.fh-wedel.
de/~si/HXmlToolbox/index.html includes downloads, on-
line documentation and a master thesis describing the design
of the toolbox. The design of the XPath module is described
in a diploma thesis (in german).

4.8.3 WASH/CGI – Web Authoring System
for Haskell

Report by: Peter Thiemann
WASH/CGI is an embedded DSL (read: a Haskell library)
for server-side Web scripting based on the purely functional
programming language Haskell. Its implementation is based
on the portable common gateway interface (CGI) supported
by virtually all Web servers. WASH/CGI offers a unique and
fully-typed approach to Web scripting. It offers the following
features

• complete interactive script in one program

• a monadic, type-safe interface to generating HTML out-
put

• type-safe compositional approach to specifying form ele-
ments; callback-style programming interface for forms

• type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persistent
server-side

• high-level API for reading, writing, and sending email

New/completed Items are:

• journal paper about WASH (to appear in ACM TOIT;
most up-to-date source of information)

• preprocessor for translating markup in XML syntax into
WASH/HTML

Current work includes

• caching of documents

• database interface

• package-ifycation of WASH

• authentication interface

Items still on the to do list

• user manual

Further reading:

WASH Webpage http://www.informatik.uni-freiburg.
de/~thiemann/WASH/ includes examples, a tutorial, papers
about the implementation.

24

http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

Chapter 5

Tools

5.1 Foreign Function Interface

5.1.1 C–>Haskell

Report by: Manuel Chakravarty
Project status: beta release
C–>Haskell is an interface generator that simplifies the de-
velopment of Haskell bindings to C libraries. It has recently
been ported to Mac OS X and been adapted to GHC’s de-
velopment version 6.3. The tool is currently at version 0.12.0
and has been stress tested in the development of the Gtk+HS
GUI library (section 4.5.5). Source and binary packages as
well as a reference manual are available from
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

5.1.2 GreenCard

Report: Alastair Reid <alastair@reid-consulting-uk.ltd.uk>
Project status: Maintained, stable
Last release: 3.01 (6 June 2003)
Hierarchical libraries: Yes
Portability: Hugs, GHC, NHC and C, C++

GreenCard is a foreign function interface preprocessor for
Haskell and has been used (amongst other things) for the
Win32 and X11 bindings used by Hugs and GHC.

Further reading:

http://haskell.org/greencard/

5.1.3 JVM Bridge

Report by: Ashley Yakeley (<ashley@semantic.org>)
JVM-Bridge is a GHC package intended to allow full access
to the Java Virtual Machine from Haskell, as a simple way
of providing a wide range of imperative functionality. Its big
advantage over earlier attempts at this is that it includes a
straightforward way of creating Java classes at run-time that
have Haskell methods (using DefineClass and the Java Class
File Format). It also features reconciliation of thread models
without requiring GPH.

Current Status: A beta-quality 0.2.1 was released in July
2003 in source-code form. It compiles on Linux and Mac OS X
with Sun’s JVM, and should work with a number of others. A
0.2.2 release will be forthcoming shortly, allowing easier port-
ing to Windows and better interfacing with third-party Java

libraries. Further plans (0.3, or maybe 1.0) include using the
hierarchical module structure, separating out pure (non-FFI)
Haskell into a separate package, allowing more general as-
sembly of Java byte-code, and making the IO-based interface
cleaner and friendlier.

Further reading:

http://sourceforge.net/projects/jvm-bridge/

5.2 Meta Programming

5.2.1 Scanning, Parsing, and Analysis

See also constraint-based program analysis (section 3.3), the
parser-combinator libraries Parsec (section 4.3.4) and UPC
(section 4.3.5), and research at Utrecht (section 6.5.5).

Alex version 2
Report by: Simon Marlow
Project status: version 2.0 released on August 13, 2003
Alex is a lexical analyser generator for Haskell, similar to the
tool lex for C. Alex takes a specification of a lexical syntax
written in terms of regular expressions, and emits code in
Haskell to parse that syntax. A lexical analyser generator is
often used in conjunction with a parser generator (such as
Happy) to build a complete parser.
Alex 2.0 is a partial rewrite of Chris Dornan’s Alex 1.x, with
the aim of getting it to the point of being able to generate a
lexer for Haskell, and to improve the size and efficiency of the
generated code. GHC itself is now using an Alex-generated
lexer. Compared to the previous version of Alex, there are
many changes, which are listed here: http://www.haskell.
org/alex/doc/html/about.html#RELNOTES.

Further reading:

Alex homepage: http://www.haskell.org/alex/

Happy
Report by: Simon Marlow
Project status: stable, maintained
There have been no new releases of Happy since June 2002.
Happy is still in constant use by GHC and other projects, and
remains in maintenance mode.
Happy’s web page is at http://www.haskell.org/happy/

25

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://haskell.org/greencard/
http://sourceforge.net/projects/jvm-bridge/
http://www.haskell.org/alex/doc/html/about.html#RELNOTES
http://www.haskell.org/alex/doc/html/about.html#RELNOTES
http://www.haskell.org/alex/
http://www.haskell.org/happy/

The Utrecht attribute grammar system UAG

Report by: Doaitse Swierstra
(Arthur Baars, Doaitse Swierstra)
The Attribute Grammar system was initially developed by
Doaitse Swierstra in 1999. The current version is maintained
by Arthur Baars. The system reads a set of files containing
an attribute grammar, in which semantic functions are de-
scribed through Haskell expressions. Out of this description
catamorphisms and data type definitions are generated.
The system has been bootstrapped, and now provides exten-
sive error messages in case the attribute grammar contains
errors. Only the type checking of the semantic functions is
postponed to the Haskell compiler that is processing the out-
put of the system. In a newer version we have added the
conventional data flow analyses, so we may point at circu-
larities, and can do experiments with generating more strict
evaluators, of which we hope they will run even faster. The
system is used in the course on Implementation of Program-
ming Languages.

Further reading:

http://www.cs.uu.nl/groups/ST/twiki/bin/view/
Center/AttributeGrammarSystem

5.2.2 Haskell Transformations

MAG

Report by: Ganesh Sittampalam
Project status: actively maintained
MAG is a transformation tool for a small Haskell-like lan-
guage which tries to make it easy to mechanise some com-
plex program transformations with the help of user-supplied
rewrite rules. Examples this has been tried with include cat-
elimination and alpha-beta pruning.
Although not much time is being spent on it, it is still ac-
tively maintained and some work is continuing on improving
the higher-order matching algorithms that underpin its opera-
tion. As always, we would be very happy to hear from anyone
who is interested in using it (for example for teaching), or im-
proving it. A web interface has recently been made available
so that you can try it out online - visit MAG’s homepage for
the link to it.

Further reading:

http://web.comlab.ox.ac.uk/oucl/research/areas/
progtools/mag/

HsOpt: Helium/LVM Optimization in Stratego

Report by: Eelco Visser
HsOpt is an optimizer for the Helium compiler implemented
in the transformation language Stratego. Helium is a subset of
Haskell developed at Utrecht University (section 2.5.2). The
optimizer works on the code produced by the Helium front-
end, which is code for Daan Leijen’s Lazy Virtual Machine

(LVM). The goal of this project is to validate the paradigm
of transformation strategies for the implementation of an op-
timizing compiler.
Alan van Dam has written the first version of the optimizer
consisting of a basic simplifier in the style of the GHC.
The main target of this simplifier has been the optimiza-
tion of pattern matching code. The naive translation of
pattern matching by the Helium front-end keeps it simple,
but produces rather ugly code. Using a small set of trans-
formation rules and an appropriate strategy the code can
be reduced to more sane code, often similar to code that
would be written by hand. This first simplification step pro-
duces an optimization of about 15%. This work is described
in Alan’s master thesis (http://www.stratego-language.
org/Stratego/SimplifyingTheSimplifier).
We are planning further work on the optimizer, which would
include an inliner (currently only local let bindings are inlined,
not global function definitions), and to incorporate the earlier
work on deforestation.

Further reading:

http://www.stratego-language.org/Stratego/HsOpt

Ultra

Report by: Walter Guttmann
status: currently sleeping, works but should be rewritten
Ultra is a GUI-based, semi-automatic program transforma-
tion system. The intended use is as an assistant to derive cor-
rect and efficient programs from high-level descriptive or op-
erational specifications. The object language is an extended
subset of Haskell, e.g., it does not support modules or classes,
but has several descriptive (non-operational) constructs such
as “forall”, “exists”, “some”, and “that”. The transforma-
tion calculus of Ultra has its roots in the Munich CIP system.
Transformation rules can be combined by tactics.
What needs to be done? Well, Ultra is written in Gofer and
uses TkGofer for its GUI. This means that, before any further
development is going to happen, it will have to be ported to,
or even completely rewritten in, Haskell. We suspect that,
before that is going to happen, a “standard” GUI-library will
have to emerge. It would be nice, if the new version supported
complete Haskell as its object language. The semantics of
Haskell is, however, quite involved compared to that of the
λ-calculus, making this an ambitious project.

Further reading:

http://www.informatik.uni-ulm.de/pm/projekte/
ultra/

5.2.3 Haskell Frontends

The Programatica Project

Report by: Thomas Hallgren
One of the goals of the Programatica Project is to develop
tool support for high-assurance programming in Haskell.

26

http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://web.comlab.ox.ac.uk/oucl/research/areas/progtools/mag/
http://web.comlab.ox.ac.uk/oucl/research/areas/progtools/mag/
http://www.stratego-language.org/Stratego/SimplifyingTheSimplifier
http://www.stratego-language.org/Stratego/SimplifyingTheSimplifier
http://www.stratego-language.org/Stratego/HsOpt
http://www.informatik.uni-ulm.de/pm/projekte/ultra/
http://www.informatik.uni-ulm.de/pm/projekte/ultra/

The tools we have developed so far are implemented in
Haskell, and they have a lot in common with a Haskell com-
piler front-end. The code has the potential to be reusable in
various contexts outside the Programatica project. For exam-
ple, it has already been used in the Haskell refactoring project
at the University of Kent (section 5.3.2).

Further reading:

The Programatica Project, overview & papers: http:
//www.cse.ogi.edu/PacSoft/projects/programatica/
Quick overview of the tools, from the demo at the 2003
Haskell Workshop: http:
//www.cse.ogi.edu/~hallgren/Programatica/HW2003/
Executable formal specification of the Haskell 98 Module Sys-
tem: http://www.cse.ogi.edu/~diatchki/hsmod/
A Lexer for Haskell in Haskell:

http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
More information about the tools, source code, downloads,
etc: http://www.cse.ogi.edu/~hallgren/Programatica/

5.3 Program Development

5.3.1 Tracing and Debugging

Report by: Olaf Chitil
There exist a number of tools with rather different approaches
to tracing Haskell programs for the purpose of debugging and
program comprehension.
At the Haskell Workshop 2003, Rob Ennals presented the
new Haskell debugger HsDebug. HsDebug provides gdb-like
debugging, that is, it is used similar to traditional debuggers
for imperative languages. HsDebug is based on optimistic
evaluation, that is, a program is mostly evaluated eagerly,
with some lazy evaluation as a fallback to preserve the non-
strict semantics of Haskell. Eager evaluation ensures that the
debugger shows mostly values, not unevaluated thunks, and
that the nesting of stack frames relates to the call structure
of the program. HsDebug is currently in a separate branch of
GHC in CVS.
Hood and its variant GHood, for graphical display and an-
imation, enable the user to observe data structures at given
program points. Hood and GHood are easy to use, because
they are based on a small portable library. They have re-
mained unchanged for over two years.
The Haskell tracing system Hat is based on the idea that
a specially compiled Haskell program generates a trace file
alongside its computation. This trace can be viewed with sev-
eral tools in various ways: Hood-style observation of top-level
functions; backwards exploration of a computation, starting
from (part of) a faulty output or an error message. All tools
inter-operate and use a similar command syntax. A tutorial
explains how to generate traces, how to explore them, and
how they help to debug Haskell programs. Hat can be used
both with nhc98 and ghc. Hat can be used for Haskell 98
programs that use some language extensions.

Since the relase of Hat 2.02 on 26 March 2003, numerous
bugfixes have been applied and several features added to
Hat. The CVS version incorporates these. In particular, hat-
detect, a tool for algorithmic debugging of Haskell programs
which had been part of previous relases of Hat, has been res-
urrected. Hat-detect inter-operates with the existing viewing
tools. Additionally, Hat now supports more of the standard
hierarchical libraries. We intend to release Hat 2.04 within
the next months. Also a number of further viewing tools that
one day may be included in the Hat distribution are currently
under development.

buddha
Report by: Bernie Pope
Project status: active, version 1.0 released
Buddha is a declarative debugger for Haskell 98. It is based
on program transformation. Each module in the program un-
dergoes a transformation to produce a new module (as Haskell
source). The transformed modules are compiled and linked
with a library for the interface, and the resulting program
is executed. The transformation is crafted such that execu-
tion of the transformed program constitutes evaluation of the
original (untransformed) program, plus construction of a se-
mantics for that evaluation. The semantics that it produces is
a “computation tree” with nodes that correspond to function
applications.
Currently buddha works with GHC version 5 and 6. No
changes to the compiler are needed. There are no plans to
port it to other Haskell implementations, though there are no
significant reasons why this could not be done.
Version 1.0 is freely available as source and is licensed un-
der the GPL, It supports full Haskell 98 including the stan-
dard libraries. For future versions of buddha I will consider
supporting common Haskell extensions. Mostly this will be
driven by user requests.
Further reading:

http://www.haskell.org/libraries/#tracing
http://www.cs.mu.oz.au/~bjpop/buddha

5.3.2 HaRe – The Haskell Refactorer

Report by: Claus Reinke
Team: Huiqing Li, Claus Reinke, Simon Thompson
Refactorings are source-to-source program transformations
which change program structure and organisation, but not
program functionality. Documented in catalogues and sup-
ported by tools, refactoring provides the means to adapt and
improve the design of existing code, and has thus enabled the
trend towards modern agile software development processes.
We have just started the second year of a three-year project to
explore the prospects for ‘Refactoring Functional Programs’,
taking Haskell as a concrete case-study.
The last six months have been rather busy, so there’s a lot
to report on: In May, Simon gave an invited presentation at
the 7th Brazilian Symposium on Programming Languages,
accompanied by an extended abstract on ‘A Case Study in
Refactoring Functional Programs’. In August, we gave a

27

http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/HW2003/
http://www.cse.ogi.edu/~hallgren/Programatica/HW2003/
http://www.cse.ogi.edu/~diatchki/hsmod/
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://www.haskell.org/libraries/#tracing
http://www.cs.mu.oz.au/~bjpop/buddha

presentation about our project at the ACM Sigplan Haskell
Workshop 2003 in Uppsala, Sweden, accompanied by a pa-
per on ‘Tool Support for Refactoring Functional Programs’.
Slides and papers from both events are available from our
project home page.
But perhaps the most exciting development is the availabil-
ity of our prototype Haskell Refactorer, HaRe. In May, the
Programatica team (section 5.2.3) convinced their sponsors to
permit a BSD-style license for their Haskell-in-Haskell fron-
tend (thanks!), and we gave small demos of HaRe in both our
presentations. Following the Haskell workshop, we started
to put the first snapshots of HaRe on our website, and af-
ter things had stabilised a bit, we announced the October 1st
snapshot as HaRe 0.1. It runs on a variety of platforms, comes
with interface code for Emacs and Vim, and already supports
about a dozen refactorings, but is not yet module- or type-
aware. We continue to update the snapshot occasionally, to
fix bugs you report. The main development goal for the next
release is to make the existing refactorings module-aware.

Further reading:

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.3 VS Haskell

Report by: Simon Marlow
A project has been started to develop a Visual Studio plugin
to support Haskell, with the aim of providing all the usual
language-specific development environment features (eg. syn-
tax colouring, context-sensitive help, indication of parse er-
rors while you type), and eventually providing some more
advanced features (type checking while you edit, inspecting
types of identifiers or subexpressions, refactoring, debugging,
GUI tools, etc.).
So far we have basic syntax coloring and parse errors in the
edit buffer working, and some basic support for projects.
Help is welcome! You first need to register for the Microsoft
VSIP (Visual Studio Integration Program) to get access to
the VSIP SDK, which has tools, APIs and documentation for
extending Visual Studio. Registering for VSIP is free, but
you have to agree to a longish license agreement:
http://www.vsipdev.com/

If you’ve registered for VSIP and would like to contribute
to Visual Haskell, please drop me a note (Simon Marlow
<simonmar@microsoft.com>).

5.3.4 Documentation

Haddock

Report by: Simon Marlow
Status: stable, maintained. Version 0.5 released July 2003
Haddock is relatively stable, and I intend to keep maintain-
ing it for the forseeable future. I don’t have much time for
wholesale improvements, although contributions are of course
always welcome.

Support for implicit parameters and zip comprehensions was
contributed recently by Sigbjorn Finne, and will be in the
next release.
There is a TODO list of outstanding bugs and missing fea-
tures, which can be found here: http://cvs.haskell.org/
cgi-bin/cvsweb.cgi/fptools/haddock/TODO
Haddock’s home page is here:

http://www.haskell.org/haddock/

28

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.vsipdev.com/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://www.haskell.org/haddock/

Chapter 6

Applications, Groups, and Individuals

6.1 Non-Commercial Applications

6.1.1 HScheme

Report by: Ashley Yakeley (<ashley@semantic.org>)
HScheme is a project to create a Scheme interpreter writ-
ten in Haskell. There’s a stand-alone interpreter program,
or you can attach the library to your program to provide
“Scheme services”. It’s very flexible and general with types,
and you can pick the “monad” and “location” types to provide
such things as a purely functional Scheme, or a continuation-
passing Scheme (that allows call-with-current-continuation)
etc.

Current Status: There’s an online interpreter that I keep
up to date. There are a couple of major issues that stand
before R5RS compliance, after which I’ll make a release. See
http://hscheme.sourceforge.net/issues.php.

Further reading:
http://hscheme.sourceforge.net/

6.1.2 Analysis Tools for Rosetta

Report by: Perry Alexander
The Systems Level Design Group at the University of Kansas
Information and Telecommunication Technology Center is us-
ing Haskell to develop analysis tools for the Rosetta (http:
//www.sldl.org) requirements modeling language. We have
been building upon work on modular interpreters to pro-
vide an ability to compose simulators for Rosetta domains,
with the goal of performing dynamic analysis of heteroge-
neous models. While the work is in its early stages, we have
been encouraged by preliminary results. Haskell is also being
used extensively in the development of a toolset for the static
analysis of Rosetta models.

Further reading:
http://www.ittc.ku.edu/Projects/SLDG/

6.1.3 Hircules, an IRC client

Report by: Jens Petersen
In the previous issue I pre-announced the first release of Hir-
cules, an gtk2hs-based IRC client. After the 0.1 release in
mid May, 0.2 was released at the start of June and 0.3 at the
beginning of October. The project started as a quick hack of

lambdabot (the #haskell channel IRC bot), but the code has
already diverged quite a bit since then for better or worse (it
would actually be really nice to factor out a nice clean IRC
library from lambdabot and hircules to share in the future).
Since last writing a number of features and lots of bugs have
been fixed. 0.2 featured proper displaying of CTCP actions
and mode changes, addition of a “/me” command, channel
logging, and alerting of messages directed at the user. In ver-
sion 0.3, the user interface has changed to use the channel
textbuffers for both output and input; UTF-8 is supported
by default, iso2022-jp messages are auto-decoded and it is
possible to set the channel coding with “/coding”; also there
is now tab highlighting when there is channel activity. The
major features I would like to add in coming versions are auto-
reconnection, support for connections to multiple servers, and
a startup configuration file. Also I have plans for improve-
ments in UI - using colours for nicks and channel highlighting,
history support and more.

Further reading:
http://haskell.org/hircules/

6.1.4 Darcs—David’s Advanced Revision
Control System

Report by: David Roundy
Darcs is a distributed revision control system (i.e. CVS re-
placement), written in Haskell. In darcs, every copy of your
source code is a full repository, which allows for full operation
in a disconnected environment, and also allows anyone with
read access to a darcs repository to easily create their own
branch and modify it with the full power of darcs’ revision
control. Darcs is based on an underlying theory of patches,
which allows for safe reordering and merging of patches even
in complex scenarios. For all its power, darcs remains very
easy to use tool for every day use because it follows the prin-
ciple of keeping simple things simple.
Darcs is in the process of being stabilized for a 1.0 release. It
is very useable, but still has some rough edges to be worked
out. A start has been made on a graphical interface using
wxHaskell, although it isn’t expected to be stabilized for the
1.0 release. Darcs is free software licensed under the GNU
GPL.
Further reading:
http://www.abridgegame.org/darcs

29

http://hscheme.sourceforge.net/issues.php
http://hscheme.sourceforge.net/
http://www.sldl.org
http://www.sldl.org
http://www.ittc.ku.edu/Projects/SLDG/
http://haskell.org/hircules/
http://www.abridgegame.org/darcs

6.1.5 Yarrow, a proof-assistant for Pure
Type Systems

Report by: Frank Rosemeier
From the Yarrow home page:
“A proof-assistant is a computer program with which a user
can construct completely formal mathematical proofs in some
kind of logical system. In contrast to a theorem prover, a
proof-assistant cannot find proofs on its own.
Yarrow is a proof-assistant for Pure Type Systems (PTSs)
with several extensions. A PTS is a particular kind of log-
ical system, defined in ‘Henk Barendregt. Lambda Calculi
with Types. In Handbook of Logic in Computer Science,
vol. 1. Oxford University Press, 1992’. In Yarrow you can
experiment with various pure type systems, representing dif-
ferent logics and programming languages. A basic knowl-
edge of Pure Type Systems and the Curry-Howard-de Bruijn
isomorphism is required. (This isomorphism says how you
can interpret types as propositions.) Experience with similar
proof-assistants can be useful.”
Frank Rosemeier reports that he has ported Yarrow (written
by Jan Zwanenburg, in Haskell 1.3, see http://www.cs.kun.
nl/~janz/yarrow/), to Haskell 98.
The Haskell 98 source code will be published on
his homepage this year, probably in November:
http://www.fernuni-hagen.de/MATHEMATIK/ALGGEO/
Mitarbeiter/Rosemeier/rosemeierengl.htm.

6.2 Commercial Applications

6.2.1 Reid Consulting Ltd

Report: Alastair Reid <alastair@reid-consulting-uk.ltd.uk>

Reid Consulting Ltd. offers Haskell consulting, contracting
and training. Involved in Haskell since its early development,
we have played a key role in turning Haskell into a language
that you can use to build successful products.
Services we provide:

• Supporting open-source compilers, tools and libraries

• Developing libraries

• Creating Haskell bindings to non-Haskell libraries

• Performance tuning

• Code reviews

• Training new staff

• Training in advanced Haskell techniques

Using our services will increase your rate of success, reduce
your development time and help you develop a better product.

Further reading:

http://www.haskell-consulting.com/

6.2.2 Aetion Technologies LLC

Report: Mark T.B. Carroll (<Mark.Carroll@Aetion.com>)
Aetion Technologies LLC is a small American defense con-
tractor that uses Haskell and Java for most of its software
development. The larger current Haskell-based projects we
are working on involve (a) automated reasoning under un-
certainty, currently focusing on the interpretation of sensor
data, and (b) an object-oriented modeling language for com-
posable simulations. Additionally, we develop small Haskell
programs for a variety of tasks from document processing to
time tracking.
A number of our projects involve systems of entities that
react to changes in each other, so we are currently investi-
gating Functional Reactive Programming as an appropriate
framework for implementing such systems. We are looking
at Haskell-based declarative GUI toolkits and Web Author-
ing System Haskell (WASH) as a useful basis for some future
work that will involve more user interaction. A project that
we are about to start work on will involve implementing a
server that manages a distributed computation.
In addition, Aetion donates some programmer time to com-
munity projects like the Library Infrastructure Project and
the Haskell Experimental Debian Archive, mentioned else-
where in this report (sections 4.1.1 and 6.3.1).
Further reading:
http://www.aetion.com/

6.2.3 Binary Parser

Report: Sengan Baring-Gould
<sengan.baring-gould@amd.com>

Sengan Baring-Gould at AMD is developing a binary parser
which given a grammar is able to extract fields from values.
This is used as part of an internal ICE (hardware debugger)
and a State Extractor tool, which eases the debugging of chips
by extracting a slice of a failing program from the signals on
the RAM and PCI pins and makes it into a test that can be
run in the CPU’s simulation environment.
Binary parser provides the ability to reference by name values
which may be composed of other values. It goes one step fur-
ther in that the client program does not need to know where
a particular value is buried, only what its value is. Binary
parser grammars are intended to enable non-programmers
to access fields of their registers, without requiring the tool-
developer to write explicit code to do so. For instance a tech-
nical writer could write a binary parser grammar for a device
of which the tool developer has never heard. Stress has been
put on generality and simplicity, rather than efficiency. For
instance binary parser allows multiple definitions, cyclic def-
initions, etc.
Binary Parser is a Haskell library linked into State Extractor
which is written in x86 assembly, C, C++, and Python. The
Python interface to Binary Parser was written using Haskell’s
FFI and the Boost libraries. It provides a very intuitive in-
terface for non-functional programmers. For instance the fol-
lowing sets the CPU simulation environment up to start ex-
ecution at the reset vector.

30

http://www.cs.kun.nl/~janz/yarrow/
http://www.cs.kun.nl/~janz/yarrow/
http://www.fernuni-hagen.de/MATHEMATIK/ALGGEO/Mitarbeiter/Rosemeier/rosemeierengl.htm
http://www.fernuni-hagen.de/MATHEMATIK/ALGGEO/Mitarbeiter/Rosemeier/rosemeierengl.htm
http://www.haskell-consulting.com/
http://www.aetion.com/

x86.eip = 0xFFF0
x86.cs = 0xF000

Binary parser simplifies the porting of the internal tools from
chip to chip where the location of register-fields may change
but their functionality does not.

6.3 Haskell User Groups

6.3.1 Debian Users

Report by: Isaac Jones
There are many Debian users in the Haskell community, and
they have recently begun an initiative to form a more coherent
group. This involves serious packaging work, especially by Ian
Lynagh to bring new binary versions of GHC, NHC, and other
packages to various versions of Debian.
The group is working toward a solution for the longstanding
problems with binary distribution of Haskell packages, with
discussion taking place on the Haskell Wiki (http://www.
haskell.org/hawiki/DebianUsers). It is hoped that the
Library Infrastructure Project (section 4.1.1) will help here.
In order to provide backports, bleeding edge versions
of Haskell tools, and a place for experimentation with
packaging ideas, Isaac Jones has started the “Haskell Exper-
imental” Debian archive (http://www.syntaxpolice.org/
haskell-experimental/haskell-experimental.html)
where a wide variety of packages can be found.

6.4 Haskell in Education

6.4.1 Beseme Project

Report by: Rex Page
The Beseme Project seeks to provide ideas and materials for
covering the standard material of a one-semester course on
discrete mathematics for computer science and engineering
students.
A distinctive element of the Beseme approach is that discrete
mathematics concepts are illustrated with examples from soft-
ware development, rather than the usual examples from num-
ber theory, graph theory, and the like. This gives computing
students an opportunity to see applications of the theory in a
context that interests and motivates them, without sacrificing
any of the usual mathematical concepts.
Statistics gathered over a four-semester period and analyzed
using standard methods based on Student’s t-distribution
suggest that the Beseme approach gives students a leg up
in a subsequent course on data structures that has a heavy
programming component. Specifically, students with above-
average, overall grade-point averages who took the Beseme
course earned higher marks than above-average students who
took a course with similar mathematical content, but illus-
trated with traditional examples.
According the the t-statistic model, there is only a 2% like-
lihood that the difference (between the average grade in the
data structures course of the Beseme students and that of

the traditional students) can be explained by random effects,
and other analyses suggest that aspects such as quality of
instruction and intellectual abilities of the students also do
not explain the difference, leaving course content as a likely,
influential factor.
The analysis is discussed in greater detail in a paper that
appeared in ICFP 2003, entitled “Software Is Discrete Math-
ematics”. The paper, along with other reports on the Beseme
Project, is accessible through the Beseme website.
Course materials available on the website include lectures
notes (in both PowerPoint and PDF form, over 350 slides in
all), homework (about 100 problemns and solutions), exam-
inations (about 200 questions and solutions), and a syllabus
and lesson plan.
About two-thirds of the material of the course centers around
mathematical logic. After the introduction of predicates, all
of the examples in the logic portion of the course involve
reasoning about properties of software, most of which is ex-
pressed in Haskell (a few are conventional looping functions).
Software examples include sum, sequence concatenation, log-
ical operations on sequences, the Russian peasant algorithm,
insertion and lookup in AVL trees, and other computations.
Most of the properties verified relate to aspects of program
correctness, but resource utilization properties are also veri-
fied in some cases.
The remaining third of the course discusses other standard
topics in discrete mathematics, such as sets, functions, rela-
tions, trees, and counting.
The Beseme website provides access to a preview of the ma-
terial. Exams and solutions are protected by a login pro-
cedure (to increase the comfort level of instructors wishing
to use them in courses). To locate the website, just google
“Beseme”.

6.5 Research Groups

6.5.1 Artificial Intelligence and Software
Technology at JWG-University Frank-
furt

Report by: Matthias Mann, David Sabel
Members: Matthias Mann, David Sabel, Manfred Schmidt-
Schauß

DIAMOND A current research topic within our DI-
AMOND project is understanding side effects and In-
put/Output in lazy functional programming languages using
non-deterministic constructs.
We introduced the FUNDIO calculus which proposes a non-
standard way to combine lazy functional languages with I/O.
FUNDIO is a lazy functional core language, where the syn-
tax of FUNDIO has case, letrec, constructors and an IO-
interface: its operational semantics is described by small-step
reductions. A contextual approximation and equivalence de-
pending on the Input/Output behavior of normal order re-
duction sequences have been defined and a context lemma
has been proved. This enables us to study a semantics and

31

http://www.haskell.org/hawiki/DebianUsers
http://www.haskell.org/hawiki/DebianUsers
http://www.syntaxpolice.org/haskell-experimental/haskell-experimental.html
http://www.syntaxpolice.org/haskell-experimental/haskell-experimental.html

semantic properties of the language. By using the technique
of complete reduction diagrams we have shown a consider-
able set of program transformations to be correct. Several
optimizations of evaluation are given, including strictness op-
timizations and an abstract machine, and shown to be correct
w.r.t. contextual equivalence. Thus this calculus has a po-
tential to integrate non-strict functional programming with
a non-deterministic approach to Input/Output and also to
provide a useful semantics for this combination.
We applied these results to Haskell by translating the GHC
core language to the FUNDIO language. Based on an ex-
tended set of correct program transformations for FUNDIO,
we investigated the local program transformations, which are
performed in GHC. The result is that most of the trans-
formations are correct w.r.t. FUNDIO, i.e. retain sharing
and do not force the execution of IO-operations that are not
needed. By turning off the few transformations which are
not FUNDIO-correct and those that have not yet been in-
vestigated (especially the global ones), we have achieved a
FUNDIO-compatible modification of GHC called HasFuse.
HasFuse compiles Haskell programs which make use of
unsafePerformIO in arbitrary contexts. Since the call-by-
need operational semantics of FUNDIO considers all IO-
operations as independent unless they are made sequential
using data dependency, the behaviour of unsafePerformIO
is no longer ‘unsafe’. This means, the user does not have
to undertake the proof obligation that the timing of an IO-
operation wrapped by ‘unsafePerfomIO’ does not matter in
relation to all the other IO-operations of the program. So
unsafePerformIO may be combined with monadic IO in
Haskell, and since all the reductions and transformations are
correct w.r.t. to the FUNDIO-semantics, the result is reli-
able in the sense that no IO-operation will unexpectedly be
duplicated.
Ongoing work is, beside others, devoted to the proof of cor-
rectness of further program transformations.

Further reading:

Chair for Artificial Intelligence and Software Technology
http://www.ki.informatik.uni-frankfurt.de

DIAMOND http://www.ki.informatik.uni-frankfurt.
de/research/diamond

6.5.2 Formal Methods at Bremen University

Report by: Christoph Lüth and Christian Maeder

Members: Christoph Lüth, Klaus Lüttich, Christian
Maeder, Achim Mahnke, Till Mossakowski, George Russell,
Lutz Schröder
The activities of our group centre on the UniForM workbench
and the Common Algebraic Specification Language (CASL).
The UniForM workbench is a tool integration framework
mainly geared towards tools for formal methods. It is ac-
tively used and developed further in the MMiSS project. The
workbench currently contains over 80k lines of Haskell code
(plus a few hundred lines of C).

We are further using Haskell to develop tools, like parsers
and static analysers, for languages from the CASL family, in
particular CASL itself, HasCASL, and HetCASL, which
combines several specification languages such as CSP, CASL,
HasCASL, and Modal and Temporal Logic.
We use the Glasgow Haskell Compiler (GHC), exploiting
many of its extensions, in particular concurrency, multipa-
rameter type classes, hierarchical name spaces, functional de-
pendencies, existential and dynamic types. Further tools ac-
tively used are DriFT, Haddock, the combinator library Par-
sec, and the haskell-src package.

Further reading:

Group activities overview: http://www.informatik.
uni-bremen.de/agbkb/forschung/formal_methods/
UniForM workbench

http://www.informatik.uni-bremen.de/uniform/wb
HTk Graphical User Interfaces for Haskell Programs

http://www.informatik.uni-bremen.de/htk
MMiSS Multimedia instruction in safe systems

http://www.mmiss.de
CASL specification language

http://www.informatik.uni-bremen.de/cofi
Heterogeneous tool set

http://www.informatik.uni-bremen.de/cofi/hets

6.5.3 Functional Programming at Brooklyn
College, City University of New York

Report by: Murray Gross
One prong of the Metis Project at Brooklyn College, City Uni-
versity of New York, is research on and with Parallel Haskell
in a Mosix-cluster environment. At the present time, with
the assistance of the developers at Heriot Watt University
(Edinburgh) and elsewhere, we have implemented a PVM-
free version of GUM for use under Mosix on i86 machine for
release 5 of GHC, and we are currently porting this release
to Solaris for use in SMP environments under Solaris. Some
interesting preliminary results concerning performance under
Mosix are being examined, and we hope to be able to present
a technical report on the issues that have been raised some-
time later this fall.

Further reading:

http://www.sci.brooklyn.cuny.edu/~metis
Contact: Murray Gross, <magross@its.brooklyn.cuny.edu>.

6.5.4 Functional Programming at Mac-
quarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity.
Within our Programming Language Research Group we are
working on a number of projects with a Haskell focus (see
also section 2.5.1). In addition to current projects mentioned
in previous reports:

32

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/uniform/wb
http://www.informatik.uni-bremen.de/htk
http://www.mmiss.de
http://www.informatik.uni-bremen.de/cofi
http://www.informatik.uni-bremen.de/cofi/hets
http://www.sci.brooklyn.cuny.edu/~metis

• Qingsong Ye and a number of other students are look-
ing at designing embedded DSLs for specifying different
aspects of handheld applications, including data synchro-
nisation and user interface.

Further reading:

Our web page is still being re-developed:
http://www.comp.mq.edu.au/plrg/

In the meantime, please contact us via email to
<plrg@ics.mq.edu.au>.

6.5.5 Functional Programming at Utrecht
University

Report by: Daan Leijen

All UU Software (http://www.cs.uu.nl/groups/ST/)
We are well on our way to make all our Haskell modules mu-
tually consistent and to make them available through a CVS
server at cvs.cs.uu.nl, in the directory uust. Currently
included are our parser combinators, pretty printers and at-
tribute grammar system. Further software will be added in
the near future.

Parser Combinators (Doaitse Swierstra, Arthur Baars,
Rui Guerra) See the description of UPC in section 4.3.5.

Helium (Arjan van IJzendoorn, Bastiaan Heeren, Daan
Leijen) See the description of Helium in section 2.5.2.

Improving Type Errors (Bastiaan heeren, Jurriaan
Hage, Doaitse Swierstra) See the description of the con-
strained based inferences in section 3.3.2.

The attribute grammar system AG (Arthur Baars,
Doaitse Swierstra) See the description of UAG in section
5.2.1.

Utrecht Haskell Compiler (Atze Dijkstra, Doaitse
Swierstra)
Project status: active development
formerly: Type Checker for Extended Haskell
The type checker we started a while ago has been growing and
quickly approaches a more or less complete Haskell compiler,
supporting many extensions we think might go into Haskell
2, such as higher rank types (both existential and universal
types), polymorphic kinds etc. Some small programs have ran
successfully on the Lazy Virtual Machine that was developed
by Daan Leijen.

Pretty Printing (Pablo Azero, Doaitse Swierstra)
Our pretty printing combinators have been silently doing their
work over the years. Currently we are updating them, so they
can be generated by the new version of the AG system. They
too will have a more flexible interface allowing naming of
subformats by using a monadic top layer.
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/lib/
pprint/

Proxima (Martijn Schrage, Johan Jeuring, Lambert
Meertens, Doaitse Swierstra)
In the proxima we are designing a layered system for build-
ing interactive editors. An interesting aspect of our approach
is that we have designed combinators for glueing the differ-
ent layers that take part in the online formatting. By our
knowledge this is the only place where combinators are used
to combine really large program structures. We are currently
in the state that we can produce small editors in a relatively
easy way.
Some screenshots of editors that have been written you may
take a look at the projects home page at: http://www.cs.
uu.nl/groups/ST/twiki/bin/view/Center/Proxima

Syntax Macros (Arthur Baars, Doaitse Swierstra)
Project status: actively developed
The syntax macros are now in a state that one gets a macro
mechanism for free when using our attribute grammar sys-
tem and parser combinators in constructing a front end of a
compiler. Necessary glueing code is automatically generated.
The syntax macros make it possible to extend the context
free grammar of a language on a per program basis. Ex-
amples of constructs that no longer have to be part of the
standard language, but could have been defined us- ing our
macro mechanism are the do-notation, arrow-notation and
the notation for list comprehensions. Currently we manage
even to give the user feedback in terms of his original program,
by allowing online redefinition of the attribute grammar that
constitues the compiler.
The current version is available at http://www.cs.uu.nl/
groups/ST/twiki/bin/view/Center/SyntaxMacros

First Class Attribute Grammars (Arthur Baars,
Doaitse Swierstra)
We are investigating how to make language definitions more
compositional, and how to capture recurring patterns of anal-
ysis and data flow in compilers. Ideally we should like to have
so-called first class aspects. It is a matter of research however
how to integrate type checking and aspect oriented program-
ming. Attempts using extendible records almost seem to do
the job, but unfortunately incorrect use leads to pages of error
messages. We hope that by following the techniques explained
in http://www.cs.uu.nl/people/arthurb/dynamic.html may
help to solve the problem.

6.5.6 Functional Programming at the Uni-
versity of Kent

Report by: Claus Reinke
We are a group of about a dozen staff and students with
shared interests in functional programming. While our work
is not limited to Haskell, it provides a major focus and com-
mon language for teaching and research.
Our members pursue a variety of Haskell-related projects,
many of which are reported in other sections of this report.
Keith Hanna is continuing his work on visual interactive pro-
gramming with Vital (see section 2.5.4). Axel Simon develops

33

http://www.comp.mq.edu.au/plrg/
http://www.cs.uu.nl/groups/ST/
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/lib/pprint/
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/lib/pprint/
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/Proxima
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/Proxima
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/SyntaxMacros
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/SyntaxMacros

the Gtk2hs binding to version 2.2 of the Gtk GUI library (sec-
tion 4.5.6) and has also been trying to coordinate the Haskell
GUI efforts (section 4.5.1). Chris Ryder has evaluated his
Metrics and Visualization library Medina through some case
studies, and is now working on improvements (section 4.7.1).
Huiqing Li, Simon Thompson and Claus Reinke have released
first snapshots of HaRe, the Haskell Refactorer (section 5.3.2),
and Claus Reinke has had no time for his favourite project
combining functional programming and virtual worlds (sec-
tion 4.6.5).

Further reading:

FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

Vital: http://www.cs.kent.ac.uk/projects/vital/
Gtk2HS: http://gtk2hs.sourceforge.net/
FunWorlds: http://www.cs.kent.ac.uk/~cr3/FunWorlds/
MEDINA: http://www.cs.kent.ac.uk/~cr24/medina/
Refactoring Functional Programs:

http://www.cs.kent.ac.uk/projects/refactor-fp/

6.5.7 Programming Languages & Systems
at UNSW

Report by: Manuel Chakravarty
PLS is a young research group at the University of New
South Wales whose Haskell-related activities comprise high-
performance arrays for Haskell, whole program optimisation
of Haskell programs, optimisation of Embedded Domain Spe-
cific Languages (EDSLs) in Haskell, Haskell to Java transla-
tion, and a Haskell to ObjectiveC bridge. We also contribute
to the Glasgow Haskell Compiler. Moreover, we work on the
use of λ-calculus as an intermediate language for optimising
compilers of conventional languages, the safe execution of un-
trusted code, Python for the Single Address Space Operating
System (SASOS) Mungi, and cluster computing.

Further reading:

Further details about PLS and the above mentioned activities
can be found at http://www.cse.unsw.edu.au/~pls/ or be
obtained by sending an email to <pls@cse.unsw.edu.au>

6.5.8 Institute for Geoinformation at TU
Vienna

Report by: Andrew Frank

Haskell used for Geographic Information Science Re-
search We have used Haskell and primarily Hugs for the
past 5 years as a language to formalize complex problems in
Geographic Information Science:
Specification of interfaces: interoperability between pro-
grams of different vendors requires the definition of inter-
faces. The industry group Open GIS Consortium (http:
//www.opengis.org) is part of the international standard-
ization process under ISO (ISO TC 211) and uses the con-
ventional methods (UML, English text). This leads regularly

to interpretation problems: what is meant with a specific
interface description? What is the correct implementation?
We have demonstrated that Haskell can be used to write the
specifications in an unambiguous way. Haskell is executable
and this produces the additional benefit that results for inter-
esting questions can be produced automatically (Frank and
Kuhn 1995; Frank and Kuhn 1998; Kuhn and Frank 1998).
Modeling cognitive spatial agents: the complex processes
of observation of environment, decision making and action
in space analyzed; we construct computational models in
Haskell. A first model of a very simple situation (finding
the way to the gate in an airport) was successful (Raubal,
Egenhofer et al. 1997; Raubal and Egenhofer 1998; Raubal
and Worboys 1999; Raubal 2000; Raubal 2000; Raubal and
Frank 2000; Raubal 2001; Raubal 2001). Another compu-
tation model analyzes the process of making maps based on
observation of an environment and then using the same maps
by another agent for wayfinding (Frank 2000). The formal
models allowed us to compare wayfinding in a real environ-
ment with wayfinding in the web (Hochmair 2000) (Hochmair
2000; Hochmair 2001; Hochmair and Frank 2001; Hochmair
and Raubal forthcoming). Ongoing work is concentrating on
users of public transportation: Ms. E. Pontikakis is integrat-
ing wayfinding with the business process of ticket buying etc.
Building computational models to understand real estate
ownership and the related process in a cadastre (propriety
registry). In one effort we built a computational model to
John Searle’s concept of ’socially constructed reality’ (Searle
1995; Smith and Searle 2001) and applied it to real estate (An-
derson, Birbeck et al. 2000; Bittner, Wolff et al. 2000; Steffen
Bittner 2002; Bittner to appear). In a second effort, the Aus-
trian cadastral law was translated, paragraph by paragraph,
in Haskell to allow formal analysis of its content (Navratil
1998; Navratil 2002; Navratil and Frank 2003)
At the core of much of our work is the representation of col-
lections of facts; the ordinary relational data model (Codd
1970; Codd 1982) does not integrate well with current object-
oriented design paradigms and functional approaches. We
explore a data model based on relations, which links to cat-
egory theory (Bird and de Moor 1997). We have a running
system which allows flexible storage and retrieval of multi-
ple relations. This is reminiscent of work done in the early
80s (Shipman 1981), which did not succeed in the imperative
programming environment.
Geographic Information Systems are very complex, large pro-
grams and therefore very difficult to analyze and to teach. It
seems possible to reconstruct the data processing part of a
GIS (not the user interface) in Haskell and identify the al-
gebras relevant. Haskell permits the integration of different
parts of mathematics (algebraic topology, projective geome-
try, linear algebra, etc.) in a uniform setting.

Further reading:

http://www.geoinfo.tuwien.ac.at/research/
researchtopics.htm

34

http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/vital/
http://gtk2hs.sourceforge.net/
http://www.cs.kent.ac.uk/~cr3/FunWorlds/
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cse.unsw.edu.au/~pls/
http://www.opengis.org
http://www.opengis.org
http://www.geoinfo.tuwien.ac.at/research/researchtopics.htm
http://www.geoinfo.tuwien.ac.at/research/researchtopics.htm

6.6 Individual Haskellers

“What are you using Haskell for?” – the implementation
mailing lists are full of people sending in bug reports and fea-
ture suggestions, stretching the implementations to their lim-
its. Judging from the “reduced” examples sent in to demon-
strate problems, there must be quite a few Haskell applica-
tions out there that haven’t been announced anywhere (prob-
ably because Haskell is “just” a tool in those projects).
If you’re one of those serious Haskell users, why not write a
sentence or two about your application? We’d be particularly
interested in your experience with the existing tools (e.g., that
all-time-favourite: how difficult was it to tune the resource
usage to your needs, after you got your application working?
Which tools/libraries where useful to you? What is missing?).

Oleg Kiselyov <oleg@pobox.com> writes:
Simon Peyton Jones noted, “Haskell has become a labora-
tory and playground for advanced type hackery”. A re-
cently added page http://pobox.com/~oleg/ftp/Haskell/
types.html gives examples of the type hackery, some of which
seems to be actually useful. One such example is a polyvari-
adic composition mcomp, which gives the farthest composi-
tion of two functions. If f :: a1 → a2 → → cp and
g :: cp → d then f ‘mcomp‘ g :: a1 → a2 → → d where
cp is not a functional type. The page types.html shows
one application of the polyvariadic composition, for an auto-
matic uncurrying of deeply nested tuples. The latter lets us
write categorical products in Haskell in a natural way: e.g.,
max7 = max3.((max2 ∗max3) ∗max2).
The page types.html also shows how to dynamically dis-
patch on a class of a type. In other words, how to emulate
IsInstanceOf . Finally, the page describes AVL trees with a
blended static and dynamic enforcement of the tree balancing
constraint. The function make node verifies the constraint at
compile time – if it can. If the static check is not possible,
the function delays the check till the run-time.
Linked from types.html is a page that discusses several
approaches to number-parameterized types, i.e., datatypes
that depend on unary or decimal numbers such as arrays
with a statically-checked size. http://pobox.com/~oleg/
ftp/Haskell/number-parameterized-types.html The lat-
ter have been described in the previous edition of the Report.

Graham Klyne (http://www.ninebynine.org/, http://
www.ninebynine.net/) writes:
My primary interest is in RDF (http://www.w3.org/RDF/)
and Semantic Web (http://www.w3.org/2001/sw/) tech-
nologies, and I am a participant in the W3C RDFcore work-
ing group (http://www.w3.org/2001/sw/RDFCore/). I see
the Web in general, and the Semantic Web in particular, as
a natural territory for application of functional programming
techniques. I aim to use Haskell as a “scripting language” for
the Semantic Web – to develop applications based on simple
inferencing over RDF data, overcoming limitations I have en-
countered with available off-the-shelf RDF inference tools. I
find it particularly appealing that Haskell has the full power
of a general purpose programming language, but supports a

programming style that can be matched closely to formal and
semi-formal specifications to provide extra validation for In-
ternet/Web protocol definitions.
My current motivating application is using RDF in net-
work configuration applications (http://www.ninebynine.
org/SWAD-E/Intro.html#HomeNetAccessDemo), using infer-
ence rules to map general network policy descriptions (in
RDF) to device-specific configuration files or instructions.
The first elements of this work, a Notation3 parser and an
RDF graph comparison and merging utility, were released
and announced in June 2003 (http://www.haskell.org/
pipermail/haskell/2003-June/012013.html). I have since
completed an RDF query processor that forms the heart of a
simple inference and proof-checking framework, and am cur-
rently working towards implementing a framework for adding
RDF datatype deductions, and packaging the whole for re-
lease and experimentation.
Future directions:
• application to network device configuration and access

control
• application to trust modelling (cf. http://www.
ninebynine.org/iTrust/Intro.html)

• a full RDF/XML parser based on the new pro-
posed RDF syntax specification (http://www.w3.org/
TR/rdf-syntax-grammar/).

• fully or partially automated inference/proof discovery.
• integration with RDF storage systems implemented in

Java and/or C (e.g. Jena http://www.hpl.hp.com/
semweb/)

• many code refinements as my understanding of Haskell
technique grows.

Markus Schnell writes:
I’m working on a Ph.D. thesis (I’m in my third year) on
Concept-to-Speech Systems. For implementation of the al-
gorithms I use ghc under Windows 2000 and Mac OS X.
Whenever possible, I want to make available some of the
modules. These can be found on my webpage: http://www.
markusschnell.com/haskell.html Due to copyright prob-
lems it’s mainly a module for understanding Hidden Markov
Models (HMM) and the Viterbi Algorithm.
In my spare time I’m putting together a Web Content Man-
ager in Haskell to make maintaining my website easier. For
that, I’m growing a FTP module, which should be available
soon.

Steffen Mazanek is working on his MSc thesis (expected
Jan 2004), “Higher-kinded types in the context of subtyping”,
at the University of the German Federal Armed Forces, Mu-
nich.
Abstract: Type systems significantly support the modern
software enineering process. Therefore a lot of effort is in-
vested to improve the existing methods. From the object-
oriented programming paradigm we have noted the benefits
of extension and specialization gained by inheritance and sub-
typing mechanisms, i.e., enhanced productivity, reusability
and hence robustness and maintainability.

35

http://pobox.com/~oleg/ftp/Haskell/types.html
http://pobox.com/~oleg/ftp/Haskell/types.html
http://pobox.com/~oleg/ftp/Haskell/number-parameterized-types.html
http://pobox.com/~oleg/ftp/Haskell/number-parameterized-types.html
http://www.ninebynine.org/
http://www.ninebynine.net/
http://www.ninebynine.net/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/RDFCore/
http://www.ninebynine.org/SWAD-E/Intro.html#HomeNetAccessDemo
http://www.ninebynine.org/SWAD-E/Intro.html#HomeNetAccessDemo
http://www.haskell.org/pipermail/haskell/2003-June/012013.html
http://www.haskell.org/pipermail/haskell/2003-June/012013.html
http://www.ninebynine.org/iTrust/Intro.html
http://www.ninebynine.org/iTrust/Intro.html
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.hpl.hp.com/semweb/
http://www.hpl.hp.com/semweb/
http://www.markusschnell.com/haskell.html
http://www.markusschnell.com/haskell.html

The type system of Haskell is still missing an appropri-
ate treatment of subtype relations. Starting from Nordlan-
ders approach O’Haskell (http://www.math.chalmers.se/
~nordland/ohaskell/) we introduce a new application of
higher-kinded types in this context. Thereby special function
kinds and kind variables are used to keep track of variances so
that even complex type expressions behave as expected. This
result is achieved, because we establish a subtype relation
between higher-kinded types.
Our kind system motivates another extension. We present
a subkind relation (in analogy to subtyping) to state, that
a particular kind is more specific than another one. Amaz-
ingly, the arrow kind constructor behaves antitone in its first
argument similarly to the arrow type constructor.
We aim at simplicity, speed of execution and compatibility
to standard Haskell98 as well as O’Haskell. Furthermore we
compare our approach with several well-known type system
extensions and provide a basic implementation.

Further reading:

http://www.steffen-mazanek.de/diplomarbeit.html
Please note, that this thesis is not yet published (it will be in
early January) and hence the website given above does not
contain comprehensive information by now.

Ketil Z. Malde <ketil+haskell@ii.uib.no> writes:
I’m developing various tools for sequence analysis as part of
my Ph.D. work in bioinformatics. Currently available is “xs-
act”, a fast EST clustering program using a novel (in this
context) algorithm based on a sort-of suffix array.
Soon to come is a consensus sequence generator. The total
size is about 2500 lines of Haskell.
Everything, including code, published articles and presen-
tation, is or will be available at http://www.ii.uib.no/
~ketil/bio/

Tom Pledger <Tom.Pledger@peace.com> writes:
Since 2001 my work has mainly been the design and imple-
mentation a business data processing language. It is lazy,
functional, and has a lot in common with discrete Functional
Reactive Programming. It is impure inasmuch as it reads
from a database, and loses referential transparency at the
end of each transaction, when it relinquishes its locks and
clears its cache. In early 2003 the project team grew to two
people. Our interpreter is written in

• Haskell (98 plus the Control.Monad libraries) for the
static analysis part, and

• Nice (http://nice.sourceforge.net) for the runtime
part, because it must run in a Java Stored Procedure in
an Oracle database, with no access to native code.

It’s at the prototype stage. Our next steps are to test and
refine it further, and to add a component for visualising cal-
culations - the Auditors’ Replay.
I take care not to ask for related free advice on the Haskell
mailing lists, because my employer expects to own and profit
from this product.

Lloyd Allison <lloyd@mail.csse.monash.edu.au> writes:
Inductive Inference I am using Haskell to examine what
are the products[1] of AIDMIIMLSI[2] from a programming
point of view, that is how do they behave, what can be
done to each one, and how can two or more be combined?
The primary aim is the getting of understanding, and that
could one day be embodied in a useful library or prelude for
AIDMIIMLSI[2].
Currently there are types and classes for models (various
probability distributions), function models (including regres-
sions), time-series (including Markov models), mixture mod-
els, and classification trees.
The URL http://www.csse.monash.edu.au/~lloyd/
tildeFP/II/ contains some references, and code will be
available there if and when it is a bit more polished and
published.
[1] E.g. Mixture-models (unsupervised classification,

clustering), classification- (decision-) trees (supervised
classification, expert systems), Bayesian/causal net-
works/models, etc..

[2]AIDMIIMLSI = artificial-intelligence/ data-mining/
inductive-inference/ machine-learning/ statistical-
inference/ etc., call it what you will. (Super Thunder
Sting Car Ray Bird – Pete & Dud.)

Alain Crémieux <alcremi@pobox.com> writes:
I work in a company making software for payrolling, which is
a incredibly complex subject in France. I’d like to use Haskell
in my everyday’s work, but up to now it’s only been a per-
sonal hobby (“passion” would be more accurate). I am con-
vinced that embedded languages (“DSEL”) have strong ap-
plications in software-making companies. Of course Haskell
is one of the best language for that; but if there are many
fascinating papers (resulting from hard work & deep in-
sights) on the subject, practical reusable code lacks. Most
projects are unfinished, and when code exists it is in “as is”
state, and never reusable without much work. So as a start
I am trying to implement “How to write a financial con-
tract” http://research.microsoft.com/Users/simonpj/
Papers/financial-contracts/pj-eber.ps, a chapter in
“The Fun of Programming” by Simon Peyton Jones & Jean-
Marc Eber. This article details the full analysis (the hard
part) of an embedded language application. A deriving im-
plementation should provide several solutions, depending on
design decisions (for instance a “shallow” embedding and a
“deep” embedding), simplifications rules leading to a (mod-
erately) optimised interpreter and a code generator (C-- is
my target language). And the code should work (calculate
the value of several common financial options). Two other
key papers for this work are Compiling Embedded Languages
http://www.conal.net/papers/jfp-saig/, by Conal El-
liott, Sigbjorn Finne and Oege de Moor, and Programming
Graphics Processors Functionally http://www.conal.net/
papers/Vertigo/ (Vertigo) by Conal Elliott. Any advice
and/or discussion would be welcome. I have 2 other projects
going on, an Haskell binding to Graphviz (rather advanced),
and a Haskell binding to Berkeley DB.

36

http://www.math.chalmers.se/~nordland/ohaskell/
http://www.math.chalmers.se/~nordland/ohaskell/
http://www.steffen-mazanek.de/diplomarbeit.html
http://www.ii.uib.no/~ketil/bio/
http://www.ii.uib.no/~ketil/bio/
http://nice.sourceforge.net
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://research.microsoft.com/Users/simonpj/Papers/financial-contracts/pj-eber.ps
http://research.microsoft.com/Users/simonpj/Papers/financial-contracts/pj-eber.ps
http://www.conal.net/papers/jfp-saig/
http://www.conal.net/papers/Vertigo/
http://www.conal.net/papers/Vertigo/

	General
	haskell.org
	Tips, Tricks, Tours and Tutorials
	Haskell-related Publications
	Haskell-related Events

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	hmake
	Domain-specific variations
	Haskell on Handheld Devices
	Helium
	Educational Domain Specific Languages
	Vital: Visual Interactive Programming

	Language Extensions
	Foreign Function Interface
	Non-sequential Programming
	Concurrent Haskell
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell
	Eden

	Type System/Program Analysis
	Chameleon/A General Type Class Framework based on Constraint Handling Rules
	Constraint-based Type Inferencing

	Generic Programming
	Syntactic Sugar
	Recursive do notation
	Arrow Notation

	Libraries
	Packaging and Distribution
	Library Infrastructure Project
	RPM Packaging of Haskell projects
	Haskell User-Submitted Libraries

	Hierarchical Libraries
	A redesigned IO library
	System.Process: a platform-independent API for external process control
	System.Time: a redesigned Time library

	Data and Control Structures
	The Haskell Cryptographic Library
	HSQL
	Strafunski
	Parsec
	UPC -- Utrecht Parser Combinators
	Yampa
	The revamped monad transformer library
	DData
	HBase

	FFI
	Template Greencard

	Graphical User Interfaces
	The Common GUI Library Task Force
	HTk
	HToolKit
	wxHaskell
	Gtk+HS
	Gtk2hs

	Graphics
	HGL Graphics Library
	HSX11
	PanTHeon
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	FunWorlds -- Functional Programming and Virtual Worlds

	Tool Frameworks
	Medina -- Metrics for Haskell

	XML and Web Programming
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell

	Tools
	Foreign Function Interface
	C-->Haskell
	GreenCard
	JVM Bridge

	Meta Programming
	Scanning, Parsing, and Analysis
	Alex version 2
	Happy
	The Utrecht attribute grammar system UAG

	Haskell Transformations
	MAG
	HsOpt: Helium/LVM Optimization in Stratego
	Ultra

	Haskell Frontends
	The Programatica Project

	Program Development
	Tracing and Debugging
	buddha

	HaRe -- The Haskell Refactorer
	VS Haskell
	Documentation
	Haddock

	Applications, Groups, and Individuals
	Non-Commercial Applications
	HScheme
	Analysis Tools for Rosetta
	Hircules, an IRC client
	Darcs---David's Advanced Revision Control System
	Yarrow, a proof-assistant for Pure Type Systems

	Commercial Applications
	Reid Consulting Ltd
	Aetion Technologies LLC
	Binary Parser

	Haskell User Groups
	Debian Users

	Haskell in Education
	Beseme Project

	Research Groups
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at Utrecht University
	Functional Programming at the University of Kent
	Programming Languages & Systems at UNSW
	Institute for Geoinformation at TU Vienna

	Individual Haskellers

