
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Seventh Edition – November 10, 2004

Andres Löh (ed.)
Perry Alexander Lloyd Allison Krasimir Angelov
Alistair Bayley Jérémy Bobbio Björn Bringert
Paul Callaghan Mark Carroll Manuel Chakravarty

Olaf Chitil Koen Claessen Andrew Cooke
Catarina Coquand Duncan Coutts Philippa Cowderoy
Alain Crémieux Iavor Diatchki Atze Dijkstra
Peter Diviánszky Shae Erisson Sander Evers

Simon Foster Leif Frenzel John Goerzen
Murray Gross Walter Guttmann Jurriaan Hage

Sven Moritz Hallberg Thomas Hallgren Keith Hanna
Dean Herington Anders Höckersten John Hughes
Graham Hutton Patrik Jansson Johan Jeuring

Isaac Jones Oleg Kiselyov Graham Klyne
Daan Leijen Andres Löh Rita Loogen

Salvador Lucas Christoph Lüth Ketil Z. Malde
Christian Maeder Simon Marlow Conor McBride
Serge Mechveliani Brandon Moore Andy Moran
Matthew Naylor Henrik Nilsson Jan Henry Nyström

Sven Panne Ross Paterson Jens Petersen
John Peterson Simon Peyton-Jones Jorge Sousa Pinto
Bernie Pope Alastair Reid Claus Reinke

Frank Rosemeier David Roundy George Russell
Chris Ryder David Sabel Uwe Schmidt
Axel Simon Peter Simons Anthony Sloane

Dominic Steinitz Donald Bruce Stewart Martin Sulzmann
Henning Thielemann Peter Thiemann Simon Thompson

Phil Trinder Tuomo Valkonen Eelco Visser
Joost Visser Malcolm Wallace Ashley Yakeley

Jory van Zessen

http://www.haskell.org/communities/

Preface

Welcome to the Seventh edition of the Haskell Communities and Activities report. I can proudly
announce that the report has survived yet another change of editor, and chances are good that
this won’t be the last report I edit, so you are going to have to live with me for a while.

First of all, I want to emphatically thank the two previous editors, Claus Reinke and Arthur
van Leeuwen, not only for the visible results they have produced (the previous six reports), but
also for providing an infrastructure (template files, contact lists, little tools etc.) with which the
preparation of this report has been more entertaining than stressful. In this context, I also want
to thank John Peterson, who helped out promptly and unbureaucratically when I happened not
to be satisfied with the software installed on haskell.org.

Furthermore, I want to thank everyone in the rather impressive list of contributors. Without
your work, these reports would not be possible, and I appreciate the many friendly replies I got
to my calls and reminders, and I especially thank all first-time contributors! In my – rather
subjective – impression, we have a significant increase in the number of Haskell-based appli-
cations. Successful applications are certainly a good way to help Haskell to more recognition
outside the core community.

Still, I have the feeling that the report could be better and more complete. From time to
time, I find myself reading a mail on the mailing list mentioning a project I have never heard
of, or even announcing a new project. When I ask if a contribution to the HC&A Report is
forthcoming, I usually get the answer “well . . . now that you asked, it is”. While such a reaction
is of course positive, I cannot possibly catch all new or hidden projects this way. Therefore,
I rely on you, the readers, to provide feedback, and to communicate with each other: please
encourage yourself and others you know are working on Haskell projects to contribute, and
please tell me 〈hcar@haskell.org〉 about things you are missing from the Report. And please,
mark already the last weeks of April in your calendar, as the contributions to the
May 2005 edition are due by then!

I couldn’t stop it and change a few TEXnical things: I sincerely hope that you like the new
look of the report. The main functional modification is that you can detect changes more easily.
Entries that are (nearly) unchanged with respect to the previous edition are listed normally
(they will still contain current and interesting information, though). Entries that have been
updated have a header with a blue background, and finally all-new entries (again, w.r.t. the
previous edition) find themselves completely on a blue background.

I don’t particularly like the historically grown categorization of the Report. I apologize in
advance for all the projects I placed wrongly or suboptimal (the commercial users are listed
under “Applications”, for example, whereas research and user groups have their own chapter).
For the next Report, I will think about modifying the overall structure a bit: suggestions are
welcome.

Ok, I’ve said enough – read it while it’s hot!

Andres Löh, University of Utrecht, The Netherlands

2

mailto:hcar@haskell.org

Contents

1 General 7
1.1 haskell.org . 7
1.2 #haskell . 7
1.3 The Haskell HaWiki . 7
1.4 Books and tutorials . 7
1.4.1 New textbook – Programming in Haskell . 7
1.4.2 hs-manpage-howto(7hs) . 8
1.5 Haskell related events . 8
1.5.1 Past events . 8
1.5.2 Future events . 9

2 Implementations 10
2.1 The Glasgow Haskell Compiler . 10
2.2 Hugs . 10
2.3 nhc98 . 11
2.4 Haskell-Clean Compiler . 11
2.5 Haskell to Clean Translation . 11
2.6 Variations of Haskell . 11
2.6.1 Haskell on handheld devices . 11
2.6.2 Helium . 11
2.6.3 Educational Domain Specific Languages . 12
2.6.4 Vital: Visual Interactive Programming . 12
2.6.5 hOp . 13
2.6.6 Agda: An Interactive Proof Editor . 13
2.6.7 Epigram . 13

3 Language Extensions 15
3.1 Foreign Function Interface . 15
3.2 Non-sequential Programming . 15
3.2.1 GpH – Glasgow Parallel Haskell . 15
3.2.2 GdH – Glasgow Distributed Haskell & Mobile Haskell . 15
3.2.3 Eden . 16
3.2.4 HCPN – Haskell-Coloured Petri Nets . 17
3.3 Type System/Program Analysis . 17
3.3.1 Chameleon . 17
3.3.2 Constraint Based Type Inferencing at Utrecht . 18
3.3.3 EHC, ‘Essential Haskell’ Compiler . 19
3.4 Generic Programming . 19
3.5 Arrow notation . 20

4 Libraries 21
4.1 Packaging and Distribution . 21
4.1.1 Hackage and Cabal (formerly the Library Infrastructure Project) 21
4.1.2 LicensedPreludeExts . 21
4.1.3 Haskel User Submitted Libraries (haskell-libs) . 21
4.2 General libraries . 21
4.2.1 Pesco.Cmdline – a command line parser 6= GNU getopt . 21
4.2.2 System.Time: a redesigned Time library . 22
4.2.3 A redesigned IO library . 22
4.2.4 System.Process: a platform-independent API for external process control 23
4.2.5 The Haskell Cryptographic Library . 23

3

4.2.6 Numeric prelude . 23
4.2.7 Haskore revision . 24
4.2.8 Yampa . 24
4.2.9 The revamped monad transformer library . 24
4.2.10 HBase . 25
4.2.11 Pointless Haskell . 25
4.2.12 hs-plugins . 25
4.2.13 MissingH . 25
4.3 Parsing and transforming . 26
4.3.1 Parsec . 26
4.3.2 Strafunski . 26
4.3.3 Medina – Metrics for Haskell . 26
4.4 Data handling . 27
4.4.1 DData . 27
4.4.2 A library for strongly typed heterogeneous collections . 27
4.4.3 HSQL . 27
4.4.4 Takusen . 27
4.4.5 HaskellDB . 28
4.5 User interfaces . 28
4.5.1 The Common GUI API effort . 28
4.5.2 wxHaskell . 28
4.5.3 FunctionalForms . 29
4.5.4 HToolkit . 29
4.5.5 gtk2hs – A binding to the Gtk GUI library version 2.0–2.4. 29
4.5.6 HTk . 29
4.5.7 Fudgets . 29
4.6 Graphics . 30
4.6.1 HSX11, HGL, and Win32 . 30
4.6.2 HOpenGL – A Haskell Binding for OpenGL and GLUT . 30
4.6.3 Pancito . 30
4.7 Web and XML programming . 30
4.7.1 Halipeto . 30
4.7.2 HaXml . 31
4.7.3 Haskell XML Toolbox . 31
4.7.4 WASH/CGI – Web Authoring System for Haskell . 32
4.7.5 GXS – The Generic XML Serializer . 32
4.7.6 XML Schema . 32
4.7.7 SOAP/1.1 and WSDL/1.1 . 33
4.7.8 Haskell XML-RPC . 33

5 Tools 34
5.1 Foreign Function Interfacing . 34
5.1.1 GreenCard . 34
5.1.2 C–>Haskell . 34
5.1.3 JVM Bridge . 34
5.1.4 PHI – Python Haskell Interface . 34
5.1.5 HOC: A Haskell to Objective-C binding . 34
5.2 Scanning, Parsing, Analysis . 35
5.2.1 Alex version 2 . 35
5.2.2 Happy . 35
5.2.3 HaLex . 35
5.2.4 LRC . 35
5.2.5 Sdf2Haskell . 35
5.2.6 HaGLR . 36
5.2.7 DrHylo . 36
5.3 Transformations . 36
5.3.1 The Programatica Project . 36
5.3.2 Term Rewriting Tools written in Haskell . 36

4

5.3.3 Ultra . 37
5.3.4 Hare – The Haskell Refactorer . 37
5.3.5 VooDooM . 38
5.3.6 LVM-OPT . 38
5.4 Testing and Debugging . 38
5.4.1 Tracing and Debugging . 38
5.4.2 Hat . 38
5.4.3 buddha . 39
5.4.4 QuickCheck . 39
5.4.5 HUnit . 39
5.5 Development . 39
5.5.1 hmake . 39
5.5.2 cpphs . 40
5.5.3 Visual Studio support for Haskell . 40
5.5.4 Haskell support for the Eclipse IDE . 40
5.5.5 Haddock . 40

6 Applications 42
6.1 Non-commercial applications . 42
6.1.1 HScheme . 42
6.1.2 Curryspondence . 42
6.1.3 lambdabot . 42
6.1.4 HWS-WP . 42
6.1.5 Hircules, an irc client . 42
6.1.6 Darcs . 42
6.1.7 Yarrow . 43
6.1.8 HasLATEX . 43
6.1.9 DoCon, the Algebraic Domain Constructor . 43
6.1.10 lhs2TEX . 44
6.1.11 Audio signal processing . 44
6.1.12 Converting knowledge-bases with Haskell . 44
6.1.13 NetEdit . 44
6.1.14 riot . 44
6.1.15 Flippi . 45
6.1.16 Postmaster ESMTP Server . 45
6.1.17 yi . 45
6.2 Commercial users . 45
6.2.1 Reid Consulting Ltd . 45
6.2.2 Galois Connections, Inc. 46
6.2.3 Aetion Technologies LLC . 46
6.3 Haskell in Education . 46
6.3.1 Haskell in Education at Universidade de Minho . 46

7 Groups 48
7.1 Research Groups . 48
7.1.1 Artificial Intelligence and Software Technology at JWG-University Frankfurt 48
7.1.2 Formal Methods at Bremen University . 49
7.1.3 Functional Programming at Brooklyn College, City University of New York 49
7.1.4 Functional Programming at Macquarie University . 49
7.1.5 Functional Programming at the University of Kent . 50
7.1.6 Parallel and Distributed Functional Languages Research Group at Heriot-Watt University 50
7.1.7 Programming Languages & Systems at UNSW . 51
7.1.8 Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga,

Portugal . 51
7.1.9 The Computer Systems Design Laboratory at the University of Kansas 51
7.1.10 Cover: Combining Verification Methods . 52
7.2 Other groups . 52
7.2.1 Debian Users . 52

5

7.2.2 Haskell packages for Fedora Core . 53
7.2.3 OpenBSD Haskell . 53
7.2.4 Haskell in Gentoo Linux . 53

8 Individual Haskellers 54
8.1 Oleg’s Mini tutorials and assorted small projects . 54
8.2 Graham Klyne . 54
8.3 Krasimir Angelov . 55
8.4 Alain Crémieux . 55
8.5 Inductive Inference . 55
8.6 Bioinformatics tools . 56

6

1 General

1.1 haskell.org

Report by: John Peterson

haskell.org belongs to the entire Haskell community –
we all have a stake in keeping it as useful and up-to-date
as possible. Anyone willing to help out at haskell.org
should contact John Peterson 〈peterson-john@cs.yale.
edu〉 to get access to this machine. There is plenty
of space and processing power for just about anything
that people would want to do there.

Thanks to Fritz Ruehr for making the cafepress store
on haskell.org a lot more exciting and to Jonathan Lin-
gard for adding some nice style sheets to our pages.

What can haskell.org do for you?

◦ advertise your work: whether you’re developing a
new application, a library, or have written some re-
ally good slides for your class you should make sure
haskell.org has a pointer to your work.

◦ hosting: if you don’t have a stable site to store your
work, just ask and you’ll own haskell.org/yourproject.

◦ mailing lists: we can set up a mailman-based list for
you if you need to email your user community.

◦ sell merchandise: give us some new art for the cafe-
press store. publicize your system with a t-shirt.

The biggest problem with haskell.org is that it is diffi-
cult to keep the information on the site current. At the
moment, we make small changes when asked but don’t
have time for any big projects. Perhaps the biggest
problem is that most parts (except the wiki) cannot be
updated interactively by the community. There’s no
easy way to add a new library or project or group or
class to haskell.org without bothering the maintainers.
the most successful sites are those in which the commu-
nity can easily keep the content fresh. We would like
to do something similar for haskell.org.

Just what can you do for haskell.org? Here are a few
ideas:

◦ make the site more interactive. allow people to add
new libraries, links, papers, or whatever without
bothering the maintainers. allow people to attach
comments to projects or libraries so others can ben-
efit from your experience. help tell everyone which
one of the graphics packages or gui’s or whatever is
really useful.

◦ develop a system where the pages for haskell.org live
in a cvs repository so that we can more easily share
out maintenance.

◦ add searching capability to haskell.org.

Some of these ideas would be good student projects.
Be lazy – get students to do your work for you.

Further reading

◦ http://www.haskell.org
◦ http://www.haskell.org/mailinglist.html

1.2 #haskell

Report by: Shae Erisson

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. Point your
IRC client to irc.freenode.net and join the #haskell
channel.

The #haskell.se channel is the same subject but
discussion happens in Swedish. This channel tends to
have a lot of members from Gothenburg.

The #darcs channel has been added since the last
HC&A Report, if you want real-time discussion about
darcs, drop by!

1.3 The Haskell HaWiki

Report by: Shae Erisson

The Haskell wikiwiki is a freely editable website de-
signed to allow unrestricted collaboration. The address
is http://www.haskell.org/hawiki/. Some highlights are:
◦ http://www.haskell.org/hawiki/CommonHaskellIdioms
◦ http://www.haskell.org/hawiki/FundamentalConcepts
Feel free to add your own content!

1.4 Books and tutorials

1.4.1 New textbook – Programming in Haskell

Report by: Graham Hutton

I am currently in the final-stages of producing an in-
troductory Haskell textbook. The book is a revised
and extended version of my Haskell course at the Uni-
versity of Nottingham, which has been developed and
class tested over many years. The first seven chap-
ters (97 pages) are available for preview on the web:
http://www.cs.nott.ac.uk/˜gmh/book.html

7

mailto:peterson-john@cs.yale.edu
mailto:peterson-john@cs.yale.edu
http://www.haskell.org
http://www.haskell.org/mailinglist.html
http://www.haskell.org/hawiki/
http://www.haskell.org/hawiki/CommonHaskellIdioms
http://www.haskell.org/hawiki/FundamentalConcepts
http://www.cs.nott.ac.uk/~gmh/book.html

I’d be pleased to make the full current draft (162
pages) available to anyone that is teaching Haskell and
may be interested in using the book in their course;
please contact me for further details.

1.4.2 hs-manpage-howto(7hs)

Report by: Sven Moritz Hallberg

While writing the manpages for Pesco.Cmdline, I as-
sembled some guidelines to follow with respect to
structure and formatting in their own manpage, hs-
manpage-howto(7hs). It’s a rough document far from
complete, and mainly meant as a reminder and guide
for myself, but if anyone else would like to document
his or her Haskell modules with roff (which I hope to
encourage hereby), it might well prove useful.

Alas, if you write a Haskell manpage, and come up
with a style guideline not covered, please let me know!

Further reading

http://www.scannedinavian.org/˜pesco/man/html7/
hs-manpage-howto.7hs.html

1.5 Haskell related events

1.5.1 Past events

CUFP

Report by: Andy Moran

Functional languages have been with us for a little over
a generation now. Languages like Lisp, Scheme, ML,
OCaml, Haskell, and Erlang have well engineered com-
pilers and tools and large user and development com-
munities. Not surprisingly, some of these users work
in industry. While there are only a few companies
where functional languages are used exclusively, there
are many that use functional languages for design ex-
ploration, prototyping, modeling, specification and de-
sign, building compiler-like tools, and even for develop-
ing product.

In recognition of this the first Annual ACM SIG-
PLAN Workshop for Commercial Users of Functional
Programming (CUFP) was held on September 18th,
2004, in Snowbird, Utah. It was co-located with
the 2004 ACM SIGPLAN International Conference on
Functional Programming (ICFP).

The goals of the workshop were to act as a voice
for commercial users of functional programming lan-
guages and technology; to help functional programming
become increasingly viable as a technology for use in
the commercial, industrial, and government space, by

providing a forum for functional programming profes-
sionals to share their experiences and ideas, whether
business, management or engineering, and to enable
the formation and cementing of relationships and al-
liances that further the commercial use of functional
languages.

There were 25 attendees, and the workshop was
based around 9 short presentations from a diverse cross-
section of commercial users, representing Abstrax Inc.,
Microsoft, Linspire Inc., Beckman Coulter Inc., Ca-
dence Research Systems, Galois Connections, Inc., and
Bluespec Inc. Participants were encouraged to view
the speakers as leading discussion, as opposed to giv-
ing academic presentations, and this led to spirited and
fruitful discussions.

In short: the workshop was very successful, and we
hope to make it a regular event.

Throughout the day, a number themes emerged from
talks and the discussions they engendered. An arti-
cle describing those themes in more detail is available
(http://www.galois.com/cufp/CUFP-Report.pdf).

The Succ Zeroth IOHCC

Report by: Shae Erisson

The Succ Zeroth International Obfuscated Haskell
Code Contest was a great success! Thanks to all
those who entered, please enter again next year! See
the results here: http://www.scannedinavian.org/iohcc/
succzeroth-2004/.

ICFP Programming Contest 2004

Report by: Andres Löh

Haskell did extremely well in this year’s seventh ICFP
programming contest. The participate the contest, a
given task has to be solved within 72 hours (with a
special “lightning-division” prize available for the best
solution received within 24 hours). There are no restric-
tions on team size, and any programming language can
be used.

This year’s task was to design an ant colony that will
bring the most food particles back to its anthill, while
fending off ants of another species. To win the contest,
one had to submit the neural wiring for the ants in your
colony – a text file containing code for a simple, finite
state machine that is run by all of the ants.

Each team was allowed to submit two programs, and
in the final ranking the top four entries were writ-
ten by teams who used Haskell. The winning team
was “Dunkosmiloolump” (Ian Lynagh, Ganesh Sittam-
palam, Andres Löh, Duncan Coutts). The second place

8

http://www.scannedinavian.org/~pesco/man/html7/hs-manpage-howto.7hs.html
http://www.scannedinavian.org/~pesco/man/html7/hs-manpage-howto.7hs.html
http://www.galois.com/cufp/CUFP-Report.pdf
http://www.scannedinavian.org/iohcc/succzeroth-2004/
http://www.scannedinavian.org/iohcc/succzeroth-2004/

team was “The Frictionless Bananas” (Jeremy Sawicki
and Mieszko Lis). In total, 230 teams participated, out
of which 20 used Haskell (in comparison: 25 C++, 24
OCaml, 23 hand-coded, 21 Java, 16 Python, 15 C, 12
Lisp, 11 Pearl, 9 Scheme, . . .).

Further reading

◦ Contest home page:
http://www.cis.upenn.edu/proj/plclub/contest/

◦ Team “Dunkosmiloolump”:
http://urchin.earth.li/icfpcontest/2004/

◦ Team “The Frictionless Bananas”:
http://www.sawicki.us/icfp/2004/

AFP 2004

Report by: Andres Löh

This year in August, the 5th International Summer
School on Advanced Functional Programming took
place in Tartu, Estonia. About 70 people with differ-
ent backgrounds gathered for a week to learn and teach
several interesting topics related to functional program-
ming. Naturally, the Haskell language had a prominent
place among the lectures. The topics were:
◦ Programming with arrows (→ 3.5) (by John Hughes)
◦ Epigram (→ 2.6.7): Dependent types for practical

programming (by Conor McBride)
◦ Combining datatypes and effects (by Alberto Pardo)
◦ A strongly typed functional operating system based

on dynamics (by Rinus Plasmeijer)
◦ Generic programming (→ 3.4) techniques for the con-

struction of graphical user interfaces (by Rinus Plas-
meijer)

◦ Declarative debugging with Buddha (→ 5.4.3) (by
Bernie Pope)

◦ Typing Haskell with an attribute grammar (→ 3.3.3)
(by Doaitse Swierstra and Atze Dijkstra)

◦ Server-side web programming in WASH (→ 4.7.4)
(by Peter Thiemann)

◦ Refactoring functional programs (→ 5.3.4) (by Simon
Thompson)

Certainly, the lecturers are willing to provide further
information about these topics to interested people.

One beneficial side effect of such a Summer School is
that the lecturers produce lecture notes, which usually
are excellent tutorials to the respective subjects. The
lecture notes of this Summer School will be published
as an LNCS volume. I wish to thank the local organiz-
ers Varmo Vene and Tarmo Uustalu for making this a
wonderful and enlightening event.

Further reading

http://www.cs.ut.ee/afp04/

1.5.2 Future events

You may want to participate in some of the following
Haskell-related events:

TFP 2004 The 5th Symposium on Trends in Func-
tional Programming will commence in only a few
weeks, on November 25 and 26, in Munich, Ger-
many. See http://www.tcs.informatik.uni-muenchen.
de/˜hwloidl/TFP04/.

POPL 2005 The 32rd Annual Symposium on Princi-
ples of Programming Language, is held next year
from January 12 to 14, in Long Beach, California.
See http://www.cs.princeton.edu/˜dpw/popl/05/.

PADL 2005 The 7th International Symposium on
Practical Aspects of Declarative Languages is co-
located with POPL 2005. More at http://www.unm.
edu/˜herme/padl05/.

TLCA 2005 The 7th International Conference on
Typed Lambda Calculi and Applications will take
place in Nara, Japan, on April 21–23, 2005.

PPDP 2005 The 7th International Symposium on
Principles and Practive of Declarative Programming
will be held in Lisboa, Portugal, July 11–13, 2005,
with a CFP at http://www.site.uottawa.ca/˜afelty/
ppdp05/, co-located with

ICALP 2005 The 32nd International Colloquium on
Automata, Languages and Programming, also in Lis-
boa, Portugal, July 11-15, 2005. Additional informa-
tion at http://icalp05.di.fct.unl.pt/.

9

http://www.cis.upenn.edu/proj/plclub/contest/
http://urchin.earth.li/icfpcontest/2004/
http://www.sawicki.us/icfp/2004/
http://www.cs.ut.ee/afp04/
http://www.tcs.informatik.uni-muenchen.de/~hwloidl/TFP04/
http://www.tcs.informatik.uni-muenchen.de/~hwloidl/TFP04/
http://www.cs.princeton.edu/~dpw/popl/05/
http://www.unm.edu/~herme/padl05/
http://www.unm.edu/~herme/padl05/
http://www.site.uottawa.ca/~afelty/ppdp05/
http://www.site.uottawa.ca/~afelty/ppdp05/
http://icalp05.di.fct.unl.pt/

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones

Here are some development highlights from the last few
months. They will all be incorporated in GHC 6.4,
which we will release before Christmas.

◦ The new back end, advertised in the last Communi-
ties Newsletter is complete. The back-end infrastruc-
ture is now much simplified, and can compile to C--
(though that particular route is not yet solid). All
the run-time system “.hc” files are now “.cmm” files,
and are compiled by GHC itself. That in turn means
that they can all be compiled via GHC’s native code
generator, with no use of gcc at all. Furthermore,
pofiling, ticky-ticky stuff etc all work with the native
code generator, whereas before they required gcc.

◦ Wolfgang Thaller has added initial support for
position-independent code (PIC).

◦ Cabal (Haskell’s new package management sys-
tem) (→ 4.1.1) is included with, and partially sup-
ported by, GHC. There is more to do: for example,
we don’t yet deal with package versions, or packages
that expose some but not all of their modules.

◦ A major new development is the inclusion of Gen-
eralised Algebraic Data Types (GADTs) in the type
system. GADTs offer a pretty substantial increase
in expressivenes. There’s a paper about GADTs
here http://research.microsoft.com/˜simonpj/papers/
gadt/index.htm

◦ When compiling mutually-recursive modules, you
have to hand-write a “.hi-boot” file, and it’s easy
to get that wrong. GHC now checks for consistency,
which eliminates a potent and embarassing source of
segmentation faults.

◦ New libraries incoroprated in GHC: Sys-
tem.Process, Network.URI (thanks to Graham
Klyne (→ 8.2)), and various DData libraries
(Map, IntMap, Set, IntSet; thanks to Daan
Leijen (→ 4.4.1)).

As part of the Visual Studio work (→ 5.5.3), we now
plan to make GHC itself into a proper Haskell library,
with a well-defined interface. So you should be able
to say “import GHC” and then call the parser, type-
checker, and so on. It’ll have a pretty big interface, of

course, and we’ll emit draft specifications in the next
few months. If you’re a potential user of a GHC-as-a-
library, do take a look at the drafts and let us know
whether they’ll work for you.

Not much progress on the Template Haskell front,
largely due to lack of interest. If there’s an active user
community, you are keeping very quiet, and so TH has
slipped down our priority list.

As ever, we are grateful to the many people who sub-
mit polite and well-characterised bug reports. We’re
even more grateful to folk actually help develop and
maintain GHC. The more widely-used GHC becomes,
the more Simon M and I rely on you to help solve peo-
ple’s problems, and to maintain and develop the code.
We won’t be around for ever, so the more people who
are involved the better. If you’d like to join in, please
let us know.

2.2 Hugs

Report by: Ross Paterson
Status: stable, actively maintained, volunteers

welcome

The most recent release of Hugs was in November
2003. The development version incorporates support
for Unicode, thanks to Dimitry Golubovsky 〈dimitry@
golubovsky.org〉, increased support for the hierarchical
libraries, and numerous bug fixes. It is high time for
another release, and Hugs is mostly ready, except that
more work is needed on Windows. It would be great
if the next release could support the Graphics library
(used in Paul Hudak’s book) on Windows, as it will
on X11. If it works with Hugs it will probably work
with GHC too, but there is no-one to do the necessary
fixing.

The next release is planned to include more third
party libraries than previous ones, though in such a way
as to make separate upgrades of these libraries fairly
painless. The idea is to provide a substantial Haskell
system out of the box. Library authors who would like
to participate should make their libraries work with
Hugs and contact us. The Cabal project (→ 4.1.1) is
also developing Hugs support.

The manpower available for Hugs development and
maintenance remains very limited. Contributions from
volunteers are welcome. Sven Panne has made a Win-
dows binary available; test reports would be welcome.
Even better would be people prepared to build, test
and debug on Windows. (A full build requires one of
the free Unix-like environments for Windows.)

10

http://research.microsoft.com/~simonpj/papers/gadt/index.htm
http://research.microsoft.com/~simonpj/papers/gadt/index.htm
mailto:dimitry@golubovsky.org
mailto:dimitry@golubovsky.org

Dimitry Golubovsky has also developed an intro-
spection extension to Hugs (hugs-users, September),
extending the limited experimental features already
present to provide full access to Hugs’s compilation re-
sults. He has in mind applications like saving for use
with an alternative runtime, precompilation and more,
but would like to hear from anyone who is interested.

2.3 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, standards-compliant
compiler for Haskell 98. It is in stable maintenance-only
mode – the current public release is version 1.16, but a
bug-fix refresh version 1.18 is imminent. Maintenance
continues in CVS at haskell.org, and implementation
hackers are invited to play with nhc98’s internals if they
wish.

Further reading

http://haskell.org/nhc98

2.4 Haskell-Clean Compiler

Report by: Peter Diviánszky
Status: experimental

About our Haskell-Clean compiler found at http://aszt.
inf.elte.hu/˜fun ver/#ToC11:

◦ It is an experimental version.

◦ It could be updated because the vesion of current
Clean System is 2.1 and it was developed with version
2.0.2. (However, the distribution contains the 2.0.2
Clean System.)

◦ We are working on a refactoring tool for Clean. We
intend to refactor Haskell programs with the same
tool. If it will be possible, our Haskell-Clean compiler
will be revisited. Until then, we do not think we will
develop or update it.

2.5 Haskell to Clean Translation

Report by: Matthew Naylor

The primary aim of the project is to develop a tool,
which we name Hacle, for translating Haskell programs
to Clean programs, thereby allowing the Clean com-
piler to compile Haskell programs. The question is, can
the Clean compiler, in combination with Hacle, produce
faster executables than existing Haskell compilers?

The answer, perhaps rather predictably, is some-
times yes. We have noticed that, in some cases, the
hybrid Hacle-then-Clean compilation system can pro-
duce executables which are up to a factor of four
times faster than the corresponding GHC-compiled
programs. However, we suspect that these cases are
in a minority. Nevertheless, to be of any significance at
all, we must also argue Hacle’s completeness.

Hacle can translate programs which conform to a
slightly restricted Haskell 98 standard. It can translate
itself, which is written in approximately fifteen thou-
sand lines of code and makes use of many of the fea-
tures provided by Haskell 98. This result positively
demonstrates reasonable completeness.

The project is effectively finished; this is not to say
that the tool cannot be improved, rather that we are
content with its current state. Only the unlikely event
of widespread use would motivate such improvements.
However, the following question is unanswered: why do
Clean and GHC sometimes outperform each other?

For more information including detailed technical
documentation, my dissertation, more results, Hacle’s
limitations, and a download link to Hacle, see the
project’s web page.

Further reading

http://www.cs.york.ac.uk/˜mfn/hacle

Grateful acknowledgements to Malcolm Wallace and
Olaf Chitil.

2.6 Variations of Haskell

2.6.1 Haskell on handheld devices

Report by: Anthony Sloane
Status: unreleased

Work on our port of nhc98 (→ 2.3) to Palm OS is con-
tinuing but, unfortunately, is not ready for public re-
lease at this stage.

2.6.2 Helium

Report by: Daan Leijen
Participants: Arjan van IJzendoorn, Bastiaan Heeren,

Daan Leijen, Rijk-Jan van Haaften
Status: stable

The purpose of the Helium project is to construct a
light-weight compiler for a subset of Haskell that is es-
pecially directed to beginning programmers (see “He-
lium, for learning Haskell”, Bastiaan Heeren, Daan Lei-
jen, Arjan van IJzendoorn, Haskell Workshop 2003).
We try to give useful feedback for often occurring mis-
takes. To reach this goal, Helium uses a sophisticated

11

http://haskell.org/nhc98
http://aszt.inf.elte.hu/~fun_ver/#ToC11
http://aszt.inf.elte.hu/~fun_ver/#ToC11
http://www.cs.york.ac.uk/~mfn/hacle

type checker (→ 3.3.2) (see also “Scripting the type in-
ference process”, Bastiaan Heeren, Jurriaan Hage and
S. Doaitse Swierstra, ICFP 2003).

Helium now has a simple graphical user interface that
provides online help. We plan to extend this interface
to a full fledged learning environment for Haskell. The
complete type checker and code generator has been con-
structed with the attribute grammar (AG) system de-
veloped at Utrecht University. One of the aspects of
the compiler is that can log errors to a central reposi-
tory, so we can track the kind of problems students are
having, and improve the error messages and hints.

Currently, the Helium compiler has been used suc-
cessfully for the third time during the functional pro-
gramming course at Utrecht University. There is also
initial support for type classes, but we are still investi-
gating the quality of error messages in the presence of
overloading.

Further reading

http://www.cs.uu.nl/research/projects/helium/

2.6.3 Educational Domain Specific Languages

Report by: John Peterson
Status: maintained, stable

The goal of this project is to bring functional program-
ming to users that are not trained computer scientists
or programmers. We feel that the simplicity of func-
tional programming makes it an ideal way to introduce
programming language concepts and encourage a basic
literacy in computational principles. Languages can
also be used as part of a domain-centered learning ex-
perience, allowing functional programming to assist in
the instruction of subjects such as mathematics or mu-
sic.

Our languages are media oriented. They allow stu-
dents to explore the basic principles of functional pro-
gramming while creating artifacts such as images, ani-
mations, and music.

These languages have been used for high school
mathematics education, an introduction to functional
programming for students in high school programming
classes, and as a gentle way to present functional pro-
gramming in a programming language survey class.
The graphics language, Pan#, runs all of the examples
in Conal Elliott’s Fun of Programming chapter with
only a few minor changes. It also runs many of the ex-
amples found in Jerzy Karczmarczuk’s Clastic system.

There are two languages under development. The
first is Pan#, a port of Conal Elliott’s Pan compiler to
the C# language. This runs on Windows using .NET
and is easy to install and use. This probably would run
on Linux using Mono (.NET for other platforms) but
we have not attempted this yet. The front end of this
system is a mini-Haskell interpreter which is currently

somewhat unsophisticated. Version 1.0 of Pan# was
released in March and the system finally has a type
checker. Pan# is an excellent introduction to func-
tional programming and can be used in conjunction
with the Fun of Programming chapter as an excellent
way to teach functional languages. Our website con-
tains a number of examples produced by this language
and some instructional materials.

Our second language describes music using Paul Hu-
dak’s Haskore system. We are currently re-packaging
Haskore to simplify the language somewhat and add a
few new capabilities, including support for randomized
music. We are currently working on a tutorial for the
system and should have a release ready in March, 2005.

Further reading

http://haskell.org/edsl/

2.6.4 Vital: Visual Interactive Programming

Report by: Keith Hanna
Status: active (latest release: May 2004)

Vital is a highly interactive, visual environment that
aims to present Haskell in a form suitable for use by en-
gineers, mathematicians, analysts and other end users
who often need a combination of the expressiveness and
robustness that Haskell provides together with the ease
of use of a ‘live’ graphical environment in which pro-
grams can be incrementally developed.

In Vital, Haskell modules are presented as ‘docu-
ments’ having a free-form layout and with expressions
and their values displayed together. These values can
be displayed either textually, graphically (as linked
data structures) or pictorially, and can be edited using
conventional Copy/Paste mouse gestures. This gives
end users an intuitive way of inputting or modifying
complex literal data structures. For example, a value
of type Tree can be displayed graphically and subtrees
selected, copies and pasted between nodes.

Recent development in Vital include the ability for
animated and interactive displays (a release of this sys-
tem is planned for November).

The present implementation includes a collection of
interactive tutorial documents (including examples il-
lustrating approaches to Exact Real Arithmetic).

The Vital system can be run via the web: a single
mouse-click is all that is needed!

Further reading

Home page: http://www.cs.kent.ac.uk/projects/vital/

12

http://www.cs.uu.nl/research/projects/helium/
http://haskell.org/edsl/
http://www.cs.kent.ac.uk/projects/vital/

2.6.5 hOp

Report by: Jérémy Bobbio and Thomas Hallgren
Status: beta, active development

hOp is a micro-kernel based on the run-time system
(RTS) of the Glasgow Haskell Compiler. It is meant
to enable people to experiment with writing various
components of an operating system in Haskell. This
includes device drivers, data storage devices, commu-
nication protocols and tools required to make use of
these components.

The February 2004 release of hOp consisted of a
trimmed-down RTS that does not depend on features
usually provided by an operating system. It also con-
tains low-level support code for hardware initialization.
This release made most functions from the base hier-
archical library available (all but the System modules),
including support for threads, communication primi-
tives, and the foreign function interface (→ 3.1).

Building on the features of the initial release, we de-
signed and implemented an interrupt handling model.
Each interrupt handler is run in its own thread, and
sends events to device drivers through a communica-
tion channel. We tested our design by implementing
a simple PS/2 keyboard driver, and a “shell” that al-
lows running a“date”command, which accesses the real
time clock of the computer. A release of hOp contain-
ing these additional features was made in June 2004.

Iavor Diatchki, Thomas Hallgren, and Andrew Tol-
mach made some additions to hOp. The additions in-
clude a PS/2 mouse driver, using VBE 2.0 to setup a
linear frame buffer for graphics, a window system im-
plemented in Haskell (Gadgets, developed by Rob No-
ble and Colin Runciman at the University of York), new
primitives for setting up demand paged virtual mem-
ory and executing arbitrary machine code in protected
mode. The function to launch a user space executable
is parameterized by a system call handler, a page fault
handler and a timeout. The resulting system is in an
experimental state and is preliminary called House.

Further reading

Further information, source code, demos and screen-
shots are available here:
◦ http://www.macs.hw.ac.uk/˜sebc/hOp/
◦ http://www.cse.ogi.edu/˜hallgren/House/

2.6.6 Agda: An Interactive Proof Editor

Report by: Catarina Coquand
Status: active development

Agda is an interactive type-based editor for edit-
ing proofs and programs that has been developed at

Chalmers and Göteborg University. It builds on pre-
vious work at Chalmers such as ALF and Cayenne. It
implements a proof/type checker for a language that is
based on Martin-Löf Type Theory. We are experiment-
ing with how such a proof langauge could be extended
with data-types, modules and records. The syntax of
the language is rather close to Haskell. The language
can also be seen as a start for a dependently typed
programming language.

The program is written in Haskell and it consists of
roughly 15 000 lines of code. It is connected with one
graphical and one text-based interface. The graphi-
cal interface Alfa http://www.cs.chalmers.se/˜hallgren/
Alfa/ is written in Haskell using Fudgets. The is also a
“simple” emacs-interface which doesn’t know the syn-
tax of the language and communicates via a text-based
protocol with Agda. This interface comes with the dis-
tribution of Agda.

Agda is running with a stable version that is slightly
more than one year old. It is also possible to download
newer unstable versions. In this new version experi-
ments are done with hidden arguments as in Cayenne,
addition of over-loading with a class system and built-
in types such as characters, strings and integers.

We have recently started a collaboration with AIST
(Advanced Industrial Science and Technology Institute
in Japan) on development and applications of Agda.
In particular on writing better documentation and in-
tegration with other automatic proof tools.

Agda source code can be browsed at http://cvs.
coverproject.org/marcin/cgi/viewcvs/ and can be ac-
cessed by anonymous CVS from cvs.coverproject.org.

Short term goals are among many things:
◦ Write a better documentation of the code and the

system.
◦ Examples of classes and built-in types
◦ Building on the libraries
◦ Revision of the type-checking algorithm
◦ Connecting Agsy with the emacs-interface – Agsy

is an automatic proof search plugin for Alfa for the
moment.

Further reading

For more details about the project, read about
QuickCheck (→ 5.4.4) and Cover (→ 7.1.10) in this
report or consult the homepage at http://www.cs.
chalmers.se/˜catarina/agda/.

2.6.7 Epigram

Report by: Conor McBride

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive
editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-

13

http://www.macs.hw.ac.uk/~sebc/hOp/
http://www.cse.ogi.edu/~hallgren/House/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://cvs.coverproject.org/marcin/cgi/viewcvs/
http://cvs.coverproject.org/marcin/cgi/viewcvs/
http://www.cs.chalmers.se/~catarina/agda/
http://www.cs.chalmers.se/~catarina/agda/

ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in ‘The view from the left’ by Conor McBride
and James McKinna (JFP 14 (1)). The former has
implemented Epigram in Haskell, interfacing with the
xemacs editor.

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program won’t crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.

Specifically, Epigram is designed to support pro-
gramming with inductive datatype families indexed by
data. These provide a means to incorporate strong log-
ical invariants which well typed programs are guaran-
teed to preserve. Examples include matrices indexed
by their dimensions, expressions indexed by their types,
search trees indexed by their bounds. Correspondingly,
we can express matrix multiplication taking (Matrix i
j) and (Matrix j k) to (Matrix i k), tagless evaluators,
sorting algorithms which produce sorted output.

Dependent types enable us to express statically what
is learned when a test is performed. In Epigram, this
informative testing often takes the form of derived pat-
tern matching principles or ‘views’: if you can prove
that a set of expressions cover a type, then you may use
those expressions as patterns. For example, any pair of
natural numbers is either (x, x + y) or (y + 1 + z, y).
This gives us a way to test if m ≤ n, observing and
exploiting what this test tells us about m and n.

Implementation

Whilst Epigram seeks to open new possibilities for the
future of strongly typed functional programming, its
implementation benefits considerably from the present
state of the art. On the language side, considerable use
is made of monad transformers, higher-kind polymor-
phism and type classes. Moreover, its denotational ap-
proach translates Epigram’s lambda-calculus directly
into Haskell’s. On the tool side, Haskell’s profiler (in
the capable hands of Paul Callaghan) has proved in-
valuable for detecting bottlenecks in the code.

Current Status

Epigram can be found on the web at http://www.dur.
ac.uk/CARG/epigram and its community of experimen-
tal users communicate via the mailing list 〈epigram@
durham.ac.uk〉. The current implementation is naive in
design and slow in practice, but it is adequate to ex-
hibit small examples of Epigram’s possibilities. At time

of writing, a new implementation is in design, incor-
porating a compiler based on Edwin Brady’s research.
Recent successful funding bids have ensured that the
development will continue.

14

http://www.dur.ac.uk/CARG/epigram
http://www.dur.ac.uk/CARG/epigram
mailto:epigram@durham.ac.uk
mailto:epigram@durham.ac.uk

3 Language Extensions

3.1 Foreign Function Interface

Report by: Manuel Chakravarty
Status: Version 1.0

Version 1.0 of the Haskell 98 FFI Addendum is avail-
able. The report has been through many revisions and
is fully implemented by GHC and Hugs and mostly
implemented by NHC98. As with Haskell 98, the FFI
standard is meant to be a stable interface that Haskell
developers can rely on in the midst of new exten-
sions and language features. Details are available from
http://www.cse.unsw.edu.au/˜chak/haskell/ffi/.

What is missing, at the moment, is a good tutorial
that serves as a companion to the standards document
and explains FFI programming by way of a compre-
hensive set of examples. If anybody feels the urge to
help out by contributing all or parts of such a tutorial,
please let me know at 〈chak@cse.unsw.edu.au〉.

3.2 Non-sequential Programming

3.2.1 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Abyd Al Zain, Andre Rauber

du Bois, Kevin Hammond, Leonid
Timochouk, Yang Yang, Jost Berthold,

Murray Gross

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available.

System Evaluation and Enhancement

The first 3 items are linked by a British Council/DAAD
collaborative project between Heriot-Watt University,
St Andrews University, and Phillips Universität Mar-
burg.

◦ We are adapting GpH to run on computational
GRIDs. The current implementation performs well
on single clusters, and multiple clusters with a low-
latency interconnect. A distribution is available on
request from 〈ceeatia@macs.hw.ac.uk〉.

◦ We are designing a generic parallel runtime envi-
ronment encompassing both the Eden (→ 3.2.3) and
GpH runtime environments

◦ In separate work GpH is being used as a vehicle for
investigating scheduling on the GRID.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universität Mar-
burg.

GpH Applications

GpH is being used to parallelise the GAP mathematical
library in an EPSRC project (GR/R91298).

Implementations

The GUM implementation of GpH is available in two
development branches, and work on a port of GUM
to the latest GHC 6.xx branch has been started over
summer.

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines: bi-
nary snapshot (see installation instructions). The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

◦ The unstable branch (GUM-5.02, based on GHC-
5.02) is working and has been used on a Beowulf
cluster. It is available on request as a source bundle.

Our main hardware platform are Intel-based Beowulf
clusters. Work on ports to other architectures is also
moving on (and available on request). Specifically a
port to a Mosix cluster has been built in the Metis
project at Brooklyn College, with a first version avail-
able on request from Murray Gross.

Further reading

GpH Home Page: http://www.macs.hw.ac.uk/˜dsg/
gph/

3.2.2 GdH – Glasgow Distributed Haskell & Mobile
Haskell

Report by: Jan Henry Nyström
Participants: Phil Trinder, Hans-Wolfgang Loidl, Jan

Henry Nyström, Robert Pointon, Andre
Rauber du Bois

Status: Steaming ahead!

Implementation:

An alpha-release of the GdH implementation is avail-
able on request 〈gph@macs.hw.ac.uk〉. It shares sub-
stantial components of the GUM implementation of

15

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
mailto:chak@cse.unsw.edu.au
mailto:ceeatia@macs.hw.ac.uk
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/gph/
mailto:gph@macs.hw.ac.uk

GpH (→ 3.2.1). A beta release of mHaskell will be
available in December 2005.

GdH Applications and Evaluation

◦ An EPSRC project High Level Techniques for Dis-
tributed Telecommunications Software (http://www.
macs.hw.ac.uk/˜dsg/telecoms/, GR/R88137) is now
underway and is entering its first GdH phase. The
project evaluates GdH and Erlang in a telecommuni-
cations context, the work is a collaboration between
Heriot-Watt University and Motorola UK Research
Labs.

◦ There is a forthcoming Ph.D. thesis on the design,
implementation and use of GdH by Robert Pointon
(http://www.macs.hw.ac.uk/˜rpointon/).

Further reading

◦ The GdH homepage:
http://www.macs.hw.ac.uk/˜dsg/gdh/

◦ The mHaskell homepage:
http://www.macs.hw.ac.uk/˜dubois/mhaskell

3.2.3 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps Universität Marburg, Germany and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Rafael Mart́ınez, Clara Segura

in Marburg: Rita Loogen, Jost Berthold, Steffen
Priebe, Pablo Roldán Gómez

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement
parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator (#) :: Process a b -> a -
> b. Higher-level coordination is achieved by defining

skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelise a set of non-trivial benchmark pro-
grams.

Eden has been implemented by modifying the par-
allel runtime system GUM of GpH (see above). Dif-
ferences include stepping back from a global heap to a
set of local heaps to reduce system message traffic and
to avoid global garbage collection. The current (freely
available) implementation is based on GHC 5.02.3. A
source code version is available from the Eden web
page. Installation support will be provided if required.

Recent Publications

survey and new standard reference Rita Loogen,
Yolanda Ortega-Mallén and Ricardo Peña: Parallel
Functional Programming in Eden, accepted for the
Journal of Functional Programming special issue on
Functional Approaches to High-Performance Parallel
Programming 2004, to appear.

semantics M. Hidalgo-Herrero: Formal Semantics
for a parallel functional language, Ph.D. Thesis, Uni-
versidad Complutense de Madrid, June 2004 (in Span-
ish).

compilation Steffen Priebe: A Framework for En-
hancing Eden Code with Template Haskell, Proceedings
of of the Workshop on Implementation of Functional
Languages, IFL 2004, Lübeck, Germany, September
2004.

generalised runtime system Jost Berthold: To-
wards a Generalised Runtime Environment for Parallel
Haskells, Workshop on Practical Aspects of High-level
Parallel Programming (PAPP 2004), ICCS, Kraków,
Poland, June 2004.

profiling Pablo Roldán Gómez: Eden Trace Viewer:
A Tool to Visualize Parallel Functional Program Exe-
cutions, Diploma Thesis, Universidad Complutense de
Madrid, July 2004 (in german).

skeleton performance analysis Jost Berthold, Rita
Loogen: Analysing Dynamic Channels for Topology
Skeletons in Eden, Proceedings of the Workshop on the
Implementation of Functional Languages, IFL 2004,
Lübeck, Germany, September 2004.

Current Activities

◦ Yolanda and Mercedes continue their work on seman-
tics for parallel functional languages, in particular
Eden. Mercedes has finished her Ph.D. thesis on for-
mal semantics for a parallel functional language.

16

http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~dsg/gdh/
http://www.macs.hw.ac.uk/~dubois/mhaskell

◦ Jost is working on a more general implementation of
parallel Haskell dialects in a shared runtime system.

◦ Steffen continues his work on the polytypic skele-
ton library for Eden making use of the new meta-
programming facilities in GHC.

◦ The Eden trace viewer developed by Pablo in the
context of his diploma thesis provides new insights
into the runtime behaviour of Eden programs.

Further reading

http://www.mathematik.uni-marburg.de/˜eden

3.2.4 HCPN – Haskell-Coloured Petri Nets

Report by: Claus Reinke
Status: new project

Coloured Petri Nets are a high-level form of Petri Nets,
in which anonymous tokens are replaced by data ob-
jects of some programming language (and transitions
can operate on that data, in addition to moving it
around). The combination of functional languages and
Petri nets promises a rich design space – the two for-
malisms have little overlap and much to offer to each
other.

Haskell-Coloured Petri Nets (HCPN) are an instance
of this hybrid graphical/textual modelling formalism
for Haskell. So far, we have a bare-bones graphical
editor for HCPN, building on the portable wxHaskell
GUI library (→ 4.5.2). From this, HCPN can be saved,
loaded, and exported as Haskell code for graphical or
textual simulation. HCPN NetEdit and NetSim are
not quite ready for prime time yet, but functional; as
long as you promise not to look at the ugly code, you
can find occasionally updated snapshots at the project
home page, together with examples, screenshots, intro-
ductory papers and slides.

The most important outstanding item, apart from
minor improvements of the GUI, is support for hierar-
chical HCPN models. While that would allow HCPN to
be used for modelling concurrent systems or for teach-
ing concurrency concepts, my personal interest is in
exploring the design space beyond the basic hybrid for-
malism. This is currently a personal hobby project, so
progress will depend on demand and funding.

Further reading

◦ Project home:
http://www.cs.kent.ac.uk/˜cr3/HCPN/

◦ Petri Nets home:
http://www.daimi.au.dk/PetriNets/

3.3 Type System/Program Analysis

3.3.1 Chameleon

Report by: Martin Sulzmann
Participants: Gregory J. Duck, Simon Peyton Jones,

Peter J. Stuckey, Martin Sulzmann,
Jeremy Wazny

Status: on-going

Chameleon is an experimental version of Haskell which
incorporates a user-programmable type system based
on Constraint Handling Rules (CHRs). Chameleon
programs are compiled to plain Haskell, i.e. can be ex-
ecuted by any standard Haskell system such as GHC
etc.

Latest developments

Improved Inference for Checking Type Annotations
We consider type inference in the Hindley/Milner sys-
tem extended with type annotations and constraints
with a particular focus on Haskell-style type classes.
We observe that standard inference algorithms are in-
complete in the presence of nested type annotations.
To improve the situation we introduce a novel inference
scheme for checking type annotations. Our inference
scheme is also incomplete in general but improves over
existing implementations as found e.g. in the Glasgow
Haskell Compiler (GHC). For certain cases (e.g. Haskell
98) our inference scheme is complete.

Unifying GRDTS and type classes with existential
types We present a formal framework for existential
types and type classes. In contrast to Laeufer’s origi-
nal proposal our system includes multi-parameter type
classes and functional dependencies etc. Our system
is powerful enough to express guarded recursive data
types, a recent extension of algebraic data types. Type
inference in our extension becomes a hard problem. For
this purpose, we introduce a novel constraint solver. In
general, we lose the principal types property. However,
we consider several classes for which we infer a principal
type if one exists.

Both extensions have been implemented as part of the
Chameleon system.

Further reading

◦ http://www.comp.nus.edu.sg/˜sulzmann/chameleon/
◦ http://www.comp.nus.edu.sg/˜sulzmann/chr/

17

http://www.mathematik.uni-marburg.de/~eden
http://www.cs.kent.ac.uk/~cr3/HCPN/
http://www.daimi.au.dk/PetriNets/
http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~sulzmann/chr/

3.3.2 Constraint Based Type Inferencing at Utrecht

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Jurriaan Hage,

Doaitse Swierstra

With the generation of understandable type error mes-
sages in mind we have devised a constraint based type
inference method in the form of the Top library. This
library is used in the Helium compiler (for learning
Haskell) (→ 2.6.2) developed at Universiteit Utrecht.
Our philopsophy is that no single type inferencer works
best for everybody all the time. Hence, we want a type
inferencer adaptable to the programmer’s needs with-
out the need for him to delve into the compiler. Our
goal is to devise a library which helps compiler builders
add this kind of technology to their compiler.

The main outcome of our work is the Top library
which has the following characteristics:

◦ It uses constraints to build a constraint tree which
follows the shape of the abstract syntax tree.

◦ These constraints can be ordered in various ways into
a list of constraints

◦ Various solvers (specifically a fast greedy one, a
slower global one, and the chunky solver which com-
bines the two) exist to solve the resulting list of con-
straints.

◦ The library is easily extended with new constraints,
and the type graph implementation includes various
heuristics to find out what is the most likely source
of an inconsistency. Some of these heuristics are very
general, others are more tailored towards Haskell.
Some the heuristics are fixed, like a majority heuris-
tics which takes into account that there is ‘more’
evidence that a certain constraint is the root of an
inconsistency. In addition, there are also heuristics
specified from the outside. By means of a siblings
directive, a programmer may specify that his experi-
ences are that certain functions are often mixed up.
As a result, a compiler may give the hint that (++)
should be used instead of (:), because (++) happens
to fit in the context.

◦ It preserves type synonyms as much as possible,

◦ We have support for type class directives. It allows
programmers to for instance specify that certain in-
stances will never occur. The type inferencer can use
this information to give better error messages. Other
directives can be used to specify additional invariants
on type classes. For instance, that two type classes
do not share a common type (Fractional vs. Inte-
gral). A paper about this subject will find its way
into PADL 2005. Although we have implemented

this into Helium, the infrastructure applies as well
to other systems of qualified types.

◦ The various phases in type inferencing have now been
integrated by a slightly different, more general choice
of constraints.

An older version of the underlying machinery for the
type inferencer has been published in the Proceedings
of the Workshop of Immediate Applications of Con-
straint Programming held in October 2003 in Kinsale,
Ireland.

The entire library is parameterized in the sense that
for a given compiler we can choose which information
we want to drag around.

The library has been used extensively in the Helium
compiler, so that Helium can be seen as a case study
in applying Top in a real compiler. In addition to the
above, Helium also

◦ has a logging facility for building collections of cor-
rect and incorrect Haskell programs (including time
line information),

◦ has a run-time parameters for experimenting with
various solvers and constraint orderings.

◦ gives precise error location information,

◦ supports specialized type rules, which are a means
to override the order in which certain expressions
are inferenced and how the type error messages are
formulated (see our paper presented at ICFP ’03).
These type rules are especially useful for making the
type error messages for domain specific extensions to
Haskell correspond more closely to the domain, in-
stead of the underlying Haskell language structures.
The specialized type rules are automatically checked
for soundness and completeness with respect to the
original type system.

Since the report of May 2004

◦ Bastiaan Heeren is currently writing his PhD the-
sis. It promises to yield a much more complete and
mature picture of what we do and how we do it,
including a discussion of constraint trees and type
graphs.

◦ A student has worked on converting the strictness
analysis of Glynn, Stuckey and Sulzmann into a for-
mat which can be handled by our Top library. This
work is not yet mature enough to report upon.

◦ The type inference directives need to be improved
for usability, for which we have plenty of ideas, but
these still have to be implemented and reported on.

◦ A grant has been obtained for continuing our work
on the subject.

18

Further reading

Project website:
http://www.cs.uu.nl/groups/ST/Center/Top

3.3.3 EHC, ‘Essential Haskell’ Compiler

Report by: Atze Dijkstra
Participants: Atze Dijkstra, Doaitse Swierstra
Status: active development

The purpose of the EHC project is to provide a descrip-
tion a Haskell compiler which is as understandable as
possible so it can be used for education as well as re-
search.

For its description an Attribute Grammer system is
used as well as other formalisms allowing compact no-
tation like parser combinators.

The EHC project also tackles other issues:

◦ In order to avoid overwhelming the innocent reader,
the description of the compiler is organised as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus.

◦ Each step corresponds to an actual, that is, an exe-
cutable compiler. Each of these compilers is a com-
piler in its own right so experimenting can be done in
isolation of additional complexity introduced in later
steps.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Currently EHC already incorporates more advanced
features like higher-ranked polymorphism, partial type
signatures, class system, explicit passing of implicit pa-
rameters (i.e. class instances), extensible records, kind
polymorphism.

Part of these features has been described at the re-
cent AFP summerschool (→ 1.5.1) (lecture notes yet to
appear, handouts are available).

The compiler is used for small student projects as
well as larger experiments such as the incorporation of
an Attribute Grammar system.

Our plans for the near future are to complete the
description of all steps.

We also hope to provide a Haskell frontend dealing
with all Haskell syntactic sugar left out of EHC.

Further reading

◦ Homepage:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

◦ AFP (→ 1.5.1) handouts:
http://www.cs.uu.nl/research/techreps/
UU-CS-2004-037.html

◦ Attribute grammar system:
http://www.cs.uu.nl/groups/ST/twiki/bin/view/
Center/AttributeGrammarSystem

◦ Parser combinators:
http://www.cs.uu.nl/groups/ST/Software/UU
Parsing/

3.4 Generic Programming

Report by: Johan Jeuring

Software development often consists of designing a (set
of mutually recursive) datatype(s), to which function-
ality is added. Some functionality is datatype specific,
other functionality is defined on almost all datatypes,
and only depends on the type structure of the datatype.

Examples of generic (or polytypic) functionality de-
fined on almost all datatypes are the functions that
can be derived in Haskell using the deriving construct,
storing a value in a database, editing a value, compar-
ing two values for equality, pretty-printing a value, etc.
Another kind of generic function is a function that tra-
verses its argument, and only performs an action at a
small part of its argument. A function that works on
many datatypes is called a generic function.

There are at least two approaches to generic pro-
gramming: use a preprocessor to generate instances of
generic functions on some given datatypes, or extend
a programming language with the possibility to define
generic functions.

Preprocessors

DrIFT is a preprocessor which generates instances of
generic functions. It is used in Strafunski (→ 4.3.2)
to generate a framework for generic programming on
terms. A new release has been announced in May 2004.

Languages

Light-weight generic programming Generic func-
tions for data type traversals can (almost) be writ-
ten in Haskell itself, as shown by Ralf Laem-
mel and Simon Peyton Jones in ‘Scrap your boil-
erplate’ (http://research.microsoft.com/Users/simonpj/
papers/hmap/). The “Scrap your boilerplate” approach
to generic programming in Haskell has been further
elaborated, see the recently published (in ICFP ’04)
paper “Scrap more boilerplate: reflection, zips, and
generalised casts” available from http://www.cs.vu.nl/
boilerplate/. This paper shows how to fill some of the

19

http://www.cs.uu.nl/groups/ST/Center/Top
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://www.cs.uu.nl/research/techreps/UU-CS-2004-037.html
http://www.cs.uu.nl/research/techreps/UU-CS-2004-037.html
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://research.microsoft.com/Users/simonpj/papers/hmap/
http://www.cs.vu.nl/boilerplate/
http://www.cs.vu.nl/boilerplate/

gaps (such as generic zips) which previously were diffi-
cult to solve in this approach.

In “Generics for the masses”, ICFP ’04, Ralf Hinze
shows how to write generic programs in Haskell98,
without any fancy extensions. See http://www.
informatik.uni-bonn.de/˜ralf/.

Generic Haskell Andres Löh successfully defended his
PhD thesis “Exploring Generic Haskell” on Septem-
ber 2, 2004. The thesis describes Dependency-style
Generic Haskell, and introduces, amongst others, a
new type system for Generic Haskell that at the same
time simplifies the syntax and provides greater expres-
sive power. Electronic copies are available at http:
//www.cs.uu.nl/˜andres/ExploringGH.pdf.

Generic Haskell is used in “UUXML: A Type-
Preserving XML Schema – Haskell Data Binding” by
Frank Atanassow, Dave Clarke and Johan Jeuring,
PADL ’04, to implement a Haskell-XML data binding
from XML Schemas to Haskell. Furthermore, Atanas-
sow and Jeuring show how to use this data binding
together with legacy code in “Inferring Type Isomor-
phisms Generically”, in MPC ’04.

Ulf Norell and Patrik Jansson at Chalmers show how
to prototype generic programming in Template Haskell
in a paper with the same title in MPC 2004. Ulf Norell
has won the Succ Zeroth IOHCC (→ 1.5.1) with an
obfuscated generic program.

The code generated by Generic Haskell, PolyP, and
Clean contains many conversions between structure
types and data types, which slows down the generated
code. To remove these conversions, a special-purpose
partial evaluator has to be written. Alimarine and
Smetsers show how to do this (for Clean) in Optimizing
generic functions in MPC’04.

Current Hot Topics

Generic Haskell: incorporating views on data types in
the language; binding XPath to Haskell, using generic
programming for validating XPath expressions against
a Schema. Other: the relation between generic pro-
gramming and dependently typed programming; the
relation between coherence and generic programming;
better partial evaluation of generic functions; methods
for constructing generic programs.

Major Goals

Major Goals: Efficient generic traversal based on type-
information for premature termination (see the Stra-
funski project (→ 4.3.2)). Exploring the differences in
expressive power between the lightweight approaches
and the language extension(s).

Further reading

◦ http://repetae.net/john/computer/haskell/DrIFT/
◦ http://www.cs.chalmers.se/˜patrikj/poly/
◦ http://www.generic-haskell.org/
◦ http://www.cs.vu.nl/Strafunski/
◦ http://www.cs.vu.nl/boilerplate/

There is a mailing list for Generic Haskell:
〈generic-haskell@generic-haskell.org〉. See the homepage
for how to join.

3.5 Arrow notation

Report by: Ross Paterson
Status: stable

Arrow notation has been supported by GHC since re-
lease 6.2, and was used by John Hughes in the Ad-
vanced Functional Programming School this year (→
1.5.1). Both the GHC implementation and the arrow
preprocessor are actively maintained.

Several people have applications that are slightly
more constrained than the Arrow class, but would still
like to use arrow notation. Amr Sabry, Josef Sven-
ningsson, Peter Gammie, Simon Peyton Jones and I are
discussing possible extensions. It looks complicated.

Further reading

http://www.haskell.org/arrows/

20

http://www.informatik.uni-bonn.de/~ralf/
http://www.informatik.uni-bonn.de/~ralf/
http://www.cs.uu.nl/~andres/ExploringGH.pdf
http://www.cs.uu.nl/~andres/ExploringGH.pdf
http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/
mailto:generic-haskell@generic-haskell.org
http://www.haskell.org/arrows/

4 Libraries

4.1 Packaging and Distribution

4.1.1 Hackage and Cabal (formerly the Library
Infrastructure Project)

Report by: Isaac Jones

Background

Hackage (Haskell Package) is an effort to provide a
framework for developers to more effectively contribute
their software to the Haskell community. The Haskell
Cabal (Common Architecture for Building Applica-
tions and Libraries) is one aspect of that effort.

The Haskell Implementations come with a good set
of standard libraries included, but this set is constantly
growing and is maintained centrally. This model does
not scale up well, and as Haskell grows in acceptance,
the quality and quantity of available libraries is becom-
ing a major issue.

It can be very difficult for an end user to manage a
wide variety of dependencies between various libraries,
tools, and Haskell implementations, and to build all
the necessary software at the correct version numbers
on their platform: there is currently no generic build
system to abstract away differences between Haskell
Implementations and operating systems

Hackage and The Haskell Cabal seek to provide some
relief to this situation by building tools to assist devel-
opers, end users, and operating system distributers.

Such tools include a common build system, a pack-
aging system which is understood by all of the Haskell
Implementations, an API for querying the packaging
system, and miscellaneous utilities, both for program-
mers and end users, for managing Haskell software.

Status

We have made an alpha release of the first phase, Cabal,
the common build system, and some prototype tools
for managing package collections and for building OS
packages (for Debian) have been implemented on top
of this. There are a number of real libraries and tools
included as examples (HUnit (→ 5.4.5) and WASH (→
4.7.4), for instance).

Further reading

◦ http://www.haskell.org/cabal
◦ http://www.haskell.org/cabal/proposal/

4.1.2 LicensedPreludeExts

Report by: Shae Erisson

The PreludeExts wiki page started with an oft-pasted
email on the #haskell IRC channel, where at least
once a week someone asked for a permutations func-
tion. That sparked a discussion of what code is miss-
ing from the Prelude, once the wiki page was started,
submissions poured in, resulting in a useful and inter-
esting collection of functions. Last year’s PreludeExts
has become this year’s BSD LicensedPreludeExts since
John Goerzen wanted to have explicit licensing for in-
clusion into debian packages. If you contributed code
to PreludeExts and haven’t yet moved it to Licensed-
PreludeExts, please do so!
http://www.haskell.org/hawiki/LicensedPreludeExts

4.1.3 Haskel User Submitted Libraries (haskell-libs)

Report by: Shae Erisson

haskell-libs is slowly being migrated off of sourceforge
and into various darcs repositories on ScannedInAvian.
org. You can see how it’s going on http://www.
ScannedInAvian.org/cgi-bin/darcs.cgi.

4.2 General libraries

4.2.1 Pesco.Cmdline – a command line parser 6=
GNU getopt

Report by: Sven Moritz Hallberg

This is a useful module for handling command line op-
tions of the familiar (-hello) form. It has some nifty
features and I think it’s more convenient for the quick
every-day standard use than System.GetOpt.

The website above also contains some other things,
but should be easy enough to navigate. Specifically,
in the “Pesco.Cmdline” section, the distribution tarball
is under the link named [dist] and [man] links to the
hypertext reference documentation.

The module is a literate program and comes with a
complete set of manpages (Yes, real Unix manpages!).
See the [doc] link for a PDF rendition of the module
itself, [man] for the hypertext manpages, and [ref] for
the manpages in PDF (formatted for printing as an A5
booklet).

21

http://www.haskell.org/cabal
http://www.haskell.org/cabal/proposal/
http://www.haskell.org/hawiki/LicensedPreludeExts
http://www.ScannedInAvian.org/cgi-bin/darcs.cgi
http://www.ScannedInAvian.org/cgi-bin/darcs.cgi

As of yet, Cmdline does not support explicitly re-
porting errors, it always calls error. I will add that
shortly, however. Also, it is currently not possible to ig-
nore unrecognized command line arguments (for chain-
ing command line parsers) or errors in general. The
next version will expose an additional lower-level inter-
face on which such functionality can be built easily.

In the following, I quote a short comparision between
System.GetOpt and Pesco.Cmdline which I wrote in
reply to a request from the mailing list:

GetOpt’s basic idea, given a type alpha, is to parse
each command line option into a value of type al-
pha. Options to be recognized are specified in “none”,
“mandatory”, and “optional” argument variants. For
the latter two, a function must be given for mapping
the option argument (:: String) to the alpha value.

This means, in the typical use case, you would define
that type alpha to represent your different command
line options. Then you write suitable readers for the
option arguments. If you want explicit reporting of
errors in the arguments, you include values in alpha to
represent them as well.

After you call the getOpt function, you need to go
through the resulting list of alphas to react to your
options.

In the Cmdline module, the type alpha is not needed.
You again specify the options you want to recognize,
stating whether they should take arguments or not.
In contrast to GetOpt, each command line option is
mapped to a “program parameter”, which is, concep-
tually, just a named value of some type that is made
accessible by calling the get_args function. The pa-
rameter’s value is determined by the presence of a cor-
responding command line option. If the option is not
there, a default value is assumed.

Instead of thinking about command line options I
want my program to accept, I like to think about run-
time parameters it should depend on. I specify those
in a list to get_args , which determines their values.
Here, boolean parameters correspond to command line
flags (given or not given – default False). Options
with mandatory arguments can represent parameters of
pretty much any type. Those with optional arguments
represent types of the form Maybe a – Nothing if not
given, Just d if given without argument (d is a default
value) and Just x if given with argument (x is the
argument value).

To access the parameter values in the program,
get_args returns a function mapping parameter names
to their value, type forall a. (Typeable a) =>
String -> a. Each parameter can have several names
which correspond directly to the names for the com-
mand line options. For instance, if I specify a boolean
parameter to be recognized under the names “v” and
“verbose”, get_args will accept the flags ”-v” and ”-
verbose” as a consequence. If the function it returns is
called parm, I can access that parameter as parm "v"
or parm "verbose". Of course the type is checked to

match. Parsing of the option arguments also happens
automatically.

Further reading

http://www.scannedinavian.org/˜pesco/

4.2.2 System.Time: a redesigned Time library

Report by: Simon Marlow
Status: stalled

There has been much discussion about a replacement
for the current Time library, because of certain prob-
lems with the existing library:
◦ the lack of support for leap seconds and the conse-

quent inaccuracy of textttClockTime
◦ the underspecified behaviour of TimeDiff / diff-
ClockTimes / addToClockTime

The latest proposal was posted to the libraries@haskell.
org mailing list in July 2003, and can be found in
the archives here: http://haskell.org/pipermail/libraries/
2003-July/001290.html

To get up to date on the discussion, be sure to read
the threads which lead up to this. The majority of the
discussion took place in June 2003: http://haskell.org/
pipermail/libraries/2003-June/thread.html

Currently, the discussion has stalled again. The leap
seconds issue is something of a sticking point, and there
are some implementability question marks over other
parts of the API. Contribution to (any aspect of) the
discussion is welcomed.

4.2.3 A redesigned IO library

Report by: Simon Marlow

Some time ago on the libraries mailing list there was a
discussion about a replacement for Haskell’s IO library.
The main aims are:

◦ To separate underlying IO objects (files, pipes, sock-
ets etc.), from a general notion of Streams, providing
improved

1. Type Safety: certain operations only make
sense for certain kinds of IO objects. For ex-
ample hFileSize only makes sense on files, not
sockets. Also, input streams would be separate
from output streams.

2. Generality: Under this scheme, programmers
would be able to implement their own Streams
(something which cannot be done with Han-
dles).

22

http://www.scannedinavian.org/~pesco/
http://haskell.org/pipermail/libraries/2003-July/001290.html
http://haskell.org/pipermail/libraries/2003-July/001290.html
http://haskell.org/pipermail/libraries/2003-June/thread.html
http://haskell.org/pipermail/libraries/2003-June/thread.html

◦ To allow translations to be layered on top of Streams
in a general way. The most common type of trans-
lation is a text encoding, which translates between
the external encoded form of text (say, UTF-8) and
Haskell’s Unicode Char type. This addresses a seri-
ous deficiency in Haskell’s current IO library, namely
the lack of support for specifying a character trans-
lation.

◦ More features: e.g. mapped file support.

See the libraries archives for the discussion, e.g.
◦ http://haskell.org/pipermail/libraries/2003-July/

001298.html
◦ http://haskell.org/pipermail/libraries/2003-July/

001299.html
◦ http://haskell.org/pipermail/libraries/2003-August/

001313.html
Since the previous report some progress has been

made on a prototype, which is available here: http:
//haskell.org/˜simonmar/new-io.tar.gz.

The prototype currently supports only basic I/O us-
ing files, but has some support for internationalization.
I (Simon M.) am not actively working on this at the
moment, so anyone that would like to pick this up is
entirely welcome.

4.2.4 System.Process: a platform-independent API
for external process control

Report by: Simon Marlow

The System.Process library is now complete, and will
be available in the next release of GHC (6.4). In the
meantime, the implementation can be found in CVS,
in fptools/libraries/base/System/Process.hs.

4.2.5 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The current release is 1.2.2. New, since the last report,
is the addition of AES courtesy of Lukasz Anforowicz
and the inclusion of a module to support large words
(Word128, Word192 and Word256) for use as keys.

The library collects together existing Haskell crypto-
graphic functions and augments them so that they:
◦ have common type signatures and
◦ can be used with the standard mode and padding

algorithms (in the case of block mode ciphers).
The library now supports: DES, Blowfish, AES, Ci-
pher Block Chaining (CBC) mode, PKCS5 and nulls
padding, MD5, SHA-1, RSA, OAEP, ASN.1 and
PKCS#8.

The library follows the hierarchical standards and
has Haddock (→ 5.5.5) style documentation. There are
demo / test programs using published test vectors and
instructions on how to use RSA in Haskell and inter-
work with openssl. In particular, you can generate key
pairs using your favorite method (openssl, for example)
and then use them in Haskell. A big improvement on
previous versions is the ability to read the private key
into your Haskell program via PKCS#8 and use it to
decrypt something encrypted with your public key.

There is still plenty of existing code that should be
incorporated such as RC4 (courtesy of Doug Hoyte).
Shawn Garbett is looking at suppporting X.509 certifi-
cates which should allow the use of RSA for encryp-
tion and also the use of signatures. With this and
PKCS#12, the library should not need much more in
the way of addition. Future work includes providing
PKCS#12 support, re-writing the ASN.1 module and
using Cabal to package the library.

Further reading

http://www.haskell.org/crypto/ReadMe.html

4.2.6 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Henning Thielemann
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given, superfluous superclasses
like Show are removed, semantic and representation-
specific operations are separated, the hierarchy of type
classes is more fine grained, and identifiers are adapted
to mathematical terms. Both new types (like power
series and values with physical units) and type classes
(like the VectorSpace multi type class) are introduced.
Using the revisited system requires hiding some of the
standard functions provided by Prelude, which is for-
tunately supported by GHC.

Future plans

Collect more Haskell code related to mathematics,
e.g. for linear algebra. Study of alternative numeric
type class proposals and common computer algebra sys-
tems.

Further reading

http://cvs.haskell.org/darcs/numericprelude/

23

http://haskell.org/pipermail/libraries/2003-July/001298.html
http://haskell.org/pipermail/libraries/2003-July/001298.html
http://haskell.org/pipermail/libraries/2003-July/001299.html
http://haskell.org/pipermail/libraries/2003-July/001299.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/pipermail/libraries/2003-August/001313.html
http://haskell.org/~simonmar/new-io.tar.gz
http://haskell.org/~simonmar/new-io.tar.gz
http://www.haskell.org/crypto/ReadMe.html
http://cvs.haskell.org/darcs/numericprelude/

4.2.7 Haskore revision

Report by: Henning Thielemann
Status: experimental, active development

Haskore is a set of Haskell modules by Paul Hudak
that allow music composition within Haskell, i.e. with-
out the need of a custom music programming language.
In general this project aims at improving consistency
throughout the package, revising design decisions, fix-
ing bugs, and eventually extending Haskore. In partic-
ular some improvements are: The Music structure is
based on a more general Media data structure as pro-
posed by Paul Hudak. The core Music data structure
is hidden by functions that work on it. The support
for infinite Music objects is improved. It is possible to
combine music composition with audio signal process-
ing, i.e. it is possible to create audio streams of music
entirely with Haskell code. There is a test suite for
checking various functions of Haskore.

Future plans

Introduce a more general notion of instruments which
allows for more parameters that are specific to cer-
tain instruments. Allow modulation of music similar to
the controllers in the MIDI system. Connect to other
Haskore related projects. Adapt to the Cabal (→ 4.1.1)
system.

Further reading

◦ http://www.haskell.org/hawiki/Haskore
◦ http://cvs.haskell.org/darcs/haskore/

4.2.8 Yampa

Report by: John Peterson and Henrik Nilsson

Yampa is the culmination of the Yale Haskell Group’s
efforts to provide domain-specific embedded languages
for the programming of hybrid systems. Yampa dif-
fers from previous FRP based system in that it makes
a strict distinction between signals (time-varying val-
ues) and functions on signals. This greatly reduces
the chance of introducing space and time leaks into
reactive, time-varying systems. Another difference is
that Yampa is structured using the arrow combinators.
Among other benefits, this allows Yampa code to be
written employing the syntactic sugar for arrows.

We have released version of Yampa 0.4 that contains:

◦ The Yampa Base Library, containing generic func-
tions for the expression of signal functions operating
on continuous as well as discrete signals, and ad-
vanced switching constructs for the interaction be-
tween the continuous and discrete worlds.

◦ The Yampa Robotics Library, containing entities tai-
lored for controlling mobile robots, both real and
simulated, in the style of Frob, our FRP-based
robotics language. The simulator is written using
Yampa’s Base and HGL, the Haskell Graphics Li-
brary, and performs physical modeling of mobile
differential-drive robots equipped with several kinds
of sensors. A pre-configured version of the simulator
allows one to play RoboCup Soccer.

◦ A tutorial (from the 2002 Summer School on Ad-
vanced Functional Programming, Oxford, UK).

◦ The Space Invaders game from the 2003 Haskell
workshop.

This release adds a BSD style license to the system
and fixes a few minor bugs.

With the Base Library and HGL (or any other graph-
ics library), it is easy to write reactive animation pro-
grams in the style of Fran. Thus there is no need for a
special library to support graphics and animation.

Thanks to Abraham Egnor for contributing cairo
binding, which uses Yampa for reactive animation.
Download instructions are at http://www.cairographics.
org/hscairo.

Further reading

http://www.haskell.org/yampa

4.2.9 The revamped monad transformer library

Report by: Iavor Diatchki
Status: mostly stable

Monads are very common in Haskell programs and yet
every time one needs a monad, it has to be defined
from scratch. This is boring, error prone and unnec-
essary. Many people have their own libraries of mon-
ads, and it would be nice to have a common one that
can be shared by everyone. Some time ago, Andy Gill
wrote the monad transformer library that has been dis-
tributed with most Haskell implementations, but he has
moved on to other jobs, so the library was left on its
own. I wrote a similar library (before I knew of the
existance of Andy’s library) and so i thought i should
combine the two. The “new” monadic library is not re-
ally new, it is mostly reorganization and cleaning up of
the old library. It has been separated from the “base”
library so that it can be updated on its own.

The monad transformer library now has its first of-
ficial release. I have put it on my web page: http:
//www.cse.ogi.edu/˜diatchki/monadLib

It is in many ways similar to what’s distributed with
GHC/Hugs/etc, but I think also simplified and bet-
ter organized. The library intraface is documented

24

http://www.haskell.org/hawiki/Haskore
http://cvs.haskell.org/darcs/haskore/
http://www.cairographics.org/hscairo
http://www.cairographics.org/hscairo
http://www.haskell.org/yampa
http://www.cse.ogi.edu/~diatchki/monadLib
http://www.cse.ogi.edu/~diatchki/monadLib

with haddock (→ 5.5.5). The monads/transformers
currently in the library are:
◦ ReaderT (environment)
◦ WriterT (output)
◦ StateT
◦ ExceptT
◦ BackT
◦ ContT
In this version I decided to implement some of the
transformers (backtracking,exceptions) in continuation
passing style, thinking that they may work better that
way. I haven’t done any formal testing on that though.
The Haskell extensions the library uses are:
◦ Multiparameter classes (important).
◦ Rank-2 polymorphism (for the CPS implementa-

tions, could be removed).
◦ Functional dependencies (could be removed, but is

likely to requre more type annotations).
For any questions, comments, or bug reports please
send me a mail.

Further reading

http://www.cse.ogi.edu/˜diatchki/monadLib

4.2.10 HBase

Report by: Ashley Yakeley

HBase is a large collection of library code, compiled
“-fno-implicit-prelude”, intended as an experimen-
tal/alternative reorganized interface to the existing
standard libraries making full use of GHC’s extensions.
HBase development is driven by HScheme (→ 6.1.1)
and my other Haskell projects, and sometimes by what-
ever interests occur to me. Right now it includes:
◦ a library of various classes of Functors and Monads,
◦ transformation, encoding and property functions for

Unicode,
◦ types and classes for parsing,
◦ functions for parsing XML and RDF,
◦ code for constructing SQL queries,
. . . and much else. I’m hoping some of the ideas might
eventually make their way into standard libraries, or
perhaps the standard libraries of some future extended
“Haskell 2”.

Very little work is currently being done on it, as the
main developer’s free time has been shortened by gain-
ful employment. Further work may resume, at a re-
duced pace, once left-over issues in the latest JVM-
Bridge (→ 5.1.3) have been cleared up.

Further reading

http://sourceforge.net/projects/hbase/

4.2.11 Pointless Haskell

Report by: Jorge Sousa Pinto

Pointless Haskell is a library for point-free program-
ming with recursion patterns defined as hylomor-
phisms. It is part of the UMinho Haskell libraries that
are being developed at the University of Minho (→
7.1.8). The core of the library is described in“Point-free
Programming with Hylomorphisms” by Alcino Cunha.

Pointless Haskell also allows the visualization of the
intermediate data structure of the hylomorphisms with
GHood. This feature together with the DrHylo (→
5.2.7) tool allows us to easily visualize recursion trees
of Haskell functions, as described in “Automatic Vi-
sualization of Recursion Trees: a Case Study on
Generic Programming” (Alcino Cunha, In volume 86.3
of ENTCS: Selected papers of the 12th International
Workshop on Functional and (Constraint) Logic Pro-
gramming. 2003).

Further reading

The Pointless Haskell library is available from http://
wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell.

4.2.12 hs-plugins

Report by: Donald Bruce Stewart
Status: active development

hs-plugins is a library for dynamic loading and runtime
compilation of Haskell modules at runtime, into Haskell
and foreign applications. It can be used to implement
standard application plugins, hot swapping of modules
in running applications, and enables the use of Haskell
as an application extension language. The library has
stabilised in the last six months, and we hope to release
v1.0 around January 2005.

Further reading

Source and documentation can be found at http://
www.cse.unsw.edu.au/˜dons/hs-plugins.

4.2.13 MissingH

Report by: John Goerzen
Status: active development

MissingH is a library designed to provide the little
“missing” features that people often need and end up
implementing on their own. Its focus is on list, string,
and IO features, but extends into other areas as well.
The library is 100% pure Haskell code and has no
dependencies on anything other than the standard li-
braries distributed with current versions of GHC and
Hugs.

25

http://www.cse.ogi.edu/~diatchki/monadLib
http://sourceforge.net/projects/hbase/
http://wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell
http://wiki.di.uminho.pt/bin/view/Alcino/PointlessHaskell
http://www.cse.unsw.edu.au/~dons/hs-plugins
http://www.cse.unsw.edu.au/~dons/hs-plugins

In addition to the smaller utility functions, recent
versions of MissingH have added a complete FTP client
parser library, a MIME type guesser, and a modular
logging infrastructure, complete with support for Sys-
log.

Future plans for MissingH include adding more net-
work client and server libraries, support for a general-
ized URL downloading scheme that will work across all
these client libraries, and enhancing the logging system.

This library is licensed under the GNU GPL.

Further reading

MissingH is available from http://quux.org/devel/
missingh.

4.3 Parsing and transforming

4.3.1 Parsec

Report by: Daan Leijen
Status: stable

Parsec is a practical parser combinator library for
Haskell that is well documented, has extensive li-
braries, and good error messages. It is cur-
rently part of the standard Haskell libraries (in
Text.ParserCombinators.Parsec) and has been sta-
ble for a while now. We plan to add a module that adds
combinators to parse according to the (full) Haskell lay-
out rule (available on request).

Further reading

http://www.cs.uu.nl/˜daan/parsec.html

4.3.2 Strafunski

Report by: Joost Visser
Status: active, maintained, new release in October

2004
Portability: Hugs, GHC, DrIFT

Strafunski is a Haskell-based bundle for generic pro-
gramming with functional strategies, that is, generic
functions that can traverse into terms of any type while
mixing type-specific and uniform behaviour. This style
is particularly useful in the implementation of program
analyses and transformations.

Strafunski bundles the following components:
◦ the library StrategyLib for generic traversal and oth-

ers;
◦ precompilation support for user datatypes based on

DrIFT (→ 3.4);
◦ the library ATermLib for data exchange;

◦ the tool Sdf2Haskell (→ 5.2.5) for external parser and
pretty-print integration.
The Strafunski-style of generic programming can

be seen as a lightweight variant of generic program-
ming (→ 3.4) because no language extension is in-
volved, but generic functionality simply relies on a few
overloaded combinators that are derived per datatype.
By default, Strafunski relies on DrIFT to derive the ap-
propriate class instances, but a simple switch is offered
to rely on the “Scrap your boilerplate” (→ 3.4) model
as available in the Data.Generics library.

The Sdf2Haskell component of Strafunski has re-
cently been extended to offer not only parsing support
via the external ”sglr” parser, but also:

◦ parsing support via HaGLR (→ 5.2.6), an experimen-
tal 100% Haskell implementation of Generalized LR
parsing

◦ pretty-printing support, based on the
pretty-print combinators as available in the
Text.PrettyPrint.HughesPJ library. The generated
pretty-printers are functional strategies that offer
uniform behaviour which can be customized with
type-specific behaviour.

Strafunski is used in the HaRe project (→ 5.3.4) and
in the UMinho Haskell Libraries (→ 7.1.8) to provide
analysis and transformation functionality for languages
such as Java, VDM, SQL, spreadsheets, and Haskell
itself.

Further reading

http://www.cs.vu.nl/Strafunski/

4.3.3 Medina – Metrics for Haskell

Report by: Chris Ryder

The Medina library is a Haskell library for GHC that
provides tools and abstractions with which to build
software metrics for Haskell programs.

The library includes a parser and several abstract
representations of the parse trees and some visualiza-
tion systems including pretty printers, HTML genera-
tion and callgraph browsing. The library has some inte-
gration with CVS to allow temporal operations such as
measuring a metric value over time. This is linked with
some simple visualization mechanisms to allow explor-
ing such temporal data. These visualization systems
will be expanded in the near future.

We have carried out case studies to provide some
validation of metrics by looking at the change history
of a program and how various metric values evolve in
relation to those changes. In order to do this we im-
plemented several metrics using the library, which has
given some valuable ideas for improvements to the li-
brary.

26

http://quux.org/devel/missingh
http://quux.org/devel/missingh
http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.vu.nl/Strafunski/

Following on from the case studies we have im-
proved and extended the visualization systems and im-
plemented some of the ideas from the case studies. De-
mos and screenshots are available on the Medina web-
page: http://www.cs.kent.ac.uk/˜cr24/medina.

Currently there is no released version of the Medina
library, but my PhD thesis has been submitted so I am
now in the process of preparing a release. This should
be available real-soon-now.

4.4 Data handling

4.4.1 DData

Report by: Daan Leijen
Status: stable

DData is a library of efficient data structures and algo-
rithms for Haskell (Set, Bag, and Map). It is actively
maintained and stable.

DData is currently under review for inclusion in the
standard hierarchical module name space, and you are
invited to join the discussion on the Haskell libraries
mailing list.

The current proposal is maintained by
J.P. Bernardy and can be found at: http:
//users.skynet.be/jyp/DData/doc and http:
//users.skynet.be/jyp/DData/ddata.tar.gz

Further reading

http://www.cs.uu.nl/˜daan/ddata.html

4.4.2 A library for strongly typed heterogeneous
collections

Report by: Oleg Kiselyov
Developers: Oleg Kiselyov, Ralf Lämmel,

Keean Schupke
Maintainer: Ralf Lämmel

HList is a comprehensive, general purpose Haskell li-
brary for strongly typed heterogeneous collections in-
cluding extensible records. HList is analogous of the
standard list library, providing a host of various con-
struction, look-up, filtering, and iteration primitives.
In contrast to the regular list, elements of HList do
not have to have the same type. HList lets the user
formulate statically checkable constraints: for exam-
ple, no two elements of a collection may have the same
type (so the elements can be unambiguously indexed
by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable labels. We have also used HList for type-safe
database access in Haskell. The HList library relies on
common extensions of Haskell 98.

We are currently working on applications of HList
to a powerful object-oriented system and to expressive
type-level programming.

Further reading

http://homepages.cwi.nl/˜ralf/HList/

4.4.3 HSQL

Report by: Krasimir Angelov
Status: stable

The HSQL is a simple library for database access from
Haskell. It is relatively small and complete. bug fixes
are always welcome and If someone is wishing to add a
new backend I will be glad to help him.

Further reading

http://htoolkit.sourceforge.net/

4.4.4 Takusen

Report by: Alistair Bayley, Oleg Kiselyov
Status: active development

Takusen is a library for accessing DBMS’s. It is a low-
level library like HSQL (→ 4.4.3), in the sense that it
is used to issue SQL statements. Takusen’s ‘unique-
selling-point’ is a design for processing query results
using a left-fold enumerator. For queries the user cre-
ates an iteratee function, which is fed rows one-at-a-
time from the result-set. We also support processing
query results using a cursor interface, if you require
finer-grained control.

Takusen is under active development, although
progress is slow. Since the last HC&A Report we have
added support for Sqlite, re-organised the library mod-
ules, addressed some performance problems, and im-
proved the Oracle connection code (OS-authenticated
logon is possible now). We plan to continue adding
implementations for other DBMS’s, and support for
bind variables. We’re also reviewing the current de-
sign, with a view to doing everything in the IO monad,
rather than using monad transformers. We expect this
to make the code (both library and user) a bit simpler;
users won’t have to use liftIO to perform IO actions
inside database actions.

http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/

27

http://www.cs.kent.ac.uk/~cr24/medina
http://users.skynet.be/jyp/DData/doc
http://users.skynet.be/jyp/DData/doc
http://users.skynet.be/jyp/DData/ddata.tar.gz
http://users.skynet.be/jyp/DData/ddata.tar.gz
http://www.cs.uu.nl/~daan/ddata.html
http://homepages.cwi.nl/~ralf/HList/
http://htoolkit.sourceforge.net/
http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/

4.4.5 HaskellDB

Report by: Anders Höckersten
Status: active development and maintenance
Portability: GHC, Hugs, multiple platforms

HaskellDB is a library for accessing databases through
Haskell in a type safe and declarative way. It
completely hides the underlying implementation and
can interface with several popular database engines
through either HSQL (→ 4.4.3) or wxHaskell (→ 4.5.2).
HaskellDB was originally developed by Daan Lei-
jen. Development was restarted as part of a student
project at Chalmers University of Technology. This
project is now over, but several of the original project
members are still actively developing and maintain-
ing HaskellDB. We do welcome new developers and
patches, as all of us are full-time students.

The current version supports:
◦ Completely type safe queries on databases
◦ Support for MySQL, PostgreSQL, SQLite and

ODBC through HSQL
◦ Support for ODBC through wxHaskell
◦ Automatic conversion between Haskell types and

SQL types
◦ Support for bounded strings
◦ Dynamic loading of drivers via hs-plugins (→ 4.2.12)

Future possible developments include:
◦ Support for more backends (Oracle)
◦ Support for non-SQL backends
◦ Driver-specific code generation. This is needed for

non-SQL backends, and we have discovered that no
SQL databases implement the standard in quite the
same way

Further reading

http://haskelldb.sourceforge.net

4.5 User interfaces

4.5.1 The Common GUI API effort

Report by: Axel Simon

The usefulness of the Haskell language depends cru-
cially on the provided libraries. In particular, efforts to
write an application with a graphical user interface has
long been complicated by the large number of mostly
incomplete libraries (or research prototypes). In spring
2003 people tried to focus the development effort and
came up with the idea of a Common GUI API (CGA
for short) which should define an intersection of three
major platform APIs (Win32, Gnome/Gtk and Mac

OS X) and that addresses the requirements of the plat-
form’s style guide (or human interface guidelines). At
the Haskell Workshop 2003 a quick poll revealed that
1/3 of the people thought that this major undertak-
ing is worthwhile, 2/3 thought that a new binding to a
readily available cross-platform approach is adequate.
Hence the CGA idea was not pursued and wxHaskell,
a binding to wxWidgets, is recommended for new de-
velopments. Other libraries might of course continue
to exist, in particular if they fill a niche for some appli-
cations.

4.5.2 wxHaskell

Report by: Daan Leijen
Status: beta, actively developed

wxHaskell is a portable GUI library for Haskell. The
goal of the project is to provide an industrial strength
portable GUI library, but without the burden of devel-
oping (and maintaining) one ourselves.

wxHaskell is therefore build on top of wxWidgets – a
comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with native look-and-feel, and it has a very ac-
tive community (ranked among the top 25 most active
projects on sourceforge). Many other languages have
chosen wxWidgets to write complex graphical user in-
terfaces, including wxEiffel, wxPython, wxRuby, and
wxPerl.

Since most of the interface is automatically gener-
ated from the wxEiffel binding, the latest release of wx-
Haskell already supports about 90% of the wxWindows
functionality – about 3000 methods in 500 classes with
1300 constant definitions. wxHaskell has been built
with GHC 6.x on Windows, MacOS X and Unix sys-
tems with GTK, and binary distributions are available
for common platforms.

Since the last community report, most work has been
directed into improved stability and a better build sys-
tem. There is also better integration with other pack-
ages: HaskellDB (→ 4.4.5) works with the wxHaskell
ODBC binding and HOpenGL (→ 4.6.2) can work with
the OpenGL canvas. The wxHaskell website also shows
some screenshots of larger sized applications that are
developed with wxHaskell. It is most satisfying to see
that even those larger applications are ported with-
out any real difficulties – Haskell is becoming a very
portable language indeed!

Current work is directed at improving documenta-
tion and stability across platforms, and we hope to re-
lease the 1.0 version in January 2005. In between there
will be a 0.9 release candidate with full printing sup-
port.

28

http://haskelldb.sourceforge.net

Further reading

You can read more about wxHaskell at http://
wxhaskell.sourceforge.net and on the wxHaskell mailing
list at http://sourceforge.net/mail/?group id=73133.
See also “wxHaskell: a portable and concise GUI li-
brary”, Daan Leijen, Haskell workshop 2004.

4.5.3 FunctionalForms

Report by: Sander Evers

FunctionalForms is a combinator library built on top of
wxHaskell (→ 4.5.2) which enables a concise and declar-
ative programming style for forms: dialogs which only
show and edit a set of values (used in many applications
as Options or Properties dialogs). Control and lay-
out definition are combined into one expression, there’s
no IO monad programming, and values are passed to
and from the controls almost automatically. Still, the
type of the edited values and the layout structure can
be managed independently, thanks to a new program-
ming technique called compositional functional refer-
ences. Currently, FunctionalForms is still in an early
state; I plan to extend it. Feedback is welcomed.

Further reading

http://www.cs.ru.nl/˜sandr/FunctionalForms

4.5.4 HToolkit

Report by: Krasimir Angelov

The HToolkit is a platform independent package for
Graphical User Interfaces. The package is split into
two libraries GIO and Port. The Port is a low-level
Haskell 98+FFI (→ 3.1) compatible API, while GIO is
a highlevel user friendly interface to Port. The primary
goal of HToolkit is to provide a native look and feel for
each target platform.

The currently supported platforms are Windows and
Linux/GNOME.

There are some new things. There is a better sup-
port for menus and toolbars under both Windows and
Linux. There is also new API which allows to create
action based menu items and toolbar buttons. The“ac-
tion” here is something like GtkAction widget but it is
at Haskell level and it is available for both Windows
and Linux. There isn’t a new release yet.

Further reading

http://htoolkit.sourceforge.net/

4.5.5 gtk2hs – A binding to the Gtk GUI library
version 2.0–2.4.

Report by: Duncan Coutts
Maintainer: Axel Simon

This project provides a high-quality binding to the
Gtk+ GUI library together with some Gnome exten-
sions (at the moment Glade, GConf and a source code
editor widget).

Compared to wxHaskell (→ 4.5.2) it does not adopt
its look and feel to different platforms, however, it al-
lows greater integration with its native Gtk+/Gnome
environment. It also has automatic memory manage-
ment (wxWidgets does not provide proper support for
garbage-collected languages).

The library is actively maintained and developed. In
particular we are planning to add more Gnome wid-
gets, support for embedding the Mozilla rendering en-
gine and add a medium level API layer similar to that
of wxHaskell. Since the last HC&A Report, we have
achieved almost complete coverage of the Gtk+ API,
improved Haddock (→ 5.5.5) documentation and have
begun conversion to using hierarchical module names.

The latest release of gtk2hs, version 0.9.6, is known
to run on Linux, FreeBSD, MacOS X, Windows and
Solaris. Packages are currently available for Fedora
Core (→ 7.2.2) and Gentoo (→ 7.2.4).

4.5.6 HTk

Report by: Christoph Lüth and George Russell
Status: stable, actively maintained

HTk is an encapsulation of the graphical user interface
toolkit and library Tcl/Tk for the functional program-
ming language Haskell. It allows the creation of high-
quality graphical user interfaces within Haskell in a
typed, abstract, portable and concurrent manner. HTk
is known to run under Linux, Solaris, FreeBSD, Win-
dows (98, 2k, XP) and will probably run under many
other POSIX systems as well. It works with GHC, ver-
sion 6.0 and up.

Further reading

http://www.informatik.uni-bremen.de/htk

4.5.7 Fudgets

Report by: Thomas Hallgren

Fudgets is a GUI toolkit designed and implemented by
Magnus Carlsson and Thomas. Most of the work was
done in 1991–1995, and the library has been in minimal
maintenance mode since then. It compiles with recent

29

http://wxhaskell.sourceforge.net
http://wxhaskell.sourceforge.net
http://sourceforge.net/mail/?group_id=73133
http://www.cs.ru.nl/~sandr/FunctionalForms
http://htoolkit.sourceforge.net/
http://www.informatik.uni-bremen.de/htk

versions of GHC (e.g., GHC 6.2.1) on many Unix-like
platforms (Linux, SunOS, Mac OS X, etc).

For documentation and downloads, see: http://www.
cs.chalmers.se/Fudgets/.

Recent snapshots can also be found at: http://www.
cse.ogi.edu/˜hallgren/untested/.

Two applications using the Fudgets:
◦ The proof assistant Alfa, http://www.cs.chalmers.se/

˜hallgren/Alfa/
◦ The Programatica Haskell Browser, http://www.cse.

ogi.edu/˜hallgren/Programatica/

4.6 Graphics

4.6.1 HSX11, HGL, and Win32

Report by: Ross Paterson

The hierarchical libraries include a new version of the
X11 package that no longer requires GreenCard (→
5.1.1). The Haskell Graphics Library works on X11,
and also includes a compatibility module for use with
Paul Hudak’s“The Haskell School of Expression”. Both
packages will be included in the next releases of GHC
and Hugs. There is also a Win32 package that no longer
requires GreenCard, but it is in urgent need of a vol-
unteer to get it working and maintain it. If that were
done, HGL could be expected to work on both plat-
forms.

4.6.2 HOpenGL – A Haskell Binding for OpenGL
and GLUT

Report by: Sven Panne
Status: active, maintained

The goal of this project is to provide a binding for
the OpenGL rendering library which utilizes the spe-
cial features of Haskell, like strong typing, type classes,
modules, etc., but is still in the spirit of the official
API specification. This enables the easy use of the vast
amount of existing literature and rendering techniques
for OpenGL while retaining the advantages of Haskell
over lower-level languages like C. Portability in spite of
the diversity of Haskell systems and OpenGL versions
is another goal.

HOpenGL includes the simple GLUT UI, which is
good to get you started and for some small to medium-
sized projects, but HOpenGL doesn’t rival the GUI
task force efforts in any way. Smooth interopera-
tion with GUIs like gtk+hs or wxHaskell (→ 4.5.2)
on the other hand is a goal, see e.g. http://wxhaskell.
sourceforge.net/samples.html#opengl

Currently there are two major incarnations of
HOpenGL, differing in their distribution mechanisms
and APIs: The old one (latest version 1.05 from

09/09/03) is distributed as a separate tar ball and needs
GreenCard plus a few language extensions. Apart from
small bug fixes, there is no further development for this
binding. Active development of the new incarnation
happens in the fptools repository, so it is easy to ship
GHC, Hugs, and nhc98 with OpenGL/GLUT support.
The new binding features:
◦ Pure Haskell 98 + FFI (→ 3.1)
◦ No GreenCard (→ 5.1.1) dependency anymore
◦ Full OpenGL 1.5 support (NURBS currently only

partly implemented)
◦ A few dozen extensions
◦ An improved API, centered around OpenGL’s notion

of state variables
◦ Extensive hyperlinked online documentation
HOpenGL is extensively tested on x86 Linux and
Windows, and reportedly runs on Solaris, FreeBSD,
OpenBSD (→ 7.2.3), and Mac OS X.

The binding comes with a lot of examples from the
Red Book and other sources, and Sven Eric Panitz
has written a tutorial using the new API (http://
www.tfh-berlin.de/˜panitz/hopengl/), so getting started
should be rather easy.

Further reading

http://www.haskell.org/HOpenGL/

4.6.3 Pancito

Report by: Andrew Cooke
Status: not currently being developed further

Version (2.2) of Pancito (a functional images toolkit
initially inspired by Pan) is available at http://www.
acooke.org/jara/pancito – it extends 2.1 with useful out-
put options (a progress meter and the possibility to pre-
view a small area of an image) and better structured
code (points are now a typeclass, allowing now kinds
of coordinates to be added more easily, for example).

Art generated with Pancito can be seen in the gallery
(generated with Halipeto (→ 4.7.1)) at http://www.
acooke.org/pancito.

4.7 Web and XML programming

4.7.1 Halipeto

Report by: Andrew Cooke
Status: not currently being developed further

Halipeto generates web pages from templates (much
like JSP, Zope TAL etc). It is written in Haskell
(with a ghc extension) and is available from http:
//www.acooke.org/jara/halipeto.

Since Haskell functions are directly associated with
element attributes, the system is flexible and easy to

30

http://www.cs.chalmers.se/Fudgets/
http://www.cs.chalmers.se/Fudgets/
http://www.cse.ogi.edu/~hallgren/untested/
http://www.cse.ogi.edu/~hallgren/untested/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cs.chalmers.se/~hallgren/Alfa/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/
http://wxhaskell.sourceforge.net/samples.html#opengl
http://wxhaskell.sourceforge.net/samples.html#opengl
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/
http://www.acooke.org/jara/pancito
http://www.acooke.org/jara/pancito
http://www.acooke.org/pancito
http://www.acooke.org/pancito
http://www.acooke.org/jara/halipeto
http://www.acooke.org/jara/halipeto

extend (providing you can program in Haskell). An
example site generated using Halipeto, containing some
Pancito (→ 4.6.3) images, is at http://www.acooke.org/
pancito; the code for that site is included in the Halipeto
download as an example.

Content management systems typically have four dis-
tinguishing features: server integration with dynamic
page generation; a template engine for generating out-
put in the correct format; a database for storing con-
tent; and a dynamic web interface for managing the
system. Halipeto only supplies two of these – templates
and a simple file-system based database. Without fur-
ther work it can only be used, therefore, to generate
static web pages from the database (SQL integration
should be fairly simple as the IO Monad is already
threaded through the system).

Thanks to HaXml (→ 4.7.2) for the XML support
(Halipeto includes the relevant files, HaXml does not
need to be installed).

4.7.2 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public release is currently at version 1.12.
Graham Klyne (→ 8.2) has recently done a lot of work
to extend HaXml for namespaces, better Unicode sup-
port, and much more. His version is currently separate,
but we hope eventually to merge those contributions
back into the main HaXml tree.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.ninebynine.org/Software/HaskellUtils/

4.7.3 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: fourth major release (current release: 4.02)

Description

The Haskell XML Toolbox is a collection of tools for
processing XML with Haskell. It is itself purely written
in Haskell 98.The core component of the Haskell XML
Toolbox is a validating XML-Parser that supports al-
most fully the Extensible Markup Language (XML) 1.0
(Second Edition),

The Haskell XML Toolbox bases on the ideas of
HaXml (→ 4.7.2) and HXML, but introduces a more
general approach for processing XML with Haskell.
The Haskell XML Toolbox uses a generic data model
for representing XML documents, including the DTD

subset and the document subset, in Haskell. This data
model makes it possible to use filter functions as a
uniform design of XML processing applications. The
whole XML parser including the validator parts was
implemented using this design. Libraries with filters
and combinators are provided for processing the generic
data model.

Features

◦ validating XML parser
◦ very liberal HTML parser
◦ XPath support
◦ full Unicode support
◦ support for XML namespaces
◦ uniform data model for DTDs and XML content
◦ hierarchical library support
◦ package support for ghc
◦ native Haskell support of HTTP 1.1 and FILE pro-

tocol
◦ HTTP and access via other protocols via external

program curl
◦ tested with W3C XML validation suite
◦ example programs

Current Work

◦ a complex example application using the HXT li-
brary and the wxWidgets framework has been de-
veloped. This program consists of an editor for a
web photo album. The album itself is represented as
XML document.

◦ a simple and more flexible interface to the HXT
DOM and the existing filter based on the Arrow in-
terface are under construction.

◦ a project for supporting the Relax NG XML schema
definition for validation ă has started this autumn
and will be finished in September 2005.

◦ in September 2004 a master student has started his
thesis work. In this project a “HXT cookbook” will
be developed. users guide. In this user guide the de-
velopment of a nontrivial example application will be
described, for demonstrating the programming tech-
nics with filters and their combinations on real life
problems.

Further reading

The Haskell XML Toolbox Webpage (http:
//www.fh-wedel.de/˜si/HXmlToolbox/index.html)
includes downloads, online documentation and a
master thesis describing the design of the toolbox.
The documentation is a bit out of date. This is one
reason for the users guide project.

31

http://www.acooke.org/pancito
http://www.acooke.org/pancito
http://haskell.org/HaXml
http://www.ninebynine.org/Software/HaskellUtils/
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html

4.7.4 WASH/CGI – Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely
functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features
◦ complete interactive script in one program
◦ a monadic, type-safe interface to generating HTML

output
◦ type-safe compositional approach to specifying form

elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

Completed Items are:
◦ much improved and documented preprocessor

for translating markup in XML syntax into
WASH/HTML

◦ package-ifycation of WASH (& much simpler instal-
lation)

◦ caching of documents (but turned off by default)

Current work includes
◦ database interface
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/˜thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

4.7.5 GXS – The Generic XML Serializer

Report by: Simon Foster
Status: beta

GXS allows purpose-built record syntax Haskell data-
types to serialized to and deserialized from XML in a
highly extensible manner. For example

data Person =

Person{surname::String, forename::String,

a_nums::[Int], a_isMale::Bool}

deriving (Typeable, Data, Show)

is a simple data-type with elements surname and fore-
names and two attributes, note that fields default to

elements if no letter prefix is supplied. After attempt-
ing to implement a serializer using type-classes, and
finding it to be impossible (see Haskell mailing-list
posts in August “XML Serialization and type con-
straints” http://www.mail-archive.com/haskell@haskell.
org/msg15180.html), after much needed advice from
Ralf Lämmel (the author of the two Scrap Your Boil-
erplate (→ 3.4) papers), I switched to a more Generic
Solution using Data.Generics. The new serializer allows
record-syntax data-type serialization to be extended by
the use of encoder/decoders which allows specific data-
types to be encoded in different ways to the normal
serialization method. For example a date (data-type
with three Int fields; day, month and year) would nor-
mally (under standard GXS rules) be serialized as

<day>11</day><month>10</month><year>2004</year>

but with the help of an encoder this can instead be
stored as simply 11-10-2004, this of course is only a
simple example and there are many ways in which en-
coders can be used, including serialization of SOAP
Arrays.

The serializer also allows the insertion of hooks into
the serialization process. These are different to en-
coders in that rather than working on the data it-
self, they allow meta data to be inserted into the
tree, such as namespaces and XSD (or other) type
data. The addition of specialized encoders and hooks
is made easier by use of a simple Dynamic database
which is used to store various data about the tree,
such as name-space tables and type lookups, but can
theoretically be tooled to any application. GXS is
currently in a highly beta (not to mention messy!)
state in the HAIFA CVS (https://savannah.nongnu.org/
projects/haifa/) repository, but has been already used
extensively in the further parts of HAIFA (it was orig-
inally written as a means to an end, rather than a
project in itself, but has somewhat developed from
there). The serializer can be found in haifa/src/Text/
XML/Serializer.hs.

4.7.6 XML Schema

Report by: Simon Foster

The mapping of XML Schema data-types to Haskell is
of paramount importance to the development of Web-
Service based applications in Haskell. The original
HAIFA (see last HCAR) somewhat avoided this issue
by having a centralized type-mapping database, which
allowed different types from XSD to be built and used
manually. However this solution could never be perma-
nent, and so it has been necessary to move on to set
an XML Schema seed in Haskell. The first task (and
possibly most time-consuming) was to create a set of
XML Schema data-types in Haskell. Using the GXS (→

32

http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.mail-archive.com/haskell@haskell.org/msg15180.html
http://www.mail-archive.com/haskell@haskell.org/msg15180.html
https://savannah.nongnu.org/projects/haifa/
https://savannah.nongnu.org/projects/haifa/

4.7.5) data-type encodings the data-types were cre-
ated along with a basic (and very, very much incom-
plete) type-mapper, mainly for use in WSDL. The XML
Schema library now utilizes Haskell’s module name-
spaces to create proper XML style name-spaces (http:
//www.w3.org/TR/REC-xml-names/), similar to those
in Java; e.g. Org.W3.N2001.XMLSchema, which makes
accessing types much easier for further applications.
Now that HXT (→ 4.7.3) is also under the hierarchical
library tree, development of derivative projects will be
far more organized and usable. This work is also avail-
able in the Haskell CVS; specifically under haifa/src/
Text/XML/Schema/ and particularly haifa/src/Text/
XML/Schema/Org/W3/N2001/XMLSchema.hs.

4.7.7 SOAP/1.1 and WSDL/1.1

Report by: Simon Foster

The ultimate aim of putting together GXS (→ 4.7.5)
and XML Schema (→ 4.7.6) was to create a (proper)
implementation of Web-Services in Haskell. GXS
simply means that SOAP is just a couple of data-
types with a few encodings + hooks, and of course
HTTP is driven by HTTP library improved by Bjorn
Bringert (→ 4.7.8). This only leaves WSDL, which is
actually quite a task to do and I won’t go into all the
details here. Needless to say, a WSDL document maps
to a number of data-types and functions which can be
used to execute the operations on the remote Service.
At time of writing, the implementation of WSDL is
almost complete, with a working example of a sim-
ple Web-Service off http://soapclient.com, although due
to (very very) partial support for XML Schema type-
mapping, in practise only a sub-set of Web-Services will
work even after WSDL is complete and so further work
on XML-Schema will be required.

Please Note that the HAIFA CVS is currently very
much in a state of flux, a lot of stuff in there belongs
to old HAIFA (as well as some newer, although still
redundant code), and HAC probably doesn’t work at
all anymore (it will soon though because it is needed
for the next project).

Further reading

◦ http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/

◦ http://www.w3.org/TR/wsdl

4.7.8 Haskell XML-RPC

Report by: Björn Bringert
Status: maintained

Haskell XML-RPC is a library for writing XML-RPC
client and server applications in Haskell. XML-RPC

is a standard for XML encoded remote procedure calls
over HTTP. The library is actively maintained and rel-
atively stable.

Further reading

http://www.bringert.net/haskell-xml-rpc/

33

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://soapclient.com
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/wsdl
http://www.bringert.net/haskell-xml-rpc/

5 Tools

5.1 Foreign Function Interfacing

5.1.1 GreenCard

Report by: Alastair Reid
Status: maintained, very stable
Current release: 3.01 (6 June 2003)
Portability: Hugs, GHC, NHC and C, C++

GreenCard is a foreign function interface preprocessor
for Haskell and has been used (amongst other things)
for the Win32 and X11 bindings used by Hugs and
GHC.

Further reading

http://haskell.org/greencard/

5.1.2 C–>Haskell

Report by: Manuel Chakravarty
Status: active

C–>Haskell is an interface generator that simplifies
the development of Haskell bindings to C libraries.
Development in the past half year has concentrated
on stabilising the current feature set; so, the current
version 0.13 “Pressing Forward” of C–>Haskell con-
tains a lot of bug fixes and has better performance
than the previous version. Source and binary pack-
ages as well as a reference manual are available from
http://www.cse.unsw.edu.au/˜chak/haskell/c2hs/.

5.1.3 JVM Bridge

Report by: Ashley Yakeley

JVM-Bridge is a GHC package intended to allow full
access to the Java Virtual Machine from Haskell, as
a simple way of providing a wide range of imperative
functionality. Its big advantage over earlier attempts at
this is that it includes a straightforward way of creat-
ing Java classes at run-time that have Haskell methods
(using DefineClass and the Java Class File Format). It
also features reconciliation of thread models without
requiring GPH.

Current Status

JVM-Bridge is at version 0.3: it works on Windows
and also allows the use of third-party Java libraries.
A 0.3.1 release to fix Mac OS X build issues may be
forthcoming.

Further reading

http://sourceforge.net/projects/jvm-bridge/

5.1.4 PHI – Python Haskell Interface

The Python-Haskell-Interface (PHI) is a pre-alpha
binding between Haskell and Python. The goal is to al-
low writing mixed-language systems, with an eye to us-
ing Haskell components with Python systems like Zope,
and taking advantage of existing Python libraries.

The binding currently supports (modulo segfaults)
exposing Haskell functions as a Python module and
calling Python code from Haskell. Haskell can be the
main program, or linked as a Python extension module.

The code currently covers manipulating and creating
Python objects, and wrapping Dynamics to be passed
into Python. Marshalling classes cover some primitive
types, tuples, and association lists.

I plan to add marshalling of exceptions across in-
terlanguage calls and fix some segfaults before making
an official release. My darcs repository is accessible at
http://page-208.caltech.edu/phi/.

5.1.5 HOC: A Haskell to Objective-C binding

HOC is a Haskell to Objective-C binding. In a nut-
shell, it enables you to use Objective-C objects and
frameworks from Haskell, and also enables you to write
Objective-C objects in Haskell. You can write full-
blown applications in HOC and use all of the Founda-
tion, AppKit and Cocoa frameworks’ classes (including
all of the AppKit’s GUI objects), combining Objective-
C tools such as Mac OS X’s Interface Builder to build
the GUI graphically while writing controllers for the
GUI in Haskell. You can even mix and match custom
objects written in Objective-C with objects written in
Haskell, depending on which language you find more
suitable for the task. HOC comes some sample GUI
programs: you can find screenshots of these HOC pro-
grams at http://hoc.sourceforge.net/screenshots/.

The Haskell interfaces produced by HOC are strongly
typed (Objective-C classes are mapped to Haskell’s
typed system), can be automatically generated from
Objective-C header files, and are designed to integrate
well with existing Haskell code, taking advantage of
features such as type classes and partial evaluation to
make its Haskell API as easy to use and as ‘Haskell-like’
as possible. HOC’s primary platform is Mac OS X, al-
though it has been lightly tested with the free GNUstep
platform on Linux. HOC requires the Glasgow Haskell
Compiler (GHC) 6.2 or later.

Note: If you have heard of a Haskell to Objective-C
binding named Mocha, HOC is effectively a working

34

http://haskell.org/greencard/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://sourceforge.net/projects/jvm-bridge/
http://page-208.caltech.edu/phi/
http://hoc.sourceforge.net/screenshots/

version of Mocha, which was never completed due to
time constraints. A previous version of HOC (0.1) was
mentioned briefly on the glasgow-haskell-users mailing
list on January 2003, but is a very different beast to the
current incarnation: HOC 0.1 was more of an experi-
ment with Template Haskell than a serious implemen-
tation. Wolfgang Thaller, the primary author of HOC,
has collaborated greatly with André Pang, who was the
primary author of Mocha, to forge a new HOC that we
hope you will find achieves all the ambitious goals that
Mocha strived for, and more. Mocha is dead, long live
HOC!

HOC’s webpages and source code distribution are
currently available. More information on HOC (in-
cluding where you can download it!) is available at:
http://hoc.sourceforge.net/

5.2 Scanning, Parsing, Analysis

5.2.1 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a
parser generator (such as Happy) to build a complete
parser.

Status: No change since the last report. The latest
version is 2.0, released on August 13, 2003. Alex is
in maintenance mode at the moment, and a few mi-
nor bugs reported since 2.0 have been fixed in CVS. A
minor release will probably be made at some point.

Further reading

Alex homepage: http://www.haskell.org/alex/

5.2.2 Happy

Report by: Paul Callaghan and Simon Marlow
Status: stable, maintained

I have recently extended Happy to produce Generalized
LR parsers (based on an algorithm by Tomita). This
means it can parse ambiguous grammars and produce a
directed acyclic graph representing all possible parses.
It is based on undergraduate project work by Ben Med-
lock, but has been significantly extended and improved
since then. You can also attach semantic information
to rules in two modes:
◦ to give detailed, application-specific labelling for the

nodes in the DAG;

◦ to compute lists of overall semantic results, one per
valid parse.

The latter mode can also perform monadic computa-
tions.

We plan to release a new version of Happy includ-
ing the GLR extensions soon. It can be accessed now
via CVS. Paul has a page http://www.dur.ac.uk/p.c.
callaghan/happy-glr/ which collects useful information
about this extension, plus some binaries. We have used
the GLR facility in several applications, including anal-
ysis of DNA sequences and determination of correct
rhythmic structures for poetry. Other possible appli-
cations include natural language and pattern analysis.
The next experiment will be the GHC Haskell gram-
mar!

Further reading

Happy’s web page is at http://www.haskell.org/happy/.

5.2.3 HaLex

Report by: Jorge Sousa Pinto

HaLeX is a Haskell library to model, manipulate and
animate regular languages. This library introduces a
number of Haskell datatypes and the respective func-
tions that manipulate them, providing a clear, efficient
and concise way to define, to understand and to ma-
nipulate regular languages in Haskell. For example, it
allows the graphical representation of finite automata
and its animation, and the definition of reactive finite
automata. This library is described in the paper pre-
sented at FDPE’02.

5.2.4 LRC

Report by: Jorge Sousa Pinto

Lrc is a system for generating efficient incremental at-
tribute evaluators. Lrc can be used to generate lan-
guage based editors and other advanced interactive en-
vironments. Lrc can generate purely functional evalua-
tors, for instance in Haskell. The functional evaluators
can be deforested, sliced, strict, lazy. Additionally, for
easy reading, a colored LATEX rendering of the gener-
ated functional attribute evaluator can be generated.

5.2.5 Sdf2Haskell

Report by: Jorge Sousa Pinto
Maintainer: Joost Visser

Sdf2Haskell is a generator that takes an SDF gram-
mar as input and produces support for GLR parsing
and customizable pretty-printing. The SDF grammar
specifies concrete syntax in a purely declarative fash-
ion. From this grammar, Sdf2Haskell generates a set

35

http://hoc.sourceforge.net/
http://www.haskell.org/alex/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.haskell.org/happy/

of Haskell datatypes that define the corresponding ab-
stract syntax. The Scannerless Generalized LR parser
(SGLR) and associated tools can be used to produce
abstract syntax trees which can be marshalled into cor-
responding Haskell values.

Recently, the functionality of Sdf2Haskell has been
extended with generation of pretty-print support.
From the SDF grammar, a set of Haskell functions is
generated that defines an pretty-printer that turns ab-
stract syntax trees back into concrete expressions. The
pretty-printer is updateable in the sense that its behav-
ior can be modified per-type by supplying appropriate
functions.

Sdf2Haskell is distributed as part of the Strafunski
bundle for generic programming and language process-
ing (→ 4.3.2).

5.2.6 HaGLR

Report by: Jorge Sousa Pinto and Joost Visser

HaGLR is an implementation of Generalized LR pars-
ing in Haskell. Apart from parsing with the GLR al-
gorithm, it supports parsing with the LR algorithm,
visualization of deterministic and non-deterministic
finite automata, and export of ASTs in XML or
ATerm format. As input, HaGLR accepts either plain
context-free grammars, or SDF syntax definitions. The
SDF front-end is implemented as an extension of the
Sdf2Haskell generator (→ 5.2.5). HaGLR’s function-
ality can also be accessed as library functions, avail-
able under the Language.ContextFree subdivision of
the UMinho Haskell Libraries (→ 7.1.8). HaGLR was
implemented by João Fernandes and João Saraiva.

Further reading

HaGLR is available from http://wiki.di.uminho.pt/
twiki/bin/view/PURe/HaGLR.

5.2.7 DrHylo

Report by: Jorge Sousa Pinto

DrHylo is a tool for deriving hylomorphisms from
Haskell program code. Currently, DrHylo accepts a
somewhat restricted Haskell syntax. It is based on
the algorithm first presented in the paper Deriving
Structural Hylomorphisms From Recursive Definitions
at ICFP’96 by Hu, Iwasaki, and Takeichi. To run the
programs produced by DrHylo, you need the Pointless
library.

Further reading

DrHylo is available from http://wiki.di.uminho.pt/bin/
view/Alcino/DrHylo.

5.3 Transformations

5.3.1 The Programatica Project

Report by: Thomas Hallgren

One of the goals of the Programatica Project is to de-
velop tool support for high-assurance programming in
Haskell.

The tools we have developed so far are implemented
in Haskell, and they have a lot in common with a
Haskell compiler front-end. The code has the potential
to be reusable in various contexts outside the Progra-
matica project. For example, it has already been used
in the Haskell refactoring project at the University of
Kent (→ 5.3.4).

Further reading

◦ The Programatica Project, overview & papers:
http://www.cse.ogi.edu/PacSoft/projects/
programatica/

◦ An Overview of the Programatica Toolset:
http://www.cse.ogi.edu/˜hallgren/Programatica/
HCSS04/

◦ Executable formal specification of the Haskell 98
Module System:
http://www.cse.ogi.edu/˜diatchki/hsmod/

◦ A Lexer for Haskell in Haskell:
http://www.cse.ogi.edu/˜hallgren/Talks/LHiH/

◦ More information about the tools, source code,
downloads, etc:
http://www.cse.ogi.edu/˜hallgren/Programatica/

5.3.2 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude / OBJ lan-
guages with special emphasis on the use of simple pro-
grammable strategies for controling program execu-
tion and new commands enabling powerful execution
modes.

The tools have been developed at the Technical Uni-
versity of Valencia (UPV) as part of a number of re-
search projects. The following people is (or has been)
involved in the development of these tools: Maŕıa
Alpuente, Santiago Escobar, Salvador Lucas, Pascal
Sotin (Université du Rennes).

Status

The previous work lead to the following tools:

36

http://wiki.di.uminho.pt/twiki/bin/view/PURe/HaGLR
http://wiki.di.uminho.pt/twiki/bin/view/PURe/HaGLR
http://wiki.di.uminho.pt/bin/view/Alcino/DrHylo
http://wiki.di.uminho.pt/bin/view/Alcino/DrHylo
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~diatchki/hsmod/
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
http://www.cse.ogi.edu/~hallgren/Programatica/

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched on February 2002).

http://www.dsic.upv.es/˜slucas/csr/termination/
muterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched on December 2002).

http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched on January 2003).

http://www.dsic.upv.es/users/elp/ondemandOBJ

All these tools have been written in Haskell and use
popular Haskell libraries like Parsec (→ 4.3.1) or wx-
Haskell (→ 4.5.2).

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client / server applications (e.g., compil-
ers or complementary tools).

References

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1-16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting remote termination tools M. Alpuente
and S. Lucas 7th International Workshop on Termi-
nation, WST’04, pages 6-9, Technical Report AIB-
2004-07, RWTH Aachen, 2004.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200-209, Springer-
Verlag, Berlin, 2004.

5.3.3 Ultra

Report by: Walter Guttmann
Status: currently sleeping, works but should be

rewritten

Ultra is a GUI-based, semi-automatic program trans-
formation system. The intended use is as an assistant
to derive correct and efficient programs from high-level
descriptive or operational specifications. The object
language is an extended subset of Haskell, e.g., it does
not support modules or classes, but has several descrip-
tive (non-operational) constructs such as “forall”, “ex-
ists”, “some”, and “that”. The transformation calculus
of Ultra has its roots in the Munich CIP system. Trans-
formation rules can be combined by tactics.

What needs to be done? Well, Ultra is written in
Gofer and uses TkGofer for its GUI. This means that,
before any further development is going to happen, it
will have to be ported to, or even completely rewritten
in, Haskell. We suspect that, before that is going to
happen, a “standard” GUI-library will have to emerge.
It would be nice, if the new version supported complete
Haskell as its object language. The semantics of Haskell
is, however, quite involved compared to that of the λ-
calculus, making this an ambitious project.

Further reading

http://www.informatik.uni-ulm.de/pm/projekte/ultra/

5.3.4 Hare – The Haskell Refactorer

Report by: Huiqing Li, Claus Reinke and
Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs has as
its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its second major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. Recently added
is a set of data- oriented refactorings which together
transform a concrete data type and associated uses of
pattern matching into an abstract type and calls to as-
sorted functions.

37

http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.informatik.uni-ulm.de/pm/projekte/ultra/

A snapshot of HaRe is available from our web page,
as are recent presentations from the group (including
Advanced Functional Programming ’04 (→ 1.5.1)), and
an overview of recent work from staff, students and
interns.

We expect to release a new version of HaRe including
an API for users to define their own program transfor-
mations, plus documentation, by mid-November. Be-
yond that our aims are to support more data-oriented
refactorings, to allow refactorings for systems involving
the Haskell libraries and, in the longer term, to make
it easier to use HaRe with GHC and its libaries. We
would very much welcome feedback on the system and
the API.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.5 VooDooM

Report by: Jorge Sousa Pinto

VooDooM reads VDM-SL specifications and applies
transformation rules to the datatypes that are de-
fined in them to obtain a relational representation for
these datatypes. The relational representation can be
exported as VDM-SL datatypes (inserted back into
the original specification) and/or SQL table defini-
tions (can be fed to a relational DBMS). The first
VooDooM prototype was developed in a student project
by Tiago Alves and Paulo Silva. Currently, the de-
velopment of VooDooM is continued in the context
of the IKF-P project (Information Knowledge Fusion,
http://ikf.sidereus.pt/) and will include the generation
of XML and Haskell

Further reading

VooDooM is available from http://wiki.di.uminho.pt/
bin/view/PURe/VooDooM.

5.3.6 LVM-OPT

Report by: Eelco Visser and Jory van Zessen

Optimization of functional programs through strate-
gic program transformation is still one of the projects
we are pursuing in the Stratego/XT group, even if it
is at a slow pace. After a year of silence, Jory van
Zessen has taken over the stick from Alan van Dam and
the HsOpt (see November 2003 edition of the HC&A
Report) project has become the lvm-opt project; the
target of optimization is LVM code produced by the
Helium compiler. The goal remains to create a (full-
blown) simplifier/optimizer for a lazy functional lan-
guage based on rewrite rules controlled by strategies.

5.4 Testing and Debugging

5.4.1 Tracing and Debugging

Report by: Olaf Chitil

There exist a number of tools with rather different ap-
proaches to tracing Haskell programs for the purpose
of debugging and program comprehension.

Hood and its variant GHood, for graphical display
and animation, enable the user to observe the values of
selected expressions in a program. Hood and GHood
are easy to use, because they are based on a small
portable library. A variant of Hood is built in to Hugs.
Hood and GHood have remained unchanged for over
two years.

HsDebug is a gdb-like debugger, that is, it is used
similar to traditional debuggers for imperative lan-
guages. HsDebug is based on optimistic evaluation and
hence is only available in a separate branch of GHC in
CVS.

The Concurrent Haskell Debugger CHD was recently
extended to support an automatic search for deadlocks.

Further reading

CHD: http://www.informatik.uni-kiel.de/˜fhu/chd/

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: several recent additions; stable release

forthcoming

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can be
viewed with several tools in various ways. The pri-
mary viewers at present allow: observation of top-level
functions (hat-observe); and backwards exploration of
a computation, starting from (part of) a faulty out-
put or an error message (hat-trail). In CVS there are
more viewing tools. Hat-detect is an algorithmic de-
bugger very similar to Buddha (→ 5.4.3). Hat-explore
is a new viewing tool that provides a user interface
similar to traditional source-based debuggers, but al-
lows free navigation through the trace and incorpo-
rates algorithmic debugging and program slicing. Hat-
cover highlights the parts of the source program that
have been executed during the computation. Hat-anim
is a forward-animator showing the reduction sequence
of expressions. We also have prototypes of two tools
for extracting diagnostic paths from non-terminating
computations. If the computation dives into a black

38

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/bin/view/PURe/VooDooM
http://wiki.di.uminho.pt/bin/view/PURe/VooDooM
http://www.informatik.uni-kiel.de/~fhu/chd/

hole, black-hat can be used; for other forms of non-
productive non-termination hat-nonterm can be used.
All tools inter-operate and use a similar command syn-
tax.

A tutorial explains how to generate traces, how to
explore them, and how they help to debug Haskell pro-
grams. Hat can be used both with nhc98 and ghc, and
can also be used for Haskell 98 programs that use some
language extensions (FFI (→ 3.1), MPTC, fundeps, hi-
erarchical libs).

The most recent public release of Hat (2.02) is now
more than a year old and since then numerous bug-
fixes have been applied and several features and view-
ing tools added in CVS. A new release is imminent.

Further reading

http://www.haskell.org/hat

5.4.3 buddha

Report by: Bernie Pope
Status: active

Buddha is a declarative debugger for Haskell 98. It is
based on program transformation. Each module in the
program undergoes a transformation to produce a new
module (as Haskell source). The transformed modules
are compiled and linked with a library for the interface,
and the resulting program is executed. The transforma-
tion is crafted such that execution of the transformed
program constitutes evaluation of the original (untrans-
formed) program, plus construction of a semantics for
that evaluation. The semantics that it produces is a
“computation tree”with nodes that correspond to func-
tion applications and constants.

Since the last report buddha has moved to version
1.2. Currently buddha is known to work with GHC
version 6 through 6.2.x. There are no plans to port it
to other Haskell implementations, though there are no
significant reasons why this could not be done.

Buddha is freely available as source and is licensed
under the GPL. There is also a Debian package, as well
as ports to Free-BSD and Darwin.

We are currently working on version 2.0, a develop-
ment release is available, but it is not well tested. It
will probably take a few months before version 2.0 sees
a public release.

A new paper about buddha will appear in the forth-
coming proceedings of the Advanced Functional Pro-
gramming Summer School, which was held in Tartu,
August 2004 (→ 1.5.1).

Further reading

www.cs.mu.oz.au/˜bjpop/buddha

5.4.4 QuickCheck

Report by: Koen Claessen and John Hughes
Status: active development

QuickCheck is a tool for specifying and testing formal
properties of Haskell programs. There have been sev-
eral inofficial draft versions of QuickCheck around.

Right now we are in the process of packaging up a
new, official version of QuickCheck, integrating support
for:
◦ automatic finding of small counter examples
◦ monadic properties
◦ exception handling amd time-outs
◦ stating properties that are expected to fail
◦ a callback hook for displaying failing test cases
◦ generating test reports

And lots lots more! We plan to distribute the new
QuickCheck using the new Haskell Cabal (→ 4.1.1).

An accompanying tutorial, explaining typical prob-
lems and programming idioms that solve them is also
in the make.

5.4.5 HUnit

There have been no recent functional changes to HUnit.
However, Malcolm Wallace recently imported HUnit
into the fptools CVS repository, adjusted the module
names to fit the hierarchical scheme, and linked HUnit
to the package build system for nhc98. We intend that
HUnit also appear with GHC and Hugs before long.

Further reading

http://hunit.sourceforge.net/

5.5 Development

5.5.1 hmake

Report by: Malcolm Wallace
Status: stable, maintained

Hmake is an intelligent compilation management tool
for Haskell programs. It is stable at public release ver-
sion 3.08, with occasional maintenance and bugfixes to
the CVS tree at haskell.org.

Further reading

http://haskell.org/hmake

39

http://www.haskell.org/hat
www.cs.mu.oz.au/~bjpop/buddha
http://hunit.sourceforge.net/
http://haskell.org/hmake

5.5.2 cpphs

Report by: Malcolm Wallace
Status: active development

Cpphs is a new drop-in Haskell replacement for the C
pre-processor. It has a couple of benefits over the tradi-
tional cpp – you can run it in Hugs when no C compiler
is available (e.g. on Windows); and it understands the
lexical syntax of Haskell, so you don’t get tripped up
by C-comments, line-continuation characters, primed
identifiers, and so on. (There is also a pure text mode
which assumes neither Haskell nor C syntax, for even
greater flexibility.)

Further reading

http://haskell.org/cpphs

5.5.3 Visual Studio support for Haskell

Report by: Simon Marlow
Status: in development

A project has been started to develop a Visual Studio
plugin to support Haskell, with the aim of providing all
the usual language-specific development environment
features. So far we have various editor features com-
pleted:
◦ syntax colouring
◦ continuous indication of parse errors, static errors

and type errors as you edit Haskell code.
◦ Jump to the definition of an identifier (current mod-

ule only for now).
◦ Hover the mouse over an identifier to show its type

Support for projects is now maturing: basic project
support is working, and integrated with Cabal. Vi-
sual Haskell can load Cabal packages, and projects cre-
ated in Visual Haskell are fully-fledged Cabal packages
themselves, and can be built & installed on machines
without Visual Haskell.

The current release plan is to put out an initial re-
lease coinciding with GHC 6.4, which should be around
the end of 2004.

Help is welcome! You first need to register for the
Microsoft VSIP (Visual Studio Integration Program)
to get access to the VSIP SDK, which has tools, APIs
and documentation for extending Visual Studio. Reg-
istering for VSIP is free, but you have to agree to a
longish license agreement: http://www.vsipdev.com/.

If you’ve registered for VSIP and would like to con-
tribute to Visual Studio/Haskell, please drop me a note
(Simon Marlow 〈simonmar@microsoft.com〉).

5.5.4 Haskell support for the Eclipse IDE

Report by: Leif Frenzel
Status: working, though alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs (implemented in Java), developed by an
Open Source Project. This project extends it with tools
to support Haskell development.

The aim is to develop an IDE for Haskell that pro-
vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of compilers, in-
terpreters, debuggers, documentation generators and
other Haskell development tools. Long-term goals in-
clude a language model with support for intentional
programming, refactoring and structural search.

The current version is 0.5 (considered ‘alpha’). It
features a project model, a configurable source code
editor (with syntax coloring and Code Assist), compiler
support for GHC and launching from the IDE. Since
the last HC&A Report we have improved support for
GHC options and included facilities for running Hugs,
GHCi and Haddock (→ 5.5.5) from the IDE. The goal
for the next months is to make the IDE more language-
aware.

Every help is very welcome, be it in the form of code
contributions, docs or tutorials, or just any feedback
if you use the IDE. If you want to participate, please
subscribe to the development mailing list (see below).

Further reading

◦ http://eclipse.org
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop
◦ Project homepage: http://eclipsefp.sf.net

5.5.5 Haddock

Report by: Simon Marlow
Status: stable, maintained

Haddock is relatively stable, and I intend to keep main-
taining it for the foreseeable future. I don’t have much
time for wholesale improvements, although contribu-
tions are of course always welcome.

I’ve recently been experimenting with adding sup-
port for“collapsible sections”to the HTML output. For
example, the instances of a type or class would be hid-
den by default, and could be expanded by clicking a
button. Provided this can be made to work reliably
across the browsers that Haddock currently supports,
it will be in the next release.

40

http://haskell.org/cpphs
http://www.vsipdev.com/
mailto:simonmar@microsoft.com
http://eclipse.org
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://eclipsefp.sf.net

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here:
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
haddock/TODO

◦ Haddock’s home page is here:
http://www.haskell.org/haddock/

41

http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://www.haskell.org/haddock/

6 Applications

6.1 Non-commercial applications

6.1.1 HScheme

Report by: Ashley Yakeley

HScheme is a project to create a Scheme interpreter
written in Haskell. There’s a stand-alone interpreter
program, or you can attach the library to your pro-
gram to provide “Scheme services”. It’s very flexible
and general with types, and you can pick the “monad”
and “location” types to provide such things as a purely
functional Scheme, or a continuation-passing Scheme
(that allows call-with-current-continuation) etc.

Current status

There’s an online interpreter that I keep up to date.
There are a couple of major issues that stand before
R5RS compliance, after which I’ll make a release. See
http://hscheme.sourceforge.net/issues.php.

Very little work is currently being done on it though,
as the developer’s free time has been shortened by gain-
ful employment. Further work may resume, at a re-
duced pace, once left-over issues in the latest JVM-
Bridge (→ 5.1.3) have been cleared up.

Further reading

http://hscheme.sourceforge.net/

6.1.2 Curryspondence

Report by: Shae Erisson

Curryspondence is a mailing list searching program
using HaskellDB (→ 4.4.5) and WASH (→ 4.7.4). At
the moment it takes input in the form of mail-
man mbox files to populate a postgresql database,
but it should work with any supported HaskellDB
backend. The demo is down for the moment,
should be back soon at http://www.ScannedInAvian.
org/cgi-bin/curryspondence/ darcs repo: http://www.
ScannedInAvian.org/repos/curryspondence

6.1.3 lambdabot

Report by: Shae Erisson

lambdabot is an IRC robot with a simple plugin archi-
tecture. Plugins include a lambda calculus interpreter,

dictd client, fortune cookie, and more. You can down-
load lambdabot from the darcs repo here:

darcs get

http://www.scannedinavian.org/repos/lambdabot

6.1.4 HWS-WP

Report by: Simon Foster

The Haskell Web-Server With Plugins (HWS-WP) is a
simple HTTP server written in Haskell, originally im-
plemented by Simon Marlow and then updated by Mar-
tin Sjögren, who implemented a simple plug-in system
for handling requests. After some work, HWS-WP has
been resurrected (it was initially not working with GHC
6+) and now can be used to serve out simple websites.
It has also been used as a base on which to demonstrate
HAIFA’s Application Container.

HWS-WP still requires much work, notably it needs
strengthening and its implementation of HTTP needs
bringing up to compatibility with the RFCs. A bet-
ter plug-in system with multiple module support and
dependency tracking is also proposed. The current
version of HWS-WP can be obtained from http://
sourceforge.net/projects/haskell-libs/

6.1.5 Hircules, an irc client

Report by: Jens Petersen

Hircules is a gtk2-based IRC client built on gtk2hs and
code from lambdabot. The last release is still version
0.3, though I have various bug fixes and improvements
that I hope to release soon. New features in 0.4 will
include basic text search and improved channel nicks
handling.

Further reading

http://haskell.org/hircules/

6.1.6 Darcs

Report by: David Roundy
Status: active development

Darcs is a distributed revision control system (i.e., CVS
replacement), written in Haskell. In darcs, every copy

42

http://hscheme.sourceforge.net/issues.php
http://hscheme.sourceforge.net/
http://www.ScannedInAvian.org/cgi-bin/curryspondence/
http://www.ScannedInAvian.org/cgi-bin/curryspondence/
http://www.ScannedInAvian.org/repos/curryspondence
http://www.ScannedInAvian.org/repos/curryspondence
http://www.scannedinavian.org/repos/lambdabot
http://sourceforge.net/projects/haskell-libs/
http://sourceforge.net/projects/haskell-libs/
http://haskell.org/hircules/

of your source code is a full repository, which allows for
full operation in a disconnected environment, and also
allows anyone with read access to a darcs repository
to easily create their own branch and modify it with
the full power of darcs’ revision control. Darcs is based
on an underlying theory of patches, which allows for
safe reordering and merging of patches even in complex
scenarios. For all its power, darcs remains very easy
to use tool for every day use because it follows the
principle of keeping simple things simple.

Darcs version 1.0.0 was released on November 8, 2004
after considerable improvement in the past six months,
including performance enhancements, bug fixes and im-
provements in the user interface. Right now the new
features for the next major release are in the process
of being planned, and this is a great time to become
involved, if you’re looking for a Haskell project to join.

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.1.7 Yarrow

Report by: Frank Rosemeier

From the Yarrow web pages:
“A proof-assistant is a computer program with which

a user can construct completely formal mathematical
proofs in some kind of logical system. In contrast to a
theorem prover, a proof-assistant cannot find proofs on
its own.

“Yarrow is a proof-assistant for Pure Type Systems
(PTSs) with several extensions. A PTS is a particular
kind of logical system, defined in

Henk P. Barendregt: Lambda Calculi with Types;
in D.M. Gabbai, S. Abramsky, and T.S.E.
Maibaum (editors): Handbook of Logic in Com-
puter Science, volume 1, Oxford University Press,
1992.

“In Yarrow you can experiment with various pure
type systems, representing different logics and pro-
gramming languages. A basic knowledge of Pure Type
Systems and the Curry-Howard-de Bruijn isomorphism
is required. (This isomorphism says how you can inter-
pret types as propositions.) Experience with similar
proof-assistants can be useful.”

In 2003 Frank Rosemeier has ported Yarrow (writ-
ten by Jan Zwanenburg using Haskell 1.3, see http:
//www.cs.kun.nl/˜janz/yarrow/) to Haskell 98. The
Haskell 98 source code has been published on
his old homepage near http://www.fernuni-hagen.de/
MATHEMATIK/ALGGEO/Mitarbeiter/. This year a

new homepage will be put somewhere near link “Mi-
tarbeiter” of http://www.informatik.fernuni-hagen.de/
import/thi1/. A new Yarrow homepage located at
http://www.haskell.org/yarrow/ will contain a copy of
the homepage for the Haskell 1.3 version as well as the
Haskell 98 adaption.

6.1.8 HasLATEX

Report by: Frank Rosemeier

This year Frank Rosemeier has begun to write some
Haskell 98 code of a LATEX translator (for LATEX see
http://www.latex-project.org/). The system shall parse
LATEX2ε documents and convert them to other formats,
e.g. into plain ASCII-Text. The idea is to provide a
Haskell library (called HasLATEX) for parsing and di-
gesting LATEX files (using Parsec (→ 4.3.1) and proba-
bly PPrint), which may be useful for other applications.

The development of this project has been temporar-
ily postponed due to a change in the job of the author.

6.1.9 DoCon, the Algebraic Domain Constructor

Report by: Serge Mechveliani

DoCon is a program for symbolic computation in math-
ematics, written in Haskell. It is a package of modules
distributed freely, with the source program and man-
ual.

DoCon joins the categorial approach to the math-
ematical computation expressed via the Haskell type
classes, and explicit processing of the domain descrip-
tion terms. It implements a good piece of commuta-
tive algebra: linear algebra, polynomial gcd, factor-
ization, Groebner bases, and other functions. They
are programmed under the very generic assumptions,
like “over any Euclidean ring”, over any GCD-ring, any
field, and so on. DoCon also supports the construc-
tions on domains: Fraction, Polynomial, Residue ring,
and others. That is certain set of operations on a con-
structed domain is built automatically.

DoCon is written in what we call Haskell-2-pre – cer-
tain functional extension of Haskell-98. This exten-
sion includes the multiparametric classes, overlapping
instances, other minor features.

My intention for 2004 is as follows.

◦ To release DoCon-2.08 (the Algebraic Domain Con-
structor) running under ghc-6.2.2. DoCon-2.08 is
ready, it waits for the official and reliable ghc-6.2.2
release to appear.

◦ To release in the end of 2004 the prover Dumatel-1.02
based on Term Rewriting, Completion, and inductive
reasoning.

43

http://darcs.net
http://www.cs.kun.nl/~janz/yarrow/
http://www.cs.kun.nl/~janz/yarrow/
http://www.fernuni-hagen.de/MATHEMATIK/ALGGEO/Mitarbeiter/
http://www.fernuni-hagen.de/MATHEMATIK/ALGGEO/Mitarbeiter/
http://www.informatik.fernuni-hagen.de/import/thi1/
http://www.informatik.fernuni-hagen.de/import/thi1/
http://www.haskell.org/yarrow/
http://www.latex-project.org/

6.1.10 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

The program is stable and can take on large docu-
ments: it handles my complete Ph.D. thesis without
any problems, and I see that Graham Hutton makes
use of lhs2TEX in his new book (→ 1.4.1).

Since the last report, I have made an experimen-
tal Windows installer, added a few minor things, and
started to collect a few library files with often-used for-
matting directives, such as to allow code on colored
backgrounds or line numbering for code blocks.

These changes are currently only available if you
checkout the development version from the Subversion
repository, but I hope to make a release sometime soon.

Further reading

◦ http://www.cs.uu.nl/˜andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/

trunk/

6.1.11 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project audio signals are processed using pure
Haskell code. This includes a simple signal synthesis
backend for Haskore, filter networks, signal processing
supported by physical units.

Future plans

Connect with the HaskellDSP library. Hope on faster
code generated by some Haskell compilers. :-) Proba-
bly connect to some software synthesizer which is more
efficient, but nearly as flexible as code entirely written
in Haskell. Explore whether Monads and Arrows can
be used for a more convenient structuring and notation
of signal algorithms.

Further reading

◦ http://dafx04.na.infn.it/WebProc/Proc/P 201.pdf
◦ http://cvs.haskell.org/darcs/synthesizer/

6.1.12 Converting knowledge-bases with Haskell

Report by: Sven Moritz Hallberg

I work in a research project concerned with knowledge-
based configuration. We need to convert XML
knowledge-bases from a commercial tool (EngCon) to
the LISP-based description language understood by our
in-house tool (Konwerk). While the knowledge repre-
sentations are similar in many ways, they slightly differ
in structure. The converter, implemented in Haskell,
reads the XML into a first internal data structure, con-
verts that to a slightly different internal structure which
can then be output in the desired form. Haskell’s data
type facilities made it easy to abstract the data from
its concrete external representation. HaXML (→ 4.7.2)
provided for reliable XML parsing. Parsec (→ 4.3.1)
was also of great value, allowing for fabulously easy
building of an expression parser. In the end, Haskell
allows us to stick to LISP when everyone else is using
Java. :)

6.1.13 NetEdit

Report by: Daan Leijen

NetEdit is a graphical editor for Bayesian networks that
is developed by the Decision Support System group
of Utrecht University. It is written in Haskell and
uses wxHaskell (→ 4.5.2) as its GUI library. For in-
ference it uses the C++ library SMILE developed by
the Decision Systems Laboratory of Pittsburgh Uni-
versity. Features (will) include test selection, logic
sampling, sensitivity analysis and qualitative networks.
The application runs on both Windows and Linux.
Screenshots can be found on the wxHaskell webpage:
http://wxhaskell.sourceforge.net

6.1.14 riot

Report by: Tuomo Valkonen

Riot is a tool for keeping (textual) information organ-
ised. Some people call such programs ‘outliners’. It is
a todo list and note manager, and a manager for what-
ever information one might collect. Riot has a curses-
based interface resembling those of slrn and mutt and
all text editing is done with your favourite external ed-
itor: Riot is just a nice-to-use browser and entry or-
ganiser for collections of text. The Riot homepage is at
http://iki.fi/tuomov/riot/.

44

http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://cvs.haskell.org/darcs/synthesizer/
http://wxhaskell.sourceforge.net
http://iki.fi/tuomov/riot/

6.1.15 Flippi

Report by: Philippa Cowderoy

Flippi is a lightweight (and currently somewhat un-
derfeatured) wiki clone written in Haskell and re-
leased under the BSD license. The current release is
v0.03, which added support for scripting and a Re-
centChanges script. The main planned feature for the
next release is a template facility, with various interface
alterations in the default setup being likely. Also in the
pipeline is a refactoring of the parser to make adding
new pieces of markup syntax easier, and metadata sup-
port and revision histories with reversion are planned
by v0.1.

A goal in development so far, and one which the au-
thor would like to maintain, is to keep the code easy to
understand and modify – to this end, the configuration
is currently all done by source modification. This isn’t
necessarily as bad as it sounds – if the Flippi CGI is run
via runhugs or similar, there’s no perceivable difference
to somebody configuring Flippi bar the level of power
available. However, so far Flippi has only been tested
under GHC 6.2 and is dependant on a recent version of
the hierarchical libraries.

Further reading

◦ http://www.flippac.org/projects/flippi/
◦ http://www.scannedinavian.org/cgi-bin/flippi/flippi

6.1.16 Postmaster ESMTP Server

Report by: Peter Simons

Postmaster is an Internet mail transport agent (MTA)
written and configured in Haskell. At the time of this
writing, it handles incoming ESMTP network connec-
tions and delivers accepted messages to the user’s mail-
box by piping it into an arbitrary local mailer (e.g.
Procmail).

As is to be expected from an MTA written in Haskell,
it is configurable beyond anything you’ll ever need. The
server itself comes as a monadic combinator library; so
you can plug together or modify the components as you
please. A pretty sophisticated standard configuration
on which to build is part of the distribution.

Postmaster is still very young; there remains a lot to
be done before it can really compete with Sendmail or
Postfix. Most notably, it lacks any form of queue man-
agement right now. Nonetheless, for leaf sites, which
don’t need to do extensive mail relaying, it is a reliable
and powerful solution already.

Further details are available at: http://postmaster.
cryp.to/

It is worth noting that Postmaster includes several
generally useful libraries which are not tied to the

ESMTP server:

BlockIO implements a monad for fast, non-blocking
I/O with static Ptr Word8 buffers.

HsDNS implements an asynchronous DNS resolver an
top of the GNU adns library.

HsEMail Parsec (→ 4.3.1) parsers for most of RFC
2821 and 2822.

Child provides spawn, par, and timeout for more flex-
ible handling of child computations started with
forkIO.

Syslog FFI (→ 3.1) bindings to the syslog(3) system
API.

hOpenSSL (very incomplete) FFI bindings to the
OpenSSL library. At the moment provides mostly
access to the libcrypto part.

6.1.17 yi

Report by: Donald Bruce Stewart
Status: just started, active development

yi is a project to write a Haskell-extensible editor. The
project is still in its infancy, however much usable code
exists. yi is structured around an basic editor core,
such that most components of the editor can be over-
ridden by the user, using configuration files written in
Haskell. Current work is focused on producing full vi-
compatibility for version 0.1.

The source repository is available:

darcs gethttp://www.cse.unsw.edu.au/˜dons/yi

6.2 Commercial users

6.2.1 Reid Consulting Ltd

Report by: Alastair Reid

Reid Consulting (UK) Ltd is closing down after 2.75
profitable years. RCL’s main contracts over that time
involved writing compiler tools in Haskell, writing a lit-
tle language for configuring real time systems (also in
Haskell), writing an abstract interpreter for machine
code (in C, for historical reasons), and generating opti-
mal abstract transfer functions for abstract interpreters
(in C++). RCL is closing because Alastair Reid has
taken a job with ARM Ltd in Cambridge.

45

http://www.flippac.org/projects/flippi/
http://www.scannedinavian.org/cgi-bin/flippi/flippi
http://postmaster.cryp.to/
http://postmaster.cryp.to/
http://www.cse.unsw.edu.au/~dons/yi

6.2.2 Galois Connections, Inc.

Report by: Andy Moran

Galois (aka Galois Connections, Inc.) is an employee-
owned software development company based in Beaver-
ton, Oregon, U.S.A. John Launchbury, Andy Gill, Jeff
Lewis, and Andy Moran started Galois in late 1999
with the stated purpose of using functional languages
to solve industrial problems.

Galois develops software under contract, and every
project (bar two) that we have ever done has used
Haskell; the exceptions used SML-NJ and OCaml, re-
spectively. We’ve delivered tools, written in Haskell, to
clients in industry and the U.S. government that are
being used heavily. Four diverse examples: Cryptol,
a domain-specific language for cryptography (with an
interpreter and a compiler); a GUI debugger for a spe-
cialized chip; a tool for easily embedding new syntax in
the client’s own language (sort of a souped-up Happy +
OCaml’s P4), and a legacy code translator (translating
from K&R C to ANSI C, while moving from SunOS 4
to Solaris and a new abstract API).

So, why do we use Haskell? There are benefits to
moving to Java or C# from C++ or C, such as cleaner
type systems, cleaner semantics, and better memory
management support. But languages like Haskell give
you a lot more besides: they’re much higher level, so
you get more productivity, you can express more com-
plex algorithms, you can program and debug at the
“design” level, and you get a lot more help from the
type system. These arguments have been made time
and again though, and they’re also pretty subjective.

For Galois, it’s also a big bonus that Haskell is close
to its mathematical roots, because our clients care
about “high assurance” software. High assurance soft-
ware development is about giving solid (formal or semi-
formal) evidence that your product does what it should
do. The more functionality provided, the more difficult
this gets. The standard approach has been to cut out
functionality to make high assurance development pos-
sible. But our clients want high assurance tools and
products with very complex functionality. Without
Haskell (or some similar language), we wouldn’t even
be able to attempt to build such tools and products.

At Galois, we’re happily able to solve real world
problems for real clients without having to give up on
using the tools and languages we worked on when we
were in the Academic world. In fact, we credit most of
our success with the fact that we can apply language
design and semantics techniques to our clients’ prob-
lems. Functional languages are an integral part that
approach, and a big part of the unique value that our
clients have come to known us for.

The good news is that our business is working quite
well. As of fall 2004, Galois is 16 engineers strong, with
a support staff of 5. Our revenues have doubled in the

past 2 years, and we have been profitable each quarter
over that same period. In fact our biggest challenge is
keeping up with the demand for our services!

In short: Hard Problems + FP == Fun + Profit!

Further reading

http://www.galois.com/.

6.2.3 Aetion Technologies LLC

Report by: Mark Carroll

Aetion Technologies LLC continues to use Haskell for
most of its in-house development.

Aetion’s principal source of revenue is from prototyp-
ing applications of our artificial intelligence techniques
for the US Department of Defense. We are also re-
searching applications for risk management in financial
decision making. Aetion is in the process of releasing
to the open-source community work that we have done
in Haskell that was necessary for our products but in-
cidental to our core competitive advantages.

Further reading

http://www.aetion.com/

6.3 Haskell in Education

6.3.1 Haskell in Education at Universidade de
Minho

Report by: Jorge Sousa Pinto

Haskell is heavily used in the undergraduate curricula
at Minho. Both Computer Science and Systems Engi-
neering students are taught two Programming courses
with Haskell. Both programmes of studies fit the
“functional-first” approach; the first course is thus a
classic introduction to programming with Haskell, cov-
ering material up to inductive datatypes and basic
monadic input/output. It is taught to 200 freshmen
every year. The second course, taught in the second
year (when students have already been exposed to other
programming paradigms), focuses on pointfree combi-
nators, inductive recursion patterns, functors and mon-
ads; rudiments of program calculation are also covered.
A Haskell-based course on grammars and parsing is
taught in the third year, where the HaLeX library is
used to support the classes.

Additionally, in the Computer Science curriculum
Haskell is used in a number of other courses covering
Logic, Language Theory, and Semantics, both for il-
lustrating concepts, and for programming assignments.

46

http://www.galois.com/
http://www.aetion.com/

Minho’s 4th year course on Formal Methods (a 20 year-
old course in the VDM tradition) is currently being re-
structured to integrate a system modeling tool based
on Haskell and VooDooM. Finally, in the last academic
year we ran an optional, project-oriented course on
Advanced Functional Programming. Material covered
here focusses mostly on existing libraries and tools for
Haskell, such as YAMPA - functional reactive program-
ming with arrows, the WASH library, the MAG system,
the Strafunski library, etc. This course benefitted from
visits by a number of well-known researchers in the
field, including Ralf Laemmel and Peter Thiemann.

47

7 Groups

7.1 Research Groups

7.1.1 Artificial Intelligence and Software
Technology at JWG-University Frankfurt

Report by: David Sabel
Members: Matthias Mann, David Sabel,

Manfred Schmidt-Schauß

DIAMOND

A current research topic within our DIAMOND project
is understanding side effects and Input/Output in
lazy functional programming languages using non-
deterministic constructs.

We introduced the FUNDIO calculus which proposes
a non-standard way to combine lazy functional lan-
guages with I/O. FUNDIO is a lazy functional core
language, where the syntax of FUNDIO has case, le-
trec, constructors and an IO-interface: its operational
semantics is described by small-step reductions. A
contextual approximation and equivalence depending
on the Input/Output behavior of normal order reduc-
tion sequences have been defined and a context lemma
has been proved. This enables us to study a seman-
tics and semantic properties of the language. By us-
ing the technique of complete reduction diagrams we
have shown a considerable set of program transforma-
tions to be correct. Several optimizations of evaluation
are given, including strictness optimizations and an ab-
stract machine, and shown to be correct w.r.t. contex-
tual equivalence. Thus this calculus has a potential
to integrate non-strict functional programming with a
non-deterministic approach to Input/Output and also
to provide a useful semantics for this combination.

We applied these results to Haskell by using the
FUNDIO calculus as semantics for the GHC core lan-
guage. Based on an extended set of correct program
transformations for FUNDIO, we investigated the lo-
cal program transformations, which are performed in
GHC. The result is that most of the transformations
are correct w.r.t. FUNDIO, i.e. retain sharing and do
not force the execution of IO operations that are not
needed. A detailed description of our investigation is
available as a technical report from the DIAMOND
project page. By turning off the few transformations
which are not FUNDIO-correct and those that have
not yet been investigated (especially most of the global
ones), we have achieved a FUNDIO-compatible modi-
fication of GHC which is called HasFuse.

HasFuse correctly compiles Haskell programs which
make use of ‘unsafePerformIO’ in the common

(safe) sense, since the problematic optimizations that
are mentioned in the documentation of the Sys-
tem.IO.Unsafe module (let floating out, common
subexpression elimination, inlining) are turned off or
performed more restrictively. But HasFuse also com-
piles Haskell programs which make use of ‘unsafePer-
formIO’ in arbitrary contexts. Since the call-by-need
semantics of FUNDIO does not prescribe any sequence
of the IO operations, the behavior of ‘unsafePerformIO’
is no longer ’unsafe’. I.e. the user does not have to un-
dertake the proof obligation that the timing of an IO
operation wrapped by ‘unsafePerfomIO’ does not mat-
ter in relation to all the other IO operations of the
program. So ‘unsafePerformIO’ may be combined with
monadic IO in Haskell, and since all the reductions
and transformations are correct w.r.t. to the FUNDIO-
semantics, the result is reliable in the sense that IO
operations will not astonishingly be duplicated.

Ongoing work is, beside others, devoted to the proof
of correctness of further program transformations.

Non-deterministic call-by-need lambda calculi

Important topics are to investigate static analyses
based on the operational semantics, to obtain more
inference rules for equality in call-by-need lambda-
calculi, e.g. a definition of behavioural equivalence.
Matthias Mann has established a proof of its soundness
w.r.t. contextual equivalence for a non-deterministic
call-by-need lambda calculus. Further research is
aimed towards extensions of this calculus to support
work on strictness analysis using abstract reduction.

A new result is a correctness proof of this algorithm,
which has been implemented at least twice: Once by
Nöcker in C for Concurrent Clean and on the other
hand by Schütz in Haskell in 1994. A technical re-
port covering the latter is available from our website.
The proof of correctness of strictness analysis using
abstract reduction uses a conjecture that the defined
behavioural equivalence is included in the contextual
equivalence.

Implementations Using Haskell

As a final year project, Christopher Stamm imple-
mented an ‘Interpreter for Reduction Systems’ (IfRS)
in Haskell. IfRS is an interpreter for higher order
rewrite systems that are based on structural opera-
tional semantics. Additionally, it is possible to define
reduction contexts and to use contexts and domains
(term sets that are definined similiar to contexts with-
out holes) in the rewrite rules. Also, IfRS is able to
test whether the reduction rules satisfy the conditions

48

of the GDSOS-rule format. The GDSOS-rule format
ensures that bisimulation is a congruence.

Current research topics of our group also encompass
second order unification, higher order unification and
context unification. It is an open problem whether
(general) context unification is decidable. Jörn Gers-
dorf has implemented a non-deterministic decision al-
gorithm for context matching in Haskell which benefits
from lazy evaluation at several places.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology
http://www.ki.informatik.uni-frankfurt.de

◦ DIAMOND
http://www.ki.informatik.uni-frankfurt.de/research/
diamond

◦ IfRS – Interpreter for Reduction Systems
http://www.informatik.uni-frankfurt.de/˜stamm

7.1.2 Formal Methods at Bremen University

Report by: Christoph Lüth and Christian Maeder
Members: Christoph Lüth, Klaus Lüttich, Christian

Maeder, Achim Mahnke, Till Mossakowski,
George Russell, Lutz Schröder

The activities of our group centre on the UniForM
workbench project and the Common Algebraic Spec-
ification Language (CASL).

The UniForM workbench is a tool integration frame-
work mainly geared towards tools for formal methods.
During the MMiSS project, it has been extended to
a repository providing configuration management, ver-
sion control and change management for semantically
structured documents. The UniForM workbench and
MMiSS repository currently contain over 100k lines of
Haskell code.

We are further using Haskell to develop the Hetero-
geneous tool set (Hets), which consists of parsers, static
analyzers and proof tools for languages from the CASL
family, such as CASL itself, HasCASL, CoCASL, CSP-
CASL and ModalCASL, and additionally Haskell. Has-
CASL is a language for specification and development
of functional programs; Hets also contains a translation
from an executable HasCASL subset to Haskell.

We use the Glasgow Haskell Compiler (GHC), ex-
ploiting many of its extensions, in particular concur-
rency, multiparameter type classes, hierarchical name
spaces, functional dependencies, existential and dy-
namic types, and Template Haskell. Further tools ac-
tively used are DriFT (→ 3.4), Haddock (→ 5.5.5), the
combinator library Parsec (→ 4.3.1), and Hatchet.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal methods/

◦ UniForM workbench:
http://www.informatik.uni-bremen.de/uniform/wb

◦ MMiSS Multimedia instruction in safe systems:
http://www.mmiss.de

◦ CASL specification language:
http://www.informatik.uni-bremen.de/cofi

◦ Heterogeneous tool set:
http://www.informatik.uni-bremen.de/cofi/hets

7.1.3 Functional Programming at Brooklyn College,
City University of New York

Report by: Murray Gross

One prong of the Metis Project at Brooklyn College,
City University of New York, is research on and with
Parallel Haskell in a Mosix-cluster environment. At
the present time, with the assistance of the developers
at Heriot Watt University (Edinburgh) and elsewhere,
we have implemented a PVM-free version of GUM for
use under Mosix on i86 machine for release 5 of GHC,
and we are currently porting this release to Solaris for
use in SMP environments under Solaris. Some interest-
ing preliminary results concerning performance under
Mosix are being examined, and we hope to be able to
present a technical report on the issues that have been
raised sometime later this fall.

Further reading

http://www.sci.brooklyn.cuny.edu/˜metis

Contact

Murray Gross 〈magross@its.brooklyn.cuny.edu〉.

7.1.4 Functional Programming at
Macquarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group
we are working on a number of projects with a Haskell
focus. Work has progressed on a number of the follow-
ing projects:

◦ We are looking at using our port of Haskell (→ 2.6.1)
for embedded DSLs to build handheld applications.

◦ Kate Krastev is investigating specialization of the
nhc98 runtime with a view to code compaction.

◦ Phuong Tri is working on program proving for
Haskell using Isabelle.

49

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.informatik.uni-frankfurt.de/~stamm
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/uniform/wb
http://www.mmiss.de
http://www.informatik.uni-bremen.de/cofi
http://www.informatik.uni-bremen.de/cofi/hets
http://www.sci.brooklyn.cuny.edu/~metis
mailto:magross@its.brooklyn.cuny.edu

◦ Qingsong Ye and a number of other students are
looking at designing embedded DSLs for specifying
different aspects of handheld applications, including
data synchronization and user interface.

◦ We are also interested in using Haskell or similar lan-
guages as the basis for language processor specifica-
tion, so we are looking at topics such as parser com-
binators and first-class attribute grammars.

Unfortunately, none of these projects is ready for a pub-
lic release at the moment.

Further reading

Our new website is slowly being populated with infor-
mation on all of our projects: http://www.comp.mq.
edu.au/plrg/

In the meantime, please contact us via email to
〈plrg@ics.mq.edu.au〉.

7.1.5 Functional Programming at the University of
Kent

Report by: Olaf Chitil

We are a group of about a dozen staff and students with
shared interests in functional programming. While our
work is not limited to Haskell, it provides a major focus
and common language for teaching and research.

Our members pursue a variety of Haskell-related
projects, many of which are reported in other sections
of this report. Keith Hanna is continuously improving
the visual interactive programming system Vital (→
2.6.4). Axel Simon keeps maintaining the gtk2hs bind-
ing to the Gtk+ GUI library (→ 4.5.5) and had been
involved in coordinating the Haskell GUI efforts (→
4.5.1). Chris Ryder is improving his Metrics and Vi-
sualization library Medina (→ 4.3.3). Huiqing Li, Si-
mon Thompson and Claus Reinke have released further
snapshots of HaRe, the Haskell Refactorer (→ 5.3.4).
Olaf Chitil and Thomas Davie continue together with
the York group extending and improving the Haskell
tracer Hat (→ 5.4.2).

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

◦ Gtk2HS:
http://gtk2hs.sourceforge.net/

◦ MEDINA:
http://www.cs.kent.ac.uk/˜cr24/medina/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat:
http://www.haskell.org/hat/

7.1.6 Parallel and Distributed Functional Languages
Research Group at Heriot-Watt University

Report by: Phil Trinder
Members: Abyd Al Zain, Andre Rauber Du Bois,

Gudmund Grov, Robert Pointon, Greg
Michaelson, Phil Trinder, Jan Henry

Nyström, Chunxu Liu, Graeme McHale, Xiao
Yan Deng

The Parallel and Distributed Functional Languages
(PDF) research group is part of the Dependable Sys-
tems Group in Computer Science at the School of
Mathematics and Computer Science at Heriot-Watt
University.

The group investigates the design, implementation
and evaluation of high-level programming languages
for high-performance, distributed and mobile computa-
tion. The group aims to produce notations with power-
ful yet high-level coordination abstractions, supported
by effective implementations that enable the construc-
tion of large high-performance, distributed and mobile
systems. The notations must have simple semantics
and formalisms at an appropriate level of abstraction to
facilitate reasoning about the coordination in real dis-
tributed/mobile systems i.e. to transform, demonstrate
equivalence, or analyze the coordination properties. In
summary, the challenge is to bridge the gap between
distributed/mobile theories, like the pi and ambient
calculi, and practice, like CORBA and the OGSA.

Languages

The group has designed, implemented, evaluated and
used several high performance/distributed functional
languages, and continues to do so. High perfor-
mance languages include Glasgow parallel Haskell (→
3.2.1) and Parallel ML with skeletons (PMLS).
Distributed/mobile languages include Glasgow dis-
tributed Haskell (→ 3.2.2), Erlang (http://www.erlang.
org/), Hume (http://www-fp.dcs.st-and.ac.uk/hume/),
JoCaml and Camelot.

Collaborations

Primary industrial collaborators include groups in Mi-
crosoft Research Labs (Cambridge), Motorola UK Re-
search labs (Basingstoke), Ericsson, Agilent Technolo-
gies (South Queensferry).

Primary academic collaborators include groups in
Complutense Madrid, JAIST, LMU Munich, Phillips
Universität Marburg, and St Andrews.

Further reading

http://www.macs.hw.ac.uk/˜ceeatia/PDF/

50

http://www.comp.mq.edu.au/plrg/
http://www.comp.mq.edu.au/plrg/
mailto:plrg@ics.mq.edu.au
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/vital/
http://gtk2hs.sourceforge.net/
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/
http://www.erlang.org/
http://www.erlang.org/
http://www-fp.dcs.st-and.ac.uk/hume/
http://www.macs.hw.ac.uk/~ceeatia/PDF/

7.1.7 Programming Languages & Systems at
UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New South
Wales has produced the C–>Haskell (→ 5.1.2) interface
generator and more recently the hs-plugins (→ 4.2.12)
library for dynamically loaded type-safe plugins. As
a testbed for further research in dynamic code load-
ing and type checking, we have just started a project
developing a highly customisable editor in Haskell.
We also recently released PanTHeon, a portable re-
implementation of Conal Elliott’s Pan animation tool
based on meta-programming in Template Haskell.

We are also interested in bringing some of the ben-
efits of functional intermediate languages to the world
of compilers for imperative languages. After some ini-
tial work on using Administrative Normal Form (ANF),
a variant of the lambda calculus, for implementing
optimisations originally formulated for the imperative
Static Single Assignment (SSA) form, we are now work-
ing at an optimising compiler for the language C that
is based on ANF and implemented in Haskell.

Further details on PLS and the above mentioned ac-
tivities can be found at http://www.cse.unsw.edu.au/
˜pls/.

7.1.8 Logic and Formal Methods group at the
Informatics Department of the University of
Minho, Braga, Portugal

Report by: Jorge Sousa Pinto

We are a group of about 12 staff members and vari-
ous PhD and MSc students. We have shared interest
in formal methods and their application in areas such
as data and code reverse and re-engineering, program
understanding, and communication protocols. Haskell
is our common language for teaching and research.

Haskell is used as first language in our graduate com-
puters science education (→ 6.3.1). José Valença and
José Barros are the authors of the first (and only)
Portuguese book about Haskell, entitled “Fundamen-
tos da Computação” (ISBN 972-674-318-4). Alcino
Cunha has developed the Pointless library for point-
free programming in Haskell (→ 4.2.11), as well as the
DrHylo tool that transforms functions using explicit re-
cursion into hylomorphisms. Supervised by José Nuno
Oliveira, students Tiago Alves and Paulo Silva are de-
veloping the VooDooM tool (→ 5.3.5), which trans-
forms VDM datatype specifications into SQL datamod-
els and students João Ferreira and José Proença will
soon start developing CPrelude.hs, a formal specifica-
tion modelling tool generating Haskell from VDM-SL

and CAMILA. João Saraiva is responsible for the im-
plementation of the attribute system LRC, which gen-
erates (circular) Haskell programs. He is also the au-
thor of the HaLex library and tool, which supports
lexical analysis with Haskell. Joost Visser has devel-
oped Sdf2Haskell, which generates GLR parsing and
customizable pretty-printing support from SDF gram-
mars, and which is distributed as part of the Strafunski
bundle. Most tools and library modules develop by the
group are organized in a single infrastructure, to facil-
itate reuse, which can be obtained as a single distri-
bution under the name UMinho Haskell Libraries and
Tools.

The group has recently started the 3-year project
called PURe which aims to apply formal methods
to Program Understanding and Reverse Engineering.
Haskell is used as implementation language, and vari-
ous subprojects have been initiated, including Generic
Program Slicing.

Further reading

http://www.di.uminho.pt/˜glmf.

7.1.9 The Computer Systems Design Laboratory at
the University of Kansas

Report by: Perry Alexander

The Computer Systems Design Laboratory at the Uni-
versity of Kansas is using Haskell in several distinct
projects.

We are continuing work, previously reported in the
Communities and Activities report, developing tools
for the Rosetta specification language. This work uses
Haskell as the primary platform for a toolset facili-
tating the analysis of heterogeneous models written in
Rosetta. We use a composable interpreter framework
to provide basic language interpretation and a collec-
tion of static and dynamic analysis tools.

A related project utilizes Haskell in the development
of a generalized proof assistant, Prufrock. This pro-
vides a framework for integrating new languages into
the proof environment. The language representation is
separated from the logical inference rules, using generic
programming techniques. Proof tactics (written in
Haskell), interaction, and specific prover implementa-
tion, including such features as global state and logging
are separated using Haskell’s type class system. This
results in a set of (largely) independent modules that
can be combined to produce a specialized first-order
theorem prover for a given language and a given system
of inference. A technical report, including the entire
Prufrock source, is available at the Prufrock website.

Another project explores the implementation of func-
tional languages, via graph reduction, on FPGA hard-
ware. This system combines a compiler and simulator,

51

http://www.cse.unsw.edu.au/~pls/
http://www.cse.unsw.edu.au/~pls/
http://www.di.uminho.pt/~glmf

written exclusively in Haskell, with a VHDL implemen-
tation of the abstract machine. A graph reduction ma-
chine is being synthesized in FPGA from VHDL source
to directly execute compiled Haskell.

Finally, we are Haskell to development a formalism
to represent dance. Currently, choreographers commu-
nicate only by performance. The dance language aims
to provide a mechanism for to allow choreographers a
means to communicate the structure of a routine tex-
tually. Additionally, the dance language has an asso-
ciated typechecker, used by choreographers to detect
errors in the transcription of routines.

Further reading

◦ Computer Systems Design Lab:
http://www.ittc.ku.edu/research/view lab.phtml?
lab=CSDL

◦ Systems Level Design Group:
http://www.ittc.ku.edu/Projects/SLDG/

◦ Rosetta Specification Language:
http://www.sldl.org

◦ Prufrock:
http://www.ittc.ku.edu/˜wardj/prufrock/

◦ Dance Language:
http://www.ittc.ku.edu/˜jenis/

7.1.10 Cover: Combining Verification Methods

Report by: Patrik Jansson
Participants: John Hughes, Thierry Coquand, Peter

Dybjer, Mary Sheeran, Marcin Benke,
Koen Claessen, Patrik Jansson, Andreas

Abel, Gregóıre Hamon, Ulf Norell, Fredrik
Lindström, Nils Anders Danielsson

Cover is a Haskell-centered research project at
Chalmers funded by the Swedish Foundation for Strate-
gic Research. The goal is to develop methods for im-
proving software quality. The approach is to integrate a
variety of verification methods into a framework which
permits a smooth progression from hacking code to
fully formal proofs of correctness.

More concretely we work on these components:
◦ QuickCheck – automated random testing (→ 5.4.4)
◦ Agda – a dependently typed language and its proof

engine (implemented in Haskell) (→ 2.6.6)
◦ Cover Translator – translation from Haskell to

– Agda – for interactive proof
– First order logic – for automated proof

Our best results so far include:

◦ Development of QuickCheck (automatic shrinking,
monadic testing, etc.)

◦ Development of Agda (built-in types, a class system,
”implicit arguments”, etc). Development of method-
ology for reasoning about general recursive programs.

◦ Cover Translator. Translates Haskell (via GHC
Core) into a first order formulas understood by auto-
matic theorem provers such as Gandalf and Vampire.
Ongoing work on case studies.

◦ A first prototype - an extension of Alfa (an advanced
GUI for the prover Agda) with tools for testing and
automatic proof construction.

◦ Agsy – automatic proof search plugin for Agda.

◦ Collaboration with AIST (Advanced Industrial Sci-
ence and Technology Institute in Japan) on develop-
ment and applications of Agda.

The Cover source code can be browsed at http:
//cvs.coverproject.org/marcin/cgi/viewcvs/ and can be
accessed by anonymous CVS from cvs.coverproject.org.

Short term goals:

◦ Complete the chain of tools (QuickCheck, Agda,
Cover Translator) so that we can take actual Haskell
code, test, translate for the theorem provers, and
prove properties.

◦ Identify larger scale case studies that ought to be
tractable for our methods.

Further reading

For more details about the project, read about
QuickCheck (→ 5.4.4) and Agda (→ 2.6.6) in this re-
port or consult the homepage at http://coverproject.org.

7.2 Other groups

7.2.1 Debian Users

Report by: Isaac Jones

The Debian Haskell community continues to grow, with
both new users and developers appearing. Together
with work on cabal and libraries (→ 4.1.1) we are work-
ing towards providing a much improved Haskell devel-
opment environment, and the number of applications
in Debian written in Haskell is also continuing to grow.
A summary of the current state can be found on the
Haskell Wiki (→ 1.3): http://www.haskell.org/hawiki/
DebianUsers.

For developers, we have a prototype policy for
packaging tools for Debian: http://urchin.earth.li/˜ian/
haskell-policy/haskell-policy.html/.

For users and developers, we have also started
a mailing list: http://urchin.earth.li/mailman/listinfo/
debian-haskell.

In order to provide backports, bleeding edge
versions of Haskell tools, and a place for ex-
perimentation with packaging ideas, Isaac Jones

52

http://www.ittc.ku.edu/research/view_lab.phtml?lab=CSDL
http://www.ittc.ku.edu/research/view_lab.phtml?lab=CSDL
http://www.ittc.ku.edu/Projects/SLDG/
http://www.sldl.org
http://www.ittc.ku.edu/~wardj/prufrock/
http://www.ittc.ku.edu/~jenis/
http://cvs.coverproject.org/marcin/cgi/viewcvs/
http://cvs.coverproject.org/marcin/cgi/viewcvs/
http://coverproject.org
http://www.haskell.org/hawiki/DebianUsers
http://www.haskell.org/hawiki/DebianUsers
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/mailman/listinfo/debian-haskell
http://urchin.earth.li/mailman/listinfo/debian-haskell

and Ian Lynagh have started the “Haskell Unsafe”
Debian archive (http://haskell-unsafe.alioth.debian.org/
haskell-unsafe.html) where a wide variety of packages
can be found. This was recently moved to a Debian
server.

7.2.2 Haskell packages for Fedora Core

Report by: Jens Petersen

Yum and apt repositories for Haskell rpm packages
have been setup. At the time of writing there are
packages for c2hs-0.13.1, cabal-0.1, darcs-0.9.22-1, ghc-
6.2.1, greencard-3.01, gtk2hs-0.9.5.50, hircules-0.3 and
hs-plugins-0.9.6. More to come, including updating to
ghc-6.2.2. Contributions are much welcome. And I
would still like to see ghc added to Fedora Extras.

Further reading

http://haskell.org/fedora/

7.2.3 OpenBSD Haskell

Report by: Donald Bruce Stewart

Haskell support on OpenBSD has continued to im-
prove over the last 6 months. A page documenting
the current status of Haskell on OpenBSD is at http:
//www.cse.unsw.edu.au/˜dons/haskell openbsd.html.

GHC is now fully supported on the i386, including
ghci. GHC is also distributed for the amd64 and sparc.
nhc98-1.16 is available for i386, sparc and powerpc.
Hugs is available for the alpha, amd64, hppa, i386,
powerpc, sparc and sparc64.

7.2.4 Haskell in Gentoo Linux

Report by: Andres Löh

The support for Haskell and Haskell-related packages
in Gentoo Linux is improving slowly, but steadily. Re-
cently a call for new developers was sent out to the
Gentoo mailing lists and in the Gentoo newsletter. Al-
though there have been plenty of reactions, new help
and, most of all feedback, is always welcome.

Next to adding additional packages, there currently
are the following longer-term projects:

◦ move GHC package management calls to an eclass
which many Haskell ebuilds can use, port the existing
ebuilds to use the eclass, and improve the eclass to
support Cabal (→ 4.1.1);

◦ add a ghc-updater script that facilitates rebuilding
of Haskell libraries on a GHC upgrade;

◦ make Haskell available on as many Gentoo-supported
platforms as possible.

New ebuilds, comments and suggestions, and bug re-
ports can be filed at bugs.gentoo.org. Make sure that
you mention “Haskell” in the subject of the report.

53

http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
http://haskell.org/fedora/
http://www.cse.unsw.edu.au/~dons/haskell_openbsd.html
http://www.cse.unsw.edu.au/~dons/haskell_openbsd.html
bugs.gentoo.org

8 Individual Haskellers

8.1 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The page about type system hacks (http://pobox.com/
˜oleg/ftp/Haskell/types.html) – a part of the collection
of various Haskell mini-tutorials and assorted small
projects (http://pobox.com/˜oleg/ftp/Haskell/) – has
received two additions:

Functions with the variable number of
(variously typed) arguments

It is sometimes claimed that Haskell does not have
polyvariadic functions. Here we demonstrate how
to define functions with indefinitely many arguments;
those arguments do not have to be of the same type.
The code shows that defining polyvariadic functions
takes only a few lines of Haskell code, and requires only
the most common extension of multiparameter classes
with functional dependencies. We give the complete de-
scription of the technique, the explanation of the type
inference for functions with the variable number of ar-
guments, and many examples.

Partial signatures

The regular (full) signature of a function specifies the
type of the function and enumerates all of the appli-
cable typeclass constraints. The list of the constraints
may be quite large. Partial signatures help when: (i)
we wish to add an extra constraint to the type of the
function but we do not wish to explicitly write the type
of the function and enumerate all of the typeclass con-
straints, (ii) we wish to specify the type of the func-
tion and perhaps some of the constraints – and let the
typechecker figure out the rest of them. Contrary to a
popular belief, both of the above are easily possible, in
Haskell 98.

8.2 Graham Klyne

Report by: Graham Klyne

My primary interest is in RDF http://www.w3.org/
RDF/ and Semantic Web http://www.w3.org/2001/
sw/ technologies. Since my submission for the

March 2004 HC&A Report, I have updated my
Swish package http://www.ninebynine.org/RDFNotes/
Swish/Intro.html to include a graph-differencing fa-
cility, and RDF input from CSV files (e.g. Ex-
cel spreadsheet export). I have also restructured
the code and implemented a number of small re-
finements but these changes are not yet in a for-
mally released version of the software, though a
working copy can be found on my web site http://
www.ninebynine.org/Software/HaskellRDF/RDF/, http:
//www.ninebynine.org/Software/HaskellUtils/.

My implementation of a replacement for the Net-
work.URI module has been updated to reflect some
clarifications in the work-in-progress revised URI
specification http://gbiv.com/protocols/uri/rev-2002/
rfc2396bis.html. This software can be found at http:
//www.ninebynine.org/Software/HaskellUtils/Network/.
I believe this is now ready for incorporation into the
Haskell common library CVS repository. As well
as a simple stand-alone test suite, there is also an
RDF-based test suite for the URI handling code, which
uses my Swish code, which allows the test cases to be
updated by generating a new RDF/CSV description
file.

I have created a copy of HaXml (→ 4.7.2) that is
extensively modified to be more conformant with the
W3C XML test suite. This has support for UTF-8
and UTF-16 character encoding, external entities with
HTTP URIs (using a lightly-modified copy of Björn
Bringert’s version of HTTP modules), XML names-
paces, xml:lang and xml:base directives. I believe this
now contains much of the XML parsing functionality
needed for real XML-based Web applications. The
software (with test suite) is available at http://www.
ninebynine.org/Software/HaskellUtils/HaXml-1.12/ and
my copy of the HTTP code is at http://www.ninebynine.
org/Software/HaskellUtils/Network/.

I have also implemented a full RDF/XML parser
that passes all official test cases (and some others) ex-
cept those dealing with Unicode character normaliza-
tion http://www.ninebynine.org/Software/HaskellRDF/
RDF/Harp/. The plan is to integrate this into my Swish
package, but that has not yet been done.

I am currently experimenting with an implemen-
tation of description logic http://dl.kr.org/ reasoners
in literate Haskell. This is intended primarily as a
self-tutorial exercise, and so far I’ve completed a sim-
ple structural subsumption reasoner, but I eventually
hope to integrate a tableau reasoner from this work
into Swish. Current work-in-progress: http://www.
ninebynine.org/Software/HaskellDL/.

Identified possible future work items include:

◦ integrated XML query and stylesheet processing for

54

http://pobox.com/~oleg/ftp/Haskell/types.html
http://pobox.com/~oleg/ftp/Haskell/types.html
http://pobox.com/~oleg/ftp/Haskell/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://www.ninebynine.org/Software/HaskellRDF/RDF/
http://www.ninebynine.org/Software/HaskellRDF/RDF/
http://www.ninebynine.org/Software/HaskellUtils/
http://www.ninebynine.org/Software/HaskellUtils/
http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html
http://gbiv.com/protocols/uri/rev-2002/rfc2396bis.html
http://www.ninebynine.org/Software/HaskellUtils/Network/
http://www.ninebynine.org/Software/HaskellUtils/Network/
http://www.ninebynine.org/Software/HaskellUtils/HaXml-1.12/
http://www.ninebynine.org/Software/HaskellUtils/HaXml-1.12/
http://www.ninebynine.org/Software/HaskellUtils/Network/
http://www.ninebynine.org/Software/HaskellUtils/Network/
http://www.ninebynine.org/Software/HaskellRDF/RDF/Harp/
http://www.ninebynine.org/Software/HaskellRDF/RDF/Harp/
http://dl.kr.org/
http://www.ninebynine.org/Software/HaskellDL/
http://www.ninebynine.org/Software/HaskellDL/

scraping RDF data from arbitrary XML documents

◦ application to network device configuration and ac-
cess control

◦ application to trust modelling (cf. http://www.
ninebynine.org/iTrust/Intro.html)

◦ extension of RDF datatype-aware inference capabil-
ities

◦ fully or partially automated inference/proof discov-
ery

◦ integration with RDF storage systems implemented
in Java and/or C (e.g. Jena http://www.hpl.hp.com/
semweb/)

◦ performance tuning.

I have a page of notes about my experience of learn-
ing Haskell at http://www.ninebynine.org/Software/
Learning-Haskell-Notes.html.

Further information about my work is at http://
www.ninebynine.org/ and http://www.ninebynine.net/.

8.3 Krasimir Angelov

Report by: Krasimir Angelov

The HToolkit (→ 4.5.4) and HSQL (→ 4.4.3) packages
are still supported but there aren’t too much new things
here.

Currently I am involved in Visual Haskell (→ 5.5.3)
project. The project aim is to provide plugin for Visual
Studio which will allow to use Haskell inside the IDE.
Since the Visual Studio integration API is COM based
we use H/Direct to generate the FFI (→ 3.1) layer. In
our work we found some bugs in H/Direct and now I
am working to improve it.

8.4 Alain Crémieux

Report by: Alain Crémieux

I am working on a port to Haskell of a compiler for the
Tiger toy language. The reference for the Tiger lan-
guage is the book from Andrew Appel “Modern com-
piler implementation in ML”. The corresponding code
in ML is available on the Web, written by Yu Liao.

So the first step is a port of this code, but with the
use of Haskell’s tools Alex and Happy, up to the genera-
tion of machine code for a RISC processor. Then there
will be 2 new outputs for the compiler, one directed at
C– (a Tiger compiler generating C– is available, written
in O’CAML by Paul Govereau), and the other towards
LLVM, a virtual machine system (some examples of a
Tiger compiler link to LLVM, written by Chris Lattner,
are also available).

The roadmap is to add an intelligent editor for Tiger,
in the style of Helium, and some kind of source level
debugger, by reusing available components. All this
should lead to a practical exemple of the complete im-
plementation of a language, which is a domain in which
Haskell is especially good. Any help & suggestions wel-
come, of course.

8.5 Inductive Inference

Report by: Lloyd Allison

Inductive Inference, i.e. the learning of general hy-
potheses from given data.

I am continuing to use Haskell to examine what
are the products (e.g. Mixture-models (unsupervised
classification, clustering), classification- (decision-)
trees (supervised classification, expert systems),
Bayesian/causal networks/models, etc.) of AID-
MIIMLSI (= artificial-intelligence/ data-mining/
inductive-inference/ machine-learning/ statistical-
inference/ etc.) from a programming point of view,
that is how do they behave, what can be done to each
one, and how can two or more be combined? The
primary aim is the getting of understanding, and that
could one day be embodied in a useful Haskell library
or prelude for AIDMIIMLSI.

A JFP paper (see below) describes an early version
of the software. Currently there are types and classes
for models (various probability distributions), function
models (including regressions), time-series (including
Markov models), mixture models, and classification
trees. Recent case-studies include
◦ mixtures of time-series, and
◦ Bayesian networks.

Prototype code is available (GPL) at the URL below.

Future plans

Try to find a good name for this kind of programming:
‘function’ is to ‘functional programming’ as ‘statistical
model’ is to what?

I am currently developing time-series models further.

Further reading

◦ L. Allison. Models for machine learning and data
mining in functional programming. J. Functional
Programming, to appear 2004.

◦ Other reading is listed at the URL:
http://www.csse.monash.edu.au/˜lloyd/tildeFP/II/

55

http://www.ninebynine.org/iTrust/Intro.html
http://www.ninebynine.org/iTrust/Intro.html
http://www.hpl.hp.com/semweb/
http://www.hpl.hp.com/semweb/
http://www.ninebynine.org/Software/Learning-Haskell-Notes.html
http://www.ninebynine.org/Software/Learning-Haskell-Notes.html
http://www.ninebynine.org/
http://www.ninebynine.org/
http://www.ninebynine.net/
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

8.6 Bioinformatics tools

Report by: Ketil Malde

I’m developing (what seems to become) a handful of
tools for solving problems that arise in bioinformatics.
I currently have a sequence clustering tool, xsact (cur-
rently in revision 1.4), which I believe is one of the more
feature-rich tools of its kind. There is also a sequence
assembly tool (xtract). In addition, there are various
smaller tools that are or were useful to me, and that
may or may not be, useful to others.

http://www.ii.uib.no/˜ketil/bioinformatics

56

http://www.ii.uib.no/~ketil/bioinformatics

	General
	haskell.org
	#haskell
	The Haskell HaWiki
	Books and tutorials
	New textbook -- Programming in Haskell
	hs-manpage-howto(7hs)

	Haskell related events
	Past events
	Future events

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	Haskell-Clean Compiler
	Haskell to Clean Translation
	Variations of Haskell
	Haskell on handheld devices
	Helium
	Educational Domain Specific Languages
	Vital: Visual Interactive Programming
	hOp
	Agda: An Interactive Proof Editor
	Epigram

	Language Extensions
	Foreign Function Interface
	Non-sequential Programming
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell & Mobile Haskell
	Eden
	HCPN -- Haskell-Coloured Petri Nets

	Type System/Program Analysis
	Chameleon
	Constraint Based Type Inferencing at Utrecht
	EHC, `Essential Haskell' Compiler

	Generic Programming
	Arrow notation

	Libraries
	Packaging and Distribution
	Hackage and Cabal (formerly the Library Infrastructure Project)
	LicensedPreludeExts
	Haskel User Submitted Libraries (haskell-libs)

	General libraries
	Pesco.Cmdline -- a command line parser = GNU getopt
	System.Time: a redesigned Time library
	A redesigned IO library
	System.Process: a platform-independent API for external process control
	The Haskell Cryptographic Library
	Numeric prelude
	Haskore revision
	Yampa
	The revamped monad transformer library
	HBase
	Pointless Haskell
	hs-plugins
	MissingH

	Parsing and transforming
	Parsec
	Strafunski
	Medina -- Metrics for Haskell

	Data handling
	DData
	A library for strongly typed heterogeneous collections
	HSQL
	Takusen
	HaskellDB

	User interfaces
	The Common GUI API effort
	wxHaskell
	FunctionalForms
	HToolkit
	gtk2hs -- A binding to the Gtk GUI library version 2.0--2.4.
	HTk
	Fudgets

	Graphics
	HSX11, HGL, and Win32
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	Pancito

	Web and XML programming
	Halipeto
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell
	GXS -- The Generic XML Serializer
	XML Schema
	SOAP/1.1 and WSDL/1.1
	Haskell XML-RPC

	Tools
	Foreign Function Interfacing
	GreenCard
	C-->Haskell
	JVM Bridge
	PHI -- Python Haskell Interface
	HOC: A Haskell to Objective-C binding

	Scanning, Parsing, Analysis
	Alex version 2
	Happy
	HaLex
	LRC
	Sdf2Haskell
	HaGLR
	DrHylo

	Transformations
	The Programatica Project
	Term Rewriting Tools written in Haskell
	Ultra
	Hare -- The Haskell Refactorer
	VooDooM
	LVM-OPT

	Testing and Debugging
	Tracing and Debugging
	Hat
	buddha
	QuickCheck
	HUnit

	Development
	hmake
	cpphs
	Visual Studio support for Haskell
	Haskell support for the Eclipse IDE
	Haddock

	Applications
	Non-commercial applications
	HScheme
	Curryspondence
	lambdabot
	HWS-WP
	Hircules, an irc client
	Darcs
	Yarrow
	HasLaTeX
	DoCon, the Algebraic Domain Constructor
	lhs2TeX
	Audio signal processing
	Converting knowledge-bases with Haskell
	NetEdit
	riot
	Flippi
	Postmaster ESMTP Server
	yi

	Commercial users
	Reid Consulting Ltd
	Galois Connections, Inc.
	Aetion Technologies LLC

	Haskell in Education
	Haskell in Education at Universidade de Minho

	Groups
	Research Groups
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Parallel and Distributed Functional Languages Research Group at Heriot-Watt University
	Programming Languages & Systems at UNSW
	Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga, Portugal
	The Computer Systems Design Laboratory at the University of Kansas
	Cover: Combining Verification Methods

	Other groups
	Debian Users
	Haskell packages for Fedora Core
	OpenBSD Haskell
	Haskell in Gentoo Linux

	Individual Haskellers
	Oleg's Mini tutorials and assorted small projects
	Graham Klyne
	Krasimir Angelov
	Alain Crémieux
	Inductive Inference
	Bioinformatics tools

