
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Ninth Edition – November 20, 2005

Andres Löh (ed.)
Lloyd Allison Tiago Miguel Laureano Alves Krasimir Angelov

Alistair Bayley Jean-Philippe Bernardy Björn Bringert
Niklas Broberg Paul Callaghan Manuel Chakravarty

Olaf Chitil Koen Claessen Duncan Coutts
Alain Crémieux Iavor Diatchki Atze Dĳkstra
Robert Dockins Shae Erisson Jan van Eĳck
Martin Erwig Sander Evers Markus Forsberg
Simon Foster Benjamin Franksen Leif Frenzel

André Furtado John Goerzen Dimitry Golubovsky
Murray Gross Walter Gussmann Jurriaan Hage

Sven Moritz Hallberg Thomas Hallgren Keith Hanna
Bastiaan Heeren Robert van Herk Ralf Hinze

Anders Höckersten Paul Hudak John Hughes
Graham Hutton Johan Jeuring Paul Johnson

Isaac Jones Oleg Kiselyov Marnix Klooster
Graham Klyne Daan Leĳen Lemmih

Huiqing Li Andres Löh Rita Loogen
Salvador Lucas Christoph Lüth Ketil Malde

Christian Maeder Simon Marlow Conor McBride
John Meacham Serge Mechveliani Neil Mitchell

William Garret Mitchener Andy Adams-Moran J. Garrett Morris
Rickard Nilsson Sven Panne Ross Paterson
Jens Petersen John Peterson Simon Peyton-Jones

Jorge Sousa Pinto Bernie Pope Claus Reinke
Frank Rosemeier David Roundy David Sabel

Tom Shackell Uwe Schmidt Martĳn Schrage
Anthony Sloane Dominic Steinitz Donald Bruce Stewart

Martin Sulzmann Doaitse Swierstra Wouter Swierstra
Autrĳus Tang Henning Thielemann Peter Thiemann

Simon Thompson Phil Trinder Arjan van Ĳzendoorn
Tuomo Valkonen Joost Visser Malcolm Wallace

Stefan Wehr Joel Wright Ashley Yakeley
Bulat Ziganshin

http://www.haskell.org/communities/

Preface

Finally, here is the 9th edition of the Haskell Communities and Activities Report (HCAR),
almost three weeks after the submission deadline. This delay is entirely my own fault. In fact,
I have to thank the many contributors to this report even more than usually: never before did I
have to ask and push so little; several entries (and quite a few new entries) landed in my inbox
before or on the deadline. Thank you very much!

As most of you have probably be waiting for the Report a long time already and are eager to
get ahead to the actual contents, let me just enumerate a few technical points:

◦ I am trying to be more strict about the rule that entries that have not been changed twice
are removed. If something is removed, it doesn’t mean that is does not exist anymore. But
on the other hand, I prefer no content over outdated content, so if in doubt, I remove. All of
you who would like to see you entry included again, just submit an entry for the next report!

◦ As in the previous editions, I’ve marked entries that have not been in the previous report in
blue (or gray, if viewed without color). Entries that have had (at least small) updates have a
blue header.

◦ I have removed the “Haskell events” section. I lack time to keep it up-to-date, and I haven’t
received any entries from others. I would appreciate if someone would be willing to sub-edit
the events section for the next report. Just drop me a mail.

◦ The next report (the tenth!) will appear in May 2006, so please, already mark the last weeks
of April, because the new entries will be due by then.

As always, feedback is very welcome 〈hcar@haskell.org〉. Now, I wish you pleasant reading!

Andres Löh, University of Bonn, Germany

2

mailto: hcar at haskell.org

Contents

1 General 7
1.1 haskell.org . 7
1.2 #haskell . 7
1.3 The Haskell HaWiki . 7
1.4 Haskell Weekly News . 7
1.4.1 The Haskell Sequence . 8
1.5 The Monad.Reader . 8
1.6 Books and tutorials . 8
1.6.1 New textbook – Programming in Haskell . 8
1.6.2 Haskell Tutorial WikiBook . 8
1.6.3 hs-manpage-howto(7hs) . 8

2 Implementations 10
2.1 The Glasgow Haskell Compiler . 10
2.2 Hugs . 10
2.3 nhc98 . 10
2.4 yhc . 11
2.5 jhc . 11
2.6 Helium . 12

3 Language 13
3.1 Variations of Haskell . 13
3.1.1 Haskell on handheld devices . 13
3.1.2 Vital: Visual Interactive Programming . 13
3.1.3 Pivotal: Visual Interactive Programming . 13
3.1.4 House (formerly hOp) . 13
3.1.5 Camila . 14
3.1.6 Haskell Server Pages (HSP) . 14
3.1.7 HASP . 14
3.1.8 Haskell Regular Patterns (HaRP) . 15
3.2 Non-sequential Programming . 15
3.2.1 GpH – Glasgow Parallel Haskell . 15
3.2.2 GdH – Glasgow Distributed Haskell . 16
3.2.3 Mobile Haskell (mHaskell) . 16
3.2.4 Eden . 16
3.2.5 HCPN – Haskell-Coloured Petri Nets . 17
3.3 Type System/Program Analysis . 18
3.3.1 Epigram . 18
3.3.2 Chameleon . 19
3.3.3 XHaskell project . 19
3.3.4 Constraint Based Type Inferencing at Utrecht . 19
3.3.5 EHC, ‘Essential Haskell’ Compiler . 20
3.4 Generic Programming . 20

4 Libraries 22
4.1 Packaging and Distribution . 22
4.1.1 Hackage and Cabal . 22
4.1.2 Eternal Compatibility in Theory – a module versioning protocol 22
4.2 General libraries . 23
4.2.1 LicensedPreludeExts . 23
4.2.2 Hacanon-light . 23

3

4.2.3 HODE . 23
4.2.4 PFP – Probabilistic Functional Programming Library for Haskell 23
4.2.5 Hmm: Haskell Metamath module . 23
4.2.6 Process . 24
4.2.7 System.Console.Cmdline.Pesco – a command line parser 6= GNU getopt 24
4.2.8 TimeLib . 25
4.2.9 The Haskell Cryptographic Library . 25
4.2.10 Numeric prelude . 25
4.2.11 The revamped monad transformer library . 25
4.2.12 hs-plugins . 26
4.2.13 ldap-haskell . 26
4.2.14 magic-haskell . 26
4.2.15 MissingH . 26
4.2.16 MissingPy . 26
4.3 Parsing and transforming . 27
4.3.1 Utrecht Parsing Library and Attribute Grammar System . 27
4.3.2 Haskell-Source with eXtensions (HSX, haskell-src-exts) . 27
4.3.3 Strafunski . 27
4.4 Data handling . 28
4.4.1 Hierachical Libraries Collections (formerly DData) . 28
4.4.2 fps (fast packed strings) . 28
4.4.3 2-3 Finger Search Trees . 28
4.4.4 A library for strongly typed heterogeneous collections . 29
4.4.5 Takusen . 29
4.4.6 HaskellDB . 29
4.4.7 ByteStream . 30
4.4.8 Compression-2005 . 30
4.5 User interfaces . 30
4.5.1 wxHaskell . 30
4.5.2 FunctionalForms . 31
4.5.3 Gtk2Hs . 31
4.5.4 hscurses . 32
4.6 (Multi-)Media . 32
4.6.1 HOpenGL – A Haskell Binding for OpenGL and GLUT . 32
4.6.2 HOpenAL – A Haskell Binding for OpenAL and ALUT . 32
4.6.3 hsSDL . 33
4.6.4 Haskore revision . 33
4.7 Web and XML programming . 33
4.7.1 CabalFind . 33
4.7.2 WebFunctions . 34
4.7.3 HaXml . 34
4.7.4 Haskell XML Toolbox . 34
4.7.5 WASH/CGI – Web Authoring System for Haskell . 35
4.7.6 HAIFA . 35
4.7.7 HaXR – the Haskell XML-RPC library . 36

5 Tools 37
5.1 Foreign Function Interfacing . 37
5.1.1 HSFFIG . 37
5.1.2 C–>Haskell . 37
5.2 Scanning, Parsing, Analysis . 37
5.2.1 Frown . 37
5.2.2 Alex version 2 . 38
5.2.3 Happy . 38
5.2.4 Attribute Grammar Support for Happy . 39
5.2.5 BNF Converter . 39
5.2.6 LRC . 39
5.2.7 Sdf2Haskell . 40

4

5.2.8 SdfMetz . 40
5.3 Transformations . 40
5.3.1 The Programatica Project . 40
5.3.2 Term Rewriting Tools written in Haskell . 40
5.3.3 Hare – The Haskell Refactorer . 41
5.3.4 VooDooM . 42
5.4 Testing and Debugging . 42
5.4.1 Tracing and Debugging . 42
5.4.2 Hat . 42
5.4.3 buddha . 43
5.4.4 QuickCheck . 43
5.5 Development . 43
5.5.1 hmake . 43
5.5.2 Zeroth . 43
5.5.3 Ruler . 43
5.5.4 cpphs . 44
5.5.5 Visual Haskell . 44
5.5.6 hIDE – the Haskell Integrated Development Environment . 44
5.5.7 Haskell support for the Eclipse IDE . 45
5.5.8 haste . 45
5.5.9 Haddock . 45
5.5.10 Hoogle – Haskell API Search . 45

6 Applications 47
6.1 h4sh . 47
6.2 Fermat’s Last Margin . 47
6.3 Conjure . 47
6.4 DEMO – Model Checking for Dynamic Epistemic Logic . 47
6.5 Pugs . 48
6.6 Darcs . 48
6.7 Arch2darcs . 48
6.8 FreeArc . 48
6.9 HWSProxyGen . 49
6.10 Hircules, an irc client . 49
6.11 lambdabot . 49
6.12 riot . 49
6.13 yi . 50
6.14 Dazzle . 50
6.15 Blobs . 50
6.16 Yarrow . 50
6.17 DoCon, the Algebraic Domain Constructor . 51
6.18 Dumatel, a prover based on equational reasoning . 51
6.19 lhs2TEX . 51
6.20 Audio signal processing . 51
6.21 Converting knowledge-bases with Haskell . 52

7 Users 53
7.1 Commercial users . 53
7.1.1 Galois Connections, Inc. 53
7.1.2 Aetion Technologies LLC . 53
7.2 Haskell in Education . 54
7.2.1 Haskell in Education at Universidade de Minho . 54
7.2.2 Functional programming at school . 54
7.3 Research Groups . 55
7.3.1 Functional Programming at the University of Nottingham . 55
7.3.2 Artificial Intelligence and Software Technology at JWG-University Frankfurt 56
7.3.3 Formal Methods at Bremen University . 57
7.3.4 Functional Programming at Brooklyn College, City University of New York 57

5

7.3.5 Functional Programming at Macquarie University . 58
7.3.6 Functional Programming at the University of Kent . 58
7.3.7 Parallel and Distributed Functional Languages Research Group at Heriot-Watt University 58
7.3.8 Programming Languages & Systems at UNSW . 59
7.3.9 Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga,

Portugal . 59
7.4 User groups . 60
7.4.1 Debian Users . 60
7.4.2 Fedora Haskell . 60
7.4.3 OpenBSD Haskell . 60
7.4.4 Haskell in Gentoo Linux . 60
7.5 Individuals . 61
7.5.1 Oleg’s Mini tutorials and assorted small projects . 61
7.5.2 Graham Klyne . 61
7.5.3 Inductive Inference . 61
7.5.4 Bioinformatics tools . 62
7.5.5 Using Haskell to implement simulations of language acquisition, variation, and change 62

6

1 General

1.1 haskell.org

Report by: John Peterson and Olaf Chitil

haskell.org belongs to the entire Haskell community –
we all have a stake in keeping it as useful and up-to-date
as possible. Anyone willing to help out at haskell.org
should contact the maintainers to get access to this
machine. There is plenty of space and processing power
for just about anything that people would want to do
there.

What can haskell.org do for you?

◦ advertise your work: whether you’re developing a
new application, a library, or have written some re-
ally good slides for your class you should make sure
haskell.org has a pointer to your work.

◦ hosting: if you don’t have a stable site to store your
work, just ask and you’ll own haskell.org/yourproject.

◦ mailing lists: we can set up a mailman-based list for
you if you need to email your user community.

◦ sell merchandise: give us some new art for the cafe-
press store. Publicize your system with a t-shirt.

The biggest problem with haskell.org is that it is diffi-
cult to keep the information on the site current. At the
moment, we make small changes when asked but don’t
have time for any big projects. Perhaps the biggest
problem is that most parts (except the wiki) cannot be
updated interactively by the community. There’s no
easy way to add a new library or project or group or
class to haskell.org without bothering the maintainers.
The most successful sites are those in which the com-
munity can easily keep the content fresh. We would
like to do something similar for haskell.org.

More and more projects are being hosted on haskell.
org. Also, the Haskell Workshop now has a permanent
homepage http://haskell.org/haskell-workshop/.

Just what can you do for haskell.org? Here are a few
ideas:

◦ make the site more interactive; allow people to add
new libraries, links, papers, or whatever without
bothering the maintainers; allow people to attach
comments to projects or libraries so others can ben-
efit from your experience; help tell everyone which
one of the graphics packages or GUIs or whatever is
really useful.

◦ develop a system where the pages for haskell.org live
in a version-controlled repository so that we can more
easily share out maintenance.

◦ add searching capability to haskell.org.

Again, everyone is welcome to join in and help.

Further reading

◦ http://www.haskell.org/
◦ http://www.haskell.org/mailinglist.html

1.2 #haskell

Report by: Shae Erisson

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. #haskell
averages about one hundred eighty users. Point your
IRC client to irc.freenode.net and join the #haskell
channel.

The #haskell.se channel is the same subject but
discussion happens in Swedish. This channel tends to
have a lot of members from Gothenburg.

There is also a #darcs channel – if you want real-
time discussion about darcs (→ 6.6), drop by!

1.3 The Haskell HaWiki

Report by: Shae Erisson

The Haskell wikiwiki is a freely editable website de-
signed to allow unrestricted collaboration. The address
is http://www.haskell.org/hawiki/. Some highlights are:
◦ http://www.haskell.org/hawiki/CommonHaskellIdioms
◦ http://www.haskell.org/hawiki/FundamentalConcepts
Feel free to add your own content!

Sadly, the Haskell wikiwiki has changed to login only
editing, due to unmanageable amounts of spam. You
can create a user account here: http://www.haskell.org/
hawiki/UserPreferences.

1.4 Haskell Weekly News

Report by: John Goerzen

Haskell Weekly News is a newsletter summarizing each
week’s activity in the Haskell community, and primarily
the Haskell mailing lists. Each week’s issue is published
on the general Haskell list as well as on the Haskell

7

http://haskell.org/haskell-workshop/
http://www.haskell.org/
http://www.haskell.org/mailinglist.html
http://www.haskell.org/hawiki/
http://www.haskell.org/hawiki/CommonHaskellIdioms
http://www.haskell.org/hawiki/FundamentalConcepts
http://www.haskell.org/hawiki/UserPreferences
http://www.haskell.org/hawiki/UserPreferences

Sequence. To read HWN online, please visit http://
sequence.complete.org/hwn.
Submissions from the public are welcomed in HWN.
Information on submitting content to HWN is available
at http://sequence.complete.org/hwn-contrib.

1.4.1 The Haskell Sequence

Report by: John Goerzen

The Haskell Sequence is a community-edited Haskell
news and discussion site. Its main feature is a slashdot-
like front page with stories and discussion about things
going on in the Haskell community, polls, questions,
or just observations. Submissions are voted on by the
community before being posted on the front page, sim-
ilar to Kuro5hin.

The Haskell Sequence also syndicates Haskell mailing
list posts, Haskell-related blogs, and other RSS feeds in
a single location. Free space for Haskell-related blogs,
which require no voting before being posted, is also
available to anyone.

Further reading

The Haskell Sequence is available at http://sequence.
complete.org.

1.5 The Monad.Reader

Report by: Shae Erisson

There are plenty of academic papers about Haskell,
and plenty of informative pages on the Haskell Wiki.
But there’s not much between the two extremes. The
Monad.Reader aims to fit in there; more formal than a
Wiki page, but less formal than a journal article.

Want to write about a tool or application that de-
serves more attention? Have a cunning hack that
makes coding more fun? Got that visionary idea peo-
ple should know about? Write an article for The
Monad.Reader!

Further reading

See the TmrWiki for more information: http://www.
haskell.org/tmrwiki/FrontPage.

1.6 Books and tutorials

1.6.1 New textbook – Programming in Haskell

Report by: Graham Hutton

After many years of work, Programming in Haskell is
now finished! The date for publication isn’t yet known,
but is anticipated to be around early to mid 2006.
Further details, including a preview of the book and
powerpoint lecture slides for each chapter, are avail-
able on the web from http://www.cs.nott.ac.uk/~gmh/
book.html.

1.6.2 Haskell Tutorial WikiBook

Report by: Paul Johnson

I became aware of a placeholder page for a Haskell Wiki
textbook over at the WikiBooks project. The URL is
http://en.wikibooks.org/wiki/Programming:Haskell.

Since this looks like a Good Thing to have I’ve made
a start. Of course there is no way that little old me
could write the entire thing, so I’d like to invite others
to contribute.

I’m aware of all the other Haskell Tutorials out there,
but they are limited by being single-person efforts with
no long term maintenance. This is not meant to den-
igrate the efforts of their authors: producing even a
simple tutorial is a lot of work. But Haskell lacks a
complete on-line tutorial that can take a programmer
from the basics up to advanced concepts like nested
monads and arrows. Once you get past the basics you
tend to have to depend on library reference pages and
the original academic papers to figure things out.

So what is needed is:
◦ Space for a team effort
◦ Space to evolve with the language and libraries

A Wikibook offers both of these.
Contributions are welcome. This includes edits to

the table of contents (which seems to have been written
by someone who doesn’t know Haskell) and improve-
ments to my existing text (which I’m happy to concede
is not exactly brilliant).

Further reading

http://en.wikibooks.org/wiki/Programming:Haskell

1.6.3 hs-manpage-howto(7hs)

Report by: Sven Moritz Hallberg
Status: active development

The hs-manpage-howto(7hs) is a manpage for docu-
menting Haskell modules with roff manpages. I an-
nounced it in the November issue and it has been ex-
panded with some small additions and clarifications
since then. Most notable are the guidelines for HIS-
TORY sections in the context of ECT (→ 4.1.2).

So as before, the hs-manpage-howto(7hs) is a rough
document far from complete, meant mainly as a re-
minder and guide for myself. But if you happen to

8

http://sequence.complete.org/hwn
http://sequence.complete.org/hwn
http://sequence.complete.org/hwn-contrib
http://sequence.complete.org
http://sequence.complete.org
http://www.haskell.org/tmrwiki/FrontPage
http://www.haskell.org/tmrwiki/FrontPage
http://www.cs.nott.ac.uk/~gmh/book.html
http://www.cs.nott.ac.uk/~gmh/book.html
http://en.wikibooks.org/wiki/Programming:Haskell
http://en.wikibooks.org/wiki/Programming:Haskell

be writing a Haskell manpage yourself, you should still
find it useful.

And if you come up with a guideline not covered,
please let me know!

Further reading

http://www.scannedinavian.org/~pesco/man/html7/
hs-manpage-howto.7hs.html

9

http://www.scannedinavian.org/~pesco/man/html7/hs-manpage-howto.7hs.html
http://www.scannedinavian.org/~pesco/man/html7/hs-manpage-howto.7hs.html

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones

The last six months has been largely a consolidation
phase for GHC. With one big exception, there are few
new features.

◦ We released GHC 6.4.1, which contains a multitude
of bug-fixes for the 6.4 release. We hope that 6.4.1
will be a stable base for some time to come.

◦ The big new thing is that we now have a working par-
allel version of GHC, which runs on a multiprocessor.
It’s described in our Haskell workshop paper Haskell
on a shared memory multiprocessor, available at http:
//research.microsoft.com/~simonpj/papers/parallel/.

◦ We released Visual Haskell (→ 5.5.5).

◦ Work continues on packaging GHC as a Haskell li-
brary, so that you can call GHC from any Haskell
program by saying import GHC. This will let
you typecheck, compile, and execute all of GHC-
supported Haskell from your own application, and
should make many Haskell tools much easier to write.

For the current version of the API, see http://cvs.
haskell.org/cgi-bin/cvsweb.cgi/fptools/, and look in
ghc/compiler/main/GHC.hs. Please take a look and
give us feedback.

There is lots more in the works:

◦ We are planning to use darcs (→ 6.6) instead of CVS
for GHC.

◦ On the type system front, we hope to

– extend GHC’s higher-rank type system to in-
corporate impredicative types: http://reserach.
microsoft.com/~simonpj/papers/boxy/,

– fix the GADT implementation to work nicely
with type classes,

– Allow you to use data types as kinds, in a man-
ner similar to Tim Sheard’s Omega language.

◦ We are planning to release GHC 6.6 some time in
the next six months. This will include the parallel
version of GHC.

As ever, we are grateful to the many people who sub-
mit polite and well-characterised bug reports. We’re
even more grateful to folk actually help develop and
maintain GHC. The more widely used GHC becomes,
the more we rely on you to help solve people’s prob-
lems, and to maintain and develop the code. We won’t
be around for ever, so the more people who are involved
the better. If you’d like to join in, please let us know.

2.2 Hugs

Report by: Ross Paterson
Status: stable, actively maintained, volunteers

welcome

A new major release of Hugs is planned within a few
months. As well as the steady trickle of bug fixes, this
will include support for the Cabal infrastructure (→
4.1.1), Unicode support (contributed by Dmitry Gol-
ubovsky) and lots of up-to-date libraries.

It should also include a Windows distribution.
Thanks to testing by Brian Smith, the interpreter and
the full set of libraries now build under MinGW. Neil
Mitchell has rewritten the Windows interface (Win-
Hugs), and this will be in the next release. A prerelease
is available for testing on Neil’s WinHugs page (http://
www-users.cs.york.ac.uk/~ndm/projects/winhugs.php).

Now that Hugs uses Cabal to build its libraries, it
will soon be possible to split off libraries as separate
Cabal packages, making the core Hugs source distribu-
tion smaller. Distributors of binary packages can de-
cide whether to include library packages in an omnibus
distribution or distribute them separately.

Support for obsolete non-hierarchical libraries (hslibs
and Hugs-specific libraries) will disappear soon.

As ever, volunteers are welcome.

2.3 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, standards-compliant
compiler for Haskell’98. It is in stable maintenance-
only mode – the current public release is version 1.18.
Maintenance continues in CVS at haskell.org.

We are pleased that a student project, starting with
nhc98’s sources, is aiming for a complete replacement
of most of its parts. The working title is Yhc (→ 2.4),

10

http://research.microsoft.com/~simonpj/papers/parallel/
http://research.microsoft.com/~simonpj/papers/parallel/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
http://reserach.microsoft.com/~simonpj/papers/boxy/
http://reserach.microsoft.com/~simonpj/papers/boxy/
http://www-users.cs.york.ac.uk/~ndm/projects/winhugs.php
http://www-users.cs.york.ac.uk/~ndm/projects/winhugs.php

and currently it has an entirely new portable bytecode
backend and runtime system. This solves many of the
trivial but annoying problems with nhc98, such as lack
of support for 64-bit machines, lack of good support for
Windows builds, the high-memory bug, and so on.

The other parts of the compiler may be replaced too.
The most urgent needs are to:
◦ overhaul the type inference subsystem, towards the

goal of implementing multi-parameter classes;
◦ add pattern-guards to the source language;
◦ add concurrent threads using a co-operative sched-

uler;
◦ implement exceptions.
Volunteers welcome.

Further reading

http://haskell.org/nhc98

2.4 yhc

Report by: Tom Shackell
Status: work in progress

The York Haskell Compiler (yhc) is a backend rewrite
of the nhc98 (→ 2.3) compiler to support features such
as a platform independent bytecode and runtime sys-
tem.
It is currently work in progress, it compiles and cor-
rectly runs almost every standard Haskell 98 program
but FFI support is on going. Contributions are wel-
come.

Further reading

◦ Homepage:
http://www.cs.york.ac.uk/~ndm/yhc/

◦ Darcs (→ 6.6) repository:
http://www.cs.york.ac.uk/fp/darcs/yhc/

2.5 jhc

Report by: John Meacham
Status: unstable, actively maintained, volunteers

welcome

jhc is a Haskell compiler which aims to produce the
most efficient programs possible via whole program
analysis and other optimizations.

Some features of jhc are:

◦ Full support for Haskell 98, The FFI and some exten-
sions (modulo some bugs being worked on and some
libraries that need to be filled out).

◦ Produces 100% portable ISO C. The same C file can
compile on machines of different byte order or bit-
width without trouble.

◦ No pre-written runtime. other than 20 lines
of boilerplate all code is generated from the
Grin intermediate code and subject to all code
simplifying and dead code elimination transfor-
mations. As a result, jhc currently produces
the smallest binaries of any Haskell compiler.
(main = putStrLn "Hello, World!" compiles to
6,568 bytes vs 177,120 bytes for GHC 6.4)

◦ First Intermediate language based on Henk, Pure
Type Systems and the Lambda cube. This is sim-
ilar enough to GHCs core that many optimizations
may be implemented in the same way.

◦ Second Intermediate language is based on Boquist’s
graph reduction language. This allows all unknown
jumps to be compiled out leaving standard case
statements and function calls as the only form of
flow control. Combined with jhc’s use of region in-
ference, this means jhc can compile to most any stan-
dard imperative architecture/language/virtual ma-
chine directly without special support for a stack or
tail-calls.

◦ Novel type class implementation not based on dictio-
nary passing with many attractive properties. This
implementation is possible due to the whole-program
analysis phase and the use of the lambda-cube rather
than System F as the base for the functional inter-
mediate language.

◦ Intermediate language and back-end suitable for di-
rectly compiling any language that can be embedded
in the full lambda cube.

◦ All indirect jumps are transformed away, jhc’s final
code is very similar to hand-written imperative code,
using only branches and static function calls. A sim-
ple basic-blocks analysis is enough to transform tail-
calls into loops.

◦ Full transparent support for mutually recursive mod-
ules.

Jhc’s ideas are mainly taken from promising research
papers that have shown strong theoretical results but
perhaps have not been extended to work in a full-scale
compiler.

Although jhc is still in its infancy and has several
issues to work through before it is ready for public con-
sumption, it is being quickly developed and volunteers
are welcome.

Discussion about jhc development currently occurs
on gale (gale.org) in the category pub.comp.jhc@ofb.net.
A simple web client can be used at yammer.net.

11

http://haskell.org/nhc98
http://www.cs.york.ac.uk/~ndm/yhc/
http://www.cs.york.ac.uk/fp/darcs/yhc/

2.6 Helium

Report by: Bastiaan Heeren
Participants: Arjan van Ĳzendoorn, Bastiaan Heeren,

Daan Leĳen
Status: stable

The purpose of the Helium project is to construct a
light-weight compiler for a subset of Haskell that is es-
pecially directed to beginning programmers (see “He-
lium, for learning Haskell”, Bastiaan Heeren, Daan Lei-
jen, Arjan van Ĳzendoorn, Haskell Workshop 2003).
We try to give useful feedback for often occurring mis-
takes. To reach this goal, Helium uses a sophisticated
type checker (→ 3.3.4) (see also “Scripting the type in-
ference process”, Bastiaan Heeren, Jurriaan Hage and
S. Doaitse Swierstra, ICFP 2003).

Helium has a simple graphical user interface that
provides online help. We plan to extend this inter-
face to a full fledged learning environment for Haskell.
The complete type checker and code generator has been
constructed with the attribute grammar (AG) system
developed at Utrecht University. One of the aspects of
the compiler is that can log errors to a central reposi-
tory, so we can track the kind of problems students are
having, and improve the error messages and hints.

There is now support for type classes, but this has
not been officially released yet. A new graphical inter-
preter is being developed using wxHaskell (→ 4.5.1),
which will replace the Java-based interpreter. The He-
lium compiler has been used successfully four times
during the functional programming course at Utrecht
University.

Further reading

http://www.cs.uu.nl/research/projects/helium/

12

http://www.cs.uu.nl/research/projects/helium/

3 Language

3.1 Variations of Haskell

3.1.1 Haskell on handheld devices

Report by: Anthony Sloane
Status: unreleased

Work on our port of nhc98 (→ 2.3) to Palm OS is con-
tinuing at a slower rate than we would like. A few dif-
ferent strategies have been tried, based on our literate
reworking of the nhc98 runtime kernel. The current
state is that simple programs can be run on modern
Palm hardware. Debugging and broadening of access
to the Palm OS library functions is continuing. We
hope to have an alpha release for others to try out
by the end of the southern hemisphere summer break
(February).

3.1.2 Vital: Visual Interactive Programming

Report by: Keith Hanna
Status: active (latest release: April 2005)

Vital is a highly interactive, visual environment that
aims to present Haskell in a form suitable for use by en-
gineers, mathematicians, analysts and other end users
who often need a combination of the expressiveness and
robustness that Haskell provides together with the ease
of use of a ‘liveŠ graphical environment in which pro-
grams can be incrementally developed.

In Vital, Haskell modules are presented as ‘docu-
mentsŠ having a free-form layout and with expressions
and their values displayed together. These values can
be displayed either textually, or pictorially and can be
manipulated by an end user by point-and-click mouse
operations. The way that values of a given type are
displayed and the set of editing operations defined on
them (i.e., the ‘look and feelŠ of the type) are defined
using type classes. For example, an ADT represent-
ing directed graphs could be introduced, with its val-
ues displayed pictorially as actual directed graphs and
with the end user provided with a menu of operations
allowing edges to be added or removed, transitive clo-
sures to be computed, etc. (In fact, although an end
user appears to be operating directly on values, it is
actually the Haskell program itself that is updated by
the system, using a specialised form of reflection.)

The present implementation includes a collection of
interactive tutorial documents (including examples il-
lustrating approaches to exact real arithmetic, pictorial
manipulation of DNA and the genetic code, animated

diagrams of mechanisms, and the composition and syn-
thesis of MIDI music).

The Vital system can be run via the web: a single
mouse-click is all that is needed!

Further reading

http://www.cs.kent.ac.uk/projects/vital/

3.1.3 Pivotal: Visual Interactive Programming

Report by: Keith Hanna
Status: active (first release: November 2005)

Pivotal 0.025 is a very early prototype of a Vital-like
environment (→ 3.1.2) for Haskell. Unlike Vital, how-
ever, Pivotal is implemented entirely in Haskell. The
implementation is based on the use of the hs-plugins
library (→ 4.2.12) to allow dynamic compilation and
evaluation of Haskell expressions together with the
gtk2hs library (→ 4.5.3) for implementing the GUI.
At present, the implementation is only in a skeletal
state but, nevertheless, it provides some useful func-
tionality. The Pivotal web site provides an overview
of its principles of operation, a selection of screen shots
(including a section illustrating image transforms in the
complex plane), and a (very preliminary!) release of the
Haskell code for the system.

Further reading

http://www.cs.kent.ac.uk/projects/pivotal/

3.1.4 House (formerly hOp)

Report by: Thomas Hallgren
Status: active development

House is a platform for exploring various ideas relating
to low-level and system-level programming in a high-
level functional language, or in short for building op-
erating systems in Haskell. House is based on hOp by
Sébastien Carlier and Jérémy Bobbio.
Recent work includes

◦ the introduction of H, the Hardware Monad, an API
on top of which various operating system features
(e.g., virtual memory management, user-space exe-
cution, device drivers and interrupt handling) can be
implemented in a fairly safe way. Key properties of
the H monad operations are captured as P-Logic as-
sertions in the code. This is described in more detail
in our ICFP 2005 paper.

13

http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/

The House demo system is now implemented on top
of the H monad. There is also work in progress on
implementing an L4 compatible micro-kernel on top
of H.

◦ adding support for parsing and rendering GIF im-
ages. This allowed us to use House to display the
slides for the talk at ICFP.

◦ adding support for scanning the PCI bus and iden-
tifying PCI devices.

Further reading

Further information, papers, source code, demos and
screenshots are available here: http://www.cse.ogi.edu/
~hallgren/House/

3.1.5 Camila

Report by: Joost Visser

The Camila project explores how concepts from the
VDM specification language and the functional pro-
gramming language Haskell can be combined. On the
one hand, it includes experiments of expressing VDM’s
data types (e.g. maps, sets, sequences), data type
invariants, pre- and post-conditions, and such within
the Haskell language. On the other hand, it includes
the translation of VDM specifications into Haskell pro-
grams.

Currently, the project has produced first versions of
the Camila Library and the Camila Interpreter, both
distributed as part of the UMinho Haskell Libraries
and Tools (→ 7.3.9). The library resorts to Haskell’s
constructor class mechanism, and its support for mon-
ads and monad transformers to model VDM’s datatype
invariants, and pre- and post-conditions. It allows
switching between different modes of evaluation (e.g.
with or without property checking) by simply coercing
user defined functions and operations to different spe-
cific types. The interpreter is implemented with the
use of hs-plugins (→ 4.2.12).

Further reading

The web site of Camila (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/Camila) provides documentation. Both
library and tool are distributed as part of the UMinho
Haskell Libraries and Tools (→ 7.3.9).

3.1.6 Haskell Server Pages (HSP)

Report by: Niklas Broberg
Status: experimental
Portability: currently posix-specific

Haskell Server Pages is an extension of Haskell for the
purpose of writing server-side dynamic webpages. It al-
lows programmers to use syntactic XML fragments in
Haskell code, and conversely allows embedded Haskell
expressions inside XML fragments. Apart from the
purely syntactic extensions, HSP also provides a pro-
gramming model with datatypes, classes and functions
that help with many common web programming tasks.
Examples include:
◦ Maintaining user state over transactions using ses-

sions
◦ Maintaining application state over transactions with

different users
◦ Accessing query string data and environment vari-

ables
HSP can also be seen as a framework that other li-

braries and systems for web programming could use as
a backend.

The HSP implementation comes in the form of a
server application intended to be used as a plugin to
web servers such as Apache. There is also a one-shot
evaluator that could be used to run HSP in CGI mode,
however some functionality is lost then, in particular
application state. Both the server and the one-shot
evaluator rely heavily on hs-plugins (→ 4.2.12).

Currently we have no bindings to enable HSP as a
plugin to a webserver. The server can be run in stand-
alone mode, but can then only handle .hsp pages (i.e.,
no images or the like), or the mentioned one-shot eval-
uator can be used for CGI. The system is highly exper-
imental, and bugs are likely to be frequent. You have
been warned.

Further reading

◦ Webpage and darcs repo at:
http://www.cs.chalmers.se/~d00nibro/hsp

◦ My master’s thesis details the programming model
and implementation of HSP:
http://www.cs.chalmers.se/~d00nibro/hsp/thesis.pdf

3.1.7 HASP

Report by: Lemmih
Status: active

HASP is a fork of Niklas Broberg’s Haskell Server
Pages (→ 3.1.6). Changes includes:
◦ support for all GHC extensions
◦ front-end based on FastCGI instead of its own web

server
◦ minor bug fixes and performance tuning.

14

http://www.cse.ogi.edu/~hallgren/House/
http://www.cse.ogi.edu/~hallgren/House/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://www.cs.chalmers.se/~d00nibro/hsp
http://www.cs.chalmers.se/~d00nibro/hsp/thesis.pdf

HASP will in the future be using the GHC api (→ 2.1)
for faster compilations, better error messages and easier
debugging.
Some of the features implemented in HASP will be
ported back into the main HSP tree. However, experi-
mental features like byte code generation via the GHC
api will most likely stay in HASP.

Further reading

◦ Darcs repository:
http://scannedinavan.org/~lemmih/hasp/

◦ Original HSP:
http://www.cs.chalmers.se/~d00nibro/hsp/

3.1.8 Haskell Regular Patterns (HaRP)

Report by: Niklas Broberg
Status: stable, currently not actively developed
Portability: relies on pattern guards, so currently ghc

only

HaRP is a Haskell extension that extends the normal
pattern matching facility with the power of regular ex-
pressions. This expressive power is highly useful in a
wide range of areas, including text parsing and XML
processing. Regular expression patterns in HaRP work
over ordinary Haskell lists ([]) of arbitrary type. We
have implemented HaRP as a pre-processor to ordinary
Haskell.

Further reading

◦ Webpage and darcs repo at:
http://www.cs.chalmers.se/~d00nibro/harp/

3.2 Non-sequential Programming

3.2.1 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Abyd Al Zain, Andre Rauber

du Bois, Kevin Hammond, Leonid
Timochouk, Yang Yang, Jost Berthold,

Murray Gross

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

System Evaluation and Enhancement

The first two items are linked by a British Coun-
cil/DAAD project.

◦ We have developed an adaptive runtime environ-
ment (GRID-GUM) for GpH on computational
grids. GRID-GUM incorporates new load man-
agement mechanisms that cheaply and effectively
combine static and dynamic information to adapt
to the heterogeneous and high-latency environment
of a multi-cluster computational grid. We have
made comparative measures of GRID-GUM’s per-
formance on high/low latency grids and heteroge-
neous/homogeneous grids using clusters located in
Edinburgh, Munich and Galashiels. Preliminary re-
sults are published in Al Zain A., Trinder P.W., Loidl
H.W., Michaelson G.J Managing Heterogeneity in a
Grid Parallel Haskell, Practical Aspects of High-level
Parallel Programming (PAPP 2005), Atlanta, USA
(May 2005).

◦ We are designing a generic parallel runtime envi-
ronment encompassing both the Eden (→ 3.2.4) and
GpH runtime environments

◦ SMP-GHC, an implementation of GpH for multi-core
machines has been developed by Tim Harris, Simon
Marlow and Simon Peyton Jones (→ 2.1).

◦ In separate work GpH is being used as a vehicle for
investigating scheduling on the GRID.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universität Mar-
burg.

GpH Applications

◦ GpH is being used to parallelise the GAP mathemat-
ical library in an EPSRC project (GR/R91298).

◦ We are participating in the SCIEnce EU FP6 I3
project (026133) to use GpH to provide access to
Grid services from Symbolic Computation systems,
including GAP and Maple.

Implementations

The GUM implementation of GpH is available in two
development branches.

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

◦ The unstable branch (GUM-5.02, based on GHC-
5.02) is currently being tested on a Beowulf cluster.
The unstable branch is available from the GHC CVS
repository via tag gum-5-02-3.

15

http://scannedinavan.org/~lemmih/hasp/
http://www.cs.chalmers.se/~d00nibro/hsp/
http://www.cs.chalmers.se/~d00nibro/harp/

Our main hardware platform are Intel-based Beowulf
clusters. Work on ports to other architectures is also
moving on (and available on request):

◦ A port to a Sun-Solaris shared-memory machine ex-
ists but currently suffers from performance problems.

◦ A port to a Mosix cluster has been built in the Metis
project at Brooklyn College, with a first version
available on request from Murray Gross (→ 7.3.4).

Further reading

◦ GpH Home Page:
http://www.macs.hw.ac.uk/~dsg/gph/

◦ Stable branch binary snapshot:
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.
06-snap-i386-unknown-linux.tar

◦ Stable branch installation instructions:
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM

Contact

〈gph@macs.hw.ac.uk〉

3.2.2 GdH – Glasgow Distributed Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Hans-Wolfgang Loidl, Jan

Henry Nyström, Robert Pointon, Andre
Rauber du Bois

GdH supports distributed stateful interactions on mul-
tiple locations. It is a conservative extension of both
Concurrent Haskell and GpH (→ 3.2.1), enabling the
distribution of the stateful IO threads of the former on
the multiple locations of the latter. The programming
model includes forking stateful threads on remote loca-
tions, explicit communication over channels, and dis-
tributed exception handling.

Status

An alpha-release of the GdH implementation is avail-
able on request 〈gph@macs.hw.ac.uk〉. It shares sub-
stantial components of the GUM implementation of
GpH (→ 3.2.1).

Applications and Evaluation

◦ An EPSRC project High Level Techniques for Dis-
tributed Telecommunications Software (http://www.
macs.hw.ac.uk/~dsg/telecoms/, GR/R88137) is now
underway and is entering its first GdH phase. The
project evaluates GdH and Erlang in a telecommuni-
cations context, the work is a collaboration between
Heriot-Watt University and Motorola UK Research
Labs.

◦ There is a forthcoming Ph.D. thesis on the design,
implementation and use of GdH by Robert Pointon
(http://www.macs.hw.ac.uk/~rpointon/).

Further reading

◦ The GdH homepage:
http://www.macs.hw.ac.uk/~dsg/gdh/

3.2.3 Mobile Haskell (mHaskell)

Report by: Phil Trinder
Participants: Andre Rauber du Bois, Hans-Wolfgang

Loidl, Phil Trinder

Mobile Haskell supports both strong and weak mobil-
ity of computations across open networks. The mobil-
ity primitives are higher-order polymorphic channels.
Mid-level abstractions like remote evaluation, analo-
gous to Java RMI, are readily constructed. High-level
mobility skeletons like mobile map and mobile fold en-
capsulate common patterns of mobile computation.

Status

An alpha-release release of mHaskell is available on re-
quest from the mHaskell homepage. A number of appli-
cations have been constructed in mHaskell, including a
stateless webserver, a distributed meeting planner and
a mobile agent system. Mobility skeletons are being
implemented in mobile Javas.

Further reading

◦ The mHaskell homepage
http://www.macs.hw.ac.uk/~dubois/mhaskell

3.2.4 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps Universität Marburg, Germany and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Rafael Martínez, Clara Segura

in Marburg: Rita Loogen, Jost Berthold, Steffen
Priebe

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement

16

http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: gph at macs.hw.ac.uk
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~dsg/gdh/
http://www.macs.hw.ac.uk/~dubois/mhaskell

parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in parallel.
Process instantiation is expressed by the predefined in-
fix operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining skele-
tons, ranging from a simple parallel map to sophisti-
cated replicated-worker schemes. They have been used
to parallelise a set of non-trivial benchmark programs.

Eden has been implemented by modifying the paral-
lel runtime system GUM of GpH (→ 3.2.1). Differences
include stepping back from a global heap to a set of lo-
cal heaps to reduce system message traffic and to avoid
global garbage collection. The current (freely available)
implementation is based on GHC 5.02.3. A source code
version is available from the Eden web page. Installa-
tion support will be provided if required.

Recent and Forthcoming Publications

Survey and new standard reference Rita Loogen,
Yolanda Ortega-Mallén and Ricardo Peña: Par-
allel Functional Programming in Eden, Journal of
Functional Programming 15(3), 2005, pages 431-475
(Special Issue on Functional Approaches to High-
Performance Parallel Programming)

Skeletons

◦ Jost Berthold, Rita Loogen: The Impact of Dynamic
Channels on Functional Topology Skeletons, Third
International Workshop on High-level Parallel Pro-
gramming and Applications (HLPP 2005), Warwick
University, UK, July 2005.

◦ Jost Berthold, Rita Loogen: Skeletons for Re-
cursively Unfolding Process Topologies, Mini-
Symposium "‘Algorithmic Skeletons and High-Level
Concepts for Parallel Programming"’, Conference on
Parallel Computing (ParCo 2005), September 2005.

◦ M. Hidalgo-Herrero, Y. Ortega-Mallén, F. Ru-
bio: Towards Improving Skeletons in Eden, Mini-
Symposium "‘Algorithmic Skeletons and High-Level
Concepts for Parallel Programming"’, Conference on
Parallel Computing (ParCo 2005), September 2005.

◦ Clara Segura, Ricardo Peña: Reasoning About Skele-
tons in Eden, Mini-Symposium "‘Algorithmic Skele-
tons and High-Level Concepts for Parallel Program-
ming"’, Conference on Parallel Computing (ParCo
2005), September 2005.

Compilation and Profiling

◦ Steffen Priebe: Preprocessing Eden with Template
Haskell, ACM SIGPLAN Generative Programming
and Component Engineering (GPCE ’05), Tallinn,
Estonia, LNCS 3676 (pp. 357-372), Springer-Verlag
2005.

◦ Carmen Torrano and Clara Segura: Strictness Anal-
ysis and let-to-case Transformation using Template
Haskell, Symposium on Trends in Functional Pro-
gramming (TFP 2005), Tallinn, Estonia, September
2005.

◦ Pablo Roldán Gómez, J. Berthold, Rita Loogen:
Eden Trace Viewer: Visualizing Parallel Functional
Program Execution, September 2005, submitted.

◦ Abyd Al Zain, Jost Berthold, Hans-Wolfgang Loidl:
A Generic Parallel Runtime-environment for High
Performance Computation on Wide Area Networks,
in preparation.

Current Activities

◦ Yolanda and Mercedes analyse Eden skeletons us-
ing an implementation of its operational semantics
in Maude.

◦ Jost continues his work on a more general implemen-
tation of parallel Haskell dialects in a shared runtime
system.

◦ Steffen continues his work on the polytypic skele-
ton library for Eden making use of the new meta-
programming facilities in GHC.

◦ Jost and Rita continue working on the skeleton li-
brary.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.2.5 HCPN – Haskell-Coloured Petri Nets

Report by: Claus Reinke
Status: no news

Haskell-Coloured Petri Nets (HCPN) are an instance of
high-level Petri Nets, in which anonymous tokens are
replaced by Haskell data objects (and transitions can
operate on that data, in addition to moving it around).

This gives us a hybrid graphical/textual modelling
formalism for Haskell, especially suited for modelling
concurrent and distributed systems. So far, we have
a simple embedding of HCPN in Haskell, as well as
a bare-bones graphical editor (HCPN NetEdit) and
simulator (HCPN NetSim) for HCPN, building on the
portable wxHaskell GUI library (→ 4.5.1). The tools

17

http://www.mathematik.uni-marburg.de/~eden

allow to create and modify HCPN, save and load mod-
els, or generate Haskell code for graphical or textual
simulation of HCPN models. HCPN NetEdit and Net-
Sim are not quite ready for prime time yet, but func-
tional; as long as you promise not to look at the ugly
code, you can find occasionally updated snapshots at
the project home page, together with examples, screen-
shots, introductory papers and slides.

This is still a personal hobby project, so further
progress will depend on demand and funding. In other
words, please let me know if you are interested in this!

Further reading

◦ Project home:
http://www.cs.kent.ac.uk/~cr3/HCPN/

◦ Petri Nets home:
http://www.informatik.uni-hamburg.de/TGI/
PetriNets/

3.3 Type System/Program Analysis

3.3.1 Epigram

Report by: Conor McBride and Wouter Swierstra

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive
editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-
ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in ‘The view from the left’ by Conor McBride
and James McKinna (JFP 14 (1)).

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program won’t crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.

Specifically, Epigram is designed to support pro-
gramming with inductive datatype families indexed
by data. Examples include matrices indexed by
their dimensions, expressions indexed by their types,
search trees indexed by their bounds. In many ways,
these datatype families are the progenitors of Haskell’s
GADTs, but indexing by data provides both a con-
ceptual simplification –the dimensions of a matrix are
numbers – and a new way to allow data to stand as
evidence for the properties of other data. It is no good
representing sorted lists if comparison does not produce

evidence of ordering. It is no good writing a type-safe
interpreter if one’s typechecking algorithm cannot pro-
duce well-typed terms.

Programming with evidence lies at the heart of Epi-
gram’s design. Epigram generalises constructor pattern
matching by allowing types resembling induction prin-
ciples to express as how the inspection of data may
affect both the flow of control at run time and the text
and type of the program in the editor. Epigram ex-
tracts patterns from induction principles and induction
principles from inductive datatype families.

Current Status

Whilst at Durham, Conor McBride developed the Epi-
gram prototype in Haskell, interfacing with the xemacs
editor. Nowadays, a team of willing workers at the Uni-
versity of Nottingham are developing a new version of
Epigram, incorporating both significant improvements
over the previous version and experimental features
subject to active research.

Peter Morris is working on how to build the datatype
system of Epigram from a universe of containers. This
technology would enable datatype generic program-
ming from the ground up. There are ongoing efforts to
develop the ideas in Edwin Brady’s PhD thesis about
efficiently compiling dependently typed programming
languages.

The first steps have been made in collecting recur-
rent programs and examples in some sort of standard
library. There’s still a great deal of cleaning up to do,
but progress is being made.

The Epigram system has also been used succesfully
by Thorsten Altenkirch in his undergraduate course on
Computer Aided Formal Reasoning for two years http:
//www.cs.nott.ac.uk/~txa/g5bcfr/.

Whilst Epigram seeks to open new possibilities
for the future of strongly typed functional program-
ming, its implementation benefits considerably from
the present state of the art. Our implementation makes
considerable use of monad transformers, higher-kind
polymorphism and type classes. Moreover, its denota-
tional approach translates Epigram’s lambda-calculus
directly into Haskell’s. On a more practical note, we are
currently in the process of cabalizing (→ 4.1.1) our code
and moving to the darcs version control system (→ 6.6).

Epigram source code and related research papers can
be found on the web at http://www.e-pig.org and its
community of experimental users communicate via the
mailing list 〈epigram@durham.ac.uk〉. The current im-
plementation is naive in design and slow in practice, but
it is adequate to exhibit small examples of Epigram’s
possibilities. The new implementation, whose progress
can be observed at http://www.e-pig.org/epilogue/ will
be much less rudimentary.

18

http://www.cs.kent.ac.uk/~cr3/HCPN/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.cs.nott.ac.uk/~txa/g5bcfr/
http://www.cs.nott.ac.uk/~txa/g5bcfr/
http://www.e-pig.org
mailto: epigram at durham.ac.uk
http://www.e-pig.org/epilogue/

3.3.2 Chameleon

Report by: Martin Sulzmann
Participants: Gregory J. Duck, Simon Peyton Jones,

Edmund Lam, Peter J. Stuckey, Martin
Sulzmann, Peter Thiemann,

Jeremy Wazny
Status: on-going

Latest developments:

Extended algebraic data types

Extended algebraic data types subsume generalized al-
gebraic data types (GADTs) and type classes with ex-
istential types. They are implemented in Chameleon
and allow to express sophisticated program properties.

Co-induction and type improvement in type class
proofs

We have already formalized and are currently im-
plementing a significant extension of the dictionary-
translation scheme for type classes where type class
proofs may make use of co-induction. Our translation
scheme extends to deal with type improvement as found
in systems of functional dependencies and associated
type synonyms.

Further reading

http://www.comp.nus.edu.sg/~sulzmann/chameleon/

3.3.3 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu and

Martin Sulzmann

XHaskell is an extension of Haskell with XDuce style
regular expression types and regular expression pattern
matching. A prototype implementation, examples and
a number of papers can be found under the XHaskell
home-page.

Further reading

http://www.comp.nus.edu.sg/~luzm/xhaskell/

3.3.4 Constraint Based Type Inferencing at Utrecht

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Jurriaan Hage,

Doaitse Swierstra

With the generation of understandable type error mes-
sages in mind we have devised a constraint based
type inference method in the form of the Top library.

This library is used in the Helium compiler (for learn-
ing Haskell) (→ 2.6) developed at Universiteit Utrecht.
Our philopsophy is that no single type inferencer works
best for everybody all the time. Hence, we want a type
inferencer adaptable to the programmer’s needs with-
out the need for him to delve into the compiler. Our
goal is to devise a library which helps compiler builders
add this kind of technology to their compiler.

The main outcome of our work is the Top library
which has the following characteristics:

◦ It uses constraints to build a constraint tree which
follows the shape of the abstract syntax tree.

◦ These constraints can be ordered in various ways into
a list of constraints

◦ Various solvers (specifically a fast greedy one, a
slower global one, and the chunky solver which com-
bines the two) exist to solve the resulting list of con-
straints.

◦ The library is easily extended with new constraints,
and the type graph implementation includes various
heuristics to find out what is the most likely source of
an inconsistency. Some of these heuristics are very
general, others are more tailored towards Haskell.
Some the heuristics are fixed, like a majority heuris-
tics which takes into account that there is ‘more’
evidence that a certain constraint is the root of an
inconsistency. In addition, there are also heuristics
specified from the outside. By means of a siblings
directive, a programmer may specify that his experi-
ences are that certain functions are often mixed up.
As a result, a compiler may give the hint that (++)
should be used instead of (:), because (++) happens
to fit in the context.

◦ It preserves type synonyms as much as possible,

◦ We have support for type class directives. It allows
programmers to for instance specify that certain in-
stances will never occur. The type inferencer can use
this information to give better error messages. Other
directives can be used to specify additional invariants
on type classes. For instance, that two type classes
do not share a common type (Fractional vs. Inte-
gral). A paper about this subject will find its way
into PADL 2005. Although we have implemented
this into Helium, the infrastructure applies as well
to other systems of qualified types.

◦ The various phases in type inferencing have now been
integrated by a slightly different, more general choice
of constraints.

An older version of the underlying machinery for the
type inferencer has been published in the Proceedings
of the Workshop of Immediate Applications of Con-
straint Programming held in October 2003 in Kinsale,
Ireland.

19

http://www.comp.nus.edu.sg/~sulzmann/chameleon/
http://www.comp.nus.edu.sg/~luzm/xhaskell/

The entire library is parameterized in the sense that
for a given compiler we can choose which information
we want to drag around.

The library has been used extensively in the Helium
compiler, so that Helium can be seen as a case study
in applying Top in a real compiler. In addition to the
above, Helium also

◦ has a logging facility for building collections of cor-
rect and incorrect Haskell programs (including time
line information),

◦ has a run-time parameters for experimenting with
various solvers and constraint orderings.

◦ gives precise error location information,

◦ supports specialized type rules, which are a means
to override the order in which certain expressions
are inferenced and how the type error messages are
formulated (see our paper presented at ICFP ’03).
These type rules are especially useful for making the
type error messages for domain specific extensions to
Haskell correspond more closely to the domain, in-
stead of the underlying Haskell language structures.
The specialized type rules are automatically checked
for soundness and completeness with respect to the
original type system.

Further reading

◦ Project website:
http://www.cs.uu.nl/wiki/Top/WebHome

3.3.5 EHC, ‘Essential Haskell’ Compiler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Doaitse Swierstra
Status: active development

The purpose of the EHC project is to provide a descrip-
tion of a Haskell compiler which is as understandable
as possible so it can be used for education as well as
research.

For its description an Attribute Grammer system
(AG) is used as well as other formalisms allowing com-
pact notation like parser combinators. For the descrip-
tion of type rules, and the generation of an AG im-
plementation for those type rules, we recently started
using the Ruler system (→ 5.5.3) (included in the EHC
project).

The EHC project also tackles other issues:

◦ In order to avoid overwhelming the innocent reader,
the description of the compiler is organised as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus.

◦ Each step corresponds to an actual, that is, an exe-
cutable compiler. Each of these compilers is a com-
piler in its own right so experimenting can be done in
isolation of additional complexity introduced in later
steps.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Currently EHC already incorporates more advanced
features like higher-ranked polymorphism, partial type
signatures, class system, explicit passing of implicit pa-
rameters (i.e. class instances), extensible records, kind
polymorphism.

Part of the description of the series of EH compilers
is available as a PhD thesis, which incorporates previ-
ously published material on the EHC project.

The compiler is used for small student projects as
well as larger experiments such as the incorporation of
an Attribute Grammar system.

We also hope to provide a Haskell frontend dealing
with all Haskell syntactic sugar omitted from EHC.

Further reading

◦ Homepage:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

◦ Attribute grammar system:
http://www.cs.uu.nl/groups/ST/twiki/bin/view/
Center/AttributeGrammarSystem

◦ Parser combinators:
http://www.cs.uu.nl/groups/ST/Software/UU_
Parsing/

3.4 Generic Programming

Report by: Johan Jeuring

Software development often consists of designing a (set
of mutually recursive) datatype(s), to which function-
ality is added. Some functionality is datatype specific,
other functionality is defined on almost all datatypes,
and only depends on the type structure of the datatype.

Examples of generic (or polytypic) functionality de-
fined on almost all datatypes are the functions that
can be derived in Haskell using the deriving construct,
storing a value in a database, editing a value, compar-
ing two values for equality, pretty-printing a value, etc.
Another kind of generic function is a function that tra-
verses its argument, and only performs an action at a
small part of its argument. A function that works on
many datatypes is called a generic function.

There are at least two approaches to generic pro-
gramming: use a preprocessor to generate instances of
generic functions on some given datatypes, or extend

20

http://www.cs.uu.nl/wiki/Top/WebHome
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/

a programming language with the possibility to define
generic functions.

Preprocessors

DrIFT is a preprocessor which generates instances of
generic functions. It is used in Strafunski (→ 4.3.3)
to generate a framework for generic programming on
terms. New releases appear regularly, the latest is 2.1.2
from September 2005.

Languages

Light-weight generic programming There are a num-
ber of approaches to light-weight generic programming.

Generic functions for data type traversals can (al-
most) be written in Haskell itself (using many of the
extensions of Haskell provided by GHC), as shown by
Ralf Lämmel and Simon Peyton Jones in the ‘Scrap
your boilerplate’ (SYB) approach (http://www.cs.vu.
nl/boilerplate/). The SYB approach to generic pro-
gramming in Haskell has been further elaborated in
the recently published (in ICFP ’05) Scrap your boil-
erplate with class: extensible generic functions. This
paper shows how you can turn ‘closed’ definitions of
generic functions (not extensible when new data types
are defined) into ‘open’, extensible, definitions.

The SYB approach to generic programming is used
by James Cheney in his ICFP ’05 paper Scrap your
nameplate, in which he shows how to deal with names,
name-binding, and fresh name generation generically.

Ralf Hinze has turned his ICFP 2004 paper Generics
for the masses into a journal paper, which is to appear
in the special issue of Journal of Functional Program-
ming on ICFP 2004. The paper shows how you can
do a lot of generic programming already in Haskell 98
(without extensions).

The paper TypeCase: A Design Pattern for Type-
Indexed Functions (Bruno Oliveira and Jeremy Gib-
bons, Haskell Workshop 2005) explains some of
the techniques behind the so-called “lightweight ap-
proaches to generic programming” of Cheney and
Hinze, and shows their use in some other contexts.

Generic Haskell In Type Inference for Generic
Haskell, Alexey Rodriguez et al. show how to infer the
base type for a restricted class of generic functions.

Alimarine et al. show how to implement invertible
arrows in Generic Haskell in There and Back Again –
Arrows for Invertible Programming (HW 2005).

Other Artem Alimarine defended his PhD thesis
Generic Functional Programming in Nĳmegen, The
Netherlands, in September 2005. In this thesis he
shows how to extend Clean with a generic program-
ming construct. The extension is similar to the Deriv-
able Type Classes approach in Haskell, but has been
worked out to a greater extent. Alimarine shows,

amongst others, how to optimize the code generated
for instances of generic functions. A similar ap-
proach to code optimization has been used in Generic
Haskell as well. The generic extension in Clean has
been used, amongst others, to develop generic edi-
tors, a generic testing framework, and generic web
applications. See http://www.cs.ru.nl/st/Onderzoek/
Publicaties/publicaties.html for some recent papers on
these applications of generic programming.

In the Lazy Polytypic Grid project Colin Runciman
and collaborators intend to investigate the combina-
tion of generic programming with staged computation
to develop visualization algorithms and applications
that can be adapted to specific data representations
and computational resources, and how, coupled with
the use of demand-driven evaluation, these technologies
can provide new ways of managing the visualization of
large datasets.

Jeremy Gibbons presented a tutorial Design Pat-
terns as Higher-Order Datatype-Generic Programs at
ECOOP (Glasgow, July 2005) and OOPSLA (San
Diego, October 2005).

Justin Ward, Garrin Kimmell, Perry Alexander
present a paper entitled Prufrock: A Framework for
Constructing Polytypic Theorem Provers at the ASE
2005.

Current Hot Topics

Generic Haskell: finding transformations between data
types. Adding type inference and views to the com-
piler. Other: the relation between generic program-
ming and dependently typed programming; the relation
between coherence and generic programming; methods
for constructing generic programs.

Major Goals

Efficient generic traversal based on type-information
for premature termination (see the Strafunski
project (→ 4.3.3)). Exploring the differences in expres-
sive power between the lightweight approaches and the
language extension(s).

Further reading

◦ http://repetae.net/john/computer/haskell/DrIFT/
◦ http://www.cs.chalmers.se/~patrikj/poly/
◦ http://www.generic-haskell.org/
◦ http://www.cs.vu.nl/Strafunski/
◦ http://www.cs.vu.nl/boilerplate/
There is a mailing list for Generic Haskell:
〈generic-haskell@generic-haskell.org〉. See the homepage
for how to join.

21

http://www.cs.vu.nl/boilerplate/
http://www.cs.vu.nl/boilerplate/
http://www.cs.ru.nl/st/Onderzoek/Publicaties/publicaties.html
http://www.cs.ru.nl/st/Onderzoek/Publicaties/publicaties.html
http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/
mailto: generic-haskell at generic-haskell.org

4 Libraries

4.1 Packaging and Distribution

4.1.1 Hackage and Cabal

Report by: Isaac Jones

Background

The Haskell Cabal is a Common Architecture for Build-
ing Applications and Libraries. It is an API distributed
with GHC (→ 2.1), NHC98 (→ 2.3), and Hugs (→ 2.2)
which allows a developer to easily group together a set
of modules into a package.

HackageDB (Haskell Package Database) is an online
database of packages which can be interactively queried
by client-side software such as the prototype cabal-get.
From HackageDB, an end-user can download and in-
stall packages which conform to the Cabal interface.

The Haskell Implementations come with a good set
of standard libraries included, but this set is constantly
growing and is maintained centrally. This model does
not scale up well, and as Haskell grows in acceptance,
the quality and quantity of available libraries is becom-
ing a major issue.

It can be very difficult for an end user to manage a
wide variety of dependencies between various libraries,
tools, and Haskell implementations, and to build all the
necessary software at the correct version numbers on
their platform: previously, there was no generic build
system to abstract away differences between Haskell
Implementations and operating systems.

HackageDB and The Haskell Cabal seek to provide
some relief to this situation by building tools to assist
developers, end users, and operating system distribu-
tors.

Such tools include a common build system, a pack-
aging system which is understood by all of the Haskell
Implementations, an API for querying the packaging
system, and miscellaneous utilities, both for program-
mers and end users, for managing Haskell software.

Status

We have made a 1.0 release of the first phase, Cabal, the
common build system. Cabal is now distributed with
GHC 6.4, Hugs March 2005, and nhc98 1.18. Layered
tools have been implemented, including cabal2rpm and
dh_haskell (→ 7.4.1), for building Redhat and Debian
packages out of Cabal packages. All of the fptools tree
has been converted to using Cabal, as well as many
other tools released over the last few months. Since the
1.0 release, many features have been added including
support for profiling.

HackageDB, authored by Lemmih, is in a prototype
phase. Users can upload tarred-and-gzipped packages
to the database, and HackageDB will unpack them and
make them available for clients via the XML-RPC (→
4.7.7) interface. The prototype client, cabal-get, can
download and install a package and its dependencies.

Further reading

◦ http://www.haskell.org/cabal
◦ http://hackage.haskell.org

4.1.2 Eternal Compatibility in Theory – a module
versioning protocol

Report by: Sven Moritz Hallberg

I’ve spent some thought on module versioning, i.e. how
to avoid module breakage when external dependencies
change their interface in newer versions. I think I’ve
come up with a nice and simple solution which has been
published in an article for The Monad.Reader (→ 1.5).
Here’s the short intro:

As a program module evolves, functions and other el-
ements are added to, removed from, and changed in its
interface. It is clear that programs importing the mod-
ule (it’s dependants) will not be compatible with all
versions. At least, each program is compatible with one
version, the one the author originally used, and usually
a few ones before and after that. But if a program is
not continuously updated, with time, chances rise dra-
matically that one of it’s dependencies as installed on a
given host system will be incompatible. Alas, the pro-
gram cannot be used. This effect comprises a major
source of bit rot. To avoid such a situation, I suggest,
in short, to append version numbers to module names,
retaining the original name as a short-hand for “latest
version”.

For the complete description, please see the arti-
cle linked to below. It describes the scheme which
I have dubbed “ECT” in detail, as a protocol to be
followed by the module implementor. For what it’s
worth, I have already adapted my own module Sys-
tem.Console.Cmdline.Pesco (→ 4.2.7) to use it.

If you are a module author, please have a look, tell
me what you think, and consider adopting the ECT
scheme yourself.

Further reading

http://www.haskell.org/tmrwiki/
EternalCompatibilityInTheory

22

http://www.haskell.org/cabal
http://hackage.haskell.org
http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory
http://www.haskell.org/tmrwiki/EternalCompatibilityInTheory

4.2 General libraries

4.2.1 LicensedPreludeExts

Report by: Shae Erisson

The PreludeExts wiki page started with an oft-pasted
email on the #haskell IRC channel (→ 1.2), where
at least once a week someone asked for a permuta-
tions function. That sparked a discussion of what code
is missing from the Prelude, once the wiki page was
started, submissions poured in, resulting in a useful and
interesting collection of functions. Last year’s Prelude-
Exts has become this year’s BSD LicensedPreludeExts
since John Goerzen wanted to have explicit licensing
for inclusion into debian packages. If you contributed
code to PreludeExts and haven’t yet moved it to Li-
censedPreludeExts, please do so!
http://www.haskell.org/hawiki/LicensedPreludeExts

4.2.2 Hacanon-light

Report by: Lemmih
Status: usable, unmaintained

Hacanon-light is a lightweight FFI library that uses
the Data Interface Scheme (DIS) from Hacanon (http:
//haskell.org/hawiki/Hacanon) and Template Haskell
to provide a high level interface to marshaling/un-
marshaling. It differs from Hacanon taking a passive
role in the binding process; it won’t use or validate itself
from any foreign header files.
Hacanon-light is meant to be used together with Ze-
roth (→ 5.5.2).

Further reading

◦ Darcs repository:
http://scannedinavian.org/~lemmih/hacanon-light

4.2.3 HODE

Report by: Lemmih
Status: usable, unmaintained

HODE is a binding to the Open Dynamics Engine.
ODE is an open source, high performance library for
simulating rigid body dynamics.
HODE uses Hacanon-light (→ 4.2.2) to simplify the
binding process and Zeroth (→ 5.5.2) to avoid linking
with Template Haskell.

Further reading

◦ Darcs repository:
http://scannedinavian.org/~lemmih/hode

◦ ODE:
http://ode.org

4.2.4 PFP – Probabilistic Functional Programming
Library for Haskell

Report by: Martin Erwig
Status: active development

The PFP library is a collection of modules for Haskell
that facilitates probabilistic functional programming,
that is, programming with stochastic values. The prob-
abilistic functional programming approach is based on
a data type for representing distributions. A distri-
bution represent the outcome of a probabilistic event
as a collection of all possible values, tagged with their
likelihood.
A nice aspect of this system is that simulations can
be specified independently from their method of execu-
tion. That is, we can either fully simulate or randomize
any simulation without altering the code which defines
it.
The library was developed as part of a simulation
project with biologists and genome researchers. We
plan to apply the library to more examples in this area.
Future versions will hopefully contain a more system-
atically documented list of examples.

Further reading

http://eecs.oregonstate.edu/~erwig/pfp/

4.2.5 Hmm: Haskell Metamath module

Report by: Marnix Klooster
Status: Hmm 0.1 released, slow-paced development

Hmm is a small Haskell library to parse and verify
Metamath databases.
Metamath (http://metamath.org) was conceived and
almost completely implemented by Norman Megill. It
a project for formalizing mathematics, a file format for
specifying machine-checkable proofs, and a program for
generating and verifying this file format. Already more
than 6000 proofs have been verified from the axioms of
set theory.
Version 0.1 of Hmm has been released on October 17th,
2005.
The development version can be found at http://www.
solcon.nl/mklooster/repos/hmm/. This is a darcs repos-
itory (→ 6.6).
Hmm can’t currently do more than just read and
verify a Metamath file. However, the longer-term
goal is to generate calculational proofs from Meta-
math proofs. As an example, the Metamath proof
that cross-product distributes over union (see http:
//us.metamath.org/mpegif/xpundi.html) could be visu-
alized something like this:

((A X. B) u. (A X. C))
= "LHS of u.: (df-xp); RHS of u.: (df-xp)"

23

http://www.haskell.org/hawiki/LicensedPreludeExts
http://haskell.org/hawiki/Hacanon
http://haskell.org/hawiki/Hacanon
http://scannedinavian.org/~lemmih/hacanon-light
http://scannedinavian.org/~lemmih/hode
http://ode.org
http://eecs.oregonstate.edu/~erwig/pfp/
http://metamath.org
http://www.solcon.nl/mklooster/repos/hmm/
http://www.solcon.nl/mklooster/repos/hmm/
http://us.metamath.org/mpegif/xpundi.html
http://us.metamath.org/mpegif/xpundi.html

({ <. x, y >. | (x e. A /\ y e. B) }
u. { <. x, y >. | (x e. A /\ y e. C) })

= "(unopab)"
{ <. x, y >. | ((x e. A /\ y e. B)

\/ (x e. A /\ y e. C)) }
= "in pair comprehension: (andi)"

{ <. x, y >. | (x e. A
/\ (y e. B \/ y e. C))) }

= "in pair comprehension: RHS of /\: (elun)"
{ <. x, y >. | (x e. A

/\ y e. (B u. C)) }
= "(df-xp)"

(A X. (B u. C))

This proof format would make it easier to understand
Metamath proofs.
I am working towards this goal, slowly and step by step.

Further reading

http://www.solcon.nl/mklooster/repos/hmm/

4.2.6 Process

Report by: Bulat Ziganshin
Status: beta

Process is a fun library for easing decomposition algo-
rithms to several processes, which transmit intermedi-
ate data via Unix-like pipes. You can write, for exam-
ple:

runP $ producer |> transformer1
|> transformer2
|> printer

where each “sub-process” in transporter is just a func-
tion started with forkIO/forkOS with one additional
parameter-pipe. This pipe can be “read” with the
readP function to get data from previous process in
transporter, and “written” with writeP to send data to
next process. A pipe can be made one-element (MVar)
with the |> operator, or multi-element (Chan) with
|>>>. Also supported are “back pipe” which can be
used to return to previous process acknowledgements
or, for example, borrowed buffers. Processes or entire
transporters can also be run asynchronously and then
communicated via a returned pipe:

pipe <- runAsyncP $
transformer1 |> transformer2

Moreover, processes/transporters can be run against
four functions, which will be used for all it’s piping
operations. That opens a whole range of possibilities
to create more complex process-control structures.

This lead to situation when Process, while more a
syntactic sugar for well-known forkOS/MVar/Chan in-
gredients, than a “real” library, has become a very use-
ful tool for assembling complex algorithms from simple

pieces, which somehow transform data. This is like
the situation of Unix popularity because it provides
the same instruments for assembling together separate
simple programs, but in this case you don’t transmit
plain byte streams, but typed data.

Further reading

◦ Download page: http://freearc.narod.ru

4.2.7 System.Console.Cmdline.Pesco – a command
line parser 6= GNU getopt

Report by: Sven Moritz Hallberg
Status: active development

My command line parsing module first reported in
the November issue has just been updated to ver-
sion 2. This is mainly a restructuring release. I’ve
changed the module name from Pesco.Cmdline to Sys-
tem.Console.Cmdline.Pesco, to better fit into the over-
all hierarchical module namespace. Also the release
now comes as a nice Cabal package (→ 4.1.1).

The code itself has been adapted it to use the ECT
versioning scheme (→ 4.1.2) and has seen the addition
of a minor but very convenient feature. In particular,
the standard off-the-mill command line tool can now
be written in a form like the following.

import System.Console.Cmdline.Pesco_2

-- command line option specifications
opts = [flag ["bar"] "behave like Bar(1)"

{-...-}
]

-- names for mandatory non-option arguments
args = ["file1", "file2"]

main = do Args parm nonopts
<- stdargs "Foo" "1.0"

"Do the foo-foo dance."
opts args

let [file1,file2] = nonopts
if (parm "bar")

then putStrLn "--bar given"
else return ()

{-...-}

The above program will then accept usage of the form

./Foo [options] file1 file2

where options can be --bar etc. Most importantly,
it will automatically support the standard --help and
--version flags and check if the required number of
non-option arguments is present.

The module is available as a Cabal package named
pesco-cmdline. It, and all associated documentation
can be found on the website below, under the heading
“System.Console.Cmdline.Pesco”.

24

http://www.solcon.nl/mklooster/repos/hmm/
http://freearc.narod.ru

As of yet, the module still does not support explicitly
reporting errors, it always calls error. Also, it is still
not possible to ignore unrecognized command line ar-
guments (for chaining command line parsers) or errors
in general. These points will be addressed in the next
major revision.

Further reading

http://www.scannedinavian.org/~pesco/

4.2.8 TimeLib

Report by: Ashley Yakeley
Status: active development

TimeLib is an attempt to redesign the current library
for handling time (System.Time), balancing expressive
functionality and intelligible simplicity. Now at ver-
sion 0.2, TimeLib features representation of TAI, UTC
and UT1, as well as Gregorian, ISO 8601 week, and
“year and day” calendars, time-zones, and functions
for strftime-style formatting.

The source is in a darcs (→ 6.6) repository, and the
API is viewable in haddock (→ 5.5.9) format.

Further reading

http://semantic.org/TimeLib/

4.2.9 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The current release (2.0.3) is reasonably stable with
just some bugfixes to the build since the last report.

All contributions are welcome.

Further reading

http://www.haskell.org/crypto

4.2.10 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Henning Thielemann
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck (→ 5.4.4)
properties, superfluous superclasses like Show are re-
moved, semantic and representation-specific operations
are separated, the hierarchy of type classes is more

fine grained, and identifiers are adapted to mathemat-
ical terms. Both new types (like power series and
values with physical units) and type classes (like the
VectorSpace multi type class) are introduced. Using
the revised system requires hiding some of the stan-
dard functions provided by Prelude, which is fortu-
nately supported by GHC.

Future plans

Collect more Haskell code related to mathematics,
e.g. for linear algebra. Study of alternative numeric
type class proposals and common computer algebra
systems. Ideally each data type resides in a separate
module, which will probably lead to mutual recursive
dependencies.

A problem which is still not solved satisfyingly arises
e.g. for residue classes and linear algebra. It should be
possible to assert statically that the arguments of a
function are residue classes with respect to the same
divisor, or that they are vectors of the same size. Pos-
sible ways out are encoding values in types or local type
class instances. The latter one is still neither proposed
nor implemented in any Haskell compiler.

Further reading

http://cvs.haskell.org/darcs/numericprelude/

4.2.11 The revamped monad transformer library

Report by: Iavor Diatchki
Status: mostly stable

Monads are very common in Haskell programs and yet
every time one needs a monad, it has to be defined from
scratch. This is boring, error prone and unnecessary.
Many people have their own libraries of monads, and it
would be nice to have a common one that can be shared
by everyone. Some time ago, Andy Gill wrote the
monad transformer library that has been distributed
with most Haskell implementations, but he has moved
on to other jobs, so the library was left on its own. I
wrote a similar library (before I knew of the existence
of Andy’s library) and so i thought i should combine
the two. The “new” monadic library is not really new,
it is mostly reorganization and cleaning up of the old
library. It has been separated from the “base” library
so that it can be updated on its own.

The monad library is still alive and I am using it for
my projects. I am not aware of any other users. For
changes and the most recent version one can visit its
website (see below).

Soon there will be a new release (1.5), the main
changes of which are:

25

http://www.scannedinavian.org/~pesco/
http://semantic.org/TimeLib/
http://www.haskell.org/crypto
http://cvs.haskell.org/darcs/numericprelude/

◦ A new API to the backtracking transformer (now
called SearchT), inspired in part by one of the this
year’s ICFP papers.

◦ Reverted to having only one base monad Id (plus
the usual Haskell IO,ST,etc), all other monads can
be constructed by applying the appropriate trans-
former. This makes the library smaller, and hope-
fully easier to understand and maintain.

◦ Some of the transformers are more strict in their in-
ternal structures (StateT and WriterT in particular).

◦ More examples of how to use the transformers, which
also serve as test cases.

Further reading

http://www.cse.ogi.edu/~diatchki/monadLib/

4.2.12 hs-plugins

Report by: Don Stewart
Status: active development

hs-plugins is a library for dynamic loading and run-
time compilation of Haskell modules, for Haskell and
foreign language applications. It can be used to im-
plement application plugins, hot swapping of modules
in running applications, runtime evaluation of Haskell,
and enables the use of Haskell as an application exten-
sion language. Version 0.9.10 has been released.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hs-plugins/

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

4.2.13 ldap-haskell

Report by: John Goerzen
Status: active development

ldap-haskell is a Haskell binding to C-based LDAP li-
braries such as OpenLDAP. With ldap-haskell, you can
interrogate an LDAP directory, update its entries, add
data to it, etc. ldap-haskell provides an interface to all
the most common operations you would need to per-
form with an LDAP server.

Further reading

darcs get http://darcs.complete.org/ldap-haskell

4.2.14 magic-haskell

Report by: John Goerzen
Status: active development

magic-haskell is a binding to the libmagic library. With
magic-haskell, you can determine the type of a file by
looking at its contents rather than its name. This li-
brary also can yield the MIME type of a file by looking
at its contents.
This is often a more useful method than looking at a
file’s name since it can yield correct results even if a
file’s extension is missing or misleading.

Further reading

http://quux.org/devel/magic-haskell

4.2.15 MissingH

Report by: John Goerzen
Status: active development

MissingH is a library designed to provide the little
“missing” features that people often need and end up
implementing on their own. Its focus is on list, string,
and IO features, but extends into other areas as well.
The library is 100% pure Haskell code and has no
dependencies on anything other than the standard li-
braries distributed with current versions of GHC and
Hugs.

In addition to the smaller utility functions, recent
versions of MissingH have added a complete FTP client
and server system, a virtualized I/O infrastructure sim-
ilar to Python’s file-like objects, a virtualized filesys-
tem infrastructure, a MIME type guesser, a configu-
ration file parser, GZip decompression support in pure
Haskell, a DBM-style database virtualization layer, and
a modular logging infrastructure, complete with sup-
port for Syslog.

Future plans for MissingH include adding more net-
work client and server libraries, support for a general-
ized URL downloading scheme that will work across all
these client libraries, and enhancing the logging system.

This library is licensed under the GNU GPL.

Further reading

http://quux.org/devel/missingh

4.2.16 MissingPy

Report by: John Goerzen
Status: active development

MissingPy is really two libraries in one. At its lowest
level, MissingPy is a library designed to make it easy to

26

http://www.cse.ogi.edu/~diatchki/monadLib/
http://www.cse.unsw.edu.au/~dons/hs-plugins/
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/
http://darcs.complete.org/ldap-haskell
http://quux.org/devel/magic-haskell
http://quux.org/devel/missingh

call into Python from Haskell. It provides full support
for interpreting arbitrary Python code, interfacing with
a good part of the Python/C API, and handling Python
objects. It also provides tools for converting between
Python objects and their Haskell equivalents. Memory
management is handled for you, and Python exceptions
get mapped to Haskell Dynamic exceptions.

At a higher level, MissingPy contains Haskell inter-
faces to some Python modules. These interfaces in-
clude support for the Python GZip and BZip2 modules
(provided using the HVIO abstraction from MissingH),
and support for Python DBM libraries (provided using
AnyDBM from MissingH (→ 4.2.15)). These high-level
interfaces look and feel just like any pure Haskell inter-
face.

Future plans for MissingPy include an expansion
of the higher-level interface to include such things as
Python regexp libraries, SSL support, and LDAP sup-
port.

This library is licensed under the GNU GPL.

Further reading

http://quux.org/devel/missingpy

4.3 Parsing and transforming

4.3.1 Utrecht Parsing Library and Attribute
Grammar System

Report by: Doaitse Swierstra
Status: Released as cabal packages

The Utrecht parsing Library and the associated At-
tribute Grammar System have been made available as
cabal packages (→ 4.1.1), and as such may be easier to
install.
The systems have been succesfully used by Niels van
der Velde, one of our Master students, as part of a
toolchain to assist in the parallelisation of C code. It
seems that the lazy evaluation used inside is requiring
quite some memory footprint.
One of our other master students, Joost Verhoog,
is about to complete the alternative path to code-
generation for te AG system, in which we follow te more
traditional multi-pass attribute grammar evaluation
schemes, as explained in the thesis of Joao Saraiva http:
//www.cs.uu.nl/wiki/Swierstra/SupervisedTheses. Our
hope is that this will alleviate the aforementioned prob-
lem.

4.3.2 Haskell-Source with eXtensions (HSX,
haskell-src-exts)

Report by: Niklas Broberg
Status: beta

HSX aims to be a replacement of the libraries in Lan-
guage.Haskell of the standard haskell-src package. The
contribution is that HSX supports a good deal of the
various syntactic extensions available, such as
◦ Multi-parameter type classes with functional depen-

dencies
◦ Empty data declarations
◦ GADTs
◦ Implicit parameters (ghc and hugs style)
◦ Template Haskell (broken for 6.4, needs redoing)

Apart from these standard extensions, it also handles
regular patterns as per the HaRP (→ 3.1.8) extension
as well as HSP-style embedded XML syntax (→ 3.1.6).

Further reading

◦ Webpage and darcs repo at:
http://www.cs.chalmers.se/~d00nibro/
haskell-src-exts/

4.3.3 Strafunski

Report by: Joost Visser
Status: active, maintained, new release in

November 2005
Portability: Hugs, GHC, DrIFT

Strafunski is a Haskell-based bundle for generic pro-
gramming with functional strategies, that is, generic
functions that can traverse into terms of any type while
mixing type-specific and uniform behaviour. This style
is particularly useful in the implementation of program
analyses and transformations.

Strafunski bundles the following components:
◦ the library StrategyLib for generic traversal and oth-

ers;
◦ precompilation support for user datatypes based on

DrIFT (→ 3.4);
◦ the library ATermLib for data exchange;
◦ the tool Sdf2Haskell (→ 5.2.7) for external parser and

pretty-print integration.
The Strafunski-style of generic programming can

be seen as a lightweight variant of generic program-
ming (→ 3.4) because no language extension is in-
volved, but generic functionality simply relies on a few
overloaded combinators that are derived per datatype.
By default, Strafunski relies on DrIFT to derive the ap-
propriate class instances, but a simple switch is offered
to rely on the “Scrap your boilerplate” (→ 3.4) model
as available in the Data.Generics library.

27

http://quux.org/devel/missingpy
http://www.cs.uu.nl/wiki/Swierstra/SupervisedTheses
http://www.cs.uu.nl/wiki/Swierstra/SupervisedTheses
http://www.cs.chalmers.se/~d00nibro/haskell-src-exts/
http://www.cs.chalmers.se/~d00nibro/haskell-src-exts/

The Sdf2Haskell component of Strafunski has re-
cently been extended to offer not only parsing support
via the external “sglr” parser, but also:

◦ parsing support via HaGLR, an experimental 100%
Haskell implementation of Generalized LR parsing

◦ pretty-printing support, based on the
pretty-print combinators as available in the
Text.PrettyPrint.HughesPJ library. The generated
pretty-printers are functional strategies that offer
uniform behaviour which can be customized with
type-specific behaviour.

Strafunski is used in the HaRe project (→ 5.3.3) and in
the UMinho Haskell Libraries and Tools (→ 7.3.9) to
provide analysis and transformation functionality for
languages such as Java, VDM, SQL, spreadsheets, and
Haskell itself.

Further reading

http://www.cs.vu.nl/Strafunski/

4.4 Data handling

4.4.1 Hierachical Libraries Collections (formerly
DData)

Report by: Jean-Philippe Bernardy
Status: stable, maintained

The standard collections data structures have recently
been replaced by (a modified version of) Daan Leĳen’s
DData library.
Yet, many people would like them futher improved.
Maintenance continues, with the goal to reach greater
quality standards.

Further reading

http://haskell.org/hawiki/StandardCollectionLibraries/

4.4.2 fps (fast packed strings)

Report by: Don Stewart
Status: active development

FPS provides packed strings (byte arrays held by a For-
eignPtr), along with a list interface to these strings.
This library provides a faster and wider range of op-
erations than that found in the standard PackedString
library, and is a port of the packed string code found in
darcs. Such strings typically reduce the time and space
requirements of a similar program based on [Char].
It also lets you do extremely fast IO in Haskell using
mmap; in some cases, even faster than typical C imple-
mentations.

Further reading

◦ Source and documentation can be found at
http://www.cse.unsw.edu.au/~dons/fps.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/fps

4.4.3 2-3 Finger Search Trees

Report by: Ben Franksen
Status: new library, not yet released

An efficient implementation of ordered sequences,
based on (external, node oriented) 2-3 finger search
trees as described in a recent paper by Ralf Hinze (see
below).
With regard to asymptotic complexity, 2-3 finger search
trees seem to be the best known purely functional im-
plementations of ordered sequences, with the following
amortized time bounds:

◦ member, insert, delete, split: O(log(min(d, n −
d)))

◦ minimum, maximum, deleteMin, deleteMax: O(1)

◦ merge: O(ns ∗ log(nl/ns))

where d is the distance from the smallest element, ns
is the size of the shorter, and nl the size of the longer
sequence. These bounds remain valid if the sequence is
used persistently.
The project started as an exercise to explore the in-
triguing possibilities of nested data types to statically
check data-structural invariants. One of my interests
was to find out how much this helps development in
practice. The results are nothing less than impressive
to me. I am sure I would never have been able to pro-
duce anything as complicated with such a (relatively)
low effort, had not the type system constantly guided
me in the right direction.
Meanwhile, I think this could evolve into a generally
useful library. A lot of work remains to be done,
though: currently the library provides only the basic
functionality and I have just started to get into per-
formance measurements. I suspect some optimizations
are possible, but haven’t yet looked into it very deeply.
The code is mostly tested (and specified, thanks to
QuickCheck (→ 5.4.4)), but hasn’t been used in a real
application.
The library is not yet released, mainly because (lacking
a personal homepage) I don’t have a convenient place
on the web to host it. However, I plan to release a first
alpha version soon.

Further reading

◦ Ralf Hinze, Numerical Representations as Higher-
Order Nested Datatypes, Technical Report IAI-TR-

28

http://www.cs.vu.nl/Strafunski/
http://haskell.org/hawiki/StandardCollectionLibraries/
http://www.cse.unsw.edu.au/~dons/fps.html
http://www.cse.unsw.edu.au/~dons/code/fps

98-12, Institut für Informatik III, Universität Bonn,
December 1998
http://www.cs.bonn.edu/~ralf/publications/
IAI-TR-98-12.ps.gz

4.4.4 A library for strongly typed heterogeneous
collections

Report by: Oleg Kiselyov
Developers: Oleg Kiselyov, Ralf Lämmel,

Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for strongly typed heterogeneous collections in-
cluding extensible records. HList is analogous of the
standard list library, providing a host of various con-
struction, look-up, filtering, and iteration primitives.
In contrast to the regular list, elements of HList do
not have to have the same type. HList lets the user
formulate statically checkable constraints: for exam-
ple, no two elements of a collection may have the same
type (so the elements can be unambiguously indexed
by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable labels. We have also used HList for type-safe
database access in Haskell. HList-based Records form
the basis of OOHaskell. The HList library relies on
common extensions of Haskell 98.

The HList library has been extended to enable all re-
cent OOHaskell examples and improve their efficiency.
We added more specialized but more efficient imple-
mentations of the following Record operations: exten-
sion, field lookup, projection. These operations now
have simpler types (with fewer constraints), which no-
tably simplifies the inferred types of OOHaskell pro-
grams.

We added a function to narrow two records to their
automatically computed least-upper bound. We de-
fined functions nilLub and consLub to construct a ho-
mogeneous list out of heterogenous record components.
The component records are automatically narrowed to
their least-upper bound.

We are working on Cabalizing (→ 4.1.1) HList, ex-
panding on the work by Einar Karttunen.

Further reading

◦ HList:
http://homepages.cwi.nl/~ralf/HList/

◦ OOHaskell:
http://homepages.cwi.nl/~ralf/OOHaskell/

4.4.5 Takusen

Report by: Alistair Bayley, Oleg Kiselyov, Alain
Crémieux

Status: active development

Takusen is a library for accessing DBMS’s. It is a low-
level library like HSQL, in the sense that it is used to
issue SQL statements. Takusen’s ‘unique-selling-point’
is a design for processing query results using a left-
fold enumerator. For queries the user creates an itera-
tee function, which is fed rows one-at-a-time from the
result-set. We also support processing query results us-
ing a cursor interface, if you require finer-grained con-
trol. Currently we fully support Oracle and Sqlite (in-
cluding bind variables and pre-fetching), and partially
support PostgreSQL.

Since the last report we have added a back end for
PostgreSQL. Bind variables are not supported yet in
this case, however. We now distinguish nulls from
empty strings, provided the database does so. We
have restructured the tests to more cleanly separate
database-dependent and independent layers. We are
working on a cleaner interface for prepared statements,
and a MS Sql Server implementation.

Further reading

http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/

4.4.6 HaskellDB

Report by: Björn Bringert
Status: active development and maintenance
Portability: GHC, Hugs, multiple platforms

HaskellDB is a library for accessing databases through
Haskell in a type safe and declarative way. It
completely hides the underlying implementation and
can interface with several popular database en-
gines through either HSQL or wxHaskell (→ 4.5.1).
HaskellDB was originally developed by Daan Leĳen.
This latest incarnation of HaskellDB was produced as
part of a student project at Chalmers University of
Technology.
The current version supports:
◦ Completely type safe queries on databases
◦ Support for MySQL, PostgreSQL, SQLite and

ODBC through HSQL
◦ Support for ODBC through wxHaskell
◦ Automatic conversion between Haskell types and

SQL types
◦ Support for bounded strings
◦ Dynamic loading of drivers via hs-plugins (→ 4.2.12)
Future possible developments include:

29

http://www.cs.bonn.edu/~ralf/publications/IAI-TR-98-12.ps.gz
http://www.cs.bonn.edu/~ralf/publications/IAI-TR-98-12.ps.gz
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://cvs.sf.net/viewcvs.py/haskell-libs/libs/takusen/

◦ Support for more backends (Oracle)
◦ Support for non-SQL backends
◦ Driver-specific code generation. This is needed for

non-SQL backends, and we have discovered that no
SQL databases implement the standard in quite the
same way

There hasn’t been a new release for a while, but an
experimental Cabalized (→ 4.1.1) version is available in
the CVS repository. New developers are very welcome
to join the project.

Further reading

http://haskelldb.sourceforge.net/

4.4.7 ByteStream

Report by: Bulat Ziganshin
Status: beta

ByteStream is like the NHC Binary library – it pro-
vides marshalling of Haskell objects to byte streams
and restoring them back. Features:

◦ light-fast speed, but only x86 processors compatible
(uses unaligned memory access)

◦ using callbacks to read and write data (in large
chunks) to a byte stream, so it can go on-the-fly to
memory, file or, for example, to another PC

◦ using variable-length format for Integers and list
lengths (1–9 bytes, dependent on value)

Example of very basic usage:

ByteStream.writeFile "test" [1..1000::Integer]
(restored::[Integer]) <- ByteStream.readFile "test"

Further reading

◦ Download page: http://freearc.narod.ru

4.4.8 Compression-2005

Report by: Bulat Ziganshin
Status: stable

Features of the Compression-2005 Library:

◦ easy and uniform access to most competitive com-
pression algorithms as of April’05: LZMA, PPMd
and GRZip

◦ all input/output performed via user-supplied func-
tions (callbacks), so you can compress data in mem-
ory, files, pipes, sockets and anything else

◦ all parameters of compression algorithm are
defined with a single string, for example
"lzma:8mb:fast:hc4:fb32".

So, the entire compression program can be written
as a one-liner:

compress "ppmd:10:48mb" (hGetBuf stdin)
(\buf size ->

hPutBuf stdout buf size >> return size)

with decompressor program:

decompress "ppmd:10:48mb" (hGetBuf stdin)
(\buf size ->

hPutBuf stdout buf size >> return size)

You can replace "ppmd:10:48mb" with "lzma:16mb" or
"grzip" to get another two compressors – all three will
compress faster and better than bzip2.

Of course, the primary purpose of this library is to
give you a possibility to use state-of-the-art compres-
sion as an integral part of your Haskell programs.

Further reading

◦ Download page: http://freearc.narod.ru

4.5 User interfaces

4.5.1 wxHaskell

Report by: Daan Leĳen
Status: beta

wxHaskell is a portable GUI library for Haskell. The
goal of the project is to provide an industrial strength
portable GUI library, but without the burden of devel-
oping (and maintaining) one ourselves.

wxHaskell is therefore build on top of wxWidgets – a
comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with native look-and-feel, and it has a very ac-
tive community (ranked among the top 25 most active
projects on sourceforge). Many other languages have
chosen wxWidgets to write complex graphical user in-
terfaces, including wxEiffel, wxPython, wxRuby, and
wxPerl.

Since most of the interface is automatically gener-
ated from the wxEiffel binding, the latest release of wx-
Haskell already supports about 90% of the wxWindows
functionality – about 3000 methods in 500 classes with
1300 constant definitions. wxHaskell has been built
with GHC 6.x on Windows, MacOS X and Unix sys-
tems with GTK, and binary distributions are available
for common platforms.

Since the last community report, most work has been
directed into improved stability and a better build sys-
tem. There is also better integration with other pack-
ages: HaskellDB (→ 4.4.6) works with the wxHaskell
ODBC binding and HOpenGL (→ 4.6.1) can work with
the OpenGL canvas. The wxHaskell website also shows

30

http://haskelldb.sourceforge.net/
http://freearc.narod.ru
http://freearc.narod.ru

some screenshots of larger sized applications that are
developed with wxHaskell. It is most satisfying to see
that even those larger applications are ported with-
out any real difficulties – Haskell is becoming a very
portable language indeed!

Further reading

You can read more about wxHaskell at http://
wxhaskell.sourceforge.net and on the wxHaskell mailing
list at http://sourceforge.net/mail/?group_id=73133.
See also “wxHaskell: a portable and concise GUI li-
brary”, Daan Leĳen, Haskell workshop 2004.

4.5.2 FunctionalForms

Report by: Sander Evers

FunctionalForms is a combinator library/domain spe-
cific language for forms in wxHaskell (→ 4.5.1): dialogs
which show and edit a set of values (often named Op-
tions or Settings). This declarative abstraction layer
combines control and layout definition into one expres-
sion, and passes values to and from the controls. Dis-
joint union types directly translate to radiobuttons or
checkboxes with subforms. All of wxHaskell’s layout
freedom is preserved.

Currently, FunctionalForms is mainly a proof-of-
concept for declarative form programming. Plans exist
to integrate it more closely with wxHaskell.

Further reading

http://www.sandr.dds.nl/FunctionalForms

4.5.3 Gtk2Hs

Report by: Duncan Coutts
Maintainer: Axel Simon and Duncan Coutts
Status: beta, actively developed

Gtk2Hs is a GUI Library for Haskell based on Gtk+.
Gtk+ is an extensive and mature multi-platform toolkit
for creating graphical user interfaces.

GUIs written using Gtk2Hs follow the native look on
Windows and of course on Linux, Solaris and FreeBSD.
Gtk+ and Gtk2Hs also support MacOS X (it currently
uses the X11 server but a native port is in progress).

Gtk2Hs features:
◦ automatic memory management (unlike some other

C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ extensive reference documentation
◦ support for the Glade visual GUI builder

◦ bindings to some Gnome extensions: GConf, a source
code editor widget and a widget that embeds the
Mozilla rendering engine

◦ an easy-to-use installer for Windows
◦ packages for Fedora Core (→ 7.4.2), Gentoo (→

7.4.4), Debian (→ 7.4.1), FreeBSD and ArchLinux
The Gtk2Hs library is actively maintained and devel-
oped. We have just released version 0.9.10. It includes
many bug fixes, various documentation improvements
and two significant new features:

◦ Addition of the cairo vector graphics API. Paolo
Martini won a $4500 grant under the Google Sum-
mer of Code programme for a project to add bind-
ings for the cairo vector graphics library to Gtk2Hs.
The result of this project are now included in the
latest Gtk2Hs release. This provides a easy-to-use
vector graphics API (using a PDF-style drawing
model) with high quality output for multiple back-
ends (screen, print and image files).

◦ Completion of Pango, the font rendering engine of
Gtk+. We now provide all functions that end users
should ever need for rendering text, ranging from
type-setting whole paragraphs (Layouts) down to
breaking up attributed text into several runs. All off-
sets into Haskell strings are transparently translated
into UTF-8 offsets used in Pango, thereby alleviating
much of the grief of dealing with Unicode.

This release of Gtk2Hs is known to run on Windows,
Linux, MacOS X, FreeBSD, OpenBSD and Solaris.

To go with the 0.9.10 release there is an implemen-
tation of the SOE graphics API. It takes advantage of
the cairo vector graphics extension if it is available to
produce anti-aliased output. The intention is to bundle
this with a future release of Gtk2Hs so that it will be
easy for students to install on Windows and Linux.
Other news since the last HCAR:

◦ Gtk2Hs now has a properties API in the same style
as that of wxHaskell (→ 4.5.1)/Yampa.

◦ The new Pivotal (→ 3.1.3) prototype uses Gtk2Hs.
Pivotal is an interactive, document-centered presen-
tation of Haskell.

◦ The Yi (→ 6.13) text editor and Haskell IDE (→
5.5.6) are now using Gtk2Hs

◦ Gtk2Hs is being used on Functional Programming
courses at the University of Oxford and the Univer-
sity of Jyväskylä.

◦ The development version of Gtk2Hs is now available
via darcs (→ 6.6). We welcome patches contributed
using “darcs send”.

Future plans include a 1.0 release, bundling the SOE
package, HOpenGL (→ 4.6.1) support and writing
some introductory tutorials.

31

http://wxhaskell.sourceforge.net
http://wxhaskell.sourceforge.net
http://sourceforge.net/mail/?group_id=73133
http://www.sandr.dds.nl/FunctionalForms

Further reading

◦ News, downloads and documentation:
http://haskell.org/gtk2hs/

◦ Development version:
darcs get http://haskell.org/gtk2hs/darcs/gtk2hs/

◦ Graphics.SOE.Gtk implementation:
darcs get http://haskell.org/~duncan/soe

4.5.4 hscurses

Report by: Stefan Wehr
Status: stable/beta

hscurses is a Haskell binding to the ncurses library, a
library of functions that manage an application’s dis-
play on character-cell terminals. hscurses also provides
some basic widgets implemented on top of the ncurses
binding, such as a text input widget and a table widget.
The binding was originally written by John Meacham
http://repetae.net/john/. Tuomo Valkonen http://
modeemi.fi/~tuomov/ and Don Stewart http://www.
cse.unsw.edu.au/~dons improved it and I finally added
some basic widgets and packed it up as a standalone
library.
The binding itself is stable; however, the widget library
is still beta. I plan to improve and extend the widget
library in the next time. The build system will use
Cabal (→ 4.1.1) once GHC 6.6 is out.

Further reading

http://www.stefanwehr.de/haskell/

4.6 (Multi-)Media

4.6.1 HOpenGL – A Haskell Binding for OpenGL
and GLUT

Report by: Sven Panne
Status: stable, actively maintained

The goal of this project is to provide a binding for
the OpenGL rendering library which utilizes the spe-
cial features of Haskell, like strong typing, type classes,
modules, etc., but is still in the spirit of the official
API specification. This enables the easy use of the vast
amount of existing literature and rendering techniques
for OpenGL while retaining the advantages of Haskell
over lower-level languages like C. Portability in spite of
the diversity of Haskell systems and OpenGL versions
is another goal.

HOpenGL includes the simple GLUT UI, which is
good to get you started and for some small to medium-
sized projects, but HOpenGL doesn’t rival the GUI
task force efforts in any way. Smooth interopera-
tion with GUIs like gtk+hs or wxHaskell (→ 4.5.1)

on the other hand is a goal, see e.g. http://wxhaskell.
sourceforge.net/samples.html#opengl

Currently there are two major incarnations of
HOpenGL, differing in their distribution mechanisms
and APIs: The old one (latest version 1.05 from
09/09/03) is distributed as a separate tar ball and needs
GreenCard plus a few language extensions. Apart from
small bug fixes, there is no further development for this
binding. Active development of the new incarnation
happens in the fptools repository, so it is easy to ship
GHC, Hugs, and nhc98 with OpenGL/GLUT support.
The new binding features:
◦ Pure Haskell 98 + FFI
◦ No GreenCard dependency anymore
◦ Full OpenGL 1.5 support (NURBS currently only

partly implemented), OpenGL 2.0 features planned
◦ A few dozen extensions
◦ An improved API, centered around OpenGL’s notion

of state variables
◦ Extensive hyperlinked online documentation
◦ Supports freeglut-only features, too
HOpenGL is extensively tested on x86 Linux and
Windows, and reportedly runs on Solaris, FreeBSD,
OpenBSD (→ 7.4.3), and Mac OS X.

The binding comes with a lot of examples from the
Red Book and other sources, and Sven Eric Panitz
has written a tutorial using the new API (http://
www.tfh-berlin.de/~panitz/hopengl/), so getting started
should be rather easy.

Further reading

http://www.haskell.org/HOpenGL/

4.6.2 HOpenAL – A Haskell Binding for OpenAL
and ALUT

Report by: Sven Panne
Status: semi-stable, actively maintained

The goal of this project is to provide a binding for
OpenAL, a cross-platform 3D audio API, appropriate
for use with gaming applications and many other types
of audio applications. OpenAL itself is modeled after
the highly successful OpenGL API, and the Haskell
bindings for those libraries share “the same spiri”, too.
Just like OpenGL is accompanied by GLUT, HOpe-
nAL includes a binding for ALUT, the OpenAL Utility
Toolkit, which makes managing of OpenAL contexts,
loading sounds in various formats and creating wave-
forms very easy.
The OpenAL and ALUT packages have not been re-
leased yet, but they are already usable and almost
feature-complete. They cover the latest specification
releases, i.e. OpenAL 1.1 and ALUT 1.0.5, and they
work on every platform supporting OpenAL and ALUT
(Linux, Windows, Mac OS X, BSDs, . . .). They are
tested with GHC and Hugs and will probably work

32

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/darcs/gtk2hs/
http://haskell.org/~duncan/soe
http://repetae.net/john/
http://modeemi.fi/~tuomov/
http://modeemi.fi/~tuomov/
http://www.cse.unsw.edu.au/~dons
http://www.cse.unsw.edu.au/~dons
http://www.stefanwehr.de/haskell/
http://wxhaskell.sourceforge.net/samples.html#opengl
http://wxhaskell.sourceforge.net/samples.html#opengl
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/

with other Haskell systems, too, because they use only
H98 + FFI.

Further reading

http://www.openal.org/

4.6.3 hsSDL

Report by: Lemmih
Status: stable, maintained

hsSDL contains bindings to libSDL, libSDL_gfx, lib-
SDL_image, libSDL_mixer and libSDL_ttf. The
bindings can be installed independently of each other
and they all require hsc2hs to be built. Some of the
bindings are incomplete or lack proper documentation.
If you miss a feature please feel free to mail me (Lem-
mih) a request at 〈lemmih@gmail.com〉.
hsSDL differs from the other Haskell SDL bindings by
being more complete and properly Cabalized (→ 4.1.1).

Further reading

◦ Darcs repository:
http://scannedinavian.org/~lemmih/hsSDL/

◦ libSDL:
http://www.libsdl.org/

4.6.4 Haskore revision

Report by: Henning Thielemann and Paul Hudak
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e. without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design deci-
sions, and fixing bugs. Specific improvements include:

1. The Music data type has been generalized in the
style of Hudak’s “polymorphic temporal media.”

2. The Music data type has been made abstract by
providing functions that operate on it.

3. Support for infinite Music objects is improved.

4. Csound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed
with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (→ 6.20).)

5. The test suite is now based on QuickCheck (→ 5.4.4)
and HUnit.

6. The AutoTrack project has been adapted and in-
cluded.

7. Support for csound orchestra files has been improved
and extended, thus allowing instrument design in a
signal-processing manner using Haskell.

Future plans

Introduce a more general notion of instruments which
allows for more parameters that are specific to cer-
tain instruments. Allow modulation of music similar to
the controllers in the MIDI system. Connect to other
Haskore related projects. Adapt to the Cabal (→ 4.1.1)
system.

Further reading

◦ http://www.haskell.org/hawiki/Haskore
◦ http://cvs.haskell.org/darcs/haskore/

4.7 Web and XML programming

4.7.1 CabalFind

Report by: Dimitry Golubovsky
Status: experimental

CabalFind is an attempt to create a generalized inter-
face to Internet search engines and provide function-
ality to postprocess search engines’ HTML response
to extract the necessary information. Initially it was
written to collect information about Cabal (→ 4.1.1)
package descriptor files (.cabal) available over the In-
ternet by issuing specific queries to search engines such
as Google and Yahoo (hence the project name was cho-
sen), but may be used for any kind of automated in-
formation search, provided that the search criteria are
well defined.
CabalFind uses the Haskell XML Toolbox (→ 4.7.4) to
query search engines and parse HTML responses.

Current Status

The current version of CabalFind is 0.1
Number of Cabal package descriptor files that may
be found by CabalFind as of October 25, 2005 using
Google is 117 (results may vary slightly from time to
time). Ironically, CabalFind cannot find its own Cabal
package descriptor file (CabalFind.cabal): reason yet
unknown.

Further reading

CabalFind is available as a Cabalized package:

darcs get

http://www.golubovsky.org/repos/cabalfind/

33

http://www.openal.org/
mailto: lemmih at gmail.com
http://scannedinavian.org/~lemmih/hsSDL/
http://www.libsdl.org/
http://www.haskell.org/hawiki/Haskore
http://cvs.haskell.org/darcs/haskore/
http://www.golubovsky.org/repos/cabalfind/

The Wiki page at http://haskell.org/hawiki/CabalFind/
contains a brief description of the library internals and
an example of its usage.

4.7.2 WebFunctions

Report by: Robert van Herk
Status: Released as result of my master’s thesis

project

Project Overview

WebFunctions is a DSEL for developing websites, im-
plemented in Haskell. WebFunctions is a domain spe-
cific embedded language for web authoring, imple-
mented in Haskell. The functionality of the WebFunc-
tions framework was inspired by Apple’s WebObjects
(http:// www.apple.com/WebObjects). We claim it is
easier to use since the Haskell type checker makes a
lot of extra checks, that are absent from the Apple
framework. Unfortunately we do not yet have all the
nice tooling and special editors, but we work on this.
Some important features of the WebFunctions system
are: loose coupling between model, view and controller
code, transparent handling of session and application
state, the ability to run the whole web application in-
side a single process, type safe HTML generation and
database interaction and abstracted database interac-
tion. For HTML generation, WASH/HTML (→ 4.7.5)
is used. HaskellDB (→ 4.4.6) is used for database inter-
action. An important difference from some of the other
Haskell software in the same field is that a WebFunc-
tions application comes with a built-in web server. Be-
cause of this, no CGI is used to handle the requests and
the state is persistent at the server. This also means
no serialization/deserialization of the state is needed.
Furthermore, a database abstraction mechanism is im-
plemented that provides the programmer with concur-
rency support, caching, and transaction management
per session. You can download WebFunctions from
http://www.cs.uu.nl/wiki/WebFunctions/Releases.

People

Robert van Herk, for whom the development was his
master thesis project Doaitse Swierstra, who super-
vised Robert. Atze Dĳkstra, who is one of our local
WebObjects experts.

Further reading

http://www.cs.uu.nl/wiki/WebFunctions/WebHome

4.7.3 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public release was recently refreshed to
1.13, mainly for compatibility with ghc-6.4, and to in-
troduce support for building via Cabal (→ 4.1.1).

I have recently been experimenting with improve-
ments to the secondary parsing stage, where the generic
XML tree is re-parsed into typed Haskell trees. Un-
til now, there have been two ways of doing this, de-
pending on whether you started by defining a DTD
(Xml2Haskell) or started with some Haskell types
(Haskell2Xml). These can be combined into a single
class, and what is more, they can be implemented with
proper parser combinators, to provide decent error mes-
sages. This experimental and incomplete branch of
HaXml is version 1.14, and once it is stable, it will
become version 2. Work still remaining is to update
the tools DtdToHaskell and DrIFT (→ 3.4) such they
the generate the new class rather than the old ones.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.cs.york.ac.uk/fp/HaXml-1.14
◦ http://www.ninebynine.org/Software/HaskellUtils/

4.7.4 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: fourth major release (current release: 5.3)

Description

The Haskell XML Toolbox is a collection of tools for
processing XML with Haskell. It is itself purely writ-
ten in Haskell 98. The core component of the Haskell
XML Toolbox is a validating XML-Parser that sup-
ports almost fully the Extensible Markup Language
(XML) 1.0 (Second Edition), There is validator based
on DTDs and a new more powerful validator for Relax
NG schemas.

The Haskell XML Toolbox bases on the ideas of
HaXml (→ 4.7.3) and HXML, but introduces a more
general approach for processing XML with Haskell.
Since release 5.1 there is a new arrow interface simi-
lar to the approach taken by HXML. This interface is
more flexible than the old filter approach. It is also
safer, type checking of combinators becomes possible
with the arrow interface.

Features

◦ validating XML parser

34

http://haskell.org/hawiki/CabalFind/
http:// www.apple.com/WebObjects
http://www.cs.uu.nl/wiki/WebFunctions/Releases
http://www.cs.uu.nl/wiki/WebFunctions/WebHome
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-1.14
http://www.ninebynine.org/Software/HaskellUtils/

◦ very liberal HTML parser
◦ XPath support
◦ full Unicode support
◦ support for XML namespaces
◦ flexible arrow interface with type classes for XML

filter
◦ package support for ghc
◦ native Haskell support of HTTP 1.1 and FILE pro-

tocol
◦ HTTP and access via other protocols via external

program curl
◦ tested with W3C XML validation suite
◦ example programs for filter and arrow interface
◦ Relax NG schema validator based on the arrows in-

terface
◦ A HXT Cookbook for using the toolbox and the ar-

row interface

Current Work

Currently a master student works on a project devel-
opping a dynamic webserver with servlet functionality.
XML and HXT will be used for all internal data. The
server will be based on HWS-WP (Haskell Webserver
with Plug-Ins).

Further reading

The Haskell XML Toolbox Webpage (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML processing
using arrows and RDF documents, and master the-
sises describing the design of the toolbox, the DTD
validator and the arrow based Relax NG validator.

4.7.5 WASH/CGI – Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely
functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features
◦ complete interactive server-side script in one pro-

gram
◦ a monadic, type-safe interface to generating XHTML

output
◦ type-safe compositional approach to specifying form

elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

◦ documented preprocessor for translating markup in
syntax close to XHTML syntax into WASH/HTML

Completed Items are:
◦ restructuring towards Cabalization (hierarchical

modules, one package)
◦ WASH server pages with a modified version of Si-

mon Marlow’s hws web server; the current prototype
supports dynamic compilation and loading of WASH
source (via Don Stewart’s hs-plugins (→ 4.2.12)) as
well as the implementation of a session as a continu-
ally running server thread

Current work includes
◦ database interface
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/~thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

4.7.6 HAIFA

Report by: Simon Foster

My work on GXS since the last HCAR has primarily
been to move away from the type-safe cast method of
building generic functions, toward the new extensible
type-class based SYB3 library (→ 3.4). GXS is now
fully extensible, and allows full customization of data-
type encoders, as well as the addition of hooks, which
allows additional meta-data to be encoded into the tree.

To facilitate the use of W3C XML Schema for map-
ping Haskell data-types we’ve also been extending the
content-model of GXS, to be suitably expressive. We’ve
utilized Ralf Lämmel’s HList (→ 4.4.4) library to build
representations of type-based Union and Sequences, to
allow a natural representation of data-types encoded
by Schema. With the use of a newly implemented set
of data-types for representing XML Schema, it is now
possible to map Schema complex-types to Haskell data-
types, with full serialization, although this highly beta
at the moment.

All of this has been moving toward the use of Haskell
for orchestrating composite web-services. One of our
aims is to allow Haskell code to be evaluated via a Web-
Service, with inputs and outputs to a function abstrac-
tion encoded as XML, and typed by XML Schema. We
have successfully been able to build the service to per-
form this task, and will shortly be releasing the code

35

http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

under the GPL. As well as this, we have started putting
together the actual orchestration engine, which uses a
process calculus to provide operational semantics for
the workflow. This too will hopefully be released soon.

No further work has been done on HWS-WP, mainly
because we are now using a much simpler HTTP server
as our shell, which is part of HAIFA. Our SOAP im-
plementation is also usable server-side.

Further reading

For more information please see the HAIFA project
page at http://savannah.nongnu.org/projects/haifa or
the HAIFA Wiki at http://www.repton-world.org.uk/
mediawiki/index.php/HAIFA_Wiki.

4.7.7 HaXR – the Haskell XML-RPC library

Report by: Björn Bringert
Status: maintained

HaXR is a library for writing XML-RPC client and
server applications in Haskell. XML-RPC is a standard
for XML encoded remote procedure calls over HTTP.
The library is actively maintained and relatively stable.
Since the last report, the library has changed its name
to HaXR (thanks to Christopher Milton for the name
suggestion), moved its homepage and darcs repo (→
6.6) to haskell.org, and been Cabalized (→ 4.1.1).

Further reading

http://www.haskell.org/haxr/

36

http://savannah.nongnu.org/projects/haifa
http://www.repton-world.org.uk/mediawiki/index.php/HAIFA_Wiki
http://www.repton-world.org.uk/mediawiki/index.php/HAIFA_Wiki
http://www.haskell.org/haxr/

5 Tools

5.1 Foreign Function Interfacing

5.1.1 HSFFIG

Report by: Dimitry Golubovsky
Status: mostly stable, minor improvements over time

HSFFIG (HaSkell Foreign Function Interface Genera-
tor) is a tool to convert a C header file (.h) into Haskell
code containing FFI import statements for all entities
whose declarations are found in the header file.
A C header file is to be passed through the preproces-
sor (CPP); output of the preprocessor is piped to the
HSFFIG standard input, and the standard output of
HSFFIG is to be processed by hsc2hs. The resulting
Haskell code contains autogenerated FFI import state-
ments for function prototypes found in the header file
(and all header files it includes); #define statements
and enumerations are converted into haskellized defini-
tions of constants (where possible), and for each struc-
ture/union, means are provided for read/write access
to members, and to determine amount of memory oc-
cupied by the structure or union.
Conceptually, Haskell code generated by HSFFIG gives
the Haskell compiler which “connects” a foreign library
to an application written in Haskell the same “vision”
as the C compiler would have if it were “connecting”
the same library to an application written in C using
the same header files.
Haskell code interfacing with foreign libraries using
HSFFIG may look “almost like C”, but under the strict
control of the Haskell type system: all information
about foreign functions’ type signatures is collected au-
tomatically.
HSFFIG is intended to be used with the Glasgow
Haskell Compiler (→ 2.1), and was only tested for such
use.
Known analogs are: c2hs (→ 5.1.2), hacanon.

Current Status

The current release version of hsffig is 1.0pl2 (release
date: October 17, 2005).

Further reading

◦ The HSFFIG project home page:
http://hsffig.sourceforge.net/

◦ Tutorial:
http://haskell.org/hawiki/HsffigTutorial/

◦ The Examples page (Haskell code using HSFFIG
with detailed comments):
http://haskell.org/hawiki/HsffigExamples/

◦ The latest addition to the Tutorial:
http://haskell.org/hawiki/HsffigLinkageOptimization/
This page describes a method to optimize the process
of linking with the object code resulting from com-
pilation of Haskell code produced by HSFFIG, and
shows how to use the --make option of GHC when
building applications using such code.

5.1.2 C–>Haskell

Report by: Manuel Chakravarty
Status: active

C–>Haskell is an interface generator that simplifies the
development of Haskell bindings to C libraries. It reads
C header files to automate many tedious aspects of in-
terface generation and to minimise the scope of error
in translating C declarations to Haskell.

The latest version of C–>Haskell includes support
for cross compilation, a completely new Cabal-ised (→
4.1.1) build-system, and library-less bindings that are
easier to distribute. Moreover, Duncan Coutts dra-
matically lowered time and memory consumption with
a new C parser. Source and binary packages as well as
a reference manual are available from http://www.cse.
unsw.edu.au/~chak/haskell/c2hs/.

5.2 Scanning, Parsing, Analysis

5.2.1 Frown

Report by: Ralf Hinze
Status: beta

Frown is an LALR(k) parser generator for Haskell 98
written in Haskell 98.
Its salient features are:

◦ The generated parsers are time and space efficient.
On the downside, the parsers are quite large.

◦ Frown generates four different types of parsers. As
a common characteristic, the parsers are genuinely
functional (i.e. ‘table-free’); the states of the under-
lying LR automaton are encoded as mutually recur-
sive functions. Three output formats use a typed
stack representation, one format due to Ross Pater-
son (code=stackless) works even without a stack.

37

http://hsffig.sourceforge.net/
http://haskell.org/hawiki/HsffigTutorial/
http://haskell.org/hawiki/HsffigExamples/
http://haskell.org/hawiki/HsffigLinkageOptimization/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

◦ Encoding states as functions means that each state
can be treated individually as opposed to a table
driven-approach, which necessitates a uniform treat-
ment of states. For instance, look-ahead is only used
when necessary to resolve conflicts.

◦ Frown comes with debugging and tracing facilities;
the standard output format due to Doaitse Swier-
stra (code=standard) may be useful for teaching LR
parsing.

◦ Common grammatical patterns such as repetition of
symbols can be captured using rule schemata. There
are several predefined rule schemata.

◦ Terminal symbols are arbitrary variable-free Haskell
patterns or guards. Both terminal and nonterminal
symbols may have an arbitrary number of synthe-
sized attributes.

◦ Frown comes with extensive documentation; several
example grammars are included.

Furthermore, Frown supports the use of monadic lex-
ers, monadic semantic actions, precedences and asso-
ciativity, the generation of backtracking parsers, mul-
tiple start symbols, error reporting and a weak form of
error correction.

Further reading

http://www.informatik.uni-bonn.de/~ralf/frown/

5.2.2 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a
parser generator (such as Happy) to build a complete
parser.

Recent changes:

◦ We are switching to a Cabal build system (→ 4.1.1)
for Alex, which will make it easier to build Alex on
Windows systems. Alex needs some features found
only in very recent versions of Cabal, however.

◦ Alex is now in a Darcs repository (→ 6.6), here: http:
//cvs.haskell.org/darcs/alex. The version of the code
in Darcs is currently not buildable, because we are
in the progress of migrating to Cabal.

Further reading

http://www.haskell.org/alex/

5.2.3 Happy

Report by: Paul Callaghan and Simon Marlow
Status: stable, maintained

Paul’s Generalized LR (GLR) extension for Happy was
released as part of Happy-1.15. This release also in-
cludes some new directives and some fixes, plus Ash-
ley Yakeley has modified the monad mode of standard
(LALR) parsers to carry additional class constraints.
To fit in with this last change, parsers which don’t
have a monad specified will now be generated to use
an identity monad.

Based on an algorithm by Tomita, GLR can parse
ambiguous grammars and produce a directed acyclic
graph representing all possible parses. It is based on
undergraduate project work by Ben Medlock, but has
been significantly extended and improved since then.
You can also attach semantic information to rules in
two modes:
◦ to give detailed, application-specific labelling for the

nodes in the DAG;
◦ to compute lists of overall semantic results, one per

valid parse.
The latter mode can also perform monadic computa-
tions. We have used the GLR facility in several ap-
plications, including analysis of DNA sequences and
determination of correct rhythmic structures for po-
etry. Other possible applications include natural lan-
guage and pattern analysis. The Chalmers BNFC
tool (→ 5.2.5) is able to output grammars which are
compatible with the GLR mode of Happy. Recently,
the driver code has been improved and is significantly
faster on heavily ambiguous grammars, although this
is not part of the official release at present (see Paul’s
GLR page or CVS to obtain a copy).
Other current activity on Happy:

◦ We are switching to a Cabal build system (→ 4.1.1)
for Happy, which will make it easier to build Happy
on Windows systems. Happy needs some features
found only in very recent versions of Cabal, however.

◦ Happy is now in a Darcs repository (→ 6.6), here:
http://cvs.haskell.org/darcs/happy. The version of
the code in Darcs is currently not buildable, because
we are in the progress of migrating to Cabal.

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

38

http://www.informatik.uni-bonn.de/~ralf/frown/
http://cvs.haskell.org/darcs/alex
http://cvs.haskell.org/darcs/alex
http://www.haskell.org/alex/
http://cvs.haskell.org/darcs/happy
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/

5.2.4 Attribute Grammar Support for Happy

Report by: Robert Dockins
Status: active development

I have hacked up Happy (→ 5.2.3) to support attribute
grammars. Attribute grammars are a way of annotat-
ing context-free grammars to support syntax directed
translation and the checking of context-sensitive prop-
erties.
What we have:
◦ Support for attribute grammars using a slight mod-

ification to the Happy grammar syntax.
◦ Haskell 98! No language extensions required.
◦ Support for all well-defined attribute grammars (con-

jecture, but I’m pretty sure).
What we don’t have:
◦ Support for GLR parsing (mostly because I don’t

completely understand it).
◦ Checks for proper attribute usage.
Simon Marlow, the Happy maintainer, has expressed
interest in the extension, so I will be working on chasing
out the bugs and submitting a patch for inclusion in the
official Happy distribution.

Further reading

◦ There is a darcs repo (→ 6.6) based on the Happy
1.15 source distribution at:
http://www.eecs.tufts.edu/~rdocki01/happy-ag/

◦ Documentation for the extension can be found at:
http://www.eecs.tufts.edu/~rdocki01/happy-ag-docs/
sec-AttributeGrammar.html

5.2.5 BNF Converter

Report by: Markus Forsberg
Contributors: Björn Bringert, Paul Callaghan, Markus

Forsberg, Peter Gammie, Patrik Jansson,
Antti-Juhani Kaĳanaho, Michael Pellauer,

and Aarne Ranta
Status: active

The project started in 2002 as an experiment with
Grammatical Framework (GF) where we investigated
to what extent GF could be used to generate a compiler
front-end for Haskell, i.e. to generate modules such as a
lexer, an abstract syntax, and a parser from a GF gram-
mar. This was indeed possible, but we soon realized
that some extra special-purpose notation was needed
to avoid problems such as reflecting precedence levels
in the abstract syntax. To avoid cluttering GF with
this special-purpose notation, we wrote a new tool, and
hence, the BNF Converter (BNFC) tool was born.

The tool has been actively developed since 2002 and

has undergone major development. It is now a multi-
lingual compiler tool. BNFC accepts as input an LBNF
(Labelled BNF) grammar, a format we have developed,
and generates a compiler front-end (an abstract syntax,
a lexer, and a parser). Furthermore, it generates a case
skeleton usable as the starting point of back-end con-
struction, a pretty printer, a test bench, and a LATEX
document usable as language specification.

The program components can be generated in
Haskell, Java 1.4 and 1.5, C, and C++ using standard
parser and lexer tools. It also supports XML genera-
tion of the abstract syntax, which is usable for the ex-
change of data between systems. If the systems are im-
plemented in languages supported by BNFC, the com-
munication can be performed more directly through
pretty-printing and parsing the message.

Some highlights:
◦ used as teaching tool on several CS courses at

Chalmers.
◦ used to develop a telecommunications protocol lan-

guage compiler at Tieto-Enator.
◦ used to develop the GF v2.0 language.
◦ package included in Debian Linux distribution (→

7.4.1).
◦ mentioned in Datormagazin, 2005-05, one of the

biggest computer magazines in Sweden.

Further reading

◦ http://www.cs.chalmers.se/ markus/BNFC/
◦ M. Forsberg, A. Ranta. The BNF Converter:

A High-Level Tool for Implementing Well-Behaved
Programming Languages. NWPT’02 proceedings,
Proceedings of the Estonian Academy of Sciences,
December 2003, Tallin, Estonia.

◦ M. Pellauer, M. Forsberg, A. Ranta: BNF Con-
verter: Multilingual Front-End Generation from La-
belled BNF Grammars, Technical Report no.2004-
09 in Computing Science at Chalmers University of
Technology and Gothenburg University.

◦ M. Forsberg, A. Ranta. Tool Demonstration: BNF
Converter. HW’2004, Proceedings of the ACM SIG-
PLAN 2004 Haskell Workshop, Snowbird, Utah.

5.2.6 LRC

Report by: Joost Visser

Lrc is a system for generating efficient incremental at-
tribute evaluators. Lrc can be used to generate lan-
guage based editors and other advanced interactive en-
vironments. Lrc can generate purely functional eval-
uators, for instance in Haskell. The functional evalu-
ators can be deforested, sliced, strict, lazy. Addition-
ally, for easy reading, a colored LATEX rendering of the
generated functional attribute evaluator can be gener-
ated. Recently, a front-end has been added to Lrc for
XQuery.

39

http://www.eecs.tufts.edu/~rdocki01/happy-ag/
http://www.eecs.tufts.edu/~rdocki01/happy-ag-docs/sec-AttributeGrammar.html
http://www.eecs.tufts.edu/~rdocki01/happy-ag-docs/sec-AttributeGrammar.html

5.2.7 Sdf2Haskell

Report by: Joost Visser

Sdf2Haskell is a generator that takes an SDF gram-
mar as input and produces support for GLR parsing
and customizable pretty-printing. The SDF grammar
specifies concrete syntax in a purely declarative fash-
ion. From this grammar, Sdf2Haskell generates a set
of Haskell datatypes that define the corresponding ab-
stract syntax. The Scannerless Generalized LR parser
(SGLR) and associated tools can be used to produce
abstract syntax trees which can be marshalled into cor-
responding Haskell values.

Recently, the functionality of Sdf2Haskell has been
extended with generation of pretty-print support.
From the SDF grammar, a set of Haskell functions is
generated that defines an pretty-printer that turns ab-
stract syntax trees back into concrete expressions. The
pretty-printer is updateable in the sense that its behav-
ior can be modified per-type by supplying appropriate
functions.

Further reading

Sdf2Haskell is distributed as part of the Strafunski
bundle for generic programming and language process-
ing (→ 4.3.3). Sdf2Haskell has recently been used in
the development of a parser and pretty-printer for the
complete ISO standard VDM specification language (in
the context of VooDooM (→ 5.3.4)).

5.2.8 SdfMetz

Report by: Tiago Miguel Laureano Alves
Status: stable, maintained

SdfMetz supports grammar engineering by calculat-
ing grammar metrics and other analyses. Currently it
supports two different grammar formalisms (SDF and
DMS) from which it calculates size, complexity, struc-
tural, and ambiguity metrics. Output is a textual re-
port or in Comma Separated Value format. The addi-
tional analyses implemented are visualization, showing
the non-singleton levels of the grammar, or printing
the grammar graph in DOT format. The definition of
all except the ambiguity metrics were taken from the
paper A metrics suite for grammar based-software by
James F. Power and Brian A. Malloy. The ambigu-
ity metrics were defined by the tool author exploiting
specific aspects of SDF grammars.

A web-based interface is planned and more metrics
will be add. A front-end to other grammar formalism
(yacc and antlr) is also planed. The tool was devel-
oped in the context of the IKF-P project (Information
Knowledge Fusion, http://ikf.sidereus.pt/) to develop a
grammar for ISO VDM-SL.

Further reading

The web site of SdfMetz (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/SdfMetz) includes tables of metric val-
ues for a series of SDF grammar as computed by
SdfMetz. The tool is distributed as part of the UMinho
Haskell Libraries and Tools (→ 7.3.9).

5.3 Transformations

5.3.1 The Programatica Project

Report by: Thomas Hallgren

One of the goals of the Programatica Project is to de-
velop tool support for high-assurance programming in
Haskell.

The tools we have developed so far are implemented
in Haskell, and they have a lot in common with a
Haskell compiler front-end. The code has the potential
to be reusable in various contexts outside the Progra-
matica project. For example, it has already been used
in the Haskell refactoring project at the University of
Kent (→ 5.3.3).

We also have a Haskell source code browser, which
displays syntax-highlighted source code where the user
can click on any identifier to display its type or jump
to its definition.

Further reading

◦ The Programatica Project, overview & papers:
http://www.cse.ogi.edu/PacSoft/projects/
programatica/

◦ An Overview of the Programatica Toolset:
http://www.cse.ogi.edu/~hallgren/Programatica/
HCSS04/

◦ Executable formal specification of the Haskell 98
Module System:
http://www.cse.ogi.edu/~diatchki/hsmod/

◦ A Lexer for Haskell in Haskell:
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/

◦ More information about the tools, source code,
downloads, etc:
http://www.cse.ogi.edu/~hallgren/Programatica/

5.3.2 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude / OBJ lan-
guages with special emphasis on the use of simple pro-
grammable strategies for controlling program execu-

40

http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04/
http://www.cse.ogi.edu/~diatchki/hsmod/
http://www.cse.ogi.edu/~hallgren/Talks/LHiH/
http://www.cse.ogi.edu/~hallgren/Programatica/

tion and new commands enabling powerful execution
modes.

The tools have been developed at the Technical Uni-
versity of Valencia (UPV) as part of a number of re-
search projects. The following people is (or has been)
involved in the development of these tools: Beatriz
Alarcón, María Alpuente, Demis Ballis (Università di
Udine), Santiago Escobar, Moreno Falaschi (Università
di Siena), Javier García-Vivó, Salvador Lucas, Pascal
Sotin (Université du Rennes).

Status

The previous work lead to the following tools:

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched on February 2002).

http://www.dsic.upv.es/~slucas/csr/termination/
muterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched on December 2002).

http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched on January 2003).

http://www.dsic.upv.es/users/elp/ondemandOBJ

http://www.dsic.upv.es/users/elp/GVerdi

◦ GVerdi: A Rule-based System for Web site Verifica-
tion (first version launched on January 2005).

All these tools have been written in Haskell (mainly
developed using Hugs and GHC) and use popular
Haskell libraries like hxml-0.2, Parsec, RegexpLib98,
wxHaskell (→ 4.5.1).

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client / server applications (e.g., compil-
ers or complementary tools).

References

◦ Crossing the Rubicon: from Haskell to .NET
through COM. ERCIM News 63:51-52, Octo-
ber 2005. http://www.ercim.org/publication/Ercim_
News/enw63/lucas.html

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1-16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting remote termination tools M. Alpuente
and S. Lucas 7th International Workshop on Termi-
nation, WST’04, pages 6–9, Technical Report AIB-
2004-07, RWTH Aachen, 2004.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200-209, Springer-
Verlag, Berlin, 2004.

◦ A Rule-based System for Web site Verification.
Demis Ballis and Javier García-Vivó. 1st In-
ternational Workshop on Automated Specification
and Verification of Web Sites, WWV’05, Valencia
(SPAIN). Electronic Notes in Theoretical Computer
Science, to appear, 2005.

5.3.3 Hare – The Haskell Refactorer

Report by: Huiqing Li, Claus Reinke and
Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs has as
its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its third major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately. The version
about to be released (at the time of writing) works
with GHC 6.4.1.

In order to allow users to extend HaRe themselves,
the latest releases of HaRe include an API for users
to define their own program transformations, together

41

http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi
http://www.ercim.org/publication/Ercim_News/enw63/lucas.html
http://www.ercim.org/publication/Ercim_News/enw63/lucas.html

with Haddock (→ 5.5.9) documentation. Please let us
know if you are using the API.

Our immediate aims are to support more data-
oriented refactorings and to support duplicate code
elimination and function slicing. We are actively ex-
ploring how to make it easier to use HaRe with GHC
and its libraries, and we have recently undertaken a
feasibility study on this.

A snapshot of HaRe is available from our web page,
as are recent presentations from the group (including
LDTA 05, TFP), and an overview of recent work from
staff, students and interns. Among this is an evaluation
of what is required to port the HaRe system to the GHC
API (→ 2.1).

The final report for the project appears there too,
together with an updated refactoring catalogue and
the latest release of the system. Coming in early 2006
will be Huiqing’s PhD thesis, which was submitted in
September.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.4 VooDooM

Report by: Joost Visser
Maintainer: Tiago Alves, Paulo Silva

VooDooM reads VDM-SL specifications and applies
transformation rules to the datatypes that are de-
fined in them to obtain a relational representation for
these datatypes. The relational representation can be
exported as VDM-SL datatypes (inserted back into
the original specification) and/or SQL table definitions
(can be fed to a relational DBMS). The first VooDooM
prototype was developed in a student project by Tiago
Alves and Paulo Silva. Currently, the development
of VooDooM is continued as an open source project
(http://voodoom.sourceforge.net/) in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) and will include the generation of
XML and Haskell.

Further reading

VooDooM is available from http://voodoom.
sourceforge.net/. The implementation of VooDooM
makes ample use of strategic programming, using
Strafunski (→ 4.3.3), and is described in Strategic
Term Rewriting and Its Application to a VDM-SL
to SQL Conversion (Alves et al., Formal Methods
2005).

5.4 Testing and Debugging

5.4.1 Tracing and Debugging

Report by: Olaf Chitil

There exist a number of tools with rather different ap-
proaches to tracing Haskell programs for the purpose
of debugging and program comprehension. There has
been little new development in the area within the last
year.

Hood and its variant GHood enable the user to ob-
serve the values of selected expressions in a program.
Both are easy to use, because they are based on a small
portable library. A variant of Hood is built into Hugs.

HsDebug is a gdb-like debugger that is only available
from a separate branch of GHC in CVS. The Concur-
rent Haskell Debugger CHD was extended to support
an automatic search for deadlocks.

Further reading

◦ Hood:
http://www.haskell.org/hood/
http://cvs.haskell.org/Hugs/pages/users_guide/
observe.html

◦ CHD:
http://www.informatik.uni-kiel.de/~fhu/chd/

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: several recent additions

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can be
viewed in various ways with several tools: hat-observe,
hat-trail, hat-detect, hat-delta, hat-explore, hat-cover,
hat-anim, black-hat, hat-nonterm . . . Some views are
similar to classical debuggers for imperative languages,
some are specific to lazy functional language features
or particular types of bugs. All tools inter-operate and
use a similar command syntax.

In May 2005 Hat developers from the University of
York and the University of Kent met in York for a
Hat-Day. The current work in progress, from sketchy
ideas to recently implemented extensions, was dis-
cussed. In particular, the extended algorithmic debug-
ger by Thomas Davie, hat-delta, is now available in
CVS and Tom Shackell also showed at TFP 2005 how
the Hat G-machine enables faster production of redex
trails.

Hat can be used both with nhc98 (→ 2.3) and ghc (→
2.1). Hat was built for tracing Haskell 98 programs,
but it also supports some language extensions (FFI,
MPTC, fundeps, hierarchical libs). A tutorial explains

42

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://voodoom.sourceforge.net/
http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://voodoom.sourceforge.net/
http://voodoom.sourceforge.net/
http://www.haskell.org/hood/
http://cvs.haskell.org/Hugs/pages/users_guide/observe.html
http://cvs.haskell.org/Hugs/pages/users_guide/observe.html
http://www.informatik.uni-kiel.de/~fhu/chd/

how to generate traces, how to explore them, and how
they help to debug Haskell programs.

Im May 2005, version 2.04 of Hat was released. Since
then numerous bugfixes, several new features and pro-
totype viewing tools have been added in CVS.

Further reading

◦ Colin Runciman (ed.): Hat Day 2005: work in
progress on the Hat tracing system for Haskell, Tech.
Report YCS-2005-395, Dept. of Computer Science,
University of York, UK, October 2005.

◦ Tom Shackell and Colin Runciman: Faster produc-
tion of redex trails: The Hat G-Machine. Trends in
Functional Programming, TFP ’05, Symposium pro-
ceedings.

◦ http://www.haskell.org/hat

5.4.3 buddha

Report by: Bernie Pope
Status: active

Buddha is a declarative debugger for Haskell 98. It
is based on program transformation. Each module in
the program undergoes a transformation to produce
a new module (as Haskell source). The transformed
modules are compiled and linked with a library for
the interface, and the resulting program is executed.
The transformation is crafted such that execution of
the transformed program constitutes evaluation of the
original (untransformed) program, plus construction of
a semantics for that evaluation. The semantics that
it produces is a “computation tree” with nodes that
correspond to function applications and constants.

New features are being implemented and tested. It
is not clear when a stable release will emerge. Perhaps
early 2006.

Buddha is freely available as source and is licensed
under the GPL. There is also a Debian package (→
7.4.1), as well as ports to Free-BSD, Darwin and Gen-
too (→ 7.4.4).

Further reading

http://www.cs.mu.oz.au/~bjpop/buddha/

5.4.4 QuickCheck

Report by: Koen Claessen and John Hughes
Status: active development

QuickCheck is a tool for specifying and testing formal
properties of Haskell programs. There have been sev-
eral inofficial draft versions of QuickCheck around.

Right now we are in the process of packaging up a
new, official version of QuickCheck, integrating support
for:
◦ automatic finding of small counter examples
◦ monadic properties
◦ exception handling and time-outs
◦ stating properties that are expected to fail
◦ a callback hook for displaying failing test cases
◦ generating test reports

And lots lots more! We plan to distribute the new
QuickCheck using the new Haskell Cabal (→ 4.1.1).

An accompanying tutorial, explaining typical prob-
lems and programming idioms that solve them is also
in the make.

5.5 Development

5.5.1 hmake

Report by: Malcolm Wallace
Status: stable, maintained

Hmake is an intelligent module-compilation manage-
ment tool for Haskell programs. It interoperates with
any compiler – ghc (→ 2.1), hbc, o r nhc98 (→ 2.3) – ex-
cept jhc (→ 2.5) (which does not compile modules sepa-
rately anyway). The public release is currently version
3.10. Occasional maintenance and bugfixes continue to
the CVS tree at haskell.org.

Further reading

http://haskell.org/hmake/

5.5.2 Zeroth

Report by: Lemmih
Status: usable, unmaintained

A program using Template Haskell must link with the
TH library even if it contains no references to TH after
it has been compiled. Zeroth is a preprocessor which al-
lows modules to use TH without linking with the TH li-
brary. To do this, Zeroth evaluates the top level splices
from a module and saves the resulting code.

Further reading

◦ Darcs repository:
http://scannedinavian.org/~lemmih/zerothHead/

5.5.3 Ruler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Doaitse Swierstra
Status: active development

The purpose of the Ruler system is to describe type
rules in such a way that a partial Attribute Gram-

43

http://www.haskell.org/hat
http://www.cs.mu.oz.au/~bjpop/buddha/
http://haskell.org/hmake/
http://scannedinavian.org/~lemmih/zerothHead/

mar implementation, and a pretty printed LATEX can
be generated from a description of type rules. The sys-
tem (currently) is part of the EHC (Essential Haskell
compiler) project and described in a technical paper,
which is also included in the PhD thesis describing the
EHC project. The system is used to describe the type
rules of EHC. The main objectives of the system are:

◦ To keep the implementation and LATEX rendering of
type rules consistent.

◦ To allow an incremental specification (necessary for
the stepwise description employed by EHC).

Using the Ruler language (of the Ruler system) one
can specify the structure of judgements, called judge-
ment schemes. These schemes are used to ‘type check’
judgements used in type rules and generate the imple-
mentation for type rules. A minimal example, where
the details required for generation of an implementa-
tion are omitted, is the following:

scheme expr =
holes [| e: Expr, gam: Gam, ty: Ty |]
judgespec gam :- e : ty

ruleset expr scheme expr =
rule app =

judge A : expr = gam :- a : ty.a
judge F : expr = gam :- f : (ty.a -> ty)
-
judge R : expr = gam :- (f a) : ty

This example introduces a judgement scheme for the
specification of type rules for expressions, and a type
rule for applications (as usually defined in λ-calculus).

Further reading

◦ Homepage (Ruler is part of EHC):
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
From here the mentioned documentation can be
downloaded.

5.5.4 cpphs

Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust Haskell replacement for the C pre-
processor. It has a couple of benefits over the tradi-
tional cpp – you can run it in Hugs when no C compiler
is available (e.g. on Windows); and it understands the
lexical syntax of Haskell, so you don’t get tripped up
by C-comments, line-continuation characters, primed
identifiers, and so on. (There is also a pure text mode
which assumes neither Haskell nor C syntax, for even

greater flexibility.) Current release is now 1.1, and is
pretty stable – there have been only very minor bug-
fixes in the last couple of releases.

Further reading

http://haskell.org/cpphs

5.5.5 Visual Haskell

Report by: Simon Marlow and Krasimir Angelov
Status: in development

Visual Haskell is a plugin for Microsoft’s Visual Studio
development environment to support development of
Haskell code. It is tightly integrated with GHC, which
provides support for intelligent editing features, and
Cabal, which provides support for building and pack-
aging multi-module programs and libraries.

The first release of Visual Haskell, verison 0.0, was
announced on 20 September 2005. It can be ob-
tained from the main Visual Haskell page, here: http:
//www.haskell.org/visualhaskell/. In order to use Visual
Haskell, you need an x86 machine running Windows,
and Visual Studio .NET 2003.

Help is (still) welcome! You first need to register
for the Microsoft VSIP (Visual Studio Integration Pro-
gram) to get access to the VSIP SDK, which has tools,
APIs and documentation for extending Visual Studio.
Registering for VSIP is free, but you have to agree to
a longish license agreement: http://www.vsipdev.com/.

If you’ve registered for VSIP and would like to con-
tribute to Visual Studio/Haskell, please drop me a note
(Simon Marlow 〈simonmar@microsoft.com〉).

5.5.6 hIDE – the Haskell Integrated Development
Environment

Report by: Lemmih
Status: in the process

Through the dark ages many a programmer has longed
for the ultimate tool. In response to this most un-
nerving craving, of which we ourselves have had maybe
more than our fair share, the dynamic trio of #Haskel-
laniacs (dons, dcoutts and Lemmih) (→ 1.2) hereby an-
nounce, to the relief of the community, that a fetus has
been conceived:

hIDE – the Haskell Integrated Development
Environment.

So far the unborn integrates source code recognition
and a chameleon editor, presenting these in a snappy
gtk2 environment. Although no seer has yet predicted
the date of birth of our hIDEous creature, we hope that
the mere knowledge of its existence will spread peace

44

http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://haskell.org/cpphs
http://www.haskell.org/visualhaskell/
http://www.haskell.org/visualhaskell/
http://www.vsipdev.com/
mailto: simonmar at microsoft.com

of mind throughout the community as oil on troubled
waters. More news will be dispersed as it arises.

5.5.7 Haskell support for the Eclipse IDE

Report by: Leif Frenzel
Status: working, though alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs, developed by an Open Source Project.
Our project extends it with tools to support Haskell
development.

The aim is to develop an IDE for Haskell that pro-
vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of compilers, in-
terpreters, debuggers, documentation generators and
other Haskell development tools. Long-term goals in-
clude a language model with support for language-
aware IDE features, like refactoring and structural
search.

The current version is 0.9 (considered ’alpha’). It
features a project model, a configurable source code
editor (with syntax coloring and code assist), compiler
support for GHC, interpreter support for GHCi and
HUGS, documentation generation with Haddock (→
5.5.9), and launching from the IDE. In the time be-
tween the last HC&A report and now we have exper-
imented in a number of different directions, including
Debugging support using the Eclipse Debug framework
and the possibility to write part of the Haskell plugins
in Haskell itself. So far we are doing this with lots of
handcoding using JNI and FFI. We are trying to find
a way to simplify and generalize this so that Eclipse
plugins can partly be written in Haskell. We have also
started to add some design documents about this to
the project homepage.

Every help is very welcome, be it in the form of code
contributions, docs or tutorials, or just any feedback
if you use the IDE. If you want to participate, please
subscribe to the development mailing list (see below).

Further reading

◦ http://eclipse.org
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop
◦ Project homepage: http://eclipsefp.sf.net

5.5.8 haste

Report by: Rickard Nilsson

Haste – Haskell TurboEdit – is an integrated develop-
ment environment for Haskell, written in Haskell. It is

built on the wxHaskell GUI library (→ 4.5.1), and cur-
rently runs on Linux and Windows. It features project
management, syntax highlighting of Haskell code, code
completion functionality, and integration with GHC
and GHCi.

Haste was started as a school project by a group
of undergraduate students at the CS department of
Chalmers, Gothenburg. The intention is that develop-
ment will continue – and hopefully attract more con-
tributors – after it has finished as a school project,
which will happen by end of May 2005.

An early alpha release of Haste was announced on
April 10, 2005. In addition to building instructions for
Linux, there exist a Windows installer and a Gentoo
Linux package for Haste.

Further reading

http://haste.dyndns.org:8080

5.5.9 Haddock

Report by: Simon Marlow
Status: stable, maintained

The latest release is verison 0.7, released August 4 2005.
Version 0.7 contained some major improvements to the
way Haddock decides where to hyperlink each identifier
in the documentation.
Current activity:

◦ We are switching to a Cabal build system (→ 4.1.1)
for Haddock, which will make it easier to build Had-
dock on Windows systems.

◦ Haddock is now in a Darcs repository (→ 6.6), here:
http://cvs.haskell.org/darcs/haddock. The version of
the code in Darcs requires a very recent version of
Cabal to build.

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here:
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/
haddock/TODO

◦ Haddock’s home page is here:
http://www.haskell.org/haddock/

5.5.10 Hoogle – Haskell API Search

Report by: Neil Mitchell
Status: v2.0, in progress

Hoogle is an online Haskell API search engine. It
searches the functions in the standard libraries both by

45

http://eclipse.org
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://eclipsefp.sf.net
http://haste.dyndns.org:8080
http://cvs.haskell.org/darcs/haddock
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://cvs.haskell.org/cgi-bin/cvsweb.cgi/fptools/haddock/TODO
http://www.haskell.org/haddock/

name and by type signature. When searching by name
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
using unification. It also supports argument reordering
and missing arguments. The tool is written in Haskell,
and the source code is available online.

Hoogle is still under active development, since the
last HCAR a complete rewrite has been performed and
another full rewrite is under way. All the bugs have
been ironed out and the user interface has been im-
proved substantially. The current development goals
are support for classes and instances, the type key-
word, and full support for all of GHC’s libraries. This
upcoming release, Hoogle v3.0, should be made during
November.

Hoogle now comes in many flavours, the original web
interface, a command line tool, a lambdabot (→ 6.11)
plugin, a firefox plugin and a GUI for the Mac.

Further reading

http://www.cs.york.ac.uk/~ndm/hoogle/

46

http://www.cs.york.ac.uk/~ndm/hoogle/

6 Applications

6.1 h4sh

Report by: Don Stewart
Status: active development

h4sh provides a set of Haskell List functions as normal
unix shell commands. This allows us to use Haskell in
shell scripts transparently.
Each program is generated from the function’s type.
The supported functions include: (!!) ($) (++)
(:) (\\) concat concatMap cycle delete drop
dropWhile elemIndices filter foldl foldr group
head id init insert intersect intersperse
iterate last length map maximum minimum nub
repeat reverse show sort tail take takeWhile
transpose unfoldr union words zip.
Higher order functions use runtime evaluation, allowing
arbitrary Haskell code to be passed to, e.g. map and
filter.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/h4sh.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/h4sh

6.2 Fermat’s Last Margin

Report by: Shae Erisson
Status: early beta

What is it?

A distributed decentralized wiki-based darcs-backed re-
search paper annotation tool called Fermat’s Last Mar-
gin.
The problem is that I want to read what other peo-
ple write in the margins of their research papers. The
solution is to share annotations in a darcs repository
along with urls to the original paper, thus allowing both
distributed operation and no redistribution copyright
problems.

How does it work?

In short, wget the pdf/ps, throw it into imagemagick,
create wiki pages for the resulting page images, and
save text annotations into the darcs repo. If your repo
is http accessible, anyone can grab your per-page an-
notations, and you can grab theirs.

Further reading

◦ Trac page:
http://thunderbird.ScannedInAvian.org/flm/

◦ Demonstration:
http://thunderbird.scannedinavian.com/~shae/
cgi-bin/Flippi?view=TestMargin

6.3 Conjure

Report by: Shae Erisson
Status: work in progress

Conjure is a project to write a Bittorrent client in
Haskell. The motivations are, a more declarative im-
plementation, better handling of large numbers of tor-
rents, but primarily an opportunity to do something
fun. Jesper Louis Andersen is the the primary orga-
nizer for Conjure.

Further reading

◦ Darcs (→ 6.6) repository:
http://j.mongers.org/pub/haskell/darcs/conjure/

6.4 DEMO – Model Checking for Dynamic
Epistemic Logic

Report by: Jan van Eĳck
Participants: Jan van Eĳck, Simona Orzan, Ji Ruan
Status: active development

DEMO is a tool for modelling change in epistemic logic
(the logic of knowledge). Among other things, DEMO
allows modeling epistemic updates, graphical display
of update results, graphical display of action models,
formula evaluation in epistemic models, translation of
dynamic epistemic formulas to PDL (propositional dy-
namic logic) formulas.
Development has started in 2004. DEMO is used for
modelling epistemic puzzles and for checking simple
communication protocols. Project participants are Jan
van Eĳck, Simona Orzan and Ji Ruan.
Source code and documentation are available from the
project web page.
Immediate plans are to extend the tool, to apply it to
model checking of more involved communication pro-
tocols, and to improve the documentation.

Further reading

http://www.cwi.nl/~jve/demo/

47

http://www.cse.unsw.edu.au/~dons/h4sh.html
http://www.cse.unsw.edu.au/~dons/code/h4sh
http://thunderbird.ScannedInAvian.org/flm/
http://thunderbird.scannedinavian.com/~shae/cgi-bin/Flippi?view=TestMargin
http://thunderbird.scannedinavian.com/~shae/cgi-bin/Flippi?view=TestMargin
http://j.mongers.org/pub/haskell/darcs/conjure/
http://www.cwi.nl/~jve/demo/

6.5 Pugs

Report by: Autrĳus Tang
Status: active development

Started on February 1st 2005, Pugs is an implemen-
tation of the Perl 6 language, including a full-fledged
parser and runtime, as well as compiler backends tar-
getting JavaScript, Perl 5 and the Parrot virtual ma-
chine. It also supports inline Haskell and Perl 5 code in
Perl 6 modules, as well as dynamic Haskell evaluation
through the hs-plugins (→ 4.2.12) package.

As of this writing, we are ramping up toward the
6.28.x milestone, with a unified object space for all four
runtime backends. The next milestones will see Gram-
mar support and a “dynamic when needed, static when
possible” Type system.

The Pugs team has over 120 committers from
Haskell, Perl, Python, Ruby, JavaScript and other lan-
guage communities; the Learning Haskell and Intro-
duction to Pugs set of talks, published at the Pugs
homepage, were also welcomed in several Open Source
conferences. Join us on irc.freenode.net #perl6 to par-
ticipate in the development!

Further reading

◦ Pugs homepage
http://pugscode.org/

◦ Daily-updated development journal
http://use.perl.org/~autrĳus/journal/

6.6 Darcs

Report by: David Roundy
Status: active development

Darcs is a distributed revision control system written
in Haskell. In darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a darcs repository to easily create their
own branch and modify it with the full power of darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, darcs remains very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

We are currently working towards a stable release
of darcs version 1.0.4 [note by editor: released in the
meantime], which features considerable improvements
in performance and memory useage over version 1.0.3,

plus a few new commands and interface improvements.
We have had patches contributed by 28 different peo-
ple since the 1.0.3 release, and more have helped by
reporting bugs and good ideas on the mailing lists and
bug tracking system.

Tomasz Zielonka stepped down as darcs-stable main-
tainer after the release of darcs 1.0.3, and this role was
taken up by David Roundy for the release of darcs 1.0.4.
After the release of darcs 1.0.4, the stable branch of
darcs will be maintained by Tommy Pettersson. The
unstable branch of darcs continues to be maintained by
Ian Lynagh.

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.7 Arch2darcs

Report by: John Goerzen
Status: active development

Arch2darcs is a Haskell application designed to help
convert tla/Arch repositories to Darcs (→ 6.6) repos-
itories while preserving as much history as practical.
Arch2darcs is written in pure Haskell.

Further reading

darcs get http://darcs.complete.org/arch2darcs

6.8 FreeArc

Report by: Bulat Ziganshin
Status: beta

FreeArc is an archiver program (like Info-ZIP). This
class of programs is traditionally written in C/C++
(so-called “system programming”), so I was interested
– how can Haskell compete with C++ in this field? By
dividing the program in two parts – a computation-
intensive compression library, written in C++, and all
other code – working with lists of files, working with
archive structure, interfacing with user – written in
Haskell, I have got the resulting program competitive
with archivers written in C++ (RAR, 7-zip, UHARC),
while cutting development time by several times, and
especially the number of errors made during develop-
ment. Also, during development I have written sev-
eral general-purpose Haskell libraries, which you can
find in this Report (Compression Library (→ 4.4.8),
ByteStream (→ 4.4.7), Process (→ 4.2.6)). You can
download the program sources if you are interesting
in replacing C++ with Haskell or developing general
utilities with Haskell, and want to learn programming
techniques suitable for this case.

48

http://pugscode.org/
http://use.perl.org/~autrijus/journal/
http://darcs.net
http://darcs.complete.org/arch2darcs

The program sources are extensively commented
. . . in Russian.

Further reading

◦ Download page: http://freearc.narod.ru

6.9 HWSProxyGen

Report by: André Furtado

HWSProxyGen is a web services proxy generator
for the Haskell functional language, implemented in
Haskell and C#. The final purpose is to show that
Haskell and functional languages in general can be used
as a viable way to the implementation of distributed
components and applications, interacting with services
implemented in different languages and/or platforms.

The first beta version of HWSProxyGen (0.1) was
released in March/2005. It is restricted to generating
proxies only to web services created with Visual Studio
.NET. Other web services can work with HWSProxy-
Gen, but this is not assured by this first version, since
they can contain unsupported XML elements in their
description.

HWSProxyGen is free. Its binaries and source code
are available at the project website: http://www.cin.
ufpe.br/~haskell/hwsproxygen. The project was created
by the Informatics Centre of Federal University of Per-
nambuco (UFPE). Extensions and enhancements are
welcome.

In the last months, an English version of the
HWSProxyGen technical paper was created and is
available in the References section of the project web-
site. Although HWSProxyGen is being used experi-
mentally in some academic projects at UFPE, there
are no immediate plans for it and future versions are
still not planned yet.

Further reading

◦ Web Services Developer Center
http://msdn.microsoft.com/webservices/

◦ Microsoft.NET
http://www.microsoft.com/net

◦ World Wide Web Consortium
http://www.w3.org/

◦ The Haskell.NET Project
http://www.cin.ufpe.br/~haskell/haskelldotnet

◦ Haskell HTTP Module (by Gray W. & Bringert
B.) (→ 4.7.7)
http://www.bringert.net/haskell-xml-rpc/http.html

6.10 Hircules, an irc client

Report by: Jens Petersen

Hircules is a gtk2-based IRC client built on gtk2hs (→
4.5.3) and code from lambdabot (→ 6.11). Currently
it is not actively maintained: the last release is version
0.3, though there are some unreleased bug fixes and
improvements that I should put out one day including
a patch from Axel Simon to make it build with current
gtk2hs. Contributions are very welcome.

Further reading

http://haskell.org/hircules/

6.11 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell
evaluator, lambda calculus interpreter, pointfree pro-
gramming, dictd client, fortune cookies, Google search,
online help and more. Version 3 of lambdabot has been
released, and development continues.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/lambdabot.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/lambdabot

6.12 riot

Report by: Tuomo Valkonen

Riot is a tool for keeping (textual) information organ-
ised. Some people call such programs ‘outliners’. It is
a todo list and note manager, and a manager for what-
ever information one might collect. Riot has a curses-
based interface resembling those of slrn and mutt and
all text editing is done with your favourite external
editor: Riot is just a nice-to-use browser and entry or-
ganiser for collections of text.

Further reading

The Riot homepage is at http://iki.fi/tuomov/riot/.

49

http://freearc.narod.ru
http://www.cin.ufpe.br/~haskell/hwsproxygen
http://www.cin.ufpe.br/~haskell/hwsproxygen
http://msdn.microsoft.com/webservices/
http://www.microsoft.com/net
http://www.w3.org/
http://www.cin.ufpe.br/~haskell/haskelldotnet
http://www.bringert.net/haskell-xml-rpc/http.html
http://haskell.org/hircules/
http://www.cse.unsw.edu.au/~dons/lambdabot.html
http://www.cse.unsw.edu.au/~dons/lambdabot
http://iki.fi/tuomov/riot/

6.13 yi

Report by: Don Stewart
Status: active development

yi is a project to write a Haskell-extensible editor. yi
is structured around an basic editor core, such that
most components of the editor can be overridden by the
user, using configuration files written in Haskell. Ver-
sion 0.1.0 has been released, and provides vim, vi and
nano emulation, through an ncurses interface. Work is
now underway to provide a GTK gui, and to provide
embedding support for Yi.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/yi.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/yi/

6.14 Dazzle

Report by: Martĳn Schrage and Arjan van Ĳzendoorn

Dazzle is a graphical toolbox for Bayesian networks
that is developed by the Decision Support System
group of Utrecht University. It is written in Haskell
and uses wxHaskell (→ 4.5.1) as its GUI library. For
inference it uses the C++ library SMILE, developed
by the Decision Systems Laboratory of Pittsburgh Uni-
versity. Dazzle’s features include browsing cases, test
selection, logic sampling and sensitivity analysis. The
application runs on both Windows and Linux. The
project has produced several spin-offs: a progress indi-
cator for pure algorithms, an abstraction for persistent
documents, and the XTC library for typed controls.
The Dazzle toolbox itself is closed source, but the spin-
off libraries are available from the web page.

Further reading

http://www.cs.uu.nl/dazzle/

6.15 Blobs

Report by: Malcolm Wallace
Status: experimental

Blobs is a diagram editor for directed graphs, written
in Haskell using the platform-independent GUI toolkit
wxHaskell (→ 4.5.1). It is based on the Dazzle (→ 6.14)
tool presented at the Haskell Workshop in Tallinn, but

omitting the proprietary Bayesian analysis algorithms.
Blobs is an open project, designed to be a capable (but
fairly generic) drawing and editing front-end, so we can
share the main GUI effort amongst several different
back-end analysis tools.
We are at a fairly early stage of development – if you
need a graph editor, please get involved and help to
improve it!
What can Blobs do?

◦ Draw nodes with textual labels, and optional extra
(polymorphic) information labels.

◦ Connect nodes together with edges. An edge has
optional extra information labels.

◦ You can create palettes of different node shapes, and
load a palette into the editor. (Currently, palette
creation is by hand, not graphical.)

◦ Graphs are stored in an XML file format.

◦ If you have a backend engine, you can send the graph
to it for analysis, receiving a graph back for viewing
as a result.

Further reading

http://www.cs.york.ac.uk/fp/darcs/Blobs

6.16 Yarrow

Report by: Frank Rosemeier
Status: stable

From the Yarrow web pages:
“A proof-assistant is a computer program with which

a user can construct completely formal mathematical
proofs in some kind of logical system. In contrast to
a theorem prover, a proof-assistant cannot find proofs
on its own.

“Yarrow is a proof-assistant for Pure Type Systems
(PTSs) with several extensions. A PTS is a particular
kind of logical system, defined in

Henk P. Barendregt: Lambda Calculi with Types;
in D.M. Gabbai, S. Abramsky, and T.S.E.
Maibaum (editors): Handbook of Logic in Com-
puter Science, volume 1, Oxford University Press,
1992.

“In Yarrow you can experiment with various pure
type systems, representing different logics and pro-
gramming languages. A basic knowledge of Pure Type
Systems and the Curry-Howard-de Bruĳn isomorphism
is required. (This isomorphism says how you can in-
terpret types as propositions.) Experience with similar
proof-assistants can be useful.”

50

http://www.cse.unsw.edu.au/~dons/yi.html
http://www.cse.unsw.edu.au/~dons/code/yi/
http://www.cs.uu.nl/dazzle/
http://www.cs.york.ac.uk/fp/darcs/Blobs

In 2003 Frank Rosemeier has ported Yarrow (writ-
ten by Jan Zwanenburg using Haskell 1.3, see http:
//www.cs.kun.nl/~janz/yarrow/) to Haskell 98. Now
the Haskell 98 source code is available from his web
page using the address

http://www.rosemeier.info/rosemeier.yarrow.en.
html.

The new Yarrow homepage located at

http://www.haskell.org/yarrow/.

Soon it will contain a copy of the homepage for the
Haskell 1.3 version as well as the Haskell 98 adaption.

6.17 DoCon, the Algebraic Domain
Constructor

Report by: Serge Mechveliani

DoCon is a program for symbolic computation in math-
ematics, written in Haskell (using extensions such as
multiparametric classes, overlapping instances, and
other minor features). It is a package of modules dis-
tributed freely, with the source program and manual.

DoCon, the Algebraic Domain Constructor, version
2.08 has been released in 2005. It is available on the
public sites.

Further reading

http://haskell.org/docon/

6.18 Dumatel, a prover based on
equational reasoning

Report by: Serge Mechveliani

Dumatel is a prover based on term rewriting and
equational reasoning, written in Haskell (using exten-
sions such as multiparametric classes, overlapping in-
stances). It is a package of modules distributed freely,
with the source program and manual.
Dumatel, a prover based on equational reasoning, ver-
sion 1.02, has been released in 2005. It is available on
the public sites. The current 1.02 program appears to
have many bugs. A new, improved version is being
prepared now.

Further reading

http://haskell.org/dumatel/

6.19 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

The program is stable and can take on large docu-
ments.

There has not been a release for quite some time, but
development continues slowly in the Subversion repos-
itory. Goals are to set up a library of useful formatting
directives for inclusion in a future release, and to switch
to Cabal (→ 4.1.1). Also, the polytable LATEX style
that is used internally by lhs2TEX is getting a nicer user
interface, possibly making it more widely applicable.

Further reading

◦ http://www.cs.uu.nl/~andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/

lhs2TeX/trunk/

6.20 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project audio signals are processed using pure
Haskell code. This includes a simple signal synthesis
backend for Haskore, filter networks, signal processing
supported by physical units.

Future plans

Connect with the HaskellDSP library. Hope on faster
code generated by some Haskell compilers. :-) Proba-
bly connect to some software synthesizer which is more
efficient, but nearly as flexible as code entirely written
in Haskell. Explore whether Monads and Arrows can
be used for a more convenient structuring and notation
of signal algorithms.

Further reading

◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
◦ http://cvs.haskell.org/darcs/synthesizer/

51

http://www.cs.kun.nl/~janz/yarrow/
http://www.cs.kun.nl/~janz/yarrow/
http://www.rosemeier.info/rosemeier.yarrow.en.html
http://www.rosemeier.info/rosemeier.yarrow.en.html
http://www.haskell.org/yarrow/
http://haskell.org/docon/
http://haskell.org/dumatel/
http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://cvs.haskell.org/darcs/synthesizer/

6.21 Converting knowledge-bases with
Haskell

Report by: Sven Moritz Hallberg

In November 2004, I reported my writing a tool for
research work which converts knowledge bases from a
commercial tool (EngCon) to the LISP-based descrip-
tion language of our in-house tool (Konwerk).

The project, which was funded by the EU, is near-
ing its end and the converter tool has been updated
with all major features we wanted, consisting of nearly
4000 lines of Haskell code. It will most likely graciously
disappear into the eternal mist of time now. :)

In retrospect, Haskell provided a formidable vehicle
for throwing up this program.

52

7 Users

7.1 Commercial users

7.1.1 Galois Connections, Inc.

Report by: Andy Adams-Moran

Galois (aka Galois Connections, Inc.) is an employee-
owned software development company based in Beaver-
ton, Oregon, U.S.A. Galois began life in late 1999
with the stated purpose of using functional languages
to solve industrial problems. These days, we empha-
size the problem domains over the techniques, and the
theme of the recent Commercial User of Functional
Programming Workshop (see http://www.galois.com/
cufp/) exemplifies our approach: Functional program-
ming as a means not an end.

Galois develops software under contract, and every
project (bar two) that we have ever done has used
Haskell; the two exceptions used SML-NJ and OCaml,
respectively. We’ve delivered tools, written in Haskell,
to clients in industry and the U.S. government that are
being used heavily. Some diverse examples: Cryptol, a
domain-specific language for cryptography (with an in-
terpreter and a compiler, with multiple targets); a GUI
debugger for a specialized microprocessor; a special-
ized, high assurance web server, file store, and wiki for
use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.

So, why do we use Haskell? There are benefits to
moving to Java or C# from C++ or C, such as cleaner
type systems, cleaner semantics, and better memory
management support. But languages like Haskell give
you a lot more besides: they’re much higher level, so
you get more productivity, you can express more com-
plex algorithms, you can program and debug at the
“design” level, and you get a lot more help from the
type system. These arguments have been made time
and again though, and they’re also pretty subjective.

For Galois, it’s also a big bonus that Haskell is close
to its mathematical roots, because our clients care
about “high assurance” software. High assurance soft-
ware development is about giving solid (formal or semi-
formal) evidence that your product does what it should
do. The more functionality provided, the more diffi-
cult this gets. The standard approach has been to cut
out functionality to make high assurance development
possible. But our clients want high assurance tools
and products with very complex functionality. With-
out Haskell (or some similar language), we wouldn’t

even be able to attempt to build such tools and prod-
ucts.

At Galois, we’re happily able to solve real world
problems for real clients without having to give up on
using the tools and languages we worked on when we
were in the Academic world. In fact, we credit most of
our success with the fact that we can apply language
design and semantics techniques to our clients’ prob-
lems. Functional languages are an integral part that
approach, and a big part of the unique value that our
clients have come to known us for.

The good news is that our business is working quite
well. As of Fall 2005, Galois is 18 engineers strong,
with a support staff of 8. We’ve been profitable and
experienced solid growth each of the last three years.

This year, we’ve stepped up our community involve-
ment: cvs.haskell.org has moved to a new, much beefier
machine that will be funded and maintained by Ga-
lois. We’re supporting various community efforts on
that machine, such as the Hackage database. And we’re
going to be heavily involved in efforts to codify a new
standard Haskell.

We’re also trying to drum up support for an industry-
based consortium of companies and individuals that use
and rely upon Haskell. The stated purpose of the as yet
unformed consortium would be to ensure the long-term
viability of Haskell, to provide some back-up to the Si-
mons, and to stimulate the development of industrial-
grade tools for Haskell development. If you’re read-
ing this and are interested in getting involved, e-mail
〈moran at galois.com〉.

Further reading

http://www.galois.com/.

7.1.2 Aetion Technologies LLC

Report by: J. Garrett Morris

Aetion Technologies LLC is a small software developer
located in Columbus, Ohio, USA. We develop commer-
cial applications of a variety of artificial intelligence
techniques, particularly in the application of model-
based inference and simulation techniques to decision
support and situational awareness, both generating and
evaluating new strategies and monitoring and refining
existing ones. We are currently focused on defense,
with growing applications in finance, manufacturing,
and biotechnology.

Our business model requires that we be able to
rapidly prototype new systems as well as develop

53

http://www.galois.com/cufp/
http://www.galois.com/cufp/
mailto: moran at galois.com
http://www.galois.com/

generic software foundations that we can extend to new
markets as they open. We have found that Haskell fits
both of these purposes; the majority of our codebase is
written in Haskell and compiled using GHC.

We have been hiring aggressively over the past sev-
eral months, and hope to begin hiring again shortly. As
we continue to expand and need to build software that
is of more general interest to the community, we hope
to release it under a modified BSD license.

Further reading

http://www.aetion.com/

7.2 Haskell in Education

7.2.1 Haskell in Education at Universidade de
Minho

Report by: Jorge Sousa Pinto

Haskell is heavily used in the undergraduate curricula
at Minho. Both Computer Science and Systems Engi-
neering students are taught two Programming courses
with Haskell. Both programmes of studies fit the
“functional-first” approach; the first course is thus a
classic introduction to programming with Haskell, cov-
ering material up to inductive datatypes and basic
monadic input/output. It is taught to 200 freshmen
every year. The second course, taught in the second
year (when students have already been exposed to other
programming paradigms), focuses on pointfree combi-
nators, inductive recursion patterns, functors and mon-
ads; rudiments of program calculation are also covered.
A Haskell-based course on grammars and parsing is
taught in the third year, where the HaLeX library is
used to support the classes.

Additionally, in the Computer Science curriculum
Haskell is used in a number of other courses covering
Logic, Language Theory, and Semantics, both for il-
lustrating concepts, and for programming assignments.
Minho’s 4th year course on Formal Methods (a 20 year-
old course in the VDM tradition) is currently being re-
structured to integrate a system modeling tool based
on Haskell and VooDooM. Finally, in the last two aca-
demic years we ran an optional, project-oriented course
on Advanced Functional Programming. Material cov-
ered here focusses mostly on existing libraries and tools
for Haskell, such as YAMPA – functional reactive pro-
gramming with arrows, the WASH library, the MAG
system, the Strafunski library, etc. This course bene-
fitted from visits by a number of well-known researchers
in the field, including Ralf Lämmel, Peter Thiemann,
and Simon Thompson.

7.2.2 Functional programming at school

Report by: Walter Gussmann
Status: stable, maintained

A lot of computer science courses at universities are
based on functional programming languages combined
with an imperative language. There are many reasons
for this: the programming-style is very clear and there
are a lot of modern concepts – polymorphism, pattern
matching, guards, algebraic data types. There’s only
little syntax to learn, Finally, the programming code is
reduced to a minimum.

Conditions at school

I started teaching functional programming languages
at school about 8 years ago in different courses with
pupils at age of 16–19 years. Normally they already
know an imperative language like Pascal. A good point
to perform a paradigm shift to functional programming
is recursion.

Beginners’ course

In courses for beginners (2002/2003 – 18 pupils) you
can use the functional qualities of Haskell: functions for
logical gates, number conversions (bin2hex . . .), func-
tion concatenation, simple list functions etc. can be
build without writing much programming code.

Medium level courses

Last time when I taught pupils who had a one-year-
experience of Pascal programming (2003/2004 – 12
pupils). I found that learning recursive data structures
(queue, stack, list, tree) with Haskell were ideal for
classes. They got a much deeper impression about the
principles than in languages like Pascal or Java.

Advanced courses

Especially in high level courses the use of Haskell paid
off. With 5 hours a week for 2 years these courses
lead to the German “Abitur”, ending with a 4-hour
examination (2003–2005 – 11 pupils). I started the
course with an introduction to Haskell and used Haskell
until the end. We talked about recursion and recur-
sive data structures with detailed examples like the
Huffman-Tree (implemented for compressing text files).
We also built op-trees to evaluate arithmetic terms and
multi-trees to simulate virtual file systems. A highlight
was the implementation of a module “turtle” based on
Haskell’s graphics library, with which the pupils cre-
ated fractal pictures.

The last half year of the course (cryptology and the-
oretical computer science) was dominated by Haskell.

54

http://www.aetion.com/

We implemented a simple RSA-algorithm (with very
weak keys) for encoding and decoding of textfiles and
some finite deterministic automata. At the end we were
able to implement a parser and interpreter for a Pascal-
like very simple programming language (not yet pub-
lished).

Haskell in tests

Haskell was a component of every test, including the
German Abitur. These problems seemed to be eas-
ier to solve for the pupils, and in tasks with optional
languages about 80% chose Haskell. When asked to ex-
plain their choice, most of them said that with Haskell
they could concentrate on the root of the matter and
simplify the problem through a suitable generalization.

What’s new?

A few weeks ago I started with a new advanced class.
All pupils already visited a one-year-beginners course
but they come from 5 different schools and so they
have learned five different imperative languages: Pas-
cal, Modula, Python, Java and Delphi. They already
knew something about computer science but they were
fixed on their first language.

So it was easy for me to start at a very easy level
of functional programming. This time I’ve been con-
centrating on recursion and developing some projects
based on teamwork. First we discussed the electoral
system in Germany (Hare-Niemeyer and d’Hondt).
Then we implemented a simple version of this system
by composing several functions. After designing the
structure of each function (with its signature) we im-
plemented them in groups. And we are proud of the
result: the main function resolved the problem imme-
diately.

After this positive experience we now do some more
complex works, like building the book-index, described
in “Haskell: The Craft of Functional Programming” by
S. Thompson. Another project draws some lines in a
text-window. The line-algorithm is based on a pure
recursion.

This kind of teamwork really motivated the pupils.
I was impressed about the very short time it took a
group of beginners to do such complex programs.

What is coming in the future?

So there’s no question about that: Functional lan-
guages are suitable for school. I’m sure that over the
years there will be more and more teaching materials,
and other teachers will also be convinced of Haskell.
For some years I try to persuade other teachers to intro-
duce functional languages through regular workshops,
courses and teaching materials.

Today I’m convinced that pupils can understand ba-
sic concepts of computer science more easily if they

know functional languages like Haskell. The clarity of
the language and the modern concept lead to an in-
credible increase of learned material. My pupils choose
Haskell as their favorite of Pascal, C, Java, Haskell and
PHP.

Meanwhile the new framework for computer sci-
ence (in Berlin) includes the obligatory introduction
of a declarative language (functional or logical) for ad-
vanced courses.

Further reading

http://www.pns-berlin.de/haskell/

7.3 Research Groups

7.3.1 Functional Programming at the University of
Nottingham

Report by: Joel Wright

Within the Foundations of Programming group at the
University of Nottingham are a number of people work-
ing on Haskell related projects. These projects involve
reasoning about Haskell programs, new Haskell fea-
tures, and the implementation of new systems using
Haskell. Members of the group are also involved in
teaching Haskell, and computer aided formal reasoning
using the Epigram (→ 3.3.1) system, to undergradu-
ates. Specific research interests of the group include
the following:

◦ Reasoning about synchronous and asynchronous ex-
ceptions in a simple language. This work was in-
spired by, and aims to reason about asynchronous
exception combinators in, GHC. Some proofs using
the Epigram system.

◦ Reasoning about the time requirements of functional
programs, by counting evaluation steps that repre-
sent transitions in an underlying abstract machine.
Work is also being carried out to extend this to mea-
sure space usage.

◦ Functional Reactive Programming in the Yampa sys-
tem.

◦ Datatype Generic Programming (→ 3.4).

◦ The implementation of the dependently typed pro-
gramming language, Epigram.

◦ A functional quantum programming language, QML:
the compiler and simulator are implemented in
Haskell.

Graham Hutton has also recently written a book (→
1.6.1) aimed at teaching Haskell to students studying

55

http://www.pns-berlin.de/haskell/

computing science at university level, but is also ap-
propriate for a broader spectrum of readers who would
like to learn about programming in Haskell.

Further reading

◦ Foundations of Programming Group page:
http://www.cs.nott.ac.uk/Research/fop/index.html

◦ Functional Programming Blog:
http://sneezy.cs.nott.ac.uk/fplunch/

◦ Programming in Haskell Book:
http://www.cs.nott.ac.uk/~gmh/book.html

◦ Epigram:
http://www.e-pig.org

7.3.2 Artificial Intelligence and Software
Technology at JWG-University Frankfurt

Report by: David Sabel
Members: Matthias Mann, David Sabel,

Manfred Schmidt-Schauß

DIAMOND

A current research topic within our DIAMOND project
is understanding side effects and Input/Output in
lazy functional programming languages using non-
deterministic constructs.

We introduced the FUNDIO calculus which proposes
a non-standard way to combine lazy functional lan-
guages with I/O. FUNDIO is a lazy functional core lan-
guage, where the syntax of FUNDIO has case, letrec,
constructors and an IO-interface: its operational se-
mantics is described by small-step reductions. A con-
textual approximation and equivalence depending on
the Input/Output behavior of normal order reduction
sequences have been defined and a context lemma has
been proved. This enables us to study a semantics and
semantic properties of the language. By using the tech-
nique of complete sets of reduction diagrams we have
shown a considerable set of program transformations
to be correct. Several optimizations of evaluation are
given, including strictness optimizations and an ab-
stract machine, and shown to be correct w.r.t. con-
textual equivalence. Thus this calculus has a potential
to integrate non-strict functional programming with a
non-deterministic approach to Input/Output and also
to provide a useful semantics for this combination.

We applied these results to Haskell by using the
FUNDIO calculus as semantics for the GHC core lan-
guage. Based on an extended set of correct program
transformations for FUNDIO, we investigated the lo-
cal program transformations, which are performed in
GHC. The result is that most of the transformations
are correct w.r.t. FUNDIO, i.e. retain sharing and do
not force the execution of IO operations that are not

needed. A detailed description of our investigation is
available as a technical report from the DIAMOND
project page. By turning off the few transformations
which are not FUNDIO-correct and those that have not
yet been investigated, we have achieved a FUNDIO-
compatible modification of GHC which is called Has-
Fuse.

HasFuse correctly compiles Haskell programs which
make use of unsafePerformIO in the common
(safe) sense, since the problematic optimizations
that are mentioned in the documentation of the
System.IO.Unsafe module (let floating out, com-
mon subexpression elimination, inlining) are turned
off or performed more restrictively. But HasFuse
also compiles Haskell programs which make use of
unsafePerformIO in arbitrary contexts. Since the
call-by-need semantics of FUNDIO does not prescribe
any sequence of the IO operations, the behavior of
unsafePerformIO is no longer ‘unsafe’. I.e. the
user does not have to undertake the proof obliga-
tion that the timing of an IO operation wrapped
by unsafePerfomIO does not matter in relation to
all the other IO operations of the program. So
unsafePerformIO may be combined with monadic IO
in Haskell, and since all the reductions and transforma-
tions are correct w.r.t. to the FUNDIO-semantics, the
result is reliable in the sense that IO operations will
not astonishingly be duplicated.

Ongoing work is devoted to develop applications us-
ing direct IO calls, i.e., using unsafePerformIO in arbi-
trary contexts. Another topic is the proof of correctness
of further program transformations.

Non-deterministic Call-by-need Lambda Calculi

Important topics are to investigate static analyses
based on the operational semantics. In order to do this,
more inference rules are necessary for equality in call-
by-need lambda-calculi, e.g. a definition of behavioural
equivalence. Matthias Mann has established a sound-
ness (w.r.t. contextual equivalence) proof for mutual
similarity in a non-deterministic call-by-need lambda
calculus. Current research is aimed towards extensions
of this calculus, e.g. constructors and case or a recursive
let.

Strictness Analysis using Abstract Reduction

The algorithm for strictness analysis using abstract re-
duction has been implemented at least twice: Once by
Nöcker in C for Concurrent Clean and on the other
hand by Schütz in Haskell in 1994. In 2005 we proved
correctness of the algorithm by using a call-by-need
lambda-calculus as a semantic basis. A technical re-
port is available from our website.

Most implementations of strictness analysis use set
constants like > (all expressions) or ⊥ (expressions that
have no weak head normal form). A current result is

56

http://www.cs.nott.ac.uk/Research/fop/index.html
http://sneezy.cs.nott.ac.uk/fplunch/
http://www.cs.nott.ac.uk/~gmh/book.html
http://www.e-pig.org

that the subset relationship of coinductively defined set
constants is decidable.

Implementations Using Haskell

As a final year project, Christopher Stamm imple-
mented an ‘Interpreter for Reduction Systems’ (IfRS)
in Haskell. IfRS is an interpreter for higher order
rewrite systems that are based on structural opera-
tional semantics. Additionally, it is possible to define
reduction contexts and to use contexts and domains
(term sets that are definined similiar to contexts with-
out holes) in the rewrite rules. Also, IfRS is able to
test whether the reduction rules satisfy the conditions
of the GDSOS-rule format. The GDSOS-rule format
ensures that bisimulation is a congruence.

Current research topics of our group also encompass
second order unification, higher order unification and
context unification. It is an open problem whether
(general) context unification is decidable. Jörn Gers-
dorf has implemented a non-deterministic decision al-
gorithm for context matching in Haskell which benefits
from lazy evaluation at several places.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology
http://www.ki.informatik.uni-frankfurt.de

◦ DIAMOND – Direct-Call I/O Approach modelled
using Non-Determinism
http://www.ki.informatik.uni-frankfurt.de/research/
diamond

◦ HasFuse – Haskell with FUNDIO-based side effects
http://www.ki.informatik.uni-frankfurt.de/research/
diamond/hasfuse

◦ IfRS – Interpreter for Reduction Systems
http://www.informatik.uni-frankfurt.de/~stamm

7.3.3 Formal Methods at Bremen University

Report by: Christoph Lüth and Christian Maeder
Members: Christoph Lüth, Klaus Lüttich, Christian

Maeder, Achim Mahnke, Till Mossakowski,
Lutz Schröder

The activities of our group centre on formal meth-
ods and the Common Algebraic Specification Language
(CASL).

We are using Haskell to develop the Heterogeneous
tool set (Hets), which consists of parsers, static analyz-
ers and proof tools for languages from the CASL family,
such as CASL itself, HasCASL, CoCASL, CSPCASL
and ModalCASL, and additionally Haskell. HasCASL
is a language for specification and development of func-
tional programs; Hets also contains a translation from
an executable HasCASL subset to Haskell.

We use the Glasgow Haskell Compiler (GHC 6.4),
exploiting many of its extensions, in particular concur-
rency, multiparameter type classes, hierarchical name
spaces, functional dependencies, existential and dy-
namic types, and Template Haskell. Further tools ac-
tively used are DriFT (→ 3.4), Haddock (→ 5.5.9), the
combinator library Parsec, HaXml (→ 4.7.3) and Pro-
gramatica (→ 5.3.1).

Another project using Haskell is the Proof General
Kit, which designs and implements a component-based
framework for interactive theorem proving. The central
middleware of the toolkit is implemented in Haskell.
The project is the sucessor of the highly successful
Emacs-based Proof General interface. It is a cooper-
ation of David Aspinall from the University of Edin-
burgh and Christoph Lüth from Bremen.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.informatik.uni-bremen.de/cofi

◦ Heterogeneous tool set:
http://www.informatik.uni-bremen.de/cofi/hets

◦ Proof General Kit
http://proofgeneral.inf.ed.ac.uk/Kit

7.3.4 Functional Programming at Brooklyn College,
City University of New York

Report by: Murray Gross

One prong of the Metis Project at Brooklyn College,
City University of New York, is research on and with
Parallel Haskell in a Mosix-cluster environment.

We have implemented a new, contention-driven
scheduler for GpH (→ 3.2.1) that we have demon-
strated provides (at worst!) qualitatively improved per-
formance under some circumstances, and we continue
our work on debugging GUM in our version of Parallel
Haskell.

Current programming efforts are focused on a mul-
tidimensional tic-tac-toe with an intelligent computer
antagonist, and a Sudoku puzzle solver, both of which
should provide good test cases for exercising the run-
time system.

Further reading

http://www.sci.brooklyn.cuny.edu/~metis

Contact

Murray Gross 〈magross@its.brooklyn.cuny.edu〉

57

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
http://www.informatik.uni-frankfurt.de/~stamm
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/cofi
http://www.informatik.uni-bremen.de/cofi/hets
http://proofgeneral.inf.ed.ac.uk/Kit
http://www.sci.brooklyn.cuny.edu/~metis
mailto: magross at its.brooklyn.cuny.edu

7.3.5 Functional Programming at
Macquarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group
we are working on a number of projects with a Haskell
focus. Since the last report, work has progressed on
the following projects:

◦ Our port of the nhc98 runtime to Palm OS hand-
helds (→ 3.1.1) is running simple programs.

◦ Kate Stefanov is nearing the end of her project that
applies off-the-shelf compression technology to re-
ducing the size of interpreted programs (including
functional ones).

◦ Matt Roberts has shifted focus and is now working on
approaches to generic programming in lazy languages
based on pattern calculus.

Further reading

Contact us via email to 〈plrg@ics.mq.edu.au〉 or find de-
tails on our many of our projects at http://www.comp.
mq.edu.au/plrg/.

7.3.6 Functional Programming at the University of
Kent

Report by: Olaf Chitil

We are a group of about a dozen staff and students with
shared interests in functional programming. While our
work is not limited to Haskell, it provides a major focus
and common language for teaching and research.

Our members pursue a variety of Haskell-related
projects, many of which are reported in other sections
of this report. Keith Hanna is continuously extend-
ing the visual interactive programming environment
Vital (→ 3.1.2) and Mark Callanan is working on type-
sensitive editing operation in this context. Axel Si-
mon maintains the gtk2hs binding to the Gtk+ GUI
library (→ 4.5.3) in cooperation with Duncan Coutts,
Oxford University. Chris Ryder is improving his Met-
rics and Visualization library Medina. Huiqing Li, Si-
mon Thompson and Claus Reinke have released further
snapshots of HaRe, the Haskell Refactorer (→ 5.3.3)
and started to look at refactoring Erlang programs.
Thomas Davie, Yong Luo and Olaf Chitil are work-
ing together with the York functional programming
group on extending and improving the Haskell tracer
Hat (→ 5.4.2).

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

◦ Gtk2HS:
http://www.haskell.org/gtk2hs

◦ MEDINA:
http://www.cs.kent.ac.uk/~cr24/medina/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat:
http://www.haskell.org/hat/

7.3.7 Parallel and Distributed Functional Languages
Research Group at Heriot-Watt University

Report by: Phil Trinder
Members: Abyd Al Zain, Zara Field, Gudmund Grov,

Robert Pointon, Greg Michaelson, Phil
Trinder, Jan Henry Nyström, Chunxu Liu,

Graeme McHale, Xiao Yan Deng

The Parallel and Distributed Functional Languages
(PDF) research group is part of the Dependable Sys-
tems Group in Computer Science at the School of
Mathematics and Computer Science at Heriot-Watt
University.

The group investigates the design, implementation
and evaluation of high-level programming languages
for high-performance, distributed and mobile computa-
tion. The group aims to produce notations with power-
ful yet high-level coordination abstractions, supported
by effective implementations that enable the construc-
tion of large high-performance, distributed and mobile
systems. The notations must have simple semantics
and formalisms at an appropriate level of abstraction
to facilitate reasoning about the coordination in real
distributed/mobile systems i.e. to transform, demon-
strate equivalence, or analyze the coordination proper-
ties. In summary, the challenge is to bridge the gap be-
tween distributed/mobile theories, like the pi and am-
bient calculi, and practice, like CORBA and the Globus
Toolkits.

Languages

The group has designed, implemented, evaluated and
used several high performance/distributed functional
languages, and continues to do so. High perfor-
mance languages include Glasgow parallel Haskell (→
3.2.1) and Parallel ML with skeletons (PMLS).
Distributed/mobile languages include Glasgow dis-
tributed Haskell (→ 3.2.2), Erlang (http://www.erlang.
org/), Hume (http://www-fp.dcs.st-and.ac.uk/hume/),
JoCaml and Camelot.

58

mailto: plrg at ics.mq.edu.au
http://www.comp.mq.edu.au/plrg/
http://www.comp.mq.edu.au/plrg/
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/vital/
http://www.haskell.org/gtk2hs
http://www.cs.kent.ac.uk/~cr24/medina/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/
http://www.erlang.org/
http://www.erlang.org/
http://www-fp.dcs.st-and.ac.uk/hume/

Projects

Projects include

◦ High Level Techniques for Distributed Telecommuni-
cations Software 2002-06 is an EPSRC project (http:
//www.macs.hw.ac.uk/~dsg/telecoms/, GR/R88137)
to evaluate high-level distributed programming tech-
niques in a realistic telecommunications context.

◦ High Level Programming for Computational Grids
2003-05 is a 2-year British Council/DAAD funded
travel grant (http://www.macs.hw.ac.uk/~dsg/
projects/GpHGRID.html, Project No. 1223), with
partners at LMU Munich, Phillips-Universitaet
Marburg, and St Andrews University. We aim to
evaluate a single large program on a computational
grid, i.e., on a collection of grid-enabled workstation
clusters.

◦ EmBounded Project (http://www.embounded.org/)
EU IST-510255 2005-8 that performs the automatic
prediction of resource bounds for embedded systems
using Hume.

◦ BAe/DTC SEAS Project SEN 002 2005-7 (http:
//www.macs.hw.ac.uk/~greg/SEAS/) that engineers
embedded software for autonomous vehicle control
using optical sensing, again using Hume.

◦ SCIEnce EU FP6 I3 project (026133) 2006-11 to
use GpH to provide access to Grid services from
Symbolic Computation systems, including GAP and
Maple.

Collaborations

Primary industrial collaborators include groups in Mi-
crosoft Research Labs (Cambridge), Motorola UK Re-
search labs (Basingstoke), Ericsson, Agilent Technolo-
gies (South Queensferry).

Primary academic collaborators include groups in
Complutense Madrid, JAIST, LMU Munich, Phillips
Universität Marburg, and St Andrews.

Further reading

http://www.macs.hw.ac.uk/~ceeatia/PDF/

7.3.8 Programming Languages & Systems at
UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New South
Wales has produced the C–>Haskell (→ 5.1.2) interface
generator and more recently the hs-plugins (→ 4.2.12)
library for dynamically loaded type-safe plugins. Based
on runtime code (re)loading, we introduced a radically

dynamic form of applications at the 2005 Haskell Work-
shop. These applications can hot swap their entire
code base without losing application state. Follow-
ing our new application architecture, we have imple-
mented a highly customisable editor in Haskell, called
Yi (→ 6.13), and also refactored the IRC bot lambd-
abot (→ 6.11).

In cooperation with Microsoft Research, Cambridge,
we recently proposed associated types for Haskell type
classes (see our papers at POPL 2005 and ICFP 2005).
These are data type and synonym declaration in type
classes that facilitate generic programming and may be
used instead of functional dependencies. We are cur-
rently working at adding associated types to the Glas-
gow Haskell Compiler.

Further details on PLS and the above mentioned ac-
tivities can be found at http://www.cse.unsw.edu.au/
~pls/.

7.3.9 Logic and Formal Methods group at the
Informatics Department of the University of
Minho, Braga, Portugal

Report by: Jorge Sousa Pinto

We are a group of about 12 staff members and vari-
ous PhD and MSc students. We have shared interest
in formal methods and their application in areas such
as data and code reverse and re-engineering, program
understanding, and communication protocols. Haskell
is our common language for teaching and research.

Haskell is used as first language in our graduate com-
puters science education (→ 7.2.1). José Valença and
José Barros are the authors of the first (and only)
Portuguese book about Haskell, entitled “Fundamen-
tos da Computação” (ISBN 972-674-318-4). Alcino
Cunha has developed the Pointless library for point-
free programming in Haskell, as well as the DrHylo tool
that transforms functions using explicit recursion into
hylomorphisms. Supervised by José Nuno Oliveira,
students Tiago Alves and Paulo Silva are developing
the VooDooM tool (→ 5.3.4), which transforms VDM
datatype specifications into SQL datamodels and stu-
dents João Ferreira and José Proença will soon start de-
veloping CPrelude.hs, a formal specification modelling
tool generating Haskell from VDM-SL and CAMILA.
João Saraiva is responsible for the implementation of
the attribute system LRC (→ 5.2.6), which generates
(circular) Haskell programs. He is also the author
of the HaLex library and tool, which supports lexi-
cal analysis with Haskell. Joost Visser has developed
Sdf2Haskell (→ 5.2.7), which generates GLR parsing
and customizable pretty-printing support from SDF
grammars, and which is distributed as part of the Stra-
funski bundle. Most tools and library modules devel-
oped by the group are organized in a single infrastruc-
ture, to facilitate reuse, which can be obtained as a

59

http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/projects/GpHGRID.html
http://www.macs.hw.ac.uk/~dsg/projects/GpHGRID.html
http://www.embounded.org/
http://www.macs.hw.ac.uk/~greg/SEAS/
http://www.macs.hw.ac.uk/~greg/SEAS/
http://www.macs.hw.ac.uk/~ceeatia/PDF/
http://www.cse.unsw.edu.au/~pls/
http://www.cse.unsw.edu.au/~pls/

single distribution under the name UMinho Haskell Li-
braries and Tools.

The group is involved in the 3-year project called
PURe which aims to apply formal methods to Program
Understanding and Reverse Engineering. Haskell is
used as implementation language, and various subpro-
jects have been initiated, including Generic Program
Slicing.

Further reading

LMF group home page (http://www.di.uminho.pt/
~glmf) and PURe project home page (http://www.di.
uminho.pt/pure). Version 1.0 of the UMinho Haskell
Libraries and Tools has been released on April 5, 2005,
and is available from http://wiki.di.uminho.pt/wiki/bin/
view/PURe/PUReSoftware.

7.4 User groups

7.4.1 Debian Users

Report by: Isaac Jones

The Debian Haskell community continues to grow, with
both new users and developers appearing. Together
with work on Cabal and libraries (→ 4.1.1) we are work-
ing towards providing a much improved Haskell devel-
opment environment, and the number of applications
in Debian written in Haskell is also continuing to grow.
A summary of the current state can be found on the
Haskell Wiki (→ 1.3): http://www.haskell.org/hawiki/
DebianUsers.

For developers, we have a prototype policy for
packaging tools for Debian: http://urchin.earth.li/~ian/
haskell-policy/haskell-policy.html/.

dh_haskell is a tool by John Goerzen to help in
building Debian packages out of Cabal packages. It is
in the haskell-devscripts package.

For users and developers, we have also started
a mailing list: http://urchin.earth.li/mailman/listinfo/
debian-haskell.

In order to provide backports, bleeding edge ver-
sions of Haskell tools, and a place for experi-
mentation with packaging ideas, Isaac Jones and
Ian Lynagh have started the “Haskell Unsafe”
Debian archive (http://haskell-unsafe.alioth.debian.org/
haskell-unsafe.html) where a wide variety of packages
can be found. This was recently moved to a Debian
server.

7.4.2 Fedora Haskell

Report by: Jens Petersen

Fedora Haskell provides packages of certain Haskell
projects for Fedora Core in yum repositories. The

main news is that darcs (→ 6.6), ghc (→ 2.1) and had-
dock (→ 5.5.9) have now been included in Fedora Ex-
tras! I hope to have more Haskell packages submit-
ted and accepted in Extras soon. There is a mailing
list 〈fedora-haskell@haskell.org〉 for announcements and
questions. Contributions are needed, particular in the
form of submissions and reviewing of packages for Fe-
dora Extras.

Further reading

http://haskell.org/fedora/ http://fedoraproject.org/
wiki/Extras

7.4.3 OpenBSD Haskell

Report by: Don Stewart

Haskell support on OpenBSD continues. A page docu-
menting the current status of Haskell on OpenBSD is
at http://www.cse.unsw.edu.au/~dons/openbsd.

GHC (→ 2.1) is available for i386 and amd64.
nhc98 (→ 2.3) is available for i386 and sparc. Hugs (→
2.2) is available for the alpha, amd64, hppa, i386,
powerpc, sparc and sparc64. A number of other
Haskell tools and libraries are also available, includ-
ing alex (→ 5.2.2), happy (→ 5.2.3), haddock (→ 5.5.9)
and darcs (→ 6.6).

Additionally, both the stable and head branches of
GHC are built nightly.

7.4.4 Haskell in Gentoo Linux

Report by: Andres Löh

The Gentoo Haskell team currently consists of Luis
Araujo, Duncan Coutts, and Andres Löh. We get a
lot of help from Lennart Kolmodin and Henning Gün-
ther.

We now have a Cabal (→ 4.1.1) eclass that allows us
to write ebuilds for cabalized packages that consist of
nearly no instructions and are therefore very easy to
maintain.

There is ongoing work on a tool to convert Cabal
package descriptions into ebuilds automatically, and to
interface to Hackage.

We internally use a darcs (→ 6.6) overlay to exchange
and test new ebuilds, and coordinate development on
IRC (#gentoo-haskell on freenode).

New ebuilds, comments and suggestions are always
welcome. If you file bug reports at bugs.gentoo.org,
please make sure that you mention “Haskell” in the
subject of the report.

60

http://www.di.uminho.pt/~glmf
http://www.di.uminho.pt/~glmf
http://www.di.uminho.pt/pure
http://www.di.uminho.pt/pure
http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware
http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware
http://www.haskell.org/hawiki/DebianUsers
http://www.haskell.org/hawiki/DebianUsers
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/~ian/haskell-policy/haskell-policy.html/
http://urchin.earth.li/mailman/listinfo/debian-haskell
http://urchin.earth.li/mailman/listinfo/debian-haskell
http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
http://haskell-unsafe.alioth.debian.org/haskell-unsafe.html
mailto: fedora-haskell at haskell.org
http://haskell.org/fedora/
http://fedoraproject.org/wiki/Extras
http://fedoraproject.org/wiki/Extras
http://www.cse.unsw.edu.au/~dons/openbsd
bugs.gentoo.org

7.5 Individuals

7.5.1 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini-tutorials and
assorted small projects (http://pobox.com/~oleg/ftp/
Haskell/) – has received three additions:

Monadic regions: the RGN monad

This is a type-class based implementation of the
monadic regions described in Matthew Fluet and
J. Gregory Morrisett’s ICFP’04 paper. Region is a
memory allocation technique introduced by Tofte and
Talpin and implemented in ML-Kit and Cyclone. A re-
gion is an area of memory holding heap allocated data
(reference cells). Regions may nest and so more than
one region may be active at any given point. A new
reference cell may only be allocated in an active region,
and may then only be used while that region is active.
The system statically guarantees that no cell can be
accessed when its region is closed. The RGN monad,
which is a variation of the ST monad, provides these
static guarantees.

The code gives the first example of the total type
comparison predicate, which can handle even non-
ground types and quantified type variables.

http://pobox.com/~oleg/ftp/Haskell/types.
html#monadic-regions

How to prove monad laws

The article http://pobox.com/~oleg/ftp/Computation/
monads.html#proving-monad-laws demonstrates prov-
ing associativity of bind, on an example of a particular
Error monad. The ‘star’ notation and a variable-free
formulation of the associativity law turned out quite
helpful.

How to make a Haskell function strict without
changing its body

We show a simple trick of making a function strict in
all or some of its arguments. We merely prepend one
clause to the definition of the function, without making
any changes to the other clauses. We illustrate the trick
on an example of a Runge-Kutta iteration.

http://pobox.com/~oleg/ftp/Haskell/index.
html#making-function-strict

7.5.2 Graham Klyne

Report by: Graham Klyne

My primary interest is in RDF http://www.w3.org/
RDF/ and Semantic Web http://www.w3.org/2001/sw/
technologies. Since my submission for the November
2004 HC&A Report, I’ve been working at the Image
Bioinformatics Research Group at Oxford University
(http://www.bioimage.org/), and my plans to develop
Swish, XML, RDF and description logic reasoning tools
have somewhat taken a back seat (but have not been
abandoned).

I have been using Haskell internally to process bioin-
formatics data, cross-referencing experimental result
data with information in external databases of genetic
information. It’s all pretty trivial stuff so far, but I
have hopes of demonstrating that functional languages
can be a viable alternative to Excel spreadsheets for
handling experimental data.

7.5.3 Inductive Inference

Report by: Lloyd Allison

Inductive Inference, i.e. the learning of general hy-
potheses from given data.

I am continuing to use Haskell to examine what
are the products (e.g. Mixture-models (unsupervised
classification, clustering), classification- (decision-)
trees (supervised classification), Bayesian/causal net-
works/models, etc.) of machine-learning from a pro-
gramming point of view, that is how do they behave,
what can be done to each one, and how can two or more
be combined? The primary aim is the getting of under-
standing, and that could one day be embodied in a use-
ful Haskell library or prelude for artificial-intelligence
/ data-mining / inductive-inference / machine-learning
/ statistical-inference.

A JFP paper (see below) appeared in January 2005,
describing an early version of the software. Currently
there are types and classes for models (various proba-
bility distributions), function models (including regres-
sions), time-series (including Markov models), mixture
models, and classification trees.

Case-studies include mixtures of time-series,
Bayesian networks, time-series models and “the”
sequence-alignment dynamic-programming algorithm;
a spring-clean of the code is overdue. A paper
that includes the Bayesian network case-study is ‘to
appear’.

Prototype code is available (GPL) at the URL below.

Future plans

Try to find a good name for this kind of programming:
‘function’ is to ‘functional programming’ as ‘statistical

61

http://pobox.com/~oleg/ftp/Haskell/
http://pobox.com/~oleg/ftp/Haskell/
http://pobox.com/~oleg/ftp/Haskell/types.html#monadic-regions
http://pobox.com/~oleg/ftp/Haskell/types.html#monadic-regions
http://pobox.com/~oleg/ftp/Computation/monads.html#proving-monad-laws
http://pobox.com/~oleg/ftp/Computation/monads.html#proving-monad-laws
http://pobox.com/~oleg/ftp/Haskell/index.html#making-function-strict
http://pobox.com/~oleg/ftp/Haskell/index.html#making-function-strict
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/
http://www.bioimage.org/

model’ is to what? ‘Inductive programming’ is the best
name suggested so far – by Charles Twardy.

External factors slowed progress in 2005 but I hope
to pick things up again soon. I want to develop time-
series models further and must also look at template-
Haskell, or similar, for dealing with csv-files in a nice
way.

Further reading

◦ L. Allison. Models for machine learning and data
mining in functional programming. J. Functional
Programming, 15(1), pages 15–32, January 2005.
doi:10.1017/S0956796804005301

◦ Other reading is listed at the URL:
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

7.5.4 Bioinformatics tools

Report by: Ketil Malde

As part of my PhD work, I developed a handful of
(GPL-licensed) tools for solving problems that arise in
bioinformatics. I currently have a sequence clustering
tool, xsact (currently in revision 1.5b), which I believe
is one of the more feature-rich tools of its kind. There
is also a sequence assembly tool (xtract). In addition,
there are various smaller tools that are or were useful
to me, and that may or may not be, useful to others.
I’m currently developing a tool for automatic repeat
detection in EST data.

Further reading

http://www.ii.uib.no/~ketil/bioinformatics

7.5.5 Using Haskell to implement simulations of
language acquisition, variation, and change

Report by: W. Garrett Mitchener
Status: experimental, active development

I’m a mathematician, with expertise in dynamical sys-
tems and probability. I’m using math to model lan-
guage acquisition, variation, and change. My current
project is about testing various hypotheses put forth by
the linguistics community concerning the word order
of English. Old and Middle English had significantly
different syntax than Modern English, and the devel-
opment of English syntax is perhaps the best studied
case of language change in the world. My overall plan
is to build simulations of various stages of English and
test them against manuscript data, such as the Penn-
sylvania Parsed Corpus of Middle English (PPCME).

Currently, I’m using a Haskell program to simulate
a population of individual agents learning simplified

languages based on Middle English and Old French.
Mathematically, the simulation is a Markov chain with
a huge number of states. Future simulations will proba-
bly include sophisticated linguistic computations (pars-
ing and sentence generation) for which Haskell seems
to be particularly well-suited. I hope to eventually use
the parallel features of GHC to run larger simulations
on a PVM grid.

I use GHC and Hugs on Fedora Linux. Oddly
enough, the fastest machine in the department for run-
ning these computations is my laptop. It’s a Pentium
M at 1.7 GHz with 2 MB of cache, and for this pro-
gram, it consistently out-performs my desktop, which
is a Pentium 4 at 3 GHz with 1 MB of cache. I sus-
pect the cache size makes the biggest difference, but I
haven’t done enough experiments to say for sure.

I’m also working on a second Haskell project, which
is an interpreted language called Crouton. It’s based
very loosely on Haskell but without the type system
and with much more powerful pattern matching. It will
allow me to scan files from the PPCME and other cor-
pora in lisp-like formats, find particular constructions,
and transform them. Patterns can be as complex as
context free grammars, and apply to whole structures
as well as strings. I expect it to be a big help in the
data collection part of my language modeling.

Further reading

◦ http://www.math.duke.edu/~wgm
◦ http://www.crouton.org

62

http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://www.ii.uib.no/~ketil/bioinformatics
http://www.math.duke.edu/~wgm
http://www.crouton.org

	General
	haskell.org
	#haskell
	The Haskell HaWiki
	Haskell Weekly News
	The Haskell Sequence

	The Monad.Reader
	Books and tutorials
	New textbook -- Programming in Haskell
	Haskell Tutorial WikiBook
	hs-manpage-howto(7hs)

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	yhc
	jhc
	Helium

	Language
	Variations of Haskell
	Haskell on handheld devices
	Vital: Visual Interactive Programming
	Pivotal: Visual Interactive Programming
	House (formerly hOp)
	Camila
	Haskell Server Pages (HSP)
	HASP
	Haskell Regular Patterns (HaRP)

	Non-sequential Programming
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell
	Mobile Haskell (mHaskell)
	Eden
	HCPN -- Haskell-Coloured Petri Nets

	Type System/Program Analysis
	Epigram
	Chameleon
	XHaskell project
	Constraint Based Type Inferencing at Utrecht
	EHC, `Essential Haskell' Compiler

	Generic Programming

	Libraries
	Packaging and Distribution
	Hackage and Cabal
	Eternal Compatibility in Theory -- a module versioning protocol

	General libraries
	LicensedPreludeExts
	Hacanon-light
	HODE
	PFP -- Probabilistic Functional Programming Library for Haskell
	Hmm: Haskell Metamath module
	Process
	System.Console.Cmdline.Pesco -- a command line parser = GNU getopt
	TimeLib
	The Haskell Cryptographic Library
	Numeric prelude
	The revamped monad transformer library
	hs-plugins
	ldap-haskell
	magic-haskell
	MissingH
	MissingPy

	Parsing and transforming
	Utrecht Parsing Library and Attribute Grammar System
	Haskell-Source with eXtensions (HSX, haskell-src-exts)
	Strafunski

	Data handling
	Hierachical Libraries Collections (formerly DData)
	fps (fast packed strings)
	2-3 Finger Search Trees
	A library for strongly typed heterogeneous collections
	Takusen
	HaskellDB
	ByteStream
	Compression-2005

	User interfaces
	wxHaskell
	FunctionalForms
	Gtk2Hs
	hscurses

	(Multi-)Media
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	HOpenAL -- A Haskell Binding for OpenAL and ALUT
	hsSDL
	Haskore revision

	Web and XML programming
	CabalFind
	WebFunctions
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell
	HAIFA
	HaXR -- the Haskell XML-RPC library

	Tools
	Foreign Function Interfacing
	HSFFIG
	C-->Haskell

	Scanning, Parsing, Analysis
	Frown
	Alex version 2
	Happy
	Attribute Grammar Support for Happy
	BNF Converter
	LRC
	Sdf2Haskell
	SdfMetz

	Transformations
	The Programatica Project
	Term Rewriting Tools written in Haskell
	Hare -- The Haskell Refactorer
	VooDooM

	Testing and Debugging
	Tracing and Debugging
	Hat
	buddha
	QuickCheck

	Development
	hmake
	Zeroth
	Ruler
	cpphs
	Visual Haskell
	hIDE -- the Haskell Integrated Development Environment
	Haskell support for the Eclipse IDE
	haste
	Haddock
	Hoogle -- Haskell API Search

	Applications
	h4sh
	Fermat's Last Margin
	Conjure
	DEMO -- Model Checking for Dynamic Epistemic Logic
	Pugs
	Darcs
	Arch2darcs
	FreeArc
	HWSProxyGen
	Hircules, an irc client
	lambdabot
	riot
	yi
	Dazzle
	Blobs
	Yarrow
	DoCon, the Algebraic Domain Constructor
	Dumatel, a prover based on equational reasoning
	lhs2TeX
	Audio signal processing
	Converting knowledge-bases with Haskell

	Users
	Commercial users
	Galois Connections, Inc.
	Aetion Technologies LLC

	Haskell in Education
	Haskell in Education at Universidade de Minho
	Functional programming at school

	Research Groups
	Functional Programming at the University of Nottingham
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Parallel and Distributed Functional Languages Research Group at Heriot-Watt University
	Programming Languages & Systems at UNSW
	Logic and Formal Methods group at the Informatics Department of the University of Minho, Braga, Portugal

	User groups
	Debian Users
	Fedora Haskell
	OpenBSD Haskell
	Haskell in Gentoo Linux

	Individuals
	Oleg's Mini tutorials and assorted small projects
	Graham Klyne
	Inductive Inference
	Bioinformatics tools
	Using Haskell to implement simulations of language acquisition, variation, and change

