
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Eleventh Edition – November 30, 2006

Andres Löh (ed.)
Lloyd Allison Tiago Miguel Laureano Alves Krasimir Angelov

Dmitry Astapov Alistair Bayley Jean-Philippe Bernardy
Clifford Beshers Edwin Brady Chris Brown

Andrew Butterfield Manuel Chakravarty Olaf Chitil
Alain Crémieux Jácome Cunha Iavor Diatchki
Atze Dĳkstra Robert Dockins Frederik Eaton
Martin Erwig Simon Foster Leif Frenzel

Richard A. Frost Andy Gill Dimitry Golubovsky
Murray Gross Walter Gussmann Keith Hanna

Ralf Hinze Paul Hudak Liyang Hu
Graham Hutton S. Alexander Jacobson Johan Jeuring

Antti-Juhani Kaĳanaho Jeremy O’Donoghue Oleg Kiselyov
Marnix Klooster Lennart Kolmodin Eric Kow

Lemmih Huiqing Li Andres Löh
Rita Loogen Salvador Lucas Ketil Malde

Simon Marlow Conor McBride Serge Mechveliani
Arie Middelkoop Neil Mitchell William Garret Mitchener

Andy Adams-Moran J. Garrett Morris Yann Morvan
Diego Navarro Rishiyur Nikhil Sven Panne
Ross Paterson Jens Petersen Simon Peyton-Jones
Bernie Pope Claus Reinke Colin Runciman
Alberto Ruiz David Sabel Uwe Schmidt

Martĳn Schrage Alexandra Silva Axel Simon
Anthony Sloane Dominic Steinitz Donald Bruce Stewart
Glenn Strong Martin Sulzmann Doaitse Swierstra

Wouter Swierstra Audrey Tang Henning Thielemann
Peter Thiemann Simon Thompson Phil Trinder

Arjan van Ĳzendoorn Miguel Vilaca Joost Visser
Malcolm Wallace Stefan Wehr Ashley Yakeley
Bulat Ziganshin

http://www.haskell.org/communities/

Preface

Welcome to the eleventh edition of the Haskell Communities and Activities Report – a collection
of entries about everything that is going on and related to Haskell in some way that appears
twice a year.

This time, there was a rather long delay between the submission deadline and the actual
publication. I apologize for any entries that are already outdated now due to this delay and
promise that I will try to keep this time shorter for the next edition.

I have looked at the total number of entries in all the reports and discovered that the report
has been continuously growing until the 11/2005 edition, which had 149 entries. After that,
there was a decline: the 06/2005 edition had 144 entries, and the current 11/2006 edition has
only 134 entries.

How and why do entries get removed? Generally, entries have to be updated every time for
inclusion in the report. If I do not hear back from the author of an entry or there are no
updates, but the entry seems still up-to-date, I keep it around for the next edition. But every
entry should be updated in a more or less significant way at least once per year, otherwise it
is removed. The idea of this Report is to document the current state of the communities, after
all, and of course an old entry can be revived if there is activity again.

I hope that the recent decline in entries is a temporary phenomenon and not the beginning
of a long-term trend. All the more, I want to thank all the authors who have found the time
to update their entries or provide new reports! As always, I have enjoyed putting everything
together and reading about all the exciting new developments.

There are certainly some projects that are missing from this Report. When I am aware of
a certain project or a recent development, I often try to encourage the authors to submit in
time, but I also rely on you, the readers, to ask missing projects to provide information for the
next edition, or to write about your own project. Do not worry about whether your project is
adequate: If it has anything to do with Haskell at all, there is a place for it in the Report.

Please mark the final weeks of April in your calendar, because that is when the entries for
the May edition will be collected.

As always, feedback is very welcome 〈hcar@haskell.org〉. Enjoy the Report!

Andres Löh, University of Bonn, Germany

2

mailto: hcar at haskell.org

Contents

1 General 7
1.1 HaskellWiki and haskell.org . 7
1.2 #haskell . 7
1.3 Planet Haskell . 7
1.4 Haskell Weekly News . 8
1.5 Books and tutorials . 8
1.5.1 “Hitchhickers Guide to Haskell” tutorial . 8
1.5.2 New textbook – Programming in Haskell . 8
1.5.3 Haskell Wikibook (was: Haskell Tutorial Wikibook) . 8
1.5.4 Haskell Tutorials in Portuguese . 9
1.6 A Survey on the Use of Haskell in Natural-Language Processing . 9

2 Implementations 10
2.1 The Glasgow Haskell Compiler . 10
2.2 Hugs . 11
2.3 nhc98 . 11
2.4 yhc . 11

3 Language 13
3.1 Variations of Haskell . 13
3.1.1 Haskell on handheld devices . 13
3.1.2 Pivotal: Visual Interactive Programming . 13
3.1.3 Camila . 13
3.1.4 HASP . 13
3.2 Non-sequential Programming . 14
3.2.1 GpH – Glasgow Parallel Haskell . 14
3.2.2 GdH – Glasgow Distributed Haskell . 15
3.2.3 Eden . 15
3.3 Type System/Program Analysis . 16
3.3.1 Epigram . 16
3.3.2 Chameleon project . 17
3.3.3 XHaskell project . 17
3.3.4 ADOM: Agent Domain of Monads . 17
3.3.5 EHC, ‘Essential Haskell’ Compiler . 18
3.3.6 Uniqueness Typing in EHC . 18
3.3.7 Object-Oriented Haskell . 19
3.4 IO . 19
3.4.1 Formal Aspects of Pure Functional I/O . 19
3.5 Generic Programming . 19

4 Libraries 21
4.1 Packaging and Distribution . 21
4.1.1 Core . 21
4.2 General libraries . 21
4.2.1 PFP – Probabilistic Functional Programming Library for Haskell 21
4.2.2 Hmm: Haskell Metamath module . 21
4.2.3 GSLHaskell . 22
4.2.4 An Index Aware Linear Algebra Library . 22
4.2.5 Ivor . 22
4.2.6 Haskell Rules: Embedding Rule Systems in Haskell . 23
4.3 Parsing and transforming . 23
4.3.1 Utrecht Parsing Library and Attribute Grammar System . 23

3

4.3.2 Left-Recursive Parser Combinators . 23
4.3.3 RecLib – A Recursion and Traversal Library for Haskell . 24
4.4 System . 24
4.4.1 hs-plugins . 24
4.4.2 time (was: Package “time”) . 24
4.4.3 The libpcap Binding . 24
4.4.4 Streams . 25
4.4.5 System.FilePath . 25
4.4.6 hinotify . 25
4.5 Databases and data storage . 26
4.5.1 CoddFish . 26
4.5.2 Takusen . 26
4.6 Data types and data structures . 26
4.6.1 Standard Collection Libraries . 26
4.6.2 The revamped monad transformer library . 27
4.6.3 Data.ByteString . 27
4.6.4 Edison . 27
4.6.5 Numeric prelude . 28
4.6.6 HList – a library for typed heterogeneous collections . 28
4.6.7 ArrayRef . 29
4.7 Data processing . 29
4.7.1 HsSyck . 29
4.7.2 AltBinary . 29
4.7.3 Compression-2006 (was: Compression-2005) . 30
4.7.4 The Haskell Cryptographic Library . 30
4.7.5 2LT: Two-Level Transformation . 31
4.8 User interfaces . 31
4.8.1 wxHaskell . 31
4.8.2 Gtk2Hs . 32
4.8.3 hscurses . 32
4.9 (Multi-)Media . 33
4.9.1 HOpenGL – A Haskell Binding for OpenGL and GLUT . 33
4.9.2 HOpenAL – A Haskell Binding for OpenAL and ALUT . 33
4.9.3 Haskore revision . 33
4.10 Web and XML programming . 34
4.10.1 HAppS – Haskell Application Server . 34
4.10.2 Pass.Net . 35
4.10.3 Converter of Yhc Core to Javascript (ycr2js) . 35
4.10.4 HaXml . 35
4.10.5 Haskell XML Toolbox . 36
4.10.6 WASH/CGI – Web Authoring System for Haskell . 36
4.10.7 HAIFA . 37

5 Tools 38
5.1 Foreign Function Interfacing . 38
5.1.1 FFI Imports Packaging Utility . 38
5.1.2 C→Haskell . 38
5.2 Scanning, Parsing, Analysis . 38
5.2.1 Frown . 38
5.2.2 Alex version 2 . 39
5.2.3 Happy . 39
5.2.4 SdfMetz . 39
5.2.5 XsdMetz: metrics for XML Schema . 40
5.3 Transformations . 40
5.3.1 Term Rewriting Tools written in Haskell . 40
5.3.2 HaRe – The Haskell Refactorer . 41
5.3.3 VooDooM . 41
5.4 Testing and Debugging . 42

4

5.4.1 Haskell Program Coverage . 42
5.4.2 Hat . 42
5.4.3 buddha . 43
5.4.4 SmallCheck: another lightweight testing library in Haskell . 43
5.4.5 Dr Haskell . 43
5.5 Development . 43
5.5.1 hmake . 43
5.5.2 Ruler . 44
5.5.3 cpphs . 44
5.5.4 Visual Haskell . 44
5.5.5 Haskell support for the Eclipse IDE . 45
5.5.6 Haddock . 45
5.5.7 Hoogle – Haskell API Search . 45
5.5.8 SearchPath . 46

6 Applications 47
6.1 FreeArc . 47
6.2 h4sh . 47
6.3 Pugs . 47
6.4 Darcs . 48
6.5 downNova . 48
6.6 Hircules, an irc client . 48
6.7 lambdabot . 48
6.8 λFeed . 49
6.9 yi . 49
6.10 Dazzle . 49
6.11 INblobs – Interaction Nets interpreter . 49
6.12 DoCon, the Algebraic Domain Constructor . 49
6.13 Dumatel, a prover based on equational reasoning . 50
6.14 lhs2TEX . 50
6.15 Audio signal processing . 50
6.16 hmp3 . 51
6.17 Testing Handel-C Semantics Using QuickCheck . 51
6.18 View selection for image-based rendering . 51

7 Users 52
7.1 Commercial users . 52
7.1.1 Bluespec tools for design of complex chips . 52
7.1.2 Galois Connections, Inc. 53
7.1.3 Aetion Technologies LLC . 53
7.1.4 Linspire . 54
7.2 Haskell in Education . 54
7.2.1 Functional programming at school . 54
7.3 Research Groups . 55
7.3.1 Foundations and Methods Group at Trinity College Dublin . 55
7.3.2 Foundations of Programming Group at the University of Nottingham 55
7.3.3 Artificial Intelligence and Software Technology at JWG-University Frankfurt 57
7.3.4 Functional Programming at Brooklyn College, City University of New York 58
7.3.5 Functional Programming at Macquarie University . 58
7.3.6 Functional Programming at the University of Kent . 58
7.3.7 Parallel and Distributed Functional Languages Research Group at Heriot-Watt University 59
7.3.8 Programming Languages & Systems at UNSW . 59
7.4 User groups . 60
7.4.1 Fedora Haskell . 60
7.4.2 OpenBSD Haskell . 60
7.4.3 Haskell in Gentoo Linux . 60
7.5 Individuals . 60
7.5.1 Oleg’s Mini tutorials and assorted small projects . 60

5

7.5.2 Implementation of “How to write a financial contract” . 61
7.5.3 Inductive Programming . 61
7.5.4 Bioinformatics tools . 62
7.5.5 Using Haskell to implement simulations of language acquisition, variation, and change 62

6

1 General

1.1 HaskellWiki and haskell.org

Report by: Ashley Yakeley

HaskellWiki is a MediaWiki installation now running
on haskell.org, including the haskell.org “front page”.
Anyone can create an account and edit and create
pages. Examples of content include:

◦ Documentation of the language and libraries

◦ Explanation of common idioms

◦ Suggestions and proposals for improvement of the
language and libraries

◦ Description of Haskell-related projects

◦ News and notices of upcoming events

We encourage people to create pages to describe and
advertise their own Haskell projects, as well as add to
and improve the existing content. All content is sub-
mitted and available under a “simple permissive” li-
cense (except for a few legacy pages).

In addition to HaskellWiki, the haskell.org website
hosts some ordinary HTTP directories. The machine
also hosts mailing lists. There is plenty of space and
processing power for just about anything that peo-
ple would want to do there: if you have an idea for
which HaskellWiki is insufficient, contact the maintain-
ers, John Peterson and Olaf Chitil, to get access to this
machine.

Further reading

◦ http://haskell.org/
◦ http://haskell.org/haskellwiki/Mailing_Lists

1.2 #haskell

Report by: Don Stewart

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. The channel
has grown substantially in users over the last 6 months,
and now #haskell averages over 240 concurrent users.
Point your IRC client to irc.freenode.net and join the
#haskell conversation!

For non-English conversations about Haskell there is
now:
◦ #haskell.de – German speakers
◦ #haskell.es – Spanish speakers

◦ #haskell.fi – Finnish speakers
◦ #haskell.fr – French speakers
◦ #haskell.hr – Croatian speakers
◦ #haskell.it – Italian speakers
◦ #haskell.jp – Japenese speakers
◦ #haskell.se – Swedish speakers
◦ #haskell_ru – Russian speakers

Related Haskell channels are now emerging, includ-
ing:
◦ #haskell-overflow – Overflow conversations
◦ #haskell-blah – Haskell people talking about any-

thing except Haskell itself
◦ #gentoo-haskell – Gentoo/Linux specific Haskell

conversations (→ 7.4.3)
◦ #darcs – Darcs revision control channel (written in

Haskell) (→ 6.4)

Further reading

More details at the #haskell home page: http://
haskell.org/haskellwiki/IRC_channel

1.3 Planet Haskell

Report by: Antti-Juhani Kaĳanaho
Status: active

Planet Haskell is an aggregator of Haskell people’s
blogs and other Haskell-related news sites. As of mid-
October content from 29 blogs and other sites is being
republished in a common format.

A common misunderstanding about Planet Haskell
is that it republishes only Haskell content. That is not
its mission. A Planet shows what is happening in the
community, what people are thinking about or doing.
Thus Planets tend to contain a fair bit of “off-topic”
material. Think of it as a feature, not a bug.

A blog is eligible to Planet if it is being written by
somebody who is active in the Haskell community, or by
a Haskell celebrity; also eligible are blogs that discuss
Haskell-related matters frequently, and blogs that are
dedicated to a Haskell topic (such as a software project
written in Haskell). Note that at least one of these
conditions must apply, and virtually no blog satisfies
them all. However, blogs will not be added to Planet
without the blog author’s consent.

To get a blog added, email Antti-Juhani Kaĳanaho
〈antti-juhani@kaĳanaho.fi〉 and provide evidence that
the blog author consents to this (easiest is to get the
author send the email, but any credible method suf-
fices).

Planet is hosted by Galois Connections, Inc. (→

7

http://haskell.org/
http://haskell.org/haskellwiki/Mailing_Lists
http://haskell.org/haskellwiki/IRC_channel
http://haskell.org/haskellwiki/IRC_channel
mailto: antti-juhani at kaijanaho.fi

7.1.2) as a service to the community. The Planet main-
tainer is not affiliated with them.

Further reading

http://planet.haskell.org/

1.4 Haskell Weekly News

Report by: Don Stewart

The Haskell Weekly News (HWN) is a weekly newslet-
ter covering developments in Haskell. Content includes
announcements of new projects, discussions from the
various Haskell communities, notable project commit
messages, Haskell in the blogspace, and more.

It is published in html form on The Haskell Se-
quence, via mail on the Haskell mailing list, on Planet
Haskell (→ 1.3), and via RSS. Headlines are published
on haskell.org (→ 1.1). The Haskell Weekly News is
also available in Spanish translation.

Further reading

◦ Archives, and more information can be found at:
http://www.haskell.org/haskellwiki/Haskell_Weekly_
News

1.5 Books and tutorials

1.5.1 “Hitchhickers Guide to Haskell” tutorial

Report by: Dmitry Astapov
Status: work in progress

“Hitchhickers Guide to Haskell” is a tutorial aimed to
provide a “quick start into Haskell” for programmers
with solid experience of other languages under their
belt. Instead of “side by side” comparison between
Haskell and another language of choice (like C or Java),
the tutorial is built around case studies, which show
how typical tasks are performed in Haskell.

This is work in progress, only 5 chapters have been
written so far.

The tutorial is available on the Haskell wiki (URL
below) or from the darcs repository at http://adept.
linux.kiev.ua/repos/hhgtth.

Right now I am collecting ideas for subsequent chap-
ters, so any feedback from readers is appreciated more
than ever.

Further reading

http://www.haskell.org/haskellwiki/Hitchhikers_guide_
to_Haskell

1.5.2 New textbook – Programming in Haskell

Report by: Graham Hutton

Haskell is one of the leading languages for teaching
functional programming, enabling students to write
simpler and cleaner code, and to learn how to structure
and reason about programs. This introduction is ideal
for beginners: it requires no previous programming ex-
perience and all concepts are explained from first prin-
ciples via carefully chosen examples. Each chapter in-
cludes exercises that range from the straightforward to
extended projects, plus suggestions for further reading
on more advanced topics. The presentation is clear
and simple, and benefits from having been refined and
class-tested over several years.
Features:

◦ Powerpoint slides for each chapter freely available for
instructors and students from the book’s website;

◦ Solutions to exercises and examination questions
(with solutions) available to instructors;

◦ All the code in the book is fully compliant with the
latest release of Haskell, and can be downloaded from
the web;

◦ Can be used with courses, or as a stand-along text
for self-learning.

Publication details:

◦ To be published by Cambridge University Press in
December 2006.

Further information:

◦ http://www.cs.nott.ac.uk/~gmh/book.html

1.5.3 Haskell Wikibook (was: Haskell Tutorial
Wikibook)

Report by: Eric Kow
Status: active development

The Haskell wikibook is an attempt to build a commu-
nity textbook that is at once free (in cost and remixa-
bility), comprehensive and cohesive.

Since the last report, we have overhauled the front
page and first few three chapters, and added chap-
ters on advanced topics such as laziness and existen-
tial types. We have also been importing a very large
amount of content from outside sources, selected pieces
of Haskell wiki for starters, as well as the entirety of the
excellent tutorials Write Yourself a Scheme in 48 Hours

8

http://planet.haskell.org/
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://adept.linux.kiev.ua/repos/hhgtth
http://adept.linux.kiev.ua/repos/hhgtth
http://www.haskell.org/haskellwiki/Hitchhikers_guide_to_Haskell
http://www.haskell.org/haskellwiki/Hitchhikers_guide_to_Haskell
http://www.cs.nott.ac.uk/~gmh/book.html

by Johnathan Tang and Yet Another Haskell Tutorial
by Hal Daumé III. Thanks to all authors, outsiders and
wikibook natives alike. As a result of your generous do-
nations, we now have enough content to meet the basic
needs for our readers.

Our main focus will thus be on cleaning up what we
have and merging it all into a single textbook.

Further reading

http://en.wikibooks.org/wiki/Haskell

1.5.4 Haskell Tutorials in Portuguese

Report by: Diego Navarro (syntaxfree on #haskell)
Status: published online, open to suggestions,

translation to english pending

Two weights, two measures

“Two weights, two measures” is a Haskell tutorial fo-
cusing on the construction of a very simple DSEL
for a fictional prison system exploiting the struc-
ture of the Either type (with a few proposed ex-
tensions). Its target audience is beginning program-
mers. The tutorial aims to explore the first steps of
how closures/combinators/higher-order functions can
be used to define domain specific languages for sim-
ple algebraic structures. It’s currently available only in
portuguese, but it should be translated at some point.

The full text can be found at the URL below.

An introduction to Haskell with autophagic snakes

“An introduction to Haskell with autophagic snakes”
is a Haskell tutorial focusing on the exploration of co-
recursive sequences using infinite lists in Haskell. Its
target audience is beginning programmers. The tuto-
rial aims to exempllify lazy evaluation and simple com-
binators to abstract repetitive structures in the core-
cursive definitions of sequences. It’s currently available
only in portuguese, but it should be translated at some
point.

The full text can be found at the URL below.

Further reading

◦ http://www.navarro.mus.br/diego/blog/2006/09/13/
tutorial-dois-pesos-duas-medidas/

◦ http://www.navarro.mus.br/diego/blog/2005/10/20/
uma-introducao-ao-haskell-usando-cobras-autofagicas/

1.6 A Survey on the Use of Haskell in
Natural-Language Processing

Report by: Richard A. Frost

The survey "Realization of Natural-Language Inter-
faces Using Lazy Functional Programming" is sched-
uled to be published in ACM Computing Surveys in
December 2006. If I have missed any relevant publi-
cations, please contact me at rfrost@cogeco.ca. It may
be possible to add references before the survey goes to
print. If not, I shall put new references on a web page
which I am creating to keep the survey up-to-date with
future work.

Further reading

A draft of the survey is available at:
http://cs.uwindsor.ca/~richard/PUBLICATIONS/

NLI_LFP_SURVEY_DRAFT.pdf

9

http://en.wikibooks.org/wiki/Haskell
http://www.navarro.mus.br/diego/blog/2006/09/13/tutorial-dois-pesos-duas-medidas/
http://www.navarro.mus.br/diego/blog/2006/09/13/tutorial-dois-pesos-duas-medidas/
http://www.navarro.mus.br/diego/blog/2005/10/20/uma-introducao-ao-haskell-usando-cobras-autofagicas/
http://www.navarro.mus.br/diego/blog/2005/10/20/uma-introducao-ao-haskell-usando-cobras-autofagicas/
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones et al.

GHC is in good shape. We have no good way to mea-
sure how many GHC users there are but if the traf-
fic on the GHC mailing lists is anything to go by, the
numbers are increasing quite rapidly. Indeed, GHC
was rapidly becoming a success-disaster, so that we
(Simon & Simon) were becoming swamped in GHC-
related mail. Happily, Microsoft Research has agreed
to fund a full-time support engineer, in the form of Ian
Lynagh (Igloo), who has already made a huge differ-
ence.

A highlight of the last six months was the GHC
Hackathon, which we ran a immediately before ICFP
in Portland, with wonderful support from Galois and
Portland State University. Forty-plus people showed
up to have GHC’s innards inflicted on them, and ap-
peared unharmed by the experience.

A significant outcome is that we have written a great
deal of Wiki material about GHC’s implementation
(the “commentary”) and about how to build and mod-
ify GHC (the “building guide”). Documents with these
titles were available before but had become rather out
of date. These new, up-to-date documents live on the
GHC developer’s Wiki. We urge you to read and im-
prove them: http://hackage.haskell.org/trac/ghc/wiki
(near the bottom).

We (finally) released GHC 6.6 in October 2006.
To get GHC 6.6, go to the Download page (http:
//www.haskell.org/ghc/download_ghc_66.html). There
was an extended period of release-candidate testing,
so we fondly hope that this will be a relatively sta-
ble release. There are many improvements, all listed
in the Release notes http://haskell.org/ghc/docs/6.6/
html/users_guide/release-6-6.html. The most impor-
tant new features include:

◦ Now GHC can execute several Haskell threads simul-
taneously on different cpus/cores

◦ ByteString (→ 4.6.3) type for fast and memory-
efficent string manipulations

◦ Unicode source files

◦ Further generalisation of newtype deriving

◦ Bang patterns to declare function arguments as strict

◦ Impredicative polymorphism

◦ Lastly, we finally bit the bullet and lifted the re-
striction that every module in a Haskell program
must have a distinct name. Why? Because it’s non-
modular: two packages from different authors could
accidentally collide. This change is in GHC 6.6; there
are some remaining open choices dicussed at http:
//hackage.haskell.org/trac/ghc/wiki/GhcPackages.

Life still goes on and there is current development
version (HEAD), that will ultimately become GHC 6.8.
You can find binary snapshots at the download page
http://www.haskell.org/ghc/dist/current/dist/ or build
from sources available via the darcs repository (http:
//darcs.haskell.org/ghc/). This version already includes
significant new features:

◦ We have completely replaced GHC’s intermediate
language with System FC(X), an extension of Sys-
tem F with explicit equality witnesses. This enables
GHC to support GADTs and associated types, with
two new simple but powerful mechanisms. The paper
is at http://research.microsoft.com/~simonpj/papers/
ext-f/. Much of the conversion work was done by
Kevin Donnelly, while he was on an internship at
Microsoft.

◦ Manuel Chakravarty has implemented type-indexed
data types, a modest generalisation of the associated
data types of our POPL’05 paper http://research.
microsoft.com/~simonpj/papers/assoc-types/. The
implementation is in the HEAD and is ready
to be tried out; details are at http://haskell.org/
haskellwiki/GHC/Indexed_types. Still to come are
some bits around the edges on deriving and some
small syntactic generalisations.

◦ Tim Harris added support for invariants to GHC’s
Software Transactional Memory (STM) implemen-
tation. Paper here: http://research.microsoft.com/
~simonpj/papers/stm/.

◦ Björn Bringert (a GHC Hackathon graduate) im-
plemented standalone deriving, which allows you
to write a deriving declaration anywhere, rather
than only where the data type is declared. De-
tails of the syntax have not yet quite settled. See
also http://www.haskell.org/pipermail/haskell-prime/
2006-October/001725.html.

◦ Andy Gill implemented the Haskell Program Cov-
erage (→ 5.4.1) (http://haskell.org/haskellwiki/GHC/
HPC) option (-fhpc) for GHC, which is solid enough
to be used to test coverage in GHC itself. (It turns
out that the GHC testsuite gives remarkably good
coverage over GHC already.)

10

http://hackage.haskell.org/trac/ghc/wiki
http://www.haskell.org/ghc/download_ghc_66.html
http://www.haskell.org/ghc/download_ghc_66.html
http://haskell.org/ghc/docs/6.6/html/users_guide/release-6-6.html
http://haskell.org/ghc/docs/6.6/html/users_guide/release-6-6.html
http://hackage.haskell.org/trac/ghc/wiki/GhcPackages
http://hackage.haskell.org/trac/ghc/wiki/GhcPackages
http://www.haskell.org/ghc/dist/current/dist/
http://darcs.haskell.org/ghc/
http://darcs.haskell.org/ghc/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/assoc-types/
http://research.microsoft.com/~simonpj/papers/assoc-types/
http://haskell.org/haskellwiki/GHC/Indexed_types
http://haskell.org/haskellwiki/GHC/Indexed_types
http://research.microsoft.com/~simonpj/papers/stm/
http://research.microsoft.com/~simonpj/papers/stm/
http://www.haskell.org/pipermail/haskell-prime/2006-October/001725.html
http://www.haskell.org/pipermail/haskell-prime/2006-October/001725.html
http://haskell.org/haskellwiki/GHC/HPC
http://haskell.org/haskellwiki/GHC/HPC

If you want to know today’s state-of-the-art, you
should check the GHC 6.8 status page at http://haskell.
org/haskellwiki/GHC/6.8. At this moment we are work-
ing on the following features which are planned to be
included in GHC 6.8 in next few months:

◦ Roman Leshchinskiy has been hard at work devel-
oping libraries that support data-parallel computa-
tion in GHC. It’s not quite ready for public con-
sumption but you can peek at what is going on
by looking at the Haskell Wiki: http://haskell.org/
haskellwiki/GHC/Data_Parallel_Haskell. Background
material here: http://www.cse.unsw.edu.au/~chak/
papers/CKLP01.html. We hope to release a first it-
eration of our data-parallel extensions before Christ-
mas.

◦ At the moment GHC’s garbage collector is single-
threaded, even when GHC is running on a mul-
tiprocessor. Roshan James spent the summer at
Microsoft on an internship, implementing a multi-
threaded GC (http://hackage.haskell.org/trac/ghc/
wiki/MotivationForParallelization). We need to do a
bit more work, but with a bit of luck we’ll push
a parallel garbage collector into the HEAD before
Christmas.

◦ Simon PJ is determined to finally implement im-
plication constraints, which are the key to fixing
the interaction between GADTs and type classes.
GHC’s users have been very polite about this col-
lection of bugs, but they should really be fixed.
Implication constraints are described by Martin
Sulzmann: http://www.comp.nus.edu.sg/~sulzmann/
publications/tr-eadt.ps.gz.

◦ Once the last bits of indexed data types are done,
Manuel will be tackling indexed type synonyms (aka
type functions), which are considerably trickier, at
least so far as type inference is concerned.

2.2 Hugs

Report by: Ross Paterson
Status: stable, actively maintained, volunteers

welcome

The September 2006 release of Hugs fixes a few bugs
found in the previous release, and updates the libraries
to approximately match those of GHC 6.6, which was
about to release at the time. The Windows build is
now largely automated, thanks to Neil Mitchell, so it
is easier to produce more frequent releases.

As with the previous release, the source distribution
is available in two forms: a huge omnibus bundle con-
taining the Hugs programs and lots of useful libraries,
or a minimal bundle, with most of the libraries hived off
as separate Cabal packages. We hope that more library
packages will be released independently, so that Hugs
will become less reliant on development snapshots.

Obsolete non-hierarchical libraries will be removed
in the next major release.

As ever, volunteers are welcome.

2.3 nhc98

Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, compiler for Haskell’98.
Despite rumours to the contrary, nhc98 is still very
much alive and working, although it does not see any
new development these days. The current public re-
lease is version 1.18, with a new release expected soon
for compatibility with ghc-6.6 and the re-arranged hi-
erarchical libraries. We recently moved over to a darcs
repo for maintenance.

The Yhc (→ 2.4) fork of nhc98 is also making good
progress.

Further reading

◦ http://haskell.org/nhc98
◦ darcs get http://darcs.haskell.org/nhc98

2.4 yhc

Report by: Neil Mitchell

The York Haskell Compiler (yhc) is a fork of the
nhc98 (→ 2.3) compiler, with goals such as increased
portability, platform independent bytecode, integrated
Hat support and generally being a cleaner code base
to work with. Yhc now compiles and runs almost all
Haskell 98 programs, has basic FFI support – the main
thing missing is haskell.org base libraries, which is be-
ing worked on.

Since that last HCAR a lot of work has been put in
place on the infrastructure of the project – we now have
a new build system, nightly builds, automated testing,
snapshot releases, wiki documentation, a haskell.org

11

http://haskell.org/haskellwiki/GHC/6.8
http://haskell.org/haskellwiki/GHC/6.8
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.cse.unsw.edu.au/~chak/papers/CKLP01.html
http://www.cse.unsw.edu.au/~chak/papers/CKLP01.html
http://hackage.haskell.org/trac/ghc/wiki/MotivationForParallelization
http://hackage.haskell.org/trac/ghc/wiki/MotivationForParallelization
http://www.comp.nus.edu.sg/~sulzmann/publications/tr-eadt.ps.gz
http://www.comp.nus.edu.sg/~sulzmann/publications/tr-eadt.ps.gz
http://haskell.org/nhc98
http://darcs.haskell.org/nhc98

darcs repository. There has also been a focus on creat-
ing libraries to allow programmers to reuse some of the
work done by Yhc – in particular Yhc.ByteCode and
Yhc.Core.

Going forward our focus is to support the haskell.org
base libraries, get full Cabal support, enhance our
Yhc.* libraries, refactor everything and to support
Haskell’ fully.

Further reading

◦ Homepage:
http://www.haskell.org/haskellwiki/Yhc

◦ Darcs repository:
http://darcs.haskell.org/yhc

12

http://www.haskell.org/haskellwiki/Yhc
http://darcs.haskell.org/yhc

3 Language

3.1 Variations of Haskell

3.1.1 Haskell on handheld devices

Report by: Anthony Sloane
Participants: Michael Olney
Status: unreleased

The project at Macquarie University (→ 7.3.5) to run
Haskell on handheld devices based on Palm OS is close
to producing a working implementation for experimen-
tation. Our port of the yhc (→ 2.4) runtime is now run-
ning small examples on simulators and real devices. We
are currently testing with larger GUI-based programs.
We expect to make a public alpha release sometime in
the (southern) summer.

3.1.2 Pivotal: Visual Interactive Programming

Report by: Keith Hanna
Status: active (first release: November 2005)

Pivotal 0.025 is a very early prototype of a Vital-like en-
vironment for Haskell. Unlike Vital, however, Pivotal is
implemented entirely in Haskell. The implementation
is based on the use of the hs-plugins library (→ 4.4.1)
to allow dynamic compilation and evaluation of Haskell
expressions together with the gtk2hs library (→ 4.8.2)
for implementing the GUI.

At present, the implementation is only in a skeletal
state but, nevertheless, it provides some useful func-
tionality. The Pivotal web site provides an overview
of its principles of operation, a selection of screen shots
(including a section illustrating image transforms in the
complex plane), and a (very preliminary!) release of the
Haskell code for the system.

A more extensive implementation (based on the use
of the GHC API (→ 2.1) for reflection, in place of the
hs-plugins (→ 4.4.1) mechanism) is planned as soon as
the required hooks are available in GHC 6.6.

Further reading

◦ Pivotal:
http://www.cs.kent.ac.uk/projects/pivotal/

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

3.1.3 Camila

Report by: Jácome Cunha and Joost Visser

The Camila project explores how concepts from the
VDM++ specification language and the functional pro-
gramming language Haskell can be combined. On one
hand, it includes experiments of expressing VDM’s
data types (e.g. maps, sets, sequences), data type
invariants, pre- and post-conditions, and such within
the Haskell language. On the other hand, it includes
the translation of VDM specifications into Haskell pro-
grams. Moreover, the use of the OOHaskell library (→
4.6.6) allows the definition of classes and objects and
enables important features such as inheritance. In
the near future, support for parallelism and automatic
translation of VDM++ specifications into Haskell will
be added to the libraries.

Camila goes beyond VDM++ and has support for
modelling software components. The work done until
now in this field is concerned with rendering and pro-
totyping (coalgebraic models of) software components
in Camila. To encourage the use of this technology
we have developed a tool to generate components from
Camila specifications. The advantage of component
based development is that it makes possible to con-
struct complex software from simple pre-existing build-
ing blocks. So we have also animated an algebra of
components to compose them in several ways. Finally
a way to animate components was also implemented.

Two implementation strategies were devised: one
in terms of a direct encoding in “plain” Haskell, an-
other resorting to type-level programming techniques,
the latter offered interesting particularities.

Further reading

The web site of Camila (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/Camila) provides documentation. Both
library and tool are distributed as part of the UMinho
Haskell Libraries and Tools.

3.1.4 HASP

Report by: Lemmih
Status: active

HASP is a fork of Niklas Broberg’s Haskell Server
Pages. Changes includes:
◦ support for all GHC extensions
◦ use of the GHC-api (→ 2.1) for byte-code compila-

tions
◦ front-end based on FastCGI instead of its own web

server
◦ minor bug fixes and performance tuning.

Some of the features implemented in HASP will be
ported back into the main HSP tree. However, experi-

13

http://www.cs.kent.ac.uk/projects/pivotal/
http://www.cs.kent.ac.uk/projects/vital/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila

mental features like byte code generation via the GHC
api will most likely stay in HASP.

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/hasp/

◦ Original HSP:
http://www.cs.chalmers.se/~d00nibro/hsp/

3.2 Non-sequential Programming

3.2.1 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Abyd Al Zain, Greg

Michaelson, Kevin Hammond, Yang Yang,
Jost Berthold, Murray Gross

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

System Evaluation and Enhancement

◦ A major revision of the parallel runtime environment
for GHC 6.5 is currently under development. Sup-
port for the parallel language Eden (→ 3.2.3) exists
and is currently being tested. Support for the par-
allel language GpH is currently being added to this
version of the runtime environment.

◦ We have developed an adaptive runtime environ-
ment (GRID-GUM) for GpH on computational
grids. GRID-GUM incorporates new load man-
agement mechanisms that cheaply and effectively
combine static and dynamic information to adapt
to the heterogeneous and high-latency environment
of a multi-cluster computational grid. We have
made comparative measures of GRID-GUM’s per-
formance on high/low latency grids and heteroge-
neous/homogeneous grids using clusters located in
Edinburgh, Munich and Galashiels. Results are pub-
lished in:

Al Zain A. Implementing High-Level Parallelism on
Computational Grids, PhD Thesis, Heriot-Watt Uni-
versity, 2006.

Al Zain A. Trinder P.W. Loidl H.W. Michaelson G.J.
Managing Heterogeneity in a Grid Parallel Haskell,
Journal of Scalable Computing: Practice and Expe-
rience 7(3), (September 2006).

◦ SMP-GHC, an implementation of GpH for multi-core
machines has been developed by Tim Harris, Simon
Marlow and Simon Peyton Jones.

◦ At St Andrews GpH is being used as a vehicle for
investigating scheduling on the GRID.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universitat Mar-
burg.

GpH Applications

◦ GpH is being used to parallelise the GAP mathemat-
ical library in an EPSRC project (GR/R91298).

◦ As part of the SCIEnce EU FP6 I3 project (026133)
that started in April 2006 we will use GpH and Java
to provide access to Grid services from Computer Al-
gebra(CA) systems, including GAP and Maple. We
will both produce Grid-parallel implementations of
common CA library functions, and also wrap CA
systems as Grid services.

Implementations

The GUM implementation of GpH is available in three
development branches.

◦ The focus of the development has switched to the
version based on GHC 6.5, and we plan to make an
early prototype available from the GpH web site later
this year.

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06. ’item A current unstable
branch (GUM-5.02, based on GHC-5.02) is available
on request.

Our main hardware platform are Intel-based Beowulf
clusters. Work on ports to other architectures is also
moving on (and available on request):

◦ A port to a Mosix cluster has been built in the Metis
project at Brooklyn College, with a first version
available on request from Murray Gross (→ 7.3.4).

Further reading

◦ GpH Home Page:
http://www.macs.hw.ac.uk/~dsg/gph/

◦ Stable branch binary snapshot:
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.
06-snap-i386-unknown-linux.tar

◦ Stable branch installation instructions:
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM

Contact

〈gph@macs.hw.ac.uk〉, 〈mgross@dorsai.org〉

14

http://darcs.haskell.org/~lemmih/hasp/
http://www.cs.chalmers.se/~d00nibro/hsp/
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: mgross at dorsai.org

3.2.2 GdH – Glasgow Distributed Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Hans-Wolfgang Loidl, Jan

Henry Nyström, Robert Pointon

GdH supports distributed stateful interactions on mul-
tiple locations. It is a conservative extension of both
Concurrent Haskell and GpH (→ 3.2.1), enabling the
distribution of the stateful IO threads of the former on
the multiple locations of the latter. The programming
model includes forking stateful threads on remote loca-
tions, explicit communication over channels, and dis-
tributed exception handling.

Status

An alpha-release of the GdH implementation is avail-
able on request 〈gph@macs.hw.ac.uk〉. It shares sub-
stantial components of the GUM implementation of
GpH (Glasgow parallel Haskell) (→ 3.2.1).

Applications and Evaluation

◦ EPSRC project High Level Techniques for Dis-
tributed Telecommunications Software (GR/R88137)
has recently been completed (February 2006). The
project was collaboration between Heriot-Watt Uni-
versity and Motorola UK Research Labs, and
amongst other activities evaluated GdH and Erlang
as technologies for distributed telecoms software in
comparison to C++/CORBA. Previous publications
appear on the project page, and some recent results
are given in the papers below. The latter paper
compares Erlang, GdH and C++ for engineering a
medium-scale (14K lines of C++, 4K lines of Erlang,
and 0.5K lines of GdH) telecoms component.

Nystrom J.H. Trinder P.W. King D.J. Are High-level
Languages suitable for Robust Telecoms Software?
Proc. 24th Int. Conference on Computer Safety,
Reliability and Security (SAFECOMP’05), Fredrik-
stad, Norway (September 2005).

http://www.macs.hw.ac.uk/~dsg/telecoms/
publications/SafeComp2005.pdf

Nystrom, J.H., Trinder, P.W., King,D.J. A Compar-
ative Evaluation of Three High-level Distributed Lan-
guages for Telecoms Software. In preparation.

◦ There is a forthcoming Ph.D. thesis on the design,
implementation and use of GdH by Robert Pointon.

Further reading

◦ The GdH homepage:
http://www.macs.hw.ac.uk/~dsg/gdh/

3.2.3 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps Universität Marburg, Germany and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Fernando Rubio, Clara Segura,
Alberto Verdejo

in Marburg: Rita Loogen, Jost Berthold, Steffen
Priebe, Björn Struckmeier

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement
parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in parallel.
Process instantiation is expressed by the predefined in-
fix operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining skele-
tons, ranging from a simple parallel map to sophisti-
cated replicated-worker schemes. They have been used
to parallelise a set of non-trivial benchmark programs.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén and Ri-
cardo Peña: Parallel Functional Programming in
Eden, Journal of Functional Programming 15(3), 2005,
pages 431–475.

Implementation

A major revision of the parallel Eden runtime environ-
ment for GHC 6.5 is available. Support for Glasgow
parallel Haskell (GpH) is currently being added to this
version of the runtime environment. It is planned for
the future to maintain a common parallel runtime en-
vironment for Eden, GpH and other parallel Haskells.

Recent and Forthcoming Publications

◦ Jost Berthold, Rita Loogen: The Impact of Dynamic
Channels on Functional Topology Skeletons, Parallel
Processing Letters, to appear 2006.

15

mailto: gph at macs.hw.ac.uk
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/publications/SafeComp2005.pdf
http://www.macs.hw.ac.uk/~dsg/telecoms/publications/SafeComp2005.pdf
http://www.macs.hw.ac.uk/~rpointon/
http://www.macs.hw.ac.uk/~dsg/gdh/

◦ Jost Berthold, Rita Loogen: Parallel Coordination
Made Explicit in a Functional Setting, IFL, Bu-
dapest, September 2006.

◦ Mercedes Hidalgo-Herrero, Yolanda Ortega-Mallén,
Fernando Rubio: Analyzing the influence of mixed
evaluation on the performance of Eden skeletons,
Parallel Computing 32 (2006) 523–538.

◦ Mercedes Hidalgo-Herrero, Alberto Verdejo, Yolanda
Ortega-Mallén: Using Maude and its strategies for
defining a framework for analyzing Eden semantics,
WRS 06 (6th International Workshop on Reduction
Strategies in Rewriting and Programming), Aachen
2006.

◦ Steffen Priebe: Dynamic Task Generation and
Transformation within a Nestable Workpool Skeleton,
Euro-Par 2006, LNCS 4128, Springer 2006.

◦ Björn Struckmeier: Implementing a tool for vi-
sualising and analysing parallel program runs in
Haskell, Diploma Thesis, Philipps-Universität Mar-
burg, September 2006 (in German).

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.3 Type System/Program Analysis

3.3.1 Epigram

Report by: Conor McBride and Wouter Swierstra

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive
editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-
ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in ‘The view from the left’ by Conor McBride
and James McKinna (JFP 14 (1)).

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program won’t crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.

Specifically, Epigram is designed to support pro-
gramming with inductive datatype families indexed
by data. Examples include matrices indexed by
their dimensions, expressions indexed by their types,

search trees indexed by their bounds. In many ways,
these datatype families are the progenitors of Haskell’s
GADTs, but indexing by data provides both a con-
ceptual simplification – the dimensions of a matrix are
numbers – and a new way to allow data to stand as
evidence for the properties of other data. It is no good
representing sorted lists if comparison does not produce
evidence of ordering. It is no good writing a type-safe
interpreter if one’s typechecking algorithm cannot pro-
duce well-typed terms.

Programming with evidence lies at the heart of Epi-
gram’s design. Epigram generalises constructor pattern
matching by allowing types resembling induction prin-
ciples to express as how the inspection of data may
affect both the flow of control at run time and the text
and type of the program in the editor. Epigram ex-
tracts patterns from induction principles and induction
principles from inductive datatype families.

Current Status

Whilst at Durham, Conor McBride developed the Epi-
gram prototype in Haskell, interfacing with the xemacs
editor. Nowadays, a team of willing workers at the Uni-
versity of Nottingham are developing a new version of
Epigram, incorporating both significant improvements
over the previous version and experimental features
subject to active research.

The Epigram system is also being used success-
fully by Thorsten Altenkirch, and more recently Conor
McBride, in an undergraduate course on Computer
Aided Formal Reasoning for two years http://www.
e-pig.org/darcs/g5bcfr/. Several final year students
have successfully completed projects that involved both
new applications of and useful contributions to Epi-
gram.

Peter Morris is working on how to build the datatype
system of Epigram from a universe of containers. This
technology would enable datatype generic program-
ming from the ground up. Central to these ideas is
the concept of indexed container that has been devel-
oped recently. There are ongoing efforts to elaborate
the ideas in Edwin Brady’s PhD thesis about efficiently
compiling dependently typed programming languages.

We have started writing a stand-alone editor for Epi-
gram using Gtk2Hs (→ 4.8.2). Thanks to a most help-
ful visit from Duncan Coutts and Axel Simon, two lead-
ing Gtk2Hs developers, we now have the beginnings of
a structure editor for Epigram 2. For the moment, we
are also looking into a cheap terminal front-end.

There has also been steady progress on Epigram 2
itself. Most of the recent progress has been on the type
theoretic basis underpinning Epigram. A new represen-
tation of the core syntax has been designed to facilitate
bidirectional type checking. The semantics of individ-
ual terms are glued to their syntactical representation.
We have started implementing observational equality,
combining the benefits of both intensional and exten-

16

http://www.mathematik.uni-marburg.de/~eden
http://www.e-pig.org/darcs/g5bcfr/
http://www.e-pig.org/darcs/g5bcfr/

sional notions of equality. The lion’s share of the core
theory has already been implemented, but there is still
plenty of work to do.

Whilst Epigram seeks to open new possibilities
for the future of strongly typed functional program-
ming, its implementation benefits considerably from
the present state of the art. Our implementation makes
considerable use of applicative functors, higher-kind
polymorphism and type classes. Moreover, its denota-
tional approach translates Epigram’s lambda-calculus
directly into Haskell’s. On a more practical note, we
have recently shifted to the darcs version control sys-
tem and cabal framework.

Epigram source code and related research papers
can be found on the web at http://www.e-pig.org and
its community of experimental users communicate via
the mailing list 〈epigram@durham.ac.uk〉. The current
implementation is naive in design and slow in prac-
tice, but it is adequate to exhibit small examples of
Epigram’s possibilities. The new implementation will
be much less rudimentary. At the moment, there
is direct low-level interface to the state of the proof
state called Ecce. Its documentation, together with
other Epigram 2 design documents, can be found at
http://www.e-pig.org/epilogue/.

3.3.2 Chameleon project

Report by: Martin Sulzmann

Chameleon is a Haskell style language which integrates
sophisticated reasoning capabilities into a program-
ming language via its CHR programmable type system.
Thus, we can program novel type system applications
in terms of CHRs which previously required special-
purpose systems.

Latest developments

A new version of Chameleon including examples and
documentation is available via http://taichi.ddns.comp.
nus.edu.sg/taichiwiki/ChameleonHomePage

3.3.3 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu and

Martin Sulzmann

XHaskell is an extension of Haskell with XDuce style
regular expression types and regular expression pattern
matching. We have much improved the implementation
which can found under the XHaskell home-page.

Latest developments

A new version of XHaskell including examples and doc-
umentation is available via http://taichi.ddns.comp.nus.
edu.sg/taichiwiki/XhaskellHomePage

3.3.4 ADOM: Agent Domain of Monads

Report by: Martin Sulzmann
Participants: Edmund S. L. Lam and Martin Sulzmann

ADOM is an agent-oriented extension of Haskell with
a unique approach to the implementation of cognitive
Belief-Desire-Intention (BDI) agents. In ADOM, agent
reasoning operations are viewed as monadic computa-
tions. Agent reasoning operations can be stratified:
Low-level reasoning operations involve the agents be-
liefs and actions whereas high-level reasoning opera-
tions involve the agents goals and plans. Monads al-
low us to compose various levels of reasoning together,
while maintaining clear and distinct separation be-
tween the different levels. ADOM can be used directly
as an agent-oriented domain specific language, or used
to build more higher level BDI agent abstractions on
top of it (eg. AgentSpeak, 3APL). ADOM also intro-
duces the use of Constraint Handling Rules (CHR), em-
bedded with Haskell, to directly model the agent’s be-
lief of its dynamically changing domain (world) and it’s
actions which invoke change to it’s domain. The key
advantage of our approach are:

◦ CHRs provides a clear and concise representation
and implementation of dynamically changing agent
beliefs and actions.

◦ Stratifying the various levels of agent cognitive rea-
soning by monads, maintains a distinct separation
between different reasoning computations and their
responsibilities. We can also preserve certain desir-
able properties possessed by each level of computa-
tions. For example, CHR notion of observable con-
fluence.

◦ Monadic computations can be composed to form
more complex computations, hence ADOM can be
easily extended with more complex functionalities.
For example, we can build higher level monadic com-
putations that implements other BDI frameworks,
like agentspeak or 3APL.

Further reading

More information on ADOM can be found
here http://taichi.ddns.comp.nus.edu.sg/taichiwiki/
ADOMHomePage

17

http://www.e-pig.org
mailto: epigram at durham.ac.uk
http://www.e-pig.org/epilogue/
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ChameleonHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ChameleonHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ADOMHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ADOMHomePage

3.3.5 EHC, ‘Essential Haskell’ Compiler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Jeroen Fokker, Arie

Middelkoop, Doaitse Swierstra
Status: active development

The purpose of the EHC project is to provide a descrip-
tion of a Haskell compiler which is as understandable
as possible so it can be used for education as well as
research.

For its description an Attribute Grammar system
(AG) (→ 4.3.1) is used as well as other formalisms al-
lowing compact notation like parser combinators. For
the description of type rules, and the generation of an
AG implementation for those type rules, we use the
Ruler system (→ 5.5.2) (included in the EHC project).

The EHC project also tackles other issues:

◦ In order to avoid overwhelming the innocent reader,
the description of the compiler is organised as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus.

◦ Each step corresponds to an actual, that is, an exe-
cutable compiler. Each of these compilers is a com-
piler in its own right so experimenting can be done in
isolation of additional complexity introduced in later
steps.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Currently EHC already incorporates more advanced
features like higher-ranked polymorphism, partial type
signatures, class system, explicit passing of implicit pa-
rameters (i.e. class instances), extensible records, kind
polymorphism.

Part of the description of the series of EH compilers
is available as a PhD thesis, which incorporates previ-
ously published material on the EHC project.

The compiler is used for small student projects as
well as larger experiments such as the incorporation of
an Attribute Grammar system.

Current activities

We are currently working on the following:

◦ A Haskell98 frontend, supporting most of Haskell98,
done by Atze Dĳkstra.

◦ A GRIN (Graph Reduction Intermediate Notation,
see below) like backend, which allows experimenting
with global program optimization. This is done by
Jeroen Fokker.

◦ Arie Middelkoop will continue with the development
of the Ruler system (→ 5.5.2).

Further reading

◦ Homepage:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

◦ Attribute grammar system:
http://www.cs.uu.nl/wiki/HUT/
AttributeGrammarSystem

◦ Parser combinators:
http://www.cs.uu.nl/wiki/HUT/ParserCombinators

◦ GRIN:
Urban Boquist, Code Optimisation Techniques for
Lazy Functional Languages, PhD Thesis, Chalmers
University of Technology 1999
http://www.cs.chalmers.se/~boquist/phd/index.html

3.3.6 Uniqueness Typing in EHC

Report by: Arie Middelkoop
Participants: Arie Middelkoop, Jurriaan Hage
Status: Prototype finished

Uniqueness typing is a type system feature of the func-
tional programming language Clean to identify unique
values. The space these values occupy can be recycled
directly after their only use, thus enabling a form of
static garbage collection that greatly improves the effi-
ciency of functional programs. Our goal is to take this
idea, and use it to produce more efficient Haskell code.

This project consists of two parts: an analysis to de-
termine which values are unique (front-end), and a code
specializer that uses the analysis results to optimize
memory management (back-end). We did focus on the
front-end part and implemented a prototype using the
Essential Haskell (→ 3.3.5) project as a research vehi-
cle. Code generation is ongoing work of the Essential
Haskell project, and we intent to integrate the results
of the uniqueness analysis in a later phase.

Our uniqueness analyzer works as follows. Each type
constructor of a well-typed program is annotated with a
fresh identifier called the uniqueness annotation. From
the structure of the AST, we generate a bunch of con-
straints between these annotations. Solving the con-
straints gives a local reference count (taking the current
slice of the program into account) and global reference
count (taking the whole program into account) of each
annotation. The global reference count is constructed
from the local reference counts and serves as an ap-
proximation of an upper bound to the actual usage of
a value. (Sub)values that end up with an upper bound
are considered unique, others are shared.

Further reading

◦ Master’s thesis:
http://abaris.zoo.cs.uu.nl:8080/wiki/pub/Top/
Publications/uniqueness.pdf

18

http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.chalmers.se/~boquist/phd/index.html
http://abaris.zoo.cs.uu.nl:8080/wiki/pub/Top/Publications/uniqueness.pdf
http://abaris.zoo.cs.uu.nl:8080/wiki/pub/Top/Publications/uniqueness.pdf

◦ Sources:
https://svn.cs.uu.nl:12443/repos/EHC/branches/
uniqueness/EHC/

◦ EH project page:
http://www.cs.uu.nl/groups/ST/Ehc/WebHome

3.3.7 Object-Oriented Haskell

Report by: Glenn Strong
Status: ongoing

A set of type and other extensions to a Haskell-derived
language to support the general notion of Object-
Oriented programming. An interpreter is under con-
struction to provide a programming environment. No
public release is currently available as the system is not
yet usable.

3.4 IO

3.4.1 Formal Aspects of Pure Functional I/O

Report by: Andrew Butterfield
Participants: Andrew Butterfield, Glenn Strong,

Malcolm Dowse
Status: ongoing

We are particularly interested in formal models of the
external effects of I/O in pure lazy functional lan-
guages. The emphasis is on reasoning about how pro-
grams affect their environment, rather than the issue
of which programs have identical I/O behaviour.

Further reading

BS01 Andrew Butterfield and Glenn Strong, “Prov-
ing correctness of programs with I/O — a paradigm
comparison”, in Thomas Arts and Markus Mohnen,
editors, Proceedings of the 13th International Work-
shop, IFL2001, LNCS 2312, pages 72–87, 2001.

BDS02 Malcolm Dowse, Glenn Strong, and Andrew
Butterfield, “Proving make correct — I/O proofs in
Haskell and Clean”, in Ricardo Peña and Thomas
Arts, editors, Proceedings of IFL 2002, LNCS 2670,
pages 68–83, 2002

BDE04 Malcolm Dowse, Andrew Butterfield, and
Marko van Eekelen, “Reasoning about determinis-
tic concurrent functional i/o”, in Clemens Grelck,
Frank Huch, and Phil Trinder, editors, IFL’04 - Re-
vised Papers, LNCS 3474, 2005.

BD06 Malcolm Dowse, Andrew Butterfield, “Mod-
elling Deterministic Concurrent I/O”, in Julia
Lawall, editor, ICFP 2006, Portland, September 18–
20, 2006.

3.5 Generic Programming

Report by: Johan Jeuring

Software development often consists of designing a (set
of mutually recursive) datatype(s), to which function-
ality is added. Some functionality is datatype specific,
other functionality is defined on almost all datatypes,
and only depends on the type structure of the datatype.

Examples of generic (or polytypic) functionality de-
fined on almost all datatypes are the functions that
can be derived in Haskell using the deriving construct,
storing a value in a database, editing a value, compar-
ing two values for equality, pretty-printing a value, etc.
Another kind of generic function is a function that tra-
verses its argument, and only performs an action at a
small part of its argument. A function that works on
many datatypes is called a generic function.

There are at least two approaches to generic pro-
gramming: use a preprocessor to generate instances of
generic functions on some given datatypes, or extend
a programming language with the possibility to define
generic functions. The techniques behind some of these
ideas are given in a separate subsection. In Comparing
approaches to generic programming in Haskell (in the
lecture notes of the Spring School on Datatype-Generic
Programming 2006, held in Nottingham, April 2006, to
appear in LNCS), Ralf Hinze, Johan Jeuring and An-
dres Löh compare 8 different approaches to generic pro-
gramming in Haskell, both lightweight approaches and
language extensions. Most of the approaches discussed
in this and previous versions of the Communities re-
port are addressed. In the same set of lecture notes,
Jeremy Gibbons discusses the various interpretations
of the word ‘generic’.

Preprocessors

DrIFT is a preprocessor which generates instances of
generic functions. It is used in Strafunski to generate
a framework for generic programming on terms. New
releases appear regularly, the latest is 2.2.0 from April
2006.

Languages

Light-weight generic programming There are a num-
ber of approaches to light-weight generic programming.

Generic functions for data type traversals can (al-
most) be written in Haskell itself (using many of the
extensions of Haskell provided by GHC), as shown by
Ralf Lämmel and Simon Peyton Jones in the ‘Scrap
your boilerplate’ (SYB) approach (http://www.cs.vu.
nl/boilerplate/). The SYB approach to generic pro-
gramming in Haskell has been further elaborated in
the recently published (in FLOPS ’06) paper “Scrap
Your Boilerplate” Reloaded and “Scrap Your Boiler-
plate” Revolutions (to appear in MPC’06). In these pa-

19

https://svn.cs.uu.nl:12443/repos/EHC/branches/uniqueness/EHC/
https://svn.cs.uu.nl:12443/repos/EHC/branches/uniqueness/EHC/
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://www.cs.vu.nl/boilerplate/
http://www.cs.vu.nl/boilerplate/

pers Ralf Hinze, Andres Löh, and Bruno Oliveira show,
amongst others, how by viewing the SYB approach in
a particular way, the choice of basic operators becomes
obvious.

In Open data types and open functions (to appear
at PPDP’06), Andres Löh and Ralf Hinze propose to
add extensible data types to Haskell, and they show
how to use these extensible data types to implement
generic functions in a light-weight approach to generic
programming.

In Generics as a Library, Bruno Oliveira, Ralf Hinze
and Andres Löh show how to extend Ralf Hinze’s
“Generic for the Masses” approach to be able to ex-
tend generic functions with ad-hoc behaviour for new
data types.

Finally, in Generic programming, NOW! (in the lec-
ture notes of the Spring School on Datatype-Generic
Programming 2006, held in Nottingham, April 2006,
to appear in LNCS), Ralf Hinze and Andres Löh
show how GADTs can be used to implement many of
the lightweight approaches to generic programming di-
rectly in Haskell.

Generic Haskell In Generic views on data types (to
appear in MPC’06) Stefan Holdermans, Johan Jeuring,
Andres Löh, and Alexey Rodriguez show how to add
views on data types to Generic Haskell. Using these
views, typical fixed-point functions such as determin-
ing the recursive children of a constructor of a recur-
sive data type can be combined with the usual Generic
Haskell programs in a single program. The Generic
Haskell compiler has been extended with views (avail-
able via svn).

Other In Generic Programming with Sized Types (to
appear in MPC’06), Andreas Abel defines a generic
programming language in which you can only define
terminating generic programs, by adding sizes to types.

In iData for the World Wide Web: programming in-
terconnected web forms (in FLOPS’06), Rinus Plas-
meĳer and Peter Achten show how to use the generic
programming extension of Clean for implementing web
forms.

Techniques

Jeremy Gibbons’ tutorial Design Patterns as Higher-
Order Datatype-Generic Programs from ECOOP
and OOPSLA 2005 has been written up as
a paper, http://www.comlab.ox.ac.uk/jeremy.gibbons/
publications/#hodgp. He and Bruno Oliveira
have also written about The Essence of the It-
erator Pattern as a higher-order datatype-generic
program (http://www.comlab.ox.ac.uk/jeremy.gibbons/
publications/#iterator), in terms of McBride and Pa-
terson’s idioms or applicative functors.

The Spring School on Datatype-Generic Program-
ming has taken place in Nottingham, UK, April 23 - 26,

see http://www.cs.nott.ac.uk/ssdgp2006/. There were
lectures about comparing approaches to generic pro-
gramming in Haskell, generic programming in Haskell
using GADTs, the implementation of patterns as
generic programs, generic programming in Omega (a
Haskell-like functional programming language with a
limited form of dependent types), and in Epigram (→
3.3.1) (a dependently typed programming language).

Further reading

◦ http://repetae.net/john/computer/haskell/DrIFT/
◦ http://www.cs.chalmers.se/~patrikj/poly/
◦ http://www.generic-haskell.org/
◦ http://www.cs.vu.nl/Strafunski/
◦ http://www.cs.vu.nl/boilerplate/

20

http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#hodgp
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#hodgp
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#iterator
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/#iterator
http://www.cs.nott.ac.uk/ssdgp2006/
http://repetae.net/john/computer/haskell/DrIFT/
http://www.cs.chalmers.se/~patrikj/poly/
http://www.generic-haskell.org/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/boilerplate/

4 Libraries

4.1 Packaging and Distribution

4.1.1 Core

Report by: Bulat Ziganshin
Status: experimental

Thanks to Cabal, we can now easily upgrade any in-
stalled library to a new version. There is only one ex-
ception: the Base library is closely tied to compiler
internals, so you cannot use the Base library shipped
with GHC 6.4 in GHC 6.6 and vice versa.

The Core library is a project of dividing the Base li-
brary into two parts – a small compiler-specific one (the
Core library proper) and the rest – a new, compiler-
independent Base library that uses only services pro-
vided by the Core lib.

Then, any version of the Base library can be used
with any version of the Core library, i.e. with any com-
piler. Moreover, it means that the Base library will be-
come available for the new compilers, like yhc (→ 2.4)
and jhc – this will require adding to the Core lib only a
small amount of code implementing low-level compiler-
specific functionality.

The Core library consists of directories GhcCore,
HugsCore . . . implementing compiler-specific function-
ality and Core directory providing common interface
to this functionality, so that external libs should im-
port only Core.* modules in order to be compiler-
independent.

In practice, the implementation of the Core lib be-
came a refactoring of the GHC.* modules by splitting
them into GHC-specific and compiler-independent
parts. Adding implementations of compiler-specific
parts for other compilers will allow us to compile the
refactored Base library with any compiler, including old
versions of GHC. At this moment, the following mod-
ules were succesfully refactored: GHC.Arr, GHC.Base,
GHC.Enum, GHC.Float, GHC.List, GHC.Num,
GHC.Real, GHC.Show, GHC.ST, GHC.STRef; the
next step is to refactor IO functionality.

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/Core

◦ Download:
http://www.haskell.org/library/Core.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.2 General libraries

4.2.1 PFP – Probabilistic Functional Programming
Library for Haskell

Report by: Martin Erwig
Status: mostly stable, not maintained

The PFP library is a collection of modules for Haskell
that facilitates probabilistic functional programming,
that is, programming with stochastic values. The prob-
abilistic functional programming approach is based on
a data type for representing distributions. A distri-
bution represent the outcome of a probabilistic event
as a collection of all possible values, tagged with their
likelihood.

A nice aspect of this system is that simulations can
be specified independently from their method of execu-
tion. That is, we can either fully simulate or randomize
any simulation without altering the code which defines
it.

The library was developed as part of a simulation
project with biologists and genome researchers. We
originally had planned to apply the library to more
examples in this area, however, the student working in
this area has left, so this project is currently in limbo.

No changes since the last report.

Further reading

http://eecs.oregonstate.edu/~erwig/pfp/

4.2.2 Hmm: Haskell Metamath module

Report by: Marnix Klooster
Status: Hmm 0.2 released, slow-paced development

Hmm is a small Haskell library to parse and verify
Metamath databases.

Metamath (http://metamath.org) was conceived and
almost completely implemented by Norman Megill. It
a project for formalizing mathematics, a file format for
specifying machine-checkable proofs, and a program for
generating and verifying this file format. Already more
than 7500 proofs have been verified from the axioms of
set theory.

Version 0.2 of Hmm has been released on October
28th, 2005.

The development version can be found at http://
www.solcon.nl/mklooster/repos/hmm/. This is a darcs
repository (→ 6.4).

21

http://haskell.org/haskellwiki/Library/Core
http://www.haskell.org/library/Core.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://eecs.oregonstate.edu/~erwig/pfp/
http://metamath.org
http://www.solcon.nl/mklooster/repos/hmm/
http://www.solcon.nl/mklooster/repos/hmm/

Hmm can’t currently do more than just read and
verify a Metamath file. However, the longer-term
goal is to generate calculational proofs from Meta-
math proofs. As an example, the Metamath proof
that cross-product distributes over union (see http:
//us.metamath.org/mpegif/xpundi.html) could be visu-
alized something like this:

((A X. B) u. (A X. C))
= "LHS of u.: (df-xp); RHS of u.: (df-xp)"

({ <. x, y >. | (x e. A /\ y e. B) }
u. { <. x, y >. | (x e. A /\ y e. C) })

= "(unopab)"
{ <. x, y >. | ((x e. A /\ y e. B)

\/ (x e. A /\ y e. C)) }
= "in pair comprehension: (andi)"

{ <. x, y >. | (x e. A
/\ (y e. B \/ y e. C))) }

= "in pair comprehension: RHS of /\: (elun)"
{ <. x, y >. | (x e. A

/\ y e. (B u. C)) }
= "(df-xp)"

(A X. (B u. C))

This proof format would make it easier to understand
Metamath proofs.

I am working towards this goal, slowly and step by
step.

Further reading

http://www.solcon.nl/mklooster/repos/hmm/

4.2.3 GSLHaskell

Report by: Alberto Ruiz
Status: active development

GSLHaskell is a high level functional interface to linear
algebra and other numerical computations internally
implemented using GSL and LAPACK. The goal is
to achieve the functionality and performance of GNU-
Octave or similar system s. The library is still very
incomplete, but it has already been useful in a few el-
ementary pattern recognition and computer vision ap-
plications.

Recent developments include a simplification of the
interface and improved linear algebra based on LA-
PACK.

Further reading

http://dis.um.es/~alberto/GSLHaskell

4.2.4 An Index Aware Linear Algebra Library

Report by: Frederik Eaton
Status: unstable; actively maintained

The index aware linear algebra library is a Haskell in-
terface to a set of common vector and matrix opera-
tions. The interface exposes index types and ranges
to the type system so that operand conformability can
be statically guaranteed. For instance, an attempt to
add or multiply two incompatibly sized matrices is a
static error. A prepose-style (i.e. following Kiselyov
and Chan’s “Implicit Configurations” paper) approach
is used for generating type-level integers for use in index
types. Vectors can be embedded in a program using a
set of template Haskell routines.

Currently the library is in a “proof-of-concept” state.
The interface has an example implementation using Ar-
rays, but ultimately it should be primarily used with a
fast external linear algebra package such as ATLAS. I
would like to see it become part of Alberto Ruiz’s GSL
library (→ 4.2.3), which can be used with ATLAS, and
he has expressed an interest in adopting it. That is
why I haven’t given it a real name yet.

The original announcement is here:

Further reading

◦ Original announcement:
http://article.gmane.org/gmane.comp.lang.haskell.
general/13561

◦ Library:
http://ofb.net/~frederik/futility/src/Vector/Base.hs
http://ofb.net/~frederik/futility/src/Vector/Array.hs
http://ofb.net/~frederik/futility/src/Vector/
Template.hs
http://ofb.net/~frederik/futility/src/Domain.hs
http://ofb.net/~frederik/futility/src/Prepose.hs
http://ofb.net/~frederik/futility/src/Vector/
read-example.hs
http://ofb.net/~frederik/futility/src/Vector/examples.
hs

4.2.5 Ivor

Report by: Edwin Brady
Status: active development

Ivor is a tactic-based theorem proving engine with a
Haskell API. Unlike other systems such as Coq and
Agda, the tactic engine is primarily intended to be
used by programs, rather than a human operator. To
this end, the API provides a collection of primitive tac-
tics and combinators for building new tactics. This al-
lows easy construction of domain specific tactics, while
keeping the core type theory small and independently
checkable.

22

http://us.metamath.org/mpegif/xpundi.html
http://us.metamath.org/mpegif/xpundi.html
http://www.solcon.nl/mklooster/repos/hmm/
http://dis.um.es/~alberto/GSLHaskell
http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://ofb.net/~frederik/futility/src/Vector/Base.hs
http://ofb.net/~frederik/futility/src/Vector/Array.hs
http://ofb.net/~frederik/futility/src/Vector/Template.hs
http://ofb.net/~frederik/futility/src/Vector/Template.hs
http://ofb.net/~frederik/futility/src/Domain.hs
http://ofb.net/~frederik/futility/src/Prepose.hs
http://ofb.net/~frederik/futility/src/Vector/read-example.hs
http://ofb.net/~frederik/futility/src/Vector/read-example.hs
http://ofb.net/~frederik/futility/src/Vector/examples.hs
http://ofb.net/~frederik/futility/src/Vector/examples.hs

The primary aim of the library is to support research
into generative programming and resource bounded
computation in Hume (http://www.hume-lang.org/).
In this setting, we have developed a dependently typed
framework for representing program execution cost,
and used the Ivor library to implement domain specific
tactics for constructing programs within this frame-
work. However the library is more widely applicable,
some potential uses being:

◦ A core language for a richly typed functional lan-
guage.

◦ The underlying implementation for a theorem prover
(see first order logic theorem prover example at http:
//www.dcs.st-and.ac.uk/~eb/Ivor).

◦ An implementation framework for a domain specific
language requiring strong correctness properties.

Ivor features a dependent type theory similar to
Luo’s ECC with definitions, with additional (experi-
mental) multi-stage programming support. Optionally,
it can be extended with heterogenous equality, primi-
tive types and operations, new parser rules and user
defined tactics. By default, all programs in the type
theory terminate, but in the spirit of flexibility, the li-
brary can be configured to allow general recursion.

The library is in active development, although at an
early stage. Future plans include development of more
basic tactics (for basic properties such as injectivity
and disjointness of constructors, and elimination with
a motive), a compiler (with optimisations) and a larger
collection of standard definitions.

Further reading

http://www.dcs.st-and.ac.uk/~eb/Ivor

4.2.6 Haskell Rules: Embedding Rule Systems in
Haskell

Report by: Martin Erwig
Status: mostly stable, not maintained

Haskell Rules is a domain-specific embedded language
that allows semantic rules to be expressed as Haskell
functions. This DSEL provides logical variables, unifi-
cation, substitution, non-determinism, and backtrack-
ing. It also allows Haskell functions to be lifted to
operate on logical variables. These functions are au-
tomatically delayed so that the substitutions can be
applied. The rule DSEL allows various kinds of logi-
cal embedding, for example, including logical variables
within a data structure or wrapping a data structure
with a logical wrapper.

Further reading

http://eecs.oregonstate.edu/~erwig/HaskellRules/

4.3 Parsing and transforming

4.3.1 Utrecht Parsing Library and Attribute
Grammar System

Report by: Doaitse Swierstra
Status: Released as cabal packages

The Utrecht attribute grammar system has been ex-
tended:

◦ the attribute flow analysis has been completely im-
plemented by Joost Verhoog, and it is now possible
to generate visit-function based evaluators, which are
much faster and use less space. We assume that such
functions are strict in all their arguments, and gen-
erate the appropriate |‘seq‘| calls to make the GHC
aware of this. As a result also |case|’s are generated
instead on |let|’s wherever possible.

◦ the base system has been extended by Jeroen Fokker
with wildcard notations for designating groups of
productions, attributes etc.

We are in the process of integerating these develop-
ments and making the software again available through
the Haskell Utrecht Tools page. (http://www.cs.uu.nl/
wiki/HUT/WebHome).

Some small changes were made to the cabal files in
order to make installation under GHC 6.6 run.

4.3.2 Left-Recursive Parser Combinators

Report by: Richard A. Frost
Participants: Rahmatullah Hafiz, Paul Callaghan
Status: Pre-release

Existing parser combinators cannot accommodate left-
recursive grammars. In some applications, this short-
coming requires grammars to be rewritten to non-left-
recursive form which may hinder definition of the as-
sociated semantic functions. In applications that in-
volve ambiguous pattern-matching, such as NLP, the
rewriting to non-left-recursive form may result in loss
of parses.

In our project, we have developed combinators which
accommodate ambiguity and left-recursion (both direct
and indirect) in polynomial time, and which gener-
ate polynomial-sized representations of the exponen-
tial number of parse trees corresponding to highly-
ambiguous input. The compact representations are
similar to those generated by Tomita’s algorithm.

Polynomial complexity for ambiguous grammars is
achieved through memoization of fully-backtracking
combinators. Systematic memoization is implemented
using monads. Direct left-recursion is accommodated
by storing additional data in the memotable which is

23

http://www.hume-lang.org/
http://www.dcs.st-and.ac.uk/~eb/Ivor
http://www.dcs.st-and.ac.uk/~eb/Ivor
http://www.dcs.st-and.ac.uk/~eb/Ivor
http://eecs.oregonstate.edu/~erwig/HaskellRules/
http://www.cs.uu.nl/wiki/HUT/WebHome
http://www.cs.uu.nl/wiki/HUT/WebHome

used to curtail recursive descent when no parse is pos-
sible. Indirect left recursion is accommodated by use of
the context in which results are created and the context
in which they are subsequently considered for re-use.

We have implemented our approach in Haskell, and
are in the process of optimizing the code and preparing
it for release in December of 2006.

Further reading

A technical report with definitions, proofs of termi-
nation and complexity, and reference to publications,
is available at: http://cs.uwindsor.ca/~richard/GPC/
TECH_REPORT_06_022.pdf

4.3.3 RecLib – A Recursion and Traversal Library
for Haskell

Report by: Martin Erwig
Status: mostly stable, not maintained

The Recursion Library for Haskell provides a rich set
of generic traversal strategies to facilitate the flexible
specification of generic term traversals. The underly-
ing mechanism is the Scrap Your Boilerplate (SYB)
approach. Most of the strategies that are used to im-
plement recursion operators are taken from Stratego.

The library is divided into two layers. The high-level
layer defines a universal traverse function that can be
parameterized by five aspects of a traversal.

The low-level layer provides a set of primitives that
can be used for defining more traversal strategies not
covered in the library. Two fixpoint strategies innter-
most and outermost are defined to demonstrate the
usage of the primitives. The design and implementa-
tion of the library is explained in a paper listed on the
project web page.

Further reading

http://eecs.oregonstate.edu/~erwig/reclib/

4.4 System

4.4.1 hs-plugins

Report by: Don Stewart
Status: active development

hs-plugins is a library for dynamic loading and run-
time compilation of Haskell modules, for Haskell and
foreign language applications. It can be used to im-
plement application plugins, hot swapping of modules
in running applications, runtime evaluation of Haskell,
and enables the use of Haskell as an application exten-
sion language. Version 1.0rc1 has been released.

Work to port hs-plugins to GHC 6.6 is underway.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hs-plugins/

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

4.4.2 time (was: Package “time”)

Report by: Ashley Yakeley
Status: stable

The “time” package replaces the old System.Time
module for handling time. It is included in the cur-
rent GHC distribution.

The “main” modules feature representation of UTC
and UT1, as well as the proleptic Gregorian calen-
dar, time-zones, and functions for strftime-style for-
matting. Additional “second-level” modules handle
TAI, leap-seconds, Julian, ISO 8601 week, and “year
and day” calendars, calculation of Easter, and POSIX
time. Modules are organised under Data.Time.

The source is in the darcs (→ 6.4) repository “time”
in the current standard libraries, and is built by the
GHC library build process. The documentation could
benefit from the addition of use examples.

Further reading

http://semantic.org/TimeLib/

4.4.3 The libpcap Binding

Report by: Dominic Steinitz
Participants: Greg Wright, Dominic Steinitz

In case anyone is interested, I’ve put a darcsized copy
of the code here:

darcs get

http://www.haskell.org/networktools/src/pcap

Ther have been no changes since April 2006.
◦ Install libpcap. I used 0.9.4.
◦ autoheader
◦ autoconf
◦ ./configure
◦ hsc2hs Pcap.hsc
◦ ghc -o test test.hs --make -lpcap -fglasgow-exts

All contributions are welcome.

24

http://cs.uwindsor.ca/~richard/GPC/TECH_REPORT_06_022.pdf
http://cs.uwindsor.ca/~richard/GPC/TECH_REPORT_06_022.pdf
http://eecs.oregonstate.edu/~erwig/reclib/
http://www.cse.unsw.edu.au/~dons/hs-plugins/
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/
http://semantic.org/TimeLib/
http://www.haskell.org/networktools/src/pcap

4.4.4 Streams

Report by: Bulat Ziganshin
Status: beta, actively developed

Streams is the new I/O library developed to extend ex-
isting Haskell’s Handle-based I/O features. It includes:
◦ Hugs (→ 2.2) and GHC (→ 2.1) compatibility
◦ Lightning speed (up to 100 times faster than Handle-

based I/O)
◦ UTF-8 and other Char encodings for text I/O
◦ Various stream types (files, memory-mapped files,

memory and string buffers, pipes)
◦ Binary I/O and serialization facilities (see AltBinary

lib (→ 4.7.2))
◦ Support for streams working in IO, ST and other

monads
The main idea of the library is its clear class-based

design that allows to split all functionality into a set
of small maintainable modules, each of which supports
one type of streams (file, memory buffer . . .) or one
feature (locking, buffering, Char encoding . . .). The
interface of each such module is fully defined by some
type class (Stream, MemoryStream, TextStream), so
the library can be easily extended by third party mod-
ules that implement additional stream types (network
sockets, array buffers . . .) and features (overlapped
I/O . . .).

The new version 0.2 adds support for memory-
mapped files, files >4GB on Windows, ByteString I/O,
full backward compatibility with the NewBinary li-
brary (both byte-aligned and bit-aligned modes), more
orthogonal serialization API, serialization from/to
memory buffer, and even better speed. Sorry, it was
never documented

The upcoming version 0.3 will provide automatic
buffer deallocation using ForeignPtrs, serialization
from/to ByteStrings, full backward compatibility with
Handle-base I/O and, hopefully, full documentation for
all its features.

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/Streams

◦ Download:
http://www.haskell.org/library/Streams.tar.gz http://
www.haskell.org/library/StreamsBeta.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.4.5 System.FilePath

Report by: Neil Mitchell

System.FilePath is a library for manipulating
FilePath’s in Haskell programs. This library is
Posix (Linux) and Windows capable – just import
System.FilePath and it will pick the right one. It is
written in Haskell 98 + Hierarchical Modules. There
are features to manipulate the extension, filename,
directory structure etc. of a FilePath.

This module has received significant discussion on
the Haskell mailing lists, and going forward I hope that
it can be incorporated into the Haskell base libraries.

Further reading

http://www-users.cs.york.ac.uk/~ndm/projects/libraries.
php#filepath

4.4.6 hinotify

Report by: Lennart Kolmodin
Status: alive

hinotify is a simple Haskell wrapper for the Linux ker-
nel’s inotify mechanism. inotify allows applications to
watch file changes since Linux kernel 2.6.13. You can
for example use it to do a proper locking procedure on
a set of files, or keep your application up do date on a
directory of files in a fast and clean way.

hinotify is still a very young library and might still be
a bit rough around the edges. Next updates will include
non-threading support and perhaps a little reworked
API.

Further reading

◦ Development version:
darcs get
http://www.haskell.org/~kolmodin/code/hinotify/

◦ Latest released version:
http://www.haskell.org/~kolmodin/code/hinotify/
download/

◦ Documentation:
http://www.haskell.org/~kolmodin/code/hinotify/
docs/api

◦ inotify:
http://www.kernel.org/pub/linux/kernel/people/rml/
inotify/

25

http://haskell.org/haskellwiki/Library/Streams
http://www.haskell.org/library/Streams.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://www-users.cs.york.ac.uk/~ndm/projects/libraries.php#filepath
http://www-users.cs.york.ac.uk/~ndm/projects/libraries.php#filepath
http://www.haskell.org/~kolmodin/code/hinotify/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/

4.5 Databases and data storage

4.5.1 CoddFish

Report by: Alexandra Silva and Joost Visser

The CoddFish library provides a strongly typed model
of relational databases and operations on them, which
allows for static checking of errors and integrity at com-
pile time. Apart from the standard relational database
operations, it allows the definition of functional depen-
dencies and, therefore, provides normal form verifica-
tion and database transformation operations.

The library makes essential use of the HList li-
brary (→ 4.6.6), which provides arbitrary-length tu-
ples (or heterogeneous lists), and makes extensive use
of type-level programming with multi-parameter type
classes.

CoddFish lends itself as a sandbox for the design
of typed languages for modeling, programming, and
transforming relational databases.

Currently, a reimplementation of CoddFish based
on GADTs is underway.

Further reading

◦ Project URL:
http://wiki.di.uminho.pt/wiki/bin/view/PURe/
CoddFish

◦ Paper: Alexandra Silva and Joost Visser, Strong
Types for Relational Databases (Functional Pearl),
in Proceedings of Haskell Workshop 2006

4.5.2 Takusen

Report by: Alistair Bayley
Status: active development

Takusen is a library for accessing DBMS’s. Like
HSQL, we support arbitrary SQL statements (currently
strings, extensible to anything that can be converted
to a string). Takusen’s ‘unique-selling-point’ is a de-
sign for processing query results using a left-fold enu-
merator. For queries the user creates an iteratee func-
tion, which is fed rows one-at-a-time from the result-
set. We also support processing query results using
a cursor interface, if you require finer-grained control.
We also support invoking database stored procedures
with In/Out parameters, and processing of SQL state-
ments that return multiple result sets. Currently we
fully support Oracle, Sqlite, and PostgreSQL.

Since the last report we have:

◦ completed move to darcs repo at
http://darcs.haskell.org/takusen/

◦ added support for returning multiple result-sets from
queries or stored procedure invocations for Oracle
and PostgreSQL

◦ updated Haddock documentation

◦ Added COPY-IN (bulk load) to mid-level Post-
greSQL interface

◦ written sample program for the middle-level Post-
greSQL interface, which is actually used as simple
database interface for other languages e.g. Scheme

◦ added support for Data.Time (→ 4.4.2). This is the
only date-time support we have for the PostgreSQL
interface (Oracle and Sqlite still support Calendar-
Time, FWIW).

◦ cabalised. Cabal support is a bit patchy at present.
It doesn’t work with GHC-6.6 out of the box; you
need to upgrade Cabal to 1.16.1. If you have GHC-
6.4, then you need to install Data.Time first, and this
can be a bit of a chore. If you have trouble, contact
us and we’ll try to help you.

Future plans

◦ smooth cabal installation with GHC-6.6
◦ ODBC interface
◦ MS SQL Server interface (this needs COM support,

so we may wait for VisualHaskell to mature a bit
before attempting this)

Further reading

◦ darcs get http://darcs.haskell.org/takusen/
◦ browse docs:

http://darcs.haskell.org/takusen/doc/html
(see Database.Enumerator for Usage instructions
and examples)

4.6 Data types and data structures

4.6.1 Standard Collection Libraries

Report by: Jean-Philippe Bernardy
Status: beta, maintained

Haskell implementations come with modules to handle
Maps, Sets, and other common data structures. We
call these modules the Standard Collection Libraries.
The goal of this project is to improve on those.

Beside incremental improvement of the current code
(stress testing, ironing bugs out, small improvements
of API, . . .), a package has been created to gather
collection-related code that would not fit in the base
package yet. This includes changes that are either po-
tentially de-stabilizing, controversial or otherwise ex-
perimental.

26

http://wiki.di.uminho.pt/wiki/bin/view/PURe/CoddFish
http://wiki.di.uminho.pt/wiki/bin/view/PURe/CoddFish
http://darcs.haskell.org/takusen/
http://darcs.haskell.org/takusen/
http://darcs.haskell.org/takusen/doc/html

This new package features notably:

◦ New data structures, including AVL-tree based Maps
and Sets (thanks to Adrian Hey);

◦ A class-based framework for collection data-types,
equipped with polymorphic testsuite and bench-
marks.

The collection package is ready for experimental
use by the Haskell community. An important dif-
ference with other collection frameworks is that this
one is intended as an evolution rather that a revolu-
tion. It should be easy to migrate code from using
Data.Map/Set to the new framework.

Future plans include:
◦ Add more trie-based data structures;
◦ Port the class framework to associated types.

Further reading

http://hackage.haskell.org/trac/ghc/wiki/
CollectionLibraries

4.6.2 The revamped monad transformer library

Report by: Iavor Diatchki
Status: mostly stable

Monads are very common in Haskell programs and yet
every time one needs a monad, it has to be defined
from scratch. This is boring, error prone and unnec-
essary. Many people have their own libraries of mon-
ads, and it would be nice to have a common one that
can be shared by everyone. Some time ago, Andy Gill
wrote the monad transformer library that has been dis-
tributed with most Haskell implementations, but he has
moved on to other jobs, so the library was left on its
own. I wrote a similar library (before I knew of the
existence of Andy’s library) and so i thought i should
combine the two. The “new” monadic library is not re-
ally new, it is mostly reorganization and cleaning up of
the old library. It has been separated from the “base”
library so that it can be updated on its own.

Since the last report, there has been a new major
release of the monad library (version 2.0), and a minor
update (version 2.0.1).

Users interested in using the library can download it
(with documentation) from the library’s website.

Further reading

http://www.cse.ogi.edu/~diatchki/monadLib/

4.6.3 Data.ByteString

Report by: Don Stewart
Status: active development

Data.ByteString provides packed strings (byte arrays
held by a ForeignPtr), along with a list interface to
these strings. It lets you do extremely fast IO in
Haskell; in some cases, even faster than typical C im-
plementations, and much faster than [Char]. It uses a
flexible “foreign pointer” representation, allowing the
transparent use of Haskell or C code to manipulate the
strings.

Data.ByteString is written in Haskell98 plus the for-
eign function interface and cpp. It has been tested suc-
cesfully with GHC 6.4 and 6.5, and hugs March 2005.

It has been a period of great activity for
Data.ByteString, which is now part of the fptools
base libraries, and installed by default with GHC 6.6
and Hugs 2006. The array fusion system has been
completely rewritten to use streams, with dramatic
speed improvements. This work appears in our recent
“Rewriting Haskell Strings” paper.

Further reading

◦ Source and documentation can be found at
http://www.cse.unsw.edu.au/~dons/fps.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/fps

4.6.4 Edison

Report by: Robert Dockins
Status: active development

Edison, a library of efficient data structures for Haskell,
now has a new maintainer! A major update of the
library – version 1.2 – has just been released.
Major changes from Edison version 1.1 (released in
1999), include:
◦ API Typeclasses updated to use functional depen-

dencies
◦ Modules rearranged to use the hierarchical module

extension
◦ Documentation move from separate document to in-

line Haddock comments (→ 5.5.6)
◦ Source code is now managed in a darcs repository (→

6.4)
◦ New Cabal-based build system
◦ A full suite of unit tests, which covers the entire Edi-

son API, is now included
◦ Numerous additions to the Associated Collection

API
◦ Several new data structure implementations

Further reading

◦ The project home page may be found at:
http://www.eecs.tufts.edu/~rdocki01/edison.html

◦ The main darcs repository (→ 6.4) is located at:
http://www.eecs.tufts.edu/~rdocki01/edison/

27

http://hackage.haskell.org/trac/ghc/wiki/CollectionLibraries
http://hackage.haskell.org/trac/ghc/wiki/CollectionLibraries
http://www.cse.ogi.edu/~diatchki/monadLib/
http://www.cse.unsw.edu.au/~dons/fps.html
http://www.cse.unsw.edu.au/~dons/code/fps
http://www.eecs.tufts.edu/~rdocki01/edison.html
http://www.eecs.tufts.edu/~rdocki01/edison/

4.6.5 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Henning Thielemann
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck properties,
superfluous super-classes like Show are removed, se-
mantic and representation-specific operations are sepa-
rated, the hierarchy of type classes is more fine grained,
and identifiers are adapted to mathematical terms.

There are both certain new type classes representing
algebraic structures and new types of mathematical ob-
jects.

Currently supported algebraic structures are

◦ group (additive),
◦ ring,
◦ principal ideal domain,
◦ field,
◦ algebraic closures,
◦ transcendental closures,
◦ module and vector space,
◦ normed space,
◦ lattice,
◦ differential algebra.

There is also a collection of mathematical object
types, which is useful both for applications and test-
ing the class hierarchy. The types are

◦ complex number, quaternion,
◦ residue class,
◦ fraction,
◦ fixed point arithmetic with respect to arbitrary bases

and numbers of fraction digits,
◦ infinite precision number in an arbitrary positional

system as lazy lists of digits supporting also numbers
with terminating representations,

◦ polynomial, power series, Laurent series
◦ root set of a polynomial,
◦ numbers equipped with physical units (dynamic

checks only).

Due to Haskell’s flexible type system, you can combine
all these types, e.g. fractions of polynomials, residue
classes of polynomials, complex numbers with physical
units, power series with real numbers as coefficients.

Using the revised system requires hiding some of
the standard functions provided by Prelude, which is
fortunately supported by GHC (→ 2.1). The library
has basic Cabal support and a growing test-suite of
QuickCheck tests for the implemented mathematical
objects.

Future plans

Collect more Haskell code related to mathematics,
e.g. for linear algebra. Study of alternative numeric
type class proposals and common computer algebra
systems. Ideally each data type resides in a separate
module. However this leads to mutual recursive depen-
dencies, which cannot be resolved if type classes are
mutually recursive. We start to resolve this by fixing
the types of some parameters of type class methods.
E.g. power exponents become simply Integer instead
of Integral, which has also the advantage of reduced
type defaulting.

A still unsolved problem arises for residue classes,
matrix computations, infinite precision numbers, fixed
point numbers and others. It should be possible to
assert statically that the arguments of a function are
residue classes with respect to the same divisor, or that
they are vectors of the same size. Possible ways out are
encoding values in types or local type class instances.
The latter one is still neither proposed nor implemented
in any Haskell compiler. The modules are implemented
in a way to keep all options open. That is, for each
number type there is one module implementing the
necessary operations which expect the context as a pa-
rameter. Then there are several modules which provide
different interfaces through type class instances to these
operations.

Further reading

http://darcs.haskell.org/numericprelude/

4.6.6 HList – a library for typed heterogeneous
collections

Report by: Oleg Kiselyov
Developers: Oleg Kiselyov, Ralf Lämmel,

Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible records and variants. HList is analogous of the
standard list library, providing a host of various con-
struction, look-up, filtering, and iteration primitives.
In contrast to the regular lists, elements of heteroge-
neous lists do not have to have the same type. HList
lets the user formulate statically checkable constraints:
for example, no two elements of a collection may have
the same type (so the elements can be unambiguously
indexed by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable, and compiled-time only labels. We and now
others (Alexandra Silva, Joost Visser: PURe.CoddFish
project (→ 4.5.1)) have also used HList for type-
safe database access in Haskell. HList-based Records

28

http://darcs.haskell.org/numericprelude/

form the basis of OOHaskell http://darcs.haskell.org/
OOHaskell. The HList library relies on common exten-
sions of Haskell 98.

We have changed the representation of (extensible
and polymorphic) Records. Now, the field label infor-
mation is purely phantom, that is, compile-time only.
At run-time, a record is just a heterogeneous list of
field values. We realize records as sequences of field
values, where the type of each field is annotated with
its (phantom) label. We also present an alternative; it
too, represents records as sequences of field values; only
now the type of the entire sequence is annotated with
the phantom type sequence of the corresponding labels.
The latter representation can easily realize ‘tables’.

We have added the implementation of extensi-
ble polymorphic variants (open unions), as duals of
records. We can re-use as much of old code as pos-
sible, when adding new alternatives to the variant and
extending the functions to the extended variant. We
obtain the variant subtyping for free.

The HList repository is now moved to Darcs (→ 6.4):
http://darcs.haskell.org/HList

We are working on Cabalizing HList, expanding on
the work by Einar Karttunen.

Further reading

◦ HList:
http://homepages.cwi.nl/~ralf/HList/

◦ OOHaskell:
http://homepages.cwi.nl/~ralf/OOHaskell/

4.6.7 ArrayRef

Report by: Bulat Ziganshin
Status: beta

This is a Hugs (→ 2.2) and GHC (→ 2.1) compatible
library for “improved arrays and references” featuring:

◦ Unboxed references in the IO and ST monads, that
supports all simple datatypes and an IORef/STRef-
like interface. This replaces the widely used “fast
unboxed variables” modules.

◦ A monad-independent interface to boxed and un-
boxed references that allows to implement algorithms
executable both in the IO and ST monads

◦ Syntactic sugar for references, mutable arrays and
hash tables (=:, +=, -=, .=, val, ref, uref)

◦ Refactored implementation of Data.Array.* modules.
Changes include support for dynamic (resizable) ar-
rays and polymorphic unboxed arrays

(http://www.haskell.org/pipermail/haskell-cafe/
2004-July/006400.html),

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/ArrayRef

◦ Download:
http://www.haskell.org/library/ArrayRef.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.7 Data processing

4.7.1 HsSyck

Report by: Audrey Tang
Status: active development

YAML is a straightforward machine parsable data se-
rialization format designed for human readability and
interaction with dynamic languages. It is optimized
for data serialization, configuration settings, log files,
Internet messaging and filtering.

Syck is an extension, written in C, for reading and
writing YAML swiftly in popular scripting languages.
It is part of core Ruby, and also has bindings for Perl 5,
Python, Lua, Cocoa, and Perl 6.

HsSyck provides Data.Yaml.Syck as an interface to
YAML structures, using Data.ByteString (→ 4.6.3) for
efficient textual data representation. Additionally, we
provide a set of DrIFT rules (→ 3.5) to dump and load
arbitrary Haskell data types in the YAML format.

Further reading

◦ Subversion repository
http://svn.openfoundry.org/pugs/third-party/HsSyck/

4.7.2 AltBinary

Report by: Bulat Ziganshin
Status: beta, actively developed

AltBinary is a part of the Streams library (→ 4.4.4).
AltBinary implements binary I/O and serialization fa-
cilities. It features:
◦ Hugs and GHC compatibility
◦ Lightning speed (3-20 times faster than GHC Bi-

nary)
◦ Classical get/put Binary class interface
◦ Full backward compatibility with NewBinary lib
◦ Byte-aligned and bit-aligned, low-endian and big-

endian serialization
◦ Serialization of all widely used types (integral,

enums, float, arrays, maps . . .)
◦ UTF8 encoding for strings/chars

29

http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/HList
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://www.haskell.org/pipermail/haskell-cafe/2004-July/006400.html
http://www.haskell.org/pipermail/haskell-cafe/2004-July/006400.html
http://haskell.org/haskellwiki/Library/ArrayRef
http://www.haskell.org/library/ArrayRef.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://svn.openfoundry.org/pugs/third-party/HsSyck/

◦ Ability to use TH to derive Binary instance for any
type

◦ Over 50 custom serialization routines (put-
Word32LE, putMArrayWith . . .)

◦ Ability to serialize data to any Stream what im-
plements vPutByte/vGetByte operations, including
support for monads other than IO

◦ In particular, data can be serialized to/from String,
ByteString, file, memory-mapped file, memory
buffer, another process

Further reading

◦ Documentation page:
http://haskell.org/haskellwiki/Library/AltBinary

◦ Download:
http://www.haskell.org/library/Streams.tar.gz http://
www.haskell.org/library/StreamsBeta.tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.7.3 Compression-2006 (was: Compression-2005)

Report by: Bulat Ziganshin
Status: stable

Features of the Compression-2006 Library:

◦ easy and uniform access to most competitive com-
pression algorithms as of November’06: LZMA,
PPMd and GRZip

◦ all input/output performed via user-supplied func-
tions (callbacks), so you can compress data in mem-
ory, files, pipes, sockets and anything else

◦ all parameters of compression algorithm are
defined with a single string, for example
"lzma:8mb:fast:hc4:fb32".

So, the entire compression program can be written
as a one-liner:

compressWithHeader
"ppmd:10:48mb" (hGetBuf stdin) (hPutBuf stdout)

with decompressor program:

decompressWithHeader
(hGetBuf stdin) (hPutBuf stdout)

You can replace "ppmd:10:48mb" with "lzma:16mb" or
"grzip" to get another two compressors – all three will
compress faster and better than bzip2.

Of course, the primary purpose of this library is to
give you a possibility to use state-of-the-art compres-
sion as an integral part of your Haskell programs.

Compared to the previous version, I have upgraded
the LZMA part of the library to use the LZMA 4.43
library that significantly improved the speed and com-
pression ratio over old versions.

Further reading

◦ Documentation:
http://haskell.org/haskellwiki/Library/Compression

◦ Download:
http://www.haskell.org/library/CompressionLibrary.
tar.gz

Contact

〈Bulat.Ziganshin@gmail.com〉

4.7.4 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The current release remains 3.0.3. However, there have
been quite a few contributions and there is now a
SHA-2 implementation as well as some performance
improvements to SHA-1. There is now also a trac at
http://hackage.haskell.org/trac/crypto.

As a result of the performance improvements, the
interface to SHA-1 is now different from MD5 and the
whole library needs a rethink. Unfortunately, I don’t
have the time to undertake any work on it at the mo-
ment and it is not clear when I will have time. I’m
therefore looking for someone to take over the role of
keeping the repository up-to-date with contributions,
re-structuring the library and managing releases.

This release contains:
◦ DES
◦ Blowfish
◦ AES
◦ Cipher Block Chaining (CBC)
◦ PKCS#5 and nulls padding
◦ SHA-1
◦ MD5
◦ RSA
◦ OAEP-based encryption (Bellare-Rogaway)
◦ PKCS#1v1.5 signature scheme
◦ ASN.1
◦ PKCS#8
◦ X.509 Identity Certificates
◦ X.509 Attribute Certificates

Further reading

http://www.haskell.org/crypto

30

http://haskell.org/haskellwiki/Library/AltBinary
http://www.haskell.org/library/Streams.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
http://www.haskell.org/library/StreamsBeta.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://haskell.org/haskellwiki/Library/Compression
http://www.haskell.org/library/CompressionLibrary.tar.gz
http://www.haskell.org/library/CompressionLibrary.tar.gz
mailto: Bulat.Ziganshin at gmail.com
http://hackage.haskell.org/trac/crypto
http://www.haskell.org/crypto

4.7.5 2LT: Two-Level Transformation

Report by: Joost Visser
Participants: Pablo Berdaguer, Alcino Cunha, José

Nuno Oliveira, Hugo Pacheco
Status: active

A two-level data transformation consists of a type-level
transformation of a data format coupled with value-
level transformations of data instances corresponding
to that format. Examples of two-level data transfor-
mations include XML schema evolution coupled with
document migration, and data mappings used for in-
teroperability and persistence.

In the 2LT project, support for two-level transforma-
tions is being developed using Haskell, relying in par-
ticular on generalized abstract data types (GADTs).
Currently, the 2LT package offers:

◦ A library of two-level transformation combinators.
These combinators are used to compose transforma-
tion systems which, when applied to an input type,
produce an output type, together with the conver-
sion functions that mediate between input and out
types.

◦ Front-ends for XML and SQL. These front-ends sup-
port (i) reading a schema, (ii) applying a two-level
transformation system to produce a new schema,
(iii) convert a document/database corresponding to
the input schema to a document/database corre-
sponding to the output schema, and vice versa. Ref-
erential constraints and primary key information are
propagated through the schema transformation.

◦ A combinator library for transformation of point-
free and structure-shy functions. These combinators
are used to compose transformation systems for op-
timization of conversion functions, and for migration
of queries through two-level transformations. Inde-
pendent of two-level transformation, the combinators
can be used to specializes structure-shy programs
(such as XPath queries and strategic functions) to
structure-sensitive point-free from, and vice versa.

The various sets of transformation combinators are
reminiscent of the combinators of Strafunski and the
Scrap-your-Boilerplate approach to generic functional
programming.

A release of 2LT is available as part of the UMinho
Haskell Libraries, and as stand-alone release. The re-
lease includes worked out examples of schema evolution
and hierarchical-relational mappings.

Efforts are underway to add further front-ends to
2LT, e.g. for XPath and VDM-SL, and to extend the
SQL front-end.

Further reading

Project URL: http://wiki.di.uminho.pt/wiki/bin/view/
PURe/2LT

◦ Alcino Cunha, José Nuno Oliveira, Joost Visser.
Type-safe Two-level Data Transformation. Formal
Methods 2006.

◦ Alcino Cunha, Joost Visser. Strongly Typed Rewrit-
ing For Coupled Software Transformation. RULE
2006.

◦ Pablo Berdaguer, Alcino Cunha, Hugo Pacheco,
Joost Visser. Coupled Schema Transformation and
Data Conversion For XML and SQL. PADL 2007.

◦ Alcino Cunha and Joost Visser. Transformation of
Structure-Shy Programs, Applied to XPath Queries
and Strategic Functions, Draft, 2006.

4.8 User interfaces

4.8.1 wxHaskell

Report by: Jeremy O’Donoghue

A new team is adding support for the latest tools to wx-
Haskell, a mature and full-featured Haskell GUI bind-
ing.

Project members: Eric Kow, Mads Lindstroem, She-
larcy, Tim Docker, Frank Berthold.

wxHaskell is a stable and highly featured Haskell
binding to the wxWidgets cross-platform GUI toolkit,
originally developed by Daan Leĳen and others.

The main benefits of using wxHaskell in a Haskell
GUI project include:

◦ Many widgets have high-level Haskell bindings which
bridge much of the impedence mismatch between
Haskell code and typical (imperative) GUI code.

◦ Support for most of the (extensive) GUI functionality
of wxWidgets

◦ Native look and feel on all supported platforms (Win-
dows, OS X, Unix/Linux) due to the use of native
widgets wherever possible.

◦ Straightforward to deploy, as only a small set of li-
braries needs to be distributed with the application
(e.g. just two DLLs on Windows).

While it is (in our opinion) a superb piece of software,
wxHaskell has recently suffered from a lack of mainte-
nance. It did not compile against recent versions of
GHC or wxWidgets and lacked Unicode support.

The new team is doing its best to rectify this. We
have so far implemented: support for a couple of addi-
tional widgets; preliminary Unicode support; support

31

http://wiki.di.uminho.pt/wiki/bin/view/PURe/2LT
http://wiki.di.uminho.pt/wiki/bin/view/PURe/2LT

for recent versions of wxWidgets (up to 2.6.3) and very
preliminary support for GHC 6.6.

With the help and support of Daan and Simon Mar-
low, we are now able to host wxHaskell development
via Darcs patches at http://darcs.haskell.org/wxhaskell,
and to administer the wxHaskell website and mailing
lists (at Sourceforge).

The latest updates are as yet only available at
darcs.haskell.org, although we plan occasional updates
of Sourceforge CVS for those who prefer it, and will
provide binaries when we are confident that we have
achieved a good level of stability on all platforms.

Immediate plans are to Cabalize the build process, to
improve Unicode support and to increase the number
and complexity of sample programs.

Further reading

http://wxhaskell.sourceforge.net

4.8.2 Gtk2Hs

Report by: Axel Simon
Maintainer: Duncan Coutts and Axel Simon
Status: beta, actively developed

Gtk2Hs is a GUI Library for Haskell based on Gtk+.
Gtk+ is an extensive and mature multi-platform toolkit
for creating graphical user interfaces.

GUIs written using Gtk2Hs use themes to resemble
the native look on Windows and, of course, various
desktops on Linux, Solaris and FreeBSD. Gtk+ and
Gtk2Hs also support MacOS X (it currently uses the
X11 server but a native port is in progress).
Gtk2Hs features:
◦ automatic memory management (unlike some other

C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ anti-aliased drawing on screen, PDF, PS, etc. using

Cairo
◦ extensive reference documentation
◦ an implementation of the Paul Hudak’s Haskell

School of Expressions graphics API
◦ support for the Glade visual GUI builder
◦ bindings to some Gnome extensions: GConf, a source

code editor widget and a widget that embeds the
Mozilla, Firefox and xulrunner rendering engines

◦ an easy-to-use installer for Windows
◦ packages for Fedora Core (→ 7.4.1), Gentoo (→

7.4.3), Debian, FreeBSD and ArchLinux
The Gtk2Hs library is actively maintained and devel-
oped. We have completed a new API for the list and
tree widgets. The data of these widgets is now stored
in Haskell land as lists and as rose trees (Data.Tree)

which makes manipulating the contents of the widgets
much easier and, in contrast to the C interface, stati-
cally typed. We are currently working on providing a
new interface for handling signals (callbacks from wid-
gets). The old-style signaling mechanism will be dep-
recated in the next release as will many other functions
that were superseeded by the attributes-based API. We
anticipate that this will simplify the documentation
drastically, thereby making Gtk2Hs easier to use.
The releases of Gtk2Hs are tested to run on Windows,
Linux, MacOS X (PPC), FreeBSD, OpenBSD and So-
laris. Due to the substantial additions, the next release
of Gtk2Hs is slightly delayed, but should happen before
Christmas. This release will break backwards compata-
bility with applications using the old list and tree API.
The API of Gtk2Hs should be stable thereafter, leading
up to a version 1.0 release. We encourage people to use
the darcs development version and to test the new list
and tree API. Thanks goes to those who have already
done so!

Further reading

◦ News, downloads and documentation:
http://haskell.org/gtk2hs/

◦ Development version:
darcs get http://haskell.org/gtk2hs/darcs/gtk2hs/

4.8.3 hscurses

Report by: Stefan Wehr
Status: stable/beta

hscurses is a Haskell binding to the ncurses library, a
library of functions that manage an application’s dis-
play on character-cell terminals. hscurses also provides
some basic widgets implemented on top of the ncurses
binding, such as a text input widget and a table widget.

The binding was originally written by John Meacham
http://repetae.net/john/. Tuomo Valkonen http://
modeemi.fi/~tuomov/ and Don Stewart http://www.
cse.unsw.edu.au/~dons improved it and I finally added
some basic widgets and packed it up as a standalone
library.

The binding itself is stable; however, the widget li-
brary is still beta. Volunteers are welcome to improve
and extend the widget library. The build system now
uses Cabal.

Further reading

http://www.informatik.uni-freiburg.de/~wehr/haskell/

32

http://darcs.haskell.org/wxhaskell
http://wxhaskell.sourceforge.net
http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/darcs/gtk2hs/
http://repetae.net/john/
http://modeemi.fi/~tuomov/
http://modeemi.fi/~tuomov/
http://www.cse.unsw.edu.au/~dons
http://www.cse.unsw.edu.au/~dons
http://www.informatik.uni-freiburg.de/~wehr/haskell/

4.9 (Multi-)Media

4.9.1 HOpenGL – A Haskell Binding for OpenGL
and GLUT

Report by: Sven Panne
Status: stable, actively maintained

The goal of this project is to provide a binding for
the OpenGL rendering library which utilizes the spe-
cial features of Haskell, like strong typing, type classes,
modules, etc., but is still in the spirit of the official
API specification. This enables the easy use of the vast
amount of existing literature and rendering techniques
for OpenGL while retaining the advantages of Haskell
over lower-level languages like C. Portability in spite of
the diversity of Haskell systems and OpenGL versions
is another goal.

HOpenGL includes the simple GLUT UI, which is
good to get you started and for some small to medium-
sized projects, but HOpenGL doesn’t rival the GUI
task force efforts in any way. Smooth interopera-
tion with GUIs like gtk+hs or wxHaskell (→ 4.8.1)
on the other hand is a goal, see e.g. http://wxhaskell.
sourceforge.net/samples.html#opengl

The feature highlights of HOpenGL are:
◦ Pure Haskell 98 + FFI, so it works on all Haskell

platforms (GHC, Hugs, . . .)
◦ No dependencies on external tools like GreenCard
◦ Almost complete OpenGL 2.1 support, including

buffer objects and shaders
◦ A few dozen extensions
◦ A clean API, centered around OpenGL’s notion of

state variables
◦ Extensive hyperlinked online documentation
◦ Supports freeglut-only features, too
HOpenGL is available as two separate Cabal packages
(OpenGL and GLUT) and is extensively tested on x86
Linux and Windows. The packages reportedly work on
Solaris, FreeBSD, OpenBSD (→ 7.4.2), and Mac OS X,
too.

The binding comes with all examples from the
Red Book and other sources, and Sven Eric Panitz
has written a tutorial using the new API (http://
www.tfh-berlin.de/~panitz/hopengl/), so getting started
should be rather easy.

Further reading

http://www.haskell.org/HOpenGL/

4.9.2 HOpenAL – A Haskell Binding for OpenAL
and ALUT

Report by: Sven Panne
Status: stable, actively maintained

The goal of this project is to provide a binding for
OpenAL, a cross-platform 3D audio API, appropriate
for use with gaming applications and many other types
of audio applications. OpenAL itself is modeled after
the highly successful OpenGL API, and the Haskell
bindings for those libraries share “the same spirit”, too.

Just like OpenGL is accompanied by GLUT, HOpe-
nAL includes a binding for ALUT, the OpenAL Utility
Toolkit, which makes managing of OpenAL contexts,
loading sounds in various formats and creating wave-
forms very easy.

HOpenAL is available as two separate Cabal pack-
ages (OpenAL and ALUT). They cover the latest spec-
ification releases, i.e. OpenAL 1.1 (EFX extensions are
under development) and ALUT 1.1.0, and they work on
every platform supporting OpenAL and ALUT (Linux,
Windows, Mac OS X, BSDs, . . .). They are tested
with GHC and Hugs and will probably work with other
Haskell systems, too, because they use only H98 + FFI.

Further reading

http://www.openal.org/

4.9.3 Haskore revision

Report by: Henning Thielemann and Paul Hudak
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e. without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design deci-
sions, and fixing bugs. Specific improvements include:

1. Basic Cabal support.

2. The Music data type has been generalized in the
style of Hudak’s “polymorphic temporal media.”

3. The Music data type has been made abstract by
providing functions that operate on it.

4. The notion of instruments is now very general.
There are simple predefined instances of the Music
data type, where instruments are identified by
Strings or General MIDI instruments, but any other
custom type is possible, including types with instru-
ment specific parameters.

5. Support for CSound orchestra files has been im-
proved and extended, thus allowing instrument de-
sign in a signal-processing manner using Haskell, in-
cluding feedback and signal processors with multiple
outputs.

6. Initial support for the real-time software synthesizer
SuperCollider through the Haskell interface.

33

http://wxhaskell.sourceforge.net/samples.html#opengl
http://wxhaskell.sourceforge.net/samples.html#opengl
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.tfh-berlin.de/~panitz/hopengl/
http://www.haskell.org/HOpenGL/
http://www.openal.org/

7. The AutoTrack project has been adapted and in-
cluded.

8. Support for infinite Music objects is improved.
CSound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed
with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (→ 6.15).)

9. The test suite is based on QuickCheck and HUnit.

Future plans

◦ Split into a core package and add-ons, as soon as
Cabal supports that.

◦ Generate note sheets, say via Lilypond.
◦ Allow modulation of instruments similar to the con-

trollers in the MIDI system.
◦ Microtonal music.
◦ Connect to other Haskore related projects.

Further reading

◦ http://www.haskell.org/haskellwiki/Haskore
◦ http://darcs.haskell.org/haskore/

4.10 Web and XML programming

4.10.1 HAppS – Haskell Application Server

Report by: S. Alexander Jacobson

HAppS is a framework for developing Internet ser-
vices quickly, deploying them easily, scaling them mas-
sively, and managing them ziplessly. Web, persistence,
mail, DNS and database servers are all built-in so you
can focus on app development rather than integrating
and babysitting lots of different servers/services (the
Haskell type system keeps everything consistent).

◦ HTTP Application Serving

Performs better than Apache/PHP in our informal
benchmarks (thanks to Data.ByteString), handles
large (video) files and lazy (javascript) streaming,
supports HTTP-Auth, and more. It’s part of your
app so you don’t need to deal with separate configu-
ration and management of an HTTP server. Note: If
you really need Apache on port 80 for some reason,
it’s easy to configure it to proxy to your HAppS app
running on another port.

◦ SMTP Sending (Relaying) with built in DNS re-
solver

Integrating outbound SMTP directly into your app
means that you can stop worrying about configura-
tion and uptime of separate mail and DNS servers.
If your HAppS app is running, mail is being sent. If

it is rebooted, nothing is lost. If mail is temporarily
undeliverable, it does exponential backoff and tries
again later.

◦ SMTP Receiving (no more .procmail complexity)
Stop worrying about whether a separate mail server
is up and stop dealing with .procmail or other user
level inbound mail configuration hackery. HAppS
can operate as an inbound SMTP server, converting
inbound envelopes into just another event for your
application to process. And, if you need a separate
mail server on port 25, it should be much easier to
configure it to SMTP relay mail to your HAppS app
handling SMTP on a different port (you still avoid
extra .procmail complexity/annoyance).

◦ Apps as Simple State Transformers
HAppS keeps your application development very
simple. You represent state with the Haskell data
structure you find most natural for that purpose.
Your app then is just a set of state transformer func-
tions (in the MACID Monad) that take an event and
state as input and that evaluate to a new state, a
response, and a (possibly null) set of sideeffects.

◦ XML/XSLT to Separate Application Logic and
Presentation
HAppS lets you focus on application logic and lets
you defer presentation entirely to XSLT, JSON,
Flapjax, etc. HAppS converts automatically from
inbound protocol level event types e.g. url-encoded
HTTP requests to inbound application level event
types e.g. ChangePassword. Similarly, it converts
automatically from outbound application events like
PasswordChanged and outbound protcol events like
HTTP responses or SMTP messages. It even knows
to apply XSLT server side for XML outbound SMTP
messages and browsers that don’t support XSLT
client side. Currently, you still have to write in-
stances for FromMessage and ToElement, but we
hope to make that automatic soon.

◦ ACID Persistence, Concurrency. At-least-Once
side-effects.
With HAppS you need don’t to spend time mar-
shalling data into and out of external RDBMSs to get
ACID semantics (concurrent-access) for your data.
HAppS treats all events as atomic and puts them in a
total order so you never need to worry about concur-
rency (isolation). HAppS achieves durability by state
checkpointing and write-ahead logging events. End-
users can never be confused by a server reboot be-
cause HAppS won’t execute responses or side effects
until their driving events have been logged. HAppS
also tracks which side-effects have completed. If
the server is rebooted before a side-effect completes,
HAppS will retry on recovery. (This sophisticated
side-effect functionality may be unique to HAppS)

34

http://www.haskell.org/haskellwiki/Haskore
http://darcs.haskell.org/haskore/

◦ (Experimental) Relational Table and Index in
Haskell

Do relational operations (type) safely on in-memory
Haskell Data.Set(s) rather than dealing with an
external SQL relational database. Define cus-
tom indices for your Haskell datatypes (e.g. geo-
graphic/geometric types). Use in combination with
MACID for a robust relational DBMS customized for
your application.

◦ Coming Soon: No need for server architecture
(thanks to Amazon)

We are almost done with changes to the back end of
HAppS so that apps will be able to run unchanged on
Amazon’s S3 (http://aws.amazon.com/s3) and EC2
(http://aws.amazon.com/ec2). The result will be
massive scalability and superior reliability without
you having to lift a finger or walk into a data center.

Example applications written on top of HAppS include
a wiki that’s included in the tutorial and pass.net (→
4.10.2), an authentication webapp that improves upon
the idea of confirmation emails.

HAppS version 0.8.4 was released on October 12th,
2006.

The October 12th release includes examples demon-
strating new features such as user login, blocking IO,
extended session support, and more.

The latest stable release can always be found on http:
//HAppS.org/.

The latest development version can be acquired with:
darcs get –partial http://happs.org/HAppS

Further reading

◦ Website
http://happs.org/

◦ Discussion Group
http://groups.google.com/group/HAppS/

◦ pass.net
http://pass.net

4.10.2 Pass.Net

Report by: S. Alexander Jacobson

Pass.Net provides web sites with a simple shared web
API to manage user logins, confirmation emails, forgot-
ten passwords, etc. Most application frameworks don’t
have complete libraries to cover all of this functionality.

Outsourcing this to Pass.net means less complexity
in your application and less worrying about mail deliv-
ery, mail server integration, etc.

It also means your users don’t need to confirm their
email for *yet another* website if they’ve confirmed
their email address on any other site that uses Pass.Net.

Pass.Net is currently beta. We expect it to be fully
live and reliable by the end of the year. Pass.Net is
written in Haskell using HAppS (→ 4.10.1) and pro-
vides an easy to use Haskell library for HAppS user.
Clients in python, php, and java coming soon.

The source code for all of Pass.net is available at
http://pass.net/s/repo.

4.10.3 Converter of Yhc Core to Javascript (ycr2js)

Report by: Dimitry Golubovsky
Status: experimental

Converter of Yhc Core to Javascript (further referred to
as ycr2js) is a sub-project of the York Haskell Compiler
(further referred to as Yhc) Project. It is aimed to
create a tool to convert an arbitrary Haskell program
into Javascript which in turn may be executed in a Web
browser.

Conversion from Haskell to Javascript is achieved in
two steps: a Haskell source is translated into Yhc Core
by Yhc, and then the Core is translated to Javascript
by ycr2js. Additional tools are provided to embed gen-
erated Javascript onto a Web page.

This allows to develop Internet applications entirely
in Haskell (solutions for the server side have been
around for a while, such as HAppS (→ 4.10.1) and
HWS). A close analog to ycr2js is “HSP Client Side”,
which provides a domain-specific language (named
HJScript) to define Javascript constructs to be exe-
cuted at the client side, but not the ability to execute
arbitrary Haskell code in a Web browser.

Further reading

◦ Yhc Core:
http://haskell.org/haskellwiki/Yhc/API/Core

◦ The Wiki page http://haskell.org/haskellwiki/Yhc/
Javascript contains some examples of Haskell pro-
grams translated into Javascript.

4.10.4 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public stable release is 1.13.2, with sup-
port for building via Cabal, and for ghc-6.6.

In the unstable development version (currently at
1.17, also available through a darcs repository) we have
been experimenting successfully with improvements to
the secondary parsing stage, where the generic XML
tree is re-parsed into typed Haskell trees. We now get
good error messages if the parse fails, and the tools Dt-
dToHaskell and DrIFT (→ 3.5) have been updated to

35

http://aws.amazon.com/s3
http://aws.amazon.com/ec2
http://HAppS.org/
http://HAppS.org/
http://happs.org/HAppS
http://happs.org/
http://groups.google.com/group/HAppS/
http://pass.net
http://pass.net/s/repo
http://haskell.org/haskellwiki/Yhc/API/Core
http://haskell.org/haskellwiki/Yhc/Javascript
http://haskell.org/haskellwiki/Yhc/Javascript

use the new framework. Lazy variations of the basic
parser and pretty-printer also now exist, which much
reduces the memory needed if you are processing doc-
uments in a linear (top-to-bottom) fashion – of course
this also means it is now possible to deal with really
large inputs.

Some minor work still remains to tidy things up be-
fore the development version is tagged as stable, but
no further major changes are planned before that.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.cs.york.ac.uk/fp/HaXml-devel
◦ darcs get http://darcs.haskell.org/packages/HaXml

4.10.5 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: fifth major release (current release: 6.1)

Description

The Haskell XML Toolbox is a collection of tools for
processing XML with Haskell. It is itself purely writ-
ten in Haskell 98. The core component of the Haskell
XML Toolbox is a validating XML-Parser that sup-
ports almost fully the Extensible Markup Language
(XML) 1.0 (Second Edition), There is validator based
on DTDs and a new more powerful validator for Relax
NG schemas.

The Haskell XML Toolbox bases on the ideas of
HaXml (→ 4.10.4) and HXML, but introduces a more
general approach for processing XML with Haskell.
Since release 5.1 there is a new arrow interface simi-
lar to the approach taken by HXML. This interface is
more flexible than the old filter approach. It is also
safer, type checking of combinators becomes possible
with the arrow interface.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Flexible arrow interface with type classes for XML

filter
◦ Package support for ghc
◦ Native Haskell support of HTTP 1.1 and FILE pro-

tocol
◦ HTTP and access via other protocols via external

program curl
◦ Tested with W3C XML validation suite
◦ Example programs for filter and arrow interface
◦ Relax NG schema validator based on the arrows in-

terface

◦ A HXT Cookbook for using the toolbox and the ar-
row interface

◦ Basic XSLT support (next release)

Current Work

A master thesis has been finished developing an XSLT
system. The reuslt is a rather complete implementation
of an XSLT transformer system. Only minor features
are missing. The implementaion consists of about only
2000 lines of Haskell code. The XSLT module will be
included in the next HXT release.

A second master student’s project will be finished
until end of 2006. The title is A Dynamic Webserver
with Servlet Functionality in Haskell Representing all
Internal Data by Means of XML. HXT with the arrows
interface has been used for all internal data processing.
The results of this work will be available with the next
HXT release.

The next HXT release is planned for December 2006.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML processing
using arrows and RDF documents, and master thesises
describing the design of the toolbox, the DTD validator
and the arrow based Relax NG validator. A getting
started tutorial about HXT is avaliable in the Haskell
Wiki (http://www.haskell.org/haskellwiki/HXT).

4.10.6 WASH/CGI – Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely
functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features
◦ complete interactive server-side script in one pro-

gram
◦ a monadic, type-safe interface to generating XHTML

output
◦ type-safe compositional approach to specifying form

elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

36

http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-devel
http://darcs.haskell.org/packages/HaXml
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT

◦ documented preprocessor for translating markup in
syntax close to XHTML syntax into WASH/HTML

Completed Items are:
◦ fully cabalized
◦ WASH server pages with a modified version of Si-

mon Marlow’s hws web server; the current prototype
supports dynamic compilation and loading of WASH
source (via Don Stewart’s hs-plugins (→ 4.4.1)) as
well as the implementation of a session as a continu-
ally running server thread

◦ Transactional interface to server-side variables and to
databases. The interface is inspired by the work on
STM (software transactional memory), but modified
to be useful in the context of web applications. The
interface relies on John Goerzens hdbc package and
its PostgreSQL driver.

Current work includes
◦ improvement of the database interface
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/~thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

4.10.7 HAIFA

Report by: Simon Foster

HAIFA is a Web-Service and XML toolkit for Haskell
which enables users to both access Web-Service opera-
tions as functions in Haskell and publish Haskell func-
tions within Web-Services. The largest single part of
HAIFA, is a complex XML serializer library which at-
tempts to make the job of creating de/serializers for
Haskell data-types as painless as possible, via the use
of both “Scrap Your Boilerplate” lightweight generics
and Template Haskell. Our ultimate aim is to make the
Web-Service layer transparent with the help of tech-
nologies such as XML Schema and WSDL.

HAIFA has been undergoing some substantial work
since the last HCAR. Support for extensible hooks has
now been dropped, as this makes writing and invoking
serializers much simpler and its usefulness was ques-
tionable. Extensible hook support was designed pri-
marily as a method of encoding meta-data into a se-
rialization tree using type-classes unknown when the
base serializers were written to bring in meta-data. Due
to Haskell’s static type-system it is unlikely this could
ever have been put to use, and most of its functionality
can probably be achieved with value-level generics via
meta-data tables.

Apart from this a lot of bugs have been fixed, and
HAIFA is now quite useful for doing SOAP services.

The library of TH aids for building serializers is also
growing, in order to make the job of constructing seri-
alizers for complicated data-types as concise as possi-
ble. The automatic serializer generator based on SYB
is also substantially more intelligent, for example it can
now automatically set cardinality constraints for Maybe
and [] typed terms of types automatically.

The newest release also includes some basic XML
Schema mapping support, though only from a small
subset of Haskell types to XML Schema at the present
time. Mapping in the other direction did work before
I removed hooks, and once I get round to adapting it,
that should work again.

I’ve also started work on adding support for WSDL,
and some of this can be seen in the developmental darcs
repository. Development is very slow at the moment
due to other commitments, and so I encourage anyone
who is interested to get involved in the project.

Further reading

For more information please see the HAIFA project
page at http://www.dcs.shef.ac.uk/~simonf/HAIFA.
html

37

http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.dcs.shef.ac.uk/~simonf/HAIFA.html
http://www.dcs.shef.ac.uk/~simonf/HAIFA.html

5 Tools

5.1 Foreign Function Interfacing

5.1.1 FFI Imports Packaging Utility

Report by: Dimitry Golubovsky
Status: pre-release

FFIPKG (FFI Imports Packaging Utility) is a tool to
prepare a Haskell package containing FFI imports for
building. It accepts locations of C header and foreign
library files as command line arguments and produces
Haskell source files with FFI declarations, a Makefile,
a Cabal package descriptor file, and a Setup.hs file
suitable for running the Cabal package setup program.
Standard process of building a package with Cabal (e.g.
runghc Setup.hs . . .) is to follow to actually build and
register/install the package.

The utility is a recent addition to the HSFFIG pack-
age.

Of the benefits of packaging FFI imports, all infor-
mation about (possibly multiple) C header files and
libraries (their names and locations) used by Haskell
applications is kept with package descriptor: it is only
name of the package that needs to be remembered.

The utility is built upon the code base of HSFFIG,
and acts as a “driver” running the C preprocessor, the
equivalent of the HSFFIG program, and the source
splitter.

FFIPKG is intended to be used with the Glasgow
Haskell Compiler (→ 2.1) (6.4 and higher), and was
only tested for such use.

Current Status

Pre-release. The utility is available from darcs repo (→
6.4) only. The package installs as HSFFIG-1.1. Up-
dated HSFFIG is also available from this package.

Further reading

◦ Announce of the pre-release (also contains the darcs
repo URL, as well as brief installation instructions):
http://article.gmane.org/gmane.comp.lang.haskell.
general/13262

◦ Wiki page (informal user’s guide):
http://www.haskell.org/haskellwiki/FFI_Imports_
Packaging_Utility

◦ The HSFFIG project home page:
http://hsffig.sourceforge.net/

5.1.2 C→Haskell

Report by: Manuel Chakravarty
Status: active

C→Haskell is an interface generator that simplifies the
development of Haskell bindings to C libraries. It reads
C header files to automate many tedious aspects of in-
terface generation and to minimise the opportunity for
introducing errors when translating C declarations to
Haskell.

The darcs repository (→ 6.4) of C→Haskell is now at
http://darcs.haskell.org/c2hs with Duncan Coutts being
a second maintainer. The last few months didn’t see
much C→Haskell development due to work on other
projects; however, we have plans for the future. More
information is at http://www.cse.unsw.edu.au/~chak/
haskell/c2hs/.

5.2 Scanning, Parsing, Analysis

5.2.1 Frown

Report by: Ralf Hinze
Status: beta, maintained

Frown is an LALR(k) parser generator for Haskell 98
written in Haskell 98.

Its salient features are:

◦ The generated parsers are time and space efficient.
On the downside, the parsers are quite large.

◦ Frown generates four different types of parsers. As
a common characteristic, the parsers are genuinely
functional (i.e. ‘table-free’); the states of the under-
lying LR automaton are encoded as mutually recur-
sive functions. Three output formats use a typed
stack representation, one format due to Ross Pater-
son (code=stackless) works even without a stack.

◦ Encoding states as functions means that each state
can be treated individually as opposed to a table
driven-approach, which necessitates a uniform treat-
ment of states. For instance, look-ahead is only used
when necessary to resolve conflicts.

◦ Frown comes with debugging and tracing facilities;
the standard output format due to Doaitse Swier-
stra (code=standard) may be useful for teaching LR
parsing.

38

http://article.gmane.org/gmane.comp.lang.haskell.general/13262
http://article.gmane.org/gmane.comp.lang.haskell.general/13262
http://www.haskell.org/haskellwiki/FFI_Imports_Packaging_Utility
http://www.haskell.org/haskellwiki/FFI_Imports_Packaging_Utility
http://hsffig.sourceforge.net/
http://darcs.haskell.org/c2hs
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/

◦ Common grammatical patterns such as repetition of
symbols can be captured using rule schemata. There
are several predefined rule schemata.

◦ Terminal symbols are arbitrary variable-free Haskell
patterns or guards. Both terminal and nonterminal
symbols may have an arbitrary number of synthe-
sized attributes.

◦ Frown comes with extensive documentation; several
example grammars are included.

Furthermore, Frown supports the use of monadic lex-
ers, monadic semantic actions, precedences and asso-
ciativity, the generation of backtracking parsers, mul-
tiple start symbols, error reporting and a weak form of
error correction.

The current release is version 0.6.1.

Further reading

http://www.informatik.uni-bonn.de/~ralf/frown/

5.2.2 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a
parser generator (such as Happy) to build a complete
parser.

The latest release is version 2.0.1. Alex version 2.1
is currently in release-candidate mode, and is expected
to be released shortly.

Recent changes:

◦ Alex is now in a Darcs repository (→ 6.4), here: http:
//cvs.haskell.org/darcs/alex.

◦ Happy has a new build system, based on Cabal. If
you have GHC 6.4.2 or later (or Cabal 1.1.4 or later),
then you should be able to build and install Alex
on any platform. On Windows, Perl is required in
addition to GHC for building, but that is all.

◦ There was a slight change in the error semantics, to
enable more informative error messages.

Further reading

http://www.haskell.org/alex/

5.2.3 Happy

Report by: Simon Marlow
Status: stable, maintained

Happy is a tool for generating Haskell parser code from
a BNF specification, similar to the tool Yacc for C.
Happy also includes the ability to generate a GLR
parser (arbitrary LR for ambiguous grammars).

The latest release is 1.15, released 14 January 2005.
Version 1.16 is currently in release-candidate mode, and
is expected to be released very shortly. Version 1.16 is
required to build GHC.

Since that release, the following changes have hap-
pened:

◦ Happy is now in a Darcs repository (→ 6.4), here:
http://darcs.haskell.org/happy.

◦ Happy has a new build system, based on Cabal. If
you have GHC 6.4.2 or later (or Cabal 1.1.4 or later),
then you should be able to build and install Alex
on any platform. On Windows, Perl is required in
addition to GHC for building, but that is all.

◦ There are some new minor features: the error direc-
tive lets you define your own error-handling function,
and some new production forms to let you get hold
of the current token when parsing.

◦ Attribute Grammar support, contributed by Robert
Dockins, has been added.

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

5.2.4 SdfMetz

Report by: Tiago Miguel Laureano Alves
Status: stable, maintained

SdfMetz supports grammar engineering by calculat-
ing grammar metrics and other analyses. Currently it
supports two different grammar formalisms (SDF and
DMS) from which it calculates size, complexity, struc-
tural, and ambiguity metrics. Output is a textual re-
port or in Comma Separated Value format. The ad-
ditional analyses implemented are visualization, show-
ing the non-singleton levels of the grammar, or print-
ing the grammar graph in DOT format. The defini-
tion of all except the ambiguity and the NPath metrics
were taken from the paper A metrics suite for grammar

39

http://www.informatik.uni-bonn.de/~ralf/frown/
http://cvs.haskell.org/darcs/alex
http://cvs.haskell.org/darcs/alex
http://www.haskell.org/alex/
http://darcs.haskell.org/happy
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/

based-software by James F. Power and Brian A. Mal-
loy. The ambiguity metrics were defined by the tool au-
thor exploiting specific aspects of SDF grammars and
the NPath metric definition was taken from the paper
NPATH: a measure of execution path complexity and
its applications.

A web-based interface is planned and more metrics
will be added. A front-end to other grammar formalism
(yacc and antlr) is also planed, being the yacc front-end
currently under development. As longer term project,
it is expected to fuse the SdfMetz and XsdMetz in a
single tool.

The tool was initially developed in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) to develop a grammar for ISO VDM-
SL.

Further reading

The web site of SdfMetz (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/SdfMetz) includes tables of metric val-
ues for a series of SDF grammar as computed by
SdfMetz. The tool is distributed as part of the UMinho
Haskell Libraries and Tools.

5.2.5 XsdMetz: metrics for XML Schema

Report by: Joost Visser
Status: maintained

The XsdMetz tool computes structure metrics and us-
age metrics for XML document schemas written in the
XML Schema format. The computed structure metrics
include tree impurity, coupling, cohesion, fan in and
out, instability, height, width, and (normalized) count
of strong componenents (see: Joost Visser, Structure
Metrics for XML Schema). The computed usage met-
rics include XSD-agnostic and XSD-aware counts (see:
Ralf Lämmel, Stan Kitsis, and Dave Remy, Analysis of
XML Schema Usage). The graphs constructed by Xs-
dMetz for the computation of structure metrics can be
exported to the dot format of GraphViz.

XsdMetz is available as part of the UMinho Haskell
Libraries and Tools. A stand-alone release is in prepa-
ration.

Further reading

http://wiki.di.uminho.pt/wiki/bin/view/PURe/
XsdMetz

5.3 Transformations

5.3.1 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude / OBJ lan-
guages with special emphasis on the use of simple pro-
grammable strategies for controlling program execu-
tion and new commands enabling powerful execution
modes.

The tools have been developed at the Technical Uni-
versity of Valencia (UPV) as part of a number of re-
search projects. The following people is (or has been)
involved in the development of these tools: Beatriz
Alarcón, María Alpuente, Demis Ballis (Università di
Udine), Santiago Escobar, Moreno Falaschi (Univer-
sità di Siena), Javier García-Vivó, Raúl Gutiérrez, José
Iborra, Salvador Lucas, Pascal Sotin (Université du
Rennes).

Status

The previous work lead to the following tools:

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched on February 2002).

http://www.dsic.upv.es/~slucas/csr/termination/
muterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched on December 2002).

http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched on January 2003).

http://www.dsic.upv.es/users/elp/ondemandOBJ

http://www.dsic.upv.es/users/elp/GVerdi

◦ GVerdi: A Rule-based System for Web site Verifica-
tion (first version launched on January 2005).

All these tools have been written in Haskell (mainly
developed using Hugs and GHC) and use popular
Haskell libraries like hxml-0.2, Parsec, RegexpLib98,
wxHaskell (→ 4.8.1).

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client / server applications (e.g., compil-
ers or complementary tools).

40

http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/XsdMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/XsdMetz
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi

References

◦ Building .NET GUIs for Haskell applications. B.
Alarcón and S. Lucas. 6th International Conference
on .NET Technologies, to appear, 2006.

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1-16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting remote termination tools M. Alpuente
and S. Lucas 7th International Workshop on Termi-
nation, WST’04, pages 6–9, Technical Report AIB-
2004-07, RWTH Aachen, 2004.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200-209, Springer-
Verlag, Berlin, 2004.

◦ A Rule-based System for Web site Verification.
Demis Ballis and Javier García-Vivó. 1st In-
ternational Workshop on Automated Specification
and Verification of Web Sites, WWV’05, Valencia
(SPAIN). Electronic Notes in Theoretical Computer
Science, to appear, 2005.

5.3.2 HaRe – The Haskell Refactorer

Report by: Huiqing Li, Chris Brown, Claus Reinke and
Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs has as
its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its third major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the

module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately. The version
about to be released (at the time of writing) works
with GHC 6.4.2.

In order to allow users to extend HaRe themselves,
the latest releases of HaRe include an API for users
to define their own program transformations, together
with Haddock (→ 5.5.6) documentation. Please let us
know if you are using the API.

There have been some recent developments for
adding program slicing techniques to HaRe. These
techniques include a refactoring to split functions re-
turning tuples into separate definitions, and to also
put them back together again. There have also been
some new refactorings added which work on data types:
adding a constructor to a data type and converting a
data type into a newtype. The immediate aim for the
development of HaRe is to support a number of type-
based refactorings.

A snapshot of HaRe is available from our webpage,
as are recent presentations from the group (including
LDTA 05, TFP05, SCAM06), and an overview of recent
work from staff, students and interns. Among this is an
evaluation of what is required to port the HaRe system
to the GHC API (→ 2.1), and a comparative study of
refactoring Haskell and Erlang programs.

The final report for the project appears there too,
together with an updated refactoring catalogue and the
latest snapshot of the system. Huiqing’s PhD thesis
on refactoring Haskell programs is now available online
from our project webpage.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.3 VooDooM

Report by: Tiago Miguel Laureano Alves
Maintainer: Tiago Alves, Paulo Silva
Status: stable, maintained

VooDooM supports understanding and re-engineering
of VDM-SL specifications.

Understanding is accomplished through the extrac-
tion and derivation of different kinds of graphs such
as type dependency, function dependency and strongly
connected components graphs. These graphs can be
subject of both visualization (by exporting into DOT
format) and metrication (generating CSV or text re-
port).

Re-engineering is supported through the applica-
tion of transformation rules to the datatypes to ob-

41

http://www.cs.kent.ac.uk/projects/refactor-fp/

tain an equivalent relational representation. The re-
lational representation can be exported as VDM-SL
datatypes (inserted back into th e original specifica-
tion) and/or SQL table definitions (can be fed to a
relational DBMS).

The first VooDooM prototype, supporting re-
engineering, was developed in a student project by
Tiago Alves and Paulo Silva. The prototype was fur-
ther enhanced and continued as an open source project
(http://voodoom.sourceforge.net/) in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) by Tiago Alves and finally in the con-
text of a MSc thesis project.

Currently, a reimplementation of the re-engineering
functionality of VooDooM is being undertaken, based
on so-called two-level transformations, as supported by
the 2LT project (→ 4.7.5).

As future work the implementation is expected of
both XML and Haskell generation.

Further reading

VooDooM is available from http://voodoom.
sourceforge.net/. The implementation of VooDooM
makes ample use of strategic programming, using Stra-
funski, and is described in Strategic Term Rewriting
and Its Application to a VDM-SL to SQL Conversion
(Alves et al., Formal Methods 2005) and in the
MSc thesis VooDooM: Support for understanding and
re-engineering of VDM-SL specifications.

5.4 Testing and Debugging

5.4.1 Haskell Program Coverage

Report by: Andy Gill
Status: released, maintained, in active development

Over the summer Colin Runciman visited Galois (→
7.1.2) for a sabattical. Andy Gill and Colin teamed
up to design and implement a Haskell coverage tool for
use by Galois to support QA efforts. The result was
Haskell Program Coverage (Hpc).

Hpc is a tool-kit to record and display Haskell Pro-
gram Coverage. Hpc includes tools that instrument
Haskell programs to record program coverage, run in-
strumented programs, and display the coverage infor-
mation obtained.

Hpc provides coverage information of two kinds:
source coverage and boolean-control coverage. Source
coverage is the extent to which every part of the
program was used, measured at three different lev-
els: declarations (both top-level and local), alternatives
(among several equations or case branches) and expres-
sions (at every level). Boolean coverage is the extent to

which each of the values True and False is obtained in
every syntactic boolean context (ie. guard, condition,
qualifier).

Hpc displays both kinds of information in two dif-
ferent ways: textual reports with summary statistics
(hpc-report) and sources with colour mark-up (hpc-
markup). For boolean coverage, there are four possible
outcomes for each guard, condition or qualifier: both
True and False values occur; only True; only False;
never evaluated. In hpc-markup output, highlighting
with a yellow background indicates a part of the pro-
gram that was never evaluated; a green background
indicates an always-True expression and a red back-
ground indicates an always-False one.

Hpc provides a Haskell-to-Haskell translator as a
means for building instrumented binaries for gather-
ing coverage information, and an Hpc option already
checked into GHC 6.7 will make gathering coverage
over GHC specific Haskell code possible in the near
future.

The file formats use by Hpc are simple and well
documented. The intent is that other tools can be
quickly built that process coverage information in cre-
ative ways.

GHC has been sucessfully bootstrapping using Hpc,
and Hpc has already be deployed internally in Galois in
a number of places. In the future expect to see tighter
integration between Haskell testing tools and Hpc as
obtaining coverage results for test runs becomes stan-
dard practice in Haskell development.

Further reading

http://www.haskell.org/haskellwiki/Haskell_Program_
Coverage

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: several recent additions

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can be
viewed in various ways with several tools: hat-observe,
hat-trail, hat-detect, hat-delta, hat-explore, hat-cover,
hat-anim, black-hat, hat-nonterm . . . Some views are
similar to classical debuggers for imperative languages,
some are specific to lazy functional language features
or particular types of bugs. All tools inter-operate and
use a similar command syntax.

Hat can be used both with nhc98 (→ 2.3) and ghc (→
2.1). Hat was built for tracing Haskell 98 programs,
but it also supports some language extensions (FFI,
MPTC, fundeps, hierarchical libs). A tutorial explains

42

http://voodoom.sourceforge.net/
http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://voodoom.sourceforge.net/
http://voodoom.sourceforge.net/
http://www.haskell.org/haskellwiki/Haskell_Program_Coverage
http://www.haskell.org/haskellwiki/Haskell_Program_Coverage

how to generate traces, how to explore them, and how
they help to debug Haskell programs.

Bugfixes and new viewing tools are being added con-
tinuously. Now parts of Hat can be used under Win-
dows. Hat-GUI repackages a number of existing view-
ing tools under a graphical user interface. Hat-delta ex-
tends algorithmic debugging with heuristics, tree com-
pression and a new representation of functional values
as finite maps.

Development of Hat recently moved to using
darcs (→ 6.4). In October 2006 an interim release of
2.05 was published, specifically to allow Hat to com-
pile with ghc-6.6 (→ 2.1), but we hope to put out a
new full release 2.06 in the next few months, which will
be much more compatible with the current state of the
common library packages.

Further reading

◦ Hat Day 2006 http://www.cs.kent.ac.uk/people/
staff/oc/TraceTheory/hatDay2006.html

◦ Thomas Davie and Olaf Chitil: Display of Functional
Values for Debugging. Draft Proceedings of the 18th
International Workshop on Implementation and Ap-
plication of Functional Languages, IFL 06.

◦ Thomas Davie and Olaf Chitil: One Right Does
Make a Wrong. Trends in Functional Programming,
TFP ’06. http://www.cs.nott.ac.uk/~nhn/TFP2006/
Papers/18-DavieChitil-OneRightDoesMakeAWrong.
pdf

◦ A Theory of Tracing Pure Functional Programs
http://www.cs.kent.ac.uk/~oc/traceTheory.html

◦ http://www.haskell.org/hat
◦ darcs get http://darcs.haskell.org/hat

5.4.3 buddha

Report by: Bernie Pope
Status: inactive

Buddha is a declarative debugger for Haskell 98. It
is based on program transformation. Each module in
the program undergoes a transformation to produce
a new module (as Haskell source). The transformed
modules are compiled and linked with a library for
the interface, and the resulting program is executed.
The transformation is crafted such that execution of
the transformed program constitutes evaluation of the
original (untransformed) program, plus construction of
a semantics for that evaluation. The semantics that
it produces is a “computation tree” with nodes that
correspond to function applications and constants.

Buddha is freely available as source and is licensed
under the GPL. There is also a Debian package, as well
as ports to Free-BSD, Darwin and Gentoo (→ 7.4.3).

Nothing new has been added to buddha since the last
report. A fairly comprehensive re-write is planned for
late 2006.

Further reading

http://www.cs.mu.oz.au/~bjpop/buddha/

5.4.4 SmallCheck: another lightweight testing
library in Haskell

Report by: Colin Runciman

SmallCheck is similar to QuickCheck (Claessen and
Hughes 2000–) but instead of testing for a sample of
randomly generated values, SmallCheck tests proper-
ties for all the finitely many values up to some depth,
progressively increasing the depth used. As well as
guaranteeing minimal counter-examples, the different
approach to test-data generation makes it easier to de-
fine generators for user-defined types, allows the use of
existential quantifiers and enables more information to
be displayed about functional values.

The SmallCheck prototype was written in Sum-
mer 2006 during a visit to Galois Connections (→
7.1.2). Feedback from users has prompted improve-
ments, and the most recent version is 0.2 (November
2006). Compared with version 0.1 there is a wider
choice of test-drivers and more pre-defined test-data
generators. SmallCheck 0.2 is freely available, with il-
lustrative examples, from http://www.cs.york.ac.uk/fp/
smallcheck0.2.tar.

5.4.5 Dr Haskell

Report by: Neil Mitchell

Dr Haskell is a tool to detect common mistakes in
beginner Haskell programs. For example, beginners
might not be aware of concatMap, and instead use
concat (map f x). Dr Haskell does not make any
changes to the source code, it merely suggests places
where things could be improved. A database is in-
cluded which knows about 20 suggestions, but more
can be added easily, with a simple syntax.

Further reading

http://www-users.cs.york.ac.uk/~ndm/projects/
drhaskell.php

5.5 Development

5.5.1 hmake

Report by: Malcolm Wallace
Status: stable, maintained

Hmake is an intelligent module-compilation manage-
ment tool for Haskell programs. It interoperates with

43

http://www.cs.kent.ac.uk/people/staff/oc/TraceTheory/hatDay2006.html
http://www.cs.kent.ac.uk/people/staff/oc/TraceTheory/hatDay2006.html
http://www.cs.nott.ac.uk/~nhn/TFP2006/Papers/18-DavieChitil-OneRightDoesMakeAWrong.pdf
http://www.cs.nott.ac.uk/~nhn/TFP2006/Papers/18-DavieChitil-OneRightDoesMakeAWrong.pdf
http://www.cs.nott.ac.uk/~nhn/TFP2006/Papers/18-DavieChitil-OneRightDoesMakeAWrong.pdf
http://www.cs.kent.ac.uk/~oc/traceTheory.html
http://www.haskell.org/hat
http://darcs.haskell.org/hat
http://www.cs.mu.oz.au/~bjpop/buddha/
http://www.cs.york.ac.uk/fp/smallcheck0.2.tar
http://www.cs.york.ac.uk/fp/smallcheck0.2.tar
http://www-users.cs.york.ac.uk/~ndm/projects/drhaskell.php
http://www-users.cs.york.ac.uk/~ndm/projects/drhaskell.php

ghc (→ 2.1), hbc, and nhc98 (→ 2.3), allowing multi-
ple installed versions of compilers to be easily selected
from.

A recent public version: 3.13, contains bugfixes for
building with ghc-6.6. Maintenance continues at darcs.
haskell.org.

Further reading

http://haskell.org/hmake/

5.5.2 Ruler

Report by: Atze Dĳkstra
Participants: Atze Dĳkstra, Arie Middelkoop, Doaitse

Swierstra
Status: active development

The purpose of the Ruler system is to describe type
rules in such a way that a partial Attribute Gram-
mar implementation, and a pretty printed LATEX can
be generated from a description of type rules. The sys-
tem (currently) is part of the EHC (Essential Haskell
compiler) project (→ 3.3.5) and described in a tech-
nical paper, which is also included in the PhD thesis
describing the EHC project. The system is used to de-
scribe the type rules of EHC. The main objectives of
the system are:

◦ To keep the implementation and LATEX rendering of
type rules consistent.

◦ To allow an incremental specification (necessary for
the stepwise description employed by EHC).

Using the Ruler language (of the Ruler system) one
can specify the structure of judgements, called judge-
ment schemes. These schemes are used to ‘type check’
judgements used in type rules and generate the imple-
mentation for type rules. A minimal example, where
the details required for generation of an implementa-
tion are omitted, is the following:

scheme expr =
holes [| e: Expr, gam: Gam, ty: Ty |]
judgespec gam :- e : ty

ruleset expr scheme expr =
rule app =

judge A : expr = gam :- a : ty.a
judge F : expr = gam :- f : (ty.a -> ty)
-
judge R : expr = gam :- (f a) : ty

This example introduces a judgement scheme for the
specification of type rules for expressions, and a type
rule for applications (as usually defined in λ-calculus).

Current activities

Arie Middelkoop continues with the development of the
Ruler system as part of his Microsoft Research Schol-
arship PhD grant. He will investigate the specification
of type rules in a partitioned (stepwise an aspectwise)
fashion, and the incorporation of solving strategies for
typing rules.

Further reading

◦ Homepage (Ruler is part of EHC):
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
From here the mentioned documentation can be
downloaded.

5.5.3 cpphs

Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust Haskell replacement for the C pre-
processor. It has a couple of benefits over the tradi-
tional cpp – you can run it in Hugs when no C compiler
is available (e.g. on Windows); and it understands the
lexical syntax of Haskell, so you don’t get tripped up
by C-comments, line-continuation characters, primed
identifiers, and so on. (There is also a pure text mode
which assumes neither Haskell nor C syntax, for even
greater flexibility.)

Cpphs can also unliterate .lhs files during prepro-
cessing, and you can install it as a library to call from
your own code, in addition to the stand-alone utility.

Current release is 1.3, containing some minor bug-
fixes and a new -cpp option to accept original cpp flag
syntax, so you can use it as a truly drop-in replacement.

Further reading

http://haskell.org/cpphs

5.5.4 Visual Haskell

Report by: Simon Marlow and Krasimir Angelov
Status: in development

Visual Haskell is a plugin for Microsoft’s Visual Studio
development environment to support development of
Haskell code. It is tightly integrated with GHC, which
provides support for intelligent editing features, and
Cabal, which provides support for building and pack-
aging multi-module programs and libraries.

The first release of Visual Haskell, version 0.0, was
announced on 20 September 2005. It can be ob-
tained from the main Visual Haskell page, here: http:
//www.haskell.org/visualhaskell/. In order to use Visual

44

http://haskell.org/hmake/
http://www.cs.uu.nl/groups/ST/Ehc/WebHome
http://haskell.org/cpphs
http://www.haskell.org/visualhaskell/
http://www.haskell.org/visualhaskell/

Haskell, you need an x86 machine running Windows,
and Visual Studio .NET 2003.

Following a relaxation in the license under which Mi-
crosoft’s Visual Studio SDK is released, we are now able
to distribute the source to the plugin under a BSD-style
license. The sources are in a darcs (→ 6.4) repository
here: http://darcs.haskell.org/vshaskell/. Why not take
a look and see what lengths you have to go to in order
to write Haskell code that plugs into Visual Studio!

Now a there is a prerelease version that is available
for both Visual Studio 2003 and Visual Studio 2005.
It will be distributed with GHC-6.6. There is a new
installer with updated (BSD) license. The installer is
now bundled with both the normal and the profiling
libraries.

Help is (still) welcome! Please drop us a
note: 〈simonmar@microsoft.com〉 and 〈kr.angelov@
gmail.com〉.

5.5.5 Haskell support for the Eclipse IDE

Report by: Leif Frenzel
Status: working, though alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs, developed by an Open Source Project.
Our project extends it with tools to support Haskell
development.

The aim is to develop an IDE for Haskell that pro-
vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of compilers, in-
terpreters, debuggers, documentation generators and
other Haskell development tools. Long-term goals in-
clude a language model with support for language-
aware IDE features, like refactoring and structural
search.

The current version is 0.9.1. The project is now
maintained by Thiago Arrais.

Every help is very welcome, be it in the form of code
contributions, docs or tutorials, or just any feedback
if you use the IDE. If you want to participate, please
subscribe to the development mailing list (see below).

Further reading

◦ http://eclipse.org
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop
◦ Project homepage: http://eclipsefp.sf.net

5.5.6 Haddock

Report by: Simon Marlow
Status: stable, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates doc-
umentation by parsing the Haskell source code di-
rectly, and including documentation supplied by the
programmer in the form of specially-formatted com-
ments in the source code itself. Haddock has direct
support in Cabal, and is used to generate the docu-
mentation for the hierarchical libraries that come with
GHC, Hugs, and nhc98 (http://www.haskell.org/ghc/
docs/latest/html/libraries).

The latest release is verison 0.8, released October 10
2006.
Recent changes:

◦ Haddock is now in a Darcs repository (→ 6.4), here:
http://darcs.haskell.org/haddock.

◦ Happy has a new build system, based on Cabal. If
you have GHC 6.4.2 or later (or Cabal 1.1.4 or later),
then you should be able to build and install Alex
on any platform. On Windows, Perl is required in
addition to GHC for building, but that is all.

◦ New in version 0.8: linking to source code from docu-
mentation, linking to wiki from documentation, gen-
erating output for Hoogle, and the <<url>> markup
for including images.

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here:
http://darcs.haskell.org/haddock/TODO

◦ Haddock’s home page is here:
http://www.haskell.org/haddock/

5.5.7 Hoogle – Haskell API Search

Report by: Neil Mitchell
Status: v3.0

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online.

45

http://darcs.haskell.org/vshaskell/
mailto: simonmar at microsoft.com
mailto: kr.angelov at gmail.com
mailto: kr.angelov at gmail.com
http://eclipse.org
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://eclipsefp.sf.net
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://darcs.haskell.org/haddock
http://darcs.haskell.org/haddock/TODO
http://www.haskell.org/haddock/

Hoogle is still under active development, since the
last HCAR substantial progress has been made towards
version 4 – speeding up searches and offering many fea-
tures requested by the users. Hoogle function database
generation has also been integrated into Cabal, see the
haddock command with the –hoogle flag.

Hoogle is available as a web interface, a command
line tool and a lambdabot (→ 6.7) plugin.

Further reading

http://haskell.org/hoogle

5.5.8 SearchPath

Report by: S. Alexander Jacobson

Searchpath gives you automatic import chasing across
the Internet for Haskell modules. Think of it as an
internet wide version of the -i command line option
for GHC. Rather than just specifying local file paths,
you can specify locations out on the Internet for your
compiler to find your modules. You don’t need to worry
about manually installing package after package, you
only need a list of locations of packages (or parts of
packages) you want to use, and let searchpath take care
of the rest.

Detailed tutorial and more at http://www.haskell.
org/haskellwiki/SearchPath. Also see the website at
http://www.searchpath.org/.

46

http://haskell.org/hoogle
http://www.haskell.org/haskellwiki/SearchPath
http://www.haskell.org/haskellwiki/SearchPath
http://www.searchpath.org/

6 Applications

6.1 FreeArc

Report by: Bulat Ziganshin
Status: beta

FreeArc is an archiver (like Info-Zip) written in Haskell
that uses C compression libraries via the interface pro-
vided by the Compression-2006 library (→ 4.7.3).

At this moment, it’s the best practical compressor
in the world, several times faster and reaching better
compression than WinRAR, 7-zip, WinRK, UHARC
and any other program I know. Aside this, FreeArc
provides a lot of features, including solid archives with
fast updates, tunable compression level/algorithms, au-
tomatic selection of compression algorithm depending
on file type, tunable sorting and grouping of files, SFX
module and FAR MultiArc sub-plugin.

FreeArc sources have a lot of comments . . . in Rus-
sian. If you know this language, these sources are an
invaluable place for learning Haskell. Moreover, the
program includes several modules that you may reuse
in your program on BSD3 license:

◦ Win32Files.hs – implements I/O on Windows for files
> 4GB and files with Unicode names

◦ Files.hs – provides an OS-independent interface to
the features of Win32Files

◦ ByteStream.hs – binary serialization library

◦ UTF8Z.hs – UTF8-packed strings (like ByteString,
but with a more memory-efficient representation)

◦ Process.hs – allows to construct data-processing al-
gorithms from individual processes by joining them
together very much like ordinary programs are joined
by Unix shell

Further reading

◦ Download:
http://www.haskell.org/bz

Contact

〈Bulat.Ziganshin@gmail.com〉

6.2 h4sh

Report by: Don Stewart
Status: maintained

h4sh provides a set of Haskell List functions as normal
unix shell commands. This allows us to use Haskell in
shell scripts transparently.

Each program is generated from the function’s type.
The supported functions include: (!!) ($) (++)
(:) (\\) concat concatMap cycle delete drop
dropWhile elemIndices filter foldl foldr group
head id init insert intersect intersperse
iterate last length map maximum minimum nub
repeat reverse show sort tail take takeWhile
transpose unfoldr union words zip.

Higher order functions use runtime evaluation, al-
lowing arbitrary Haskell code to be passed to, e.g. map
and filter.

h4sh has been ported to the new Data.ByteString (→
4.6.3) api.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/h4sh.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/h4sh

6.3 Pugs

Report by: Audrey Tang
Status: active development

Started on February 1st 2005, Pugs is an implemen-
tation of the Perl 6 language, including a full-fledged
parser and runtime, as well as compiler backends tar-
getting JavaScript, Perl 5 and the Parrot virtual ma-
chine. It also supports inline Haskell and Perl 5 code in
Perl 6 modules, as well as dynamic Haskell evaluation
through the hs-plugins (→ 4.4.1) package.

As of this writing, we are working closely with Larry
Wall and other language designer to synchronize the
specification with our implementation, so that Pugs
can become a fully-conforming self-hosting Perl 6 im-
plementation.

The Pugs team has over 200 committers from
Haskell, Perl, Python, Ruby, JavaScript and other lan-
guage communities; the Learning Haskell and Intro-
duction to Pugs set of talks, published at the Pugs
homepage, were also welcomed in several Open Source

47

http://www.haskell.org/bz
mailto: Bulat.Ziganshin at gmail.com
http://www.cse.unsw.edu.au/~dons/h4sh.html
http://www.cse.unsw.edu.au/~dons/code/h4sh

conferences. Join us on irc.freenode.net #perl6 to par-
ticipate in the development!

Further reading

◦ Development journal
http://pugs.blogs.com/

◦ Pugs homepage
http://pugscode.org/

◦ Subversion repository
http://svn.openfoundry.org/pugs/

6.4 Darcs

Report by: Eric Kow
Participants: David Roundy
Status: active development

Darcs is a distributed revision control system written
in Haskell. In darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a darcs repository to easily create their
own branch and modify it with the full power of darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, darcs remains very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

David Roundy and a handful of interested users have
been working on a new version of the theory of patches
with better defined and more well-behaved conflict res-
olution. The two most actively pursued approaches so
far are conflictors and tree-based conflicts. Meanwhile,
the darcs community in general are working on day-to-
day issues such as an improved interactions with exter-
nal programs. A new release (1.0.9) will be coming out
shortly, with GHC 6.6 support, several bug fixes and
user interface improvements. Patches great and small
would be heartily welcome!

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.5 downNova

Report by: Lemmih

‘downNova’ is a program designed for automating the
process of downloading TV series from mininova.org.
It will scan your downloaded files to find out what
your interests are and download missing/new episodes
to your collection. Advanced classification techniques

are used to interpret the file names and ‘downNova’ will
correctly extract series name, season number, episode
number and episode title in nigh all cases. This might
be abused for illegally downloading copyrighted ma-
terial. That is however not the intended use of this
program and I do not condone such activities.

Further reading

◦ Darcs repository:
http://darcs.haskell.org/~lemmih/downNova/

◦ mininova:
http://www.mininova.org/

6.6 Hircules, an irc client

Report by: Jens Petersen

Hircules is a gtk2-based IRC client built on gtk2hs (→
4.8.2) and code from lambdabot (→ 6.7). The last re-
lease was version 0.3. I recently updated my tree to
build with the current releases of ghc and gtk2hs and
I am planning to import it to darcs.haskell.org soon to
make it easier for other people to contribute patches.

Further reading

http://haskell.org/hircules/

6.7 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell
evaluator, lambda calculus interpreter, unlambda in-
terpreter, pointfree programming, dictd client, fortune
cookies, Google search, online help and more.

New features since the last release include:
redo/undo refactoring for monadic code, SmallCheck
and QuickCheck support, a BF interpreter, persistent
bindings via @let, free theorems generators, tiny-url
support, many stability improvements.

Lambdabot is also able now to be embedded in
GHCi, and runs online via an AJAX web interface.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/lambdabot.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/lambdabot

48

http://pugs.blogs.com/
http://pugscode.org/
http://svn.openfoundry.org/pugs/
http://darcs.net
http://darcs.haskell.org/~lemmih/downNova/
http://www.mininova.org/
http://haskell.org/hircules/
http://www.cse.unsw.edu.au/~dons/lambdabot.html
http://www.cse.unsw.edu.au/~dons/lambdabot

6.8 λFeed

Report by: Manuel Chakravarty
Status: active

Drive your blog with Haskell! λFeed generates RSS
2.0 feeds and corresponding HTML from a non-XML,
human-friendly format for channels and news items.
Currently, many desirable features are still missing.
However, the internal representation of RSS 2.0 feeds
is already rather feature-full; it includes, for exam-
ple, enclosure as needed for podcasts. More informa-
tion and the darcs repository is available from http:
//www.cse.unsw.edu.au/~chak/haskell/lambdaFeed/.

6.9 yi

Report by: Don Stewart
Status: maintained

yi is a project to write a Haskell-extensible editor. yi
is structured around an basic editor core, such that
most components of the editor can be overridden by
the user, using configuration files written in Haskell.
Version 0.1.0 has been released, and provides vim, vi
and nano emulation, through an ncurses interface. yi
is stable and maintained.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/yi.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/yi/

6.10 Dazzle

Report by: Martĳn Schrage and Arjan van Ĳzendoorn

Dazzle is a graphical toolbox for Bayesian networks
that is developed by the Decision Support System
group of Utrecht University. It is written in Haskell
and uses wxHaskell (→ 4.8.1) as its GUI library. For
inference it uses the C++ library SMILE, developed
by the Decision Systems Laboratory of Pittsburgh Uni-
versity. Dazzle’s features include browsing cases, test
selection, logic sampling and sensitivity analysis. The
application runs on Windows, Linux and Mac OS X.
The project has produced several spin-offs: a progress
indicator for pure algorithms, an abstraction for per-
sistent documents, and the XTC library for typed con-
trols. The Dazzle toolbox itself is closed source, but
the spin-off libraries are available from the web page.

Further reading

http://www.cs.uu.nl/dazzle/

6.11 INblobs – Interaction Nets interpreter

Report by: Miguel Vilaca
Participants: Miguel Vilaca and Daniel Mendes
Status: active, maintained
Portability: Windows, Linux and Mac OS X

(depends on wxHaskell(→ 4.8.1))

INblobs is an editor and interpreter for Interaction Nets
– a graph-rewriting formalism introduced by Lafont,
inspired by Proof-nets for Multiplicative Linear Logic.

INblobs is built on top of the front-end Blobs from
Arjan van Ĳzendoorn, Martĳn Schrage and Malcolm
Wallace.

The tool is being developed using the repository sys-
tem Darcs (→ 6.4).

New features

◦ Mac OS X portability
◦ new reduction strategy
◦ templates for explicit memory management
◦ some bug fixes

Further reading

◦ Homepage:
http://haskell.di.uminho.pt/jmvilaca/INblobs/

◦ Blobs:
http://www.cs.york.ac.uk/fp/darcs/Blobs

6.12 DoCon, the Algebraic Domain
Constructor

Report by: Serge Mechveliani

DoCon is a program for symbolic computation in math-
ematics, written in Haskell (using extensions such as
multiparametric classes, overlapping instances, and
other minor features). It is a package of modules dis-
tributed freely, with the source program and manual.

DoCon, the Algebraic Domain Constructor, version
2.08 has been released in 2005. It is available on the
public sites.

Real DoCon development has stopped before 2002.
At the moment, only the GHC system-dependent
changes are considered. Probably, there will be a new
release (version 2.09) which runs under GHC (→ 2.1)
6.6 or later. This is a matter of correcting the GHC
system usage in the manual.

49

http://www.cse.unsw.edu.au/~chak/haskell/lambdaFeed/
http://www.cse.unsw.edu.au/~chak/haskell/lambdaFeed/
http://www.cse.unsw.edu.au/~dons/yi.html
http://www.cse.unsw.edu.au/~dons/code/yi/
http://www.cs.uu.nl/dazzle/
http://haskell.di.uminho.pt/jmvilaca/INblobs/
http://www.cs.york.ac.uk/fp/darcs/Blobs

Further reading

http://haskell.org/docon/

6.13 Dumatel, a prover based on
equational reasoning

Report by: Serge Mechveliani

Dumatel is a prover based on term rewriting and equa-
tional reasoning, written in Haskell (using extensions
such as multiparametric classes, overlapping instances).
It is a package of modules distributed freely, with the
source program and manual.

Dumatel, a prover based on equational reasoning,
version 1.02, has been released in 2005. It is available
on the public sites. The current 1.02 program appears
to have many bugs. A new, improved version is cur-
rently being prepared.

Also available is the copy of a talk given during
the Groebner Semester 2006 in Linz, Austria: Serge
D. Mechveliani, A design for predicate calculus prover
based on completion, http://www.ricam.oeaw.ac.at/srs/
groeb/program.php.

Further reading

http://haskell.org/dumatel/

6.14 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

The program is stable and can take on large docu-
ments.

The current release is version 1.11. Compiling with
GHC 6.6 is possible, but requires a small change to the
build system. Mainly for this reason, a new release 1.12
is planned, which probably will also include support for
Cabal. Development continues slowly in the Subversion
repository.

I would like to present some examples of lhs2TEX
formatting capabilities on the homepage, and also to
extend the lhs2TEX library of formatting directives. If

you have written a document that demonstrates nicely
what lhs2TEX can do, or if you have designed clever for-
matting instructions to trick lhs2TEX into doing things
previously deemed impossible, please contact me.

Further reading

◦ http://www.cs.uu.nl/~andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/

lhs2TeX/trunk/

6.15 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project audio signals are processed using pure
Haskell code. The highlights are

◦ a simple signal synthesis backend for Haskore (→
4.9.3),

◦ experimental structures for filter networks,

◦ basic audio signal processing including some hard-
coded frequency filters,

◦ advanced framework for signal processing supported
by physical units, that is, the plain data can be
stored in a very simple number format, even fixed
point numbers, but the sampling parameters rate
and amplitude can be complex types, like numbers
with physical units,

◦ framework for inference of sample rate and ampli-
tude, that is, sampling rate and amplitude can be
omitted in most parts of a signal processing expres-
sion, they are inferred automatically, just as types
are inferred in Haskell’s type system. Although the
inference of signal parameters needs some prepro-
cessing, the framework preserves the functional style
of programming. This approach is based on an ex-
plicitly maintained dictionary of signal parameters,
which must be computed completely before any sig-
nal processing takes place. This forces all signal pa-
rameters to share the same type and prohibits in-
finitely many signal processors to be involved.

The library comes with basic Cabal support and re-
quires the Numeric Prelude framework (→ 4.6.5) of re-
vised numeric type classes.

Future plans

◦ We try hard to get rid of the explicit dictionary in
the sample parameter inference framework. We have
some success on solving this problem, but sharing of
signal data between signal processes is still the major
problem.

50

http://haskell.org/docon/
http://www.ricam.oeaw.ac.at/srs/groeb/program.php
http://www.ricam.oeaw.ac.at/srs/groeb/program.php
http://haskell.org/dumatel/
http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/

◦ Design a common API to the Haskell synthesizer
code, CSound support included in Haskore (→ 4.9.3),
and the SuperCollider interface.

◦ Connect with the HaskellDSP library http://
haskelldsp.sourceforge.net/.

◦ Hope on faster code generated by Haskell compilers.
:-)

Further reading

◦ http://darcs.haskell.org/synthesizer/
◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

6.16 hmp3

Report by: Don Stewart
Status: stable, maintained

hmp3 is a curses-based mp3 player frontend to mpg321
and mpg123. It is written in Haskell. It is designed to
be simple, fast and robust. It’s very stable.

hmp3 will now take advantage, transparently, of mul-
tiple cores, to run its separate threads, if compiled with
the GHC 6.6 SMP runtime system.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hmp3.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hmp3/

6.17 Testing Handel-C Semantics Using
QuickCheck

Report by: Andrew Butterfield
Participants: Andrew Butterfield, Brian Corcoran
Status: ongoing

The Handel-C Semantics Tool is a Haskell application
that allows experimentation with formal semantic mod-
els of the hardware compiler language Handel-C, mar-
keted by Celoxica Ltd. It has been used to evaluate
to differing degrees three models: operational, denota-
tional and hardware-oriented. It uses QuickCheck as a
means for testing various key properties such as equiv-
alence of the operational and denotational semantics,
and the validity of certain algebraic laws for the lan-
guage.

It is not yet publicly available – it is unsure what
general interest there would be in this tool

We plan to revisit some of the tests, and then do the
formal proofs!

Further reading

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/
Handel_2dC_20Semantics_20Page

6.18 View selection for image-based
rendering

Report by: Yann Morvan
Status: Part of a submitted Ph.D.

The initiative was part of a computer graphics research
project aimed at proposing a perceptual view selection
method for image-based rendering. Our approach was
limited to applying functional programming to develop
a complex graphics application, including a state of the
art image-based renderer. We used Haskell with GHC
and its OpenGL (→ 4.9.1) binding, adding a few wrap-
pers for graphics hardware programming. Development
proved agreeable, with almost no need for debugging.
We had hoped to leverage lazy evaluation within the
implementation of the view selection algorithm, but
this didn’t materialize. The project has been completed
and there are presently no plans to dig further into the
functional programming aspect of it, but it is a possi-
bility. Source code is available on demand, as well as
the Ph.D. manuscript, though it focuses very little on
the functional aspect.

Further reading

https://www.cs.tcd.ie/~morvany/

51

http://haskelldsp.sourceforge.net/
http://haskelldsp.sourceforge.net/
http://darcs.haskell.org/synthesizer/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://www.cse.unsw.edu.au/~dons/hmp3.html
http://www.cse.unsw.edu.au/~dons/code/hmp3/
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/Handel_2dC_20Semantics_20Page
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/Handel_2dC_20Semantics_20Page
https://www.cs.tcd.ie/~morvany/

7 Users

7.1 Commercial users

7.1.1 Bluespec tools for design of complex chips

Report by: Rishiyur Nikhil
Status: Commercial product

Bluespec, Inc. provides tools for chip design (ASICs
and FPGAs) inspired by Haskell and Term Rewrit-
ing Systems. Bluespec also uses Haskell to implement
many of its tools (over 85K lines of Haskell). Bluespec’s
products include synthesis, simulation and other tools
for two languages:

◦ Bluespec SystemVerilog (BSV)

◦ ESE (ESL Synthesis Extensions to SystemC)

Both languages are based on a common semantic
model: hardware behavior is expressed using Rewrite
Rules, and inter-module communication is expressed
using Rule-based Interface Methods (which allow rules
to be composed from fragments that span module
boundaries). Because rules are atomic, they elimi-
nate a majority of the “timing errors” and “race con-
ditions” that plague current hardware design using ex-
isting RTL languages like Verilog or VHDL. Rules also
enable powerful reasoning about the functional correct-
ness of systems. In other words, the concurrency model
provided by rules is much more powerful and abstract
than the low-level concurrency models provided by Ver-
ilog, VHDL and SystemC.

BSV incorporates Haskell-style polymorphism and
overloading (typeclasses) into SystemVerilog’s type sys-
tem. BSV also treats modules, interfaces, rules, func-
tions, etc. as first-class objects, permitting very power-
ful static elaboration (including recursion).

Bluespec tools synthesize source code into clocked
synchronous hardware descriptions (in Verilog RTL)
that can be simulated or further synthesized to netlists
using industry-standard tools. This automates the gen-
eration of control logic to manage complex concurrent
state update, a major source of errors in current design
methodology where this logic must be manually coded
by the designer.

Bluespec participates in standards committees like
IEEE P1800 (SystemVerilog) and IEEE P1666 (Sys-
temC), where it tries to encourage adoption of the
declarative programming ideas in BSV and ESE. One
success has been the adoption of Bluespec’s propos-
als for “tagged unions (algebraic types) and pattern
matching” in the current IEEE SystemVerilog stan-
dard.

Status Bluespec SystemVerilog and its tools have
been available since 2004, and Bluespec ESE since
2006. The tools are now in use by several major semi-
conductor companies (see Bluespec website or contact
Bluespec for details) and several universities (including
MIT, CMU, UT Austin, Virginia Tech, Indian Institute
of Science, and U.Tokyo).

Availability Bluespec SystemVerilog and ESE tools
are commercial tools sold by Bluespec, Inc. A free
version of ESE, the SystemC-based product, that sup-
ports basic TRS rule simulation (i.e., without clock-
scheduling, and without synthesis), is available with
registration from the company website, complete with
documentation, examples and training material. Blue-
spec, Inc. also makes all its tools easily available to
academic institutions for teaching and research.

Some historical notes and acknowledgements The
technology for synthesizing from Term Rewriting Sys-
tems to competitive RTL was originally developed by
James Hoe and Prof. Arvind at MIT in the late 1990s.
At Sandburst Corp., during 2000–2003, Lennart Au-
gustsson was the principal designer of “Bluespec Clas-
sic”, the first “industrial strength” variant of the lan-
guage, with Rishiyur Nikhil, Joe Stoy, Mieszko Lis and
Jacob Schwartz contributing to language and tool de-
velopment and use. The latter four continued work on
BSV and ESE at Bluespec, Inc. from 2003 with ad-
ditional contributions from Ravi Nanavati, Ed Czeck,
Don Baltus, Jeff Newbern, Elliot Mednick and several
summer interns.

Further reading

◦ Company website:
http://www.bluespec.com

◦ Publications:
http://www.bluespec.com/technology/research.htm
Bringing Declarative Programming into a Commer-
cial Tool for Developing Integrated Circuits, Rishiyur
Nikhil, Commercial Users of Functional Program-
ming (CUFP), September 2006, slides of presenta-
tion at http://www.galois.com/cufp/
MIT courseware, “Complex Digital Systems”:
http://www.csg.lcs.mit.edu/6.375 and
http://ocw.mit.edu/OcwWeb/
Electrical-Engineering-and-Computer-Science/
6-884Spring-2005/CourseHome/index.htm
CMU courseware, “Hardware Systems Engineering”:
http://www.ece.cmu.edu/~ece744

52

http://www.bluespec.com
http://www.bluespec.com/technology/research.htm
http://www.galois.com/cufp/
http://www.csg.lcs.mit.edu/6.375
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://www.ece.cmu.edu/~ece744

7.1.2 Galois Connections, Inc.

Report by: Andy Adams-Moran

Galois (aka Galois Connections, Inc.) is an employee-
owned software development company based in Beaver-
ton, Oregon, U.S.A. Galois began life in late 1999
with the stated purpose of using functional languages
to solve industrial problems. These days, we empha-
size the problem domains over the techniques, and the
theme of the recent Commercial User of Functional
Programming Workshop (see http://www.galois.com/
cufp/) exemplifies our approach: Functional program-
ming as a means not an end.

Galois develops software under contract, and every
project (bar two) that we have ever done has used
Haskell; the two exceptions used SML-NJ and OCaml,
respectively. We’ve delivered tools, written in Haskell,
to clients in industry and the U.S. government that are
being used heavily. Some diverse examples: Cryptol, a
domain-specific language for cryptography (with an in-
terpreter and a compiler, with multiple targets); a GUI
debugger for a specialized microprocessor; a special-
ized, high assurance web server, file store, and wiki for
use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.

So, why do we use Haskell? There are benefits to
moving to Java or C# from C++ or C, such as cleaner
type systems, cleaner semantics, and better memory
management support. But languages like Haskell give
you a lot more besides: they’re much higher level, so
you get more productivity, you can express more com-
plex algorithms, you can program and debug at the
“design” level, and you get a lot more help from the
type system. These arguments have been made time
and again though, and they’re also pretty subjective.

For Galois, it’s also a big bonus that Haskell is close
to its mathematical roots, because our clients care
about “high assurance” software. High assurance soft-
ware development is about giving solid (formal or semi-
formal) evidence that your product does what it should
do. The more functionality provided, the more diffi-
cult this gets. The standard approach has been to cut
out functionality to make high assurance development
possible. But our clients want high assurance tools
and products with very complex functionality. With-
out Haskell (or some similar language), we wouldn’t
even be able to attempt to build such tools and prod-
ucts.

At Galois, we’re happily able to solve real world
problems for real clients without having to give up on
using the tools and languages we worked on when we
were in the Academic world. In fact, we credit most of
our success with the fact that we can apply language

design and semantics techniques to our clients’ prob-
lems. Functional languages are an integral part that
approach, and a big part of the unique value that our
clients have come to known us for.

The good news is that our business is working quite
well. As of Fall 2006, Galois is 21 engineers strong,
with a support staff of 10. We’ve been profitable and
experienced solid growth each of the last three years.

This year, we’ve stepped up our community involve-
ment: cvs.haskell.org has moved to a new, much beefier
machine that will be funded and maintained by Ga-
lois. We’re supporting various community efforts on
that machine, such as the Hackage database. And we’re
going to be heavily involved in efforts to codify a new
standard Haskell.

We’re also trying to drum up support for an industry-
based consortium of companies and individuals that use
and rely upon Haskell. The stated purpose of the as yet
unformed consortium would be to ensure the long-term
viability of Haskell, to provide some back-up to the Si-
mons, and to stimulate the development of industrial-
grade tools for Haskell development. If you’re read-
ing this and are interested in getting involved, e-mail
〈moran at galois.com〉.

Further reading

http://www.galois.com/.

7.1.3 Aetion Technologies LLC

Report by: J. Garrett Morris

Aetion Technologies LLC is a small software developer
located in Columbus, Ohio, USA. We develop commer-
cial applications of a variety of artificial intelligence
techniques, particularly in the application of model-
based inference and simulation techniques to decision
support and situational awareness, both generating and
evaluating new strategies and monitoring and refining
existing ones. We are currently focused on defense,
with growing applications in finance, manufacturing,
and biotechnology.

Our business model requires that we be able to
rapidly prototype new systems as well as develop
generic software foundations that we can extend to new
markets as they open. We have found that Haskell fits
both of these purposes; the majority of our codebase is
written in Haskell and compiled using GHC.

Further reading

http://www.aetion.com/

53

http://www.galois.com/cufp/
http://www.galois.com/cufp/
mailto: moran at galois.com
http://www.galois.com/
http://www.aetion.com/

7.1.4 Linspire

Report by: Clifford Beshers

The OS team at Linspire, Inc. uses Haskell as our pre-
ferred language for system tools. We have used O’Caml
extensively as well, but are steadily migrating this code
to Haskell.

Our largest project to date is our Debian package
builder (aka autobuilder) in Haskell. The autobuilder
is responsible for compiling all packages, which entails
fetching source code from multiple source code con-
trol systems, building and caching clean chroot envi-
ronments with the correct build dependencies, sorting
the target package by build dependency to ensure they
are built in the correct order, and so forth.

We are extending this system to be a package/OS
release management system, where changes to packages
can be grouped into sets and applied to an existing
distribution (set of source and binary packages). The
autobuilder is responsible for ensuring that all packages
are rebuilt correctly for any source level change.

Other tools such as installer CD (ISO) builders,
package dependency checkers are in progress. The goal
is to make a really tight simple set of tools that will
let developers contribute to Freespire, based on Debian
tools whenever possible. Our hardware detector, cur-
rently in OCaml, is on the block to be rewritten as
well.

We are interested in many other uses of Haskell.
The recent discussion about Haskell as a shell interests
greatly, for example, as we have all suffered through
years of bash code. We would also like to make some
Haskell bindings for Qt and KDE, though at the mo-
ment we do not have a good plan to tackle that problem
efficiently.

These tools are currently in use internally. We plan
to make them publicly available as part of our Freespire
2.0 release, scheduled for early 2007.

7.2 Haskell in Education

7.2.1 Functional programming at school

Report by: Walter Gussmann

A lot of computer science courses at universities are
based on functional programming languages combined
with an imperative language. There are many reasons
for this: the programming-style is very clear and there
are a lot of modern concepts – polymorphism, pattern
matching, guards, algebraic data types. There’s only
little syntax to learn, Finally, the programming code is
reduced to a minimum.

Conditions at school

I started teaching functional programming languages
at school about 8 years ago in different courses with
pupils at age of 16–19 years. Normally they already
know an imperative language like Pascal. A good point
to perform a paradigm shift to functional programming
is recursion.

During the last years I found that learning recursive
data structures (queue, stack, list, tree) with Haskell
were ideal for classes. They got a much deeper impres-
sion about the principles than in imperative or object
oriented languages like Pascal or Java.

Especially in high level courses the use of Haskell
paid off. The last course about cryptology and theo-
retical computer science was dominated by Haskell. We
implemented a simple RSA-algorithm (with very weak
keys) for encoding and decoding of textfiles and some
finite deterministic automata. At the end we were able
to implement a parser and interpreter for a Pascal-like
very simple programming language (not yet published).

Haskell in tests

Haskell was a component of every test, including the
German Abitur. These problems seemed to be eas-
ier to solve for the pupils, and in tasks with optional
languages about 80% chose Haskell. When asked to ex-
plain their choice, most of them said that with Haskell
they could concentrate on the root of the matter and
simplify the problem through a suitable generalization.

Teamwork with Haskell

Last summer I started with a new advanced class.
All pupils already visited a one-year-beginners course
but they come from 5 different schools and so they
have learned five different imperative languages: Pas-
cal, Modula, Python, Java and Delphi. They already
knew something about computer science but they were
fixed on their first language.

So it was easy for me to start at a very easy level
of functional programming. This time I’ve been con-
centrating on recursion and developing some projects
based on teamwork. First we discussed the electoral
system in Germany (Hare-Niemeyer and d’Hondt).
Then we implemented a simple version of this system
by composing several functions. After designing the
structure of each function (with its signature) we im-
plemented them in groups. And we are proud of the
result: the main function resolved the problem imme-
diately.

After this positive experience we now do some more
complex works, like building the book-index, described
in “Haskell: The Craft of Functional Programming” by
S. Thompson. Another project draws some lines in a
text-window. The line-algorithm is based on a pure
recursion.

54

This kind of teamwork really motivated the pupils. I
was impressed about the very short time it took a group
of beginners to do such complex programs. We have
do some teamwork with Java - but all the projects was
much more difficult for the pupils than with Haskell.

What’s new?

During the next weeks we will implement some funda-
mental cryptological algorithm. It starts with mono-
and polyalphabetical encryption with a very easy im-
plementation. Then we will implement the RSA-
algorithm and some hash-functions.

All implementation should be tested with real
textfiles although the key used are very, very weak.

What is coming in the future?

So there’s no question about that: Functional lan-
guages are suitable for school. I’m sure that over the
years there will be more and more teaching materials,
and other teachers will also be convinced of Haskell.
For some years I try to persuade other teachers to intro-
duce functional languages through regular workshops,
courses and teaching materials.

Today I’m convinced that pupils can understand ba-
sic concepts of computer science more easily if they
know functional languages like Haskell. The clarity of
the language and the modern concept lead to an in-
credible increase of learned material. My pupils choose
Haskell as their favorite of Pascal, C, Java, Haskell and
PHP.

Meanwhile the new framework for computer sci-
ence (in Berlin) includes the obligatory introduction
of a declarative language (functional or logical) for ad-
vanced courses.

Further reading

http://www.pns-berlin.de/haskell/

7.3 Research Groups

7.3.1 Foundations and Methods Group at Trinity
College Dublin

Report by: Andrew Butterfield
Participants: Andrew Butterfield, Glenn Strong, Hugh

Gibbons, Yann Morvan

The Foundations and Methods Group focusses on for-
mal methods, category theory and functional program-
ming as the obvious implementation method. A sub-
group focusses on the use, semantics and development
of functional languages covering such areas as:

◦ Formal aspects of Functional I/O (→ 3.4.1)

◦ Using Testing to Debug Formal Models (→ 6.17)

◦ Supporting OO-Design technique for functional pro-
grammers (→ 3.3.7)

◦ Using functional programs as invariants in impera-
tive programming

Members of other research groups at TCD have also
used Haskell, such as the work done on Image render-
ing using GHC/OpenGL, in the Interaction, Simulation
and Graphics Lab (→ 6.18).

Further reading

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/
FunctionalProgramming

7.3.2 Foundations of Programming Group at the
University of Nottingham

Report by: Liyang Hu et al.

The Nottingham FoP group is perhaps unique in the
UK in bringing functional programming, type theory
and category theory together to tackle fundamental is-
sues in program construction. With a total of 28 peo-
ple, we have a spectrum of interests:

Automated Reasoning Matthew Walton is explor-
ing ways of exploiting automated reasoning techniques
for dependently-typed programming languages such as
Epigram, with a view to extend its verification capabil-
ities. Current work is focused on implementating de-
cision procedures as Epigram functions, and allowing
the programmer to easily invoke said procedures.

Containers Nottingham is the home of the EPSRC
grant on containers which is a new model of datatypes.
We are currently developing the theory and applica-
tions of containers.

Datatype-Generic Design Patterns Ondrej Rypacek
together with Roland Backhouse and Henrik Nilsson
are working on formal reasoning about object-oriented
designs with emphasis on algebraic and datatype-
generic methods. Our goal is a sound programming
model expressive enough to capture object-oriented de-
sign patterns.

Dependently-Typed Haskell Supported by a Micro-
soft Research studentship, Robert Reitmeier is work-
ing on integrating dependent types in Haskell under
the supervision of Thorsten Altenkirch, with advice

55

http://www.pns-berlin.de/haskell/
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~oxr/
http://cs.nott.ac.uk/~rcb/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~rxr/
http://cs.nott.ac.uk/~txa/

from Simon Peyton Jones. We are designing an alter-
native dependently-typed intermediate language, influ-
enced by our experiences with Epigram.

Epigram Epigram (→ 3.3.1) is a dependently-typed
functional programming language in its second reincar-
nation, implemented in Haskell. Conor McBride heads
development with Thorsten Altenkirch, James Chap-
man, Peter Morris, Wouter Swierstra and Matthew
Walton working on both practical and theoretical as-
pects of the language.

Quantum Programming Thorsten Altenkirch,
Jonathan Grattage and Alex Green are working on
a Haskell-like quantum meta-language (QML), with
quantum control as well as data structures. Guided by
its categorical semantics, QML presents a constructive
semantics of irreversible quantum computations. A
Haskell implementation compiles QML into quantum
circuits, giving it an operational semantics. A denota-
tional semantics is given in terms of superoperators.
We are investigating quantum IO for Haskell.

Reasoning Catherine Hope, Liyang HU and Graham
Hutton are working on formal reasoning for program
correctness and efficiency, where abstract machines
play a central rôle.

Exceptions and interrupts are traditionally viewed as
being difficult from a semantic perspective. We relate
a minimal high-level and low-level semantics contain-
ing exceptions via a provably correct compiler, giving
greater confidence in our understanding.

Reasoning about intensional properties is compli-
cated by non-explicit evaluation order and higher-order
functions, but these are eliminated at the abstract ma-
chine level. From an evaluator, we can calculate a ma-
chine, instrument this with cost information, and back-
wards derive a high-level function giving space and time
usage.

Atomicity deserves particular attention given recent
developments in software transactional memory. We
are devising a low-level semantics featuring commits
and aborts, along with a framework to relate this to a
high-level stop-the-world view.

Short Cut Fusion Short Cut Fusion is used to im-
prove the efficiency of modular programs. Neil Ghani
with Tarmo Uustalu, Patricia Johann and Varmo
Vene have been developing its theoretical foundations,
with much success in both understanding and appli-
cation of the technique to previously out-of-reach data
types. Excitingly, Short Cut Fusion is derived from the
principles of initial algebra semantics which underpin
Haskell’s treatment of datatypes.

Stream Processing Infinite streams support a natu-
ral topology. One can represent continuous (with re-

spect to this topology) stream processing functions by
datatypes in which induction is nested within coinduc-
tion. Peter Hancock, Neil Ghani and Dirk Pattinson
have extended this from streams to final coalgebras for
a wide class of container functors.

Yampa Yampa is an implementation of functional
reactive programming, maintained by Henrik Nilsson.
Some interesting discussions may be found on the
yampa-users mailing list.

Teaching Haskell plays an important role in the un-
dergraduate programme in Nottingham, via modules
in Functional Programming, Advanced Functional Pro-
gramming, Mathematics for Computer Science, Prin-
ciples of Programming Languages, Compilers, and
Computer-Aided Formal Verification, among others.

Programming in Haskell Graham Hutton has re-
cently completed an introductory Haskell textbook (→
1.5.2), to be published by Cambridge University Press
before the end of 2006.

Future Events In Feburary, Nottingham will host the
second Fun in the Afternoon: a termly seminar on func-
tional programming and related topics. The aim is to
have a few friendly and informal talks, as an antidote
to the mid-term blues.

The Midlands Graduate School in the Foundations
of Computer Science (Easter 2007) will next take place
in Nottingham.

FP Lunch Every Friday, Nottingham’s functional
programmers gather for lunch with helpings of infor-
mal, impromptu-style whiteboard talks. Lecturers,
PhD students and visitors are invited to discuss recent
developments, problems or projects of relevance. We
blog summaries of recent talks.

In the afternoon the FoP group hold an hour-long
seminar. We’re always keen on speakers in any related
areas: do get in touch with Neil Ghani 〈nxg@cs.nott.ac.
uk〉 if you would like to visit our group. See you there!

Further reading

◦ Foundations of Programming Group:
http://cs.nott.ac.uk/Research/fop/

◦ Functional Programming at Nottingham:
http://sneezy.cs.nott.ac.uk/fp/

◦ Epigram:
http://e-pig.org/

◦ Quantum Programming:
http://sneezy.cs.nott.ac.uk/qml/

◦ Yampa:
http://haskell.org/yampa/

◦ Fun in the Afternoon:
http://sneezy.cs.nott.ac.uk/fun/

56

http://cs.nott.ac.uk/~ctm/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~mxw/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jjg/
http://cs.nott.ac.uk/~asg/
http://cs.nott.ac.uk/~cvh/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~pgh/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~nhn/
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://cs.nott.ac.uk/~nxg/G51FUN05/fun.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g51mcs/
http://cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/~nhn/G52CMP/
http://e-pig.org/darcs/g5bcfr/
http://cs.nott.ac.uk/~gmh/
http://sneezy.cs.nott.ac.uk/fun/
http://cs.nott.ac.uk/MGS/
http://cs.nott.ac.uk/MGS/
http://sneezy.cs.nott.ac.uk/fplunch/
http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~nxg/
mailto: nxg at cs.nott.ac.uk
mailto: nxg at cs.nott.ac.uk
http://cs.nott.ac.uk/Research/fop/
http://sneezy.cs.nott.ac.uk/fp/
http://e-pig.org/
http://sneezy.cs.nott.ac.uk/qml/
http://haskell.org/yampa/
http://sneezy.cs.nott.ac.uk/fun/

◦ Midlands Graduate School 2007:
http://cs.nott.ac.uk/MGS/

◦ FP Lunch:
http://sneezy.cs.nott.ac.uk/fplunch/

7.3.3 Artificial Intelligence and Software
Technology at JWG-University Frankfurt

Report by: David Sabel
Members: David Sabel, Manfred Schmidt-Schauß

DIAMOND

A current research topic within our DIAMOND project
is understanding side effects and Input/Output in
lazy functional programming languages using non-
deterministic constructs.

We introduced the FUNDIO calculus which proposes
a non-standard way to combine lazy functional lan-
guages with I/O. A contextual equivalence depending
on the Input/Output behavior of reduction sequences
has been defined. A considerable set of program trans-
formations has been shown to be correct. Moreover,
we investigated several optimizations of evaluation, in-
cluding strictness optimizations and an abstract ma-
chine, and have shown their correctness w.r.t. contex-
tual equivalence. Thus this calculus has a potential
to integrate non-strict functional programming with a
non-deterministic approach to Input/Output and also
to provide a useful semantics for this combination.

We applied these results to Haskell by using the
FUNDIO calculus as semantics for the GHC core lan-
guage. After turning off few transformations which are
not FUNDIO-correct and those that have not yet been
investigated, we have achieved a FUNDIO-compatible
modification of GHC which is called HasFuse.

HasFuse correctly compiles Haskell programs which
make use of unsafePerformIO in the common (safe)
sense, since problematic optimizations are turned
off or performed more restrictively. But HasFuse
also compiles Haskell programs which make use of
unsafePerformIO in arbitrary contexts. Since the
call-by-need semantics of FUNDIO does not prescribe
any sequence of the I/O operations, the behavior
of unsafePerformIO is no longer ‘unsafe’. I.e. the
user does not have to undertake the proof obliga-
tion that the timing of an I/O operation wrapped
by unsafePerfomIO does not matter in relation to
all the other I/O operations of the program. So
unsafePerformIO may be combined with monadic I/O
in Haskell, and the result is reliable in the sense that
I/O operations will not astonishingly be duplicated.

Recently Hermine Reichau compared implementa-
tions of a natural language interpreter based on the
semantics of Montague in Haskell using GHC and Has-
Fuse together with their underlying call-by-name and
call-by-need semantics in the presence of erratic non-

determinism. A result is that Montague’s natural lan-
guage semantics is more consistent with call-by-value
and call-by-need semantics than with call-by-name se-
mantics.

Equivalence of Call-by-Name and Call-by-Need

Haskell has a call-by-name semantics, but all efficient
implementations of Haskell use call-by-need evaluation
avoiding multiple evaluation of the same expression.
Recently we showed equivalence of call-by-name and
call-by-need for a tiny deterministic letrec-calculus and
also the correctness of an unrestricted copy-reduction
in both calculi. We expect our method scales up to
extended letrec-calculi, for example extended by con-
structors and case-expressions.

Non-Deterministic Lambda-Calculi

Mutual Similarity In order to achieve more infer-
ence rules for equality in call-by-need lambda-calculi
Matthias Mann has established a soundness (w.r.t. con-
textual equivalence) proof for mutual similarity in a
non-deterministic call-by-need lambda calculus. More-
over, we have shown that Mann’s approach scales up
well to more expressive call-by-need non-deterministic
lambda calculi, i.e. similarity can be used as a co-
induction-based proof tool for establishing contextual
preorder in a large class of untyped higher-order call-
by-need calculi, in particular calculi with constructors,
case, let, and non-deterministic choice. Current re-
search is aimed towards extensions of these calculi to-
wards Haskell.

Locally Bottom-Avoiding Choice We investigated an
extended call-by-need lambda-calculus with a non-
deterministic amb-operator together with a fair small-
step reduction semantics. The appropriate program
equivalence is contextual equivalence based on may-
and must-termination. We proved that several program
transformations preserve contextual equivalence, which
permits useful program transformation, in particular
partial evaluation using deterministic reductions. With
the developed proof tools it appears promising to prove
correctness of further program transformations. Future
research should investigate also more involved induc-
tive proof rules like Bird’s take-lemma. A further chal-
lenge is to obtain a semantics preserving compiler for
Haskell extended with amb.

Strictness Analysis using Abstract Reduction

The algorithm for strictness analysis using abstract re-
duction has been implemented at least twice: Once by
Nöcker in C for Concurrent Clean and on the other
hand by Schütz in Haskell in 1994. In 2005 we proved
correctness of the algorithm by using a call-by-need
lambda-calculus as a semantic basis.

57

http://cs.nott.ac.uk/MGS/
http://sneezy.cs.nott.ac.uk/fplunch/

Most implementations of strictness analysis use set
constants like > (all expressions) or ⊥ (expressions that
have no weak head normal form). A current result is
that the subset relationship problem of coinductively
defined set constants is in DEXPTIME.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology
http://www.ki.informatik.uni-frankfurt.de

◦ DIAMOND – Direct-Call I/O Approach modelled
using Non-Determinism
http://www.ki.informatik.uni-frankfurt.de/research/
diamond

◦ HasFuse – Haskell with FUNDIO-based side effects
http://www.ki.informatik.uni-frankfurt.de/research/
diamond/hasfuse

7.3.4 Functional Programming at Brooklyn College,
City University of New York

Report by: Murray Gross

A grant has provided us with 6 new quad-processor
machines, which we are currently integrating into our
existing Linux/Mosix cluster. When the integration is
complete, we will be comparing the performance and
behavior of the Brooklyn College version of GpH (→
3.2.1) and the SMP facility of the latest release of
GHC (→ 2.1).

In the area of applications, we are working two AI
projects, three-dimensional tic-tac-toe (noughts and
crosses), and an extended version of the Sudoku puzzle.
We have also begun work on a parallel implentation of
Skibinski’s quantum simulator, which we intend to use
to study Grover’s fast search algorithm.

Contact

Murray Gross 〈magross@its.brooklyn.cuny.edu〉

7.3.5 Functional Programming at
Macquarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group
we are working on a number of projects with a Haskell
focus. Since the last report, work has progressed on
the following projects:

◦ We are close to releasing an alpha version of a port of
the yhc (→ 2.4) runtime to Palm OS handhelds (→
3.1.1).

◦ Kate Stefanov’s thesis on off-the-shelf compression
technology for bytecode-based programs is under ex-
amination.

◦ Matt Roberts continues to develop a simplified se-
mantics for Barry Jay’s pattern calculus that can be
the basis of an efficient implementation.

Further reading

Contact us via email to 〈plrg@ics.mq.edu.au〉 or find de-
tails on many of our projects at http://www.comp.mq.
edu.au/plrg/.

7.3.6 Functional Programming at the University of
Kent

Report by: Olaf Chitil

We are a group of about a dozen staff and students with
shared interests in functional programming. While our
work is not limited to Haskell, it provides a major focus
and common language for teaching and research.

Our members pursue a variety of Haskell-related
projects, many of which are reported in other sections
of this report.

The refactoring team Huiqing Li, Simon Thompson,
Chris Brown and Claus Reinke have released further
snapshots of HaRe, the Haskell Refactorer (→ 5.3.2)
and are now refactoring Erlang programs. Huiqing
Li recently published her PhD thesis on refactoring
Haskell programs. The team’s work on refactoring Er-
lang is strengthened by two students from Budapest,
Aniko Vig and Tamas Nagy, who are visiting for four
months. Nik Sultana has joined the group as an
MSc student working with Simon on formal proofs of
Haskell programs. Thomas Davie, Yong Luo and Olaf
Chitil are working together with the York functional
programming group on developing the Haskell tracer
Hat (→ 5.4.2) further. They are looking in particular
at extensions and improvements of algorithmic debug-
ging. Axel Simon maintains the gtk2hs binding to the
Gtk+ GUI library (→ 4.8.2) in cooperation with Dun-
can Coutts, Oxford University. Keith Hanna is continu-
ing work on Vital, a document-centered programming
environment for Haskell, and on Pivotal (→ 3.1.2), a
GHC-based implementation of a similar environment.

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Refactoring Haskell programs. Huiqing Li. PhD the-
sis, Computing Laboratory, University of Kent, Can-
terbury, Kent, UK, September 2006.

58

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
http://www.ki.informatik.uni-frankfurt.de/research/diamond/hasfuse
mailto: magross at its.brooklyn.cuny.edu
mailto: plrg at ics.mq.edu.au
http://www.comp.mq.edu.au/plrg/
http://www.comp.mq.edu.au/plrg/
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat:
http://www.haskell.org/hat/

◦ Gtk2HS:
http://www.haskell.org/gtk2hs

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

◦ Pivotal:
http://www.cs.kent.ac.uk/projects/pivotal/

7.3.7 Parallel and Distributed Functional Languages
Research Group at Heriot-Watt University

Report by: Phil Trinder
Members: Abyd Al Zain, Lu Fan, Zara Field, Gudmund

Grov, Robert Pointon, Greg Michaelson, Phil
Trinder, Jan Henry Nyström, Chunxu Liu,

Graeme McHale, Xiao Yan Deng

The Parallel and Distributed Functional Languages
(PDF) research group is part of the Dependable Sys-
tems Group in Computer Science at the School of
Mathematics and Computer Science at Heriot-Watt
University.

The group investigates the design, implementation
and evaluation of high-level programming languages
for high-performance, distributed and mobile computa-
tion. The group aims to produce notations with power-
ful yet high-level coordination abstractions, supported
by effective implementations that enable the construc-
tion of large high-performance, distributed and mobile
systems. The notations must have simple semantics
and formalisms at an appropriate level of abstraction
to facilitate reasoning about the coordination in real
distributed/mobile systems i.e. to transform, demon-
strate equivalence, or analyze the coordination proper-
ties. In summary, the challenge is to bridge the gap be-
tween distributed/mobile theories, like the pi and am-
bient calculi, and practice, like CORBA and the Globus
Toolkits.

Languages

The group has designed, implemented, evaluated and
used several high performance/distributed functional
languages, and continues to do so. High perfor-
mance languages include Glasgow parallel Haskell (→
3.2.1) and Parallel ML with skeletons (PMLS).
Distributed/mobile languages include Glasgow dis-
tributed Haskell (→ 3.2.2), Erlang (http://www.erlang.
org/), Hume (http://www-fp.dcs.st-and.ac.uk/hume/),
JoCaml, Camelot, Java Voyager and Java Go.

Projects

Current projects include

◦ High Level Techniques for Distributed Telecommu-
nications Software 2002–06 is an EPSRC project

(GR/R88137) to evaluate high-level distributed pro-
gramming techniques in a realistic telecommunica-
tions context.

◦ EmBounded Project EU IST-510255 2005–8 that
performs the automatic prediction of resource
bounds for embedded systems using Hume.

◦ BAe/DTC SEAS Project SEN 002 2005–7 that en-
gineers embedded software for autonomous vehicle
control using optical sensing, again using Hume.

◦ SCIEnce EU FP6 I3 project (026133) 2006–11 to
use GpH to provide access to Grid services from
Symbolic Computation systems, including GAP and
Maple.

Collaborations

Primary industrial collaborators include groups in Mi-
crosoft Research Labs (Cambridge), Motorola UK Re-
search labs (Basingstoke), Ericsson, Agilent Technolo-
gies (South Queensferry).

Primary academic collaborators include groups in
Complutense Madrid, JAIST, LMU Munich, Phillips
Universität Marburg, and St Andrews.

Further reading

http://www.macs.hw.ac.uk/~ceeatia/PDF/

7.3.8 Programming Languages & Systems at
UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New
South Wales, Sydney, has produced a couple of Haskell
tools and libraries, including the new high-performance
packed string library Data.ByteString (→ 4.6.3),
the hs-plugins (→ 4.4.1) library for dynamically
loaded type-safe plugins, the interface generator
C→Haskell (→ 5.1.2), and the dynamic editor Yi (→
6.9).

In cooperation with GHC HQ at Microsoft Research,
Cambridge, we introduced the idea of type classes
with associated types, and with GHC HQ and Martin
Sulzmann, from the National University of Singapore,
we proposed GHC’s new intermediate language Sys-
tem FC . System FC improves GHC’s Core intermedi-
ate language to support the unified implementation of
guarded abstract data types, functional dependencies,
and associated types, while simultaneously broadening
the range of programs that GHC can translate. FC is
fully implemented in GHC’s current development ver-
sion 6.7, along with a modest extension to our pro-
posal on associated data types; see http://haskell.org/
haskellwiki/GHC/Indexed_types for details.

59

http://www.haskell.org/hat/
http://www.haskell.org/gtk2hs
http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/
http://www.erlang.org/
http://www.erlang.org/
http://www-fp.dcs.st-and.ac.uk/hume/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.macs.hw.ac.uk/~dsg/telecoms/
http://www.embounded.org/
http://www.macs.hw.ac.uk/~greg/SEAS/
http://www.macs.hw.ac.uk/~ceeatia/PDF/
http://haskell.org/haskellwiki/GHC/Indexed_types
http://haskell.org/haskellwiki/GHC/Indexed_types

Together with GHC HQ, we are busy with finally
bringing nested data parallelism to GHC, with a focus
to utilise multi-core CPUs. We summarised our first
results in a recent paper available from http://www.
cse.unsw.edu.au/~chak/papers/CLPKM06.html.

Further details on PLS and the above mentioned ac-
tivities can be found at http://www.cse.unsw.edu.au/
~pls/.

7.4 User groups

7.4.1 Fedora Haskell

Report by: Jens Petersen

Fedora Haskell provides packages of certain Haskell
projects for Fedora Core in yum repositories. The
main news is that hugs98 (→ 2.2) and gtk2hs (→ 4.8.2)
have been added to in Fedora Extras (thanks to Gérard
Milmeister). Also ghc (→ 2.1) was updated to 6.4.2 and
darcs (→ 6.4) to 1.0.7. I hope more Haskell packages
submitted and accepted in Extras in the coming pe-
riod. There is a mailing list 〈fedora-haskell@haskell.org〉
for announcements and questions. Contributions are
needed, particular in the form of submissions and re-
viewing of packages for Fedora Extras.

Further reading

http://haskell.org/fedora/

7.4.2 OpenBSD Haskell

Report by: Don Stewart

Haskell support on OpenBSD continues. A page docu-
menting the current status of Haskell on OpenBSD is
at http://www.cse.unsw.edu.au/~dons/openbsd.

GHC (→ 2.1) is available for i386 and amd64.
nhc98 (→ 2.3) is available for i386 and sparc. Hugs (→
2.2) is available for the alpha, amd64, hppa, i386,
powerpc, sparc and sparc64. A number of other
Haskell tools and libraries are also available, includ-
ing alex (→ 5.2.2), happy (→ 5.2.3), haddock (→ 5.5.6)
and darcs (→ 6.4).

Support for the GHC head branch continues, recent
bugs relating to dynamic linking and ghci have been
fixed.

7.4.3 Haskell in Gentoo Linux

Report by: Andres Löh

Lennart Kolmodin is a new member of the Gentoo
Haskell team, which is now five persons strong.

Recent work has focused on the transition to ghc-6.6.
There are some tricky problems involved supporting
both ghc-6.4.* and ghc-6.6 with the modular libraries in
Gentoo’s package manager, but we hope to have things
running before the end of the year.

You can access and test the latest versions of the
ebuilds we are working on via our darcs (→ 6.4) over-
lay, which is now also available via the Gentoo overlay
manager “layman”. Please report problems with the
overlay on IRC (#gentoo-haskell on freenode), where
we coordinate development.

New ebuilds, comments and suggestions are always
welcome. If you file bug reports at bugs.gentoo.org,
please make sure that you mention “Haskell” in the
subject of the report.

7.5 Individuals

7.5.1 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini-tutorials and
assorted small projects (http://pobox.com/~oleg/ftp/
Haskell/) – has received four additions:

Reversing Haskell typechecker: converting from
undefined to defined

We demonstrate how to make the Haskell typechecker
work in reverse: to infer a term of a given type. For
example:

rtest4 f g =
rr (undefined::(b -> c) -> (a -> b) -> a -> c)

HNil f g
*HC> rtest4 (:[]) Just ’x’
[Just ’x’]
*HC> rtest4 Just Right True
Just (Right True)

We ask the Haskell typechecker to derive us a function
of the specified type. We get the real function, which
we can then apply to various arguments. The return
result does behave like a ‘composition’ – which is what
the type specifies. Informally, we converted from unde-
fined to defined. We can also print the inferred term –
which can be useful, for example, for converting from

60

http://www.cse.unsw.edu.au/~chak/papers/CLPKM06.html
http://www.cse.unsw.edu.au/~chak/papers/CLPKM06.html
http://www.cse.unsw.edu.au/~pls/
http://www.cse.unsw.edu.au/~pls/
mailto: fedora-haskell at haskell.org
http://haskell.org/fedora/
http://www.cse.unsw.edu.au/~dons/openbsd
bugs.gentoo.org
http://pobox.com/~oleg/ftp/Haskell/
http://pobox.com/~oleg/ftp/Haskell/

a point-less to the more comprehensible point-full rep-
resentation.

Our system solves type habitation for a class of func-
tions with polymorphic types. From another point of
view, the system is a prover in the implication frag-
ment of intuitionistic logic. Essentially we turn a type
into a logical program – a set of Horn clauses – which
we then solve by SLD resolution. It is gratifying to see
that Haskell typeclasses are up to that task.

Compared to a similar system Djinn, our system is
not a separate stand-alone application. Rather, our
de-typechecker is the regular Haskell function, whose
result (a functional value of the desired type) can be
immediately used in the rest of the program. That is,
the term ‘generation’ is done by the Haskell typechecker
itself rather in a separate (meta-) application.

Further Reading
◦ Inverse typechecking and theorem proving in intu-

itionistic and classical logics:
http://pobox.com/~oleg/ftp/Computation/
Computation.html#typechecker-CH

◦ http://pobox.com/~oleg/ftp/Haskell/types.
html#de-typechecker

How to zip folds: A library of fold transformers
(streams)

We present a library of potentially infinite “lists”
realized as folds (aka streams, aka success-failure-
continuation–based generators). Whereas the standard
Haskell Prelude functions such as map and take trans-
form lists, we transform folds. We implement the range
of progressively more complex transformers – from map,
filter, takeWhile to take, to drop and dropWhile,
and finally, zip and zipWith. The latter shows merg-
ing of two folds ‘elementwise’.

Emphatically we never convert a stream to a list and
so we never use recursion or recursive types. All iter-
ative processing is driven by the fold itself. We only
need higher-ranked types, because lists cannot be fully
implemented in a simply-typed lambda-calculus.

The implementation of zip also solves the problem of
“parallel loops”. One can think of a fold as an accumu-
lating loop and realize a nested loop as a nested fold.
Representing a parallel loop as a fold is a challenge,
answered at the end of the mini-tutorial.

http://pobox.com/~oleg/ftp/Algorithms.html#zip-folds

Representing knowledge about knowledge: “Mr.S
and Mr.P” puzzle

We describe a concise Haskell solution to the “Mr.S
and Mr.P” puzzle posed by John McCarthy (Formal-
ization of two Puzzles Involving Knowledge. 1987.
http://www-formal.stanford.edu/jmc/puzzles.html). We
rely on the straightforward encoding of multiple-world

semantics of modalities. Our Haskell code demon-
strates a generic method of encoding facts, and the
knowledge about facts, and the knowledge of the knowl-
edge, etc. Incidentally, compared to the notation in
McCarthy’s paper, the Haskell notation is notably con-
cise.

http://pobox.com/~oleg/ftp/Algorithms.html#mr-s-p

Lightweight dependent typing: eliminating array
bound check

The previously mentioned mini-tutorial on Lightweight
dependent typing has a new example: Knuth-Morris-
Pratt (packed) string matching. The code faithfully
implements the original (imperative) algorithm, using
PackedStrings and STArrays. The algorithm also uses
indices in a creative way, including a deliberately out-
of-bounds index −1. Yet our implementation statically
guarantees the safety of all array/string access oper-
ations and removes the need for index bound checks.
Thus our code is both fast and safe.

http://pobox.com/~oleg/ftp/Computation/
lightweight-dependent-typing.html

7.5.2 Implementation of “How to write a financial
contract”

Report by: Alain Crémieux

The aim is to produce a reference implementation
of “Composing contracts: an adventure in finan-
cial engineering” (http://research.microsoft.com/Users/
simonpj/#contracts-icfp), which could be used as a ba-
sis for implementing other DSELs. At present the
implementation is divided in 5 layers, from “basic”
to “optimizing”. Now that GADTs are supported in
GHC (→ 2.1), it is possible to express a tagless in-
terpreter for the contract language in a very concise
way, even if it is still necessary to guide the type-
checker with some annotations. So the next step is
to use Omega, where these annotations are not neces-
sary thanks to the possibility of defining named kinds.
And to generalize the contract language to some typed
lambda-calculus, including staging. With this I can ob-
tain an optimised interpreter, valuating correctly finan-
cial options (the result is easy to check w.r.t. financial
books).

Code available on demand.

7.5.3 Inductive Programming

Report by: Lloyd Allison

Inductive Programming (IP): The learning of general
hypotheses from given data.

61

http://pobox.com/~oleg/ftp/Computation/Computation.html#typechecker-CH
http://pobox.com/~oleg/ftp/Computation/Computation.html#typechecker-CH
http://pobox.com/~oleg/ftp/Haskell/types.html#de-typechecker
http://pobox.com/~oleg/ftp/Haskell/types.html#de-typechecker
http://pobox.com/~oleg/ftp/Algorithms.html#zip-folds
http://www-formal.stanford.edu/jmc/puzzles.html
http://pobox.com/~oleg/ftp/Algorithms.html#mr-s-p
http://pobox.com/~oleg/ftp/Computation/lightweight-dependent-typing.html
http://pobox.com/~oleg/ftp/Computation/lightweight-dependent-typing.html
http://research.microsoft.com/Users/simonpj/#contracts-icfp
http://research.microsoft.com/Users/simonpj/#contracts-icfp

I am continuing to use Haskell to examine
what are the products (e.g. Mixture-models (un-
supervised classification, clustering), segmentation,
classification- (decision-) trees (supervised classifica-
tion), Bayesian/causal networks/models, time-series
models, etc.) of machine learning from a programming
point of view, that is how do they behave, what can be
done to each one, and how can two or more be com-
bined? The primary aim is the getting of understand-
ing, and that could be embodied in a useful Haskell li-
brary or prelude for artificial-intelligence / data-mining
/ inductive-inference / machine-learning / statistical-
inference.

A student project by J. Bardsley (see below) used
Template-Haskell to automate the definition of data-
handling routines, types, and some type-class instance
declarations, as required to analyse a given multi-
variate data-set.

A case-study defines a learner for the structure and
the parameters of Bayesian networks over mixed vari-
ables (data attributes): discrete, continuous, and even
structured variables; the learner was applied to a
Search and Rescue data-set on missing people. This
data-set has many missing values which gives great
scope for bad puns.

IP has also been used to analyse ecological tran-
sects[1], and mutation data on a drug-resistant virus,
two applications where IP’s flexibility is very useful.

Other case-studies include mixtures of time-series,
Bayesian networks, and time-series models and “the”
sequence-alignment dynamic-programming algorithm.
Currently there are types and classes for models (vari-
ous probability distributions), function-models (regres-
sions), time-series (e.g. Markov models), mixture mod-
els, and classification trees (plus regression trees and
model trees). A spring-clean of the code is long over-
due.
Prototype code is available (GPL) at the URL below.

Future plans

Planned are more applications to real data-sets, and
comparisons against other learners. A big rewrite will
happen, one day.

Further reading

◦ M. B. Dale, L. Allison, P. E. R. Dale. Segmentation
and Clustering as Complementary Sources of Infor-
mation. Acta Oecologica, to appear.

◦ J. Bardsley. Generalising Data Description for Ma-
chine Learning, 2006.
http://www.csse.monash.edu.au/hons/projects/2006/
James.Bardsley

◦ L. Allison. A Programming Paradigm for Machine
Learning with a Case Study of Bayesian Networks.
ACSC, pages 103–111, January 2006.
http://crpit.com/confpapers/CRPITV48Allison.pdf

◦ Other reading is listed at the URL:
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

7.5.4 Bioinformatics tools

Report by: Ketil Malde

As part of my PhD work, I developed a handful of
(GPL-licensed) tools for solving problems that arise in
bioinformatics. I currently have a sequence clustering
tool, xsact (currently in revision 1.5), which I believe
is one of the more feature-rich tools of its kind. There
is also a sequence assembly tool (xtract). In addition,
there are various smaller tools that are or were useful
to me, and that may or may not be, useful to others.
Lately, I’ve also developed a tool for repeat detection
in EST data, called RBR. A beta version is available,
but it is fairly thoroughly tested, and I hope to put
together a real release soon.

Everything is – of course – available as darcs re-
pos (→ 6.4), at
http://www.ii.uib.no/~ketil/bioinformatics/repos.

Further reading

http://www.ii.uib.no/~ketil/bioinformatics

7.5.5 Using Haskell to implement simulations of
language acquisition, variation, and change

Report by: W. Garrett Mitchener
Status: experimental, active development

I’m a mathematician, with expertise in dynamical sys-
tems and probability. I’m using math to model lan-
guage acquisition, variation, and change. My current
project is about testing various hypotheses put forth by
the linguistics community concerning the word order
of English. Old and Middle English had significantly
different syntax than Modern English, and the devel-
opment of English syntax is perhaps the best studied
case of language change in the world. My overall plan
is to build simulations of various stages of English and
test them against manuscript data, such as the Penn-
sylvania Parsed Corpus of Middle English (PPCME).

One of my projects is a Haskell program to simulate
a population of individual agents learning simplified
languages based on Middle English and Old French.
Mathematically, the simulation is a Markov chain with
a huge number of states.

I’m also experimenting with GSLHS. I’m using it to
study a linear reward-penalty learning algorithm and a
new algorithm based on a differential equation.

I use GHC and Hugs on Fedora Linux (→ 7.4.1).
I’m also working on an interpreted language called

Crouton. It’s based very loosely on Haskell’s syntax

62

http://www.csse.monash.edu.au/hons/projects/2006/James.Bardsley
http://www.csse.monash.edu.au/hons/projects/2006/James.Bardsley
http://crpit.com/confpapers/CRPITV48Allison.pdf
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://www.ii.uib.no/~ketil/bioinformatics/repos
http://www.ii.uib.no/~ketil/bioinformatics

and lazy evaluation, but without the type system and
with much more powerful pattern matching. It will
allow me to scan files from the PPCME and other cor-
pora in lisp-like formats, find particular constructions,
and transform them. Patterns can be as complex as
context free grammars, and apply to whole structures
as well as strings. I expect it to be a big help in the
data collection part of my language modeling.

Further reading

◦ http://www.math.duke.edu/~wgm
◦ http://www.crouton.org

63

http://www.math.duke.edu/~wgm
http://www.crouton.org

	General
	HaskellWiki and haskell.org
	#haskell
	Planet Haskell
	Haskell Weekly News
	Books and tutorials
	``Hitchhickers Guide to Haskell'' tutorial
	New textbook -- Programming in Haskell
	Haskell Wikibook (was: Haskell Tutorial Wikibook)
	Haskell Tutorials in Portuguese

	A Survey on the Use of Haskell in Natural-Language Processing

	Implementations
	The Glasgow Haskell Compiler
	Hugs
	nhc98
	yhc

	Language
	Variations of Haskell
	Haskell on handheld devices
	Pivotal: Visual Interactive Programming
	Camila
	HASP

	Non-sequential Programming
	GpH -- Glasgow Parallel Haskell
	GdH -- Glasgow Distributed Haskell
	Eden

	Type System/Program Analysis
	Epigram
	Chameleon project
	XHaskell project
	ADOM: Agent Domain of Monads
	EHC, `Essential Haskell' Compiler
	Uniqueness Typing in EHC
	Object-Oriented Haskell

	IO
	Formal Aspects of Pure Functional I/O

	Generic Programming

	Libraries
	Packaging and Distribution
	Core

	General libraries
	PFP -- Probabilistic Functional Programming Library for Haskell
	Hmm: Haskell Metamath module
	GSLHaskell
	An Index Aware Linear Algebra Library
	Ivor
	Haskell Rules: Embedding Rule Systems in Haskell

	Parsing and transforming
	Utrecht Parsing Library and Attribute Grammar System
	Left-Recursive Parser Combinators
	RecLib -- A Recursion and Traversal Library for Haskell

	System
	hs-plugins
	time (was: Package ``time'')
	The libpcap Binding
	Streams
	System.FilePath
	hinotify

	Databases and data storage
	CoddFish
	Takusen

	Data types and data structures
	Standard Collection Libraries
	The revamped monad transformer library
	Data.ByteString
	Edison
	Numeric prelude
	HList -- a library for typed heterogeneous collections
	ArrayRef

	Data processing
	HsSyck
	AltBinary
	Compression-2006 (was: Compression-2005)
	The Haskell Cryptographic Library
	2LT: Two-Level Transformation

	User interfaces
	wxHaskell
	Gtk2Hs
	hscurses

	(Multi-)Media
	HOpenGL -- A Haskell Binding for OpenGL and GLUT
	HOpenAL -- A Haskell Binding for OpenAL and ALUT
	Haskore revision

	Web and XML programming
	HAppS -- Haskell Application Server
	Pass.Net
	Converter of Yhc Core to Javascript (ycr2js)
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell
	HAIFA

	Tools
	Foreign Function Interfacing
	FFI Imports Packaging Utility
	CHaskell

	Scanning, Parsing, Analysis
	Frown
	Alex version 2
	Happy
	SdfMetz
	XsdMetz: metrics for XML Schema

	Transformations
	Term Rewriting Tools written in Haskell
	HaRe -- The Haskell Refactorer
	VooDooM

	Testing and Debugging
	Haskell Program Coverage
	Hat
	buddha
	SmallCheck: another lightweight testing library in Haskell
	Dr Haskell

	Development
	hmake
	Ruler
	cpphs
	Visual Haskell
	Haskell support for the Eclipse IDE
	Haddock
	Hoogle -- Haskell API Search
	SearchPath

	Applications
	FreeArc
	h4sh
	Pugs
	Darcs
	downNova
	Hircules, an irc client
	lambdabot
	Feed
	yi
	Dazzle
	INblobs -- Interaction Nets interpreter
	DoCon, the Algebraic Domain Constructor
	Dumatel, a prover based on equational reasoning
	lhs2TeX
	Audio signal processing
	hmp3
	Testing Handel-C Semantics Using QuickCheck
	View selection for image-based rendering

	Users
	Commercial users
	Bluespec tools for design of complex chips
	Galois Connections, Inc.
	Aetion Technologies LLC
	Linspire

	Haskell in Education
	Functional programming at school

	Research Groups
	Foundations and Methods Group at Trinity College Dublin
	Foundations of Programming Group at the University of Nottingham
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Parallel and Distributed Functional Languages Research Group at Heriot-Watt University
	Programming Languages & Systems at UNSW

	User groups
	Fedora Haskell
	OpenBSD Haskell
	Haskell in Gentoo Linux

	Individuals
	Oleg's Mini tutorials and assorted small projects
	Implementation of ``How to write a financial contract''
	Inductive Programming
	Bioinformatics tools
	Using Haskell to implement simulations of language acquisition, variation, and change

