
Haskell Communities and Activities Report
http://www.haskell.org/communities/

Seventeenth Edition — November 2009

Janis Voigtländer (ed.)
Andy Adams-Moran Tiago Miguel Laureano Alves Krasimir Angelov
Heinrich Apfelmus Dmitry Astapov Justin Bailey

Jean-Philippe Bernardy Tobias Bexelius Joachim Breitner
Björn Buckwalter Andrew Butterfield Roman Cheplyaka
Adam Chlipala Olaf Chitil Jan Christiansen

Alberto Gómez Corona Duncan Coutts Jácome Cunha
Nils Anders Danielsson Atze Dĳkstra Facundo Dominguez

Chris Eidhof Marc Fontaine Patai Gergely
Brett G. Giles Andy Gill George Giorgidze

Dmitry Golubovsky Jurriaan Hage Bastiaan Heeren
Claude Heiland-Allen Jan Martin Jansen Wolfgang Jeltsch
Florian Haftmann Christopher Lane Hinson Guillaume Hoffmann
Martin Hofmann Creighton Hogg Csaba Hruska

Liyang HU Paul Hudak Farid Karimipour
Oleg Kiselyov Lennart Kolmodin Michal Konečný
Lyle Kopnicky Eric Kow Bas Lĳnse
Ben Lippmeier Andres Löh Rita Loogen
Ian Lynagh John MacFarlane Christian Maeder

José Pedro Magalhães Michael Marte Arie Middelkoop
Ivan Lazar Miljenovic Neil Mitchell Maarten de Mol

Dino Morelli Matthew Naylor Rishiyur Nikhil
Thomas van Noort Johan Nordlander Miguel Pagano

Jens Petersen Simon Peyton Jones Dan Popa
Jason Reich Claus Reinke Alberto Ruiz
David Sabel Ingo Sander Uwe Schmidt

Martĳn Schrage Tom Schrĳvers Paulo Silva
Axel Simon Ganesh Sittampalam Martĳn van Steenbergen
Don Stewart Martin Sulzmann Doaitse Swierstra

Henning Thielemann Simon Thompson Wren Ng Thornton
Jared Updike Marcos Viera Miguel Vilaca

Sebastiaan Visser Janis Voigtländer Kim-Ee Yeoh
Brent Yorgey

http://www.haskell.org/communities/

Preface

This is the 17th edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a blue
background.
The report is thinner/shorter this time, but has a good percentage of blue and semi-blue

entries. I have implemented the strategy, outlined in the May edition, of replacing with online
pointers to previous versions those entries for which I received a liveness ping, but which have
seen no essential update for a while. Entries on which no new activity has been reported for a
year or longer have been dropped completely. Please do revive such entries next time if you do
have news on them.
A call for new entries and updates to existing ones will be issued on the usual mailing lists

around April/May.
Finally, on special occasion, let me pose a prize question. It goes as follows:

How many entries in this report refer to the 2010 PEPM Workshop?

The first correct answer that reaches me wins a free copy of the ACM printed proceedings!

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

http://www.program-transformation.org/PEPM10
mailto: hcar at haskell.org

Contents

1 Information Sources 7
1.1 The Monad.Reader . 7
1.2 Haskell Wikibook . 7
1.3 Oleg’s Mini tutorials and assorted small projects . 7
1.4 Haskell Cheat Sheet . 8
1.5 The Happstack Tutorial . 8
1.6 Practice of Functional Programming . 9
1.7 Cartesian Closed Comic . 9

2 Implementations 10
2.1 The Glasgow Haskell Compiler . 10
2.2 The Helium compiler . 13
2.3 UHC, Utrecht Haskell Compiler . 13
2.4 Haskell frontend for the Clean compiler . 14
2.5 SAPL, Simple Application Programming Language . 14
2.6 The Reduceron . 15
2.7 Platforms . 15
2.7.1 Haskell in Gentoo Linux . 15
2.7.2 Fedora Haskell SIG . 15
2.7.3 GHC on OpenSPARC . 15

3 Language 17
3.1 Extensions of Haskell . 17
3.1.1 Eden . 17
3.1.2 XHaskell project . 17
3.1.3 HaskellActor . 18
3.1.4 HaskellJoin . 18
3.2 Related Languages . 18
3.2.1 Curry . 18
3.2.2 Agda . 19
3.2.3 Clean . 19
3.2.4 Timber . 20
3.2.5 Ur/Web . 20
3.3 Type System / Program Analysis . 21
3.3.1 Free Theorems for Haskell (and Curry) . 21
3.3.2 The Disciplined Disciple Compiler (DDC) . 21

4 Tools 22
4.1 Transforming and Generating . 22
4.1.1 UUAG . 22
4.1.2 AspectAG . 22
4.1.3 HFusion . 22
4.1.4 Optimus Prime . 23
4.1.5 Derive . 23
4.1.6 lhs2TEX . 23
4.2 Analysis and Profiling . 24
4.2.1 SourceGraph . 24
4.2.2 HLint . 24
4.2.3 hp2any . 24
4.3 Development . 25
4.3.1 Hoogle — Haskell API Search . 25
4.3.2 HEAT: The Haskell Educational Advancement Tool . 25

3

4.3.3 HaRe — The Haskell Refactorer . 25
4.3.4 DarcsWatch . 26
4.3.5 HSFFIG . 26

5 Libraries 27
5.1 Cabal and Hackage . 27
5.2 Haskell Platform . 27
5.3 Auxiliary Libraries . 28
5.3.1 hmatrix . 28
5.3.2 hTensor . 28
5.3.3 The Neon Library . 28
5.3.4 leapseconds-announced . 29
5.4 Parsing and Transforming . 29
5.4.1 ChristmasTree . 29
5.4.2 Utrecht Parser Combinator Library: New version . 29
5.5 Mathematical Objects . 29
5.5.1 dimensional: Statically checked physical dimensions . 29
5.5.2 Halculon: units and physical constants database . 29
5.5.3 Numeric prelude . 30
5.5.4 AERN-Real and friends . 30
5.5.5 logfloat . 31
5.5.6 fad: Forward Automatic Differentiation . 31
5.6 Data types and data structures . 31
5.6.1 HList — a library for typed heterogeneous collections . 31
5.6.2 bytestring-trie . 32
5.7 Data processing . 32
5.7.1 MultiSetRewrite . 32
5.7.2 Graphalyze . 32
5.8 Generic and Type-Level Programming . 32
5.8.1 uniplate . 32
5.8.2 Generic Programming at Utrecht University . 32
5.8.3 Extensible and Modular Generics for the Masses (EMGM) . 33
5.8.4 Optimizing generic functions . 34
5.8.5 2LT: Two-Level Transformation . 35
5.8.6 Data.Label — “atoms” for type-level programming . 35
5.9 User interfaces . 35
5.9.1 Gtk2Hs . 35
5.9.2 HQK . 36
5.10 Graphics . 36
5.10.1 diagrams . 36
5.10.2 LambdaCube . 36
5.10.3 GPipe . 37
5.10.4 ChalkBoard . 37
5.10.5 graphviz . 38
5.11 Music . 38
5.11.1 Haskore revision . 38
5.11.2 Euterpea . 38
5.12 Web and XML programming . 38
5.12.1 Haskell XML Toolbox . 38
5.12.2 tagsoup . 39

6 Applications and Projects 40
6.1 For the Masses . 40
6.1.1 Darcs . 40
6.1.2 xmonad . 40
6.2 Education . 40
6.2.1 Exercise Assistants . 40
6.2.2 Holmes, plagiarism detection for Haskell . 41

4

6.2.3 INblobs — Interaction Nets interpreter . 41
6.2.4 Yahc . 41
6.2.5 grolprep . 42
6.3 Web Development . 42
6.3.1 Holumbus Search Engine Framework . 42
6.3.2 HCluster . 43
6.3.3 JavaScript Monadic Writer . 43
6.3.4 Haskell DOM Bindings . 44
6.3.5 gitit . 44
6.4 Data Management and Visualization . 45
6.4.1 Pandoc . 45
6.4.2 HaExcel — From Spreadsheets to Relational Databases and Back 45
6.4.3 SdfMetz . 45
6.4.4 The Proxima 2.0 generic editor . 45
6.5 Functional Reactive Programming . 46
6.5.1 Functional Hybrid Modelling . 46
6.5.2 Elerea . 47
6.6 Audio and Graphics . 47
6.6.1 Audio signal processing . 47
6.6.2 easyVision . 48
6.6.3 photoname . 48
6.6.4 n-Dimensional Convex Decomposition of Polytops . 48
6.6.5 DVD2473 . 49
6.6.6 Fl4m6e . 49
6.6.7 GULCI . 49
6.6.8 Reflex . 50
6.7 Proof Assistants and Reasoning . 50
6.7.1 Galculator . 50
6.7.2 Saoithín: a 2nd-order proof assistant . 50
6.7.3 Inference Services for Hybrid Logics . 50
6.7.4 HTab . 51
6.7.5 Sparkle . 51
6.7.6 Haskabelle . 51
6.8 Modeling and Analysis . 51
6.8.1 iTasks . 51
6.8.2 CSP-M animator and model checker . 52
6.9 Hardware Design . 52
6.9.1 ForSyDe . 52
6.9.2 Kansas Lava . 53
6.10 Natural Language Processing . 53
6.10.1 NLP . 53
6.10.2 GenI . 53
6.10.3 Grammatical Framework . 54
6.11 Others . 55
6.11.1 IgorII . 55
6.11.2 Roguestar . 55
6.11.3 LQPL — A quantum programming language compiler and emulator 55
6.11.4 Yogurt . 56
6.11.5 Dyna 2 . 56
6.11.6 Vintage BASIC . 57
6.11.7 Bullet . 57
6.11.8 arbtt . 57
6.11.9 uacpid . 57

7 Commercial Users 58
7.1 Well-Typed LLP . 58
7.2 Credit Suisse Global Modeling and Analytics Group . 58
7.3 Bluespec tools for design of complex chips . 58

5

7.4 Galois, Inc. 59
7.5 IVU Traffic Technologies AG Rostering Group . 60
7.6 Tupil . 60
7.7 Aflexi Content Delivery Network (CDN) . 60
7.8 Industrial Haskell Group . 61
7.9 typLAB . 61

8 Research and User Groups 62
8.1 Functional Programming Lab at the University of Nottingham . 62
8.2 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 63
8.3 Functional Programming at the University of Kent . 63
8.4 Foundations and Methods Group at Trinity College Dublin . 64
8.5 Formal Methods at DFKI Bremen and University of Bremen . 64
8.6 Haskell at K.U.Leuven, Belgium . 64
8.7 Haskell in Romania . 65
8.8 fp-syd: Functional Programming in Sydney, Australia. 65
8.9 Functional Programming at Chalmers . 66

6

1 Information Sources

1.1 The Monad.Reader

Report by: Brent Yorgey

There are plenty of academic papers about Haskell and
plenty of informative pages on the HaskellWiki. Unfor-
tunately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a Wiki page, but more casual than a jour-
nal article.
There are plenty of interesting ideas that maybe do

not warrant an academic publication—but that does
not mean these ideas are not worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if it has all been done before in the Journal
of Impossibly Complicated Theoretical Stuff, explain-
ing a neat idea about “warm fuzzy things” to the rest
of us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there has been one new issue

and a change of editors, with Brent Yorgey taking over
editorial duties from Wouter Swierstra. The next issue
will be published in January.

Further reading

http://themonadreader.wordpress.com/

1.2 Haskell Wikibook

Report by: Heinrich Apfelmus
Participants: Orzetto, David House, Eric Kow, and

other contributors
Status: active development

The goal of the Haskell wikibook project is to build a
community textbook about Haskell that is at once free
(as in freedom and in beer), gentle, and comprehen-
sive. We think that the many marvelous ideas of lazy
functional programming can and thus should be acces-
sible to everyone in a central place. In particular, the
wikibook aims to answer all those conceptual questions
that are frequently asked on the Haskell mailing lists.
Everyone including you, dear reader, are invited to

contribute, be it by spotting mistakes and asking for

clarifications or by ruthlessly rewriting existing mate-
rial and penning new chapters.
Thanks to the bold action of user Orzetta, the chap-

ter “Understanding monads” finally came to live. It is
very useable now, though more work is needed to prop-
erly record the current lore about the zoo of standard
monads.

Further reading

◦ http://en.wikibooks.org/wiki/Haskell
◦ Mailing list: 〈wikibook@haskell.org〉

1.3 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received three additions:

Typed Tagless Interpretations and Typed
Compilation

This web page describes embeddings of typed domain-
specific languages in Haskell, stressing type preserva-
tion, typed compilation, and multiple interpretations.
Type preservation statically and patently assures that
interpreters never get stuck and hence run more effi-
ciently. By ‘typed compilation’ we mean a transforma-
tion from an untyped to typed tagless representations.
The untyped form is an AST (represented as a regular
data type), which is usually the result of parsing a file
or similar plain data. The typed tagless representation
takes the form of either generalized algebraic data types
GADT (the initial approach), or alternatively, type-
constructor-polymorphic terms (the final approach).
Either type representation can be interpreted in var-
ious ways (e.g., evaluated, CPS-transformed, partially
evaluated, etc). All these interpretations are assuredly
type-preserving and patently free of any ‘type errors’
such as failure to pattern-match type tags or derefer-
encing an unbound variable.
We show three examples of typed compilation:

Staged Typed Compilation into GADT using typeclasses
A typed compiler is the function of the signature
Expr -> Term t, where Expr is an ordinary alge-
braic data type of untyped first-order source terms
and Term t is a GADT. The result type t is a
function of the value of Expr. Thus we demonstrate
the Haskell solution of the truly dependent-type

7

http://themonadreader.wordpress.com/
http://en.wikibooks.org/wiki/Haskell
mailto: wikibook at haskell.org
http://okmij.org/ftp/Haskell/

problem. We use template Haskell to implement the
compiler, so that we get the Haskell type checker
itself to type check the embedded DSL.

Typed compilation to tagless-final HOAS The embed-
ded DSL is now higher-order: it is simply-typed
lambda-calculus with the fixpoint and constants —
essentially, PCF. We no longer use staging. Rather,
we compile to tagless-final representation, which can
be interpreted by different interpreters. Regardless
of the number of interpretations of a term, the type
checking happens only once. We build our own Dy-
namics to encapsulate typed terms and represent
their types.

Typed compilation via GADTs This time, we compile
the same higher-order DSL to the HOAS tagless-
initial representation: GADT. The compiler itself is
implemented via GADTs.

The web page also relates Final and Initial typed
tagless representations: they are related by bĳection.
http://okmĳ.org/ftp/Computation/tagless-typed.html

Delimited continuations with effect typing, full
soundness, answer-type modification and
polymorphism

We describe the implementations of Asai and
Kameyama’s calculus of polymorphic delimited con-
tinuations with effect typing, answer-type modification
and polymorphism. The calculus has greatly desirable
properties of strong soundness (well-typed terms do not
give any run-time exceptions), principal types, type
inference, preservation of types and equality through
CPS translation, confluence, and strong normalization
for the subcalculus without fix.
Our Haskell 98 code is the first implementation of

delimited continuations with answer-type modification,
polymorphism, effect typing, and type inference in
a widely available language. Thanks to parameter-
ized (generalized) monads the implementation is the
straightforward translation of the rules of the calculus.
Matthieu Sozeau has defined a generalized monad type-
class in the recent version of Coq and so implemented
the calculus along with the type-safe sprintf in Coq.
http://okmĳ.org/ftp/Continuations.html#genuine-shift

Total stream processors and their applications to all
infinite streams

In the article on seemingly impossible functional pro-
grams, Martín Escardó wrote about decidable checking
of satisfaction of a total computable predicate on Can-
tor numerals. The latter represent infinite bit strings,
or all real numbers within [0,1]. Martín Escardó’s tech-
nique can tell, in finite time, if a given total com-
putable predicate is satisfied over all possible infinite

bit strings. Furthermore, for so-called sparse predi-
cates, Martín Escardó’s technique is very fast.
We re-formulate the problem in terms of streams and

depth-limited depth-first search, and thus cast off the
mystery of deciding the satisfiability of a total com-
putable predicate over the set of all Cantor numerals.
As an additional contribution, we show how to write

functions over Cantor numerals in a ‘natural’ monadic
style so that those functions become self-partially eval-
uating. The instantiation of the functions in an appro-
priate pure monad gives us transparent memoization,
without any changes to the functions themselves. The
monad in question is pure and involves no reference
cells. The code is in Haskell 98.

http://okmĳ.org/ftp/Algorithms.html#total-sp

1.4 Haskell Cheat Sheet

Report by: Justin Bailey

The “Haskell Cheat Sheet” covers the syntax, key-
words, and other language elements of Haskell 98. It
is intended for beginning to intermediate Haskell pro-
grammers and can even serve as a memory aid to ex-
perts. The cheat sheet is distributed as a PDF and lit-
erate source file. A Spanish translation is also available.

Further reading

http://cheatsheet.codeslower.com

1.5 The Happstack Tutorial

Report by: Creighton Hogg

The Happstack Tutorial aims to be a definitive, up-to-
date, resource for how to use the Happstack libraries.
I have recently taken over the project from Thomas
Hartman. An instance of the Happstack Tutorial is
running as a stand-alone website, but in order to truly
dig into writing Happstack applications you can cabal
install it from Hackage and experiment with it locally.
Happstack Tutorial is updated along with the Happ-

stack Hackage releases, but the darcs head is generally
compatible with the darcs head of Happstack.
I am adding a few small tutorials to the package with

every release and am always looking for more feedback
from beginning Happstack users.

Further reading

◦ http://tutorial.happstack.com
◦ http://patch-tag.com/repo/happstack-tutorial

8

http://okmij.org/ftp/Computation/tagless-typed.html
http://okmij.org/ftp/Continuations.html#genuine-shift
http://okmij.org/ftp/Algorithms.html#total-sp
http://cheatsheet.codeslower.com
http://tutorial.happstack.com
http://patch-tag.com/repo/happstack-tutorial

1.6 Practice of Functional Programming

Report by: Dmitry Astapov
Participants: Lev Walkin, Roman Dushkin, Eugene

Kirpichov, Alex Ott, Alex Samoylovich,
Kirill Zaborski, Serguey Zefirov, Dmitry

Zuikov
Status: collecting materials for issue #3

“Practice of Functional Programing” is a Russian elec-
tronic magazine promoting functional programming,
with articles that cover both theoretical and practical
aspects of the craft. Most of the material of the already
published issues is directly related to Haskell.
The magazine aims to have a bi-monthly release

schedule, with Issue #3 slated for release at the end
of November 2009.
Full contents of current and past issues are available

in PDF from the official site of the magazine free of
charge.
Articles are in Russian, with English annotations.

Further reading

http://fprog.ru for issues #1 and #2

1.7 Cartesian Closed Comic

Report by: Roman Cheplyaka
Participants: Maria Kovalyova

Cartesian Closed Comic, or CCC, is a webcomic about
Haskell, the Haskell community, and anything else re-
lated to Haskell. It is published irregularly. The comic
is often inspired by “Quotes of the week” published in
Haskell Weekly News. New strips are posted to the
Haskell reddit and Planet Haskell. The archives are
also available.
Here goes a special edition of the CCC devoted to

the Haskell Communities and Activities Report.

Further reading

http://ro-che.info/ccc/

9

http://fprog.ru
http://ro-che.info/ccc/

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

We are just about to make our annual major release, of
GHC 6.12.1 (in the following we will say “GHC 6.12”
to refer to GHC 6.12.1 and future patch-level releases
along the 6.12 branch).
GHC continues to be very active, with many oppor-

tunities for others to get involved. We are particularly
eager to find partners who are willing to take respon-
sibility for a particular platform (e.g. Sparc/Solaris,
currently maintained by Ben Lippmeier); see http:
//hackage.haskell.org/trac/ghc/wiki/Platforms.

The GHC 6.12 release

We usually try to make a major release of GHC im-
mediately after ICFP. It has been somewhat delayed
this year, but we expect to release GHC 6.12 during
November or December 2009. Apart from the myriad
of new bug fixes and minor enhancements, the big new
things in 6.12 are:

◦ Considerably improved support for parallel execu-
tion. GHC 6.10 would execute parallel Haskell pro-
grams, but performance was often not very good. Si-
mon Marlow has done lots of performance tuning in
6.12, removing many of the accidental (and largely
invisible) gotchas that made parallel programs run
slowly.

◦ As part of this parallel-performance tuning, Satnam
Singh and Simon Marlow have developed Thread-
Scope, a GUI that lets you see what is going on inside
your parallel program. It is a huge step forward from
“It takes 4 seconds with 1 processor, and 3 seconds
with 8 processors; now what?”. ThreadScope will be
released separately from GHC, but at more or less
the same time as GHC 6.12.

◦ Dynamic linking is now supported on Linux, and
support for other platforms will follow. Thanks for
this most recently go to the Industrial Haskell Group
(→ 7.8) who pushed it into a fully-working state; dy-
namic linking is the culmination of the work of sev-
eral people over recent years. One effect of dynamic
linking is that binaries shrink dramatically, because
the run-time system and libraries are shared. Per-
haps more importantly, it is possible to make dy-
namic plugins from Haskell code that can be used
from other applications.

◦ The I/O libraries are now Unicode-aware, so your
Haskell programs should now handle text files con-
taining non-ascii characters, without special effort.

◦ The package system has been made more robust,
by associating each installed package with a unique
identifier based on its exposed ABI. Now, cases where
the user re-installs a package without recompiling
packages that depend on it will be detected, and the
packages with broken dependencies will be disabled.
Previously, this would lead to obscure compilation
errors, or worse, segfaulting programs.
This change involved a lot of internal restructuring,
but it paves the way for future improvements to the
way packages are handled. For instance, in the future
we expect to track profiled packages independently
of non-profiled ones, and we hope to make it possi-
ble to upgrade a package in an ABI-compatible way,
without recompiling the packages that depend on it.
This latter facility will be especially important as we
move towards using more shared libraries.

◦ There are a variety of small language changes, in-
cluding
– Some improvements to data types: record pun-

ning, declaring constructors with class con-
straints, GADT syntax for type families etc.

– You can omit the “$” in a top-level Template
Haskell splice, which makes the TH call look
more like an ordinary top-level declaration with
a new keyword.

– We are are deprecating mdo for recursive do-
notation, in favour of the more expressive rec
statement.

– We have concluded that the implementation
of impredicative polymorphism is unsustainably
complicated, so we are re-trenching. It will be
deprecated in 6.12 (but will still work), and will
be either removed or replaced with something
simpler in 6.14.

For more detail, see the release notes in the 6.12
User manual (http://www.haskell.org/ghc/dist/current/
docs/html/users_guide/index.html), which mention
many things skipped over here.
Internally, GHC 6.12 has a totally re-engineered

build system, with much-improved dependency
tracking (http://hackage.haskell.org/trac/ghc/wiki/
Building). While there have been lots of teething
problems, things are settling down and the new system
is a huge improvement over the old one. The main
improvement is that you can usually just say make,
and everything will be brought up to date (before it

10

http://hackage.haskell.org/trac/ghc/wiki/Platforms
http://hackage.haskell.org/trac/ghc/wiki/Platforms
http://www.haskell.org/ghc/dist/current/docs/html/users_guide/index.html
http://www.haskell.org/ghc/dist/current/docs/html/users_guide/index.html
http://hackage.haskell.org/trac/ghc/wiki/Building
http://hackage.haskell.org/trac/ghc/wiki/Building

was often necessary to make clean first). Another
improvement is that the new system exposes much
more parallelism in the build, so GHC builds faster on
multicores.

GHC and the Haskell platform

Another big change with GHC 6.12 is that Hackage
and the Haskell Platform are allowing GHC HQ to get
out of the libraries business. So the plan is:

◦ We release GHC 6.12 with very few libraries.

◦ Bill Library Author downloads GHC 6.12 and tests
his libraries.

◦ The next Haskell Platform release packages GHC
6.12 with these tested libraries.

◦ Joe User downloads the Haskell Platform.

◦ Four months later there is a new HP release, still
with GHC 6.12, but with more or better libraries.
The HP release cycle is decoupled from GHC.

So if you are Joe User, you want to wait for the HP re-
lease. Do not grab the GHC 6.12 release. It will be per-
fectly usable, but only if you use (an up to date) cabal-
install to download libraries, and accept that they may
not be tested with GHC 6.12.

What is hot for the next year

GHC continues to be a great substrate for research.
Here are the main things we are working on at the
moment.

Type systems

Type families have proved a great success. From the
outside it might seem that they are done — after all,
they are in GHC 6.10— but the internals are quite frag-
ile and it is amazing that it all works as well as it does.
(Thanks to Manuel’s work.) Tom Schrĳvers, Dimitrios
Vytiniotis, Martin Sulzmann, and Manuel Chakravarty
have been working with Simon PJ to understand the
fundamentals and, in the light of that insight, to re-
engineer the implementation into something more ro-
bust. We have developed the “OutsideIn” algorithm,
which gives a much nicer account of type inference than
our previous story of type inference. The new approach
is described in “Complete and Decidable Type Infer-
ence for GADTs” [ICFP09a]. More controversially, we
now believe that local let/where bindings should not be
generalised — see “Let should not be generalised” [Let-
Gen]. Dimitrios is building a prototype that embodies
these ideas, which we will then transfer into GHC.
Meanwhile, Dimitrios, Simon, and Stephanie Weirich

are also working on fixing one of GHC’s more em-
barrassing bugs (http://hackage.haskell.org/trac/ghc/
ticket/1496), whereby an interaction of type families

and the newtype-deriving can persuade GHC to gener-
ate type-unsound code. It has remained un-fixed be-
cause the obvious approaches seem to be hacks, so the
cure was as bad as the disease. We think we are on to
something; stay tuned.

Intermediate language and optimisation

Although it is, by design, invisible to users, GHC’s in-
termediate language and optimisation passes have been
receiving quite a bit of attention. Some highlights:

◦ Read Max Bolingbroke’s paper on Strict Core
[MaxB], a possible new intermediate language for
GHC. Adopting Strict Core would be a Big Change,
however, and we have not decided to do so (yet).

◦ Simon PJ totally re-engineered the way that
INLINE pragmas are implemented, with the
goal of making them more robust and pre-
dictable (http://www.haskell.org/pipermail/cvs-ghc/
2009-October/050881.html). There is a new CON-
LIKE pragma which affects rule matching.

◦ Peter Jonsson did an internship in which he made
a start on turning GHC into a supercompiler. Neil
Mitchell’s terrific PhD thesis suggested that super-
compliation works well for Haskell [NeilM], and Pe-
ter has been working on supercompilation for Tim-
ber (→ 3.2.4) as part of his own PhD [PeterJ]. The
GHC version is not ready for prime time yet, but
Simon PJ (now educated by Peter and Neil) is keen
to pursue it.

◦ An internal change in GHC 6.12 is the addition
of “annotations”, a general-purpose way for a pro-
grammer to add annotations to top-level definitions
that can be consulted by a core-to-core pass, and
for a core-to-core pass to pass information to its
successors (http://hackage.haskell.org/trac/ghc/wiki/
Annotations). We expect to use these annotations in-
creasingly in GHC itself.

Parallelism

Most of the changes in this area in GHC 6.12.1 were
described in our ICFP’09 paper “Runtime Support for
Multicore Haskell” [ICFP09b]. The highlights:

◦ Load-balancing of sparks is now based on lock-free
work-stealing queues.

◦ The overhead for running a spark is significantly less,
so GHC can take advantage of finer-grained paral-
lelism

◦ The parallel GC is now much more locality-aware.
We now do parallel GC in young-generation collec-
tions by default, mainly to avoid destroying locality
by moving data out of the CPU cache on which it
is needed. Young-generation collections are parallel

11

http://hackage.haskell.org/trac/ghc/ticket/1496
http://hackage.haskell.org/trac/ghc/ticket/1496
http://www.haskell.org/pipermail/cvs-ghc/2009-October/050881.html
http://www.haskell.org/pipermail/cvs-ghc/2009-October/050881.html
http://hackage.haskell.org/trac/ghc/wiki/Annotations
http://hackage.haskell.org/trac/ghc/wiki/Annotations

but not load-balanced. There are new RTS flags to
control parallel GC behaviour.

◦ Various other minor performance tweaks.

In the future we plan to focus on the GC, with the main
goal being to implement independent per-CPU collec-
tion. The other area we plan to look at is changing the
GC policy for sparks, as described in our ICFP’09 pa-
per; this will need a corresponding change to the Strate-
gies library to avoid relying on the current “sparks are
roots” GC policy, which causes difficulties for writing
parallel code that exploits speculation.

Data Parallelism

Data Parallel Haskell has seen few user-visible changes
since the last report. Nevertheless, Roman Leshchin-
skiy has been busy improving many of the fundamen-
tal building blocks behind the scenes. These changes
were necessary as DPH was able to generate very fast
parallel code for simple examples, but the optimisa-
tion infrastructure was too fragile — i.e., small changes
to other parts of GHC (most notably, the Simplifier)
or to the DPH libraries could lead to dramatic per-
formance regressions. Over the last few months, Ro-
man has been working on making the system more
robust, while Simon PJ improved and extended parts
of GHC’s existing optimisation infrastructure (such as
the Inliner and other aspects of the Simplifier) to sup-
port Roman’s efforts. As a first consequence of this
recent work, the divide-and-conquer quickhull bench-
mark (computing a convex hull) is now significantly
faster than the corresponding list-based implementa-
tion (http://darcs.haskell.org/packages/dph/examples/
quickhull/QuickHullVect.hs). This is an important mile-
stone as quickhull uses dynamically nested parallelism
whose depth is not statically bound.
Gabriele Keller implemented a first prototype of a

new library API for regular multi-dimensional arrays
to complement the existing irregular, nested arrays.
For regular computations on dense matrices, relax-
ation methods and similar, regular arrays (as opposed
to nested arrays) are more convenient and expose ad-
ditional opportunities for optimisation. Gabriele ob-
tained very encouraging first results with a sequential
version that uses a new fusion technique, which we are
calling delayed arrays [RegLibBench].
In parallel with the implementation of regular,

multi-dimensional arrays as part of DPH, Sean
Lee and Manuel Chakravarty are implementing al-
most the same regular-array API as an EDSL in
Data.Array.Accelerate. The EDSL implementation re-
stricts the expressiveness of the array language, but at
the same time enables us to experiment with more am-
bitious backends — especially with GPU code genera-
tion via CUDA and related technologies. More details
are in the video of Manuel’s talk from the Haskell Im-
plementors Workshop in Edinburgh [AccelerateTalk].

Code generation

For the last two years we have been advertising a major
upheaval in GHC’s back end. Currently a monolithic
“code generator” converts lambda code (the STG lan-
guage) into flat C–; “flat” in the sense that the stack
is manifested, and there are no function calls. The
upheaval splits this into a pipeline of passes, with a
relatively-simple conversion of lambda code into C–
(with function calls), followed by a succession of passes
that optimise this code, and flatten it (by manifesting
the stack and removing calls).
John Dias is the principal architect of this new path,

and it is in GHC already; you can switch it on by say-
ing -fnew-codegen. What remains is (a) to make it
work 100% (currently 99%, which is not good enough);
(b) commit to it, which will allow us to remove gar-
gantuan quantities of cruft; (c) exploit it, by imple-
menting cool new optimisations at the C– level; (d)
take it further by integrating the native code gen-
erators into the same pipeline. You can read more
on the wiki (http://hackage.haskell.org/trac/ghc/wiki/
Commentary/Compiler/NewCodeGenPipeline).
Several passes of the new code generation pipeline

are supported by Hoopl, a Haskell library that makes
it easy to write dataflow analyses and optimisations
over C– code [Hoopl]. We think Hoopl is pretty cool,
and have well-advanced ideas for how to improve it a
lot more.
All of this has taken longer than we hoped. Once

the new pipeline is in place we hope that others will
join in. For example, David Terei did an interesting
undergraduate project on using LLVM as a back end
for GHC [Terei], and Krzysztof Wos is just beginning
an undergraduate project on optimisation in the new
pipeline. We are particularly grateful to Ben Lippmeier
for his work on the SPARC native code generator.

Bibliography

ICFP09a Complete and Decidable Type Inference for
GADTs. Tom Schrĳvers, Simon Peyton Jones, Mar-
tin Sulzmann, and Dimitrios Vytiniotis. ICFP’09.
http://research.microsoft.com/~simonpj/papers/gadt

ICFP09b Runtime Support for Multicore Haskell. Si-
mon Marlow, Satnam Singh, and Simon Peyton
Jones. ICFP’09. http://www.haskell.org/~simonmar/
bib/multicore-ghc-09_abstract.html

LetGen Let should not be generalized. Dimitrios Vy-
tiniotis, Simon Peyton Jones, and Tom Schrĳvers.
TLDI’10. http://research.microsoft.com/~simonpj/
papers/constraints/index.htm

Hoopl Hoopl: dataflow optimisation made simple.
Norman Ramsey, John Dias, and Simon Peyton
Jones. Rejected by POPL’10. http://research.
microsoft.com/~simonpj/papers/c--

12

http://darcs.haskell.org/packages/dph/examples/quickhull/QuickHullVect.hs
http://darcs.haskell.org/packages/dph/examples/quickhull/QuickHullVect.hs
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGenPipeline
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGenPipeline
http://research.microsoft.com/~simonpj/papers/gadt
http://www.haskell.org/~simonmar/bib/multicore-ghc-09_abstract.html
http://www.haskell.org/~simonmar/bib/multicore-ghc-09_abstract.html
http://research.microsoft.com/~simonpj/papers/constraints/index.htm
http://research.microsoft.com/~simonpj/papers/constraints/index.htm
http://research.microsoft.com/~simonpj/papers/c--
http://research.microsoft.com/~simonpj/papers/c--

Terei Low Level Virtual Machine for Glasgow Haskell
Compiler. David A. Terei, BSc Thesis. http://www.
cse.unsw.edu.au/~pls/thesis/davidt-thesis.pdf

MaxB Types are calling conventions. Max Boling-
broke and Simon Peyton Jones. Haskell Sym-
posium 2009. http://www.cl.cam.ac.uk/~mb566/
papers/tacc-hs09.pdf

NeilM Transformation and Analysis of Functional Pro-
grams. Neil Mitchell, PhD thesis, University of York,
2009. http://community.haskell.org/~ndm/thesis/

PeterJ Positive supercompliation for a higher order
call-by-value language. Peter Jonsson and Johan
Nordlander. POPL’09. http://www.csee.ltu.se/~pj/
papers/scp/index.html

RegLibBench Dense matrix-matrix multiplica-
tion benchmark with delayed, regular ar-
rays. http://www.scribd.com/doc/22091707/
Delayed-Regular-Arrays-Sep09

AccelerateTalk Haskell Array, Accelerated (Using
GPUs). Manuel M T Chakravarty, presented
at the Haskell Implementors Workshop 2009,
Edinburgh. http://justtesting.posterous.com/
running-haskell-array-computations-on-a-gpu

2.2 The Helium compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Arie Middelkoop

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back. The latest versions of the Helium compiler are
available for download from the new website located
at http://www.cs.uu.nl/wiki/Helium. This website also
explains in detail what Helium is about, what it offers,
and what we plan to do in the near and far future.
We are still working on making version 1.7 available,

mainly a matter of updating the documentation and
testing the system. Internally little has changed, but
the interface to the system has been standardized, and
the functionality of the interpreters has been improved
and made consistent. We have made new options avail-
able (such as those that govern where programs are
logged to). The use of Helium from the interpreters is
now governed by a configuration file, which makes the
use of Helium from the interpreters quite transparent
for the programmer. It is also possible to use differ-
ent versions of Helium side by side (motivated by the
development of Neon (→ 5.3.3)).
A student has added parsing and static checking for

type class and instance definitions to the language, but

type inferencing and code generating still need to be
added. The work on the documentation has progressed
quite a bit, but there has been little testing thus far,
especially on a platform such as Windows.

2.3 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: Jeroen Fokker, Doaitse Swierstra, Arie

Middelkoop, Lucília Camarão de
Figueiredo, Carlos Camarão de Figueiredo,

Vincent van Oostrum, Clemens
Grabmayer, Tom Lokhorst, Jeroen

Leeuwestein, Atze van der Ploeg, Paul van
der Ende

Status: active development

UHC, what is new? UHC is the Utrecht Haskell
Compiler, supporting almost all Haskell 98 features
plus experimental extensions. The first release of UHC
was announced on April 18, 2009, at the 5th Haskell
Hackathon, held in Utrecht.
Since then we have been working on:

◦ A new garbage collector (GC) to replace the Boehm
GC we have been using. The new GC is constructed
relatively independent of the UHC runtime system,
so as to allow multiple backends to plugin backend
specific info, e.g., about the memory layout of mem-
ory cells. The new GC is used by the bytecode in-
terpreter backend (Atze Dĳkstra).

◦ Making nofib testsuite examples run. This also has
been the driving force and testbed for the new GC
(Jeroen Fokker).

◦ Typed core, which combines GHC’s core language
with Henk and recent work on types as calling con-
ventions (Atze Dĳkstra).

UHC, what do we plan? Soon we start working on
the research grant for “Realising Optimal Sharing”,
based on work by Vincent van Oostrum and Clemens
Grabmayer.
We plan a next release of UHC with the new garbage

collector and various bugfixes. We had hoped to offer
a complete Haskell 98 library and Cabal support, but
likely this will have to wait for a subsequent release.
Furthermore, the following student projects are un-

derway or soon start:

◦ Various static analyses on typed core (Tom
Lokhorst).

◦ Incrementalization of whole program analysis
(Jeroen Leeuwestein).

◦ Lazy closures (Atze van der Ploeg).

◦ GC & LLVM (Paul van der Ende).

13

http://www.cse.unsw.edu.au/~pls/thesis/davidt-thesis.pdf
http://www.cse.unsw.edu.au/~pls/thesis/davidt-thesis.pdf
http://www.cl.cam.ac.uk/~mb566/papers/tacc-hs09.pdf
http://www.cl.cam.ac.uk/~mb566/papers/tacc-hs09.pdf
http://community.haskell.org/~ndm/thesis/
http://www.csee.ltu.se/~pj/papers/scp/index.html
http://www.csee.ltu.se/~pj/papers/scp/index.html
http://www.scribd.com/doc/22091707/Delayed-Regular-Arrays-Sep09
http://www.scribd.com/doc/22091707/Delayed-Regular-Arrays-Sep09
http://justtesting.posterous.com/running-haskell-array-computations-on-a-gpu
http://justtesting.posterous.com/running-haskell-array-computations-on-a-gpu
http://www.cs.uu.nl/wiki/Helium

Finally, still going on are the following:

◦ GRIN backend, whole program analysis (Jeroen
Fokker).

◦ Type system formalization and automatic generation
from type rules (Lucília Camarão de Figueiredo, Arie
Middelkoop).

Background info UHC actually is a series of com-
pilers of which the last is UHC, plus an aspectwise
organized infrastructure for facilitating experimenta-
tion and extension. The end-user will probably only be
aware of UHC as a Haskell compiler, whereas compiler
writers will be more aware of the internals of UHC.
For the description of UHC an Attribute Grammar

system (→ 4.1.1) is used as well as other formalisms al-
lowing compact notation like parser combinators. For
the description of type rules, and the generation of an
AG implementation for those type rules, we use the
Ruler system. For source code management we use
Shuffle, which allows partitioning the system into a se-
quence of steps and aspects. (Both Ruler and Shuffle
are included in UHC).
The implementation of UHC also tackles other issues:

◦ To deal with the inherent complexity of a compiler,
the implementation of UHC is organized as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus; the last step
corresponds to UHC.

◦ Independent of each step the implementation is or-
ganized into a set of aspects. Currently the type
system and code generation are defined as aspects,
which can then be left out so the remaining part can
be used as a barebones starting point.

◦ Each combination of step + aspects corresponds to
an actual, that is, an executable compiler. Each of
these compilers is a compiler in its own right.

◦ The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Part of the description of the series of EH compilers
is available as a PhD thesis.

Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

◦ Parser combinators: http://www.cs.uu.nl/wiki/HUT/
ParserCombinators

◦ Shuffle: http://www.cs.uu.nl/wiki/Ehc/Shuffle
◦ Ruler: http://www.cs.uu.nl/wiki/Ehc/Ruler

2.4 Haskell frontend for the Clean
compiler

Report by: Thomas van Noort
Participants: John van Groningen, Rinus Plasmeĳer
Status: active development

We are currently working on a frontend for the Clean
compiler (→ 3.2.3) that supports a subset of Haskell 98.
This will allow Clean modules to import Haskell mod-
ules, and vice versa. Furthermore, we will be able to
use some of Clean’s features in Haskell code, and vice
versa. For example, we could define a Haskell module
which uses Clean’s uniqueness typing, or a Clean mod-
ule which uses Haskell’s newtypes. The possibilities are
endless!

Future plans

Although a beta version of the new Clean compiler is
released early this year to the institution in Nĳmegen,
there is still a lot of work to do before we are able to
release it to the outside world. So we cannot make any
promises regarding the release date. Just keep an eye
on the Clean mailing lists for any important announce-
ments!

Further reading

http://wiki.clean.cs.ru.nl/Mailing_lists

2.5 SAPL, Simple Application
Programming Language

Report by: Jan Martin Jansen
Status: experimental, active development

SAPL is an experimental interpreter for a lazy func-
tional intermediate language. The language is more or
less equivalent to the core language of Clean (→ 3.2.3).
SAPL implementations in C and Java exist. It is possi-
ble the write SAPL programs directly, but the preferred
use is to generate SAPL. We already implemented an
experimental version of the Clean compiler that gen-
erates SAPL as well. The Java version of the SAPL
interpreter can be loaded as a PlugIn in web applica-
tions. Currently we use it to evaluate tasks from the
iTask system (→ 6.8.1) at the client side and to handle
(mouse) events generated by a drawing canvas PlugIn.

Future plans

For the near future we have planned to make the Clean
to SAPL compiler available in the standard Clean dis-
tribution. Also some further performance improve-
ments of SAPL are planned.

14

http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/Ehc/Shuffle
http://www.cs.uu.nl/wiki/Ehc/Ruler
http://wiki.clean.cs.ru.nl/Mailing_lists

Further reading

◦ http://home.hetnet.nl/~janmartinjansen/saplinter
◦ http://home.hetnet.nl/~janmartinjansen/lambda
◦ http://www.st.cs.ru.nl/Onderzoek/Publicaties/

publicaties.html

2.6 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman, Jason Reich
Status: experimental

Over the past year, work on the Reduceron has contin-
ued, and we have reached our goal of improving runtime
performance by a factor of six! This has been achieved
through many small improvements, spanning architec-
tural, runtime, and compiler-level advances.
Two main by-products have emerged from the work.

First, York Lava, now available from Hackage, is the
HDL we use. It is very similar to Chalmers Lava,
but supports a greater variety of primitive components,
behavioural description, number-parameterised types,
and a first attempt at a Lava prelude. Second, F-lite is
our subset of Haskell, with its own lightweight toolset.
There remain some avenues for exploration. We have

taken a step towards parallel reduction in the form of
speculative evaluation of primitive redexes, but have
not yet attempted the Reducera —multiple Reducerons
running in parallel. And recently, Jason has been con-
tinuing his work on the F-lite supercompiler (→ 4.1.4),
which is now producing some really nice results.
Alas, the time to take stock and publish a full ac-

count of what we have already done is rapidly ap-
proaching!

Further reading

◦ http://www.cs.york.ac.uk/fp/reduceron/
◦ http://hackage.haskell.org/package/york-lava/

2.7 Platforms

2.7.1 Haskell in Gentoo Linux

Report by: Lennart Kolmodin

Gentoo Linux currently supports GHC 6.10.4, includ-
ing the latest Haskell Platform (→ 5.2) for x86 and
amd64. For previous GHC versions we have binaries
available for alpha, amd64, hppa, ia64, sparc, and x86.
Browse the packages in portage at http://packages.

gentoo.org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.

There is also a Haskell overlay providing another 300
packages. Thanks to the haskell developers using Cabal
and Hackage (→ 5.1), we have been able to write a
tool called “hackport” (initiated by Henning Günther)
to generate Gentoo packages that rarely need much
tweaking.
Read about the Gentoo Haskell Overlay at http://

haskell.org/haskellwiki/Gentoo. Using Darcs (→ 6.1.1),
it is easy to keep updated and send patches. It is
also available via the Gentoo overlay manager “lay-
man”. If you choose to use the overlay, then problems
should be reported on IRC (#gentoo-haskell on freen-
ode), where we coordinate development, or via email
〈haskell@gentoo.org〉.
Through recent efforts we have devoped a tool called

“haskell-updater” http://www.haskell.org/haskellwiki/
Gentoo#haskell-updater. It helps the user when up-
grading GHC versions, fixes breakages from library up-
grades, etc.
As always we are happy to get help hacking on the

Gentoo Haskell framework, hackport, writing ebuilds,
and supporting users. Please contact us on IRC or
email if you are interested!

2.7.2 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Bryan Sullivan, Yaakov Nemoy, Zach

Oglesby, Conrad Meyer, Fedora Haskell
SIG

Status: on-going

The Fedora Haskell SIG is an effort to provide good
support for Haskell in Fedora.
Fedora 12 has just shipped with ghc-6.10.4, haskell-

platform-2009.2.0.2, xmonad, and various new libraries
(cgi, editline, fgl, GLUT, network, OpenGL, tar, time,
utf8-string, X11-xft, xmonad-contrib).
Fedora 13 is expected to ship with ghc-6.12 with

shared libraries, and more new packages in about 6
months.
Contributions to Fedora Haskell are welcome: join

us on #fedora-haskell on Freenode IRC.

Further reading

◦ http://fedoraproject.org/wiki/SIGs/Haskell
◦ http://fedoraproject.org/wiki/Documentation_

Development_Tools_Beat#Haskell

2.7.3 GHC on OpenSPARC

Report by: Ben Lippmeier
Participants: Duncan Coutts, Darryl Gove, Roman

Leshchinskiy
Status: winding down

Through January–April this year I repaired GHC’s
back end support for the SPARC architecture, and

15

http://home.hetnet.nl/~janmartinjansen/saplinter
http://home.hetnet.nl/~janmartinjansen/lambda
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.cs.york.ac.uk/fp/reduceron/
http://hackage.haskell.org/package/york-lava/
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
http://www.haskell.org/haskellwiki/Gentoo#haskell-updater
http://www.haskell.org/haskellwiki/Gentoo#haskell-updater
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/Documentation_Development_Tools_Beat#Haskell
http://fedoraproject.org/wiki/Documentation_Development_Tools_Beat#Haskell

benchmarked its performance on haskell.org’s shiny
new SPARC T2 server. I also spent time refactoring
GHC’s native code generator to make it easier to un-
derstand and maintain, and thus less likely for pieces
to suffer bit-rot in the future.
The T2 architecture is interesting to functional pro-

grammers because of its highly multi-threaded nature.
The T2 has eight cores with eight hardware threads
each, for a total of 64 threads per processor. When one
of the threads suffers a cache miss, another can continue
on with little context switching overhead. All threads
on a particular core also share the same L1 cache, which
supports fast thread synchronization. This is a perfect
fit for parallel lazy functional programs, where mem-
ory traffic is high, but new threads are only a par
away. The following graph shows the performance of
the sumeuler benchmark from the nofib suite when run-
ning on the T2. Note that the performance scales al-
most linearly (perfectly) right up to the point where it
runs out of hardware threads.

The project is nearing completion, pending tying up
some loose ends, but the port is fully functional and
available in the current head branch. More informa-
tion, including benchmarking is obtainable form the
link below. The GHC on OpenSPARC project was gen-
erously funded by Sun Microsystems.

Further reading

http://ghcsparc.blogspot.com

16

http://ghcsparc.blogspot.com

3 Language

3.1 Extensions of Haskell

3.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Ricardo Peña, Yolanda

Ortega-Mallén, Mercedes Hidalgo,
Fernando Rubio, Alberto de la Encina,

Lidia Sánchez-Gil
in Marburg: Jost Berthold, Mischa
Dieterle, Thomas Horstmeyer, Oleg

Lobachev, Rita Loogen
Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s main constructs are process abstractions and

process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator (#) :: Process a b -> a ->
b. Higher-level coordination is achieved by defining
skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelize a set of non-trivial benchmark pro-
grams.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Implementation

A major revision of the parallel Eden runtime envi-
ronment for GHC 6.8.1 is available from the Mar-
burg group on request. Support for Glasgow parallel
Haskell (http://haskell.org/communities/05-2009/html/
report.html#sect3.1.2) is currently being added to this
version of the runtime environment. It is planned for
the future to maintain a common parallel runtime en-
vironment for Eden, GpH, and other parallel Haskells.
A parallel Haskell Hackathon will take place in St An-
drews from December 10th till 12th, 2009 to join the

various activities and develop the common parallel run-
time environment further.
Parallel program executions can be visualized using

the Eden trace viewer tool EdenTV. Recent results
show that the Eden system behaves equally well on
workstation clusters and on multi-core machines.

Recent and Forthcoming Publications

◦ Mischa Dieterle, Thomas Horstmeyer, Rita Loogen:
Skeleton Composition Using Remote Data, in: Prac-
tical Aspects of Declarative Programming 2010
(PADL’10), Madrid, Spain, January 2010, Springer
LNCS, to appear.

◦ Alberto de la Encina, I. Rodríguez, Fernando Ru-
bio: pHood: A Tool to Analyze Parallel Func-
tional Programs, in: Symposium on the Implementa-
tion and Application of Functional Languages (IFL)
2009, Technical Report, SHU-TR-CS-2009-09-1, Se-
ton Hall University, New York, USA, September
2009, 85–99.

◦ Jost Berthold, Mischa Dieterle, and Rita Loogen:
Implementing Parallel Google Map-Reduce in Eden,
in: EuroPar 2009, Delft, NL, Springer LNCS 5704,
990–1002.

◦ Jost Berthold, Mischa Dieterle, Oleg Lobachev, Rita
Loogen: Parallel FFT With Eden Skeletons, in
PaCT 2009, Novosibirsk, Russia, Springer LNCS
5698, 73–83.

◦ Jost Berthold, Simon Marlow, Abyd Al Zain, and
Kevin Hammond: Comparing and optimising par-
allel Haskell implementations on multicore, In To-
moya Enokido et al.,editors, 3rd Int. Workshop on
Advanced Distributed and Parallel Network Applica-
tions (ADPNA-2009) IEEE Computer Society, 2009.

◦ Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero,
Yolanda Ortega-Mallén: An Operational Semantics
for Distributed Lazy Evaluation, Trends in Func-
tional Programming, Volume 10, Intellect 2009, to
appear.

◦ Thomas Horstmeyer, Rita Loogen: Grace — Graph-
based Communication in Eden, Trends in Functional
Programming, Volume 10, Intellect 2009, to appear.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.1.2 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu
Status: stable

17

http://haskell.org/communities/05-2009/html/report.html#sect3.1.2
http://haskell.org/communities/05-2009/html/report.html#sect3.1.2
http://www.mathematik.uni-marburg.de/~eden

XHaskell is an extension of Haskell which combines
parametric polymorphism, algebraic data types, and
type classes with XDuce style regular expression types,
subtyping, and regular expression pattern matching.
The latest version can be downloaded via http://code.
google.com/p/xhaskell/

Latest developments

The latest version of the library-based regular expres-
sion pattern matching component is available via the
google code web site. We are currently working on a
paper describing the key ideas of the approach.

3.1.3 HaskellActor

Report by: Martin Sulzmann
Status: stable

The focus of the HaskellActor project is on
Erlang-style concurrency abstractions. See for
details: http://sulzmann.blogspot.com/2008/10/
actors-with-multi-headed-receive.html.
Novel features of HaskellActor include

◦ Multi-headed receive clauses, with support for

◦ guards, and

◦ propagation

The HaskellActor implementation (as a library ex-
tension to Haskell) is available via http://hackage.
haskell.org/cgi-bin/hackage-scripts/package/actor.
The implementation is stable, but there is plenty of

room for optimizations and extensions (e.g. regular
expressions in patterns). If this sounds interesting to
anybody (students!), please contact me.

Latest developments

We are currently working towards a distributed ver-
sion of Haskell actor following the approach of Frank
Huch, Ulrich Norbisrath: Distributed Programming in
Haskell with Ports, IFL’00.

3.1.4 HaskellJoin

Report by: Martin Sulzmann
Status: stable

HaskellJoin is a (library) extension of Haskell to sup-
port join patterns. Novelties are

◦ guards and propagation in join patterns,

◦ efficient parallel execution model which exploits mul-
tiple processor cores.

Latest developments

In this honors thesis, Olivier Pernet (a student of Susan
Eisenbach) provides a nicer monadic interface to the
HaskellJoin library.

Further reading

http://sulzmann.blogspot.com/2008/12/
parallel-join-patterns-with-guards-and.html

3.2 Related Languages

3.2.1 Curry

Report by: Jan Christiansen
Participants: Bernd Braßel, Michael Hanus, Wolfgang

Lux, Sebastian Fischer, and others
Status: active development

Curry is a functional logic programming language with
Haskell syntax. In addition to the standard features of
functional programming like higher-order functions and
lazy evaluation, Curry supports features known from
logic programming. This includes programming with
non-determinism, free variables, constraints, declara-
tive concurrency, and the search for solutions. Al-
though Haskell and Curry share the same syntax, there
is one main difference with respect to how function dec-
larations are interpreted. In Haskell the order in which
different rules are given in the source program has an
effect on their meaning. In Curry, in contrast, the rules
are interpreted as equations, and overlapping rules in-
duce a non-deterministic choice and a search over the
resulting alternatives. Furthermore, Curry allows to
call functions with free variables as arguments so that
they are bound to those values that are demanded for
evaluation, thus providing for function inversion.
There are three major implementations of Curry.

While the original implementation PAKCS (Portland
Aachen Kiel Curry System) compiles to Prolog, MCC
(Münster Curry Compiler) generates native code via a
standard C compiler. The Kiel Curry System (KiCS)
compiles Curry to Haskell aiming to provide nearly
as good performance for the purely functional part as
modern compilers for Haskell do. From these imple-
mentations only MCC will provide type classes in the
near future. Type classes are not part of the current
definition of Curry, though there is no conceptual con-
flict with the logic extensions.
Recently, new compilation schemes for translating

Curry to Haskell have been developed that promise sig-
nificant speedups compared to both the former KiCS
implementation and other existing implementations of
Curry.
There have been research activities in the area of

functional logic programming languages for more than
a decade. Nevertheless, there are still a lot of inter-
esting research topics regarding more efficient compila-

18

http://code.google.com/p/xhaskell/
http://code.google.com/p/xhaskell/
http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://sulzmann.blogspot.com/2008/12/parallel-join-patterns-with-guards-and.html
http://sulzmann.blogspot.com/2008/12/parallel-join-patterns-with-guards-and.html

tion techniques and even semantic questions in the area
of language extensions like encapsulation and function
patterns. Besides activities regarding the language it-
self, there is also an active development of tools con-
cerning Curry (e.g., the documentation tool Curry-
Doc, the analysis environment CurryBrowser, the ob-
servation debuggers COOSy and iCODE, the debugger
B.I.O. (http://www-ps.informatik.uni-kiel.de/currywiki/
tools/oracle_debugger), EasyCheck (http://haskell.org/
communities/05-2009/html/report.html#sect4.3.2), and
CyCoTest). Because Curry has a functional subset,
these tools can canonically be transferred to the func-
tional world.

Further reading

◦ http://www.curry-language.org/
◦ http://wiki.curry-language.org/

3.2.2 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
New since last time:

◦ Version 2.2.4 has been released.

◦ Agda is now available in Ubuntu.

◦ Darin Morrison is currently extending Cabal to sup-
port Agda code.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

3.2.3 Clean

Report by: Thomas van Noort
Participants: Rinus Plasmeĳer, John van Groningen
Status: active development

Clean is a general purpose, state-of-the-art, pure and
lazy functional programming language designed for

making real-world applications. Clean is the only func-
tional language in the world which offers uniqueness
typing. This type system makes it possible in a pure
functional language to incorporate destructive updates
of arbitrary data structures (including arrays) and to
make direct interfaces to the outside imperative world.
Here is a short list with notable features:

◦ Clean is a lazy, pure, and higher-order functional pro-
gramming language with explicit graph rewriting se-
mantics.

◦ Although Clean is by default a lazy language, one can
smoothly turn it into a strict language to obtain op-
timal time/space behavior: functions can be defined
lazy as well as (partially) strict in their arguments;
any (recursive) data structure can be defined lazy as
well as (partially) strict in any of its arguments.

◦ Clean is a strongly typed language based on an ex-
tension of the well-known Milner/Hindley/Mycroft
type inferencing/checking scheme including the com-
mon higher-order types, polymorphic types, abstract
types, algebraic types, type synonyms, and existen-
tially quantified types.

◦ The uniqueness type system in Clean makes it possi-
ble to develop efficient applications. In particular, it
allows a refined control over the single threaded use
of objects which can influence the time and space
behavior of programs. The uniqueness type system
can be also used to incorporate destructive updates
of objects within a pure functional framework. It al-
lows destructive transformation of state information
and enables efficient interfacing to the non-functional
world (to C but also to I/O systems like X-Windows)
offering direct access to file systems and operating
systems.

◦ The Clean type system supports dynamic types, al-
lowing values of arbitrary types to be wrapped in a
uniform package and unwrapped via a type anno-
tation at run-time. Using dynamics, code and data
can be exchanged between Clean applications in a
flexible and type-safe way.

◦ Clean supports type classes and type constructor
classes to make overloaded use of functions and op-
erators possible.

◦ Clean offers records and (destructively updateable)
arrays and files.

◦ Clean has pattern matching, guards, list comprehen-
sions, array comprehensions and a lay-out sensitive
mode.

◦ Clean offers a sophisticated I/O library with which
window based interactive applications (and the han-
dling of menus, dialogs, windows, mouse, keyboard,
timers, and events raised by sub-applications) can

19

http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://haskell.org/communities/05-2009/html/report.html#sect4.3.2
http://haskell.org/communities/05-2009/html/report.html#sect4.3.2
http://www.curry-language.org/
http://wiki.curry-language.org/
http://wiki.portal.chalmers.se/agda/

be specified compactly and elegantly on a very high
level of abstraction.

◦ There is a Clean IDE and there are many libraries
available offering additional functionality.

Future plans

Please see the entry on a Haskell frontend for the Clean
compiler (→ 2.4) for the future plans.

Further reading

◦ http://clean.cs.ru.nl/
◦ http://wiki.clean.cs.ru.nl/

3.2.4 Timber

Report by: Johan Nordlander
Participants: Björn von Sydow, Andy Gill, Magnus

Carlsson, Per Lindgren, Thomas Hallgren,
and others

Status: actively developed

Timber is a general programming language derived
from Haskell, with the specific aim of supporting devel-
opment of complex event-driven systems. It allows pro-
grams to be conveniently structured in terms of objects
and reactions, and the real-time behavior of reactions
can furthermore be precisely controlled via platform-
independent timing constraints. This property makes
Timber particularly suited to both the specification and
the implementation of real-time embedded systems.
Timber shares most of Haskell’s syntax but intro-

duces new primitive constructs for defining classes of re-
active objects and their methods. These constructs live
in the Cmd monad, which is a replacement of Haskell’s
top-level monad offering mutable encapsulated state,
implicit concurrency with automatic mutual exclusion,
synchronous as well as asynchronous communication,
and deadline-based scheduling. In addition, the Tim-
ber type system supports nominal subtyping between
records as well as datatypes, in the style of its precursor
O’Haskell.
A particularly notable difference between Haskell

and Timber is that Timber uses a strict evaluation or-
der. This choice has primarily been motivated by a
desire to facilitate more predictable execution times,
but it also brings Timber closer to the efficiency of tra-
ditional execution models. Still, Timber retains the
purely functional characteristic of Haskell, and also
supports construction of recursive structures of arbi-
trary type in a declarative way.
The first public release of the Timber compiler was

announced in December 2008. It uses the Gnu C
compiler as its back-end and targets POSIX-based
operating systems. Binary installers for Linux and
MacOS X can be downloaded from the Timber web site

timber-lang.org. A bug-fix release (v 1.0.3) was made
available in May 2009.
The current source code repository (also available

on-line) includes a new way of organizing external in-
terfaces, which separates access to OS, hardware or li-
brary services from the definition of a particular run-
time system. This move greatly simplifies the construc-
tion of both external bindings and cross-compilation
targets, which is utilized in on-going development of
Xlib, OpenGL, iPhone as well as ARM7 support.
Other active projects include interfacing the compiler

to memory and execution-time analysis tools, extend-
ing it with a supercompilation pass, and taking a fun-
damental grip on the generation of type error messages.
The latter work will be based on principles developed
for the Helium compiler (→ 2.2).

Further reading

http:://timber-lang.org

3.2.5 Ur/Web

Report by: Adam Chlipala
Status: beta release

Ur/Web is a domain-specific language for building
modern web applications. It is built on top of the
Ur language as a custom standard library with special
compiler support. Ur draws inspiration from a num-
ber of sources in the world of statically-typed func-
tional programming. From Haskell, Ur takes purity,
type classes, and monadic IO. From ML, Ur takes ea-
gerness and a module system with functors and type
abstraction. From the world of dependently-typed pro-
gramming, Ur takes a rich notion of type-level compu-
tation.
The Ur/Web extensions support the core features

of today’s web applications: “Web 1.0” programming
with links and forms, “Web 2.0” programming with
non-trivial client-side code, and interaction with SQL
database backends. Considering programmer produc-
tivity, security, and scalability, Ur/Web has signifi-
cant advantages over the mainstream web frameworks.
Novel facilities for statically-typed metaprogramming
enable new styles of abstraction and modularity. The
type system guarantees that all kinds of code inter-
pretable by browsers or database servers are treated as
richly-typed syntax trees (along the lines of familiar ex-
amples of GADTs), rather than as “strings”, thwarting
code injection attacks. The whole-program optimizing
compiler generates fast native code which does not need
garbage collection.
The open source toolset is in beta release now and

should be usable for real projects. I expect the core
feature set to change little in the near future, and the
next few releases will probably focus on bug fixes and
browser compatibility.

20

http://clean.cs.ru.nl/
http://wiki.clean.cs.ru.nl/
timber-lang.org
http:://timber-lang.org

Further reading

http://www.impredicative.com/ur/

3.3 Type System / Program Analysis

3.3.1 Free Theorems for Haskell (and Curry)

Report by: Janis Voigtländer
Participants: Daniel Seidel, Jan Christiansen

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs
to be refined and extended. We aim to provide such
new theoretical foundations, as well as to apply the
theoretical results to practical problems. Recent pub-
lications are “Taming Selective Strictness” (ATPS’09)
and “Free Theorems for Functional Logic Programs”
(PLPV’10). The latter, joint work with Jan Chris-
tiansen, considers the situation when moving from
Haskell to Curry (→ 3.2.1).
On the practical side, we maintain a library and tools

for generating free theorems from Haskell types, origi-
nally implemented by Sascha Böhme and with contri-
butions from Joachim Breitner. Both the library and
a shell-based tool are available from Hackage (as free-
theorems and ftshell, respectively). There is also a web-
based tool at http://linux.tcs.inf.tu-dresden.de/~voigt/
ft. General features include:

◦ three different language subsets to choose from

◦ equational as well as inequational free theorems

◦ relational free theorems as well as specializations
down to function level

◦ support for algebraic data types, type synonyms and
renamings, type classes

While the web-based tool is restricted to algebraic data
types, type synonyms, and type classes from Haskell
standard libraries, the shell-based tool also enables the
user to declare their own algebraic data types and so
on, and then to derive free theorems from types involv-
ing those. A distinctive feature of the web-based tool
is to export the generated theorems in PDF format.
By popular demand (≥ 1 person), now also the LATEX
source for that PDF can be obtained as output.

Further reading

http://www.iai.uni-bonn.de/~jv/project/

3.3.2 The Disciplined Disciple Compiler (DDC)

Report by: Ben Lippmeier
Status: alpha, active

See: http://haskell.org/communities/05-2009/html/
report.html#sect3.3.2.

21

http://www.impredicative.com/ur/
http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://www.iai.uni-bonn.de/~jv/project/
http://haskell.org/communities/05-2009/html/report.html#sect3.3.2
http://haskell.org/communities/05-2009/html/report.html#sect3.3.2

4 Tools

4.1 Transforming and Generating

4.1.1 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell which makes
it easy to write catamorphisms (that is, functions that
do to any datatype what foldr does to lists). You can
define tree walks using the intuitive concepts of inher-
ited and synthesized attributes, while keeping the full
expressive power of Haskell. The generated tree walks
are efficient in both space and time.
Idiomatic tree computations are neatly expressed in

terms of copy, default, and collection rules. Computed
results can masquerade as subtrees and be analyzed
accordingly. The order in which to visit the tree is
derived automatically from the attribute computations;
the tree walk is a single traversal from the perspective
of the programmer.
The system is in use by a variety of large and small

projects, such as the Utrecht Haskell Compiler UHC,
the editor Proxima for structured documents, the He-
lium compiler (→ 2.2), the Generic Haskell compiler,
and UUAG itself. The current version is 0.9.12 (Oc-
tober 2010), is extensively tested, and is available on
Hackage.
We recently added support for building AG files

through Cabal. A small Cabal plugin is installed upon
installation of UUAG, which provides a userhook that
deals with AG files and their dependencies.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc-0.9.12

4.1.2 AspectAG

Report by: Marcos Viera
Participants: Doaitse Swierstra, Wouter Swierstra
Status: experimental

AspectAG is a library of strongly typed Attribute
Grammars implemented using type-level programming.

Introduction

Attribute Grammars (AGs), a general-purpose formal-
ism for describing recursive computations over data

types, avoid the trade-off which arises when building
software incrementally: should it be easy to add new
data types and data type alternatives or to add new
operations on existing data types? However, AGs are
usually implemented as a pre-processor, leaving e.g.
type checking to later processing phases and making
interactive development, proper error reporting and
debugging difficult. Embedding AG into Haskell as
a combinator library solves these problems. Previ-
ous attempts at embedding AGs as a domain-specific
language were based on extensible records and thus
exploiting Haskell’s type system to check the well-
formedness of the AG, but fell short in compactness
and the possibility to abstract over oft occurring AG
patterns. Other attempts used a very generic map-
ping for which the AG well-formedness could not be
statically checked. We present a typed embedding of
AG in Haskell satisfying all these requirements. The
key lies in using HList-like typed heterogeneous collec-
tions (extensible polymorphic records) and expressing
AG well-formedness conditions as type-level predicates
(i.e., typeclass constraints). By further type-level pro-
gramming we can also express common programming
patterns, corresponding to the typical use cases of mon-
ads such as Reader, Writer, and State. The paper
presents a realistic example of type-class-based type-
level programming in Haskell.

Background

The approach taken in AspectAG was proposed by
Marcos Viera, Doaitse Swierstra, and Wouter Swier-
stra in the ICFP 2009 paper “Attribute Grammars Fly
First-Class: How to do aspect oriented programming
in Haskell”.

Further reading

http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

4.1.3 HFusion

Report by: Facundo Dominguez
Participants: Alberto Pardo
Status: experimental

HFusion is an experimental tool for optimizing Haskell
programs. It is based on an algebraic approach where
functions are internally represented in terms of a recur-
sive program scheme known as hylomorphism. The tool
performs source to source transformations by the ap-
plication of a program transformation technique called
fusion. The aim of fusion is to reduce memory manage-
ment effort by eliminating the intermediate data struc-

22

http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc-0.9.12
http://www.cs.nott.ac.uk/~gmh/icfp09.html
http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

tures produced in function compositions.
We offer a web interface to test the technique on user-

supplied recursive definitions. The user can ask HFu-
sion to transform a composition of two functions into
an equivalent program which does not build the inter-
mediate data structure involved in the composition. In
future developments of the tool we plan to find fusable
compositions within programs automatically.
In its current state, HFusion is able to fuse composi-

tions of general recursive functions, including primitive
recursive functions like dropWhile or factorial, func-
tions that make recursion over multiple arguments like
zip, zipWith or equality predicates, mutually recursive
functions, and (with some limitations) functions with
accumulators like foldl. In general, HFusion is able to
eliminate intermediate data structures of regular data
types (sum-of-product types plus different forms of gen-
eralized trees).

Further reading

◦ Documentation about the tool can be found in HFu-
sion home

◦ HFusion web interface is available from this URL

4.1.4 Optimus Prime

Report by: Jason Reich
Participants: Colin Runciman, Matthew Naylor
Status: experimental

Optimus Prime is project developing a supercompiler
for programs written in F-lite, the subset of Haskell
used by the Reduceron (→ 2.6). It draws heavily on
Neil Mitchell’s work on the Supero supercompiler for
YHC Core.
The project is still at the highly experimental stage

but preliminary results are very encouraging. The pro-
cess appears to produce largely deforested programs
where higher-order functions have been specialised.
This, as a consequence, appears to enable further

gains from mechanisms such as speculative evaluation
of primitive redexes on the Reduceron architecture.
Optimus Prime supercompilation has led to a 74%

reduction in the number of Reduceron clock-cycles re-
quired to execute some micro-examples.
Work continues on improving the execution time

of the supercompilation transformation and improving
the performance of the supercompiled programs.

Contact

http://www.cs.york.ac.uk/people/?username=jason

Further reading

http://optimusprime.posterous.com/

4.1.5 Derive

Report by: Neil Mitchell
Status: v2.0

The Derive tool is used to generate formulaic instances
for data types. For example given a data type, the De-
rive tool can generate over 25 instances, including the
standard ones (Eq, Ord, Enum etc.) and others such
as Binary and Functor. Derive can be used with SYB,
Template Haskell or as a standalone preprocessor. This
tool serves a similar role to DrIFT, but with additional
features.

Further reading

http://community.haskell.org/~ndm/derive/

4.1.6 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.
The program is stable and can take on large docu-

ments.
The current version is 1.14 and is soon going to be

replaced with 1.15, a maintenance release that fixes
some problems mainly with the Windows version, but
will not introduce any new features.

23

http://www.fing.edu.uy/inco/proyectos/fusion/
http://www.fing.edu.uy/inco/proyectos/fusion/
http://www.fing.edu.uy/inco/proyectos/fusion/tool/
http://www.cs.york.ac.uk/people/?username=jason
http://optimusprime.posterous.com/
http://community.haskell.org/~ndm/derive/

Since version 1.14, lhs2TEX has an experimental
mode for typesetting Agda code.

Further reading

http://www.cs.uu.nl/~andres/lhs2tex

4.2 Analysis and Profiling

4.2.1 SourceGraph

Report by: Ivan Lazar Miljenovic
Status: version 0.5.5.0

SourceGraph is a utility program aimed at helping
Haskell programmers visualize their code and perform
simple graph-based analysis (representing entities as
nodes in the graphs and function calls as directed
edges). It is a sample usage of the Graphalyze li-
brary (→ 5.7.2), which is designed as a general-purpose
graph-theoretic analysis library. These two pieces of
software were originally developed as the focus of my
mathematical honors thesis, “Graph-Theoretic Analy-
sis of the Relationships Within Discrete Data”.
Whilst fully usable, SourceGraph is currently lim-

ited in terms of input and output. It analyses all .hs
and .lhs files recursively found in the provided di-
rectory, parsing most aspects of Haskell code (cannot
parse Haskell code using CPP, HaRP, TH, FFI and
XML-based Haskell code; difficulty parsing Data Fam-
ily instances, unknown modules and record puns and
wildcards). The results of the analysis are created in
an Html file in a “SourceGraph” subdirectory of the
project’s root directory.
Changes since the previous release of HCAR include:

◦ Can now analyse a project from the Cabal file or an
overall base module.

◦ Now parses data definitions and class/instance dec-
larations.

◦ Usage of colour and shapes to indicate different types
of entities and entity relationships with a legend to
explain the differences.

◦ Removal of the Relative Neighbourhood clustering
algorithm (as it didn’t provide much useful informa-
tion).

Current analysis algorithms utilized include: alter-
native module groupings, whether a module should be
split up, root analysis, clique and cycle detection as well
as finding functions which can safely be compressed
down to a single function. Please note however that
SourceGraph is not a refactoring utility, and that its
analyses should be taken with a grain of salt: for exam-
ple, it might recommend that you split up a module,

because there are several distinct groupings of func-
tions, when that module contains common utility func-
tions that are placed together to form a library module
(e.g., the Prelude).
Sample SourceGraph analysis reports can be

found at http://code.haskell.org/~ivanm/Sample_
SourceGraph/SampleReports.html. A tool paper on
SourceGraph has been accepted for the ACM SIG-
PLAN 2010 Workshop on Partial Evaluation and
Program Manipulation.

Further reading

◦ http://hackage.haskell.org/package/SourceGraph
◦ http://ivanmiljenovic.files.wordpress.com/2008/11/

honoursthesis.pdf

4.2.2 HLint

Report by: Neil Mitchell
Status: v1.6

HLint is a tool that reads Haskell code and suggests
changes to make it simpler. For example, if you call
maybe foo id it will suggest using fromMaybe foo in-
stead. HLint is compatible with almost all Haskell ex-
tensions, and can be easily extended with additional
hints.
There have been numerous feature improvements

since the last HCAR. HLint can now spot where you
have used a map or fold, gives many more hints, warns
about redundant extensions etc. HLint is now used by
the Darcs team and is one of the most popular appli-
cations on Hackage.

Further reading

http://community.haskell.org/~ndm/hlint/

4.2.3 hp2any

Report by: Patai Gergely
Status: experimental, on hold

This project was born during the 2009 Google Summer
of Code under the name “Improving space profiling ex-
perience”. The name hp2any covers a set of tools and
libraries to deal with heap profiles of Haskell programs.

24

http://www.cs.uu.nl/~andres/lhs2tex
http://code.haskell.org/~ivanm/Sample_SourceGraph/SampleReports.html
http://code.haskell.org/~ivanm/Sample_SourceGraph/SampleReports.html
http://www.program-transformation.org/PEPM10
http://www.program-transformation.org/PEPM10
http://www.program-transformation.org/PEPM10
http://hackage.haskell.org/package/SourceGraph
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://community.haskell.org/~ndm/hlint/

At the present moment, the project consists of three
packages:

◦ hp2any-core: a library offering functions to read
heap profiles during and after run, and to perform
queries on them.

◦ hp2any-graph: an OpenGL-based live grapher that
can show the memory usage of local and remote pro-
cesses (the latter using a relay server included in the
package), and a library exposing the graphing func-
tionality to other applications.

◦ hp2any-manager: a GTK application that can dis-
play graphs of several heap profiles from earlier runs.

The project also aims at replacing hp2ps by reimple-
menting it in Haskell and possibly adding new output
formats. The manager application shall be extended
to display and compare the graphs in more ways, to
export them in other formats and also to support live
profiling right away instead of delegating that task to
hp2any-graph.

Further reading

http://www.haskell.org/haskellwiki/Hp2any

4.3 Development

4.3.1 Hoogle — Haskell API Search

Report by: Neil Mitchell
Status: v4.0

See: http://haskell.org/communities/05-2009/html/
report.html#sect4.4.1.

4.3.2 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Heat was designed
for novice students learning the functional program-
ming language Haskell. Heat provides a small num-
ber of supporting features and is easy to use. Heat is
portable, small and works on top of the Haskell inter-
preter Hugs.
Heat provides the following features:

◦ Editor for a single module with syntax-highlighting
and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the source line
is highlighted and additional error explanations are
provided.

◦ Shows a program summary in a tree structure, giving
definitions of types and types of functions . . .

◦ Automatic checking of all (Boolean) properties of a
program; results shown in summary.

Over the summer 2009 Heat was completely re-
engineered to provide a simple and clean internal struc-
ture for future development. This new version still
misses a few features compared to the current 3.1 ver-
sion and hence a new release will only appear in 2010.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

4.3.3 HaRe — The Haskell Refactorer

Report by: Simon Thompson
Participants: Huiqing Li, Chris Brown, Chaddaï Fouché,

Claus Reinke

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactor-
ings in Haskell. The HaRe tool is now in its fifth major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalization and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.
In order to allow users to extend HaRe themselves,

HaRe includes an API for users to define their own
program transformations, together with Haddock doc-
umentation. Please let us know if you are using the
API.
Snapshots of HaRe are available from our webpage,

as are related presentations and publications from
the group (including LDTA’05, TFP’05, SCAM’06,
PEPM’08, PEPM’10, Huiqing’s PhD thesis and Chris’s

25

http://www.haskell.org/haskellwiki/Hp2any
http://haskell.org/communities/05-2009/html/report.html#sect4.4.1
http://haskell.org/communities/05-2009/html/report.html#sect4.4.1
http://www.cs.kent.ac.uk/projects/heat/

PhD thesis). The final report for the project appears
there, too.
Chris Brown has precently passed his PhD; his PhD

thesis entitled “Tool Support for Refactoring Haskell
Programs” is available from our webpage.

Recent developments

◦ More structural and datatype-based refactorings
have been studied by Chris Brown, including trans-
formation between let and where, generative fold-
ing, introducing pattern matching, and introducing
case expressions;

◦ Clone detection and elimination support has been
added, to allow the automatic detection and semi-
automatic elimination of duplicated code in Haskell.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

4.3.4 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.1.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
The DarcsWatch internals were changed during the

Darcs hacking sprint in Vienna, to allow for a deeper in-
tegration into the roundup bug tracking instance used
by the Darcs projects. Also, other extensions of darc-
swatch are easier now. DarcsWatch continues to be
used by the xmonad project (→ 6.1.2) and a few de-
velopers. At the time of writing, it was tracking 41
repositories and 2627 patches submitted by 162 users.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

4.3.5 HSFFIG

Report by: Dmitry Golubovsky
Status: release

Haskell FFI Binding Modules Generator (HSFFIG) is
a tool which parses C include files (.h) and generates
Haskell Foreign Functions Interface import declarations
for all functions, #define’d constants (where possible),
enumerations, and structures/unions (to access their
members). It is assumed that the GNU C Compiler and

Preprocessor are used. Auto-generated Haskell mod-
ules may be imported into applications to access the
foreign library’s functions and variables.
HSFFIG has been in development since 2005, and

was recently released on Hackage. The current version
is 1.1.2 which is mainly a bug-fix release for the version
1.1.
The package provides a small library to link with

programs using auto-generated imports, and two exe-
cutable programs:

◦ hsffig: a filter program which reads pre-processed
include files from standard input, and produces one
large .hsc file;

◦ ffipkg: a program which automates the process of
building a Cabal package out of C include files by the
means of automated running hsffig and other tools
necessary to build a Haskell package.

Further reading

◦ The HSFFIG package on Hackage
http://hackage.haskell.org/package/HSFFIG

◦ The HSFFIG Tutorial
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial

◦ The FFI Imports Packaging Utility
http://www.haskell.org/haskellwiki/FFI_imports_
packaging_utility

26

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://hackage.haskell.org/package/HSFFIG
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility

5 Libraries

5.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the Common Architecture for Building Appli-
cations and Libraries. It defines a common interface
for defining and building Haskell packages. It is imple-
mented as a Haskell library and associated tools which
allow developers to easily build and distribute pack-
ages.
Hackage is a distribution point for Cabal packages.

It is an online database of Cabal packages which can be
queried via the website and client-side software such as
cabal-install. Hackage enables end-users to download
and install Cabal packages.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

There have been no new releases since the last HCAR,
however there will soon be a release of Cabal-1.8 and
a corresponding release of cabal-install. The primary
change is that these releases will work with GHC 6.12.
There is also a new “cabal init” command to help users
create an initial “.cabal” file and a feature to maintain
an HTML contents page for the Haddock documenta-
tion for all installed packages.
In addition there will be a minor release of cabal-

install-0.6.x for users of GHC-6.10; the main change
being a slight tweak in behaviour that should help with
the general push to get packages to transition from base
3 to base 4.
Since the last report, cabal-install is now in wider use

thanks to being included in the Haskell Platform (→
5.2) and being packaged by various Linux distributions.
Hackage growth continues to be strong. For the sec-

ond 6-month period in a row there has been 50% growth
in the number of packages. There are now well over
1,500 different packages.

Looking forward

As ever, there are many improvements we want to make
to Cabal, cabal-install and Hackage but our limiting
factor is the amount of volunteer development time.
We have over 100 open bugs and 150 open feature re-

quests. Many of these would require relatively little
time for any competent Haskell hacker.
The other important project that people should con-

sider helping out with is the new Hackage server im-
plementation, based on Happstack. The current Hack-
age server has several widely acknowledged limitations.
The new design should enable us to add many of the
new features that users so frequently request. There
has been some progress on this in the last few months
but it needs some more work before we can consider a
transition.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.

org/
◦ Bug tracker: http://hackage.haskell.org/trac/

hackage/

5.2 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of a new
“blessed” set of libraries and tools on which to build fur-
ther Haskell libraries and applications. It takes the best
packages from the more than 1500 on Hackage (→ 5.1).
It is intended to provide a comprehensive, stable, and
quality tested base for Haskell projects to work from.
Historically, GHC has shipped with a collection of

packages under the name extralibs. As of GHC 6.12
the task of shipping an entire platform is being trans-
ferred to the Haskell Platform.

Recent progress

We had the first major release of the platform earlier
this year and followed that up with 2 further minor re-
leases. The last of these uses GHC 6.10.4 and is avail-
able on Windows, OS X, as a generic Unix tarball and
is included in several Linux distributions.
We established a steering committee to guide the dis-

cussions on the libraries mailing list to ensure that the
necessary decisions do actually get made, recorded and
communicated to the release engineering team.
The steering committee drafted a new procedure for

adding packages to the Haskell Platform and this has
now been ratified by the libraries mailing list. The
new procedure involves writing a package proposal and
discussing it on the libraries mailing list with the aim

27

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/

of reaching a consensus. Details of the procedure are
on the development wiki.

Looking forward

There had been a plan for a second major release of the
platform using GHC 6.10, however that has now been
shelved and the next major release will be in January
and will use GHC 6.12. In the meantime, for people
testing their packages with the GHC 6.12 release can-
didates, there will be a source-only beta version avail-
able.
Future major releases will be on a 6 month schedule.

Major releases may include new and updated packages
while minor releases will only contain bug fixes and
fixes for packaging problems.
We would like to invite package authors to pro-

pose new packages for the upcoming major releases.
We also invite the rest of the community to take
part in the review process on the libraries mailing list
libraries@haskell.org.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform
◦ Download: http://hackage.haskell.org/platform/
◦ Wiki: http://trac.haskell.org/haskell-platform/
◦ Adding packages: http://trac.haskell.org/
haskell-platform/wiki/AddingPackages

5.3 Auxiliary Libraries

5.3.1 hmatrix

Report by: Alberto Ruiz
Status: stable, maintained

The hmatrix library is a purely functional interface to
numerical linear algebra, internally implemented using
GSL, BLAS, and LAPACK. The latest stable version
is available from Hackage.
Recent work includes the experimental library hTen-

sor (→ 5.3.2) for multidimensional arrays and simple
tensor computations.

Further reading

http://www.hmatrix.googlepages.com

5.3.2 hTensor

Report by: Alberto Ruiz
Status: experimental, active development

hTensor is an experimental library for multidimen-
sional arrays, oriented to support simple tensor com-
putations and multilinear algebra. Array dimensions

(indices) are selected by name in expressions and Ein-
stein’s summation convention for repeated indices is au-
tomatically applied. We provide two main data types:
simple arrays in which contractions only require equal
dimension size, and tensors, whose indices are labeled
as covariant or contravariant (subindex or superindex),
and contractions can only be done on pairs of comple-
mentary indices. Arguments are automatically made
conformant by replicating them along extra dimensions
appearing in an operation. There is also preliminary
support for geometric algebra and tensor decomposi-
tions.
The library has a purely functional interface: ar-

rays are immutable, and operations typically work on
whole structures which can be assembled and decom-
posed using simple primitives. It is built on top of
hmatrix (→ 5.3.1), so coordinates are internally stored
in C arrays and tensor products are implemented using
BLAS. Therefore, big arrays can in principle be effi-
ciently processed, although some functions are naively
defined and not optimized. Consistency of dimension
sizes is currently checked at run time. Future work in-
cludes static checking of conformability and a GUI for
tensor diagrams.
A tutorial can be found in the project’s web page.

Further reading

http://perception.inf.um.es/tensor

5.3.3 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van Keeken im-
plemented a library to data mine logged Helium (→ 2.2)
programs to investigate aspects of how students pro-
gram Haskell, how they learn to program, and how
good Helium is in generating understandable feedback
and hints. The software can be downloaded from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Neon, which also
gives some examples of output generated by the sys-
tem. The downloads only contain a small sample of
loggings, but it will allow programmers to play with it.
The recent news is that a paper about Neon will

be published at SLE (1st Conference on Software Lan-
guage Engineering), where it came under the heading
of Tools for Language Usage.
On that note, there has been a posting by Simon

Thompson, Sally Fincher and myself for a PhD stu-
dent to work on understanding how students learn to
program (in Haskell), in Kent. Also, recently I acquired
a new master student to continue to the work of Pe-
ter van Keeken. One of this tasks will be to investigate
the kind of parse errors students make, and continue to
make. In the process, he shall add context properties
(did the student pass or fail, what kind of programming
background can we expect him or her to have) to our

28

http://haskell.org/haskellwiki/Haskell_Platform
http://hackage.haskell.org/platform/
http://trac.haskell.org/haskell-platform/
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://www.hmatrix.googlepages.com
http://perception.inf.um.es/tensor
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon

database so that they can be employed by queries to
increase external validity.

5.3.4 leapseconds-announced

Report by: Björn Buckwalter
Status: stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondTable with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.
Version 2009 of leapseconds-announced contains all

leap seconds up to 2009-01-01. A new version will be
uploaded if/when the iers announces a new leap sec-
ond.

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/leapseconds-announced

◦ http://github.com/bjornbm/leapseconds-announced

5.4 Parsing and Transforming

5.4.1 ChristmasTree

Report by: Marcos Viera
Participants: Doaitse Swierstra, Eelco Lempsink
Status: experimental

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.5.7.

5.4.2 Utrecht Parser Combinator Library: New
version

Report by: Doaitse Swierstra
Status: actively developed

The Utrecht Parser Combinator library has remained
largely unmodified for the last five years, and has served
us well. Over the years, however, new insights have
grown, and with the advent of GADTs some internals
could be simplified considerably. The Lernet summer
school in February 2008 (http://www.fing.edu.uy/inco/
eventos/lernet2008/) provided an incentive to start a
rewrite of the library; a newly written tutorial will ap-
pear in the lecture notes, which will be published by
Springer in the LNCS series. The text is also available
as a technical report at http://www.cs.uu.nl/research/
techreps/UU-CS-2008-044.html

Features

◦ Much simpler internals than the old li-
brary (http://haskell.org/communities/05-2009/
html/report.html#sect5.5.8).

◦ Online result production, error recovery, combina-
tors for parsing ambiguous grammars, an applicative
interface, a monadic interface.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Fixes a potential black hole which went unnoticed for
years in the code for the monadic bind as presented
by Swierstra and Hughes in the ICFP 2003 paper:
Polish Parsers: Step by Step.

A first version of the new library was recently re-
leased as the uu-parsinglib library, which has found its
place in the Text.ParserCombinators category on Hack-
age.

Future plans

The final library, with an abstract interpretation part
in order to get the parsing speed we got used to, will
be release on Hackage again. We plan to extend the
short tutorial which will appear in the LNCS series (45
pages) into a long tutorial.
Since many aspects of the old library, such as its

applicative interface and the possibility to build e.g.
parser for permutation phrases, have now come avail-
able elsewhere in other packages, we will also try to
make the new library to conform as much as possible
with these new developments.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉.

5.5 Mathematical Objects

5.5.1 dimensional: Statically checked physical
dimensions

Report by: Björn Buckwalter
Status: active, mostly stable

See: http://haskell.org/communities/11-2008/html/
report.html#sect5.6.1.

5.5.2 Halculon: units and physical constants
database

Report by: Jared Updike
Status: web application in beta, database stable

A number of Haskell libraries can represent numeri-
cal values with physical dimensions that are checked
at runtime or compile time (including dimensional and
the Numeric Prelude), but neither provide an exhaus-
tive, searchable, annotated database of units, measures,

29

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://github.com/bjornbm/leapseconds-announced
http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://www.fing.edu.uy/inco/eventos/lernet2008/
http://www.fing.edu.uy/inco/eventos/lernet2008/
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
mailto: doaitse at swierstra.net
http://haskell.org/communities/11-2008/html/report.html#sect5.6.1
http://haskell.org/communities/11-2008/html/report.html#sect5.6.1

and physical constants. Halculon is an interactive unit
database of 4,250 units, with a sample Haskell AJAX
web application, based on the units database created by
Alan Eliasen for the wonderful physical units program-
ming language Frink. (Because each unit in Frink’s
unit.txt database is defined in terms of more basic
unit definitions — an elegant approach in general —
units.txt is inconvenient for looking up a single random
unit; the entire file might need to be parsed to repre-
sent any given constant solely in terms of the base SI
units, which is precisely what the Halculon database
provides.)
Halculon also provides a carefully tuned, user- and

developer-friendly search string database that aims to
make interactive use pleasant. The database tables are
available online and downloadable as UTF-8 text.
The example web application now has a mobile ver-

sion available (tested in iPhone OS 3.1, Safari 3.0, and
Firefox 2.0). For best results on the iPhone or iPod
touch, Add to Home Screen to use the application in
full screen. The calculator works offline, too.

Further reading

◦ http://www.updike.org/articles/Units
◦ http://www.updike.org/halculon/
◦ http://www.updike.org/halcmobile/

5.5.3 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Mikael Johansson
Status: experimental, active development

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.6.2.

5.5.4 AERN-Real and friends

Report by: Michal Konečný
Participants: Amin Farjudian, Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of the following libraries for
fast exact real number arithmetic:

◦ AERN-Real: arbitrary precision safely rounded
interval arithmetic with multiple backends (pure
Haskell floating point numbers, MPFR, machine
doubles) and with support for inner rounding, anti-
consistent intervals and Kaucher arithmetic

◦ AERN-RnToRm: arbitrary precision safely-rounded
arithmetic of piece-wise polynomial function en-
closures (PFEs) for functions over n-dimensional
real intervals with support for inner rounding,
anti-consistent intervals and approximated Kaucher
arithmetic

◦ AERN-RnToRm-Plot: GTK window for inspecting
the graphs of PFEs in one variable (see figure below,
showing a screenshot of an AERN-RnToRm-Plot
window exploring an enclosure of cos(10x) (blue) and
an enclosure of its primitive function (red))

◦ AERN-Net: an implementation of distributed query-
based (i.e., lazy) computation over analytical and ge-
ometrical objects

The development is driven mainly by the needs of our
two research projects. We use the libraries extensively
to:

◦ prototype algorithms for reliable and ultimately con-
verging methods for solving differential equations in
many variables (AERN-RnToRm, AERN-Net)

◦ solve numerical constraint satisfaction problems, es-
pecially those arising from verification of programs
that use floating point numbers (AERN-RnToRm)

For our purposes AERN-Real has been stable for al-
most two years. It needs to be tested for a wider variety
of applications before we can label it as stable. AERN-
RnToRm is now also fairly stable thanks to a period
of debugging and a comprehensive test suite. Never-
theless, it is rather slow as it has not been optimised

30

http://www.updike.org/articles/Units
http://www.updike.org/halculon/
http://www.updike.org/halcmobile/
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2

and there are occasional gaps in its functionality. The
other libraries are even more experimental and incom-
plete. We recently added a useful mouse-driven zoom
and pan feature to the function plot window.
The API of all the libraries is still occasionally chang-

ing but they provide a fairly extensive set of features
and are reasonably well documented. The libraries are
under active development and new features and bug
fixes are expected to be submitted to Hackage in the
coming 12 months. Notable planned additions in this
period include:

◦ optimisations to the function enclosure arithmetic

◦ lazy communication of approximations of higher-
order real functions using role switching

◦ infinite trees of enclosures for interval partial deriva-
tives computed using automatic differentiation

Further reading

See Haddock documentation via Hackage — has links
to research papers.

5.5.5 logfloat

Report by: Wren Ng Thornton
Status: stable?
Current release: 0.12.0.1
Portability: GHC 6.8, GHC 6.10, Hugs Sept2006

The logfloat library provides a type for storing numbers
in the log-domain. This is primarily useful for avoid-
ing underflow when multiplying many small numbers
in probabilistic models.
It also includes support for dealing with IEEE-754

floating point numbers (more) correctly, including: a
class for types with representations for transfinite val-
ues, a class for partially ordered types, efficient and
correct conversion from Real to Fractional, and bug
fixes for Hugs’ Prelude.

Future plans

Add a signed variant so negative numbers can also be
projected into the log-domain.

Further reading

◦ Official source and documentation available on Hack-
age

◦ The development branch is available from http://
community.haskell.org/~wren/

5.5.6 fad: Forward Automatic Differentiation

Report by: Björn Buckwalter
Participants: Barak A. Pearlmutter, Jeffrey Mark

Siskind
Status: active

Fad is an attempt to make as comprehensive and us-
able a forward automatic differentiation (AD) library
as is possible in Haskell. Fad (a) attempts to be cor-
rect, by making it difficult to accidentally get a nu-
merically incorrect derivative; (b) provides not only
first-derivatives, but also a lazy tower of higher-order
derivatives; (c) allows nested use of derivative operators
while using the type system to reject incorrect nesting
(perturbation confusion); (d) attempts to be complete,
in the sense of allowing calculation of derivatives of
functions defined using a large variety of Haskell con-
structs; and (e) tries to be efficient, in the sense of both
the defining properties of forward automatic differen-
tiation and in keeping the constant factor overhead as
low as possible.
Version 1.0 of fad was uploaded to Hackage on

April 3. Recent changes can be found via git clone
git://github.com/bjornbm/fad.git

Further reading

◦ http://github.com/bjornbm/fad
◦ http://flygdynamikern.blogspot.com/2009/04/

announce-fad-10-forward-automatic.html

5.6 Data types and data structures

5.6.1 HList — a library for typed heterogeneous
collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including
extensible polymorphic records and variants (→ 1.3).
HList is analogous to the standard list library, pro-
viding a host of various construction, look-up, filter-
ing, and iteration primitives. In contrast to the reg-
ular lists, elements of heterogeneous lists do not have
to have the same type. HList lets the user formulate
statically checkable constraints: for example, no two
elements of a collection may have the same type (so
the elements can be unambiguously indexed by their
type).
An immediate application of HLists is the imple-

mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field

31

http://community.haskell.org/~wren/
http://community.haskell.org/~wren/
http://github.com/bjornbm/fad
http://flygdynamikern.blogspot.com/2009/04/announce-fad-10-forward-automatic.html
http://flygdynamikern.blogspot.com/2009/04/announce-fad-10-forward-automatic.html

values, where the type of each field is annotated with
its phantom label. We, and now others (Alexandra
Silva, Joost Visser: PURe.CoddFish project), have also
used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell (http:
//darcs.haskell.org/OOHaskell). The HList library relies
on common extensions of Haskell 98.
HList is being used in AspectAG, typed EDSL of at-

tribute grammars, and in HaskellDB. There has been
many miscellaneous changes related to the names of ex-
posed modules, fixity declarations, making hMap and
similar functions maximally lazy, improving error mes-
sages and documentation. A new, 0.2, release of HList
incorporates the patches from HaskellDB developers
Justin Bailey and Brian Bloniarz. The new release has
a working regression test suite.
We are investigating the use of type functions pro-

vided in the new versions of GHC.

Further reading

◦ HList: http://homepages.cwi.nl/~ralf/HList/
◦ OOHaskell: http://homepages.cwi.nl/~ralf/
OOHaskell/

5.6.2 bytestring-trie

Report by: Wren Ng Thornton
Status: active development
Current release: 0.1.4
Portability: Haskell 98 + CPP

The bytestring-trie library provides an efficient imple-
mentation of “dictionaries” mapping strings to values,
using big-endian patricia tries (like Data.IntMap). In
general Trie is more efficient than Map ByteString
because memory and work is shared between strings
with common prefixes, though the specifics will vary
depending on the distribution of keys.

Future plans

◦ Min- and max-views for treating tries as priority
queues.

◦ Efficient intersection and difference functions.

Further reading

◦ Official source and documentation available on Hack-
age.

◦ The development branch is available from http://
community.haskell.org/~wren/.

5.7 Data processing

5.7.1 MultiSetRewrite

Report by: Martin Sulzmann
Status: stable

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.8.3.

5.7.2 Graphalyze

Report by: Ivan Lazar Miljenovic
Status: version 0.8.0.0

The Graphalyze library is a general-purpose, fully ex-
tensible graph-theoretic analysis library, which includes
functions to assist with graph creation and visualiza-
tion, as well as many graph-related algorithms. Also
included is a small abstract document representation,
with a sample document generator utilizing Pandoc (→
6.4.1). Users of this library are able to mix and match
Graphalyze’s algorithms with their own. Changes since
previous versions have focused on refining the contents
of the library and inclusion of new analysis algorithms,
with future plans to re-write the document generation
modules to use pretty-printing functions.
Graphalyze is used in SourceGraph (→ 4.2.1) (which

is the driving force behind improvements to Grapha-
lyze), and was initially developed as part of my Math-
ematics Honours’ thesis, Graph Theoretic Analysis of
Relationships Within Discrete Data. The focus on this
thesis was to develop computational tools to allow peo-
ple to analyze discrete data sets.

Further reading

◦ http://hackage.haskell.org/package/Graphalyze
◦ http://ivanmiljenovic.files.wordpress.com/2008/11/

honoursthesis.pdf

5.8 Generic and Type-Level Programming

5.8.1 uniplate

Report by: Neil Mitchell

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.9.1.

5.8.2 Generic Programming at Utrecht University

Report by: José Pedro Magalhães
Participants: Stefan Holdermans, Johan Jeuring, Sean

Leather, Andres Löh, Thomas van Noort
Status: actively developed

One of the research themes investigated within the
Software Technology Center in the Department of In-

32

http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/OOHaskell
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://community.haskell.org/~wren/
http://community.haskell.org/~wren/
http://haskell.org/communities/05-2009/html/report.html#sect5.8.3
http://haskell.org/communities/05-2009/html/report.html#sect5.8.3
http://hackage.haskell.org/package/Graphalyze
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://haskell.org/communities/05-2009/html/report.html#sect5.9.1
http://haskell.org/communities/05-2009/html/report.html#sect5.9.1

formation and Computing Sciences at Utrecht Univer-
sity is generic programming. Over the last 10 years, we
have played a central role in the development of generic
programming techniques, languages, and libraries.
Currently, we are maintaining four generic program-

ming libraries: emgm, multirec, regular, and syb. We
report on the latter three in this entry; emgm has its own
entry (→ 5.8.3).

multirec This library represents datatypes uniformly
and grants access to sums (the choice between con-
structors), products (the sequence of constructor ar-
guments), and recursive positions. Families of mu-
tually recursive datatypes are supported. Functions
such as map, fold, show, and equality are provided as
examples within the library. Using the library func-
tions on your own families of datatypes requires some
boilerplate code in order to instantiate the frame-
work, but is facilitated by the fact that multirec
contains Template Haskell code that generates these
instantiations automatically.

The multirec library can also be used for type-
indexed datatypes. As a demonstration, the zipper
library is available on Hackage. With this datatype-
generic zipper, you can navigate values of several
types.

The current versions are 0.4 for multirec and 0.3
for zipper. There is ongoing development for
multirec, and new releases are expected soon: we
will likely add more functions and perhaps add
a multirec-extras package as we just did for
regular (see below). We are also working on support
for datatypes with parameters and datatype compo-
sitions.

regular While multirec focuses on support for mu-
tually recursive regular datatypes, regular supports
only single regular datatypes. The approach used is
similar to that of multirec, namely using type fam-
ilies to represent the pattern functor of the datatype
to represent generically. We have recently released
version 0.2 on Hackage, and also an extra package
with more generic functions. Together they pro-
vide a number of typical generic programming exam-
ples, but also a number of less well-known but useful
generic functions: deep seq, QuickCheck’s arbitrary
and coarbitrary, and binary’s get and put.

syb Scrap Your Boilerplate (syb) has been supported
by GHC since the 6.0 release. The library is based
on combinators and a few primitives for type-safe
casting and processing constructor applications. It
was originally developed by Ralf Lämmel and Si-
mon Peyton Jones. Since then, many people have
contributed with research relating to syb or its ap-
plications. Recent work has allowed the separation
of syb into a core module, Data.Data, which comes

with GHC on the base package, and the syb pack-
age, which is available on Hackage. This allows the
development of the library independently of compiler
releases. With GHC version 6.12 it will be possible
to update the syb package, and we plan to release a
new version with more functions and efficiency im-
provements.

We are also working on a new version of our library
for generic rewriting. We have previously described the
rewriting library in a paper and released it on Hackage
as the rewriting package. Currently we are imple-
menting support for families of (possibly mutually) re-
cursive datatypes and preconditions.
Finally, we have been looking at benchmarking and

improving the performance of different libraries for
generic programming (→ 5.8.4).

Further reading

http://www.cs.uu.nl/wiki/GenericProgramming

5.8.3 Extensible and Modular Generics for the
Masses (EMGM)

Report by: Sean Leather
Participants: José Pedro Magalhães, Alexey Rodriguez,

Andres Löh
Status: actively developed

Extensible and Modular Generics for the Masses
(EMGM) is a general-purpose library for generic pro-
gramming with type classes.

Introduction

EMGM is a library for of datatype-generic pro-
gramming using type classes. We represent Haskell
datatypes as values using a sum-of-products structure
representation. The foundation of EMGM allows pro-
grammers to write generic functions by induction on
the structure of datatypes. The use of type classes
in EMGM allows generic functions to support ad-hoc
cases for arbitrary datatypes.
The library provides a sizable (and constantly grow-

ing) collection of ready-to-use generic functions. Here
are some examples of these functions:

◦ Crush, a useful generalization of fold-like opera-
tions that supports flattening, integer operations,
and logic operations on all values of an arbitrary
datatype

◦ Extensible Read and Show functions to which one
might add special cases for certain types

◦ Collect for collecting values of a certain type con-
tained within a value of a different type

◦ ZipWith, a generic version of the standard zipWith

33

http://hackage.haskell.org/package/multirec
http://hackage.haskell.org/package/zipper
http://hackage.haskell.org/package/regular
http://hackage.haskell.org/package/regular-extras
http://hackage.haskell.org/package/regular-extras
http://homepages.cwi.nl/~ralf/syb1/
http://hackage.haskell.org/package/syb
http://www.cs.uu.nl/wiki/bin/view/Alexey/ALightweightApproachToDatatype-GenericRewriting
http://hackage.haskell.org/package/rewriting
http://www.cs.uu.nl/wiki/GenericProgramming
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Crush.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Read.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Show.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Collect.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-ZipWith.html

EMGM also comes with support for standard
datatypes such as lists, Either, Maybe, and tuples.
Adding support for your own datatype is straightfor-
ward using the deriving API.

Background

The ideas for EMGM come from research by Ralf
Hinze, Bruno Oliveira, and Andres Löh. It was fur-
ther explored in a comparison of generic programming
libraries by Alexey Rodriguez, et al. Our particular im-
plementation was developed simultaneously along with
lecture notes for the 2008 Advanced Functional Pro-
gramming Summer School. The article from these lec-
tures has been extended and published as a technical
report.

Recent Development

No changes have been made since the previous report.

Future plans

We plan to continue developing EMGM and to explore
the use of this library in many domains. There should
be a major release before the next report. We welcome
ideas or contributions from the community.

Contact

Let us know if you use EMGM, how you use it, and
where it can be improved. Contact us on the Generics
mailing list.

Further reading

More information can be found on the EMGM web-
site. Download the package and browse the API at the
Hackage page.

5.8.4 Optimizing generic functions

Report by: José Pedro Magalhães
Participants: Stefan Holdermans, Johan Jeuring, Andres

Löh
Status: actively developed

Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. Several generic program-
ming libraries for Haskell have been developed in the
past few years. These libraries have been compared in
detail with respect to expressiveness, extensibility, typ-
ing issues, etc., but performance comparisons have been
brief, limited, and preliminary. It is widely believed
that generic programs run slower than hand-written
code.
At Utrecht University we are looking into the perfor-

mance of different generic programming libraries and
how to optimize them. We have confirmed that generic

programs, when compiled with the standard optimiza-
tion flags of the Glasgow Haskell Compiler (GHC), are
substantially slower than their hand-written counter-
parts. However, we have also found that more advanced
optimization capabilities of GHC can be used to fur-
ther optimize generic functions, sometimes achieving
the same efficiency as hand-written code.
We have benchmarked four generic programming li-

braries: emgm, syb, multirec, and regular. We com-
pare different generic functions in each of these libraries
to a hand-written version. We have concluded that in-
lining plays a crucial role in the optimization of gener-
ics. In some cases, the inliner of GHC can already op-
timize a generic function up to the same performance
of the hand-written version. However, this does not
happen with simple -O1 or -O2 optimization levels: we
need to tweak the unfolding flags to stimulate inlining.
As an example, we show the results of our bench-

mark for the generic show function below. We
present how the libraries perform across different
compiler optimizations: UT60 stands for setting the
-funfolding-use-threshold flag to 60 and CT450
for setting -funfolding-creation-threshold to 450.
We have benchmarked the function on two different
datatypes: a simple binary tree (Tree) and a repre-
sentation of logic expressions (Logic). The results are
plotted relative to the hand-written version compiled
with -O1, on a logarithmic scale of base 2. We can see
that syb and multirec perform much worse than emgm
and regular. More interestingly, though, is that by
tweaking the inlining thresholds we can make regular
as efficient as the hand-written version, and emgm al-
most as efficient.

Our benchmark provides many more interesting re-
sults, which can be seen in our PEPM’10 paper. In
the near future we plan to extend our benchmark and
investigate the cases where simple tweaking of inlining
flags is not sufficient to provide adequate performance.

Further reading

http://dreixel.net/research/pdf/ogie.pdf

34

http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Derive.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-025.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-025.html
http://www.haskell.org/mailman/listinfo/generics
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://hackage.haskell.org/package/emgm
http://dreixel.net/research/pdf/ogie.pdf
http://dreixel.net/research/pdf/ogie.pdf

5.8.5 2LT: Two-Level Transformation

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser, Pablo Berdaguer, Alcino

Cunha, José Nuno Oliveira, Hugo Pacheco
Status: active

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.9.6.

5.8.6 Data.Label — “atoms” for type-level
programming

Report by: Claus Reinke
Status: experimental

A common problem for type-level programming (ex-
tensible record libraries, type-level numbers, . . .) in
Haskell is where to define shared atomic types (record
field labels, type tags, type numerals):

◦ identical types defined in separate modules are not
compatible

◦ common imports defining common types for several
projects hurt modularity

◦ SML-style parameterized modules and type-sharing
are not directly available

Using Template Haskell, and QuasiQuotes in partic-
ular, we can now at least work around this issue, by
splitting the atoms:-) Data.Label provides type let-
ters and combinators for constructing typed “atoms”
from these letters, as well as quasiquoting and Show
instances to hide some of this internal structure.

*Main> [$l|label|]
label
*Main> :t [$l|label|]
[$l|label|] :: Ll :< (La :< (Lb :< (Le :< Ll)))

This workaround lets users choose between shared or
locally defined labels:

module A where module B where
import Data.Label import Data.Label
data MyLabel data MyLabel
x = [$l|label|] x = [$l|label|]
y = undefined::MyLabel y = undefined::MyLabel

module C where
import Data.Label
import A
import B
ok = [A.x,B.x]
fails = [A.y,B.y]

It does so by offering a meta-level commonality: A
and B do not have to agree on a common module to
declare all their common types (Data.Label is unaf-
fected by the specific labels its importers might use),
they only need to agree on a common way of declaring
all their sharable “atomic” types.

Further reading

◦ Example code: http://community.haskell.org/~claus/
misc/labels.hs
http://community.haskell.org/~claus/misc/Data/Label/
TH.hs
http://community.haskell.org/~claus/misc/Data/Label.hs

◦ Discussion: http://www.haskell.org/pipermail/
haskell-cafe/2009-April/059819.html

5.9 User interfaces

5.9.1 Gtk2Hs

Report by: Axel Simon
Participants: Peter Gavin and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows and, of course, various
desktops on Linux, Solaris, FreeBSD, and Mac OS X
using X11.
Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ High quality vector graphics using Cairo

◦ Cross-platform, multi-format multimedia playback
with GStreamer

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Support for the Glade visual GUI builder

◦ Bindings to some Gnome extensions: gio, GConf,
GtkSourceView 1.0 and 2.0

◦ An easy-to-use installer for Windows

◦ Packages for Fedora, Gentoo (→ 2.7.1), Debian, and
FreeBSD

◦ New features added during the last months:
– The terminal widget VTE
– A binding the webkit to display web pages
– More demos and more functions bound

35

http://haskell.org/communities/05-2009/html/report.html#sect5.9.6
http://haskell.org/communities/05-2009/html/report.html#sect5.9.6
http://community.haskell.org/~claus/misc/labels.hs
http://community.haskell.org/~claus/misc/labels.hs
http://community.haskell.org/~claus/misc/Data/Label/TH.hs
http://community.haskell.org/~claus/misc/Data/Label/TH.hs
http://community.haskell.org/~claus/misc/Data/Label.hs
http://www.haskell.org/pipermail/haskell-cafe/2009-April/059819.html
http://www.haskell.org/pipermail/haskell-cafe/2009-April/059819.html

The Gtk2HS library is continually being improved
with new bindings, documentation, and bug fixes.
Outside contributions are always welcome! We have
recently re-surrected our code generator tool which
means that new functions from Gtk+ 2.18.3 can be
bound by copy-and-paste followed by a quick edit of the
C documentation to reflect the Haskell version. This
significantly lowers the burden to help us out, so please
get in touch if you are interested.
Besides cabalizing Gtk2Hs, we are working on concur-
rency support which turns out to be non-trivial in the
face of GHC’s concurrent garbage collector. We plan
to release a new version of Gtk2Hs before Christmas.

Further reading

◦ News, downloads, and documentation: http://
haskell.org/gtk2hs/

◦ Development version: darcs get http://code.
haskell.org/gtk2hs/

5.9.2 HQK

Report by: Wolfgang Jeltsch
Participants: Thomas Mönicke
Status: provisional

HQK is an effort to provide Haskell bindings to large
parts of the Qt and KDE libraries. We have devel-
oped a generator which can produce binding code au-
tomatically. In addition, we have developed a small
Haskell module for accessing object-oriented libraries
in a convenient way. This module also supports parts
of Qt’s signal-slot mechanism. In contrast to the origi-
nal C++-based solution, type correctness of signal-slot
connections is checked at compile time with our library.
We plan to develop a HQK-based UI backend

for the Functional Reactive Programming library
Grapefruit (http://haskell.org/communities/05-2009/
html/report.html#sect6.5.1).

Further reading

http://haskell.org/haskellwiki/HQK

5.10 Graphics

5.10.1 diagrams

Report by: Brent Yorgey
Status: active development

The diagrams library provides an embedded domain-
specific language for creating simple pictures and dia-
grams. Values of type Diagram are built up in a compo-
sitional style from various primitives and combinators,
and can be rendered to a physical medium, such as a file
in PNG, PS, PDF, or SVG format. The overall vision

is for diagrams to become a viable alternative to DSLs
like MetaPost or Asymptote, but with the advantages
of being purely functional and embedded.
For example, consider the following diagram to illus-

trate the 24 permutations of four objects:

The diagrams library was used to create this dia-
gram with very little effort (about ten lines of Haskell,
including the code to actually generate permutations).
The source code for this diagram, as well as other ex-
amples and further resources, can be found at http:
/code.haskell.org/diagrams/.
The library is currently undergoing a major rewrite,

in order to use a more flexible constraint-solving lay-
out engine and abstract out the rendering backend (the
current version depends solely on the Cairo library for
rendering). Other planned features include animation
support, more sophisticated paths and path operations,
and an xmonad-like core/contrib model for incorporat-
ing user-submitted extension modules.

Further reading

◦ http://code.haskell.org/diagrams/
◦ http://byorgey.wordpress.com/2009/09/24/

diagrams-0-2-1-and-future-plans/
◦ http://www.tug.org/metapost.html
◦ http://asymptote.sourceforge.net/

5.10.2 LambdaCube

Report by: Csaba Hruska
Status: experimental, active development

LambdaCube is a 3D rendering engine entirely written
in Haskell.
The main goal of this project is to provide a modern

and feature rich graphical backend for various Haskell
projects, and in the long run it is intended to be a
practical solution even for serious purposes. The en-
gine uses Ogre3D’s (http://www.ogre3d.org) mesh and
material file format, therefore it should be easy to find
or create new content for it. The code sits between the
low-level C API (raw OpenGL, DirectX or anything
equivalent; the engine core is graphics backend agnos-
tic) and the application, and gives the user a high-level
API to work with.
The most important features are the following:

36

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://haskell.org/communities/05-2009/html/report.html#sect6.5.1
http://haskell.org/communities/05-2009/html/report.html#sect6.5.1
http://haskell.org/haskellwiki/HQK
http:/code.haskell.org/diagrams/
http:/code.haskell.org/diagrams/
http://code.haskell.org/diagrams/
http://byorgey.wordpress.com/2009/09/24/diagrams-0-2-1-and-future-plans/
http://byorgey.wordpress.com/2009/09/24/diagrams-0-2-1-and-future-plans/
http://www.tug.org/metapost.html
http://asymptote.sourceforge.net/
http://www.ogre3d.org

◦ loading and displaying Ogre3D models
◦ resource management
◦ modular architecture
If your system has OpenGL and GLUT installed,

the lambdacube-examples package should work out of
the box. The engine is also integrated with the Bullet
physics engine (→ 6.11.7), and you can find a running
example in the lambdacube-bullet package.

Everyone is invited to contribute! You can help
the project by playing around with the code, thinking
about API design, finding bugs (well, there are a lot of
them anyway), creating more content to display, and
generally stress testing the library as much as possible
by using it in your own projects.

Further reading

http://www.haskell.org/haskellwiki/LambdaCubeEngine

5.10.3 GPipe

Report by: Tobias Bexelius
Status: active development

GPipe models the entire graphics pipeline in a purely
functional, immutable and type-safe way. It is built
on top of the programmable pipeline (i.e., non-fixed
function) of OpenGL 2.1 and uses features such as ver-
tex buffer objects (VBO’s), texture objects, and GLSL
shader code synthetisation to create fast graphics pro-
grams. Buffers, textures, and shaders are cached in-
ternally to ensure fast framerate, and GPipe is also
capable of managing multiple windows and contexts.
GPipe’s aim is to be as close to the conceptual graph-
ics pipeline as possible, and not to add any more levels
of abstraction.
In GPipe, you work with four main data types: Prim-

itiveStreams, FragmentStreams, FrameBuffers, and
textures. They are all immutable, and all parameter-
ized on the type of data they contain to ensure type
safety between pipeline stages. By creating your own
instances of GPipes type classes, it is possible to use
additional data types on the GPU.
Version 1.0.1 with documentation is released on

Hackage. Work continues on improving performance of
GPipe, including adding support for mutable resources

in some way. I will also expand the wiki with more ex-
amples and tutorials. Any help would be appreciated!

Further reading

http://www.haskell.org/haskellwiki/GPipe

5.10.4 ChalkBoard

Report by: Andy Gill
Participants: Kevin Matlage, Andy Gill
Status: ongoing

ChalkBoard is a domain specific language for describing
images. The language is uncompromisingly functional
and encourages the use of modern functional idioms.
The novel contribution of ChalkBoard is that it uses
off-the-shelf graphics cards to speed up rendering of
our functional description. The intention is that we
will use ChalkBoard to animate educational videos, as
well as processing streaming videos.
Here is the basic architecture of ChalkBoard.

ChalkBoard
Image

Specification

Deep
DSL

ChalkBoard
IR

OpenGL

GPU

DSL Capture
& Compile

//

ChalkBoardBack End

��

The image specification language is a deeply embed-
ded Domain Specific Language (DSL). We capture and
compile our DSL, rather than interpret it directly. In
order to do this, and allow use of a polygon-based back-
end, we have needed to make some interesting compro-
mises, but the language captured remains pure, has
a variant of functors as a control structure, and has
first-class images. We compile this language into an
imperative intermediate representation that has first
class buffers— regular arrays of colors or other entities.
This language is then interpreted by macro-expanding
each intermediate representation command into a set of
OpenGL commands. In this way, we leverage modern
graphics boards to do the heavy lifting of the language.
A release is planned for early November, and will be

available on Hackage.
The new video processing technology will be pre-

miered at PEPM’10.

Further reading

http://www.ittc.ku.edu/csdl/ChalkBoard

37

http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.haskell.org/haskellwiki/GPipe
http://www.program-transformation.org/PEPM10/SpecialFeature
http://www.ittc.ku.edu/csdl/ChalkBoard

5.10.5 graphviz

Report by: Ivan Lazar Miljenovic
Status: version 2999.6.0.0

The graphviz library provides Haskell bindings to the
GraphViz suite of tools for visualising graphs. This
library was originally written by Matthew Sackman,
but has been maintained (and almost completely re-
written) by myself since the 2009.5.1 release.
The library supports almost all GraphViz attributes,

and can produce and parse graphs represented in
GraphViz’s Dot language (albeit with the limitation
of strict ordering of Dot statements). Clusters are also
supported, and strings used for labels and identifiers
are automatically quoted appropriately.
Currently supported are conversions from FGL

graphs as well as annotating nodes and edges in FGL
graphs with their positions, etc. Support for other
graph types is planned for a future release.
For a sample graph visualised using the graphviz li-

brary, see SourceGraph (→ 4.2.1).

Further reading

◦ http://hackage.haskell.org/package/graphviz
◦ http://www.graphviz.org/

5.11 Music

5.11.1 Haskore revision

Report by: Henning Thielemann
Participants: Paul Hudak
Status: experimental, active development

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.12.1.

5.11.2 Euterpea

Report by: Paul Hudak
Participants: Eric Cheng, Paul Liu, Donya Quick
Status: experimental, active development

Euterpea is a new Haskell library for computer music
applications. It is a descendent of Haskore and Has-
Sound, and is intended for both educational purposes as
well as serious computer music development. Euterpea
is a “wide-spectrum” library, suitable for high-level mu-
sic representation, algorithmic composition, and anal-
ysis; mid-level concepts such as MIDI; and low-level
audio processing, sound synthesis, and instrument de-
sign. It also includes a “musical user interface”, a set
of computer-music specific GUI widgets such as key-
boards, guitar frets, knobs, sliders, and so on. The
performance of Euterpea is intended to be as good or
better than any existing computer music language – it
can be used for real-time applications, not just using

MIDI, but also using a high-performance back-end for
real-time audio.
Euterpea is being developed at Yale in Paul Hudak’s

research group, where it has become a key component
of Yale’s new Computing and the Arts major. Hudak is
teaching a two-term sequence in computer music using
Euterpea, and is developing considerable pedagogical
material, including a new textbook tentatively titled
“The Haskell School of Music”. The name “Euterpea”
is derived from “Euterpe”, who was one of the nine
Greek Muses (goddesses of the arts), specifically the
Muse of Music.

History

Haskore is a Haskell library developed almost 15
years ago by Paul Hudak at Yale for high-level com-
puter music applications. HasSound is a more recent
Haskell library developed at Yale that serves as a func-
tional front-end to csound’s sound synthesis capabili-
ties. Haskore and HasSound have evolved in a number
of different ways over the years, most notably through
Henning Thielemann’s darcs library for Haskore, to
which many people have contributed. There are many
good ideas in that library, but it has become overly
complex and lacks a coherent design concept.

Future plans

The Euterpea developers’ plan is to shamelessly steal
good ideas from these previous efforts, integrate them
into a coherent new framework, remove dependencies
from as many non-Haskell libraries as possible, add new
features such as musical GUI widgets, and incorporate
new methods for high-performance stream processing
recently developed at Yale, to make Euterpea the li-
brary of choice for discriminating computer music hack-
ers.

Further reading

◦ http://plucky.cs.yale.edu/cs431
◦ http://plucky.cs.yale.edu/cs431/HaskoreSoeV-0.12.

pdf

5.12 Web and XML programming

5.12.1 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 8.3.2)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser

38

http://hackage.haskell.org/package/graphviz
http://www.graphviz.org/
http://haskell.org/communities/05-2009/html/report.html#sect5.12.1
http://haskell.org/communities/05-2009/html/report.html#sect5.12.1
http://plucky.cs.yale.edu/cs431
http://plucky.cs.yale.edu/cs431/HaskoreSoeV-0.12.pdf
http://plucky.cs.yale.edu/cs431/HaskoreSoeV-0.12.pdf

that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml (http://haskell.org/communities/05-2009/html/
report.html#sect5.13.2) and HXML, but introduces
a more general approach for processing XML with
Haskell. The processing model is based on arrows. The
arrow interface is more flexible than the filter approach
taken in the earlier HXT versions and in HaXml. It is
also safer; type checking of combinators becomes pos-
sible with the arrow approach.
HXT consists of two packages, the old first approach

(hxt-filter) based on filters and the newer and more
flexible and safe approach using arrows (hxt). The old
package hxt-filter, will further be maintained to work
with the latest ghc version, but new development will
only be done with the arrow based hxt package.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based on

Tagsoup (→ 5.12.2)
◦ Easy de-/serialization between native Haskell data
and XML by pickler and pickler combinators

◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ HTTP access via Haskell bindings to libcurl
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ An HXT Cookbook for using the toolbox and the

arrow interface
◦ Basic XSLT support
◦ Darcs repository with current development version

(8.3.1) under http://darcs2.fh-wedel.de/hxt

Current Work

Currently mainly maintenance work is done. This in-
cludes space and runtime optimizations.
The HXT library is extensively used in the Holumbus

project (→ 6.3.1), there it forms the basis for the index
generation.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML processing
using arrows and RDF documents, and master theses

describing the design of the toolbox, the DTD val-
idator, the arrow based Relax NG validator, and the
XSLT system.
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT). The conversion between XML
and native Haskell datatypes is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

5.12.2 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.
The library provides a basic data type for a list of un-

structured tags, a parser to convert HTML into this tag
type, and useful functions and combinators for finding
and extracting information. The library has seen real
use in an application to give Hackage (→ 5.1) listings,
and is used in the next version of Hoogle (→ 4.3.1).
Work continues on the API of tagsoup, and the im-

plementation. In particular the development version is
based around the HTML 5 specification, and supports
many flavours of ByteString in addition to String.

Further reading

http://community.haskell.org/~ndm/tagsoup

39

http://haskell.org/communities/05-2009/html/report.html#sect5.13.2
http://haskell.org/communities/05-2009/html/report.html#sect5.13.2
http://darcs2.fh-wedel.de/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://community.haskell.org/~ndm/tagsoup

6 Applications and Projects

6.1 For the Masses

6.1.1 Darcs

Report by: Eric Kow
Participants: Reinier Lamers, Ganesh Sittampalam
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent major release, Darcs 2.3, was in July

2009. This release provides better performance and
easier installation. The next release promises to be a
particularly exciting one:

1. Faster repository-local operations: Darcs devel-
oper Petr Rockai has succesfully completed his 2009
Google Summer of Code program. This work opti-
mizes Darcs’ use of hashed storage repositories, mak-
ing Darcs faster and more scalable in repository-local
operations. We are extremely grateful for generous
support of the Haskell.org mentoring organization,
which has provided us with one of their Google Sum-
mer of Code slots.

2. Hunk-splitting: Ganesh Sittampalam has imple-
mented an improvement that gives users much
greater control over patches created by Darcs. In
the interactive darcs record interface, users can opt
to split hunk patches into smaller pieces, allowing for
more granular patches where appropriate and mak-
ing cherry picking more useful in practice.

These changes and more will appear in the upcoming
Darcs 2.4 release, scheduled for January 2010. We still
have a lot progress to make and are always open to
contributions. Haskell hackers, we need your help!
Darcs is free software licensed under the GNU GPL.

Darcs is a proud member of the Software Freedom Con-
servancy, a US tax-exempt 501(c)(3) organization. We
accept donations at http://darcs.net/donations.html.

Further reading

http://darcs.net

6.1.2 xmonad

Report by: Don Stewart
Status: active development

xmonad is a tiling window manager for X. Windows are
arranged automatically to tile the screen without gaps
or overlap, maximizing screen use. Window manager
features are accessible from the keyboard: a mouse is
optional. xmonad is written, configured, and extensi-
ble in Haskell. Custom layout algorithms, key bindings,
and other extensions may be written by the user in con-
fig files. Layouts are applied dynamically, and different
layouts may be used on each workspace. Xinerama is
fully supported, allowing windows to be tiled on several
physical screens.
The new release 0.7 of xmonad added full support for

the GNOME and KDE desktops, and adoption contin-
ues to grow, with binary packages of xmonad available
for all major distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:

darcs get http://code.haskell.org/xmonad
◦ IRC channel: #xmonad @ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

6.2 Education

6.2.1 Exercise Assistants

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder,

José Pedro Magalhães
Status: experimental, active development

At the Open Universiteit Nederland and Universiteit
Utrecht we are continuing our work on tools that
support students in solving exercises incrementally by
checking intermediate steps. The distinguishing feature
of our tools is the detailed feedback that they provide,
on several levels. For example, we have an online exer-
cise assistant that helps to rewrite logical expressions
into disjunctive normal form. Students get instant feed-
back when solving an exercise, and can ask for a hint
at any point in the derivation. Other areas covered
by our tools are solving equations, reducing matrices
to echelon normal form, and simplifying expressions in
relation algebra.

40

http://darcs.net/donations.html
http://darcs.net
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org

We have just started to explore exercise assistants
for learning how to program in Haskell. A case study
was performed to use programming strategies for auto-
matically assessing student programs submitted for a
first-year course on functional programming in Utrecht.
For each exercise domain, we need the same function-

ality, such as unifying and rewriting terms, generating
exercises, traversing terms, and testing for (top-level)
equality of two terms. For these parts we are currently
using the generic programming libraries Uniplate and
Multirec, which help us to reduce code size and im-
prove the reliability of our code. We have reported
our experiences with generic programming for domain
reasoners, and identified some missing features in the
libraries. Fully exploiting generic programming tech-
niques is ongoing work.
We have recently integrated our tools with the Digi-

tal Mathematics Environment (DWO) of the Freuden-
thal Institute. This environment contains a collection
of applets for practicing exercises in mathematics. A
selected number of applets has been extended with our
facility to automatically generate hints and worked-out
examples, and the first results are promising. To offer
this service, we have introduced views for mathematical
expressions (based on the views proposed by Wadler),
and combined these with our rewriting technology. A
view specifies a canonical form, and abstracts over a set
of algebraic laws. Our feedback services have recently
been released as a Cabal source package.

Further reading

◦ Online exercise assistant, accessible from our project
page.

◦ Bastiaan Heeren and Johan Jeuring. Canonical
Forms in Interactive Exercise Assistants. Pro-
ceedings of Mathematical Knowledge Management
(MKM 2009).

◦ Johan Jeuring, José Pedro Magalhães, and Bastiaan
Heeren. Generic Programming for Domain Reason-
ers. To appear in the Symposium on Trends in Func-
tional Programming (TFP 2009).

◦ Alex Gerdes, Johan Jeuring, and Bastiaan Heeren.
Using Strategies for Assessment of Programming Ex-
ercises. To appear in the Technical Symposium on
Computer Science Education (SIGCSE 2010).

6.2.2 Holmes, plagiarism detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer

Years ago, Jurriaan Hage developed Marble to detect
plagiarism among Java programs. Marble was written
in Perl, takes just 660 lines of code and comments, and
does the job well. The techniques used there, however,
do not work well for Haskell, which is why a master
thesis project was started, starring Brian Vermeer as
the master student, to see if we can come up with a
working system to discover plagiarism among Haskell
programs. We are fortunate to have a large group of
students each year that try their hand at our functional
programming course (120-130 per year), and we have
all the loggings of Helium that we hope can help us tell
whether the system finds enough plagiarism cases. The
basic idea is to implement as many metrics as possible,
and to see, empirically, which combination of metrics
scores well enough for our purposes. The implementa-
tion will be made in Haskell. One of the things that
we are particularly keen about, is to make sure that for
assignments in which students are given a large part of
the solution and they only need to fill in the missing
parts, we still obtain good results.
We are currently at the stage that metrics can be

implemented on top of the Helium front-end. Many of
these metrics will be defined on an auxiliary structure,
the function-call flow graph. Dead-code removal has
taken place, fully qualified names are used throughout,
and template removal is now easily possible.

6.2.3 INblobs — Interaction Nets interpreter

Report by: Miguel Vilaca
Participants: Daniel Mendes
Status: active
Portability: portable (depends on wxHaskell)

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.2.4.

6.2.4 Yahc

Report by: Miguel Pagano
Participants: Renato Cherini
Status: experimental, maintained

The first course on algorithms in CS at Universidad Na-
cional de Córdoba is centered on the derivations of al-
gorithms from specifications, as proposed by R.S. Bird
(Introduction to functional programming using Haskell,
Prentice Hall Series in Computer Science, 1998), E.W.
Dĳkstra (A Discipline of Programming, Prentice Hall,
1976), and R.R. Hoogerwoord (The design of functional

41

http://www.dreixel.net/research/pdf/gpdr.pdf
http://www.dreixel.net/research/pdf/gpdr.pdf
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://hackage.haskell.org/package/ideas-0.5.8
http://ideas.cs.uu.nl/trac
http://ideas.cs.uu.nl/trac
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://www.dreixel.net/research/pdf/gpdr.pdf
http://www.dreixel.net/research/pdf/gpdr.pdf
http://www.haksell.org/Personal_website/Publications_files/StrategiesForAssessment.pdf
http://www.haksell.org/Personal_website/Publications_files/StrategiesForAssessment.pdf
http://haskell.org/communities/05-2009/html/report.html#sect6.2.4
http://haskell.org/communities/05-2009/html/report.html#sect6.2.4

programs: a calculational approach, Technische Uni-
versiteit Eindhoven, 1989). To achieve this goal, stu-
dents should acquire the ability to manipulate complex
predicate formulae; thus the students first learn how
to prove theorems in a propositional calculus similar
to the equational propositional logic of D. Gries and
F.B. Schneier (A Logical Approach to Discrete Math,
Springer-Verlag, 1993).
During the semester students make many derivations

as exercises and it is helpful for them to have a tool
for checking the correctness of their solutions. Yahc
checks the correctness of a sequence of applications of
some axioms and theorems to the formulae students
are trying to prove. The student starts a derivation by
entering an initial formula and a goal and then pro-
ceeds by telling Yahc which axiom will be used and the
expected outcome of applying the axiom as a rewrite
rule; if that rewriting step is correct then the process
continues until the student reaches the goal.
At this moment the tool is in an early stage and we

only consider propositional connectives (some of them
associative-commutative). We expect to extend Yahc
for allowing the resolution of logical puzzles. In the
long term we are planning to consider an equational
calculus with functions defined by induction over lists
and natural numbers.

Further reading

http://www.cs.famaf.unc.edu.ar/~mpagano/yahc/

6.2.5 grolprep

Report by: Dino Morelli
Participants: Betty Diegel
Status: experimental, actively developed

grolprep is a web application for studying the FCC
GROL questions in preparation of taking the exams.
The study of this multiple-choice data is in the flash-

card style. Students can choose from Elements 1, 3
and 8 and can specify any subelement of those three for
specific study. Questions and answers can be randomly
presented.
Additionally, simulations of the randomly-chosen ex-

ams can be practiced with this software.
grolprep will shortly be used by students of Avionics

program at the Burlington Aviation Technology School.

Further reading

◦ Live website: http://ui3.info/grolprep/bin/
fcc-grol-prep.cgi

◦ Project page: http://ui3.info/d/proj/grolprep.html
◦ Source repository: darcs get http://ui3.info/darcs/

grolprep

6.3 Web Development

6.3.1 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Hübel, Sebastian Reese,

Sebastian Schlatt, Stefan Schmidt, Björn
Peemöller, Stefan Roggensack, Alexander

Treptow
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/). The web interface for Hayoo! is
implemented with the Janus web server, written in
Haskell and based on HXT (→ 5.12.1).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.

◦ The Holumbus Search Engine

◦ The Holumbus Distribution Library

◦ The Holumbus Storage System

◦ The Holumbus MapReduce Framework

The search engine package includes the indexer and
search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search

◦ find as you type search

◦ Suggestions

42

http://www.cs.famaf.unc.edu.ar/~mpagano/yahc/
http://ui3.info/grolprep/bin/fcc-grol-prep.cgi
http://ui3.info/grolprep/bin/fcc-grol-prep.cgi
http://ui3.info/d/proj/grolprep.html
http://ui3.info/darcs/grolprep
http://ui3.info/darcs/grolprep
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/

◦ Fuzzy queries

◦ Customizable result ranking

◦ Index structure designed for distributed search

◦ Darcs repository with current development version
under http://darcs2.fh-wedel.de/holumbus

◦ Distributed building of search indexes

Current Work

The indexer and search module will be used and
extended to support the Hayoo! engine for search-
ing the hackage package library (http://holumbus.fh-
wedel.de/hayoo/hayoo.html).
In a follow-up project of Stefan Schmidt’s system, Se-

basian Reese is working on a cookbook for programming
with the MapReduce framework and for giving tuning
and configuration hints. Benchmarks for various small
problems and for generating search indexes have shown
that the architecture scales very well. The thesis with
the final results will be finished end of March 2010.
In a further subproject, the so called Hawk system,

Björn Peemöller and Stefan Roggensack developped a
web framework for Haskell. The results of this master
thesis will be published soon on the Holumbus web site.
The Hawk system is comparable in functionality and

architecture with Ruby on Rail and other web frame-
works. Its architecture follows the MVC pattern. It
consists of a simple relational database mapper for per-
sistent storage of data and a template system for the
view component. This template system has two inter-
esting features: First the templates are valid XHTML
documents. The parts where data has to be filled in
are marked with Hawk specific elements and attributes.
These parts are in a different namespace, so they do not
destroy the XHTML structure. The second interesting
feature is that the templates contain type descriptions
for the values to be filled in. This type information en-
ables a static check whether the models and views fit
together.
The Hawk framework is independent of the Holum-

bus search engine. It will be applicable for the devel-
opment of arbitrary web applications, but one of the
first applications is the reimplementation of the web
interface for the Hayoo! search engine. This project
will be done by Alexander Treptow within the next six
months.

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Darcs web interface, cur-
rent status, requirements, and documentation. Timo
Hübel’s master thesis describing the Holumbus in-
dex structure and the search engine is available
at http://holumbus.fh-wedel.de/branches/develop/doc/

thesis-searching.pdf. Sebastian Schlatt’s thesis deal-
ing with the crawler component is available at http://
holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf. The
thesis of Stefan Schmidt describing the Holumbus
MapReduce is available via http://holumbus.fh-wedel.
de/src/doc/thesis-mapreduce.pdf.

6.3.2 HCluster

Report by: Alberto Gómez Corona

HCluster (provisional name) is a remote clustering mid-
dleware aimed initially at verifying online and offline
computations in distributed electoral processes. Ex-
tended to permit clustering with distributed transac-
tions and cloud computing.

◦ distributed transactions between connected nodes in
the Internet

◦ work with online nodes as well as offline + synchro-
nization

◦ hot plug-in of nodes

◦ no single point of failure/control

◦ theoretical massive scalability, reliability, availability

Any node can initiate a process (that may involve a
transaction, a query, a calculation etc.). The design of
synchronization permits nodes to work in online as well
as offline mode with periodic synchronization with cer-
tain restrictions. The restrictions depend on algebraic
properties of the transactions.
Distribution of data and distributed transactions are

possible. The distribution is transparent to the pro-
grammer, so re-locations of data can be done among
the nodes.
Finished basic services: HTTP protocol, reconnec-

tion, synchronization. Testing synchronization and on-
line clustering now defined and coded the model for
distributed transactions.

Future plans

◦ test distributed transactions
◦ create internet documentation

Contact

〈agocorona@gmail.com〉

6.3.3 JavaScript Monadic Writer

Report by: Dmitry Golubovsky
Status: active development

JavaScript Monadic Writer (JSMW) is an extensible
monadic framework on top of the Haskell DOM bind-
ings. It provides an EDSL to encode JavaScript state-
ments and expressions in typesafe manner. It borrows

43

http://darcs2.fh-wedel.de/holumbus
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
mailto: agocorona at gmail.com

some ideas from HJScript, but uses slightly different
EDSL notation.
The idea behind JSWM is to provide an intermedi-

ate form that could be used as an end-point for con-
version from Haskell Core. The EDSL however may be
considered as a programming tool on its own. While
the EDSL alone is not sufficient for translation of an
arbitrary Haskell program to JavaScript, Haskell type
system is still available to help produce correct code.

Further reading

The jsmw package on Hackage: http://hackage.haskell.
org/cgi-bin/hackage-scripts/package/jsmw

6.3.4 Haskell DOM Bindings

Report by: Dmitry Golubovsky
Status: active development

Haskell DOM bindings is a set of monadic smart
constructors on top of the WebBits representation of
JavaScript syntax to generate JavaScript code that
calls DOM methods and accesses DOM objects’ at-
tributes.
In order to represent the hierarchy of DOM inter-

faces, Haskell type classes are used. For example, for
the interfaces Node and Document (the latter inher-
its from the former) there are two classes: CNode and
CDocument. Also, for each DOM interface, a phantom
data type is defined: TNode, and TDocument in this
case. Phantom types represent concrete values (refer-
ences to DOM objects) while type classes are used for
type constraints in functions working with DOM ob-
jects. The CDocument class is defined as:

class CNode a => CDocument a
data TNode
data TDocument
instance CNode TNode
instance CDocument TDocument
instance CNode TDocument

Type constraints are used to define methods of each
class, e. g.

hasChildNodes :: (Monad mn, CNode this)
=> Expression this -> mn (Expression Bool)

so, hasChildNodes can be called on both Node and
Document, but

createElement :: (Monad mn, CDocument this,
CElement zz)

=> Expression String -> Expression this
-> mn (Expression zz)

only on nodes representing documents.
The bindings were auto-generated from OMG IDL

files provided by the Web Consortium. The IDL to

Haskell converter is based on H/Direct IDL parser. Au-
tomatic IDL conversion is expected to simplify Haskell
Web development because of the large number of
methods and attributes defined in contemporary DOM
whose type signatures are hard and time-consuming to
derive manually.

Further reading

◦ Document Object Model (DOM) Technical Reports
http://www.w3.org/DOM/DOMTR

◦ The DOM package on Hackage
http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/DOM

6.3.5 gitit

Report by: John MacFarlane
Participants: Gwern Branwen, Simon Michael, Henry

Laxen, Anton van Straaten, Robin Green,
Thomas Hartman, Justin Bogner, Kohei

Ozaki, Dmitry Golubovsky, Anton
Tayanovskyy, Dan Cook

Status: active development

Gitit is a wiki built on Happstack and backed by a git
or darcs filestore. Pages and uploaded files can be mod-
ified either directly via the VCS’s command-line tools
or through the wiki’s web interface. Pandoc (→ 6.4.1)
is used for markup processing, so pages may be written
in (extended) markdown, reStructuredText, LaTeX,
HTML, or literate Haskell, and exported in ten dif-
ferent formats, including LaTeX, ConTeXt, DocBook,
RTF, OpenOffice ODT, and MediaWiki markup.
Notable features of gitit include:

◦ Plugins: users can write their own dynamically
loaded page transformations, which operate directly
on the abstract syntax tree.

◦ Math support: LaTeX inline and display math
is automatically converted to MathML, using the
texmath library.

◦ Highlighting: Any git or darcs repository can be
made a gitit wiki. Directories can be browsed,
and source code files are automatically syntax-
highlighted. Code snippets in wiki pages can also
be highlighted.

◦ Library: Gitit now exports a library,
Network.Gitit, that makes it easy to include
a gitit wiki (or wikis) in any Happstack application.

◦ Literate Haskell: Pages can be written directly in
literate Haskell.

Further reading

http://gitit.net (itself a running demo of gitit)

44

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/jsmw
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/jsmw
http://www.w3.org/DOM/DOMTR
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/DOM
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/DOM
http://gitit.net

6.4 Data Management and Visualization

6.4.1 Pandoc

Report by: John MacFarlane
Participants: Andrea Rossato, Peter Wang, Paulo

Tanimoto
Status: active development

Pandoc aspires to be the swiss army knife of text
markup formats: it can read markdown and (with some
limitations) HTML, LaTeX, and reStructuredText, and
it can write markdown, reStructuredText, HTML, Doc-
Book XML, OpenDocument XML, ODT, RTF, groff
man, MediaWiki markup, GNU Texinfo, LaTeX, Con-
TeXt, and S5. Pandoc’s markdown syntax includes ex-
tensions for LaTeX math, tables, definition lists, foot-
notes, and more.
Since the last report, there has been one release

(1.2.1).

◦ Users may notice a significant speedup in read-
ing markdown in --smart mode; the abbreviations
parser has been made much more efficient.

◦ Default HTML output now wraps sections in divs
with unique identifiers. This should aid manipula-
tion using javascript and other tools.

◦ We have made some progress in replacing the old
POSIX shell script wrappers with more portable
Haskell wrappers.

Further reading

http://johnmacfarlane.net/pandoc/

6.4.2 HaExcel — From Spreadsheets to Relational
Databases and Back

Report by: Jácome Cunha
Participants: João Saraiva, Joost Visser
Status: unstable, work in progress

HaExcel is a framework to manipulate and transform
spreadsheets. It is composed by a generic/reusable
library to map spreadsheets into relational database
models and back: this library contains an algebraic
data type to model a (generic) spreadsheet and func-
tions to transform it into a relational model and vice
versa. Such functions implement the refinement rules
introduced in paper “From Spreadsheets to Relational
Databases and Back”. The library includes two code
generator functions: one that produces the SQL code to
create and populate the database, and a function that
generates Excel/Gnumeric code to map the database
back into a spreadsheet. A MySQL database can also
be created and manipulated using this library under
HaskellDB.

The tool also contains a front-end to read spread-
sheets in the Excel and Gnumeric formats: the front-
end reads spreadsheets in portable XML documents us-
ing the UMinho Haskell Libraries. We reuse the spatial
logic algorithms from the UCheck project to discover
the tables stored in the spreadsheet.
Finally, two spreadsheet tools are available: a batch

and an online tool that allows the users to read, trans-
form and refactor spreadsheets.
Using part of HaExcel, we developed an OpenOffice

Calc (http://www.openoffice.org/product/calc.html) ad-
don. Its back-end reuses part of HaExcel and its front-
end is written in OpenOffice Basic. This addon allows
the integration of a relational model into the spread-
sheet. Using this model the user gets three new fea-
tures in the spreadsheet environment: auto-completion
of columns, that is, choosing values of some columns,
other columns become automatically completed; safe
deletion of rows where the user is warned when delet-
ing important information; and no edition of columns
that could compromise the data integrity. All the fea-
tures can be enabled and disabled by the user at any
time. A snapshot of a spreadsheet with the addon can
be seen below.

More about this can be read in the paper “Discovery-
based Edit Assistance for Spreadsheets”.
The sources, the online tool and the addon are avail-

able from the project home page.
We are currently exploring foreign key constraints

from their detection to their migration to the generated
spreadsheet.

Further reading

http://www.di.uminho.pt/~jacome

6.4.3 SdfMetz

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser
Status: stable, maintained

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.4.5.

6.4.4 The Proxima 2.0 generic editor

Report by: Martĳn Schrage
Participants: Lambert Meertens, Doaitse Swierstra
Status: actively developed

Proxima 2.0 is an open-source web-based version of the
Proxima generic presentation-oriented editor for struc-
tured documents.

45

http://johnmacfarlane.net/pandoc/
http://www.openoffice.org/product/calc.html
http://www.di.uminho.pt/~jacome
http://haskell.org/communities/05-2009/html/report.html#sect6.4.5
http://haskell.org/communities/05-2009/html/report.html#sect6.4.5

◦ Proxima is a generic editor. This means that the edi-
tor can be instantiated for arbitrary document types,
supplemented by parser and presentation sheets.
The content of a Proxima document can be mixed
text, images and diagrams.

◦ Proxima is a presentation-oriented editor. This
means that the user performs the edit operations on
theWYSIWYG screen presentation of the document.

◦ Proxima is aware of the structure of the document.
Even while editing the presentation of the document,
the edit operations can be structural. For example,
a section can be changed into a subsection.

Another feature of Proxima is that it offers generic
support for specifying content-dependent computa-
tions. For example, it is possible to create a table of
contents of a document that is automatically updated
as chapters or sections are added or modified.

Proxima 2.0

Proxima 2.0 provides a web-interface for Proxima. In-
stead of rendering the edited document onto an appli-
cation window, Proxima 2.0 is a web-server that sends
an HTML rendering of the document to a client. The
client catches mouse and keyboard events, and sends
these back to the server, after which the server sends
incremental rendering updates back to the client. As a
result, advanced editors can be created, which run in
any browser.
In the past half year, the system has been extended

with drag and drop, improved navigation, session han-
dling, and a number of techniques for handling net-
work latency. Furthermore, a number of example edi-
tors have been implemented. The screenshot shows an
editor for documenting Bayesian networks. It is run-
ning in a Firefox browser.

Future plans

Proxima 2.0 is an open source project. We are looking
for people who would like to participate in the project.

Further reading

http://www.oblomov.biz/proxima2.0.html

6.5 Functional Reactive Programming

6.5.1 Functional Hybrid Modelling

Report by: George Giorgidze
Participants: Joey Capper, Henrik Nilsson
Status: active research and development

The goal of the FHM project is to gain a better foun-
dational understanding of non-causal, hybrid modelling
and simulation languages for physical systems and ul-
timately to improve on their capabilities. At present,
our central research vehicle to this end is the design and
implementation a new such language centred around a
small set of core notions that capture the essence of the
domain.
Causal modelling languages are closely related to

synchronous data-flow languages. They model system
behaviour using ordinary differential equations (ODEs)
in explicit form. That is, cause-effect relationship be-
tween variables must be explicitly specified by the mod-
eller. In contrast, non-causal languages model system
behaviour using differential algebraic equations (DAEs)
in implicit form, without specifying their causality. In-
ferring causality from usage context for simulation pur-
poses is left to the compiler. The fact that the causal-
ity can be left implicit makes modelling in a non-causal
language more declarative (the focus is on expressing
the equations in a natural way, not on how to express
them to enable simulation) and also makes the models
much more reusable.
FHM is an approach to modelling which combines

functional programming and non-causal modelling. In
particular, the FHM approach proposes modelling with
first class models (defined by continuous DAEs) using
combinators for their composition and discrete switch-
ing. The discrete switching combinators enable mod-
elling of hybrid systems (i.e. systems that exhibit both
continuous and discrete dynamic behaviour). The key
concepts of FHM originate from work on Functional
Reactive Programming (FRP).
We are implementing Hydra, an FHM language, as

a domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting and en-
ables modellers to use the domain specific syntax in
their models. The present prototype implementation
of Hydra enables modelling with first class models and
supports combinators for their composition and dis-
crete switching.
Recently, we have implemented support for dynamic

switching among models that are computed at the
point when they are being “switched in”. Models that
are computed at run-time are just-in-time (JIT) com-
piled to efficient machine code. This allows efficient

46

http://www.oblomov.biz/proxima2.0.html

simulation of highly structurally dynamic systems (i.e.,
systems where the number of structural configurations
is large, unbounded or impossible to determine in ad-
vance). This goes beyond to what current state-of-the-
art non-causal modelling languages can model. The
implementation techniques that we developed should
benefit other modelling and simulation languages as
well.
We are also exploring ways of utilising the type sys-

tem to provide stronger correctness guarantees and to
provide more compile time reassurances that our sys-
tem of equations is not unsolvable. Properties such as
equational balance (ensuring that the number of equa-
tions and unknowns are balance) and ensuring the solv-
ability of locally scoped variables are among our goals.
Dependent types have been adopted as the tool for ex-
pressing these static guarantees. However, we believe
that more practical type systems (such as system F)
could be conservatively extended to make FHM safer
without compromising their usability.

Further reading

The implementation of Hydra is available from http:
//www.cs.nott.ac.uk/~ggg/ under the open source BSD
license.

6.5.2 Elerea

Report by: Patai Gergely
Status: experimental, active

Elerea (Eventless reactivity) is a tiny continuous-time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialised monad, while stateless combina-
tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. A unique feature of the library is
that cyclic dependencies are detected on the fly and re-
solved by inserting delays dynamically, unless the user
does it explicitly.
As an example, the following code snippet is a possi-

ble way to define an approximation of our beloved trig
functions:

(sine,cosine) <- mdo
s <- integral 0 c
c <- integral 1 (-s)
return (s,c)

The library is minimal by design, and it provides
low-level primitives one can build a cleaner set of com-
binators upon. Also, it is relatively easy to adapt it

to any imperative framework, although it is probably
not a good choice to program primarily event-driven
systems, because it is pull-based.
The code is readily available via cabal-install in

the elerea package. You are advised to install
elerea-examples as well to get an idea how to build
non-trivial systems with it. The examples are sepa-
rated in order to minimize the dependencies of the core
library.

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/elerea

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/elerea-examples

6.6 Audio and Graphics

6.6.1 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project, audio signals are processed using pure
Haskell code and the Numeric Prelude framework (→
5.5.3). The highlights are:

◦ a basic signal synthesis backend for Haskore (→
5.11.1),

◦ support for physical units while maintaining effi-
ciency,

◦ frameworks for abstraction from sample rate, that
is, the sampling rate can be omitted in most parts
of a signal processing expression. We tried hard to
preserve the functional style of programming and do
not need Arrows and according notation.

◦ We checked several low-level implementations in or-
der to achieve reasonable speed. We complement
the standard list type with a lazy StorableVector
structure and a StateT s Maybe a generator, like in
stream-fusion. Now, both our custom signal genera-
tor type and the Stream type from stream-fusion can
be fused to work directly on storable vectors.

◦ support for causal processes. Causal signal processes
only depend on current and past data and thus are
suitable for real-time processing (in contrast to a
function like time reversal). These processes are
modeled as mapAccumL like functions. Many impor-
tant operations like function composition maintain
the causality property. They are important for shar-
ing on a per sample basis and in feedback loops where
they statically warrant that no future data is ac-
cessed.

Recent advances are:

47

http://www.cs.nott.ac.uk/~ggg/
http://www.cs.nott.ac.uk/~ggg/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/elerea
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/elerea
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/elerea-examples
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/elerea-examples

◦ Lazy time values to be used for gate signals,

◦ enhanced type class framework for unifying lazy time
values and signals expressed by lists, storable vectors
or signal generators.

◦ Connection to alsa bindings, in order to provide real-
time sound synthesis controlled by MIDI events from
keyboards or sequencers,

◦ Stand-alone binding to Sox for audio format conver-
sion and playback,

◦ A pyramid filter for efficient computation of moving
average and moving maximum for baseline detection
of mass spectra,

Further reading

◦ http://www.haskell.org/haskellwiki/Synthesizer
◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

6.6.2 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of experimental
libraries for computer vision and image processing. The
low level computations are internally implemented by
optimized libraries (IPP, HOpenGL, hmatrix (→ 5.3.1),
etc.). Once appropriate geometric primitives have been
extracted by the image processing wrappers we can de-
fine interesting computations using elegant functional
constructions. Future work includes cabalization of the
main modules.

Further reading

http://www.easyVision.googlepages.com

6.6.3 photoname

Report by: Dino Morelli
Status: stable, maintained

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.6.4.

6.6.4 n-Dimensional Convex Decomposition of
Polytops

Report by: Farid Karimipour
Participants: Rizwan Bulbul, Andrew U. Frank
Status: active development

This is the continuation of the work on “Simplex-based
Spatial Operations” (http://haskell.org/communities/
05-2009/html/report.html#sect6.6.5), where we showed
how to implement dimension independent spatial oper-
ations using the concept of n-simplexes. The results for

n-dimensional convex hull computation were demon-
strated through a graphical user interface written with
wxHaskell functions. In this report, we have applied
the same approach to a more complicated spatial anal-
ysis, i.e., convex decomposition of polytops. Convexity
is a simple but useful concept. Convex objects are much
easier to deal with in terms of storage and operations:
the intersection of two convex objects is a convex ob-
ject, the calculation of areas/volumes is straightforward
and so is the “point-in-polygon” problem, etc.

There are several approaches to decompose a poly-
top to convex components, some of which may be
adapted for different dimensions. However, they still
require separate implementations for each dimension.
The main reason is lack of suitable data structures in
the current programming languages. We use the n-
simplexes to implement an n-dimensional algorithm for
convex decomposition of polytops. It builds a tree of
signed convex components: components in even lev-
els are additive, whereas components in odd levels are
subtractive. An example figure:

The algorithm starts with placing the convex hull of
the input polytop as the root of the tree. Subtraction
of the computed convex hull from the input polytop
yields a set of split polytops, which are the elements of
the next level of the tree. The procedure applies to the
non-convex elements and it repeats until all of the ele-
ments are convex. The list data structures and list op-
erations are used for implementation of the algorithm.
Polytops are represented as a list of n-simplexes, which
are described as a list of points, per se. It allows us
to describe the operations for convex decomposition of
polytops as a combination of operations of n-simplexes,
which turns to be operations on lists. Since the repre-
sentation and operations are defined independent of di-
mension, the decomposition algorithm can be used for
polytops of any dimension. The following figure shows
a 2D example polytop which is decomposed to convex
components as the above figure.

48

http://www.haskell.org/haskellwiki/Synthesizer
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://www.easyVision.googlepages.com
http://haskell.org/communities/05-2009/html/report.html#sect6.6.4
http://haskell.org/communities/05-2009/html/report.html#sect6.6.4
http://haskell.org/communities/05-2009/html/report.html#sect6.6.5
http://haskell.org/communities/05-2009/html/report.html#sect6.6.5

Further reading

http://haskell.org/communities/05-2009/html/report.
html#sect6.6.5

6.6.5 DVD2473

Report by: Claude Heiland-Allen
Status: complete

DVD2473 is a generative DVD video artwork.
The somewhat abstract title is a semi-literal descrip-

tion with all the descriptive elements taken out - it is
a DVD of a perfect coloring in 24 colors of a 7,3 hy-
perbolic tiling. It uses the DVD virtual machine to
navigate around the space at pseudo-random.
The mathematics (permutations and Moebius trans-

forms) of the space were implemented in Haskell, with
rendering with Gtk2Hs/Cairo including a little C code
to copy and convert pixels from Cairo to ByteString.
The video encoding used HSH to pipe ByteString to
external tools. The XML control file for DVD author-
ing was generated with a separate Haskell program. A
bash script automates building an iso from the source
code directory.
There are no plans for further development, the art-

work is finished.

Further reading

http://claudiusmaximus.goto10.org/cm/2009-01-07_
dvd2473.html

6.6.6 Fl4m6e

Report by: Claude Heiland-Allen
Status: unstable

Fl4m6e is a fast fractal flame renderer, currently un-
der active development. Inspired by flam3 and electric
sheep, Fl4m6e performs all the rendering calculations
on the GPU, using OpenGL shaders. The features so
far include runtime generation of low level GLSL source
code from abstract scene descriptions, smooth transi-
tions between scenes using rigid transformations, and
interactive control of animation and quality settings.
Contrasting to flam3, the aim is not exact image re-

producibility, but to get fast enough that pre-rendering
videos is not necessary — then a peer-to-peer network
exchanging small scene descriptions would supercede
a centralized file server and corresponding large band-
width requirements. However, there is a long way to go
before the electric sheep have anything to worry about.

Further reading

◦ http://claudiusmaximus.goto10.org/cm/2009-08-28_
fl4m6e_proof_of_concept.html

◦ http://claudiusmaximus.goto10.org/cm/2009-09-24_
fl4m6e_in_haskell.html

◦ http://claudiusmaximus.goto10.org/g/fl4m6e/
examples/

◦ http://flam3.com/
◦ http://electricsheep.org/

6.6.7 GULCI

Report by: Claude Heiland-Allen
Status: unstable

GULCI is a graphical untyped lambda calculus inter-
preter. Programs are written with mouse clicks and
drags, and executed with a keypress. During execution
the graph reduction is visualized. GULCI also dumps
data on its standard output stream, suitable for soni-
fication. The eventual intent is to use it for a short
abstract code performance sometime in the future.
GULCI is the interactive descendant of the non-

interactive (but also graphical) ULCIv1, which took
the form of audiovisualisations of some simple arith-

49

http://haskell.org/communities/05-2009/html/report.html#sect6.6.5
http://haskell.org/communities/05-2009/html/report.html#sect6.6.5
http://claudiusmaximus.goto10.org/cm/2009-01-07_dvd2473.html
http://claudiusmaximus.goto10.org/cm/2009-01-07_dvd2473.html
http://claudiusmaximus.goto10.org/cm/2009-08-28_fl4m6e_proof_of_concept.html
http://claudiusmaximus.goto10.org/cm/2009-08-28_fl4m6e_proof_of_concept.html
http://claudiusmaximus.goto10.org/cm/2009-09-24_fl4m6e_in_haskell.html
http://claudiusmaximus.goto10.org/cm/2009-09-24_fl4m6e_in_haskell.html
http://claudiusmaximus.goto10.org/g/fl4m6e/examples/
http://claudiusmaximus.goto10.org/g/fl4m6e/examples/
http://flam3.com/
http://electricsheep.org/

metical computations in untyped lambda calculus.

Further reading

http://claudiusmaximus.goto10.org/cm/2009-06-19_
untyped_lambda_calculus_interpretations_v1.html

6.6.8 Reflex

Report by: Claude Heiland-Allen
Status: experimental

Reflex is a program to interactively experience vari-
ously truncated regular 4D polytopes. The name is in-
spired by reflection symmetry groups and the eventual
intent of using it as an interactive live audiovisual per-
formance environment with quick reactions required,
the idea for the software itself is inspired by The Sym-
metriad.
Starting from the Shlaefli symbol p, q, r, Reflex con-

structs a 4D symmetry group, from which a wide va-
riety of different forms can be visualized. The pro-
jection method results in aesthetically pleasing curves,
enhanced by the animation. Currently Reflex accepts
commands on its standard input, but the goal is to use
a game controller to navigate through the world.

Further reading

◦ http://claudiusmaximus.goto10.org/cm/2009-10-15_
reflex_preview.html

◦ http://web.mit.edu/~axch/www/Symmetriad/index.
html

◦ http://en.wikipedia.org/wiki/SchlÃďfli_symbol

6.7 Proof Assistants and Reasoning

6.7.1 Galculator

Report by: Paulo Silva
Status: unstable, work in progress

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.7.1.

6.7.2 Saoithín: a 2nd-order proof assistant

Report by: Andrew Butterfield
Status: ongoing

Saoithín (pronounced “Swee-heen”) is a GUI-based
2nd-order predicate logic proof assistant. The motiva-
tion for its development is the author’s need for support
in doing proofs within the so-called “Unifying Theo-
ries of Programming” paradigm (UTP). This requires
support for 2nd-order logic, equational reasoning, and
meets a desire to avoid re-encoding the theorems into
some different logical form. It also provides proof tran-
scripts whose style makes it easier to check their cor-
rectness.
Saothín is implemented in GHC 6.4 and wxHaskell

0.9.4, with elements of Mark Utting’s jaza tool for
Z, and has been tested on a range of Windows plat-
forms (98/XP/Vista), and should work in principle on
Linux/Mac OS X.
A version of the software has been trialled out

on 3rd-year students taking a Formal Methods elec-
tive course (https://www.cs.tcd.ie/Andrew.Butterfield/
Teaching/3BA31/#Software) A first public release of
the software under GPL will now happen during Sum-
mer 2009 — For now, Windows executables can be
downloaded from the above link.

Further reading

https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin

6.7.3 Inference Services for Hybrid Logics

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin

“Hybrid Logic” is a loose term covering a number of
logical systems living somewhere between modal and
classical logic. For more information on this languages,
see http://hylo.loria.fr
The Talaris group at Loria, Nancy, France (http:

//talaris.loria.fr) and the GLyC group at the Com-
puter Science Department of the University of Buenos
Aires, Argentina (http://www.glyc.dc.uba.ar/) are de-
veloping a suite of tools for automated reasoning for
hybrid logics, available at http://code.google.com/p/
intohylo/. Most of them are (successfully) written in
Haskell. See HyLoRes (http://haskell.org/communities/
05-2009/html/report.html#sect6.7.5), HTab (→ 6.7.4),

50

http://claudiusmaximus.goto10.org/cm/2009-06-19_untyped_lambda_calculus_interpretations_v1.html
http://claudiusmaximus.goto10.org/cm/2009-06-19_untyped_lambda_calculus_interpretations_v1.html
http://claudiusmaximus.goto10.org/cm/2009-10-15_reflex_preview.html
http://claudiusmaximus.goto10.org/cm/2009-10-15_reflex_preview.html
http://web.mit.edu/~axch/www/Symmetriad/index.html
http://web.mit.edu/~axch/www/Symmetriad/index.html
http://en.wikipedia.org/wiki/Schläfli_symbol
http://haskell.org/communities/05-2009/html/report.html#sect6.7.1
http://haskell.org/communities/05-2009/html/report.html#sect6.7.1
https://www.cs.tcd.ie/Andrew.Butterfield/Teaching/3BA31/#Software
https://www.cs.tcd.ie/Andrew.Butterfield/Teaching/3BA31/#Software
https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin
http://hylo.loria.fr
http://talaris.loria.fr
http://talaris.loria.fr
http://www.glyc.dc.uba.ar/
http://code.google.com/p/intohylo/
http://code.google.com/p/intohylo/
http://haskell.org/communities/05-2009/html/report.html#sect6.7.5
http://haskell.org/communities/05-2009/html/report.html#sect6.7.5

and HGen (http://haskell.org/communities/05-2009/
html/report.html#sect6.7.7).

6.7.4 HTab

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development
Current release: 1.5.1

HTab is an automated theorem prover for hybrid log-
ics (→ 6.7.3) based on a tableau calculus. It handles
hybrid logic with nominals, satisfaction operators, con-
verse modalities, universal and difference modalities,
the down-arrow binder and role inclusion.
The source code is distributed under the terms of the

GNU GPL.

Further reading

◦ Hoffmann, G. and Areces, C. HTab: a terminat-
ing tableaux system for hybrid logic. In Methods for
Modalities 5, Cachan, France, 2007.

◦ Site and source:
http://code.google.com/p/intohylo/

6.7.5 Sparkle

Report by: Maarten de Mol
Participants: Marko van Eekelen, Rinus Plasmeĳer
Status: stable, maintained

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.7.8.

6.7.6 Haskabelle

Report by: Florian Haftmann
Status: working

Since Haskell is a pure language, reasoning about
equational semantics of Haskell programs is conceptu-
ally simple. To facilitate machine-aided verification of
Haskell programs further, we have developed a con-
verter from Haskell source files to Isabelle theory files:
Haskabelle.
Isabelle itself is a generic proof assistant. It allows

mathematical formulas to be expressed in a formal lan-
guage and provides tools for proving those formulas in
a logical calculus. One such formal language is higher-
order logic, a typed logic close to functional program-
ming languages. This is used as translation target of
Haskabelle.
Both Haskabelle and Isabelle in combination allow to

formally reason about Haskell programs, particularly
verifying partial correctness.
The conversion employed by Haskabelle covers only

a subset of Haskell, mainly since the higher-order logic

of Isabelle has a more restrictive type system than
Haskell. A simple adaption mechanisms allows to tailor
the conversion process to specific needs.
So far, Haskabelle is working, but there is little expe-

rience for its application in practice. Suggestions and
feedback welcome. A tool demo is given at PEPM’10.

Further reading

http://isabelle.in.tum.de/haskabelle.html and http://
isabelle.in.tum.de/

6.8 Modeling and Analysis

6.8.1 iTasks

Report by: Bas Lĳnse
Participants: Rinus Plasmeĳer, Peter Achten, Pieter

Koopman, Thomas van Noort, Jan Martin
Jansen, Erik Crombag

Status: active development

The iTask system provides a set of combinators to
specify workflow in the pure and functional language
Clean (→ 3.2.3) at a very high level of abstraction.
Workflow systems are automated systems in which
tasks are coordinated that have to be executed by ei-
ther humans or computers. Workflow specifications are
supplemented with a generic foundation to generate
executable multi-user workflow support systems that
consist of a webservice-based server and a user-friendly
Ajax client.
Compared to contemporary workflow systems, that

often use simple graphical specification languages, the
iTask system offers several advantages:

◦ Tasks are statically typed and can be higher-order.

◦ Combinators are fully compositional.

◦ Dynamic and recursive workflow is supported.

◦ Workflow instances can be modified during execu-
tion.

51

http://haskell.org/communities/05-2009/html/report.html#sect6.7.7
http://haskell.org/communities/05-2009/html/report.html#sect6.7.7
http://code.google.com/p/intohylo/
http://haskell.org/communities/05-2009/html/report.html#sect6.7.8
http://haskell.org/communities/05-2009/html/report.html#sect6.7.8
http://www.program-transformation.org/PEPM10/
http://isabelle.in.tum.de/haskabelle.html
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/

The iTask system makes extensive use of Clean’s
generic programming facilities for generating dynamic
user-interfaces and data encoding/decoding.

Future plans

Currently, we are working on extending and stabilizing
the iTask base system to a level where it can be used
for serious applications. We are also exploring how
even more dynamic and unpredictable workflows can
be supported.

Further reading

◦ http://itasks.cs.ru.nl/
◦ http://www.st.cs.ru.nl/Onderzoek/Publicaties/

publicaties.html

6.8.2 CSP-M animator and model checker

Report by: Marc Fontaine
Status: active development, download available

We develop an Haskell based, integrated CSP-M an-
imator and model checker. CSP (Communicating-
Sequential-Processes) is a formalism for concurrent sys-
tems, invented by Tony Hoare. CSP-M is the concrete
syntax used by several CSP-tools.
Our Haskell-CSP-Tool features:

◦ FDR compatibility

◦ Fast computation of state spaces

◦ GTK+ based graphical user interface

◦ Support for shared-memory-parallelism / multicore
CPUs

Binary releases are available for download via http:
//www.stups.uni-duesseldorf.de/~fontaine/csp.
The Parsec-based CSP-M parser of our project is also

on Hackage. This is also the parser used by the ProB
model-checker.

Further reading

http://www.stups.uni-duesseldorf.de/~fontaine/csp

6.9 Hardware Design

6.9.1 ForSyDe

Report by: Ingo Sander
Participants: Alfonso Acosta, Axel Jantsch, Jun Zhu
Status: experimental

The ForSyDe (Formal System Design) methodology
has been developed with the objective to move system-
on-chip design to a higher level of abstraction. ForSyDe
is implemented as a Haskell-embedded behavioral DSL.
The current released is ForSyDe 3.0, which includes a

new deep-embedded DSL and embedded compiler with
different backends (Simulation, Synthesizable VHDL
and GraphML), as well as a new user-friendly tutorial.
The source code, together with example system mod-

els, is available from HackageDB under the BSD3 li-
cense.

Features

ForSyDe includes two DSL flavors which offer different
features:

1. Deep-embedded DSL

Deep-embedded signals (ForSyDe.Signal), based on
the same concepts as Lava (→ 8.9), are aware of the
system structure. Based on that structural infor-
mation ForSyDe’s embedded compiler can perform
different analysis and transformations.

◦ Thanks to Template Haskell, computations are
expressed in Haskell, not needing to specifically
design a DSL for that purpose

◦ Embedded compiler backends:
– Simulation
– VHDL (with support for Modelsim and

Quartus II)
– GraphML (with yFiles graphical markup

support)
◦ Synchronous model of computation
◦ Support for components
◦ Support for fixed-sized vectors

2. Shallow-embedded DSL

Shallow-embedded signals
(ForSyDe.Shallow.Signal) are modeled as streams
of data isomorphic to lists. Systems built with them
are restricted to simulation. However, shallow-
embedded signals provide a rapid-prototyping
framework which allows to simulate heterogeneous
systems based on different models of computation
(MoCs).

◦ Synchronous MoC
◦ Untimed MoC
◦ Continuous Time MoC
◦ Domain Interfaces allow connecting various

subsystems with different timing (domains) re-
gardless of their MoC

ForSyDe allows to integrate deep-embedded models
into shallow-embedded ones. This makes it possible

52

http://itasks.cs.ru.nl/
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.stups.uni-duesseldorf.de/~fontaine/csp
http://www.stups.uni-duesseldorf.de/~fontaine/csp
http://www.stups.uni-duesseldorf.de/~fontaine/csp

to simulate a synthesizable deep-embedded model to-
gether with its environment, which may consist of ana-
log, digital, and software parts. Once the functional-
ity of the deep-embedded model is validated, it can be
synthesized to hardware using the VHDL-backend of
ForSyDe’s embedded compiler.

Further reading

http://www.ict.kth.se/forsyde/

6.9.2 Kansas Lava

Report by: Andy Gill
Participants: Tristan Bull, Andy Gill, Garrin Kimmell,

Erik Perrins, Ed Komp, Brett Werling
Status: ongoing

Kansas Lava is an attempt to use the Lava design pat-
tern with modern functional programing technology. In
particular we scale up the ideas in Lava to operate on
larger circuits and with large basic components.

◦ Kansas Lava uses a single principal Signal type for
all types of signals. Some versions of Lava have over-
loaded signal to interpret signal in either a synthesis
or simulation mode. Our experience is that a sin-
gle concrete type is easier to work with in practice,
and we have baked the two main interpretations into
our Signal type. Ultimately this allows a closer fit
between the specifications of behavior and synthesiz-
able code.

◦ Like other Lava implementations before it, Kansas
Lava supports both synthesis and simulation. The
use case would typically be development of an exe-
cutable model, refinement into a synthesizable vari-
ant, then further refinement for efficiency, and other
considerations.

◦ Kansas Lava uses a modern FP style of Haskell. We
allow Signal to be an applicative functor. Arith-
metic is overloaded over Signal, so we can represent
addition using +, multiplication using *, etc. Con-
stant literals can also be Signals. This leads to a
cleaner looking specifications.

◦ Kansas Lava has direct support for importing exist-
ing VHDL libraries as new, well typed primitives.
This allows Kansas Lava to be used as a high-level
glue between existing solutions.

◦ Kansas Lava includes a simple type checking over
binary representations. Polymorphic specifications
inside Lava will be instantiated to their specific,
monomorphically sized implementation in VDHL,
depending on the propagation of actual usage.

◦ In Haskell, requiring a 14-bit value is unusual, but in
hardware, we often know and want to enforce a spe-
cific width. Kansas Lava uses an implementation of

sized types, built using type functions. This library,
developed specifically for use with Kansas Lava, in-
cludes sized 1 and 2 dimensional matrixes, and sized
signed and unsigned bit vectors.

We are writing Kansas Lava to address one problem
(generate good hardware designs for communication
circuits) and help facilitate a second (explore and un-
derstand correctness preserving optimizations of non-
trivial hardware components). With telemetry circuits,
the encodings and decoding mechanisms are typically
expressed using matrix operations, so we pay careful at-
tention to allowing clear encoding of such operations.
In particular, we use type functions to clean up sized
types, making for a cohesive addition to our Lava. A
release is planned for early November, and will be avail-
able on Hackage.

Further reading

http://www.ittc.ku.edu/csdl/Kansas_Lava

6.10 Natural Language Processing

6.10.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. We are in the process of recruiting NLP re-
searchers and users from the Haskell community. In
the future, we hope to use the community to discuss
libraries and bindings that would be most useful to us
and ways of spreading awareness about Haskell in the
NLP world.

Further reading

http://projects.haskell.org/nlp

6.10.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural lan-
guage generation (producing natural language utter-
ances, eg. English texts, out of abstract inputs). GenI
in particular takes an FB-LTAG grammar and an in-
put semantics (a conjunction of first order terms), and
produces the set of sentences associated to the input
semantics by the grammar. It features a surface real-
ization library, several optimizations, batch generation

53

http://www.ict.kth.se/forsyde/
http://www.ittc.ku.edu/csdl/Kansas_Lava
http://projects.haskell.org/nlp

mode, and a graphical debugger written in wxHaskell.
It was developed within the TALARIS project and is
free software licensed under the GNU GPL.

GenI is available on Hackage, and can be installed
via cabal-install. Our most recent release of GenI was
version 0.20.1 (2009-10-01), which offers cleaner inter-
actions with the third-party tools (using JSON), sim-
pler installation on MacOS X and a user manual. For
more information, please contact us on the geni-users
mailing list.

Further reading

◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

6.10.3 Grammatical Framework

Report by: Krasimir Angelov
Participants: Krasimir Angelov, Håkan Burden, Aarne

Ranta

Grammatical Framework (GF) is a programming lan-
guage for multilingual grammar applications. It can
be used as a more powerful alternative to Happy but
in fact its main usage is to describe natural language
grammars instead of programming languages. The lan-
guage itself will look familiar for most Haskell or ML

users. It is a dependently typed functional language
based on Per Martin-Löf’s type theory.
An important objective in the language development

was to make it possible to develop modular gram-
mars. The language provides modular system inspired
from ML but adapted to the specific requirements in
GF. The modules system was exploited to a large ex-
tent in the Resource Libraries project. The library
provides large linguistically motivated grammars for a
number of languages. When the languages are closely
related the common parts in the grammar could be
shared using the modules system. Currently there
are complete grammars for Bulgarian, Danish, English,
Finnish, French, German, Interlingua, Italian, Norwe-
gian, Russian, Spanish, and Swedish. There are work
in progress grammars for Arabic, Catalan, Latin, Thai,
and Hindi/Urdu. On top of these grammars a user
with limited linguistic background can build applica-
tion grammars for a particular domain.
On 24 June 2009 after one year of hard work the

previous beta version of GF 3.0 is turned into stable
release. This is a major refactoring of the existing sys-
tem. The code base is about half in size and makes a
clear separation between compiler and runtime system.
A Haskell library is provided that allows GF grammars
to be easily embedded in user applications. There is a
translator that generates JavaScript code which allows
the grammar to be used in web applications as well.
The new release also provides new parser algorithm
which works faster and is incremental. The incremen-
tality allows the parser to be used for word prediction,
i.e., someone could imagine a development environment
where the programming language is natural language
and the user still can press some key to see the list of
words allowed in this position just like it is possible in
Eclipse, JBuilder, etc.
We are continuing to work hard. Some of the projects

that keeps us busy:

◦ Type checker for dependent types in the interpreter.
Currently only the compiler has type checker.

◦ Semantic parsing — i.e., parser which considers not
only the syntax but also the semantics of the lan-
guage. The semantics is encoded using dependent
types.

◦ New resource grammars for Romanian and Polish

◦ Visualisation of parse trees and dependency trees in
addition to syntax trees

◦ Experiments with natural languages and big ontolo-
gies

◦ Building wide coverage Swedish grammar based on
the resource grammar.

Further reading

www.digitalgrammars.com/gf

54

http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users
www.digitalgrammars.com/gf

6.11 Others

6.11.1 IgorII

Report by: Martin Hofmann
Participants: Emanuel Kitzelmann, Ute Schmid
Status: experimental, active development

IgorII is a new method and an implemented prototype
for constructing recursive functional programs from a
few non-recursive, possibly non-ground, example equa-
tions describing a subset of the input/output behavior
of a target function to be implemented.
For a simple target function like reverse the sole

input would be the following, the k smallest w.r.t. the
input data type, examples:

reverse [] = []
reverse [a] = [a]
reverse [a,b] = [b,a]
reverse [a,b,c] = [c,b,a]

The result, shown below, computed by IgorII is a
recursive definition of reverse, where the subfunctions
last and init have been automatically invented by the
program.

reverse [] = []
reverse (x:xs) = (last (x:xs)):(reverse (init (x:xs))

last [x] = x
last (x:y:ys) = last (y:ys)
init [x] = []
init (x:y:ys) = x:(init (y:ys))

Recently, IgorII has been extended to use catamor-
phisms on lists as higher-order templates. After en-
abling the higher-order mode, given the previous ex-
amples of reverse, the system outputs the following
solution:

reverse xs = foldr snoc [] xs

snoc x xs = foldr cons [x] xs
cons x (y:ys) = x:(y:ys)

Features

◦ termination by construction
◦ handling arbitrary user-defined data types
◦ utilization of arbitrary background knowledge
◦ automatic invention of auxiliary functions as subpro-

grams
◦ learning complex calling relationships (tree- and

nested recursion)
◦ allowing for variables in the example equations
◦ simultaneous induction of mutually recursive target

functions
◦ using list-catamorphisms as higher-order templates

Current Status and Future Plans

The original version of IgorII is implemented in the
reflective rewriting based programming and specifica-
tion language Maude. However, a Haskell implemen-
tation of the algorithm is the current research proto-
type. Both can be obtained from the project page.
A tool demo and a research paper about the use of

catamorphisms as higher-order templates are presented
at PEPM 2010.
For the future, we plan to extend the higher-order

context to use the catamorphism template for arbi-
trary algebraic data types. Furthermore, it is worth
to investigate to which extent other morphisms can be
incorporated.

Further reading

◦ http://www.cogsys.wiai.uni-bamberg.de/effalip/
◦ http://www.inductive-programming.org/

6.11.2 Roguestar

Report by: Christopher Lane Hinson
Status: early development

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.12.2.

6.11.3 LQPL — A quantum programming language
compiler and emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.8.3 experimental released

LQPL (Linear Quantum Programming Language) con-
sists of a compiler for a functional quantum program-
ming language and an associated assembler and emu-
lator.
This programming language was inspired by Peter

Selinger’s paper “Toward a Quantum Programming
Language”. LQPL incorporates a simplified module /
include system (more like C’s include than Haskell’s im-
port), predefined unitary transforms, quantum control
and classical control, algebraic data types, and opera-
tions on purely classical data. The compiler translates
LQPL programs into an assembler language targeted to
a quantum stack machine. The emulator, written using
Gtk2Hs, translates the assembler to machine code and
provides visualization of the program as it executes.
For example, the following procedure implements

quantum teleportation:

teleport::(n:Qubit,a:Qubit,b:Qubit;b:Qubit) {
Not a <= n ; Had n;
measure a of

|0> => {} |1> => {Not b};
measure n of

55

http://www.program-transformation.org/PEPM10/
http://www.cogsys.wiai.uni-bamberg.de/effalip/
http://www.inductive-programming.org/
http://haskell.org/communities/05-2009/html/report.html#sect6.12.2
http://haskell.org/communities/05-2009/html/report.html#sect6.12.2

|0> => {} |1> => {RhoZ b}
}

The emulator allows one to step through a program
at the assembly level, displaying the quantum values as
a tree. The figure below is a screen shot showing the
results after the first measure in teleport.

Recent changes include a public release (available at
the URL below), UI improvements and the ability load
and compile LQPL source programs from the emulator.

Further reading

http://pll.cpsc.ucalgary.ca/lqpl/index.html

6.11.4 Yogurt

Report by: Martĳn van Steenbergen

Yogurt is a MUD client embedded in Haskell. The
API allows users to define variables of arbitrary types
and hooks that trigger on output from the MUD or
input from the user. Other features include timers,
multithreading, and logging. Most MUD clients rely
on their own custom language; Yogurt, however, re-
lies on Haskell. Even though Yogurt programs are full
Haskell programs, Yogurt is able to dynamically load
and reload them using the GHC API, effectively mak-
ing Yogurt a scripting language.
Ideas for the future include compatibility with

Tintin++ scripts to make migration to Yogurt even
more tempting and an expect-like interface for easier
interaction with processes.

Further reading

http://code.google.com/p/yogurt-mud/

6.11.5 Dyna 2

Report by: Wren Ng Thornton
Participants: Nathaniel W. Filardo, Jason Eisner
Status: active research

Dyna is a valued-logic programming language with
first-class support for dynamic programming. A ma-
jor goal of the language is to automate many of the
common algorithms and optimizations used in natu-
ral language parsers and machine translation decoders,
making them available for general logic programs.
Starting from Prolog we extend Horn clauses to

“Horn equations” by associating each grounding of a

rule with a value (not just provability) and aggregating
these values to get the value of an item. This extends
logic programming with some elements of functional
programming, including weighted-logic systems where
the form of Horn equations is restricted to a semiring.
My master thesis work was developing a powerful

type system which expresses algebraic data types with
non-linearity constraints, refinement subtyping, and
some aspects of dependent typing. This type system
is further enhanced to allow heterogeneous storage of
the same semantic type, so that different representa-
tions of “the same value” can be used simultaneously
in different parts of a program.
Unlike most logic languages, Dyna will have a mod-

ule system for separating proof universes, which allows
multiple programs to share the same RTS instance and
allows presenting programs, data sets, and deductive
databases with the same API. Dyna will also support
agenda-based mixed forward-/backward-chaining infer-
ence with memoization and declarative truth mainte-
nance.
Previous work implemented a prototype compiler

that generated C++ classes for a restricted form of
the language. Currently we are implementing an in-
terpreter in Haskell that covers a broader portion of
the language, and are working on the formal under-
pinnings of these extensions. We intend to use this in
the long term as a reference implementation for test-
ing improved algorithms for a next generation Dyna
compiler.

Further reading

◦ Work on the type system and unification algorithms
for Dyna 2 can be found in the following papers.
These are currently not available online, though re-
fined versions should be available soon.
– W. Thornton (2008). “Typed Unification in

Dyna: An Exploration of the Design Space.”
Masters Project Report, Johns Hopkins Univer-
sity.

– W. Thornton (2008). “Heterogeneous Strate-
gies for Unification: Variable–Value Ordering
and Optimized Structures.” Masters Paper,
Johns Hopkins University.

◦ This paper discusses program transformations for
Dyna and gives an early view of the semantics
for mixed inference: http://www.cs.jhu.edu/~jason/
papers/#fg06.

◦ This paper introduces Dyna 1 where Horn equa-
tions are restricted to a semiring: http://cs.jhu.edu/
~jason/papers/#emnlp05-dyna.

◦ In association with Dyna there is work on a graphical
debugger, called Dynasty, which allows lazy explo-
ration of hypergraphs (representing proof forests).
– http://cs.jhu.edu/~jason/papers/#infovis06

56

http://pll.cpsc.ucalgary.ca/lqpl/index.html
http://code.google.com/p/yogurt-mud/
http://www.cs.jhu.edu/~jason/papers/#fg06
http://www.cs.jhu.edu/~jason/papers/#fg06
http://cs.jhu.edu/~jason/papers/#emnlp05-dyna
http://cs.jhu.edu/~jason/papers/#emnlp05-dyna
http://cs.jhu.edu/~jason/papers/#infovis06

6.11.6 Vintage BASIC

Report by: Lyle Kopnicky
Current release: 1.0.1
Portability: GHC 6.10

Vintage BASIC is an interpreter for microcomputer-
era BASIC, written in Haskell. It is fully unit-tested,
and implements all common features of the language.
The web site includes games from Creative Comput-
ing’s BASIC Computer Games, all of which can be run
under the interpreter.

The interpreter makes use of a novel technique for
implementing BASIC’s dynamic control structures: re-
sumable exceptions. For example, in BASIC loops, the
FOR keyword becomes an exception handler, and the
NEXT keyword throws an exception. Furthermore,
the exceptions are caught in the continuation, rather
than the containing expression. The handlers can also
be selectively persisted after handling exceptions. Be-
cause of these two features, I refer to them as “durable
traps”. The DurableTraps library is fully abstracted
using monad transformers, and can be used in any pro-
gram.

Further reading

http://www.vintage-basic.net

6.11.7 Bullet

Report by: Csaba Hruska
Status: experimental, active development

Bullet is a professional open source multi-threaded 3D
Collision Detection and Rigid Body Dynamics Library
written in C++. It is free for commercial use under
the zlib license. The Haskell bindings ship their own C
compatibility layer, so the library can be used without
modifications.
At the current state of the project only basic services

are accessible from Haskell, i.e., you can load collision

shapes and step the simulation. More advanced Bullet
features (constraints, soft body simulation etc.) will be
added later.

Further reading

http://www.haskell.org/haskellwiki/Bullet

6.11.8 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
The program is very new and has found only a few

users yet. The author is still looking for feedback, es-
pecially to rate its usefulness to decide whether it will
be uploaded to Debian.

Further reading

◦ http://www.joachim-breitner.de/projects#arbtt
http://www.joachim-breitner.de/blog/archives/
336-The-Automatic-Rule-Based-Time-Tracker.html

◦ http://darcs.nomeata.de/arbtt/doc/users_guide/

6.11.9 uacpid

Report by: Dino Morelli
Status: experimental, actively developed

uacpid is a daemon designed to be run in userspace
that will monitor the local system’s acpid socket for
hardware events. These events can then be acted upon
by handlers with access to the user’s environment.
uacpid is available in binary form for Arch Linux

through the AUR and can be acquired using darcs or
other methods.

Further reading

◦ Project page: http://ui3.info/d/proj/uacpid.html
◦ Source repository: darcs get http://ui3.info/darcs/

uacpid

57

http://www.vintage-basic.net
http://www.haskell.org/haskellwiki/Bullet
http://www.joachim-breitner.de/projects#arbtt
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://darcs.nomeata.de/arbtt/doc/users_guide/
http://ui3.info/d/proj/uacpid.html
http://ui3.info/darcs/uacpid
http://ui3.info/darcs/uacpid

7 Commercial Users

7.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a develop-
ment platform. We also offer consulting services, con-
tracting, and training. For more information, please
take a look at our website or drop us an e-mail at
〈info@well-typed.com〉.
This has been a busy 6 months for us. As well as

proprietary work, we have been pleased to have again
been able to work on the GHC 6.12 release, as well as
other core parts of the community infrastructure, such
as Cabal and the Haskell Platform.
We have also been involved with the setting up and

running of the Industrial Haskell Group (→ 7.8). We
are pleased with the work the IHG have done in its first
6 months, and have high hopes for the future.
Overall, it has been a good 6 months for us, and we

are looking forward to the challenges of the next 6. We
have some exciting stuff coming up, and will be looking
into expansion.

Further reading

◦ http://www.well-typed.com/
◦ Blog: http://blog.well-typed.com/

7.2 Credit Suisse Global Modeling and
Analytics Group

Report by: Ganesh Sittampalam

GMAG, the quantitative modeling group at Credit Su-
isse, has been using Haskell for various projects since
the beginning of 2006, with the twin aims of improving
the productivity of modelers and making it easier for
other people within the bank to use GMAG models.
Many of GMAG’s models use Excel combined with

C++ addin code to carry out complex numerical com-
putations and to manipulate data structures. This
combination allows modelers to combine the flexibility
of Excel with the performance of compiled code, but
there are significant drawbacks: Excel does not sup-
port higher-order functions and has a rather limited
and idiosyncratic type system. It is also extremely dif-
ficult to make reusable components out of spreadsheets
or subject them to meaningful version control.
Because Excel is (in the main) a side-effect free en-

vironment, functional programming is in many ways a

natural fit, and we have been using Haskell in various
ways to replace or augment the spreadsheet environ-
ment.
Our past projects include:

◦ Adding higher-order functions to Excel, implemented
via (Haskell) addin code.

◦ Tools to transform spreadsheets into directly exe-
cutable code.

◦ A “lint” tool to check for common errors in spread-
sheets.

Our main project for the last couple of years has
been Paradise, a domain-specific language embedded
in Haskell for implementing reusable components that
can be compiled into multiple target forms. Current
backends are Excel spreadsheets and .NET components
based on either Winforms or WPF.
A number of modelers have been exposed directly

to Haskell by using Paradise, and they have generally
picked it up fairly quickly. All new recruits are intro-
duced to Haskell as part of our internal training pro-
gram.
Our main focus at the moment is the automatic

generation of Paradise models for a particular finan-
cial product, starting from an algebraic datatype that
defines the product. Modelers can override parts of
the automatically generated model with a hand-crafted
Paradise component if they choose to, providing a good
trade-off between speed of development and “beautiful”
results.

Further reading

◦ CUFP 2006 talk about Credit Suisse:
http://cufp.galois.com/slides/2006/HowardMansell.
pdf

◦ ICFP 2008 experience report about Paradise:
http://www.earth.li/~ganesh/research/
paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/
paradise-icfp08/talk.pdf

7.3 Bluespec tools for design of complex
chips

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides a language, BSV, which is be-
ing used for all aspects of ASIC and FPGA system de-
sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite

58

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/
http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/talk.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/talk.pdf

rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universal, accommodating the di-
verse range of blocks found in SoCs, from algorithmic
“datapath” blocks to complex control blocks such as
processors, DMAs, interconnects and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality RTL (Verilog), which can be further syn-
thesized into netlists for ASICs and FPGAs using other
commercial tools. Automatic synthesis from atomic
transactions enables design-by-refinement, where an
initial executable approximate design is systematically
transformed into a quality implementation by succes-
sively adding functionality and architectural detail.
Other products include fast BSV simulation and devel-
opment tools. Bluespec also uses Haskell to implement
its tools (well over 100K lines of Haskell).
This industrial strength tool has enabled some large

designs (over a million gates) and significant architec-
ture research projects in academia and industry. This
kind of research was previously feasible only in soft-
ware simulation. BSV permits the same convenience
of expression as SW languages, and its synthesizability
further allows execution on FPGA platforms at three
orders of magnitude greater speeds, making it possible
now to study realistic scenarios.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor companies and universities. The
tools are free for academic teaching and research.
Recent news (last 6 months): (1) Much new infras-

tructure and libraries to move computation kernels eas-
ily onto commodity FPGA boards, for greater speed
and/or lower energy; (2) a strange loop, where one cus-
tomer is applying the capability 1 to a computation ker-
nel written in Haskell; and (3) development of PAClib
(Pipeline Architecture Combinators) that make exten-
sive use of higher-order functions to describe DSP algo-
rithms succinctly and with powerful architectural pa-
rameterization, exceeding the capabilities of tools that
synthesize hardware from C codes.

Further reading

◦ R.S.Nikhil, Bluespec, a General-Purpose Approach
to High-Level Synthesis Based on Parallel Atomic
Transactions, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ Small illustrative examples: http://www.bluespec.
com/wiki/SmallExamples

◦ Winning entry in MEMOCODE 2008 design contest:
http://rĳndael.ece.vt.edu/memocontest08/

◦ MIT courseware, “Complex Digital Systems”: http:
//csg.csail.mit.edu/6.375

◦ A fun example with many functional-programming
features — BluDACu, a parameterized Bluespec
hardware implementation of Sudoku: http://www.
bluespec.com/products/BluDACu.htm

7.4 Galois, Inc.

Report by: Andy Adams-Moran

Galois is an employee-owned software development
company based in Beaverton, Oregon, U.S.A. Ga-
lois started in late 1999 with the stated purpose of
using functional languages to solve industrial prob-
lems. These days, we emphasize the needs of our
clients and their problem domains over the tech-
niques, and the slogan of the Commercial Users of
Functional Programming Workshop (see http://cufp.
functionalprogramming.com/) exemplifies our approach:
Functional programming as a means, not an end.
Galois develops software under contract, and every

project (bar three) that we have ever done has used
Haskell. The exceptions used ACL2, Poly-ML, SML-
NJ, and OCaml, respectively, so functional program-
ming languages and formal methods are clearly our “se-
cret sauce”. We deliver applications and tools to clients
in industry and the U.S. government. Some diverse ex-
amples: Cryptol, a domain-specific language for cryp-
tography (with an interpreter and a compiler, with mul-
tiple targets, including FPGAs); a GUI debugger for a
specialized microprocessor; a specialized, high assur-
ance, cross-domain web and file server, and Wiki for
use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.
Web-based technologies are increasingly important

to our clients, and we believe Haskell has a key role
to play in the production of reliable, secure web soft-
ware. The culture of correctness Haskell encourages
is ideally suited to web programming, where issues of
security, authentication, privacy, and protection of re-
sources abound. In particular, Haskell’s type system
makes possible strong static guarantees about access
to resources, critical to building reliable web applica-
tions.
To help push further the adoption of Haskell in the

domain of web programming, Galois released a suite of
Haskell libraries, including:

◦ json: Support for JavaScript Object Notation

◦ xml: A simple, lightweight XML parser/generator.

◦ utf8-string: A UTF8 layer for IO and Strings.

◦ selenium: Communicate with a Selenium Remote
Control server.

59

http://www.bluespec.com/wiki/SmallExamples
http://www.bluespec.com/wiki/SmallExamples
http://rijndael.ece.vt.edu/memocontest08/
http://csg.csail.mit.edu/6.375
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://www.bluespec.com/products/BluDACu.htm
http://cufp.functionalprogramming.com/
http://cufp.functionalprogramming.com/

◦ curl: libcurl is a rich client-side URL transfer library.

◦ sqlite: Haskell binding to sqlite3 databases.

◦ feed: Interfacing with RSS and Atom feeds

◦ mime: Haskell support for working with MIME
types.
Continuing our deep involvement in the Haskell com-

munity, Galois was happy to sponsor the two Haskell
hackathons held in the past year, Hac 07 II, in Freiburg,
Germany, and Hac4 in Gothenburg, Sweden. Galois
also sponsored the second BarCamp Portland, held in
early May 2008.

Further reading

http://www.galois.com/.

7.5 IVU Traffic Technologies AG Rostering
Group

Report by: Michael Marte
Status: released

The rostering group at IVU Traffic Technologies AG
has been using Haskell to check rosters for compliance
with the “EC Regulation No 561/2006 on the harmo-
nization of certain social legislation relating to road
transport” which “lays down rules on driving times,
breaks and rest periods for drivers engaged in the car-
riage of goods and passengers by road”. Due to com-
binatorial rest-time compensation rules, EC 561/2006
instances are search problems and at times pretty hard
to solve.
Our implementation is based on an embedded DSL

to combine the regulation’s single rules into a solver
that not only decides on instances but, in the case of a
faulty roster, finds an interpretation of the roster that
is “favorable” in the sense that the error messages it
entails are “helpful” in leading the dispatcher to the
resolution of the issue at hand.
Our EC 561/2006 solver comprises about 1700 lines

of Haskell code (including about 250 lines for the C
API), is compiled to a DLL with ghc, and linked dy-
namically into C++ and Java applications. The solver
is both reliable (due to strong static typing and referen-
tial transparency — we have not experienced a failure
in three years) and efficient (due to constraint propa-
gation, a custom search strategy, and lazy evaluation).
Our EC 561/2006 component is part of the IVU.crew

software suite and as such is in wide-spread use all over
Europe, both in planning and dispatch. So the next
time you enter a regional bus, chances are that the
driver’s roster was checked by Haskell.

Further reading

◦ EC 561/2006 at EurLex
◦ The IVU.suite for public transport

7.6 Tupil

Report by: Chris Eidhof
Participants: Eelco Lempsink

Tupil builds reliable web software with Haskell. Us-
ing Haskell’s powerful ways of abstraction, we feel we
can develop even faster than with dynamic scripting
languages but with the safety and performance of a
language that is statically checked and compiled.
In the last year we were able to successfully use

Haskell for different projects: high score web services,
music mashups, a payment system for a client and
more. It would not have been possible without the
vast amount of packages that are available for Haskell
these days.

Further reading

◦ http://tupil.com
◦ http://blog.tupil.com

7.7 Aflexi Content Delivery Network
(CDN)

Report by: Kim-Ee Yeoh

The Aflexi Content Delivery Network (CDN) is a con-
federated solution to cost-effective content delivery for
publishers, value-added capacity right-sizing for web-
hosting providers, and a more responsive Internet ex-
perience for end-users.
Key elements of the Aflexi CDN comprise a server-

side software package that webhosting providers can
license to CDN-enable their servers and hosted web-
sites, and a marketplace where a provider can federate
with other providers to expand its CDN footprint. Our
motto is “Unifying Capacity.”
At the heart of the platform is the ability for publish-

ers to transparently combine Aflexi-enabled providers
and migrate among a publisher-selected subset. Com-
petition between providers ensures that publishers get
a market-efficient rate for delivery bandwidth by mak-
ing informed decisions based on platform metrics of
providers’ Quality of Service. By trading excess capac-
ity with other providers, they in turn benefit from the
disruptive innovation in capacity recalibration and ad-
ditional revenue streams afforded by the Aflexi CDN
platform.
Aflexi uses Haskell for critical components of its

back-end infrastructure. Haskell allows us to rapidly
prototype our software efforts via its rich store of
open-source libraries on Hackage. Supported by a set
of composable concurrency abstractions built on fast

60

http://www.galois.com/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:102:0001:01:EN:HTML
http://www.ivu.de/uk/products/public-transport/
http://tupil.com
http://blog.tupil.com

lightweight threads, our Haskell code sports more re-
silient fail-safe features and higher performance while
at the same time employing fewer lines of code that
ultimately translate to fewer bugs.
Other Haskell projects in development include a

domain-specific language (DSL) with termination guar-
antees (à la Total Functional Programming). The DSL
furnishes a framework for describing the policies gov-
erning content redirection.

Status and availability

The Aflexi CDN platform pre-launched at the start of
2009.

Further reading

http://aflexi.net/

7.8 Industrial Haskell Group

Report by: Ian Lynagh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
It was formed in early 2009, and has already made a
significant contribution to the up-coming GHC 6.12 re-
lease: In the first 6 months collaborative development
scheme, the IHG has funded work on dynamic libraries,
more flexible Integer library support for GHC, and Ca-
bal development work. The details of these projects are
on the website.
Following the success of this scheme, we will be run-

ning another 6 month scheme, with the work beginning
in January. Interested companies should check out the
website for details.
We have also added “associate membership” and

“academic membership” options, for companies and
academic groups that wish to support Haskell devel-
opment without the larger commitment necessary for
the collaborative development scheme. Again, details
are on the website.
If you are interested in joining the IHG, or if you

just have any comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

http://industry.haskell.org/

7.9 typLAB

Report by: Sebastiaan Visser
Participants: Lon Boonen, Erik Hesselink, Salar al

Khafaji

TypLAB is a startup company located in the city center
of Amsterdam. We investigate and develop new ways of
creating and consuming online content. Our current fo-
cus is in building an online environment in which users
can manage content in unconventional ways.
The Happstack powered server application, the au-

tomated deployment scripts, the JavaScript preproces-
sors; all code running at the server is written entirely
in Haskell. The vast amount of Haskell packages, espe-
cially for XML manipulation and generic programming,
allow us to easily interface with our Berkeley XML
database back-end. A large part of our application is
written in JavaScript and runs in the client. Most of the
JavaScript code is heavily inspired by functional (reac-
tive) programming and enables us to achieve a very
high level of abstraction, even in the web browser.
TypLAB is showing that combining the theoretical

foundations of computer science with the day-to-day
practice of the web allows for building high-quality
web-applications. Still a lot of work has to be done
before our first beta will see the light. Please keep in
touch with our progress by checking out our weblog.

Further reading

◦ http://typlab.com
◦ http://blog.typlab.com

61

http://aflexi.net/
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://typlab.com
http://blog.typlab.com

8 Research and User Groups

8.1 Functional Programming Lab at the
University of Nottingham

Report by: Liyang HU

The School of Computer Science at the University of
Nottingham has recently formed the Functional Pro-
gramming Laboratory, a new research group focused on
all theoretical and practical aspects of functional pro-
gramming, together with related topics such as type
theory, category theory, and quantum programming.
The laboratory is led jointly by Thorsten Altenkirch

and Graham Hutton, with Henrik Nilsson and Venanzio
Capretta as academic staff. With 4 more research staff
and some 10 PhD students in our group, we have a
wide spectrum of interests:

Containers

Nottingham has been home to the EPSRC grant on
containers, a semantic model of functional data struc-
tures. Thorsten Altenkirch, Peter Hancock, Peter Mor-
ris, and Rawle Prince are working with containers to
both write and reason about programs. Peter Morris
has recently finished his PhD, which used containers as
a basis for generic programming with dependent types.

Dependently Typed Programming (DTP)

Peter Morris and Nicolas Oury are working on Epi-
gram, while Nils Anders Danielsson is involved in the
development of Agda (→ 3.2.2). Our interests lie both
in the pragmatics of using DTP, as witnessed by work
on libraries and tools, and in foundational theory,
including the Observational Type Theory underlying
Epigram 2 and James Chapman’s work on normaliza-
tion. DTP is also used to control and reason about
effects, and a number of us are using Agda as a proof
assistant to verify programs or programming language
theory.

Functional Reactive Programming (FRP)

The FRP team are working on FRP-like and FRP-
inspired declarative, domain-specific languages. Under
Henrik Nilsson’s supervision, Neil Sculthorpe is work-
ing on a new, scalable FRP language based on reactive
components with multiple inputs and outputs, while
George Giorgidze is applying the advantages of FRP
to non-causal modeling with the aim of designing a
new, more expressive and flexible language for non-
causal, hybrid modeling and simulation (→ 6.5.1). Tom
Nielsen is implementing a declarative language for ex-
periments, simulations, and analysis in neuroscience.

A theme that permeates our work is implementation
through embedding in typed functional languages such
as Haskell or Agda (→ 3.2.2). The team also main-
tains Yampa, the latest Haskell-based implementation
of FRP.

Quantum Programming

Thorsten Altenkirch and Alexander S Green have been
working on the Quantum IO Monad (QIO), an inter-
face from Haskell to Quantum Programming. Tak-
ing advantage of abstractions available in Haskell we
can provide QIO implementations of many well-known
quantum algorithms, including Shor’s factorization al-
gorithm. The implementation also provides a construc-
tive semantics of quantum programming in the form of
a simulator for such QIO computations.

Reasoning About Effects

Graham Hutton and Andy Gill recently formalized
the worker/wrapper transformation for improving the
performance of functional programs. Wouter Swier-
stra and Thorsten Altenkirch have produced func-
tional specifications of the IO monad, as described in
Wouter’s forthcoming PhD thesis. Mauro Jaskelioff de-
veloped a new monad transformer library for Haskell,
which provides a uniform approach to lifting opera-
tions. Diana Fulger and Graham Hutton are inves-
tigating equational reasoning about various forms of
effectful programs. Liyang HU and Graham Hutton
are working on verifying the correctness of compilers
for concurrent functional languages, including a model
implementation of software transactional memory.

Teaching

Haskell plays an important role in the undergradu-
ate program at Nottingham, as well as our China
and Malaysia campuses. Modules on offer include
Functional Programming, Advanced FP, Mathematics
for CS, Foundations of Programming, Compilers, and
Computer-Aided Formal Verification, among others.

Events

The FP Lab plays a leading role in the Midlands Grad-
uate School in the Foundations of Computing Science,
the British Colloquium for Theoretical Computer Sci-
ence, and the Fun in the Afternoon seminar series on
functional programming.

62

http://sneezy.cs.nott.ac.uk/joomla/
http://sneezy.cs.nott.ac.uk/joomla/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~nhn/
http://cs.ru.nl/~venanzio/
http://cs.ru.nl/~venanzio/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~pgh/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~rcp/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~npo/
http://cs.nott.ac.uk/~nad/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~nas/
http://cs.nott.ac.uk/~ggg/
http://cs.nott.ac.uk/~tan/
http://cs.nott.ac.uk/~tan/
http://www.cs.nott.ac.uk/~txa/
http://www.cs.nott.ac.uk/~asg/
http://www.cs.nott.ac.uk/~asg/QIO/
http://cs.nott.ac.uk/~gmh/
http://ittc.ku.edu/~andygill/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~mjj/
http://cs.nott.ac.uk/~dqf/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://www.nottingham.ac.uk/computer-science/Study_Here/Study_Here.php
http://www.nottingham.ac.uk/computer-science/Study_Here/Study_Here.php
http://www.nottingham.edu.cn/
http://www.nottingham.edu.my/
http://cs.nott.ac.uk/~nxg/G51FUN0708/fun.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/~nhn/G54FOP/
http://cs.nott.ac.uk/~nhn/G52CMP/
http://e-pig.org/darcs/g53cfr/
http://cs.nott.ac.uk/MGS/
http://cs.nott.ac.uk/MGS/
http://www.bctcs.ac.uk/
http://www.bctcs.ac.uk/
http://sneezy.cs.nott.ac.uk/fun/

FP Lunch

Every Friday, we gather for lunch with helpings of in-
formal, impromptu-style whiteboard discussions on re-
cent developments, problems, or projects. Summaries
of our weekly meetings can be found on the frequently
cited FP Lunch blog, giving a lively picture of ongoing
research at Nottingham.
Later in the afternoon, there is usually a formal hour-

long seminar. We are always keen on speakers in any
related areas: do get in touch with Thorsten Altenkirch
〈txa@cs.nott.ac.uk〉 if you would like to visit. See you
there!

8.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Manfred Schmidt-Schauß

Deterministic calculi. We proved correctness of
strictness analysis using abstract reduction. Our proof
is based on the operational semantics of an extended
call-by-need lambda calculus which models a core lan-
guage of Haskell. Furthermore, we proved equivalence
of the call-by-name and call-by-need semantics of an
extended lambda calculus with letrec, case, and con-
structors. Recently, we extended the investigation of
call-by-need letrec calculi to polymorphic typing and
showed correctness of type dependent program trans-
formations.
Nondeterministic calculi. We explored several

nondeterministic extensions of call-by-need lambda cal-
culi and their applications where an emphasis of our
research lies in proving program equivalences w.r.t.
contextual equivalence. In particular, we analyzed
a model for a lazy functional language with direct-
call I/O providing a semantics for unsafePerformIO
in Haskell. We investigated a call-by-need lambda-
calculus extended by parallel-or and its applications as
a hardware description language. We analyzed a call-
by-need lambda calculus extended with McCarthy’s
amb and an abstract machine for lazy evaluation of con-
current computations.
Simulation-based proof techniques. We have

shown that mutual similarity is a sound proof method
w.r.t. contexutal equivalence in a class of untyped
higher-order non-deterministic call-by-need lambda
calculi. For call-by-need calculi with letrec we ob-
tained two results: Most recently, we have shown that
applicative bisimulation is correct in deterministic call-
by-need lambda calculi with recursive let. For non-
deterministic call-by-need calculi with letrec usual
definitions of mutual similarity are unsound. In collab-
oration with Elena Machkasova we obtained correct-
ness of a variation of finite simulation for proving con-

textual equivalence in an extended non-deterministic
call-by-need lambda-calculus with letrec.
Concurrency primitives. We analyzed the ex-

pressivity of concurrency primitives in various func-
tional languages. In collaboration with Jan Schwing-
hammer and Joachim Niehren, we showed how to en-
code Haskell’s MVars into a lambda calculus with stor-
age and futures which is an idealized core language of
Alice ML. We proved correctness of the encoding using
operational semantics and the notions of adequacy and
full-abstractness of translations. In her final year thesis
Martina Willig analyzed the encoding of other concur-
rency abstractions and implemented them in Concur-
rent Haskell.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

8.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the newly formed Programming Languages
and Systems Group of the School of Computing. We
are a group of staff and students with shared interests
in functional programming. While our work is not lim-
ited to Haskell — in particular our interest in Erlang
has been growing — Haskell provides a major focus and
common language for teaching and research.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sections of
this report. Recently Olaf Chitil and Doaitse Swierstra
published a paper on simple and efficient implementa-
tions of pretty printing combinators. The development
of Heat (→ 4.3.2), a deliberately simple IDE for teach-
ing Haskell, made further progress over the summer.
Neil Brown and Adam Sampson are developing an oc-
cam compiler in Haskell (Tock). They recently devel-
oped Alloy, a library for fast traversals and manipula-
tions of tree-structured data.

Further reading

◦ FP group: http://www.cs.kent.ac.uk/research/
groups/tcs/fp/

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/projects/refactor-fp/

◦ Pretty Printing Combinators: S. Doaitse Swier-
stra and Olaf Chitil. Linear, bounded, functional
pretty-printing. Journal of Functional Programming,
19(01):1-16, January 2009.

◦ Tracing and debugging with Hat: http://www.
haskell.org/hat

63

http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~txa/
mailto: txa at cs.nott.ac.uk
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat
http://www.haskell.org/hat

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/
◦ Tock: http://projects.cs.kent.ac.uk/projects/tock/
◦ Alloy: Brown, N. C. and Sampson, A. T. 2009. Al-
loy: fast generic transformations for Haskell. In Pro-
ceedings of the 2nd ACM SIGPLAN Symposium on
Haskell, Haskell ’09 pages 105–116.

8.4 Foundations and Methods Group at
Trinity College Dublin

Report by: Andrew Butterfield
Participants: Glenn Strong, Hugh Gibbons, Edsko de

Vries

The Foundations and Methods Group focuses on formal
methods, category theory, and functional programming
as the obvious implementation method. A sub-group
focuses on the use, semantics, and development of func-
tional languages, covering such areas as:

◦ Supporting OO-Design technique for functional pro-
grammers

◦ Using functional programs as invariants in impera-
tive programming

◦ Developing a GUI-based 2nd-order equational theo-
rem prover (http://haskell.org/communities/05-2009/
html/report.html#sect6.7.3)

◦ New approaches to uniqueness typing, applicable to
Hindley-Milner style type-inferencing

◦ Equational reasoning for Concurrent Haskell (new)

We have also managed to introduce a new elective
course in functional programming at TCD which will
be based on the “Real World Haskell” textbook.

Further reading

https://www.cs.tcd.ie/research_groups/fmg/

8.5 Formal Methods at DFKI Bremen and
University of Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Lücke, Christoph

Lüth, Christian Maeder, Till Mossakowski,
Lutz Schröder

See: http://haskell.org/communities/05-2009/html/
report.html#sect8.5.

8.6 Haskell at K.U.Leuven, Belgium

Report by: Tom Schrĳvers
Participants: Pieter Wuille

We are a two-man unit of functional programming re-
search within the Declarative Languages and Artificial
Intelligence group at the Katholieke Universiteit Leu-
ven, Belgium.
Our main project centers around the Monadic Con-

straint Programming (MCP) framework. An initial ar-
ticle on the MCP framework by Tom Schrĳvers, Pe-
ter Stuckey and Phil Wadler is available. It explains
how the framework captures the generic aspects of Con-
straint Programming in Haskell. Of particular interest
is the solver-independent framework for compositional
search strategies.
Currently we are extending the framework to act

as a finite domain modeling language for both the
problem description and the search component. The
model in Haskell serves as a high-level front-end for a
state-of-the-art Constraint Programming system such
as Gecode (C++). Models can be compiled to C++
code, can be solved by calling Gecode from Haskell at
runtime, or can be solved purely in Haskell itself.
Our other Haskell-related projects are:

◦ EffectiveAdvice: EffectiveAdvice is a disciplined
model of (AOP-style) advice, inspired by Aldrich’s
Open Modules, that has full support for effects in
both base components and advice. EffectiveAdvice
is implemented as a Haskell library. Advice is mod-
eled by mixin inheritance and effects are modeled
by monads. Interference patterns previously identi-
fied in the literature are expressed as combinators.
Equivalence of advice, as well as base components,
can be checked by equational reasoning. Parametric-
ity, together with the combinators, is used to prove
two harmless advice theorems. The result is an ef-
fective model of advice that supports effects in both
advice and base components, and allows these effects
to be separated with strong non-interference guaran-
tees, or merged as needed. This is joint work with
Bruno Oliveira and William Cook.

◦ Type Checking: Recent results are on type inference
for GADTs, type invariants, and type checking for
type families. Ongoing work concerns the simplifica-
tion of type checking for Haskell extensive type sys-
tem, and adding new extensions. This is joint work
with Martin Sulzmann, Simon Peyton Jones, Manuel
Chakravarty, Dimitrios Vytiniotis, Stefan Monnier,
Louis-Julien Guillemette and Dominic Orchard.

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/monadiccp

◦ http://www.cs.kuleuven.be/~toms/Haskell/
◦ https://www.cs.kuleuven.be/~pieterw/site/Research/

Papers/

64

http://www.cs.kent.ac.uk/projects/heat/
http://projects.cs.kent.ac.uk/projects/tock/
http://haskell.org/communities/05-2009/html/report.html#sect6.7.3
http://haskell.org/communities/05-2009/html/report.html#sect6.7.3
https://www.cs.tcd.ie/research_groups/fmg/
http://haskell.org/communities/05-2009/html/report.html#sect8.5
http://haskell.org/communities/05-2009/html/report.html#sect8.5
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/monadiccp
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/monadiccp
http://www.cs.kuleuven.be/~toms/Haskell/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/

8.7 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
group. The Ro/Haskell page becomes more and more
known. We hope to pass the barrier of the 20000th
click on the main page this mounth. The numbers of
students and teachers interested in Haskell is increas-
ing. Students begin to have projects using Haskell in
order to pass the License Exams. But it is just a begin-
ning. Interests in Data Base Programing with Haskell
are growing. (A surprise!).
A book previously published by Mihai Gontineac was

released as a free resource. A new book, “The Prac-
tice Of Monadic Interpretation” by Dan Popa has been
published in November 2008.

The book has a nice foreword written by Simon P.J. and
is sharing the experience of a year of interpreter build-
ing (2006). It is intended as a student’s and teacher’s
guide to the practical approach of monadic interpre-
tation. The book will probably be used during this
academic year in 2–4 universities across Romania (in
Iasi, Bacau, Cluj-Napoca).
Haskell products like Rodin (a small DSL a bit like

C but written in Romanian) begin to spread, proving
the power of the Haskell language. The Pseudocode
Language Rodin is used as a tool for teaching basics
of computer science in some high-schools from various
cities. Some teachers from a high school have requested
training concerning Rodin. Rodin was asked to become
a FOSS (Free & Open Source Software).
A group of researchers from the field of linguis-

tics located at the State Univ. from Bacau (The LO-
GOS Group) is declaring the intention of bridging the
gap between semiotics, high level linguistics, struc-
turalism, nonverbal communication, dance semiotics
(and some other intercultural subjects) AND Compu-
tational Linguistics (meaning Pragmatics, Semantics,
Syntax, Lexicology, etc.) using Haskell as a tool for
real projects. Probably the situation from Romania
is not well known: Romania is probably one of those

countries where computational linguistics is studied by
computer scientists less than linguists.
At Bacau State University, we have teaching Haskell

on both Faculties: Sciences (The Computers Science
being included) and we hope we will work with Haskell
with the TI students from the Fac. Of Engineering,
where a course on Formal Languages was requested.
“An Introduction to Haskell by Examples” had traveled
to The Transilvania Univ. (Brasov) and we are expect-
ing Haskell to be used there, too, during this academic
year. Other libraries had received manuals and even
donations (in books, of course). Editors seem to be
interested by the Ro/Haskell movement, and some of
them have already declared the intention of helping us
by investing capital in the Haskell books production.
A well known Publishing House (MatrixRom) asked us
to be the Official Publishing House of the Ro/haskell
Group.
Dan Popa is reporting a new technology in order to

build the Modular Abstract Syntax Tree of a language
processor without Maybe, without Catamorphisms and
without Haskell extensions. A paper is available.
There are some unsolved problems, too: PhD. Ad-

visors (specialized in monads, languages engineering,
and Haskell) are almost impossible to find. This fact
seems to block somehow the hiring of good specialists
in Haskell. There was even a funny case when some-
body hired to teach Haskell was tested and interviewed
by a LISP teacher. Of course, the exam was more or
less about lists.

Further reading

◦ Ro/Haskell: http://www.haskell.org/haskellwiki/Ro/
Haskell

◦ Rodin: http://www.haskell.org/haskellwiki/Rodin

8.8 fp-syd: Functional Programming in
Sydney, Australia.

Report by: Ben Lippmeier
Participants: Erik de Castro Lopo

We are a seminar and social group for people in Syd-
ney, Australia interested in Functional Programming
and related fields. We meet on the third Thursday of
each month and regularly get 25–30 attendees, with a
70/30 industry/research split. Talks this year have in-
cluded “Intro to PLT Scheme”, “A Haskell library for
chart plotting”, and “Program extraction in a theorem
prover like Coq (or Isabelle)”. We usually have about
90 mins of talks, starting at 6:30pm, then go for drinks
afterwards. All welcome.

Further reading

http://groups.google.com/group/fp-syd

65

http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Rodin
http://groups.google.com/group/fp-syd

8.9 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component of
the Department of Computer Science and Engineering
at Chalmers. In particular, Haskell has a very impor-
tant place, as it is used as the vehicle for teaching and
numerous projects. Besides functional programming,
language technology, and in particular domain specific
languages is a common aspect in our projects.
The Functional Programming research group has 5

faculty members and 9 postdoc and doctoral students.
Research is going on in various exciting topics:

Property-based testing QuickCheck is the basis for
a European Union project on Property Based Test-
ing (www.protest-project.eu). We are applying the
QuickCheck approach to Erlang software, together
with Ericsson, Quviq, and others. Much recent work
has focused on PULSE, the ProTest User-Level Sched-
uler for Erlang, which has been used to find race con-
ditions in industrial software — see our ICFP 2009
paper for details. A new tool, QuickSpec, gener-
ates algebraic specifications for an API automatically,
in the form of equations verified by random testing.
A draft paper can be found here: http://www.cse.
chalmers.se/~nicsma/quickspec.pdf. Lastly, we have de-
vised a technique to speed up testing of polymor-
phic properties: http://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=99387.

Natural language technology Grammatical Frame-
work (→ 6.10.3) is a declarative language for describ-
ing natural language grammars. It is useful in various
applications ranging from natural language generation,
parsing and translation to software localization. The
framework provides a library of large coverage gram-
mars for currently fifteen languages from which the de-
velopers could derive smaller grammars specific for the
semantics of a particular application.

Generic Programming Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic
programming research at Chalmers. Recent develop-
ments include work on dependent types (a JFP pa-
per + library around “Algebra of Programming us-
ing Agda”), two survey papers “C++ Concepts =?
Haskell Type Classes” and “Comparing GP Libs in
Haskell” and applications to sustainable development
with the Potsdam Institute for Climate Impact Re-
search (http://www.pik-potsdam.de/. Patrik Jansson
(with Sibylle Schupp) chaired the recent Workshop on
Generic Programming.

Text editors Yi is a text editor in and for Haskell.
It is a community project, but much development

and maintenance happens at Chalmers. For ex-
ample, enhancing Yi was the goal of two master’s
theses, and motivated research about incremental
parsing: http://publications.lib.chalmers.se/cpl/record/
index.xsql?pubid=94979.

Language-based security SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 3.2.2) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

DSP programming Feldspar is a domain-specific lan-
guage for digital signal processing (DSP), developed
in co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest. The
motivating application is telecom processing, but the
language is intended to be more general. As a first
stage, we focus on the data-intensive numeric algo-
rithms which are at the core of any DSP application,
but in the future, we also plan to extend the language to
deal with more system-level aspects. The data process-
ing language is purely functional and highly inspired by
Haskell. Currently the language is implemented as an
embedded language in Haskell.
The implementation (including a code generator de-

veloped by ELTE University) will be publicly released
within the coming weeks. Keep an eye on the project
page: http://sourceforge.net/projects/feldspar/.

Hardware design/verification The functional pro-
gramming group has developed three different hard-
ware description languages — Lava, Wired and Chalk
(chronological order) — implemented in Haskell. Each
language targets a different abstraction level. The basic
idea behind all three is to model circuits as functions
from inputs to outputs. This allows structural hard-
ware description in standard functional programming
style.
Chalk is a new language for architecture design.

Once you have defined a Chalk circuit, you can sim-
ulate it, or explore it further using non-standard in-
terpretations. This is particularly useful if you want

66

www.protest-project.eu
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://www.pik-potsdam.de/
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=94979
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=94979
http://sourceforge.net/projects/feldspar/

to perform high-level power and performance analysis
early on in the design process.
In Lava, circuits are described at the gate level

(with some RTL support). The version developed
at Chalmers (http://www.cs.chalmers.se/~koen/Lava/)
has a particular aim to support formal verification in a
convenient way. The version developed at Xilinx Inc.
(http://raintown.org/lava/) focuses on FPGA core gen-
eration, and has been successfully used in real indus-
trial design projects.
Wired is an extension to Lava, targeting (not exclu-

sively) semi-custom VLSI design. A particular aim of
Wired is to give the designer more control over on-chip
wires’ effects on performance. Some features of Wired
are:
◦ Initial description can be purely functional (a la
Lava).

◦ Incremental specification of physical aspects.
◦ Accurate, wire-aware timing/power analysis within

the system.
◦ Support for an academic 45nm cell library.
Unfortunately, Wired is not actively developed at the

moment, but the system has recently been used to ex-
plore the layout of multipliers (http://publications.lib.
chalmers.se/cpl/record/index.xsql?pubid=93674).
Home page: http://www.cs.chalmers.se/~emax/

wired/

Automated reasoning Equinox is an automated the-
orem prover for pure first-order logic with equality.
Equinox actually implements a hierarchy of logics, re-
alized as a stack of theorem provers that use abstrac-
tion refinement to talk with each other. In the bottom
sits an efficient SAT solver. Paradox is a finite-domain
model finder for pure first-order logic with equality.
Paradox is a MACE-style model finder, which means
that it translates a first-order problem into a sequence
of SAT problems, which are solved by a SAT solver.
Infinox is an automated tool for analyzing first-order
logic problems, aimed at showing finite unsatisfiability,
i.e. the absence of models with finite domains. All three
tools are developed in Haskell.

Teaching Haskell is present in the curriculum as early
as the first year of the Bachelors program. We have
three courses solely dedicated to functional program-
ming (of which two are Masters-level courses), but
we also provide courses which use Haskell for teach-
ing other aspects of computer science, such as pro-
gramming languages, compiler construction, hardware
description and verification, data structures and pro-
gramming paradigms.

Student Projects Masters students Anders Karlsson
and Tobias Olausson are currently developing a (fast)
mp3 decoder in Haskell. More info about this project
can be found at http://trac.haskell.org/HQmpd. The

project will also include a showcase player using the
decoder.

67

http://www.cs.chalmers.se/~koen/Lava/
http://raintown.org/lava/
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=93674
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=93674
http://www.cs.chalmers.se/~emax/wired/
http://www.cs.chalmers.se/~emax/wired/
http://trac.haskell.org/HQmpd

	Information Sources
	The Monad.Reader
	Haskell Wikibook
	Oleg's Mini tutorials and assorted small projects
	Haskell Cheat Sheet
	The Happstack Tutorial
	Practice of Functional Programming
	Cartesian Closed Comic

	Implementations
	The Glasgow Haskell Compiler
	The Helium compiler
	UHC, Utrecht Haskell Compiler
	Haskell frontend for the Clean compiler
	SAPL, Simple Application Programming Language
	The Reduceron
	Platforms
	Haskell in Gentoo Linux
	Fedora Haskell SIG
	GHC on OpenSPARC

	Language
	Extensions of Haskell
	Eden
	XHaskell project
	HaskellActor
	HaskellJoin

	Related Languages
	Curry
	Agda
	Clean
	Timber
	Ur/Web

	Type System / Program Analysis
	Free Theorems for Haskell (and Curry)
	The Disciplined Disciple Compiler (DDC)

	Tools
	Transforming and Generating
	UUAG
	AspectAG
	HFusion
	Optimus Prime
	Derive
	lhs2TeX

	Analysis and Profiling
	SourceGraph
	HLint
	hp2any

	Development
	Hoogle --- Haskell API Search
	HEAT: The Haskell Educational Advancement Tool
	HaRe --- The Haskell Refactorer
	DarcsWatch
	HSFFIG

	Libraries
	Cabal and Hackage
	Haskell Platform
	Auxiliary Libraries
	hmatrix
	hTensor
	The Neon Library
	leapseconds-announced

	Parsing and Transforming
	ChristmasTree
	Utrecht Parser Combinator Library: New version

	Mathematical Objects
	dimensional: Statically checked physical dimensions
	Halculon: units and physical constants database
	Numeric prelude
	AERN-Real and friends
	logfloat
	fad: Forward Automatic Differentiation

	Data types and data structures
	HList --- a library for typed heterogeneous collections
	bytestring-trie

	Data processing
	MultiSetRewrite
	Graphalyze

	Generic and Type-Level Programming
	uniplate
	Generic Programming at Utrecht University
	Extensible and Modular Generics for the Masses (EMGM)
	Optimizing generic functions
	2LT: Two-Level Transformation
	Data.Label --- ``atoms'' for type-level programming

	User interfaces
	Gtk2Hs
	HQK

	Graphics
	diagrams
	LambdaCube
	GPipe
	ChalkBoard
	graphviz

	Music
	Haskore revision
	Euterpea

	Web and XML programming
	Haskell XML Toolbox
	tagsoup

	Applications and Projects
	For the Masses
	Darcs
	xmonad

	Education
	Exercise Assistants
	Holmes, plagiarism detection for Haskell
	INblobs --- Interaction Nets interpreter
	Yahc
	grolprep

	Web Development
	Holumbus Search Engine Framework
	HCluster
	JavaScript Monadic Writer
	Haskell DOM Bindings
	gitit

	Data Management and Visualization
	Pandoc
	HaExcel --- From Spreadsheets to Relational Databases and Back
	SdfMetz
	The Proxima 2.0 generic editor

	Functional Reactive Programming
	Functional Hybrid Modelling
	Elerea

	Audio and Graphics
	Audio signal processing
	easyVision
	photoname
	n-Dimensional Convex Decomposition of Polytops
	DVD2473
	Fl4m6e
	GULCI
	Reflex

	Proof Assistants and Reasoning
	Galculator
	Saoithín: a 2nd-order proof assistant
	Inference Services for Hybrid Logics
	HTab
	Sparkle
	Haskabelle

	Modeling and Analysis
	iTasks
	CSP-M animator and model checker

	Hardware Design
	ForSyDe
	Kansas Lava

	Natural Language Processing
	NLP
	GenI
	Grammatical Framework

	Others
	IgorII
	Roguestar
	LQPL --- A quantum programming language compiler and emulator
	Yogurt
	Dyna 2
	Vintage BASIC
	Bullet
	arbtt
	uacpid

	Commercial Users
	Well-Typed LLP
	Credit Suisse Global Modeling and Analytics Group
	Bluespec tools for design of complex chips
	Galois, Inc.
	IVU Traffic Technologies AG Rostering Group
	Tupil
	Aflexi Content Delivery Network (CDN)
	Industrial Haskell Group
	typLAB

	Research and User Groups
	Functional Programming Lab at the University of Nottingham
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Foundations and Methods Group at Trinity College Dublin
	Formal Methods at DFKI Bremen and University of Bremen
	Haskell at K.U.Leuven, Belgium
	Haskell in Romania
	fp-syd: Functional Programming in Sydney, Australia.
	Functional Programming at Chalmers

