
Haskell Communities and Activities Report
http://www.haskell.org/communities/

Nineteenth Edition — November 2010

Janis Voigtländer (ed.)
Andreas Abel Robin Adams Iain Alexander

Krasimir Angelov Heinrich Apfelmus Jim Apple
Dmitry Astapov Christiaan Baaĳ Justin Bailey
Alexander Bau Doug Beardsley Jean-Philippe Bernardy
Tobias Bexelius Annette Bieniusa Mario Blažević

Anthonin Bonnefoy Edwin Brady Gwern Branwen
Joachim Breitner Erik de Castro Lopo Roman Cheplyaka

Olaf Chitil Duncan Coutts Simon Cranshaw
Nils Anders Danielsson Dominique Devriese Daniel Díaz

Larry Diehl Atze Dĳkstra Jonas Duregård
Marc Fontaine Patai Gergely Brett G. Giles

Andy Gill George Giorgidze Dmitry Golubovsky
Carlos Gomez Matthew Gruen Torsten Grust
Jurriaan Hage Sönke Hahn Bastiaan Heeren
Judah Jacobson Jeroen Janssen David Himmelstrup

Guillaume Hoffmann Martin Hofmann Jasper Van der Jeugt
Farid Karimipour Oleg Kiselyov Lennart Kolmodin
Michal Konečný Eric Kow Ben Lippmeier
Andres Löh Tom Lokhorst Rita Loogen
Ian Lynagh John MacFarlane Christian Maeder

José Pedro Magalhães Ketil Malde Vivian McPhail
Arie Middelkoop Ivan Lazar Miljenovic Neil Mitchell
Dino Morelli JP Moresmau Matthew Naylor

Victor Nazarov Jürgen Nicklisch-Franken Rishiyur Nikhil
Thomas van Noort Johan Nordlander Miguel Pagano

Jens Petersen Simon Peyton Jones Bernie Pope
Matthias Reisner Alberto Ruiz David Sabel
Antti Salonen Ingo Sander Uwe Schmidt
Martĳn Schrage Tom Schrĳvers Jeremy Shaw
Marco Silva Axel Simon Michael Snoyman
Will Sonnex Martĳn van Steenbergen Martin Sulzmann

Doaitse Swierstra Henning Thielemann Simon Thompson
Thomas Tuegel Marcos Viera Janis Voigtländer
Jan Vornberger David Waern Gregory D. Weber
Stefan Wehr Mark Wotton Kazu Yamamoto

Brent Yorgey

http://www.haskell.org/communities/

Preface

This is the 19th edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a
blue background. Entries for which I received a liveness ping, but which have seen no essential
update for a while, have been replaced with online pointers to previous versions. Other entries
on which no new activity has been reported for a year or longer have been dropped completely.
Please do revive such entries next time if you do have news on them.

I have restructured the report a bit. Any feedback on that, or on my further attempts to
improve the generation of the html version of the report (see http://haskell.org/communities/
11-2010/html/report.html), or in fact on anything else, would be very welcome.

A call for new entries and updates to existing ones will be issued on the usual mailing lists in
April. Now enjoy the current report and see what other Haskellers have been up to lately.

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

http://haskell.org/communities/11-2010/html/report.html
http://haskell.org/communities/11-2010/html/report.html
mailto: hcar at haskell.org

Contents

1 Community 7
1.1 Haskellers . 7
1.2 Haskell Wikibook . 7
1.3 Cartesian Closed Comic . 7

2 Articles/Tutorials 8
2.1 The Monad.Reader . 8
2.2 Oleg’s Mini Tutorials and Assorted Small Projects . 8
2.3 Haskell Cheat Sheet . 8
2.4 Practice of Functional Programming . 9

3 Implementations 10
3.1 Haskell Platform . 10
3.2 The Glasgow Haskell Compiler . 10
3.3 LHC . 13
3.4 The Helium Compiler . 13
3.5 UHC, Utrecht Haskell Compiler . 13
3.6 Exchanging Sources between Clean and Haskell . 14
3.7 The Reduceron . 15
3.8 Specific Platforms . 15
3.8.1 Debian Haskell Group . 15
3.8.2 Haskell in Gentoo Linux . 15
3.8.3 Fedora Haskell SIG . 16

4 Related Languages 17
4.1 Agda . 17
4.2 MiniAgda . 17
4.3 Idris . 17
4.4 Clean . 17
4.5 Timber . 18
4.6 Disciple . 19

5 Haskell and . . . 20
5.1 Haskell and Parallelism . 20
5.1.1 TwilightSTM . 20
5.1.2 Haskell-MPI . 20
5.1.3 Eden . 21
5.2 Haskell and the Web . 21
5.2.1 GHCJS: Haskell to Javascript compiler . 21
5.2.2 Hawk . 22
5.2.3 WAI . 22
5.2.4 Holumbus Search Engine Framework . 23
5.2.5 gitit . 24
5.2.6 Happstack . 24
5.2.7 Mighttpd — Yet another Web Server . 25
5.2.8 Yesod . 25
5.2.9 Lemmachine . 25
5.2.10 Snap Framework . 26
5.3 Haskell and Games . 26
5.3.1 Nikki and the Robots . 26
5.3.2 Freekick2 . 27
5.3.3 Dungeons of Wor . 27

3

5.4 Haskell and Compiler Writing . 27
5.4.1 UUAG . 27
5.4.2 AspectAG . 28
5.4.3 Berp . 28
5.4.4 LQPL — A Quantum Programming Language Compiler and Emulator 29

6 Development Tools 30
6.1 Environments . 30
6.1.1 EclipseFP . 30
6.1.2 ghc-mod — Happy Haskell Programming on Emacs . 30
6.1.3 Leksah — Toward a Haskell IDE . 30
6.1.4 HEAT: The Haskell Educational Advancement Tool . 31
6.1.5 HaRe — The Haskell Refactorer . 31
6.2 Documentation . 32
6.2.1 Haddock . 32
6.2.2 Hoogle . 32
6.2.3 lhs2TEX . 33
6.3 Testing and Analysis . 33
6.3.1 HTF: A Test Framework for Haskell . 33
6.3.2 SourceGraph . 33
6.3.3 HLint . 34
6.3.4 A Haskell Source File Scanning Tool . 34
6.4 Boilerplate Removal . 34
6.4.1 A Generic Deriving Mechanism for Haskell . 34
6.4.2 Derive . 35
6.4.3 Agata . 35
6.5 Code Management . 35
6.5.1 Darcs . 35
6.5.2 ipatch . 36
6.5.3 DarcsWatch . 36
6.5.4 DPM — Darcs Patch Manager . 36
6.6 Interfacing to other Languages . 36
6.6.1 HSFFIG . 36
6.6.2 Hubris . 36
6.7 Deployment . 37
6.7.1 Cabal and Hackage . 37
6.7.2 Capri . 37
6.7.3 Shaker . 38

7 Google Summer of Code 2010 39
7.1 Immix Garbage Collector on GHC . 39
7.2 Improvements to Cabal’s Test Support . 39
7.3 A High Performance HTML Generation Library . 39
7.4 Hackage 2.0 . 39
7.5 Improving Darcs’ Network Performance . 40

8 Libraries 41
8.1 Processing Haskell . 41
8.1.1 The Neon Library . 41
8.1.2 mueval . 41
8.2 Parsing and Transforming . 41
8.2.1 The grammar-combinators Parser Library . 41
8.2.2 language-python . 42
8.2.3 Loker . 42
8.2.4 ChristmasTree . 42
8.2.5 First Class Syntax Macros . 42
8.2.6 Utrecht Parser Combinator Library: uu-parsinglib . 42
8.2.7 Regular Expression Matching with Partial Derivatives . 43

4

8.3 Mathematical Objects . 43
8.3.1 AERN-Real and Friends . 43
8.3.2 hmatrix . 44
8.4 Data Types and Data Structures . 44
8.4.1 HList — A Library for Typed Heterogeneous Collections . 44
8.4.2 Verified Priority Queues . 44
8.4.3 Graphalyze . 44
8.5 Generic and Type-Level Programming . 45
8.5.1 FlexiWrap . 45
8.5.2 uniplate . 45
8.5.3 Generic Programming at Utrecht University . 45
8.5.4 Optimizing Generic Functions . 46
8.6 User Interfaces . 46
8.6.1 Gtk2Hs . 46
8.6.2 Haskeline . 47
8.6.3 CmdArgs . 47
8.7 Graphics . 47
8.7.1 plot/plot-gtk . 47
8.7.2 diagrams . 48
8.7.3 GPipe . 48
8.7.4 ChalkBoard . 48
8.7.5 graphviz . 49
8.8 Text and Markup Languages . 49
8.8.1 HaTeX . 49
8.8.2 Haskell XML Toolbox . 49
8.8.3 tagsoup . 50
8.8.4 BlazeHtml . 50
8.8.5 Bravo . 51

9 Applications and Projects 52
9.1 Education . 52
9.1.1 Holmes, Plagiarism Detection for Haskell . 52
9.1.2 Interactive Domain Reasoners (previously: Exercise Assistants) . 52
9.1.3 Yahc . 53
9.1.4 Sifflet . 53
9.2 Data Management and Visualization . 54
9.2.1 HaskellDB . 54
9.2.2 lhae . 54
9.2.3 Pandoc . 54
9.2.4 Ferry (Database-Supported Program Execution) . 55
9.2.5 Sirenial . 55
9.2.6 The Proxima 2.0 Generic Editor . 56
9.3 Functional Reactive Programming . 57
9.3.1 Functional Hybrid Modelling . 57
9.3.2 Elerea . 57
9.4 Audio and Graphics . 58
9.4.1 Audio Signal Processing . 58
9.4.2 easyVision . 59
9.4.3 n-Dimensional Volume Calculation for Non-Convex Polytops . 59
9.4.4 Hemkay . 60
9.5 Hardware Design . 60
9.5.1 CλaSH . 60
9.5.2 ForSyDe . 61
9.5.3 Kansas Lava . 61
9.6 Proof Assistants and Reasoning . 62
9.6.1 Zeno — Inductive Theorem Proving for Haskell Programs . 62
9.6.2 HTab . 62
9.6.3 Plastic . 62

5

9.6.4 Free Theorems for Haskell . 63
9.6.5 Streaming Component Combinators . 63
9.6.6 CSP-M Animator and Model Checker . 64
9.7 Natural Language Processing . 64
9.7.1 NLP . 64
9.7.2 GenI . 64
9.7.3 Grammatical Framework . 64
9.8 Others . 65
9.8.1 xmonad . 65
9.8.2 Bluetile . 65
9.8.3 Biohaskell . 66
9.8.4 IgorII . 66
9.8.5 arbtt . 67
9.8.6 cltw (Twitter API Command-Line Utility) . 67

10 Commercial Users 68
10.1 Well-Typed LLP . 68
10.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 68
10.3 Industrial Haskell Group . 69
10.4 factis research GmbH . 69
10.5 Tsuru Capital . 69
10.6 Oblomov Systems . 69

11 Research and User Groups 71
11.1 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 71
11.2 Functional Programming at the University of Kent . 71
11.3 Formal Methods at DFKI and University Bremen . 72
11.4 Haskell at Universiteit Gent, Belgium . 72
11.5 fp-syd: Functional Programming in Sydney, Australia . 73
11.6 Functional Programming at Chalmers . 73
11.7 Dutch Haskell User Group . 75
11.8 San Simón Haskell Community . 75
11.9 Functional Programming at KU . 75
11.10 Ghent Functional Programming Group . 76

6

1 Community

1.1 Haskellers

Report by: Michael Snoyman
Status: experimental

In the beginning of October, Haskellers was launched.
It is a site designed to promote Haskell as a language
for use in the real world by being a central meeting
place for the myriad talented Haskell developers out
there. It allows users to create profiles complete with
skill sets and packages authored and gives employers a
central place to find Haskell professionals.
Though the site is still in its infancy, the response

has been staggering. Within a week of its launch, we
are now sitting at over 200 active accounts. We are
still planning on lots of new features: we may be adding
social networking functionality, job postings, user polls,
and much more. If you have any ideas, please let me
know. And if you are at all involved in the Haskell
community, be sure to create a profile.

Further reading

http://www.haskellers.com/

1.2 Haskell Wikibook

Report by: Heinrich Apfelmus
Participants: Duplode, Orzetto, David House, Eric Kow,

and other contributors
Status: active development

The goal of the Haskell Wikibook project is to build
a community textbook about Haskell that is at once
free (as in freedom and in beer), gentle, and compre-
hensive. We think that the many marvelous ideas of
lazy functional programming can and thus should be
accessible to everyone in a central place. In particular,
the Wikibook aims to answer all those conceptual ques-
tions that are frequently asked on the Haskell mailing
lists.
Everyone including you, dear reader, are invited to

contribute, be it by spotting mistakes and asking for
clarifications or by ruthlessly rewriting existing mate-
rial and penning new chapters.
Thanks to user Duplode, a major reorganization of

the introductory chapters is in progress.

Further reading

http://en.wikibooks.org/wiki/Haskell

1.3 Cartesian Closed Comic

Report by: Roman Cheplyaka
Participants: Maria Kovalyova

See: http://haskell.org/communities/05-2010/html/
report.html#sect1.6.

7

http://www.haskellers.com/
http://en.wikibooks.org/wiki/Haskell
http://haskell.org/communities/05-2010/html/report.html#sect1.6
http://haskell.org/communities/05-2010/html/report.html#sect1.6

2 Articles/Tutorials

2.1 The Monad.Reader

Report by: Brent Yorgey

There are plenty of academic papers about Haskell and
plenty of informative pages on the HaskellWiki. Unfor-
tunately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a Wiki page, but more casual than a jour-
nal article.
There are plenty of interesting ideas that maybe do

not warrant an academic publication—but that does
not mean these ideas are not worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if it has all been done before in the Journal
of Impossibly Complicated Theoretical Stuff, explain-
ing a neat idea about “warm fuzzy things” to the rest
of us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there has been one new issue,

featuring an article on combinators for automata, an
interatee tutorial, and an exploration of priority queue
implementations. The next issue will be published in
November.

Further reading

http://themonadreader.wordpress.com/

2.2 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received two additions:

Eliminating Existentials

The web page demonstrates various ways of eliminating
explicit existential quantification in data types, replac-
ing such data types with isomorphic simple, first-order
types. Although such a replacement is of most use

in the languages like SML without direct support for
existentials, the technique may simplify Haskell pro-
grams as well, reducing their reliance on non-standard
extensions. The web page uses Haskell extensively to
explain the technique and to demonstrate its correct-
ness, by writing isomorphisms between existentials and
simple-type representations.
The most interesting case was the elimination of a

translucent existential, which exposed part of its struc-
ture, being a list. The type of the elements of the list
is opaque. Eliminating such existential required nested
data types.
The web page discusses several ways of collecting val-

ues of different types in the same list, stressing open
unions implemented with and without existentials. Im-
plicitly heterogeneous lists without existentials offer no
value abstraction, let alone type abstraction. On the
upside, these open unions support a projection opera-
tion, or safe downcast.
http://okmĳ.org/ftp/Computation/Existentials.html

Type-class overloaded functions: second-order
typeclass programming with backtracking

We describe functions polymorphic over classes of
types. Each instance of such (2-polymorphic) function
uses ordinary 1-polymorphic methods, to generically
process values of many types, the members of that 2-
instance type class. The typeclass constraints are thus
manipulated as first-class entities. We also show how
to write typeclass instances with back-tracking: if one
instance does not apply, the typechecker will chose the
‘next’ instance — in the precise meaning of ‘next’.
We show a method to describe classes of types in a

concise way: instead of the exhaustive enumeration of
class members, we use unions, class differences, and un-
restricted comprehension. These classes of types may
be either closed or open (extensible). After the classes
are defined, we can write arbitrarily many functions
overloaded over these type classes. An instance of our
function for a specific type class may use polymorphic
functions to generically process all members of that
type class. Our functions are hence second-order poly-
morphic.
http://okmĳ.org/ftp/Haskell/types.html#poly2

2.3 Haskell Cheat Sheet

Report by: Justin Bailey
Status: active development

The “Haskell Cheat Sheet” covers the syntax, key-
words, and other language elements of Haskell 98. Be-

8

http://themonadreader.wordpress.com/
http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Computation/Existentials.html
http://okmij.org/ftp/Haskell/types.html#poly2

ginning to intermediate Haskell programmers should
find it useful; it can even serve as a memory aid for
experts.
The cheat sheet can be downloaded directly from

http://cheatsheet.codeslower.com or installed using ca-
bal (cabal install cheatsheet). Spanish and
Japanese translations of the cheatsheet can be found
on the web site, as well.

Further reading

http://cheatsheet.codeslower.com

2.4 Practice of Functional Programming

Report by: Dmitry Astapov
Status: six issues ready, issue #7 is in pipeline,

collecting materials for more

“Practice of Functional Programing” is a Russian elec-
tronic magazine promoting functional programming.
The magazine features articles that cover both theoret-
ical and practical aspects of the craft. Most of the al-
ready published material is directly related to Haskell.
The magazine attempts to keep a bi-monthly release

schedule, with Issue #7 slated for release early in 2011.
Full contents of current and past issues are available

in PDF from the official site of the magazine free of
charge.

Articles are in Russian, with English annotations.

Further reading

http://fprog.ru/ for issues ##1–6

9

http://cheatsheet.codeslower.com
http://cheatsheet.codeslower.com
http://fprog.ru/

3 Implementations

3.1 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of the “blessed”
set of libraries and tools on which to build further
Haskell libraries and applications. It takes a core se-
lection of packages from the more than 2500 on Hack-
age (→ 6.7.1). It is intended to provide a comprehen-
sive, stable, and quality tested base for Haskell projects
to work from.
Historically, GHC shipped with a collection of pack-

ages under the name extralibs. Since GHC 6.12 the
task of shipping an entire platform has been transferred
to the Haskell Platform.

Recent progress

During the summer we had the second major release
of the platform. This is the 2010.2.0.x release series.
While there were no new packages included in this ma-
jor release, there have been a few significant upgrades
including QuickCheck version 2, the latest versions of
the ‘regex-*’ packages and of course GHC 6.12.x.

Looking forward

Major releases take place on a 6 month cycle. The next
major release will be in January 2011 and — barring
any major problems — will include GHC 7.0.x.
This is the first round where we have started to use

the new procedure for adding packages. There were two
proposals: one to add the ‘text’ package and another
for a major update to the ‘mtl’ library. At the time of
writing the final decision has not been made on whether
these proposals will be accepted for this round.
For the following major release, we would like

to invite package authors to propose new packages.
We also invite the rest of the community to take
part in the review process on the libraries mailing
list libraries@haskell.org. The procedure involves
writing a package proposal and discussing it on the
mailing list with the aim of reaching a consensus. De-
tails of the procedure are on the development wiki.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform
◦ Download: http://hackage.haskell.org/platform/
◦ Wiki: http://trac.haskell.org/haskell-platform/

◦ Adding packages: http://trac.haskell.org/
haskell-platform/wiki/AddingPackages

3.2 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

GHC is humming along. We are currently deep into
the release cycle for GHC 7.0. We have finally bumped
the major version number, because GHC 7.0 has quite
a bit of new stuff:

◦ As long promised, Simon PJ and Dimitrios have
spent a good chunk of the summer doing a com-
plete rewrite of the constraint solver in the
type inference engine. Because of GHC’s myriad
type-system extensions, especially GADTs and type
families, the old engine had begun to resemble the
final stages of a game of Jenga. It was a delicately-
balanced pile of blocks that lived in constant danger
of complete collapse, and had become extremely dif-
ferent to modify (or even to understand). The new
inference engine is much more modular and robust;
it is described in detail in our paper [OutsideIn]. A
blog post describes some consequential changes to let
generalisation [LetGen].
As a result we have closed dozens of open type in-
ference bugs, especially related to GADTs and type
families.

◦ There is a new, robust implementation of IN-
LINE pragmas that behaves much more intuitively.
GHC now captures the original RHS of an INLINE
function, and keeps it more-or-less pristine, ready to
inline at call sites. Separately, the original RHS is
optimised in the usual way. Suppose you say

{-# INLINE f #-}
f x = ...blah...

g1 y = f y + 1
g2 ys = map f ys

Here, f will be inlined into g1 as you would expect,
but obviously not into g2 (since it is not applied to
anything). However f’s right hand side will be opti-
mised (separately from the copy retained for inlining)
so that the call from g2 runs optimised code.
There is a raft of other small changes to the optimi-
sation pipeline too. The net effect can be dramatic:
Bryan O’Sullivan reports some five-fold (!) improve-
ments in his text-equality functions, and concludes

10

http://haskell.org/haskellwiki/Haskell_Platform
http://hackage.haskell.org/platform/
http://trac.haskell.org/haskell-platform/
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://haskell.org/haskellwiki/Simonpj/Talk:OutsideIn
http://hackage.haskell.org/trac/ghc/blog/LetGeneralisationInGhc7

"The difference between 6.12 and 7 is so dramatic,
there’s a strong temptation for me to say ’wait for
7!’ to people who report weaker than desired perfor-
mance."

◦ David Terei implemented a new back end for GHC
using LLVM. In certain situations using the LLVM
backend can give fairly substantial performance im-
provements to your code, particularly if you are us-
ing the Vector libraries, DPH or making heavy use of
fusion. In the general case it should give as good per-
formance or slightly better than GHC’s native code
generator and C backend. You can use it through the
-fllvm compiler flag. More details of the backend
can be found in David’s and Manuel Chakravarty’s
Haskell Symposium paper [Llvm].

◦ Bryan O’Sullivan and Johan Tibell implemented a
new, highly-concurrent I/O manager. GHC now
supports over a hundred thousand open I/O con-
nections. The new I/O manager defines a separate
backend per operating system, using the most effi-
cient system calls for that particular operating sys-
tem (e.g., epoll on Linux). This means that GHC
can now be used to implement servers that make use
of, e.g., HTTP long polling, where the server needs
to handle a large number of open idle connections.

◦ In joint work with Phil Trinder and his colleagues at
Herriot Watt, Simon M designed and implemented a
new parallel strategies library, described in their
2010 Haskell Symposium paper [Seq].

◦ As reported in the previous status update, the
runtime system has undergone substantial
changes to the implementation of lazy evaluation in
parallel, particularly in the way that threads block
and wake up again. Certain benchmarks show sig-
nificant improvements, and some cases of wildly un-
predictable behaviour when using large numbers of
threads are now much more consistent.

◦ The API for asynchronous exceptions has had
a redesign. Previously the combinators block and
unblock were used to prevent asynchronous excep-
tions from striking during critical sections, but these
had some serious disadvantages, particularly a lack
of modularity where a library function could un-
block asynchronous exceptions despite a prevailing
block. The new API closes this loophole, and also
changes the terminology: preventing asynchronous
exceptions is now called "masking", and the new com-
binator is mask. See the documentation for the new
API in Control.Exception for more details.

We are fortunate to have a growing team of people
willing to roll up their sleeves and help us with GHC.
Amongst those who have got involved recently are:
◦ Daniel Fischer, who worked on improving the perfor-
mance of the numeric libraries.

◦ Milan Straka, for great work improving the perfor-
mance of the widely-used containers package [Con-
tainers].

◦ Greg Wright is leading a strike team to make GHC
work better on Macs, and has fixed the RTS linker
so that GHCi will now work in 64-bit mode on OS
X.

◦ Evan Laforge, who has taken on some of the long-
standing issues with the Mac installer.

◦ Sam Anklesaria implemented full import syntax for
GHCi, and rebindable syntax for conditionals.

◦ PHO, who improved the OS X support.
◦ Sergei Trofimovich, who has fixed GHC on some less

common Linux platforms.
◦ Marco Túlio Gontĳo e Silva, who has been working

on the RTS.
◦ Matthias Kilian, who has been working on *BSD

support.
◦ Dave Peixotto, who has improved the PAPI support.
◦ Edward Z. Yang, who has implemented interruptible

FFI calls.
◦ Reiner Pope, who added view patterns to Template

Haskell.
◦ Gabor Pali, who added thread affinity support for

FreeBSD.
◦ Bas van Dĳk has been improving the exceptions API.
At GHC HQ we are having way too much fun; if you
wait for us to do something you have to wait a long
time. So do not wait; join in!

Language developments, especially types

GHC continues to act as an incubator for interesting
new language developments. Here is a selection that
we know about:
◦ José Pedro Magalhães is implementing the deriv-
able type classes mechanism (→ 6.4.1) described
in his 2010 Haskell Symposium paper [Derivable].
I plan for this to replace GHC’s current derivable-
type-class mechanism, which has a poor power-to-
weight ratio and is little used.

◦ Stephanie Weirich and Steve Zdancewic had a great
sabbatical year at Cambridge. One of the things we
worked on, with Brent Yorgey who came as an in-
tern, was to close the embarrassing hole in the type
system concerning newtype deriving (see Trac bug
#1496). I have delayed fixing until I could figure out
a Decent Solution, but now we know; see our 2011
POPL paper [Newtype]. Brent is working on some
infrastructal changes to GHC’s Core language, and
then we will be ready to tackle the main issue.

◦ Next after that is a mechanism for promoting
types to become kinds, and data constructors to
become types, so that you can do typed functional
programming at the type level. Conor McBride’s
SHE prototype is the inspiration here [SHE]. Cur-
rently it is, embarrassingly, essentially untyped.

11

http://www.serpentine.com/blog/2010/10/19/a-brief-tale-of-faster-equality/
http://www.serpentine.com/blog/2010/10/19/a-brief-tale-of-faster-equality/
http://www.serpentine.com/blog/2010/10/19/a-brief-tale-of-faster-equality/
http://www.serpentine.com/blog/2010/10/19/a-brief-tale-of-faster-equality/
http://www.cse.unsw.edu.au/~davidt/downloads/ghc-llvm-hs10.pdf
http://www.haskell.org/~simonmar/papers/strategies.pdf
http://research.microsoft.com/~simonpj/papers/containers/containers.pdf
http://research.microsoft.com/~simonpj/papers/containers/containers.pdf
http://www.dreixel.net/research/pdf/gdmh_nocolor.pdf
http://www.cis.upenn.edu/~sweirich/newtypes.pdf
http://personal.cis.strath.ac.uk/~conor/pub/she/

◦ Template Haskell seems to be increasingly widely
used. Simon PJ has written a proposal for a raft of
improvements, which we plan to implement in the
new year [TemplateHaskell].

◦ Iavor Diatchki plans to add numeric types, so that
you can have a type like Bus 8, and do simple arith-
metic at the type level. You can encode this stuff,
but it is easier to use and more powerful to do it
directly.

◦ David Mazieres at Stanford wants to implement Safe
Haskell, a flag for GHC that will guarantee that
your program does not use unsafePerformIO, for-
eign calls, RULES, and other stuff.

7.0 also has support for the Haskell 2010 standard,
and the libraries that it specifies.

Packages and the runtime system

◦ Simon Marlow is working on a new garbage collec-
tor that is designed to improve scaling of parallel
programs beyond small numbers of cores, by allow-
ing each processor core to collect its own local heap
independently of the other cores. Some encourag-
ing preliminary results were reported in a blog post.
Work on this continues; the complexity of the system
and the number of interacting design choices means
that achieving an implementation that works well in
a broad variety of situations is proving to be quite a
challenge.

◦ The "new back end" is still under construction. This
is a rewrite of the part of GHC that turns STG syn-
tax into C–, i.e., the bit between the Core optimi-
sation passes and the native code generator. The
rewrite is based on [Hoopl], a data-flow optimisa-
tion framework. Ultimately this rewrite should en-
able better code generation. The new code generator
is already in GHC, but turned off by default; you get
it with the flag -fuse-new-codegen. Do not expect
to get better code with this flag yet!

The Parallel Haskell Project

Microsoft Research is funding a 2-year project to de-
velop the real-world use of parallel Haskell. The project
has recently kicked off with four industrial partners,
with consulting and engineering support from Well-
Typed (→ 10.1). Each organisation is working on its
own particular project making use of parallel Haskell.
The overall goal is to demonstrate successful serious
use of parallel Haskell, and along the way to apply en-
gineering effort to any problems with the tools that the
organisations might run into.
We will shortly be announcing more details about the

partner organisations and their projects. For the most
part the projects are scientific and focus on single-node
SMP systems, though one of the partners is working

on network servers and another partner is very inter-
ested in clusters. In collaboration with Bernie Pope,
the first tangible results from the project will be a new
MPI binding (→ 5.1.2), which will appear on hackage
shortly.
Progress on the project will be reported to the com-

munity. Since there are now multiple groups in the
community that are working on parallelism, the plan
is to establish a parallel Haskell website and mailing
list to provide visibility into the various efforts and to
encourage collaboration.

Data Parallel Haskell

Since the last report, we have continued to improve sup-
port for nested parallel divide-and-conquer algorithms.
We started with QuickHull and are now working on an
implementation of the Barnes-Hut n-body algorithm.
The latter is not only significantly more complex, but
also requires the vectorisation of recursive tree data-
structures, going well beyond the capabilities of con-
ventional parallel-array languages. In time for the sta-
ble branch of GHC 7.0, we replaced the old, per-core
sequential array infrastructure (which was part of the
sub-package dph-prim-seq) by the vector package —
vector started its life as a next-generation spin off of
dph-prim-seq, but now enjoys significant popularity
independent of DPH.
The new handling of INLINE pragmas as well as

other changes to the Simplifier improved the stability
of DPH optimisations (and in particular, array stream
fusion) substantially. However, the current candidate
for GHC 7.0.1 still contains some performance regres-
sions that affect the DPH and Repa libraries and to
avoid holding up the 7.0.1 release, we decided to push
fixing these regressions to GHC 7.0.2. More precisely,
we are planning a release of DPH and Repa that is
suitable for use with GHC 7.0 for the end of the year,
to coincide with the release of GHC 7.0.2. From GHC
7.0 onwards, the library component of DPH will be
shipped separately from GHC itself and will be avail-
able to download and install from Hackage as for other
libraries.
To catch DPH performance regressions more quickly

in the future, Ben Lippmeier implemented a perfor-
mance regression testsuite that we run nightly on the
HEAD. The results can be enjoyed on the GHC devel-
oper mailing list.
Sadly, Roman Leshchinskiy has given up his full-time

engagement with DPH to advance the use of Haskell
in the financial industry. We are looking forward to
collaborating remotely with him.

Installers

The GHC installers have also received some attention
for this release.

12

http://hackage.haskell.org/trac/ghc/blog/Template Haskell Proposal
http://hackage.haskell.org/trac/ghc/blog/2010/9#new-gc-preview
http://research.microsoft.com/en-us/um/people/simonpj/papers/c--/dfopt.pdf
http://darcs.haskell.org/packages/dph/dph-examples/spectral/QuickHull/dph/QuickHullVect.hs
http://darcs.haskell.org/packages/dph/dph-examples/real/BarnesHut/Solver/NestedBH/Solver.hs
http://hackage.haskell.org/package/vector
http://hackage.haskell.org/package/repa

The Windows installer includes a much more up-to-
date copy of the MinGW system, which in particular
fixes a couple of issues on Windows 7. Thanks to Claus
Reinke, the installer also allows more control over the
registry associations etc.
Meanwhile, the Mac OS X installer has received some

attention from Evan Laforge. Most notably, it is now
possible to install different versions of GHC side-by-
side.

Bibliography

Containers "The performance of the Haskell containers
package", Straka, Haskell Symposium 2010.

Derivable "A generic deriving mechanism for Haskell",
Magalhães, Dĳkstra, Jeuring and Löh, Haskell Sym-
posium 2010.

LetGen "Let generalisation in GHC 7.0", Peyton Jones,
blog post Sept 2010.

Newtype "Generative Type Abstraction and Type-
level Computation", Weirich, Zdancewic, Vytiniotis,
and Peyton Jones, POPL 2011.

Llvm "An LLVM Backend for GHC", Terei and
Chakravarty, Haskell Symposium 2010.

OutsideIn "Modular type inference with local assump-
tions: OutsideIn(X) ", Dimitrios Vytiniotis, Simon
Peyton Jones, Tom Schrĳvers, and Martin Sulz-
mann, Draft.

Seq "Seq no more", Marlow, Maier, Trinder, Loidl, and
Aswad, Haskell Symposium 2010.

SHE The Strathclyde Haskell Enhancement, Conor
McBride, 2010.

TemplateHaskell New directions for Template
Haskell, Peyton Jones, blog post October 2010.

Hoopl Hoopl: A Modular, Reusable Library for
Dataflow Analysis and Transformation.

3.3 LHC

Report by: David Himmelstrup
Participants: Austin Seipp
Status: active development

LHC is a backend for the Glorious Glasgow Haskell
Compiler (→ 3.2), adding low-level, whole-program op-
timization to the system. It is based on Urban Bo-
quist’s GRIN language, and using GHC as a frontend,
we get most of its great extensions and features.
Essentially, LHC uses the GHC API to convert pro-

grams to external core format — it then parses the
external core, and links all the necessary modules to-
gether into a whole program for optimization. We

currently have our own base library (heavily and gra-
ciously taken from GHC). This base library is similar
to GHC’s (module-names and all), and it is compiled
by LHC into external core and the package is stored
for when it is needed. This also means that if you can
output GHC’s external core format, then you can use
LHC as a backend.
The short-term goal is to make LHC faster, easier to

use, and more complete in its coverage of Haskell 98.

Further reading

◦ http://lhc.seize.it/
◦ http://lhc-compiler.blogspot.com/

3.4 The Helium Compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren, Arie Middelkoop

See: http://haskell.org/communities/05-2009/html/
report.html#sect2.3.

3.5 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: many others
Status: active development

What is new? UHC is the Utrecht Haskell Compiler,
supporting almost all Haskell98 features and most of
Haskell2010, plus experimental extensions. Recently
version 1.1.0 was released, featuring generic deriving
(→ 6.4.1), a new configurable garbage collector, initial
support for building with UHC via cabal, and many
bug fixes.
We plan the next release to offer a Javascript back-

end. Furthermore we hope to add optimizations to
eliminate some of the obvious inefficiencies. As part
of this work the intent is also to better integrate the
work done on whole program analysis.

UHC Blog Recently a UHC blog has been started.
The intent is to scribble about the internals of UHC
and issues arising out of the implementation.

What do we currently do and/or has recently been
completed? As part of the UHC project, the follow-
ing (student) projects and other activities are underway
(in arbitrary order):

◦ Jeroen Bransen (PhD): “Incremental Global Analy-
sis” (starting up).

◦ Jan Rochel (PhD): “Realising Optimal Sharing”,
based on work by Vincent van Oostrum and Clemens
Grabmayer.

13

http://research.microsoft.com/~simonpj/papers/containers/containers.pdf
http://www.dreixel.net/research/pdf/gdmh_nocolor.pdf
http://hackage.haskell.org/trac/ghc/blog/LetGeneralisationInGhc7
http://www.cis.upenn.edu/~sweirich/newtypes.pdf
http://www.cse.unsw.edu.au/~davidt/downloads/ghc-llvm-hs10.pdf
http://haskell.org/haskellwiki/Simonpj/Talk:OutsideIn
http://www.haskell.org/~simonmar/papers/strategies.pdf
http://personal.cis.strath.ac.uk/~conor/pub/she/
http://hackage.haskell.org/trac/ghc/blog/Template Haskell Proposal
http://research.microsoft.com/en-us/um/people/simonpj/papers/c--/dfopt.pdf
http://lhc.seize.it/
http://lhc-compiler.blogspot.com/
http://haskell.org/communities/05-2009/html/report.html#sect2.3
http://haskell.org/communities/05-2009/html/report.html#sect2.3

◦ Arie Middelkoop (PhD): type system formalization
and automatic generation from type rules.

◦ Tom Lokhorst: type based static analyses (recently
completed, available with proper configuration).

◦ Jeroen Leeuwestein: incrementalization of whole
program analysis.

◦ Atze van der Ploeg: lazy closures (recently com-
pleted).

◦ Paul van der Ende: garbage collection & LLVM (re-
cently completed, available with proper configura-
tion).

◦ Jeroen Fokker: GRIN backend, whole program anal-
ysis.

◦ Călin Juravle: base libraries (completed upto
Haskell98, integrated).

◦ Levin Fritz: base libraries for Java backend (com-
pleted, integrated).

◦ Andres Löh: Cabal support (completed initial sup-
port, integrated).

◦ José Pedro Magalhães: generic deriving ((→ 6.4.1),
completed, integrated, presented at Haskell Sympo-
sium).

◦ Doaitse Swierstra: parser combinator library.

◦ Atze Dĳkstra: overall architecture, type system,
bytecode interpreter + java + javascript backend,
garbage collector.

Background UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.4.1).

Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ UHC Blog: http://utrechthaskellcompiler.wordpress.
com

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

◦ Parser combinators: http://www.cs.uu.nl/wiki/HUT/
ParserCombinators

◦ Shuffle: http://www.cs.uu.nl/wiki/Ehc/Shuffle
◦ Ruler: http://www.cs.uu.nl/wiki/Ehc/Ruler

3.6 Exchanging Sources between Clean
and Haskell

Report by: Thomas van Noort
Participants: John van Groningen, Peter Achten, Pieter

Koopman, Rinus Plasmeĳer
Status: active development

In a Haskell’10 paper we describe how we facilitate
the exchange of sources between Clean (→ 4.4) and
Haskell. We use the existing Clean compiler as start-
ing point, and implement a double-edged front end for
this compiler: it supports both standard Clean 2.1 and
(currently a large part of) standard Haskell 98. More-
over, it allows both languages to seamlessly use many
of each other’s language features that were alien to each
other before. For instance, Haskell can now use unique-
ness typing anywhere, and Clean can use newtypes ef-
ficiently. This has given birth to two new dialects of
Clean and Haskell, dubbed Clean* and Haskell*. Mea-
surements of the performance of the new compiler indi-
cate that it is on par with the flagship Haskell compiler
GHC.

Future plans

Although the most important features of Haskell 98
have been implemented, the list of remaining issues
is still rather long since some features took much
more work than expected. Also, to enable the prac-
tical reuse of Haskell libraries, we have to implement
some of GHC’s extensions, such as generalised algebraic
datatypes and type families. This is challenging, not
only in terms of the programming effort, but more be-
cause of the consequences it will have on features such
as uniqueness typing. We plan to use this double-edged
front as an implementation laboratory to investigate
these avenues.

Further reading

◦ John van Groningen, Thomas van Noort, Peter
Achten, Pieter Koopman, and Rinus Plasmeĳer. Ex-
changing sources between Clean and Haskell — A
double-edged front end for the Clean compiler. In
Jeremy Gibbons, editor, Proceedings of the Haskell
Symposium, Haskell ’10, Baltimore, MD, USA,
pages 49–60. ACM Press, 2010.

◦ The front end is under active development, current
releases are available via http://wiki.clean.cs.ru.nl/
Download_Clean.

14

http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
http://utrechthaskellcompiler.wordpress.com
http://utrechthaskellcompiler.wordpress.com
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/Ehc/Shuffle
http://www.cs.uu.nl/wiki/Ehc/Ruler
http://wiki.clean.cs.ru.nl/Download_Clean
http://wiki.clean.cs.ru.nl/Download_Clean

3.7 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman, Jason Reich, Marco

Perez Cervantes
Status: experimental

The Reduceron is a graph-reduction processor imple-
mented on an FPGA.
Over the past 18 months, work on the Reduceron has

led to a factor of five speed-up. This has been achieved
through a range of design improvements spanning ar-
chitectural, machine, and compiler-level issues. See our
ICFP’10 paper for details.
Work on the Reduceron continues. We have taken a

step towards parallel reduction in the form of prim-
itive redex speculation. We have developed a static
analysis and transformation (currently limited to first-
order programs) that predicts and increases run-time
occurrences of primitive redexes, allowing a simpler and
faster machine design. Early results look good, and we
hope to extend the technique to higher-order programs.
Experiments in verification, both at the compiler

level and the bytecode level, are also underway.
Looking ahead, we aim eventually to have multiple

Reducerons running in parallel. We are also interested
in increasing the amount of memory available to the
Reduceron, and in technology advances that may en-
able faster clocking frequencies.
Two main by-products have emerged from the work.

First, York Lava, now available from Hackage, is
the HDL we use. It is very similar to Chalmers
Lava (→ 11.6), but supports a greater variety of
primitive components, behavioral description, number-
parameterized types, and a first attempt at a Lava
prelude. Second, F-lite is our subset of Haskell,
with its own lightweight toolset and experimental su-
percompiler (http://haskell.org/communities/11-2009/
html/report.html#sect4.1.4).

Further reading

◦ http://www.cs.york.ac.uk/fp/reduceron/
◦ http://hackage.haskell.org/package/york-lava/

3.8 Specific Platforms

3.8.1 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the

core package and package a wide range of other use-
ful libraries and programs. In total, we maintain 202
source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with the profiling
data and the documentation packages register with the
system-wide index.
Currently, we are in the process of releasing the next

version of Debian, squeeze, so the updating rate has
slowed. Once this is done, we will bring our versions up
to date. This will also require some work to rename the
packages from libghc6- to libghc-, as the next version
of GHC has a new major version number.

Further reading

http://wiki.debian.org/Haskell

3.8.2 Haskell in Gentoo Linux

Report by: Lennart Kolmodin

Gentoo Linux currently officially supports GHC 6.10.4,
including the latest Haskell Platform (→ 3.1) for x86,
amd64, sparc, and ppc64. For previous GHC versions
we also have binaries available for alpha, hppa and ia64.
The full list of packages available through the offi-

cial repository can be viewed at http://packages.gentoo.
org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.
We have also recently started an official Gentoo

Haskell blog where we can communicate with our users
what we are doing http://gentoohaskell.wordpress.com/.
There is also an overlay which contains more than

300 extra unofficial and testing packages. Thanks to
the Haskell developers using Cabal and Hackage (→
6.7.1), we have been able to write a tool called “hack-
port” (initiated by Henning Günther) to generate Gen-
too packages with minimal user intervention. Notable
packages in the overlay include the latest version of
the Haskell Platform as well as the latest 6.12.2 release
of GHC, as well as popular Haskell packages such as
pandoc (→ 9.2.3) and gitit (→ 5.2.5).
More information about the Gentoo Haskell Overlay

can be found at http://haskell.org/haskellwiki/Gentoo.
Using Darcs (→ 6.5.1), it is easy to keep up to date,
to submit new packages, and to fix any problems in
existing packages. It is also available via the Gentoo
overlay manager “layman”. If you choose to use the
overlay, then any problems should be reported on IRC
(#gentoo-haskell on freenode), where we coordinate
development, or via email 〈haskell@gentoo.org〉 (as we
have more people with the ability to fix the overlay

15

http://haskell.org/communities/11-2009/html/report.html#sect4.1.4
http://haskell.org/communities/11-2009/html/report.html#sect4.1.4
http://www.cs.york.ac.uk/fp/reduceron/
http://hackage.haskell.org/package/york-lava/
http://wiki.debian.org/Haskell
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://gentoohaskell.wordpress.com/
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org

packages that are contactable in the IRC channel than
via the bug tracker).
Through recent efforts we have developed a

tool called “haskell-updater” http://www.haskell.org/
haskellwiki/Gentoo#haskell-updater (initiated by Ivan
Lazar Miljenovic). This is a replacement of the old
ghc-updater script for rebuilding packages when a new
version of GHC is installed which is now not only writ-
ten in Haskell but will also rebuild broken packages.
“haskell-updater” is still in active development to fur-
ther refine and add to its features and capabilities.
As always we are more than happy for (and in fact

encourage) Gentoo users to get involved and help us
maintain our tools and packages, even if it is as simple
as reporting packages that do not always work or need
updating: with such a wide range of GHC and package
versions to co-ordinate, it is hard to keep up! Please
contact us on IRC or email if you are interested!

3.8.3 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Ben Boeckel, Shakthi Kannan, Lakshmi

Narasimhan, Bryan O’Sullivan, Conrad
Meyer, Fedora Haskell SIG

Status: on-going

The Fedora Haskell SIG is an effort to provide good
support for Haskell in Fedora.
Fedora 14 is shipping on 2nd November with ghc-

6.12.3, haskell-platform-2010.2.0.0, and darcs-2.4.4. Li-
brary doc subpackages have been merged into their de-
vel subpackages. Most of the new core gtk2hs packages
have been packaged and xmobar was also added. There
are currently 72 Haskell-related source packages in Fe-
dora, and more than 60 new packages in the review
queue.
In Fedora 15 we are hoping to ship ghc 7 and to use

ghc package hash metadata in our binary rpms. Also
more packages are planned: e.g., pandoc and leksah.
Contributions to Fedora Haskell are welcome: join us

on #fedora-haskell on Freenode IRC and our mailing-
list.

Further reading

◦ http://fedoraproject.org/wiki/SIGs/Haskell
◦ http://fedoraproject.org/wiki/Documentation_

Development_Haskell_Beat

16

http://www.haskell.org/haskellwiki/Gentoo#haskell-updater
http://www.haskell.org/haskellwiki/Gentoo#haskell-updater
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat

4 Related Languages

4.1 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell, Andreas Abel, and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
In September version 2.2.8 was released, with these

new features:

◦ Pattern matching for records.

◦ Proof-irrelevant function types.

◦ Reflection.

◦ Users can define new forms of binding syntax.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda

Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (→ 4.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Equality incorporates eta-
expansion at record and singleton types. Function ar-
guments can be declared as static; such arguments are
discarded during equality checking and compilation.
Currently, I am developing a source translation from

MiniAgda to Haskell as prototype for an Agda to
Haskell compiler. In the long run, I plan to evolve
MiniAgda into a core language for Agda with termina-
tion certificates.

MiniAgda is available as Haskell source code and
compiles with GHC 6.12.x.

Further reading

http://www2.tcs.ifi.lmu.de/~abel/miniagda/

4.3 Idris

Report by: Edwin Brady
Status: active development

Idris is an experimental language with full dependent
types. Dependent types allow types to be predicated
on values, meaning that some aspects of a program’s
behavior can be specified precisely in the type. The
language is closely related to Epigram and Agda (→
4.1). It is available from http://www.idris-lang.org, and
there is a tutorial at http://www.idris-lang.org/tutorial.
Idris aims to provide a platform for realistic pro-

gramming with dependent types. By realistic, we
mean the ability to interact with the outside world and
use primitive types and operations, to make a depen-
dently typed language suitable for systems program-
ming. This includes networking, file handling, concur-
rency, etc. Idris emphasizes programming over theorem
proving, but nevertheless integrates with an interactive
theorem prover. It is compiled, via C, and uses the
Boehm-Demers-Weiser garbage collector.
One goal of the project is to show that Idris, and

dependently typed programming in general, can be ef-
ficient enough for the development of real world verified
software. To this end, Idris is currently being used to
develop a library for verified network protocol imple-
mentation, with example applications.

Further reading

http://www.idris-lang.org/

4.4 Clean

Report by: Thomas van Noort
Participants: Rinus Plasmeĳer, John van Groningen
Status: active development

Clean is a general purpose, state-of-the-art, pure and
lazy functional programming language designed for
making real-world applications. Here is a short list of
notable features:

◦ Clean is a lazy, pure, and higher-order functional pro-
gramming language with explicit graph-rewriting se-
mantics.

17

http://wiki.portal.chalmers.se/agda/
http://www2.tcs.ifi.lmu.de/~abel/miniagda/
http://www.idris-lang.org
http://www.idris-lang.org/tutorial
http://www.idris-lang.org/

◦ Although Clean is by default a lazy language, one can
smoothly turn it into a strict language to obtain op-
timal time/space behavior: functions can be defined
lazy as well as (partially) strict in their arguments;
any (recursive) data structure can be defined lazy as
well as (partially) strict in any of its arguments.

◦ Clean is a strongly typed language based on an ex-
tension of the well-known Milner/Hindley/Mycroft
type inferencing/checking scheme including the com-
mon higher-order types, polymorphic types, abstract
types, algebraic types, type synonyms, and existen-
tially quantified types.

◦ Clean has pattern matching, guards, list comprehen-
sions, array comprehensions and a lay-out sensitive
mode.

◦ Clean supports type classes and type constructor
classes to make overloaded use of functions and op-
erators possible.

◦ The uniqueness typing system in Clean makes it pos-
sible to develop efficient applications. In particular,
it allows a refined control over the single-threaded
use of objects which can influence the time and space
behavior of programs. Uniqueness typing can also be
used to incorporate destructive updates of objects
within a pure functional framework. It allows de-
structive transformation of state information and en-
ables efficient interfacing to the nonfunctional world
(to C but also to I/O systems like X-Windows) of-
fering direct access to file systems and operating sys-
tems.

◦ Clean offers records and (destructively updateable)
arrays and files.

◦ The Clean type system supports dynamic typing, al-
lowing values of arbitrary types to be wrapped in a
uniform package and unwrapped via a type annota-
tion at run time. Using dynamics, code and data
can be exchanged between Clean applications in a
flexible and type-safe way.

◦ Clean provides a built-in mechanism for generic func-
tions.

◦ There is a Clean IDE and there are many libraries
available offering additional functionality.

Future plans

Please see the entry on exchanging sources between
Clean and Haskell (→ 3.6) for the future plans.

Further reading

http://wiki.clean.cs.ru.nl/

4.5 Timber

Report by: Johan Nordlander
Participants: Björn von Sydow, Andy Gill, Magnus

Carlsson, Per Lindgren, Thomas Hallgren,
and others

Status: actively developed

Timber is a general programming language derived
from Haskell, with the specific aim of supporting devel-
opment of complex event-driven systems. It allows pro-
grams to be conveniently structured in terms of objects
and reactions, and the real-time behavior of reactions
can furthermore be precisely controlled via platform-
independent timing constraints. This property makes
Timber particularly suited to both the specification and
the implementation of real-time embedded systems. An
implementation of Timber is available as a command-
line compiler tool, currently targeting POSIX-based
systems only.
Timber shares most of Haskell’s syntax but intro-

duces new primitive constructs for defining classes of re-
active objects and their methods. These constructs live
in the Cmd monad, which is a replacement of Haskell’s
top-level monad offering mutable encapsulated state,
implicit concurrency with automatic mutual exclusion,
synchronous as well as asynchronous communication,
and deadline-based scheduling. In addition, the Tim-
ber type system supports nominal subtyping between
records as well as datatypes, in the style of its precursor
O’Haskell.
A particularly notable difference between Haskell

and Timber is that Timber uses a strict evaluation or-
der. This choice has primarily been motivated by a
desire to facilitate more predictable execution times,
but it also brings Timber closer to the efficiency of tra-
ditional execution models. Still, Timber retains the
purely functional characteristic of Haskell, and also
supports construction of recursive structures of arbi-
trary type in a declarative way.
The Timber compiler is currently undergoing a major

reimplementation of its front-end, an effort triggered by
increasing needs to significantly improve error messages
as well as to sharpen up the documentation of the lan-
guage syntax and its scoping rules. The new compiler,
tentatively called version 2, will also include a newly
developed Javascript back-end, HTML5 and OpenGL
bindings, as well as bare-metal ARM7 support. A mi-
nor bug-fix release announced in the previous HCAR
has been postponed and will be merged into the release
of version 2. The latest release of the Timber compiler
system still dates back to May 2009 (version 1.0.3).
Other active projects include interfacing the com-

piler to memory and execution-time analysis tools, ex-
tending it with a supercompilation pass, and building
an interpreting debugger on basis of the new compiler
front-end.

18

http://wiki.clean.cs.ru.nl/

Further reading

http:://timber-lang.org

4.6 Disciple

Report by: Ben Lippmeier
Participants: Erik de Castro Lopo
Status: experimental, active development

Disciple is a dialect of Haskell that uses strict evalua-
tion as the default and supports destructive update of
arbitrary data. Many Haskell programs are also Dis-
ciple programs, or will run with minor changes. In
addition, Disciple includes region, effect, and closure
typing, and this extra information provides a handle
on the operational behaviour of code that is not avail-
able in other languages. Our target applications are the
ones that you always find yourself writing C programs
for, because existing functional languages are too slow,
use too much memory, or do not let you update the
data that you need to.
Our compiler (DDC) is still in the “research pro-

totype” stage, meaning that it will compile programs
if you are nice to it, but expect compiler panics and
missing features. You will get panics due to ungraceful
handling of errors in the source code, but valid pro-
grams should compile ok. The test suite includes a few
thousand-line graphical demos, like a ray-tracer and an
n-body collision simulation, so it is definitely hackable.
We have spent a good slab of time this year clean-

ing up the internals and getting proper regression test-
ing build bots online. We now support OSX/x86,
Linux/{x86, x86–64, PPC}, FreeBSD/x86, and Cyg-
win/x86 so you should be able to get DDC running on
your own system without trouble. Other than that, we
have been stabilising the existing implementation and
fixing bugs. The plan for the coming year is to complete
support for type classes and dictionary passing, and to
extend the type system so that it can “auto-freeze” data
structures that have been created using destructive up-
date but will be treated as constant from then on. We
are also working on an LLVM port which will provide
faster code in the long term without having to rely on
the existing via-C backend.
Disciple programs can be written in either a

pure/functional or effectful/imperative style, and one
of our main goals is to provide both styles coherently
in the same language. The two styles can be mixed
safely. For example: when using laziness, the type sys-
tem guarantees that computations with visible side ef-
fects are not suspended. The fact that we have region,
effect, and closure typing available means we can also
support more fine-grained notions of ST-monad style
effect encapsulation, with the added benefit that the
encapsulation/masking is handled seamlessly by the
type system. If this sounds interesting to you then

drop us a line!

Further reading

http://trac.haskell.org/ddc

19

http:://timber-lang.org
http://trac.haskell.org/ddc

5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 TwilightSTM

Report by: Annette Bieniusa
Participants: Arie Middelkoop, Peter Thiemann
Status: experimental

TwilightSTM is an extended Software Transactional
Memory system. It safely augments the STM monad
with non-reversible actions and allows introspection
and modification of a transaction’s state.
TwilightSTM splits the code of a transaction into a

(functional) atomic phase, which behaves as in GHC’s
implementation, and an (imperative) twilight phase.
Code in the twilight phase executes before the decision
about a transaction’s fate (restart or commit) is made
and can affect its outcome based on the actual state of
the execution environment.
The Twilight API has operations to detect and repair

read inconsistencies as well as operations to overwrite
previously written variables. It also permits the safe
embedding of I/O operations with the guarantee that
each I/O operation is executed only once. In contrast
to other implementations of irrevocable transactions,
twilight code may run concurrently with other transac-
tions including their twilight code in a safe way. How-
ever, the programmer is obliged to prevent deadlocks
and race conditions when integrating I/O operations
that participate in locking schemes.
A prototype implementation is available on Hackage

(http://hackage.haskell.org/package/twilight-stm). We
are currently working on the composability of Twilight
monads and are applying TwilightSTM to different use
cases.

Further reading

http://proglang.informatik.uni-freiburg.de/projects/
twilight/

5.1.2 Haskell-MPI

Report by: Bernie Pope
Participants: Dmitry Astapov, Duncan Coutts
Status: first public version to be released soon

MPI, the Message Passing Interface, is a popular com-
munications protocol for distributed parallel comput-
ing (http://www.mpi-forum.org/). It is widely used in
high performance scientific computing, and is designed
to scale up from small multi-core personal computers
to massively parallel supercomputers. MPI applica-
tions consist of independent computing processes which

share information by message passing communication.
It supports both point-to-point and collective commu-
nication operators, and manages much of the mundane
aspects of message delivery. There are several high-
quality implementations of MPI available which adhere
to the standard API specification (the latest version of
which is 2.2). The MPI specification defines interfaces
for C, C++, and Fortran, and bindings are available
for many other programming languages. As the name
suggests, Haskell-MPI provides a Haskell interface to
MPI, and thus facilitates distributed parallel program-
ming in Haskell. It is implemented on top of the C API
via Haskell’s foreign function interface. Haskell-MPI
provides three different ways to access MPI’s function-
ality:

1. A direct binding to the C interface.

2. A convenient interface for sending arbitrary serial-
izable Haskell data values as messages.

3. A high-performance interface for working with (pos-
sibly mutable) arrays of storable Haskell data types.

We do not currently provide exhaustive coverage of all
the functions and types defined by MPI 2.2, although
we do provide bindings to the most commonly used
parts. In the future we plan to extend coverage based
on the needs of projects which use the library.
We are in the final stages of preparing the first release

of Haskell-MPI. We will publish the code on Hackage
once the user documentation is complete. We have run
various simple latency and bandwidth tests using up
to 512 Intel x86-64 cores, and for the high-performance
interface, the results are within acceptable bounds of
those achieved by C. Haskell-MPI is designed to work
with any compliant implementation of MPI, and we
have successfully tested it with both OpenMPI (http:
//www.open-mpi.org/) and MPICH2 (http://www.mcs.
anl.gov/research/projects/mpich2/).

Further reading

http://github.com/bjpop/haskell-mpi

20

http://hackage.haskell.org/package/twilight-stm
http://proglang.informatik.uni-freiburg.de/projects/twilight/
http://proglang.informatik.uni-freiburg.de/projects/twilight/
http://www.mpi-forum.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://github.com/bjpop/haskell-mpi

5.1.3 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Oleg Lobachev, Rita Loogen,

Bernhard Pickenbrock
in Copenhagen: Jost Berthold

Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s main constructs are process abstractions and

process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator (#) :: Process a b -> a ->
b. Higher-level coordination is achieved by defining
skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelize a set of non-trivial benchmark pro-
grams.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Implementation

We happily announce that a new release of the Eden
compiler based on GHC 6.12.3 is available on our re-
launched web pages, see

http://www.mathematik.uni-marburg.de/~eden
New features are the support of 64-Bit architectures

and an extended version of the new GHC EventLog
format for parallel program traces. These traces can
be visualized using the Eden trace viewer tool EdenTV.
The new version of this tool has been written in Haskell
and is also freely available on the Eden web pages.
The Eden skeleton library is currently being revised

and cabalized. A development snapshot is available on
the Eden pages.

Recent and Forthcoming Publications

◦ Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero,
Yolanda Ortega-Mallén: On the relation of call-

by-need and call-by-name in a natural semantics
setting, In Preproceedings of the 22nd Symposium
on Implementation and Application of Func-
tional Languages (IFL 2010), Technical Report
UU-CS-2010-020, Department of Information and
Computing Sciences, Utrecht University, 2010.

◦ Jost Berthold: Orthogonal Haskell Data Serialisa-
tion, In Preproceedings of the 22nd Symposium on
Implementation and Application of Functional Lan-
guages (IFL 2010), Technical Report UU-CS-2010-
020, Department of Information and Computing Sci-
ences, Utrecht University, 2010.

◦ Oleg Lobachev and Rita Loogen: Estimating Par-
allel Performance, a Skeleton-based Approach, in
HLPP’10: Workshop on High-level Parallel Pro-
gramming, ACM Press, 2010, 25–34.

◦ Oleg Lobachev, Rita Loogen: Implementing Data
Parallel Rational Multiple-Residue Arithmetic in
Eden, in CASC’10: Computer Algebra in Scientific
Computing, Springer LNCS 6244, 2010, 178–193.

◦ Mischa Dieterle, Jost Berthold, Rita Loogen: A
Skeleton for Distributed Work Pools in Eden, in
FLOPS’10: Functional and Logic Programming,
Springer LNCS 6009, 2010, 337-353.

◦ Thomas Horstmeyer, Rita Loogen: Grace — Graph-
based Communication in Eden, Trends in Functional
Programming, Volume 10, Intellect 2010, 1–16.

◦ Mustafa Aswad, Phil Trinder, Abdallah Al Zain,
Greg Michaelson, Jost Berthold: Low Pain vs No
Pain Multi-core Haskells, Trends in Functional Pro-
gramming, Volume 10, Intellect 2010, 49–64.

◦ Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero,
Yolanda Ortega-Mallén: An Operational Semantics
for Distributed Lazy Evaluation, Trends in Func-
tional Programming, Volume 10, Intellect 2010,
65–80.

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.2 Haskell and the Web

5.2.1 GHCJS: Haskell to Javascript compiler

Report by: Victor Nazarov
Status: 0.1.0 released

GHCJS currently is a GHC back-end which pro-
duces Javascript code. Modern Javascript environ-
ments become more and more advanced. TraceMon-
key and V8 engines allow very fast Javascript ex-
ecution. It is possible, for instance, to create an
in-browser hardware emulator: an emulated CPU’s
instructions are compiled down to Javascript func-
tions, and Javascript instructions are compiled to the

21

http://www.mathematik.uni-marburg.de/~eden
http://www.mathematik.uni-marburg.de/~eden

native host CPU’s instructions by Javascript JIT-
compilers (http://weblogs.mozillazine.org/roc/archives/
2010/11/implementing_a.html).
The idea to bring the power of the Haskell lan-

guage to the world of AJAX-applications is not new.
It has been proposed many times in Haskell-café.
The success of Google’s GWT was uncomfortable to
watch, when our beloved language lacked such a fea-
ture. The first implementation I know is Dmitry
Golubovsky’s YHC back-end (http://www.haskell.org/
haskellwiki/Yhc/Javascript). The second one was my
GHC backend hs2js (http://vir.mskhug.ru/). There
were differences between the two projects. Dmitry
had tried to provide a Haskell environment to de-
velop everything in Haskell. He had developed an au-
tomated conversion tool to generate Haskell-bindings
from DOM IDL specifications provided by the W3C.
My aim was more modest: I thought that we could
use Haskell to implement complex logic. The abil-
ity to use Parsec in a browser was asked for sev-
eral times in Haskell-café. With the latter ap-
proach we can extend existing Javascript-applications
with algorithms implemented in Haskell. UHC (→
3.5) started to implement a Javascript-backend
recently (http://utrechthaskellcompiler.wordpress.com/
2010/10/18/haskell-to-javascript-backend/), but I have
not looked at it, yet.
GHCJS is a fresh rewrite of hs2js that was started

in August 2010. It is currently a standalone tool that
uses GHC as a library and produces a .js-file for each
Haskell-module. Javascript code can load any Haskell-
module and evaluate any exported Haskell-value. Some
examples that are available with the GHCJS package
show some simple Haskell programs like generation of
a sequence of prime-numbers. Each Haskell module is
currently a standalone Javascript file. When a value of
some module is needed, the module is loaded dynami-
cally.
The code is available at the GHCJS github page (see

below) under the terms of the BSD3 license. It was
tested with GHC 6.12.
There are many tasks awaiting completion with

GHCJS:

A faster and more robust module loader: Now it
loses a lot of time on 404 errors, trying to access
modules in the wrong package directory. I plan to
use GHC’s package abstraction. A package will be a
Web-server’s directory and Javascript’s namespace.
Every module will be unambiguously associated
with one package. It will become possible to load
a module with one unambiguous HTTP-request.
This change will short the loading time of Haskell
programs.

Make it work in all major browsers: There are some
minor problems with Internet Explorer. But it
should be trivial to fix them.

FFI support: FFI support should make the whole
thing generally usable. FFI-exports should gen-
erate easily-callable Javascript functions that will
type-check their arguments to make a combination
of dynamically-typed Javascript and statically-typed
Haskell seamless. FFI-imports will allow the im-
plementation of DOM-manipulation in Haskell pro-
grams.

Further reading

https://github.com/sviperll/ghcjs

5.2.2 Hawk

Report by: Uwe Schmidt
Participants: Björn Peemöller, Stefan Roggensack,

Alexander Treptow
Status: first release

The Hawk system is a web framework for Haskell. It
is comparable in functionality and architecture with
Ruby on Rail and other web frameworks. Its architec-
ture follows the MVC pattern. It consists of a sim-
ple relational database mapper for persistent storage
of data and a template system for the view compo-
nent. This template system has two interesting fea-
tures: First, the templates are valid XHTML docu-
ments. The parts where data has to be filled in are
marked with Hawk specific elements and attributes.
These parts are in a different namespace, so they do not
destroy the XHTML structure. The second interesting
feature is that the templates contain type descriptions
for the values to be filled in. This type information en-
ables a static type check whether the models and views
fit together.
A first application of the Hawk framework is a cus-

tomizable search for Hayoo! (→ 5.2.4). But the frame-
work is independent of the Holumbus search engine. It
will be applicable for the development of arbitrary web
applications.
Hawk was developed by Björn Peemöller and Stefan

Roggensack. Currently, Alexander Treptow is apply-
ing, testing, and extending the framework.

5.2.3 WAI

Report by: Michael Snoyman
Status: stable

The Web Application Interface (WAI) is an interface
between web applications and web servers. By target-
ing the WAI, a web application can get access to mul-
tiple servers; and through WAI, a server can support
web applications never intended to run on it.
In designing this package, performance was first pri-

ority: there should be no performance overhead for us-
ing the WAI. As such, an enumerator interface was se-

22

http://weblogs.mozillazine.org/roc/archives/2010/11/implementing_a.html
http://weblogs.mozillazine.org/roc/archives/2010/11/implementing_a.html
http://www.haskell.org/haskellwiki/Yhc/Javascript
http://www.haskell.org/haskellwiki/Yhc/Javascript
http://vir.mskhug.ru/
http://utrechthaskellcompiler.wordpress.com/2010/10/18/haskell-to-javascript-backend/
http://utrechthaskellcompiler.wordpress.com/2010/10/18/haskell-to-javascript-backend/
https://github.com/sviperll/ghcjs

lected for the response body, a handle-like interface,
called a source, for the request body, and bytestrings
used throughout. Another design decision was to keep
the interface as general as possible by excluding vari-
ables which are not universal to all web servers.
Since the last report, version 0.2.0 has been released,

which replaces some of the special data types (request
and response headers, for instance) with CIByteString,
a case-insensitive bytestring which allows easy lookups.
The ecosystem around WAI has also matured signifi-
cantly: we have handlers for CGI, FastCGI, SCGI, de-
velopment servers and the Snap standalone server (→
5.2.10), and middleware for cleaning URLs, GZIP com-
pression, and JSON-P. There is even a backend to con-
vert your web applications into desktop applications
via Webkit.
Hopefully, WAI can be one of many smaller pack-

ages which lead to collaboration in the Haskell web
development community and development of a healthy
ecosystem. There is an experimental Happstack WAI
backend, and the Yesod Web Framework (→ 5.2.8) uses
WAI exclusively.

Further reading

http://github.com/snoyberg/wai

5.2.4 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Hübel, Sebastian Gauck, Stefan

Schmidt, Björn Peemöller, Stefan
Roggensack, Sebastian Reese, Alexander

Treptow
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/). The web interface for Hayoo! is
implemented with the Janus web server, written in
Haskell and based on HXT (→ 8.8.2).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.
◦ The Holumbus Search Engine

◦ The Holumbus Distribution Library
◦ The Holumbus Storage System
◦ The Holumbus MapReduce Framework
The search engine package includes the indexer and

search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customizable result ranking
◦ Index structure designed for distributed search
◦ Git repository containing the current development

version of all packages under http://holumbus.
fh-wedel.de/src.git

◦ Distributed building of search indexes

Current Work

The data structures of the Holumbus indexes have been
optimized for space and time. There is a new and effi-
cient prefix tree structure, which further enables index
updates.
The indexer and search module is used to

support the Hayoo! engine for searching the
hackage package library (http://holumbus.fh-
wedel.de/hayoo/hayoo.html). Because of the fast
growing number of packages on hackage, the Hayoo!
search engine will be extended by a package search.
Sebastian Reese has finished his work on applying the

MapReduce framework and for giving tuning and con-
figuration hints. Benchmarks for various small prob-
lems and for generating search indexes have shown that
the architecture scales very well.
In a subproject of Holumbus, the so called Hawk

framework (→ 5.2.2), Björn Peemöller and Stefan
Roggensack have developed a web framework for
Haskell. Currently Alexander Treptow is applying,
testing, and extending the framework. A first appli-
cation is a customizable search for Hayoo!

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Git web interface, cur-
rent status, requirements, and documentation. Timo
Hübel’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/
doc/thesis-searching.pdf. Sebastian Gauck’s thesis

23

http://github.com/snoyberg/wai
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/src.git
http://holumbus.fh-wedel.de/src.git
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf

dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the
Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf.

5.2.5 gitit

Report by: John MacFarlane
Participants: Gwern Branwen, Simon Michael, Henry

Laxen, Anton van Straaten, Robin Green,
Thomas Hartman, Justin Bogner, Kohei

Ozaki, Dmitry Golubovsky, Anton
Tayanovskyy, Dan Cook, Jinjing Wang

Status: active development

Gitit is a wiki built on Happstack (→ 5.2.6) and backed
by a git, darcs, or mercurial filestore. Pages and up-
loaded files can be modified either directly via the
VCS’s command-line tools or through the wiki’s web
interface. Pandoc (→ 9.2.3) is used for markup process-
ing, so pages may be written in (extended) markdown,
reStructuredText, LaTeX, HTML, or literate Haskell,
and exported in thirteen different formats, including
LaTeX, ConTeXt, DocBook, RTF, OpenOffice ODT,
MediaWiki markup, EPUB, and PDF.
Notable features of gitit include:
◦ Plugins: users can write their own dynamically
loaded page transformations, which operate directly
on the abstract syntax tree.

◦ Math support: LaTeX inline and display math
is automatically converted to MathML, using the
texmath library.

◦ Highlighting: Any git, darcs, or mercurial repos-
itory can be made a gitit wiki. Directories can
be browsed, and source code files are automatically
syntax-highlighted. Code snippets in wiki pages can
also be highlighted.

◦ Library: Gitit now exports a library,
Network.Gitit, that makes it easy to include
a gitit wiki (or wikis) in any Happstack application.

◦ Literate Haskell: Pages can be written directly in
literate Haskell.

Further reading

http://gitit.net (itself a running demo of gitit)

5.2.6 Happstack

Report by: Jeremy Shaw

Happstack is a web application framework focused on
high-scalability, rapid development, ease of deploy-
ment, and flexibility. The core libraries provided by
Happstack include:

happstack-server , an HTTP server with a rich envi-
ronment for routing requests, working with cookies,
processing form data, handling file uploads, serving
static content with sendfile(), and more. Applica-
tions can be run using the built-in HTTP backend,
or by using other handlers such as FastCGI.

happstack-state , also known as MACID, provides a
NoSQL, RAM-cloud for distributed persistent state.
Unlike limited key-value stores, MACID natively
stores arbitrary Haskell data types. This allows the
storage of user defined types as well as standard data
structures including trees, graphs, and maps. Up-
dates and queries are written using plain old Haskell
functions. These features are provided without sac-
rificing the ACID properties.

happstack-ixset provides a set data-type with the abil-
ity to index elements by multiple keys. It provides
much of the same functionality as a table in a rela-
tional database. This includes the ability to search
by one or more keys, search by range, update the
value at a specified index, etc.

happstack-data builds on the binary library to provide
versioned data serialization and automatic migration
of data from older versions to newer versions.

Happstack also has integrated support for many web
related libraries including:

templates using HSP, Hamlet, HStringTemplate,
BlazeHtml, and more.

type-safe urls and routing avoid bad links and names-
pace collisions using web-routes.

form generation and validation using formlets or di-
gestive functors.

databases using HDBC, Takusen, HaskellDB, etc.

Future plans

Happstack 6 is nearly completed. Happstack 6 features
many improvements and performance enhancements
to the happstack-server library. It has been heav-
ily refactored to make documentation browsing eas-
ier. The haddock documentation has been greatly im-
proved. And there is now a detailed Happstack Crash
Course which guides developers through the libraries
in a detailed and logical manner. It includes many self-
contained runnable demos.
Happstack 7 will include significant enhancements to

the happstack-state library including sharding and bet-
ter tools for examining and manipulating the contents
of the data store. It will also include a new imple-
mentation of happstack-ixset which is faster, uses less
memory, and has support for parallel traversals to take
advantage of multicore machines.

24

http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://gitit.net

Happstack 8 will migrate to an iteratee-based HTTP
backend for even better performance and resource man-
agement. The tentative plan is to use Hyena.

Further reading

◦ http://www.happstack.com/
◦ http://www.happstack.com/docs/crashcourse/index.

html

5.2.7 Mighttpd — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) is a simple but practical Web
server in Haskell. It is now working on Mew.org provid-
ing basic web features and CGI (mailman and contents
search). Three packages are registered in hackageDB.

c10k Since GHC is using the select system call, a
Haskell program complied with GHC cannot han-
dle over 1,024 connections/files simultaneously. The
c10k package uses the prefork technique to get rid of
this barrier.

webserver The webserver package provides HTTP
parser, session management, redirection, CGI, and so
on. This package is independent from back-end stor-
age systems. So you can build a Web server on any
storage system including files, key-value-store DB,
etc.

mighttpd This package provides a simple but practi-
cal web server based on files using the c10k and web-
server packages.

I am planning to implement FastCGI and WebSocket.

Further reading

http://www.mew.org/~kazu/proj/mighttpd/en/

5.2.8 Yesod

Report by: Michael Snoyman
Status: experimental

Yesod is a web framework designed to play towards
the strengths of the Haskell language to make web pro-
gramming safer and more productive. It is fair to say
that most web development today occurs in dynamic
languages like PHP, Python, and Ruby, and we see the
results: cross-site scripting attacks, applications that
do not scale, and countless minor bugs entering pro-
duction because they can only be detected at runtime.
Instead of providing a single monolithic package,

Yesod is broken up into many smaller projects. This
means that many of the powerful features of Yesod
can be used in your own web development tool stack

without issue. Packages for authentication, client-side
encrypted session data, middlewares, web encodings,
YAML, persistence, HTML templating and more are
all fully available on Hackage, without any reliance on
Yesod.
Yesod is currently on its 0.5 version. There are plans

for some minor changes to take place in 0.6: mostly
this involves extracting some functionality into sepa-
rate packages for more flexibility in API changes. As-
suming this change goes well, 0.6 will probably morph
into a 1.0 release, indicating a fair level of API stability.
The Yesod documentation site (http://docs.

yesodweb.com/) is a great place for information. It has
code examples, screencasts, the Yesod blog and—most
importantly—a book on Yesod. The book is not yet
complete, but provides a very solid introduction to the
main features, and it is constantly being revised and
expanded.
Yesod is already powering some major sites, includ-

ing Haskellers (→ 1.1). This not only shows that Yesod
is ready for use today, but also gives some great exam-
ples of real-life Yesod code in the wild. If you are look-
ing for type-safe, concise, RESTful web development,
you should check out Yesod.

Further reading

http://docs.yesodweb.com/

5.2.9 Lemmachine

Report by: Larry Diehl
Participants: Jason Dusek
Status: experimental, active development

Lemmachine is a REST’ful web framework that makes
it easy to get HTTP right by exposing users to overrid-
able hooks with sane defaults. The main architecture
is a copy of Erlang-based Webmachine, which is cur-
rently the best documentation reference (for hooks &
general design).
Lemmachine stands out from the dynamically typed

Webmachine by being written in dependently typed
Agda (→ 4.1). The goal of the project is to show the ad-
vantages gained from compositional testing by taking
advantage of proofs being inherently compositional.
See http://github.com/larrytheliquid/Lemmachine/
blob/master/src/Lemmachine/Default/Proofs.agda for
examples of universally quantified proofs (tests over
all possible input values) written against the default
resource, which does not override any hooks.
When a user implements their own resource, they

can write simple lemmas (“unit tests”) against the re-
source’s hooks, but then literally reuse those lemmas
to write more complex proofs (“integration tests”). For
examples see some reuse of lemmas in the proofs.
The big goal is to show that in service oriented

architectures, proofs of individual middlewares can
themselves be reused to write cross-service proofs

25

http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://www.mew.org/~kazu/proj/mighttpd/en/
http://docs.yesodweb.com/
http://docs.yesodweb.com/
http://docs.yesodweb.com/
http://webmachine.basho.com
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Proofs.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Proofs.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Lemmas.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Default/Proofs.agda
http://github.com/larrytheliquid/Lemmachine/blob/master/src/Lemmachine/Utils.agda

(even higher level “integration tests”) for a con-
sumer application that mounts those middlewares.
See a post at http://vision-media.ca/resources/ruby/
ruby-rack-middleware-tutorial for what is meant by mid-
dleware.
Another goal is for Lemmachine to come with proofs

against the default resource (as it already does). Any
hooks the user does not override can be given to the
user for free by the framework! Anything that is over-
ridden can generate proofs parameterized only by the
extra information the user would need to provide. This
would be a major boost in productivity compared to
traditional languages whose libraries cannot come with
tests for the user that have language-level semantics for
real proposition reuse!
Lemmachine currently uses the Haskell Hack ab-

straction so it can run on several Haskell webservers.
Because Agda compiles to Haskell and has an FFI, ex-
isting Haskell code can be integrated quite easily.
The project is still in development and rapidly chang-

ing. Lemmas and proofs exist for status resolution,
and you can now run resources! The focus will now
comprise of a gradual direct translation of RFC 2616
sections into dependent type theory.

Further reading

http://github.com/larrytheliquid/Lemmachine

5.2.10 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.
The Snap Framework has been quite active since the

last HCAR. Several developers have joined the effort,
the codebase has matured, and test coverage has in-
creased. Recent benchmarks using the upcoming GHC
7 show approximately a 50% speed improvement from
the benchmarks posted when we launched the project
back in May. These speed improvements come as a
result of improvements to both GHC and Snap.
The team is currently working on the upcoming 0.3

release which will include a more flexible library inter-
face and support for automatic recompilation of apps
amongst other things.

Further reading

http://snapframework.com

5.3 Haskell and Games

5.3.1 Nikki and the Robots

Report by: Sönke Hahn
Participants: Joyride Laboratories GbR
Status: alpha, active

Nikki and the Robots is a 2D platformer written in
Haskell and produced by Joyride Laboratories. Nikki,
the protagonist, walks and jumps around the levels
wearing a cute ninja/cat costume. Nikki refrains from
using any tools or weapons, with one exception: The
Robots. These come in various types with different
abilities and can be used by Nikki to solve puzzles,
overcome obstacles, and complete the level tasks. The
game will feature an integrated level editor.

Publishing

We are releasing the game and the level editor under
an open source license (LGPL). The included graphics
are published under a permissive Creative Commons
license (cc-by-sa). We are also planning to create a
server that will allow players to upload the levels they
created and download levels from other players. We
hope that a community of coders, level creators, and
players will emerge around the game.
Simultaneously, we are working on episodes that we

plan to sell via the game. These will include new graph-
ics, more robots, a story line, other characters, and
other surprises.
(Just to clarify: The licensing is very permissive.

It allows others to create their own episodes and dis-
tribute them freely or sell them. This would be very
welcome. If anybody is interested in this, we propose
to join forces and sell all our episodes through one sys-
tem.)

Technologies Used

◦ Qt for user input and rendering.

◦ OpenGL as an efficient rendering backend for Qt.
Everything will remain 2D, though - we promise!

26

http://vision-media.ca/resources/ruby/ruby-rack-middleware-tutorial
http://vision-media.ca/resources/ruby/ruby-rack-middleware-tutorial
http://github.com/nfjinjing/hack
http://github.com/larrytheliquid/Lemmachine
http://snapframework.com

◦ Hipmunk, the Haskell bindings to the chipmunk
physics engine.

Getting Involved

The project is still in alpha stage, so there are some
features that are not yet implemented. For some, we
have a clear vision on how to implement them; for oth-
ers, we do not. If you want to get involved, check out
our darcs repo, our launchpad site, and do not hesitate
to contact us.

Further reading

◦ http://joyridelabs.de
◦ http://joyridelabs.de/game/code/

5.3.2 Freekick2

Report by: Antti Salonen
Status: experimental, active development

Freekick2 is a 2D arcade-style soccer game, written in
Haskell. It is still very young, but playable. It features
texture-mapped graphics, a simple but functional and
well playing AI, and the ability to import Sensible Soc-
cer team data files. Freekick2 uses the Haskell bindings
to OpenGL, FTGL and SDL for input handling, graph-
ics and GUI. It is available at Hackage. Future plans
include improving the AI and the gameplay.

Further reading

◦ http://github.com/anttisalonen/freekick2
◦ http://codeflow.wordpress.com/2010/05/04/

announcing-freekick2/

5.3.3 Dungeons of Wor

Report by: Patai Gergely
Status: experimental, active

Dungeons of Wor is an homage to the classic arcade
game, Wizard of Wor. It uses the artwork and levels

from the arcade version, but the gameplay mechanics
differ from the original in several ways.
This game is also an experiment in functional re-

active programming, so it might be a useful resource
to anyone interested in this topic. It was coded us-
ing the Simple variant of the experimental Elerea li-
brary (→ 9.3.2), which provides discrete streams as
first-class values.

Further reading

◦ http://hackage.haskell.org/package/dow
◦ http://en.wikipedia.org/wiki/Wizard_of_Wor

5.4 Haskell and Compiler Writing

5.4.1 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell which makes
it easy to write catamorphisms (i.e., functions that do
to any data type what foldr does to lists). You define
tree walks using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be

27

http://joyridelabs.de
http://joyridelabs.de/game/code/
http://github.com/anttisalonen/freekick2
http://codeflow.wordpress.com/2010/05/04/announcing-freekick2/
http://codeflow.wordpress.com/2010/05/04/announcing-freekick2/
http://hackage.haskell.org/package/dow
http://en.wikipedia.org/wiki/Wizard_of_Wor

specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.5), the editor Proxima for structured doc-
uments (→ 9.2.6), the Helium compiler (→ 3.4), the
Generic Haskell compiler, UUAG itself, and many mas-
ter student projects. The current version is 0.9.29 (July
2010), is extensively tested, and is available on Hack-
age.
We are working on the following enhancements of the

UUAG system:

First-class AGs We provide a translation from UUAG
to AspectAG (→ 5.4.2). AspectAG is a library of
strongly typed Attribute Grammars implemented us-
ing type-level programming. With this extension, we
can write the main part of an AG conveniently with
UUAG, and use AspectAG for (dynamic) extensions.
Our goal is to have an extensible version of the UHC.

Fixpoint evaluation We incorporated a fixed-point
evaluation scheme for circular grammars. A cycle is
broken by specifying an initial value for an attribute
on the cycle, and repeating the evaluation with an
updated value until it converges.

Step-wise evaluation We provide the possibility to
evaluate AGs step-wise. The evaluation for a non-
terminal may yield user-defined progress reports, and
we can direct the evaluation until the next progress
report. With this mechanism, we can resolve non-
determinism and encode breadth-first search strate-
gies.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

5.4.2 AspectAG

Report by: Marcos Viera
Participants: Doaitse Swierstra, Wouter Swierstra
Status: experimental

AspectAG is a library of strongly typed Attribute
Grammars implemented using type-level programming.

Introduction

Attribute Grammars (AGs), a general-purpose formal-
ism for describing recursive computations over data
types, avoid the trade-off which arises when building
software incrementally: should it be easy to add new
data types and data type alternatives or to add new
operations on existing data types? However, AGs are

usually implemented as a pre-processor, leaving e.g.
type checking to later processing phases and making
interactive development, proper error reporting and
debugging difficult. Embedding AG into Haskell as
a combinator library solves these problems. Previ-
ous attempts at embedding AGs as a domain-specific
language were based on extensible records and thus
exploiting Haskell’s type system to check the well-
formedness of the AG, but fell short in compactness
and the possibility to abstract over oft occurring AG
patterns. Other attempts used a very generic map-
ping for which the AG well-formedness could not be
statically checked. We present a typed embedding of
AG in Haskell satisfying all these requirements. The
key lies in using HList-like typed heterogeneous collec-
tions (extensible polymorphic records) and expressing
AG well-formedness conditions as type-level predicates
(i.e., typeclass constraints). By further type-level pro-
gramming we can also express common programming
patterns, corresponding to the typical use cases of mon-
ads such as Reader, Writer, and State. The paper
presents a realistic example of type-class-based type-
level programming in Haskell.

Current Status

In the current version (0.3) we have included support
for local and higher-order attributes. Furthermore,
a translation from UUAG (→ 5.4.1) to AspectAG is
added to UUAGC as an experimental feature.

Background

The approach taken in AspectAG was proposed by
Marcos Viera, Doaitse Swierstra, and Wouter Swier-
stra in the ICFP 2009 paper “Attribute Grammars Fly
First-Class: How to do aspect oriented programming
in Haskell”.

Further reading

http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

5.4.3 Berp

Report by: Bernie Pope
Status: under development

Berp is an implementation of Python 3. At its heart it
is a translator which takes Python code as input and
generates Haskell code as output. The Haskell code is
fed into a Haskell compiler (GHC) for compilation to
machine code or interpretation as byte code. One of the
main advantages of this approach is that berp is able
to use the rich functionality provided by the GHC run-
time system with minimal implementation effort. Berp
provides both a compiler and an interactive interpreter,
and for the most part it can be used in the same way
as CPython (the main Python implementation). Al-
though berp is in the early stages of development, it

28

http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc
http://www.cs.nott.ac.uk/~gmh/icfp09.html
http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

is able to demonstrate some novel capabilities (com-
pared to CPython), such as tail-call optimisation and
call-with-current-continuation.
The syntactic analysis component of berp is pro-

vided by a separate Haskell library called language-
python (→ 8.2.2), which can be used independently of
berp to produce tools for processing Python source.
Berp underwent a flurry of development activity in

the first part of 2010, but since then the pace slowed
down as I worked on other projects. Those other
projects are now maturing, and I plan to return to
berp development soon. Berp is still missing support
for some critical features, such as module imports, and
I hope to remedy most of the major omissions by the
end of the year.

Further reading

◦ http://hackage.haskell.org/package/berp
◦ http://github.com/bjpop/berp
◦ http://github.com/bjpop/berp/wiki

5.4.4 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.8.4 experimental released

LQPL (Linear Quantum Programming Language) con-
sists of a compiler for a functional quantum program-
ming language and an associated assembler and emu-
lator.
This programming language was inspired by Peter

Selinger’s paper “Toward a Quantum Programming
Language”. LQPL incorporates a simplified module /
include system (more like C’s include than Haskell’s im-
port), predefined unitary transforms, quantum control
and classical control, algebraic data types, and opera-
tions on purely classical data.
Quantum programming allows us to provide a fair

coin toss, as shown in the code example below.

qdata Coin = {Heads | Tails}
toss ::(; c:Coin) =
{ q = |0>; Had q;

measure q of
|0> => {c = Heads}
|1> => {c = Tails}

}

This allows programming of various probabilistic algo-
rithms, such as leader election. The picture below is
a screenshot of the emulator part way through leader
election, showing a probabilistic list (outslis) with
equal chances of being one of [3, 2] or [3, 1] and a coin
toss (bToss) with equal chances of being Heads or Tails.

Work on version 0.9 has begun, with the primary goal
of further de-coupling the emulator from the user inter-
face. Currently, the user display, the emulator and the
assembler are in a monolithic form. Once de-coupled,
the intent is to allow the emulator to run independently
of the display. This will allow a greater allocation of
resources to the emulator, and allow the development
of alternate display visualizations.

Further reading

http://pll.cpsc.ucalgary.ca/lqpl/index.html

29

http://hackage.haskell.org/package/berp
http://github.com/bjpop/berp
http://github.com/bjpop/berp/wiki
http://pll.cpsc.ucalgary.ca/lqpl/index.html

6 Development Tools

6.1 Environments

6.1.1 EclipseFP

Report by: JP Moresmau
Participants: Scott B. Michel, building on code from

Thiago Arrais, Leif Frenzel, Thomas ten
Cate, and others

Status: stable, maintained

EclipseFP is a set of Eclipse plugins to allow working
on Haskell code projects. It features Cabal integra-
tion (.cabal file editor, uses Cabal settings for compi-
lation), and GHC integration. Compilation is done via
the GHC API, syntax coloring uses the GHC Lexer.
Other standard Eclipse features like code outline, fold-
ing, and quick fixes for common errors are also pro-
vided. EclipseFP also allows launching GHCi sessions
on any module including extensive debugging facili-
ties. It uses Scion to bridge between the Java code
for Eclipse and the Haskell APIs. The source code is
fully open source (Eclipse License) and anyone can con-
tribute. Current version is 2.0.1, released in October
2010, and more versions with additional features are
planned. Feedback on what is needed is welcome! The
website has information on downloading binary releases
and getting a copy of the source code. Support and bug
tracking is handled through Sourceforge forums.

Further reading

http://eclipsefp.sourceforge.net/

6.1.2 ghc-mod — Happy Haskell Programming on
Emacs

Report by: Kazu Yamamoto
Status: open source, actively developed

ghc-mod is an enhancement of Haskell mode on Emacs.
It provides the following features:

Completion You can complete a name of keyword,
module, class, function, types, language extensions,
etc.

Code template You can insert a code template ac-
cording to the position of the cursor. For instance,
“module Foo where” is inserted in the beginning of
a buffer.

Syntax check Code lines with error messages are au-
tomatically highlighted thanks to flymake. You can
display the error message of the current line in an-
other window. hlint can be used instead of GHC to
check Haskell syntax.

Document browsing You can browse the module doc-
ument of the current line either locally or on Hack-
age.

ghc-mod consists of code in Emacs Lisp and a sub-
command in Haskell. The Emacs code executes the
sub-command to obtain information about your Haskell
environment. The sub-command makes use of GHC
API for that purpose.

Further reading

http://www.mew.org/~kazu/proj/ghc-mod/en/

6.1.3 Leksah — Toward a Haskell IDE

Report by: Jürgen Nicklisch-Franken

Leksah is a Haskell IDE written in Haskell, it uses
Gtk+, and runs on Linux, Windows, and Mac OS X.
Leksah is intended to be a practical tool to support
the Haskell development process. Leksah is completely
free.
Some features of Leksah:

◦ It uses the cabal package format and incorporates a
cabal file editor.

◦ It offers Workspaces for complex projects with mul-
tiple packages with automatic build of dependencies.

◦ It contains a module browser that allows you to find
type information about all the functions/symbols

30

http://eclipsefp.sourceforge.net/
http://www.mew.org/~kazu/proj/ghc-mod/en/

available in the packages installed on your system.

◦ For most packages it shows as well haddock style
comments, and gives direct navigation to sources.

◦ It integrates ghci debugging (including continuous
recompilation) that allows you to type check and
evaluate highlighted code snippets from within the
editor itself. Includes a scratch buffer for testing
ideas.

◦ It includes a helper for automatic addition of import
statements.

◦ Offers a Haskell-customized editor with “source
candy”.

◦ Multi-window support for a multi head setting.

◦ Many standard features of IDEs like: Jump to errors,
Auto Completion, Grep integration, . . .

◦ Configurable with session support, keymaps, and
flexible appearance.

Future plans

◦ Enhance usability and fix open bugs for the 1.0 re-
lease.

◦ Concept and implementation of an extension mech-
anism.

◦ Better integration of Yi as editor component.

The project needs more users and developers!

Further reading

http://leksah.org/

6.1.4 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Heat was designed
for novice students learning the functional program-
ming language Haskell. Heat provides a small num-
ber of supporting features and is easy to use. Heat is
portable, small and works on top of the Haskell inter-
preter Hugs.
Heat provides the following features:

◦ Editor for a single module with syntax-highlighting
and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the source line
is highlighted and additional error explanations are
provided.

◦ Shows a program summary in a tree structure, giving
definitions of types and types of functions.

◦ Automatic checking of all (Boolean) properties of a
program; results shown in summary.

A complete re-write of the current version 3.1 is
planned to improve the internal structure and make
Heat work with GHC.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

6.1.5 HaRe — The Haskell Refactorer

Report by: Simon Thompson
Participants: Huiqing Li, Chris Brown, Claus Reinke

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its sixth major
release. HaRe supports full Haskell 98, and is inte-
grated with (X)Emacs and Vim. All the refactorings
that HaRe supports, including renaming, scope change,
generalization and a number of others, are module-
aware, so that a change will be reflected in all the
modules in a project, rather than just in the module
where the change is initiated. The system also con-
tains a set of data-oriented refactorings which together
transform a concrete data type and associated uses of

31

http://leksah.org/
http://www.cs.kent.ac.uk/projects/heat/

pattern matching into an abstract type and calls to
assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.
In order to allow users to extend HaRe themselves,

HaRe includes an API for users to define their own
program transformations, together with Haddock doc-
umentation. Please let us know if you are using the
API.
Snapshots of HaRe are available from our webpage,

as are related presentations and publications from
the group (including LDTA’05, TFP’05, SCAM’06,
PEPM’08, PEPM’10, TFP’10, Huiqing’s PhD thesis
and Chris’s PhD thesis). The final report for the
project appears there, too.

Recent developments

◦ HaRe 0.6, which is compatible with GHC-6.12.1, has
been released; HaRe 0.6 is available on Hackage, and
also downloadable from our project webpage.

◦ HaRe 0.6 comes with a number of new refactorings,
including adding and removing fields and construc-
tors to data-type definitions, folding and unfolding
against as-patterns, merging and splitting function
definitions, converting between let and where con-
structs, introducing pattern matching and generative
folding.

◦ Support for automatic detection and semi-automatic
elimination of duplicated code in Haskell programs is
also available from HaRe 0.6.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

6.2 Documentation

6.2.1 Haddock

Report by: David Waern
Status: experimental, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates docu-
mentation by parsing and typechecking Haskell source
code directly and including documentation supplied
by the programmer in the form of specially-formatted
comments in the source code itself. Haddock has direct
support in Cabal (→ 6.7.1), and is used to generate the
documentation for the hierarchical libraries that come
with GHC, Hugs, and nhc98 (http://www.haskell.org/
ghc/docs/latest/html/libraries) as well as the documen-
tation on Hackage.
The latest release is version 2.8.1, released September

3 2010.
Recent changes:

◦ HTML backend completely rewritten to generate se-
mantically rich XHTML using the xhtml package.

◦ New default CSS based on the color scheme chosen
for the new Haskell wiki, with a pull-out tab for the
synopsis.

◦ Theme engine based on CSS files. Themes can be
switched from the header menu.

◦ Markup support for executable examples/unit-tests.

◦ Addition of a LaTeX backend.

◦ Additions and changes to the Haddock API.

◦ Various smaller new features and bug fixes.

Future plans

◦ Although Haddock understands many GHC lan-
guage extensions, we would like it to understand all
of them. Currently there are some constructs you
cannot comment, like GADTs and associated type
synonyms.

◦ Error messages is an area with room for improve-
ment. We would like Haddock to include accurate
line numbers in markup syntax errors.

◦ On the HTML rendering side we want to make more
use of Javascript in order to make the viewing expe-
rience better. The frames-mode could be improved
this way, for example.

◦ Finally, the long term plan is to split Haddock into
one program that creates data from sources, and sep-
arate backend programs that use that data via the
Haddock API. This will scale better, not requiring
adding new backends to Haddock for every tool that
needs its own format.

Further reading

◦ Haddock’s homepage: http://www.haskell.org/
haddock/

◦ Haddock’s developer Wiki and Trac: http://trac.
haskell.org/haddock

◦ Haddock’s mailing list: haddock@projects.haskell.org

6.2.2 Hoogle

Report by: Neil Mitchell
Status: stable

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name,
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,

32

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://trac.haskell.org/haddock
http://trac.haskell.org/haddock
haddock@projects.haskell.org

including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online. Hoogle is available as a web interface,
a command line tool, and a lambdabot plugin.
Hoogle development has recently restarted, and work

is proceeding quickly. The darcs version of Hoogle can
now search all of Hackage (→ 6.7.1), and should be re-
leased in a few months.

Further reading

http://haskell.org/hoogle

6.2.3 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.
The program is stable and can take on large docu-

ments.
Since version 1.14, lhs2TEX has an experimental

mode for typesetting Agda code.
The current version is 1.16, it should address the is-

sues previous versions had with Unicode and should
work properly using ghc-6.12. For the future, I plan a
more substantial rewrite of lhs2TEX to clean up the in-
ternals and make the functionality of lhs2TEX available
as a library.

Further reading

http://www.andres-loeh.de/lhs2tex

6.3 Testing and Analysis

6.3.1 HTF: A Test Framework for Haskell

Report by: Stefan Wehr
Status: beta, active development

The Haskell Test Framework (HTF for short) lets you
define unit tests, QuickCheck properties, and black box
tests in an easy and convenient way. The HTF uses a
custom preprocessor that collects test definitions au-
tomatically. Furthermore, the preprocessor allows the
HTF to report failing test cases with exact file name
and line number information.

Initially created in 2005, HTF was not actively de-
veloped for almost five years. Development resumed in
2010, adding many improvements to the code base.

Further reading

◦ http://hackage.haskell.org/package/HTF
◦ Tutorial: http://www.factisresearch.com/2010/03/
htf/

6.3.2 SourceGraph

Report by: Ivan Lazar Miljenovic
Status: version 0.6.1.1

SourceGraph is a utility program aimed at helping
Haskell programmers visualize their code and perform
simple graph-based analysis (representing entities as
nodes in the graphs and function calls as directed
edges), which started off as an example of how to use
the Graphalyze library (→ 8.4.3), which is designed
as a general-purpose graph-theoretic analysis library.
These two pieces of software were originally developed
as the focus of my mathematical honors thesis, “Graph-
Theoretic Analysis of the Relationships Within Dis-
crete Data”.
Whilst fully usable, SourceGraph is currently lim-

ited in terms of input and output. It analyses all .hs
and .lhs files recursively found in the provided di-
rectory, parsing most aspects of Haskell code (cannot
parse Haskell code using CPP, HaRP, TH, FFI and
XML-based Haskell code; difficulty parsing Data Fam-
ily instances, unknown modules and record puns and
wildcards). The results of the analysis are created in
an Html file in a “SourceGraph” subdirectory of the
project’s root directory.
Various refinements have been implemented since the

last release, including:

◦ “Implicitly exported” entities (e.g., class method in-
stance definitions from external classes) are now sup-
ported; support for these is not perfect and may in-
clude more entities than it should.

◦ Addition of depth analysis (based upon how many
function calls are needed from an exported entity).

◦ Better visualizations, including edge categorizations;
the generated Dot code is also saved if users wish to
tweak these.

Current analysis algorithms utilized include: alter-
native module groupings, whether a module should be
split up, root analysis, depth analysis, clique and cycle
detection, as well as finding functions which can safely
be compressed down to a single function. Please note
however that SourceGraph is not a refactoring utility,
and that its analyses should be taken with a grain of
salt: for example, it might recommend that you split up
a module, because there are several distinct groupings

33

http://haskell.org/hoogle
http://www.andres-loeh.de/lhs2tex
http://hackage.haskell.org/package/HTF
http://www.factisresearch.com/2010/03/htf/
http://www.factisresearch.com/2010/03/htf/

of functions, when that module contains common util-
ity functions that are placed together to form a library
module (e.g., the Prelude).
Sample SourceGraph analysis reports can be

found at http://code.haskell.org/~ivanm/Sample_
SourceGraph/SampleReports.html. A tool paper on
SourceGraph was presented at the ACM SIGPLAN
2010 Workshop on Partial Evaluation and Program
Manipulation.

Further reading

◦ http://hackage.haskell.org/package/SourceGraph
◦ http://ivanmiljenovic.files.wordpress.com/2008/11/

honoursthesis.pdf
◦ http://ivanmiljenovic.files.wordpress.com/2010/03/

sourcegraph_pepm10_reprint.pdf

6.3.3 HLint

Report by: Neil Mitchell
Status: stable

HLint is a tool that reads Haskell code and suggests
changes to make it simpler. For example, if you call
maybe foo id it will suggest using fromMaybe foo in-
stead. HLint is compatible with almost all Haskell ex-
tensions, and can be easily extended with additional
hints.
There have been numerous feature improvements

since the last HCAR, including an API, and better sup-
port for qualified module names. HLint is now used
within hpaste.org.

Further reading

http://community.haskell.org/~ndm/hlint/

6.3.4 A Haskell Source File Scanning Tool

Report by: Christian Maeder
Status: maintained

The Haskell source file scanning tool scan is supposed
to be a complement for hlint (→ 6.3.3). Whereas the
latter makes suggestions to improve your expressions,
scan makes suggestions about your source file format
regarding white spaces, layout and comments, as usu-
ally described by style guides.

An extra feature of scan is to write back an ad-
justed source file that is untabified, has no trailing
white space, and ends with a single final newline. The
motivating purpose was to put blanks around infix op-
erators and after commas. But also multiple blanks and
comments may be adjusted controlled by command line
options. A new option is to change consecutive line
comments to a single block comment. More options
may follow.
Although in some cases layout may be destroyed and

modifications should be reverted or made manually,
this tool is supposed to keep Haskell sources tidy.

Further reading

http://projects.haskell.org/style-scanner/

6.4 Boilerplate Removal

6.4.1 A Generic Deriving Mechanism for Haskell

Report by: José Pedro Magalhães
Participants: Atze Dĳkstra, Johan Jeuring, Andres Löh
Status: actively developed

Haskell’s deriving mechanism supports the automatic
generation of instances for a number of functions. The
Haskell 98 Report only specifies how to generate in-
stances for the Eq, Ord, Enum, Bounded, Show, and
Read classes. The description of how to generate in-
stances is largely informal. As a consequence, the
portability of instances across different compilers is not
guaranteed. Additionally, the generation of instances
imposes restrictions on the shape of datatypes, depend-
ing on the particular class to derive.
We have developed a new approach to Haskell’s

deriving mechanism, which allows users to specify
how to derive arbitrary class instances using standard
datatype-generic programming techniques. Generic
functions, including the methods from six standard
Haskell 98 derivable classes, can be specified entirely
within Haskell 98 plus multi-parameter type classes,
making them lightweight and portable. We can also
express Functor, Typeable, and many other derivable
classes with our technique.
We have implemented our deriving mechanism to-

gether with many new derivable classes in the Utrecht
Haskell Compiler (→ 3.5). Currently we are work-
ing on implementing it in GHC as well, replacing
the existing (but rarely used) generic classes. The
underlying library for generic data representation,
generic-deriving, is available on Hackage.

Further reading

http://dreixel.net/research/pdf/gdmh.pdf

34

http://code.haskell.org/~ivanm/Sample_SourceGraph/SampleReports.html
http://code.haskell.org/~ivanm/Sample_SourceGraph/SampleReports.html
http://www.program-transformation.org/PEPM10
http://www.program-transformation.org/PEPM10
http://www.program-transformation.org/PEPM10
http://hackage.haskell.org/package/SourceGraph
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2010/03/sourcegraph_pepm10_reprint.pdf
http://ivanmiljenovic.files.wordpress.com/2010/03/sourcegraph_pepm10_reprint.pdf
http://community.haskell.org/~ndm/hlint/
http://projects.haskell.org/style-scanner/
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving
http://www.haskell.org/ghc/docs/6.12.2/html/users_guide/generic-classes.html
http://hackage.haskell.org/package/generic-deriving
http://dreixel.net/research/pdf/gdmh.pdf

6.4.2 Derive

Report by: Neil Mitchell
Status: v2.3.0

The Derive tool is used to generate formulaic instances
for data types. For example given a data type, the
Derive tool can generate 34 instances, including the
standard ones (Eq, Ord, Enum etc.) and others such
as Binary and Functor. Derive can be used with SYB,
Template Haskell or as a standalone preprocessor. This
tool serves a similar role to DrIFT, but with additional
features.
Recently Derive has had many derivations added, in-

cluding new Uniplate (→ 8.5.2) instances. The mecha-
nism to derive instances by example has been rewritten,
and the revised mechanism is described in the associ-
ated Approaches and Applications of Inductive Pro-
gramming 2009 paper.

Further reading

http://community.haskell.org/~ndm/derive/

6.4.3 Agata

Report by: Jonas Duregård
Participants: Koen Claessen
Status: experimental, active

The Agata library (Agata Generates Algebraic Types
Automatically) is an outcome of my master’s thesis
work at Chalmers University of Technology. The li-
brary uses Template Haskell to derive instances of the
QuickCheck Arbitrary class for (almost) any Haskell
data type.
The generators differ from regular QuickCheck gen-

erators in that they maintain scalability even for types
analogous to nested collection data structures (e.g.,
[[[[a]]]], where the standard QuickCheck genera-
tor tends to generate values that contain millions of
a’s). Generators also guarantee that independent com-
ponents of the same type have the same expected size,
e.g., in (a,[a]) the single a will have the same ex-
pected size as any a in the list.
Although a few additional features are to be imple-

mented in the near future, efforts will be focused on
documentation and improving performance. When the
library is stable and well documented, the possibility
of integrating it into the QuickCheck package may be
explored.

Further reading

◦ http://hackage.haskell.org/package/Agata
◦ Agata — Random generation of test data (Mas-

ter’s thesis), http://gupea.ub.gu.se/bitstream/2077/
22087/1/gupea_2077_22087_1.pdf

6.5 Code Management

6.5.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent major release, Darcs 2.5, was in

November 2010. It provides faster repository-local op-
erations, faster record with long patch histories, among
other bug fixes and features.
Since our last report, we have had two successful

Google Summer of Code projects in the 2010 pro-
gramme. We hope that the work from these projects
will make it into our next major release Darcs 2.8,
scheduled for March 2011:
Adolfo Builes improved the reliability of the Darcs

cache system, making Darcs performance more pre-
dictable. He used his work as a basis for a high-level
documentation effort (http://wiki.darcs.net/Internals/
CacheSystem), explaining the technical details behind
Darcs without implementation detail.
Alexey Levan optimised the darcs get operation with

an optimize --http command. In a recent test, we
found that this dramatically reduced the time to fetch
Darcs’ own repository:

before after
get 40 min 3 min
get --lazy 2 min 0.2 min (11s)

Meanwhile, we still have a lot progress to make and
are always open to contributions. Haskell hackers, we
need your help!
Darcs is free software licensed under the GNU GPL.

Darcs is a proud member of the Software Freedom Con-
servancy, a US tax-exempt 501(c)(3) organization. We
accept donations at http://darcs.net/donations.html.

Further reading

http://darcs.net

35

http://community.haskell.org/~ndm/derive/
http://hackage.haskell.org/package/Agata
http://gupea.ub.gu.se/bitstream/2077/22087/1/gupea_2077_22087_1.pdf
http://gupea.ub.gu.se/bitstream/2077/22087/1/gupea_2077_22087_1.pdf
http://wiki.darcs.net/Internals/CacheSystem
http://wiki.darcs.net/Internals/CacheSystem
http://darcs.net/donations.html
http://darcs.net

6.5.2 ipatch

Report by: Joachim Breitner
Status: working

ipatch brings some of Darcs’ specialities, most notably
the hunk selection and editing interface, to those who
work with plain patch files outside any version control
system. Currently, it allows you to interactively and
selectively apply a patch or to split a patch into several
patch files.
ipatch has not seen a lot of use yet and certainly

has rough edges. It can nevertheless be useful already.
It can be installed from hackage, and patches are, as
always, welcome.

Further reading

◦ http://hackage.haskell.org/package/ipatch
◦ https://www.joachim-breitner.de/blog/archives/

425-ipatch,-the-interactive-patch-editor.html

6.5.3 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.5.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
DarcsWatch continues to be used by the xmonad

project (→ 9.8.1), the Darcs project itself, and a few
developers. At the time of writing, it was tracking 42
repositories and 3557 patches submitted by 189 users.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

6.5.4 DPM — Darcs Patch Manager

Report by: Stefan Wehr
Participants: David Leuschner
Status: beta, active development

The Darcs Patch Manager (DPM for short) is a tool
that simplifies working with the revision control sys-
tem darcs (http://darcs.net). It is most effective when
used in an environment where developers do not push
their patches directly to the main repository but where
patches undergo a reviewing process before they are
actually applied.
The current feature set of DPM is quite stable. In

our company (→ 10.4), we actively use DPM to keep
track of all patches sent to various projects. At the

Haskell hackathon 2010 in Zürich, we started working
on support for tracking conflicts between patches. We
did not yet finish this work, but hope to provide a new
DPM release with support for conflicts in May 2010.
There is some overlap between DPM and darcswatch

(→ 6.5.3). The main difference between darcswatch
and DPM is that the former mainly targets develop-
ers whereas the latter helps reviewers doing their work.

Further reading

◦ http://hackage.haskell.org/package/DPM
◦ Tutorial: http://www.factisresearch.com/2010/03/
dpm/

6.6 Interfacing to other Languages

6.6.1 HSFFIG

Report by: Dmitry Golubovsky
Status: release

Haskell FFI Binding Modules Generator (HSFFIG) is
a tool which parses C include files (.h) and generates
Haskell Foreign Functions Interface import declarations
for all functions, suitable #define’d constants, enumer-
ations, and structures/unions (to access their mem-
bers). It is assumed that the GNU C Compiler and
Preprocessor are used. Auto-generated Haskell mod-
ules may be imported into applications to access foreign
libraries’ functions and variables in type-safe manner.
In the current version 1.1.3, speed of processing

#define’d constants is considerably improved by using
HSFFIG’s own C language syntax parser to determine
suitability of constants for FFI import. Previous ver-
sions of HSFFIG invoked an external C compiler for
this purpose.

Further reading

◦ The HSFFIG package on Hackage
http://hackage.haskell.org/package/HSFFIG

◦ The HSFFIG Tutorial
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial

◦ The FFI Imports Packaging Utility
http://www.haskell.org/haskellwiki/FFI_imports_
packaging_utility

6.6.2 Hubris

Report by: Mark Wotton
Participants: James Britt, Larry Diehl, Josh Price,

Tatsuhiro Ujihisa, Andrew Grimm
Status: beta

Hubris is an in-process bridge between Ruby and
Haskell, allowing Ruby programs to use Haskell code
without writing boilerplate.

36

http://hackage.haskell.org/package/ipatch
https://www.joachim-breitner.de/blog/archives/425-ipatch,-the-interactive-patch-editor.html
https://www.joachim-breitner.de/blog/archives/425-ipatch,-the-interactive-patch-editor.html
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.net
http://hackage.haskell.org/package/DPM
http://www.factisresearch.com/2010/03/dpm/
http://www.factisresearch.com/2010/03/dpm/
http://hackage.haskell.org/package/HSFFIG
http://www.haskell.org/haskellwiki/HSFFIG/Tutorial
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility
http://www.haskell.org/haskellwiki/FFI_imports_packaging_utility

It is now easier to install, and some 64 bit bugs have
been fixed.
To get it on Linux:
cabal install hubris
gem install hubris
Mac OS X is a bit harder because support for dy-

namic libraries has not been merged into the GHC
mainline yet, but it is in the pipe. Further plans:

◦ work with new versions of Ruby without reinstalla-
tion of Hubris Haskell-side support code

◦ support for passing RTS flags to the Haskell process

◦ translation instance injection (i.e., express equiva-
lents for complex Haskell datatypes in Ruby and vice
versa)

◦ multiple argument support

◦ some way of storing non-translatable instances on
the ruby side — ideally, you should be able to have
a Ruby list of Haskell functions, and apply each
of them in turn. Currently only translateable data
types are marshalled.

Further reading

◦ http://github.com/mwotton/Hubris-Haskell
◦ http://github.com/mwotton/Hubris
◦ http://www.engineyard.com/blog/2010/

a-hint-of-hubris/
◦ http://www.jamesbritt.com/2010/3/13/

a-purely-functional-tale-of-a-bridge-compose-of-hubris

6.7 Deployment

6.7.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the Common Architecture for Building Appli-
cations and Libraries. It defines a common interface
for defining and building Haskell packages. It is imple-
mented as a Haskell library and associated tools which
allow developers to easily build and distribute pack-
ages.
Hackage is a distribution point for Cabal packages.

It is an online database of Cabal packages which can be
queried via the website and client-side software such as
cabal-install. Hackage enables end-users to download
and install Cabal packages.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

There will shortly be a new release of Cabal-1.10 and
cabal-install-0.10. They will be available from hackage
and will be included in the next major release of the
Haskell Platform (→ 3.1).
The major new feature for Cabal-1.10 is “cabal test”.

This is a feature to allow packages to define test suites.
There is an interface to allow build agents such as
cabal or a hackage buildbot to run the testsuites and
collect the results. This feature is the result of a Google
Summer of Code project by Thomas Tuegel (→ 7.2).
Matt Gruen successfully completed a GSoC project

this summer which was to improve the new
hackage-server implementation (→ 7.4).

Looking forward

The new hackage-server is now nearly ready for live
deployment, but some work remains to be done on the
transition from the old server to the new. Volunteering
to help with this process would be a great service to
the community.
There are many improvements we want to make to

Cabal, cabal-install, and Hackage. I am pleased to re-
port that we have had an increase in new contributors
in the last few months, however our limiting factor re-
mains the amount of volunteer development time and
also maintainer code-review time. We would like to
encourage people considering contributing to join the
cabal-devel mailing list so that we can increase devel-
opment discussion and improve collaboration. The bug
tracker is well maintained and it should be relatively
clear to new contributors what is in need of attention
and which tasks are considered relatively easy.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.

org/
◦ Bug tracker: http://hackage.haskell.org/trac/

hackage/

6.7.2 Capri

Report by: Dmitry Golubovsky
Status: experimental

Capri (abbreviation of CAbal PRIvate) is a wrapper
program on top of cabal-install to operate it in project-
private mode. In this mode, there is no global or user
package databases; only one package database is de-
fined, private to the project, located under the root
directory of a project.
Capri invokes cabal-install and ghc-pkg in the way

that only a project’s private package database is visible
to them. Starting with a minimally required set of
packages, all necessary dependencies will be installed

37

http://github.com/mwotton/Hubris-Haskell
http://github.com/mwotton/Hubris
http://www.engineyard.com/blog/2010/a-hint-of-hubris/
http://www.engineyard.com/blog/2010/a-hint-of-hubris/
http://www.jamesbritt.com/2010/3/13/a-purely-functional-tale-of-a-bridge-compose-of-hubris
http://www.jamesbritt.com/2010/3/13/a-purely-functional-tale-of-a-bridge-compose-of-hubris
http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/

per project, not affecting user or global databases. This
helps maintain a clean build environment without the
risk of accidental installation of conflicting versions of
the same package which sometimes happens with the
global packages database.
Capri is mainly intended to build executable pro-

grams. It depends on certain features of GHC, and is
not usable with other Haskell compilers.

Further reading

◦ The Capri package on Hackage
http://hackage.haskell.org/package/capri

◦ The Capri Tutorial
http://www.haskell.org/haskellwiki/Capri

6.7.3 Shaker

Report by: Anthonin Bonnefoy
Status: active development

Shaker is an interactive build tool which allows to com-
pile and execute tests on a Haskell project and provides
several features like:

◦ Continuous mode: In continuous mode, an action
(compile or test) is triggered by source changes.

◦ Automatic test discovery: Shaker discovers and
executes tests via the GHC API. All exported
QuickCheck properties and HUnit test cases can be
executed by Shaker.

◦ Selectable test execution: One or several tests can
be selected for execution using regular expressions.

◦ test-framework integration for test execution

◦ Easy configuration: Shaker reuses cabal configura-
tion so there is no need for extra configuration if
your project is already cabalized.

Shaker can be used to type check your code as you edit
it; With the ~compile command, a compilation will be
executed as soon as a source change is detected. You
can also execute a specific test on source change with
~test aTestName.

Future plans

Shaker is incompatible with several projects due to
some special cases not managed, and current develop-
ment aims to make it compatible with more projects.
After this, the next feature will be the possibility to
execute only previously failing tests.

Further reading

◦ http://hackage.haskell.org/package/shaker
◦ http://github.com/bonnefoa/Shaker

38

http://hackage.haskell.org/package/capri
http://www.haskell.org/haskellwiki/Capri
http://hackage.haskell.org/package/shaker
http://github.com/bonnefoa/Shaker

7 Google Summer of Code 2010

7.1 Immix Garbage Collector on GHC

Report by: Marco Silva
Status: unconcluded

During the summer of 2010, Marco Silva worked on the
implementation of the Immix algorithm in GHC. Im-
mix is a relatively new technique for garbage collection,
which has been shown to be better than other alterna-
tives, including the ones used in GHC. The work was
done as a project in the Google Summer of Code.
The code is functional and does not contain known

bugs. It gets better results than the default GC in the
nofib suite. On the other hand, it gets worse results
than the default GC for the nofib/gc suite. This sce-
nario may change if more tuning is done in the details
of the implementation. Given that GHC allows the
user to choose between garbage collection alternatives
at runtime, it is easy to test and compare the different
techniques.
Immix was implemented using the experimental code

from mark-sweep as a base. Currently, it overrides
mark-sweep so that it is not that easy to compare im-
mix with mark-sweep. The plan is to split them apart
in the future.
On the GHC Commentary there is a page about the

current state, with a to do list. There are some fun-
damental parts that are not yet implemented and that
may improve performance, such as the allocation in
lines in minor GCs and the removal of partial lists,
which are not necessary in Immix.

Further reading

http://hackage.haskell.org/trac/ghc/wiki/Commentary/
Rts/Storage/GC/Immix

7.2 Improvements to Cabal’s Test Support

Report by: Thomas Tuegel
Participants: Johan Tibell (Mentor)
Status: active development

As part of the Google Summer of Code 2010, Cabal’s
test support was improved to allow automated testing
of packages. The intent is to provide the technical en-
hancements necessary for wide adoption of automatic
testing in Haskell software, improving the software’s
general quality. The results of the Summer of Code
project were presented at the 2010 Haskell Implemen-
tors Workshop, but work is ongoing.
A basic test interface allowing package authors to

specify standalone test executables in their package de-
scription files will be available in Cabal 1.10 (→ 6.7.1).

Cabal can run these tests from the command line and
report the aggregate results of the test suite in human-
and machine-readable format. Work is in progress to
support a standard interface for modules containing
multiple test cases; this will make it possible for Ca-
bal to report on the results of individual cases within
a test suite. Future work on Hackage will make test
reports for uploaded packages available automatically.

Further reading

◦ http://cabaltest.blogspot.com
◦ http://haskell.org/haskellwiki/

HaskellImplementorsWorkshop/2010

7.3 A High Performance HTML
Generation Library

Report by: Jasper Van der Jeugt
Status: stable

See BlazeHtml (→ 8.8.4).

7.4 Hackage 2.0

Report by: Matthew Gruen
Participants: Duncan Coutts
Status: in development

Hackage 2.0 is a rewrite of the original Hackage (→
6.7.1) infrastructure intended to provide additional fea-
tures and better handle Haskell’s sustained growth. It
was developed to a near-deployable state as part of
the 2010 Google Summer of Code program. Enhancing
Hackage’s role as a package repository, it adds metrics
for packages, means of communication between end-
users and maintainers, and tools to aid quality assur-
ance.
Currently, Hackage runs an Apache instance to store

packages. It is very stable, but also difficult to extend.
Plain text files are used to store information, so some
features which require plenty of in-memory data manip-
ulation are costly. The new codebase, called hackage-
server (in contrast to the current hackage-scripts), uses
the Happstack web framework (→ 5.2.6) for just about
everything. It employs happstack-state to store native
Haskell datatypes in-memory, with a separate file store
for the package tarballs themselves.

Features

The primary design goal of hackage-server is to provide
a modular, extensible infrastructure for any conceivable

39

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/GC/Immix
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/GC/Immix
http://cabaltest.blogspot.com
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2010
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2010

feature that might be added to Hackage. It has full
feature parity with hackage-scripts and more, with a
RESTful backend supporting multiple content formats.
Reverse dependencies, editable tags, and download

counts have all been implemented to help locate use-
ful libraries out of thousands. Deprecation, user-
submitted build reports, and a user groups system are
intended to make maintainance easier. There is also the
ability to post packages on a beta-testing index before
publishing it on Hackage proper.

Roadmap

The eventual goal is to have the hackage-server code-
base serving packages at http://hackage.haskell.org. It
is much closer to this now than half a year ago! Further
work involves improving performance in both time and
memory.
The first major deployment will be a simple mir-

ror for the main Hackage on the sparky server (at
sparky.haskell.org, port 8080) which Cabal can set as
a remote repository. Afterwards, the mirror will be
open for editing by anyone with an account on the main
Hackage. The full switchover will occur as soon as we
are confident about the stability.

Further reading

◦ Wiki documentation: http://hackage.haskell.org/
trac/hackage/wiki/HackageDB/2.0

◦ Code: darcs get http://code.haskell.org/
hackage-server

7.5 Improving Darcs’ Network
Performance

See Darcs (→ 6.5.1).

40

http://hackage.haskell.org
sparky.haskell.org
http://hackage.haskell.org/trac/hackage/wiki/HackageDB/2.0
http://hackage.haskell.org/trac/hackage/wiki/HackageDB/2.0
http://code.haskell.org/hackage-server
http://code.haskell.org/hackage-server

8 Libraries

8.1 Processing Haskell

8.1.1 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van Keeken im-
plemented a library to data mine logged Helium (→ 3.4)
programs to investigate aspects of how students pro-
gram Haskell, how they learn to program, and how
good Helium is in generating understandable feedback
and hints. The software can be downloaded from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Neon, which also
gives some examples of output generated by the sys-
tem. The downloads only contain a small sample of
loggings, but it will allow programmers to play with it.
This work has been continued by Mathĳs Swint, but
the results of his work have told us that although we
do have a lot of data, we need quite a bit more in order
to get significant results from Neon.

8.1.2 mueval

Report by: Gwern Branwen
Participants: Andrea Vezzosi, Daniel Gorin, Spencer

Janssen, Adam Vogt
Status: active development

Mueval is a code evaluator for Haskell; it em-
ploys the GHC API as provided by the Hint
library (http://haskell.org/communities/11-2008/html/
report.html#hint). It uses a variety of techniques to
evaluate arbitrary Haskell expressions safely & securely.
Since it was begun in June 2008, tremendous progress
has been made; it is currently used in Lambdabot
live in #haskell). Mueval can also be called from the
command-line.
Mueval features:

◦ A comprehensive test-suite of expressions which
should and should not work

◦ Defeats all known attacks

◦ Optional resource limits and module imports

◦ The ability to load in definitions from a specified file

◦ Parses Haskell expressions with haskell-src-exts and
tests against black- and white-lists

◦ A process-level watchdog, to work around past and
future GHC issues with thread-level watchdogs

◦ Cabalized

Since the November 2009 HCAR report, the internals
have been cleaned up further, a number of minor bugs
squashed, tests added, and mueval updated to avoid
bitrot.
We are currently working on the following:

◦ Refactoring modules to render Mueval more useful
as a library

◦ Removing the POSIX-only requirement

◦ Merging in Chris Done’s mueval-interactive fork,
which powers http://tryhaskell.org/

Further reading

The source repository is available: darcs get
http://code.haskell.org/mubot/

8.2 Parsing and Transforming

8.2.1 The grammar-combinators Parser Library

Report by: Dominique Devriese
Status: partly functional

The grammar-combinators library is an experimen-
tal next-generation parser library written in Haskell
(LGPL license). The library features much of the power
of a parser generator like Happy or ANTLR, but with
the library approach and most of the benefits of a
parser combinator library.
The project’s initial release was in September 2010.

A paper about the main idea is being published at the
PADL’11 conference and an accompanying technical re-
port with more implementation details is available on-
line. The library is published on Hackage under the
name grammar-combinators.
We believe this library is an ideal place for inno-

vations in practical functional parsing libraries. The
library adds substantial fundamental power to tradi-
tional parser combinator libraries and opens up the
path to implementing many parsing techniques that
were previously impossible. We believe people inter-
ested in parsing techniques will find the library ideal
for implementing their ideas and we encourage all con-
tributions.
However, the library still needs a lot of love before

it is suited for mainstream use. Performance is not
ideal and many real-world features are missing. People
interested to work on these topics are very welcome to
contact us!

41

http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://haskell.org/communities/11-2008/html/report.html#hint
http://haskell.org/communities/11-2008/html/report.html#hint
http://github.com/chrisdone/mueval-interactive
http://tryhaskell.org/
http://code.haskell.org/mubot/

Further reading

http://projects.haskell.org/grammar-combinators/

8.2.2 language-python

Report by: Bernie Pope
Status: stable

Language-python is a Haskell library for lexical analy-
sis, parsing, and pretty printing Python code. It sup-
ports versions 2.x and 3.x of Python. The parser is im-
plemented using the happy parser generator, and the
alex lexer generator. It supports source accurate span
information and optional parsing of comments. A sepa-
rate package called language-python-colour is available
on Hackage which demonstrates the use of the library
to render Python source in coloured XHTML. the li-
brary is also used for the syntactic analysis component
of the berp Python compiler (→ 5.4.3).

Further reading

◦ http://hackage.haskell.org/package/language-python
◦ http://github.com/bjpop/language-python

8.2.3 Loker

Report by: Roman Cheplyaka
Participants: Andrey Torba, Evgeniy Berkovich, and

others
Status: in active development

Loker is a collection of programs to deal with UNIX
Shell scripts. It will include a parser, a static analysis
tool, and a compiler. The distinctive feature of the
project is strong compliance to the POSIX standard.
All the parts are written in Haskell.
At the moment the parser is almost complete and

some work is being done on the analysis tool and the
compiler.
The plan is to make the first release soon.

Further reading

http://github.com/feuerbach/loker

8.2.4 ChristmasTree

Report by: Marcos Viera
Participants: Doaitse Swierstra, Eelco Lempsink
Status: experimental

See: http://haskell.org/communities/05-2009/html/
report.html#sect5.5.7.

8.2.5 First Class Syntax Macros

Report by: Marcos Viera
Participants: Doaitse Swierstra, Atze Dĳkstra, Arthur

Baars
Status: experimental

See: http://haskell.org/communities/05-2010/html/
report.html#sect5.4.2.

8.2.6 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

The uu-parsinglib library was extended with a
unified approach to writing parsers which recognize
several elements in arbitrary order. E.g., the parser:

(, , ,) ‘pMerge‘ (pSome pa
< || > pMany pb
< || > pOne pc
< || > pNatural ‘pOpt‘ 5)

when provided with the input "45bab" returns the
value (["a"],["b","b"],"c",45) and the error mes-
sage

-- > Result: (["a"],["b","b"],"c",45)
-- > Correcting steps:
-- > Inserted ’c’ at position (0,5)

expecting one of [’b’, ’a’, ’c’]

A tutorial has appeared in the LNCS lecture notes
(S. Doaitse Swierstra, Combinator Parsers: A Short
Tutorial, Language Engineering and Rigorous Software
Development 2009, LNCS 5520). The text is also
available as a technical report at http://www.cs.uu.nl/
research/techreps/UU-CS-2008-044.html.
Furthermore the library was provided with many

more examples in the Examples module, and lots of
Haddock documentation was added.

Features

◦ Much simpler internals than the old li-
brary (http://haskell.org/communities/05-2009/
html/report.html#sect5.5.8).

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the input
and provide excellent error messages.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library provides both an applicative interface
and a monadic interface.

◦ No need for try-like constructs which makes writing
Parsec based parsers tricky.

42

http://projects.haskell.org/grammar-combinators/
http://hackage.haskell.org/package/language-python
http://github.com/bjpop/language-python
http://github.com/feuerbach/loker
http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://haskell.org/communities/05-2009/html/report.html#sect5.5.7
http://haskell.org/communities/05-2010/html/report.html#sect5.4.2
http://haskell.org/communities/05-2010/html/report.html#sect5.4.2
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

Future plans

The next version will contain a check for grammars
being not left-recursive, thus taking away the only re-
maining source of surprises when using parser combina-
tor libraries. This makes the library great for teaching
environments too. Future versions of the library, us-
ing even more abstract interpretation, will make use of
computed look-ahead information to speed up the pars-
ing process further. Gradually software from Utrecht
will be moving to use the new library uu-parsinglib.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list at 〈parsing@cs.uu.
nl〉. More information can be found at http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators.

8.2.7 Regular Expression Matching with Partial
Derivatives

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu
Status: stable

Regular expression matching is a classical and well-
studied problem. Prior work applies DFA and Thomp-
son NFA methods for the construction of the match-
ing automata. We propose the novel use of derivatives
and partial derivatives for regular expression matching.
We show how to obtain algorithms for various match-
ing policies such as POSIX and greedy left-to-right.
Our benchmarking results show that the run-time per-
formance is promising and that our approach can be
applied in practice.

Further reading

◦ http://hackage.haskell.org/package/regex-pderiv
◦ http://sulzmann.blogspot.com/2010/04/

regular-expression-matching-using.html

8.3 Mathematical Objects

8.3.1 AERN-Real and Friends

Report by: Michal Konečný
Participants: Amin Farjudian, Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of the following libraries for
fast exact real number arithmetic:

◦ AERN-Real: arbitrary precision safely rounded
interval arithmetic with multiple backends (pure
Haskell floating point numbers, MPFR, machine
doubles) and with support for inner rounding, anti-
consistent intervals and Kaucher arithmetic

◦ AERN-RnToRm: arbitrary precision safely-rounded
arithmetic of piece-wise polynomial function en-
closures (PFEs) for functions over n-dimensional
real intervals with support for inner rounding,
anti-consistent intervals and approximated Kaucher
arithmetic

◦ AERN-RnToRm-Plot: GTK window for inspecting
the graphs of PFEs in one variable (see figure below,
showing a screenshot of an AERN-RnToRm-Plot
window exploring an enclosure of cos(10x) (blue) and
an enclosure of its primitive function (red))

◦ AERN-Net: an implementation of distributed query-
based (i.e., lazy) computation over analytical and ge-
ometrical objects

The development has been driven mainly by the
needs of our two recent research projects. We have
used the libraries extensively to:

◦ prototype algorithms for reliable and ultimately con-
verging methods for solving differential equations in
many variables (AERN-RnToRm, AERN-Net)

◦ solve numerical constraint satisfaction problems, es-
pecially those arising from verification of programs
that use floating point numbers (AERN-RnToRm)

The current versions have been fairly stable for our
purposes.
We are currently redesigning and rewriting the li-

braries almost from scratch with the following goals:

◦ A larger number of simpler and more reusable type
classes instead of the few and fairly complex type
classes provided in the current version; this includes
type classes such as RoundedLattice or Rounded-
Multiplication. (Mostly completed for real interval
arithmetic.)

43

mailto: doaitse at swierstra.net
mailto: parsing at cs.uu.nl
mailto: parsing at cs.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://hackage.haskell.org/package/regex-pderiv
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html

◦ A more thorough approach to testing, with proper-
ties defined alongside the type classes. (Mostly com-
pleted for real interval arithmetic.)

◦ Support for both pure arithmetic and in-place up-
dates for extra efficiency with backends written in C
such a MPFR. (In progress.)

◦ A faster implementation of polynomial arithmetic,
with a core written in C. (In progress.)

Further reading

◦ See Haddock documentation via Hackage — has links
to research papers.

◦ New version under construction on http://code.
google.com/p/aern/.

8.3.2 hmatrix

Report by: Alberto Ruiz
Participants: Vivian McPhail
Status: stable, maintained

hmatrix is a purely functional interface to numeri-
cal linear algebra, internally implemented using GSL,
BLAS, and LAPACK.
Version 0.10 has been recently released to Hackage.

It includes support for Float and Complex Float ele-
ments (excluding LAPACK computations), Binary in-
stances, and new functions like monadic map for vec-
tors and matrix product with optimum association or-
der.
I thank Vivian McPhail for many excellent contribu-

tions.

Further reading

http://code.haskell.org/hmatrix

8.4 Data Types and Data Structures

8.4.1 HList — A Library for Typed Heterogeneous
Collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We, and now others (Alexandra
Silva, Joost Visser: PURe.CoddFish project), have also
used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell (http:
//code.haskell.org/OOHaskell). The HList library relies
on common extensions of Haskell 2010.
HList is being used in AspectAG (→ 5.4.2), typed

EDSL of attribute grammars, and in HaskellDB. There
has been many miscellaneous changes related to the
names of exposed modules, fixity declarations. Patches
by Adam Vogt significantly improve the Haddock-
generated documentation. The current version is 0.2.3;
it works with GHC 6.12.
We are investigating the use of type functions pro-

vided in the new versions of GHC.

Further reading

◦ HList: http://homepages.cwi.nl/~ralf/HList/
◦ OOHaskell: http://homepages.cwi.nl/~ralf/

OOHaskell/

8.4.2 Verified Priority Queues

Report by: Jim Apple
Status: stable

A priority queue (or sometimes “heap”) is a container
supporting the insertion of elements and the extrac-
tion of the minimum element. Gerth Brodal and Chris
Okasaki presented a purely functional priority queue
that also supports an O(1) meld operation in their pa-
per “Optimal Purely Functional Priority Queues”. This
project provides an implementation of these priority
queues that has been verified using the Coq proof as-
sistant.
It is available on Hackage and can be installed with

cabal install meldable-heap. The Coq proofs are
included in the package.

Further reading

http://hackage.haskell.org/package/meldable-heap/

8.4.3 Graphalyze

Report by: Ivan Lazar Miljenovic
Status: version 0.10.0.1

See: http://haskell.org/communities/11-2009/html/
report.html#sect5.7.2.

44

http://code.google.com/p/aern/
http://code.google.com/p/aern/
http://code.haskell.org/hmatrix
http://code.haskell.org/OOHaskell
http://code.haskell.org/OOHaskell
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://hackage.haskell.org/package/meldable-heap/
http://haskell.org/communities/11-2009/html/report.html#sect5.7.2
http://haskell.org/communities/11-2009/html/report.html#sect5.7.2

8.5 Generic and Type-Level Programming

8.5.1 FlexiWrap

Report by: Iain Alexander
Status: forthcoming

A library of flexible newtype wrappers which simplify
the process of selecting appropriate typeclass instances,
which is particularly useful for composed types.
A proof-of-concept prototype exists, and is being

packaged for release on Hackage. A document describ-
ing the concept is planned.

8.5.2 uniplate

Report by: Neil Mitchell

Uniplate is a library for writing simple and concise
generic operations. Uniplate has similar goals to the
original Scrap Your Boilerplate work, but is substan-
tially simpler and faster. If you are writing any sort of
compiler, you should be using a generics library. If you
do not know any generics libraries, Uniplate is a good
place to start.
Uniplate has recently undergone major revisions.

The new version drops Haskell 98 compatibility, in fa-
vor of Haskell 2010 compatibility — simplifying the
module layout. All the instances have been revised
with a focus on performance. Some of the instances can
now be generated by the Derive tool (→ 6.4.2). The in-
stances based on the Data class have been optimized
and extended — they now work on more types, and
run faster.

Further reading

http://community.haskell.org/~ndm/uniplate/

8.5.3 Generic Programming at Utrecht University

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Sean Leather, Andres Löh,

Thomas van Noort, Martĳn van
Steenbergen, Sebastiaan Visser

Status: actively developed

One of the research themes investigated within the
Software Technology Center in the Department of In-
formation and Computing Sciences at Utrecht Univer-
sity is generic programming. Over the last 10 years, we
have played a central role in the development of generic
programming techniques, languages, and libraries.
Currently we maintain a number of generic pro-

gramming libraries and applications. We report most
of them in this entry; our new library for generic
deriving (→ 6.4.1) has its own entry, and emgm was
reported on before (http://haskell.org/communities/
05-2009/html/report.html#sect5.9.3).

instant-generics Using type families and type
classes in a way similar to multirec and regular,
instant-generics is yet another approach to
generic programming, supporting a large variety of
datatypes and allowing the definition of type-indexed
datatypes. It was first described by Chakravarty
et al., and forms the basis of one of our rewriting
libaries.

multirec This library represents datatypes uniformly
and grants access to sums (the choice between con-
structors), products (the sequence of constructor ar-
guments), and recursive positions. Families of mu-
tually recursive datatypes are supported. Functions
such as map, fold, show, and equality are provided as
examples within the library. Using the library func-
tions on your own families of datatypes requires some
boilerplate code in order to instantiate the frame-
work, but is facilitated by the fact that multirec
contains Template Haskell code that generates these
instantiations automatically.
The multirec library can also be used for type-
indexed datatypes. As a demonstration, the zipper
library is available on Hackage. With this datatype-
generic zipper, you can navigate values of several
types.
Unfortunately, multirec does not work well with
ghc-6.12, but it works fine in ghc-7 (thanks to the
new type checker).
We are still planning to extend the multirec li-
brary with support for parameterized datatypes and
datatype compositions.

regular While multirec focuses on support for mu-
tually recursive regular datatypes, regular supports
only single regular datatypes. The approach used is
similar to that of multirec, namely using type fam-
ilies to encode the pattern functor of the datatype
to represent generically. There have been no ma-
jor releases of the regular or regular-extras pack-
ages on Hackage since the last report. The current
versions provide a number of typical generic func-
tions, but also some less well-known but useful func-
tions: deep seq, QuickCheck’s arbitrary and coarbi-
trary, and binary’s get and put.

syb Scrap Your Boilerplate (syb) has been supported
by GHC since the 6.0 release. This library is based on
combinators and a few primitives for type-safe cast-
ing and processing constructor applications. It was
originally developed by Ralf Lämmel and Simon Pey-
ton Jones. Since then, many people have contributed
with research relating to syb or its applications.
Since syb has been separated from the base package,
it can now be updated independently of GHC. We
have recently released version 0.2 on Hackage, which
has reintegrated the testsuite and introduced new

45

http://community.haskell.org/~ndm/uniplate/
http://www.cs.uu.nl/wiki/Center
http://www.cs.uu.nl/
http://www.cs.uu.nl/
http://www.uu.nl/EN
http://www.uu.nl/EN
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://haskell.org/communities/05-2009/html/report.html#sect5.9.3
http://haskell.org/communities/05-2009/html/report.html#sect5.9.3
http://www.cse.unsw.edu.au/~chak/project/generics/
http://www.cse.unsw.edu.au/~chak/project/generics/
http://hackage.haskell.org/package/zipper
http://hackage.haskell.org/package/regular
http://hackage.haskell.org/package/regular-extras
http://web.archive.org/web/20080622204226/http://www.cs.vu.nl/boilerplate/
http://hackage.haskell.org/package/syb
http://hackage.haskell.org/packages/archive/syb/0.2.1/doc/html/Data-Generics-Builders.html
http://hackage.haskell.org/packages/archive/syb/0.2.1/doc/html/Data-Generics-Builders.html

generic producers, along with smaller changes and
fixes.

Annotations Recently we presented two applications
of generic annotations at the Workshop on Generic
Programming: selections and storage. In the former
we use annotations at every recursive position of a
datatype to allow for inserting position information
automatically. This allows for informative parsing
error messages without the need for explicitly chang-
ing the datatype to contain position information. In
the latter we use the annotations as pointers to lo-
cations in the heap, allowing for transparent and ef-
ficient data structure persistency on disk.

Rewriting We also maintain two libraries for generic
rewriting: a simple, earlier library based on
regular, and the guarded rewriting library, based on
instant-generics. The former allows for rewriting
only on regular datatypes, while the latter supports
more datatypes and also rewriting rules with precon-
ditions.

We also continue to look at benchmarking and
improving the performance of different libraries for
generic programming (→ 8.5.4).

Further reading

http://www.cs.uu.nl/wiki/GenericProgramming

8.5.4 Optimizing Generic Functions

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Andres Löh
Status: actively developed

Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. Several generic program-
ming libraries for Haskell have been developed in the
past few years. These libraries have been compared in
detail with respect to expressiveness, extensibility, typ-
ing issues, etc., but performance comparisons have been
brief, limited, and preliminary. It is widely believed
that generic programs run slower than hand-written
code.
At Utrecht University we are looking into the perfor-

mance of different generic programming libraries and
how to optimize them. We have confirmed that generic
programs, when compiled with the standard optimiza-
tion flags of the Glasgow Haskell Compiler (GHC), are
substantially slower than their hand-written counter-
parts. However, we have also found that more advanced
optimization capabilities of GHC can be used to fur-
ther optimize generic functions, sometimes achieving
the same efficiency as hand-written code.

We have benchmarked four generic programming li-
braries: emgm, syb, multirec, and regular. We com-
pare different generic functions in each of these libraries
to a hand-written version. We have concluded that in-
lining plays a crucial role in the optimization of gener-
ics. Previously we used flags to increase the chances of
the GHC inliner to optimize our functions. However,
such flags change the behavior of the inliner for the en-
tire set of modules being compiled, which might have
detrimental effects on performance. Currently we are
investigating how to localize these hints to the compiler
by using INLINE pragmas.
In most cases, we can achieve very good performance

results by providing INLINE pragmas to the conver-
sion functions (from and to) for each datatype and for
each instance of the generic function on a representa-
tion type (such as Sum, Prod, etc.). We have to be
careful with the optimization phases, as sometimes in-
lining too early can prevent later optimizations. In this
way, we achieve the same performance as a type-specific
hand-written version for functions like show and up-
date, using only the infrastructure that GHC already
provides. The performance of generic read is also sig-
nificantly improved.
Unfortunately, some generic functions are still dif-

ficult to optimize with this technique. In particular,
functions which involve additional datatypes in their
type (such as enum, which returns a list of elements)
prevent proper optimization. We are currently look-
ing into how we can circumvent this restriction. We
also plan to update our libraries to add the necessary
pragmas for increased efficiency, but since we require
the new inliner we have to wait until GHC version 7 is
released.

Further reading

http://dreixel.net/research/pdf/ogie.pdf

8.6 User Interfaces

8.6.1 Gtk2Hs

Report by: Axel Simon
Participants: Andy Stewart and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.

46

http://hackage.haskell.org/packages/archive/syb/0.2.1/doc/html/Data-Generics-Builders.html
http://portal.acm.org/citation.cfm?id=1863495.1863501
http://portal.acm.org/citation.cfm?id=1863495.1863500
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting
http://www.cs.uu.nl/wiki/GenericProgramming/GuardedRewriting
http://www.cs.uu.nl/wiki/GenericProgramming
http://dreixel.net/research/pdf/ogie.pdf

Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ High quality vector graphics using Cairo

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

The release of Gtk2Hs as a set of cabal packages
has markedly increased the interest in the binding. We
have been able to incorporate several bug fixes that
were still lurking in the multi-threading support of our
memory management. Another oversight were some
lacking functions in the cairo and pango base packages
that precluded their use to generate, e.g., PDF files
without linking to the gtk package. We released version
0.11.2 in August that fixed both issues. Andy Steward
has since been working hard to add many more func-
tions, getting Gtk2Hs very close to support all features
of the latest Gtk+ versions. John Obbele has kindly
investigated into fixing some memory leaks. We will
therefore push out a new version shortly.
Gtk2Hs version 0.11.2 has been released on August
15th. The next version will follow soon.

Further reading

◦ News, downloads, and documentation: http://
haskell.org/gtk2hs/

◦ Development version: darcs get http://code.
haskell.org/gtk2hs/

8.6.2 Haskeline

Report by: Judah Jacobson
Status: active development

The Haskeline library provides a user interface for line
input in command-line programs. It is similar in pur-
pose to readline or editline, but is written in Haskell
and aims to be more easily integrated into other Haskell
programs. A simple, monadic API allows this library to
provide guarantees such as restoration of the terminal
settings on exit and responsiveness to control-c events.
Haskeline supports Unicode and runs both on the na-

tive Windows console and on POSIX-compatible sys-
tems. It has a rich, user-customizable line-editing in-
terface. Recent improvements include support for lan-
guages with wide characters and several optimizations

for speed and responsiveness. Additionally, the API
now provides hidden password entry and allows more
control over the choice between terminal-style and file-
style interactions.

Further reading

◦ http://trac.haskell.org/haskeline
◦ http://hackage.haskell.org/package/haskeline

8.6.3 CmdArgs

Report by: Neil Mitchell
Status: released

CmdArgs is a library for defining and parsing com-
mand lines. The focus of CmdArgs is allowing the con-
cise definition of fully-featured command line argument
processors, in a mainly declarative manner (i.e., little
coding needed). Compared to the standard GetOpt
library, CmdArgs is often about three times shorter.
CmdArgs also supports multiple mode programs, for
example as used in git/darcs/Cabal.

Further reading

http://community.haskell.org/~ndm/cmdargs/

8.7 Graphics

8.7.1 plot/plot-gtk

Report by: Vivian McPhail
Status: Active Development

plot is an embedded domain-specific language for the
generation of figures. plot-gtk is a driver that pro-
vides a GTK widget to display figures and also a wrap-
per that allows interactive plotting sessions with GHCi.
The package generates instructions for the Cairo ren-
derer, which can be used to output figures in PS, PDF,
PNG, and SVG file formats.
The motivation for this package is to provide a tool

both for publication quality graphics and for the in-
teractive visualisation of mathematical objects as a
Haskell replacement for octave/gnuplot, matlab, and
other non-Haskell numerical tools.
Users can plot functions of type Double -> Double

and data series of type Vector Double, which are
compatible with the high-performance vector package
when hmatrix (→ 8.3.2) is installed with the -fvector
flag.
Features:
◦ simple monadic interface to configure each figure and

elements
◦ title/subtitle
◦ an array of plots in each figure with optional headers
◦ configurable axes and ticks
◦ configurable ranges

47

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://trac.haskell.org/haskeline
http://hackage.haskell.org/package/haskeline
http://community.haskell.org/~ndm/cmdargs/

◦ linear, log, semilog ranges
◦ plot vectors or (Double -> Double) functions
◦ line/point/linepoint/impulse/step/area plots
◦ bar/histogram plots
◦ optional error bars
◦ mix and match data series types and formatting
◦ fully configurable text elements
◦ greyscale matrix visualisation
The plot/plot-gtk packages have just had their ini-
tial release and are available from Hackage.
Work is being done to:
◦ improve tick labelling and formatting
◦ reduce burden on the user for bar chart layout
◦ give elements layout tags for improved customisation
◦ extend the Simple interface
3D plots are planned for a future release.

Further reading

◦ http://hackage.haskell.org/package/plot
◦ http://hackage.haskell.org/package/plot-gtk

8.7.2 diagrams

Report by: Brent Yorgey
Status: active development

The diagrams library provides an embedded domain-
specific language for creating simple pictures and dia-
grams. Values of type Diagram are built up in a compo-
sitional style from various primitives and combinators,
and can be rendered to a physical medium, such as a file
in PNG, PS, PDF, or SVG format. The overall vision
is for diagrams to become a viable alternative to DSLs
like MetaPost or Asymptote, but with the advantages
of being purely functional and embedded.
For example, consider the following diagram to illus-

trate the 24 permutations of four objects:

The diagrams library was used to create this dia-
gram with very little effort (about ten lines of Haskell,
including the code to actually generate permutations).
The source code for this diagram, as well as other ex-
amples and further resources, can be found at http:
/code.haskell.org/diagrams/.
The library is currently undergoing a major rewrite,

with the goal of basing the entire library on a more

flexible, semantically elegant foundational core. Good
progress was made at the most recent Philadelphia
hackathon, and a preliminary release is in the works.
Planned features include pluggable rendering backends,
support for arbitrary vector spaces and for animation,
more sophisticated paths and path operations, and an
xmonad-like core/contrib model for incorporating user-
submitted extension modules.

Further reading

◦ http://code.haskell.org/diagrams/
◦ http://byorgey.wordpress.com/2009/09/24/

diagrams-0-2-1-and-future-plans/
◦ http://www.tug.org/metapost.html
◦ http://asymptote.sourceforge.net/

8.7.3 GPipe

Report by: Tobias Bexelius

GPipe models the entire graphics pipeline in a purely
functional, immutable and type-safe way. It is built
on top of the programmable pipeline (i.e., non-fixed
function) of OpenGL 2.1 and uses features such as ver-
tex buffer objects (VBO’s), texture objects, and GLSL
shader code synthetization to create fast graphics pro-
grams. Buffers, textures, and shaders are cached in-
ternally to ensure fast framerate, and GPipe is also
capable of managing multiple windows and contexts.
GPipe’s aim is to be as close to the conceptual graph-
ics pipeline as possible, and not to add any more levels
of abstraction.
In GPipe, you work with four main data types: Prim-

itiveStreams, FragmentStreams, FrameBuffers, and
textures. They are all immutable, and all parameter-
ized on the type of data they contain to ensure type
safety between pipeline stages. By creating your own
instances of GPipes type classes, it is possible to use
additional data types on the GPU.
Version 1.2.1 with documentation is released on

Hackage, as well as some utility libraries that en-
able loading of Collada geometries and JPEG textures.
There are also a few examples and tutorials that can
be found through the wiki.
I am not currently working on any more additions

myself, but the sources are available on github and any-
one is welcome to contribute.

Further reading

http://www.haskell.org/haskellwiki/GPipe

8.7.4 ChalkBoard

Report by: Andy Gill
Participants: Kevin Matlage
Status: ongoing

48

http://hackage.haskell.org/package/plot
http://hackage.haskell.org/package/plot-gtk
http:/code.haskell.org/diagrams/
http:/code.haskell.org/diagrams/
http://code.haskell.org/diagrams/
http://byorgey.wordpress.com/2009/09/24/diagrams-0-2-1-and-future-plans/
http://byorgey.wordpress.com/2009/09/24/diagrams-0-2-1-and-future-plans/
http://www.tug.org/metapost.html
http://asymptote.sourceforge.net/
http://www.haskell.org/haskellwiki/GPipe

ChalkBoard is a domain specific language for describing
images. The language is uncompromisingly functional
and encourages the use of modern functional idioms.
The novel contribution of ChalkBoard is that it uses
off-the-shelf graphics cards to speed up rendering of
our functional description. We always intended to use
ChalkBoard to animate educational videos, as well as
for processing streaming videos. Since the last HCAR
report, we have added a new animation language, based
round a new applicative functor, Active. It has been
called Functional Reactive Programming, without the
reactive part! The paper “Every Animation Should
Have a Beginning, a Middle, and an End” talks about
this addition.
A release is scheduled for November 2010.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard

8.7.5 graphviz

Report by: Ivan Lazar Miljenovic
Status: version 2999.10.0.1

The graphviz library provides Haskell bindings for the
Graphviz suite of tools for visualizing graphs by utiliz-
ing Graphviz’s Dot language. The major features of
the graphviz library include:

◦ Almost complete coverage of all Graphviz attributes
and syntax.

◦ Support for specifying clusters.

◦ The ability to use a custom node type.

◦ Functions for running a Graphviz layout tool with
all specified output types.

◦ The ability to not only generate but also parse Dot
code with two options: strict and liberal (in terms of
ordering of statements).

◦ Functions to convert FGL graphs to Dot code —
including support to group them into clusters — with
a high degree of customization by specifying which
attributes to use and limited support for the inverse
operation.

◦ Round-trip support for passing an FGL graph
through Graphviz to augment node and edge labels
with positional information, etc.

For a sample graph visualized using the graphviz li-
brary, see SourceGraph (→ 6.3.2).

Further reading

◦ http://projects.haskell.org/graphviz/
◦ http://hackage.haskell.org/package/graphviz
◦ http://www.graphviz.org/

8.8 Text and Markup Languages

8.8.1 HaTeX

Report by: Daniel Díaz
Status: active development

HATEX is a library with the purpose of providing the
possibility of integrating the script of a LATEX file in a
program written in Haskell. The integration takes place
through the well known monadic transformer WriterT,
which stores in its state the LATEX code. The library
provides a set of functions for adding the code, and
you can include your monadic computations making
use of a lifting function. HATEX is really easy to use
if you know LATEX already, and only a little effort is
enough otherwise. The documentation will help to
learn to utilize and understand this library, with the
initial guide (to be found in HaskellWiki), the extended
guide “HATEX, a monadic perspective of LATEX”, or the
API documentation. The latter is not completed yet,
due to the large number of entities. But, if you know
LATEX, you can help to solve this.

Further reading

http://ddiaz.asofilak.es/packages/HaTeX

8.8.2 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 9.0)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml and HXML, but introduces a more general ap-
proach for processing XML with Haskell. The process-
ing model is based on arrows. The arrow interface is
more flexible than the filter approach taken in the ear-
lier HXT versions and in HaXml. It is also safer; type
checking of combinators becomes possible with the ar-
row approach.
HXT is partitioned into a collection of smaller pack-

ages: The core package is hxt. It contains a validating
XML parser, an HTML parser, filters for manipulating
XML/HTML and so called XML pickler for converting
XML to and from native Haskell data.
Basic functionality for character handling

and decoding is separated into the packages

49

http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard
http://projects.haskell.org/graphviz/
http://hackage.haskell.org/package/graphviz
http://www.graphviz.org/
http://ddiaz.asofilak.es/packages/HaTeX

hxt-charproperties and hxt-unicode. These
packages may be generally useful even for non XML
projects.
HTTP access can be done with the help of the pack-

ages hxt-http for native Haskell HTTP access and
hxt-curl via a libcurl binding. An alternative lazy non
validating parser for XML and HTML can be found in
hxt-tagsoup.
The XPath interpreter is in package hxt-xpath, the

XSLT part in hxt-xslt and the Relax NG valida-
tor in hxt-relaxng. For checking the XML Schema
Datatype definitions, also used with Relax NG, there
is a separate and generally useful regex package
hxt-regex-xmlschema.
The old HXT approach working with filter

hxt-filter is still available, but currently only with
hxt-8. It has not (yet) been updated to the hxt-9 mayor
version.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based on

Tagsoup (→ 8.8.3)
◦ Easy de-/serialization between native Haskell data
and XML by pickler and pickler combinators

◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ HTTP access via Haskell bindings to libcurl and via

Haskell HTTP package
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ Lightweight regex library with full support of Uni-

code and XML Schema Datatype regular expression
syntax

◦ An HXT Cookbook for using the toolbox and the
arrow interface

◦ Basic XSLT support
◦ GitHub repository with current development ver-

sions of all packages http://github.com/UweSchmidt/
hxt

Current Work

HXT has grown over the years. To make the toolbox
more modular and to reduce the dependencies on other
packages, hxt has been split into various smaller pack-
ages since version 9.0.0.
This enables bindings to other useful XML compo-

nents. There is a binding to the hexpat package under
construction for lazy and fast parsing via the expat
parser implemented in C.
There are some plans to further develop the Re-

lax NG validator for full XML Schema Datatype sup-

port and for the native Relax NG schema notation.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes links to downloads, documentation, and
further information.
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT). The conversion between XML
and native Haskell data types is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

8.8.3 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.
The library provides a basic data type for a list of un-

structured tags, a parser to convert HTML into this tag
type, and useful functions and combinators for finding
and extracting information. The library has seen real
use in an application to give Hackage (→ 6.7.1) listings,
and is used in Hoogle (http://haskell.org/communities/
05-2009/html/report.html#sect4.4.1).
A new version of tagsoup has been released, fully

supporting the HTML 5 specification. The API also
has experimental support for ByteString (although cur-
rently ByteString is slower than String).

Further reading

http://community.haskell.org/~ndm/tagsoup

8.8.4 BlazeHtml

Report by: Jasper Van der Jeugt
Participants: Simon Meier
Status: stable

Much has happened to the BlazeHtml project since the
last HCAR. Thanks to Google Summer of Code, huge
amounts of work have been done during the past sum-
mer. 0.1 and 0.2 versions were released on Hackage,
documentation was written, and development is still
continuing.
Perhaps the most interesting part of the project

in the long term is the Blaze Builder, designed

50

http://github.com/UweSchmidt/hxt
http://github.com/UweSchmidt/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://haskell.org/communities/05-2009/html/report.html#sect4.4.1
http://haskell.org/communities/05-2009/html/report.html#sect4.4.1
http://community.haskell.org/~ndm/tagsoup

by Simon Meier. A lot of packages could bene-
fit from this code, as it speeds up a number of re-
ally low-level actions. For example, it performs bet-
ter than Data.ByteString.pack (a factor 2 for pack-
ing more than 250 bytes) and especially better than
Data.ByteString.Lazy.pack (up to a factor 20 for
100kb bytestrings).
In this aspect, we hope the project has improved the

state of HTML generation in Haskell, and perhaps even
more than that. . .

Further reading

http://jaspervdj.be/blaze/

8.8.5 Bravo

Report by: Matthias Reisner
Status: experimental; active development

Bravo is a general-purpose text template library, pro-
viding the parsing and generation of templates at com-
pile time. Templates can be read from strings or files
and for each a new record data type is created, al-
lowing convenient access to all template variables in a
type-safe manner. The data type creation it achieved
by the use of the Template Haskell language extension.

Features

Compared to other template libraries, Bravo’s features
are:

◦ Static template processing: All templates are read,
parsed, and processed at compile time, so no extra
file access or error handling at runtime is necessary.

◦ Multiple templates per file: Bravo allows the user to
define multiple templates per file with arbitrary com-
ments between them, e.g., for template documenta-
tion.

◦ Conditional template evaluation: To check condi-
tions at runtime and return the appropriate template
text, conditional template expressions are provided.

◦ Embedding of Haskell expressions: Bravo allows the
user to embed arbitrary Haskell 98 expressions com-
bined with template variables. The set of permit-
ted functions/operators/types can be controlled us-
ing Haskell’s module system.

◦ Customized data type generation: Bravo uses a de-
fault scheme for the data type creation that can be
replaced by a user defined scheme easily.

Future plans

There were plans to extend Bravo’s capabilities by in-
troducing new template expressions, e.g., to “map” a
template over a list of values. Contrary to expectations,

this requires the internal parser to be rewritten and
split into lexer and parser. However, this would also
improve extensibility and stability of the implementa-
tion. Further work will include performance analysis
and handling of different input encodings. Support for
custom template expression delimiters (the current are
{{ and }}) and caching are also planned.

Further reading

◦ http://www.haskell.org/haskellwiki/Bravo
◦ http://hackage.haskell.org/package/Bravo

51

http://jaspervdj.be/blaze/
http://www.haskell.org/haskellwiki/Bravo
http://hackage.haskell.org/package/Bravo

9 Applications and Projects

9.1 Education

9.1.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer

Holmes is a tool for detecting plagiarism in Haskell
programs. It has been implemented by Brian Ver-
meer under supervision of Jurriaan Hage as a master
thesis project. The idea was to discover what heuris-
tics work well. We found that a token stream based
and the fingerprinting of Moss work well enough, if
you remove template code and dead code before the
comparison. There is one exception: refactorings that
introduce a small piece of code in many places. For
example, adding debug statements all around will de-
grade scores quite fast, particularly when combined
with other refactorings. We do have another control-
flow graph based heuristics that seems to perform quite
well in this case, and, as a sideline, we have a student
in our department who has developed an algorithm for
near graphisomorphism that seems to work really well
in comparing control-flow graphs in an inexact fashion.
We have a prototype tool that works for Helium pro-

grams (→ 3.4), and we did some preliminary studies
with live Helium programs to discover plagiarism.
Another student will soon attempt to take Holmes

to full Haskell by building a similar system on top of
haskell-src-exts. We can then also easily evaluate
the tool for a large collection of programs students have
submitted over the years. We hope to report on this
work in the next Haskell Symposium. The tool will
not be made available through Hackage, but will be
available to lecturers on request.

9.1.2 Interactive Domain Reasoners (previously:
Exercise Assistants)

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder
Status: experimental, active development

The Ideas project (at Open Universiteit Nederland
and Universiteit Utrecht) aims at developing interac-
tive domain reasoners on various topics. These reason-
ers assist students in solving exercises incrementally by
checking intermediate steps, providing feedback on how
to continue, and detecting common mistakes. The rea-
soners are based on a strategy language, from which
all feedback is derived automatically. The calculation
of feedback is offered as a set of web services, enabling

external (mathematical) learning environments to use
our work. We currently have a binding with the Digital
Mathematics Environment (DWO) of the Freudenthal
Institute, the ActiveMath learning system (DFKI and
Saarland University), and our own online exercise as-
sistant that supports rewriting logical expressions into
disjunctive normal form.

We are adding support for more exercise types,
mainly at the level of high school mathematics. For
example, our tool now covers simplifying expressions
with exponents, rational equations, and derivatives.
We have investigated how users can adapt mathemat-
ical domain reasoners to their own needs, such as the
level of expertise. Recently, we have focused on de-
signing a functional programming tutor. This tool lets
you practice introductory functional programming ex-
ercises. We are also formalizing our strategy specifica-
tion language, and the services that are derived from
this language. This is ongoing research.
The feedback services are available as a Cabal source

package.

52

http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas

Further reading

◦ Online exercise assistant (for logic), accessible from
our project page.

◦ Bastiaan Heeren, Johan Jeuring and Alex Gerdes.
Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science, 3(3):349–
370, 2010.

◦ Bastiaan Heeren, Johan Jeuring. Adapting Math-
ematical Domain Reasoners. International Con-
ference on Mathematical Knowledge Management
(MKM 2010).

9.1.3 Yahc

Report by: Miguel Pagano
Participants: Renato Cherini
Status: testing, maintained

The first course on algorithms in CS at Universidad Na-
cional de Córdoba is centered on the derivations of al-
gorithms from specifications, as proposed by R.S. Bird
(Introduction to functional programming using Haskell,
Prentice Hall Series in Computer Science, 1998), E.W.
Dĳkstra (A Discipline of Programming, Prentice Hall,
1976), and R.R. Hoogerwoord (The design of functional
programs: a calculational approach, Technische Uni-
versiteit Eindhoven, 1989). To achieve this goal, stu-
dents should acquire the ability to manipulate complex
predicate formulae; thus the students first learn how
to prove theorems in a propositional calculus similar
to the equational propositional logic of D. Gries and
F.B. Schneier (A Logical Approach to Discrete Math,
Springer-Verlag, 1993).
During the semester students make many derivations

as exercises and it is helpful for them to have a tool
for checking the correctness of their solutions. Yahc
checks the correctness of a sequence of applications of
some axioms and theorems to the formulae students
are trying to prove. The student starts a derivation by
entering an initial formula and a goal and then pro-
ceeds by telling Yahc which axiom will be used and the
expected outcome of applying the axiom as a rewrite
rule; if that rewriting step is correct then the process
continues until the student reaches the goal.
After the experience gained during one semester we

made some changes in the user-interface. We have also
added the definition of new constants and rules, which
permits the resolution of logical puzzles.
In the long term we plan to consider an equational

calculus with functions defined by induction over lists
and natural numbers.

Further reading

http://www.cs.famaf.unc.edu.ar/~mpagano/yahc/

9.1.4 Sifflet

Report by: Gregory D. Weber
Status: experimental, actively developed

Sifflet is a visual, functional programming language.
Sifflet programmers define functions by drawing dia-
grams. Sifflet shows how a function call is evaluated
on the diagram. It is intended as an aid for learning
about recursion.
Here is Sifflet showing the first two levels of evaluat-

ing 4!:

Features

◦ Visual editor.

◦ Visual tracer/debugger which shows how function
calls are evaluated, supporting an active learning
process: Sifflet does not overwhelm students with a
huge trace of function calls; it provides only as much
expansion as the student requests.

◦ Extensive tutorial with 6,940 words and 31 pictures.

◦ Number, string, and list data types.

◦ A function “palette” with a small number of primi-
tive functions.

◦ Runnable examples of compound functions.

◦ New feature (version 1.0, August 24, 2010): exports
Haskell, Python 3, and Scheme code.

◦ New feature (version 1.2, October 29, 2010): Sif-
flet no longer indirectly depends on curl, which may
make it easier for Windows users to install.

53

http://ideas.cs.uu.nl/www
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://people.cs.uu.nl/bastiaan/AdaptingDomainReasoners.html
http://people.cs.uu.nl/bastiaan/AdaptingDomainReasoners.html
http://www.cs.famaf.unc.edu.ar/~mpagano/yahc/

Availability

Sifflet made its public debut in May, 2010. It is
available from Hackage: http://hackage.haskell.org/
package/sifflet For Arch Linux, an AUR package is
also available: http://aur.archlinux.org/packages.php?
ID=39876

Future plans

In future releases, I hope to add these features:

◦ Type inference, and type declarations for exported
Haskell code.

◦ Higher-order functions.

◦ Tree data and/or user-defined data types.

Further reading

◦ http://mypage.iu.edu/~gdweber/software/sifflet/
home.html

◦ http://mypage.iu.edu/~gdweber/software/sifflet/doc/
tutorial.html

9.2 Data Management and Visualization

9.2.1 HaskellDB

Report by: Justin Bailey
Status: active development

Scrap your SQL strings! The HaskellDB library pro-
vides a set of combinators based on the “relational alge-
bra” for expressing queries, inserts, and updates. It lets
you abstract over every part of your query, from con-
ditions, to tables, to the columns returned. HaskellDB
uses the HDBC family of database drivers to talk to a
wide variety of databases.

Further reading

http://trac.haskell.org/haskelldb

9.2.2 lhae

Report by: Alexander Bau
Status: in development, but stable

lhae is a simple spreadsheet application. It helps to
manage your data in two-dimensional grids. Each cell
in the grid contains a formula representing the stored
information. Therefor lhae features a simple formula
language: it supports various kinds of cell references,
function calls, and conditional expressions. In order to
provide automatic cell recalculation lhae keeps track of
all cell dependencies.
lhae offers some table management operations like

adding, deleting, inserting, transposing, and filtering

of rows and columns. There are also some basic statis-
tical methods like calculating frequency distributions,
descriptive statistics, and pivot tables.
To integrate lhae in your flow of work you can im-

port csv (character seperated values) files and export
diagrams (using gnuplot).

If you want to install lhae, you can use
cabal-install by entering cabal install lhae.
The future development plans are mainly related to

more advanced export features by supporting more of
gnuplot’s plotting qualities. But there also will be a
more comprehensive set of functions the user can use
in the formula language.

Further reading

http://www.imn.htwk-leipzig.de/~abau/lhae/

9.2.3 Pandoc

Report by: John MacFarlane
Participants: Andrea Rossato, Peter Wang, Paulo

Tanimoto, Eric Kow, Luke Plant, Justin
Bogner

Status: active development

Pandoc aspires to be the swiss army knife of text
markup formats: it can read markdown and (with some
limitations) HTML, LaTeX, and reStructuredText, and
it can write markdown, reStructuredText, HTML, Doc-
Book XML, OpenDocument XML, ODT, RTF, groff
man, MediaWiki markup, GNU Texinfo, LaTeX, Con-
TeXt, EPUB, Slidy, and S5. Pandoc’s markdown syn-
tax includes extensions for LaTeX math, tables, defini-
tion lists, footnotes, and more.
Since the last report, two new output formats have

been added: EPUB and Slidy HTML slide shows. Now
it is possible to write a book in markdown and produce
an ebook with a single command! New markdown ex-
tensions include grid tables and example lists that are

54

http://hackage.haskell.org/package/sifflet
http://hackage.haskell.org/package/sifflet
http://aur.archlinux.org/packages.php?ID=39876
http://aur.archlinux.org/packages.php?ID=39876
http://mypage.iu.edu/~gdweber/software/sifflet/home.html
http://mypage.iu.edu/~gdweber/software/sifflet/home.html
http://mypage.iu.edu/~gdweber/software/sifflet/doc/tutorial.html
http://mypage.iu.edu/~gdweber/software/sifflet/doc/tutorial.html
http://trac.haskell.org/haskelldb
http://www.imn.htwk-leipzig.de/~abau/lhae/

sequentially numbered throughout a document.

Further reading

http://johnmacfarlane.net/pandoc/

9.2.4 Ferry (Database-Supported Program
Execution)

Report by: Torsten Grust
Participants: George Giorgidze, Tom Schreiber, Jeroen

Weĳers
Status: active development

With project Ferry we try to establish a connection
between two somewhat distant shores: programming
languages and database technology. Ferry explores how
far we can push the idea of relational database en-
gines that directly and seamlessly participate in pro-
gram evaluation to support the super-fast execution of
data-intensive programs written in a variety of (func-
tional) programming languages. Relational database
systems (RDBMSs) provide the best understood and
most carefully engineered query processing infrastruc-
ture available today. Notwithstanding these data pro-
cessing capabilities, RDBMSs are often operated as
plain stores that do little more than reproduce stored
data items for further processing outside the database
host. With Ferry, instead, we aim to turn the database
system into an efficient, capable, and highly scalable
co-processor for your programming language’s runtime.
To this end, we search for, design, and implement new
compilation strategies that map data types (e.g., nested
and ordered lists, arrays, dictionaries), control struc-
tures (e.g., nested iteration, conditionals, variable as-
signment and reference), and idioms prevalent in func-
tional programming and scripting languages into effi-
cient database queries. Here, we try to push the lim-
its of what has been considered possible (this includes
algebraic data types, pattern matching, higher-order
functions, and closures, to name a few).
Variants of the Ferry technology have been used

◦ to enhance the SQL code generator in Philip
Wadler’s Links, such that a significantly larger class
of Links programs may be considered databaseable
now, and

◦ to create a capable and efficient version of LINQ
to SQL provider (plugging into the Microsoft .NET
Language Integrated Query framework).

◦ to create an integrated query facility for Haskell,
called Database supported Haskell (DSH).

We are currently re-implementing the Ferry compiler
in Haskell (using GHC). The Ferry compiler is used for
both the independent Ferry language and as part of
the embedded query language DSH for Haskell. DSH is
suited to handle large scale data (e.g., social networks)
in Haskell programs with familiar Haskell syntax. Both
the compiler and DSH library will be published as an
open source project soon.

Future plans

Ferry employs a compilation strategy revolving around
the concept of loop lifting that appears to have quite
close and interesting connections to the flattening
transformation employed by Data Parallel Haskell. In-
deed, Ferry understands the relational query engine as
being a specific kind of data-parallel machine. The ex-
act connection between Ferry and Data Parallel Haskell
remains to be explored.

Further reading

http://www.ferry-lang.org

9.2.5 Sirenial

Report by: Martĳn van Steenbergen

Sirenial is an embedded DSL for modelling SQL state-
ments.

select t0.townName
from towns t0
where (t0.id = 1)

The above query is the result of executing
getTownName 1, where getTownName is defined
as follows:

getTownName :: Ref Db.Town → Query String
getTownName townId = do

[townName]← select $ do
t ← from Db.tableTown
restrict (t # Db.townId . == . expr townId)
return (t # Db.townName)

return townName

The inner do-block is code in the Select monad, con-
taining functions such as from and restrict, responsible
for the creation of a single SELECT statement. These
Select computations are lifted into the Query monad

55

http://johnmacfarlane.net/pandoc/
http://www.ferry-lang.org

using select, where it becomes apparent that a query
always yields a list of results.
The symbols prefixed with Db model the database

schema:

data Town
tableTown = Table "towns"

:: Table Town
townName = Field tableTown "townName"

:: Field Town String
townId = Field tableTown "id"

:: Field Town (Ref Town)

An unusual feature of Sirenial is the automatic com-
bining of queries: if similar Query computations are
composed in applicative fashion, Sirenial will merge
them transparently and send only a single state-
ment to the database server. For example, executing
for [11..20] getTownName results in only one SELECT
statement being sent:

select t0.id, t0.townName
from towns t0
where t0.id in (11,12,13,14,15,16,17,18,19,20)

By locally replaying the WHERE clauses, the re-
sults from the database are distributed over the orig-
inal select calls. All this happens transparently: the
user can write the queries as if they were executed one
by one.
The library is designed to be moderately type-safe:

catch many mistakes at compile-time, yet use simple
types, leading to simple and understandable type er-
rors. It is easy to predict the generated SQL, as there
is very little rewriting done on the statements. Finally,
Sirenial is designed in such a way that it is easy to
switch to using the library completely or partially, on
existing databases and existing data.

Further reading

http://code.google.com/p/sirenial/

9.2.6 The Proxima 2.0 Generic Editor

Report by: Martĳn Schrage
Participants: Lambert Meertens, Doaitse Swierstra
Status: actively developed

Proxima 2.0 is an open-source web-based version of the
Proxima generic presentation-oriented editor for struc-
tured documents. The system is being maintained by
Oblomov Systems (→ 10.6).

◦ Proxima is a generic editor. This means that the edi-
tor can be instantiated for arbitrary document types,
supplemented by parser and presentation sheets.
The content of a Proxima document can be mixed
text, images and diagrams.

◦ Proxima is a presentation-oriented editor. This
means that the user performs edit operations on the
WYSIWYG presentation of the document.

◦ Proxima is aware of the structure of the document.
While editing the presentation of the document, the
edit operations may also be structural. For example,
a section can be changed into a subsection.

Another feature of Proxima is that it offers generic
support for specifying content-dependent computa-
tions. For example, it is possible to create a table of
contents of a document that is automatically updated
as chapters or sections are added or modified.

Proxima 2.0

Proxima 2.0 provides a web-interface for Proxima. In-
stead of an application that renders onto a window,
Proxima 2.0 is a web server that sends an HTML ren-
dering of the document to a client. The client catches
mouse and keyboard events, and sends these back to
the server, after which the server sends an incremen-
tal rendering update back to the client. As a result,
advanced editors can be created, which run in any
browser. Among the current features of the system
are drag and drop editing, session handling, and com-
plex graphical presentations that may contain com-
puted values and structures.
Because the (possibly large) HTML rendering may

need to be communicated to the client on each key
stroke or mouse gesture, Proxima 2.0 employs a num-
ber of techniques to ensure the editors respond fast
enough over a network connection. On the one hand,
low bandwidth may cause delays when sending large
HTML renderings to the client. This problem is han-
dled by using incremental algorithms to only send those
parts of the rendering that were changed. On the other
hand, network latencymay cause a delay between a user
edit gesture and the update received from the server.
This problem is handled by using predictive rendering,
which means that the client shows the predicted effect
of the edit operation, until the actual update from the
server is received and applied. Though both techniques
may fail for pathological cases, they work very well for
the majority of editors. As a result, the editors feel
responsive enough even over remote network connec-
tions.
The Proxima website contains a gallery of live demo

editors, as well as download instructions and documen-
tation. The screenshot shows an editor for document-
ing Bayesian networks, running in Firefox.

56

http://code.google.com/p/sirenial/

Future plans

Proxima 2.0 is an open source project. We are looking
for people who would like to participate.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/Proxima
◦ http://www.oblomov.com

9.3 Functional Reactive Programming

9.3.1 Functional Hybrid Modelling

Report by: George Giorgidze
Participants: Joey Capper, Henrik Nilsson
Status: active research and development

The goal of the FHM project is to gain a better foun-
dational understanding of non-causal, hybrid modelling
and simulation languages for physical systems and ul-
timately to improve on their capabilities. At present,
our central research vehicle to this end is the design and
implementation of a new such language centred around
a small set of core notions that capture the essence of
the domain.
Causal modelling languages are closely related to

synchronous data-flow languages. They model system
behaviour using ordinary differential equations (ODEs)
in explicit form. That is, cause-effect relationship be-
tween variables must be explicitly specified by the mod-
eller. In contrast, non-causal languages model system
behaviour using differential algebraic equations (DAEs)
in implicit form, without specifying their causality. In-
ferring causality from usage context for simulation pur-
poses is left to the compiler. The fact that the causal-
ity can be left implicit makes modelling in a non-causal
language more declarative (the focus is on expressing
the equations in a natural way, not on how to express
them to enable simulation) and also makes the models
much more reusable.
FHM is an approach to modelling which combines

functional programming and non-causal modelling. In

particular, the FHM approach proposes modelling with
first class models (defined by continuous DAEs) using
combinators for their composition and discrete switch-
ing. The discrete switching combinators enable mod-
elling of hybrid systems (i.e., systems that exhibit both
continuous and discrete dynamic behaviour). The key
concepts of FHM originate from work on Functional
Reactive Programming (FRP).
We are implementing Hydra, an FHM language, as

a domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting and en-
ables modellers to use the domain specific syntax in
their models. The present prototype implementation
of Hydra enables modelling with first class models and
supports combinators for their composition and dis-
crete switching.
We implemented support for dynamic switching

among models that are computed at the point when
they are being “switched in”. Models that are com-
puted at run-time are just-in-time (JIT) compiled to
efficient machine code. This allows efficient simula-
tion of highly structurally dynamic systems (i.e., sys-
tems where the number of structural configurations is
large, unbounded or impossible to determine in ad-
vance). This goes beyond to what current state-of-the-
art non-causal modelling languages can model. The
implementation techniques that we developed should
benefit other modelling and simulation languages as
well.
We are also exploring ways of utilising the type sys-

tem to provide stronger correctness guarantees and to
provide more compile time reassurances that our sys-
tem of equations is not unsolvable. Properties such as
equational balance (ensuring that the number of equa-
tions and unknowns are balance) and ensuring the solv-
ability of locally scoped variables are among our goals.
Dependent types have been adopted as the tool for ex-
pressing these static guarantees. However, we believe
that more practical type systems (such as system F)
could be conservatively extended to make FHM safer
without compromising their usability.
Recently, in an effort to showcase FHM and Hydra

to the wider modelling and simulation community, we
have modelled and simulated a number of challenging
physical systems that current non-causal modelling lan-
guages can not handle (see the papers linked below).

Further reading

The implementation of Hydra and related papers are
available from http://www.cs.nott.ac.uk/~ggg/.

9.3.2 Elerea

Report by: Patai Gergely
Status: experimental, active

57

http://www.cs.uu.nl/wiki/bin/view/Proxima
http://www.oblomov.com
http://www.cs.nott.ac.uk/~ggg/

Elerea (Eventless reactivity) is a tiny discrete time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialised monad, while stateless combina-
tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. The library comes in four major
variants:

◦ Simple: signals are plain discrete streams isomorphic
to functions over natural numbers;

◦ Param: adds a globally accessible input signal for
convenience;

◦ Clocked: adds the ability to freeze whole subnet-
works at will;

◦ Delayed: attempts to resolve instantaneous depen-
dency cycles (i.e., cycles without a delay); this vari-
ant is likely to be deprecated in the near future due
to its hairy semantics.

The first three variants come with precise denota-
tional semantics.
The code is readily available via cabal-install in

the elerea package. You are advised to install
elerea-examples as well to get an idea how to build
non-trivial systems with it. The examples are sep-
arated in order to minimize the dependencies of the
core library. The experimental branch is showcased by
Dungeons of Wor, found in the dow package (→ 5.3.3).
Additionally, the basic idea behind the experimental
branch is laid out in the WFLP 2010 article Efficient
and Compositional Higher-Order Streams.
Since the last report, the library went through a

major upgrade, during which the former experimental
branch was promoted to be the primary interface, while
the old version was tucked away in a legacy branch.
Also, the Clocked branch is a recent addition.

Further reading

◦ http://hackage.haskell.org/package/elerea
◦ http://hackage.haskell.org/package/elerea-examples
◦ http://hackage.haskell.org/package/dow
◦ http://sgate.emt.bme.hu/documents/patai/

publications/PataiWFLP2010.pdf
◦ http://babel.ls.fi.upm.es/events/wflp2010/video/

video-08.html (WFLP talk)

9.4 Audio and Graphics

9.4.1 Audio Signal Processing

Report by: Henning Thielemann
Status: experimental, active development

In this project, audio signals are processed using pure
Haskell code and the Numeric Prelude framework
(http://haskell.org/communities/05-2009/html/report.
html#sect5.6.2). The highlights are:
◦ a basic signal synthesis backend for Haskore

(http://haskell.org/communities/05-2009/html/
report.html#sect5.12.1),

◦ support for physical units while maintaining effi-
ciency,

◦ frameworks for abstraction from sample rate, that is,
the sampling rate can be omitted in most parts of a
signal processing expression.

◦ We checked several low-level implementations in or-
der to achieve reasonable speed. We complement
the standard list type with a lazy StorableVector
structure and a StateT s Maybe a generator, like in
stream-fusion. Now, both our custom signal genera-
tor type and the Stream type from stream-fusion can
be fused to work directly on storable vectors.

◦ support for causal processes. Causal signal processes
only depend on current and past data and thus are
suitable for real-time processing (in contrast to a
function like time reversal). These processes are
modeled as mapAccumL like functions. Many impor-
tant operations like function composition maintain
the causality property. They are important for shar-
ing on a per sample basis and in feedback loops where
they statically warrant that no future data is ac-
cessed.

Recent advances are:
◦ Lazy time values to be used for gate signals,
◦ enhanced type class framework for unifying lazy time

values and signals expressed by lists, storable vectors
or signal generators.

◦ Connection to alsa bindings, in order to provide real-
time sound synthesis controlled by MIDI events from
keyboards or sequencers,

◦ Stand-alone binding to Sox for audio format conver-
sion and playback,

◦ A pyramid filter for efficient computation of moving
average and moving maximum for baseline detection
of mass spectra,

◦ A set of signal processors that generates maximally
efficient vectorized code using LLVM as portable as-
sembler.

Further reading

◦ http://www.haskell.org/haskellwiki/Synthesizer
◦ http://arxiv.org/abs/1004.4796

58

http://hackage.haskell.org/package/elerea
http://hackage.haskell.org/package/elerea-examples
http://hackage.haskell.org/package/dow
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.12.1
http://haskell.org/communities/05-2009/html/report.html#sect5.12.1
http://www.haskell.org/haskellwiki/Synthesizer
http://arxiv.org/abs/1004.4796

9.4.2 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of experimental
libraries for computer vision and image processing. The
low level computations are internally implemented by
optimized libraries (IPP, HOpenGL, hmatrix (→ 8.3.2),
etc.). Once appropriate geometric primitives have been
extracted by the image processing wrappers we can de-
fine interesting computations using high level combina-
tors.

Further reading

http://code.haskell.org/easyVision

9.4.3 n-Dimensional Volume Calculation for
Non-Convex Polytops

Report by: Farid Karimipour
Participants: Mahmoud R. Delavar, Andrew U. Frank
Status: active development

This is the continuation of the work “n-dimensional
convex decomposition of polytops” (http://haskell.
org/communities/11-2009/html/report.html#sect6.6.4)
where we showed how to decompose an n-dimensional
non-convex polytop to a set of convex components.
The algorithm builds a tree of signed convex com-
ponents that are stored as a set of n-simplexes:
even levels are additive, whereas components in odd
levels are subtractive. Here, the elements of this tree
are utilized to calculate the volume of the original
n-dimensional non-convex polytop (“volume” is used
as a generalized term for all dimensions, i.e., “area” for
2D, etc.). The resultant components are triangulated
whose volume calculation is straightforward:

Summing up the volumes of all triangles (tetrahedrons
in 3D) will provide us with the volume of the n-
dimensional non-convex polytop:

where Pij means the jth component of the ith level
and mi is the number of components exist in the ith
level. Note that this equation subtracts the volumes of
the components of the odd levels. To implement this
algorithm, the n-simplexes are represented as a list of

points. Then, their operations (e.g., convex decompo-
sition, triangulation, volume calculation, etc.) become
operations on lists:

vS = 0.5 (∗) . abs . det . map (1 :)
vC = sum . map vS . tri
vNC = sum (zipWith (∗) (cycle [1, (−1)])

(map vC cd))

where vS is the volume of an n-simplex, vC is the vol-
ume of a convex polytop, vNC is the volume of a non-
convex polytop, tri is triangulation of a convex poly-
top and cd decomposes a non-convex polytop to a set
of convex components. Since the representation and
operations are defined independent of dimension, the
developed algorithms can be used for polytops of any
dimension.
The implementation was used to calculate the surface
and volume of a lake at certain water levels, which leads
to a level-surface-volume diagram. This diagram shows
the surface and volume of the lake at different water
levels. First, the 3D TIN (Triangulated Irregular Net-
work) of the lake was constructed:

To calculate the surface and volume of the lake at a
certain water level, say h, the 3D TIN was intersected
with the plan z = h, which results in the volume of
the lake where z < h and the surface of the lake at
z = h, whose surface and volume is calculated using
the implemented algorithm:

59

http://code.haskell.org/easyVision
http://haskell.org/communities/11-2009/html/report.html#sect6.6.4
http://haskell.org/communities/11-2009/html/report.html#sect6.6.4

By applying the above process for different water levels,
the level-surface-volume diagram was produced:

9.4.4 Hemkay

Report by: Patai Gergely
Status: experimental, active

Hemkay (An M.K. Player Whose Name Starts with
an H) is a simple music module player that performs
all the mixing in Haskell. It supports the popular Pro-
Tracker format and some of its variations with different
numbers of channels. The device independent mixing
functionality can be found in the hemkay-core pack-
age.
The current version of the player uses the PortAu-

dio bindings for playback, but there is also a yet unre-
leased functional version based on OpenAL, which puts
a much smaller load on the CPU. Also, an OpenGL
based graphical frontend is currently in the works.

Further reading

◦ http://hackage.haskell.org/package/hemkay-core
◦ http://hackage.haskell.org/package/hemkay
◦ http://en.wikipedia.org/wiki/MOD_(file_format)

9.5 Hardware Design

9.5.1 CλaSH

Report by: Christiaan Baaĳ
Participants: Matthĳs Kooĳman, Jan Kuper, Marco

Gerards, Arjan Boeĳink, Anja Niedermeier
Status: experimental

CλaSH (CAES Language for Synchronous Hardware)
is a functional hardware description language that bor-
rows both its syntax and semantics from Haskell. The
clock is implicit for the descriptions made in CλaSH:
the behaviour of the circuit is described as transition
from the current state to the next, which occurs ev-
ery clock cycle. The current state is an input of such
a transition function, and the updated state part of
its result tuple. As descriptions are also valid Haskell,
simulations can simply be performed by a Haskell com-
piler/interpreter (GHC only, due to the use of type
families).
Instead of being an embedded language such as

ForSyDe (→ 9.5.2) and Lava (→ 3.7)(→ 9.5.3)(→ 11.6),
CλaSH has a compiler which can translate Haskell
to synthesizable VHDL. The compiler has support
for, amongst others: polymorphism, higher-order func-
tions, user-defined abstract datatypes, and all of
Haskell’s choice mechanisms. The CλaSH compiler
uses GHC for parsing, de-sugaring, and type-checking.
The resulting Core-language description is then trans-
formed into a normal form, from which a translation
to VHDL is direct. The transformation system uses a
set of rewrite rules which are exhaustively applied un-
til a description is in normal form. Examples of these
rewrite rules are β-reduction and η-expansion, but also
transformations to transform higher-order functions to
first-order functions, and transformation for the spe-
cialization of polymorphic functions.
The CλaSH compiler was first presented to the com-

munity, after 7 months of work, at the Haskell 2009
symposium in Edinburgh, Scotland. The compiler was
stabilized in the following months, and two papers
about CλaSH were accepted at more hardware-oriented
conferences (DSD 2010 and FDL 2010). Support for
arrows and the corresponding syntax, which eases the
composition of transition functions, was added in July
2010 and was subsequently presented at IFL 2010 in
Alphen a/d Rĳn, The Netherlands.
The CλaSH compiler, available as a library, can

be found both on Hackage (http://hackage.haskell.
org/package/clash, stable) and github (http://github.
com/christiaanb/clash/, development). The com-
piler/interpreter is also available as an executable,
which is basically the GHC binary extended with the
CλaSH library, on the CλaSH website (http://clash.ewi.
utwente.nl).
Immediate plans for the future are to formalize the

normalization system so completeness and termination

60

http://hackage.haskell.org/package/hemkay-core
http://hackage.haskell.org/package/hemkay
http://en.wikipedia.org/wiki/MOD_(file_format)
http://hackage.haskell.org/package/clash
http://hackage.haskell.org/package/clash
http://github.com/christiaanb/clash/
http://github.com/christiaanb/clash/
http://clash.ewi.utwente.nl
http://clash.ewi.utwente.nl

can be proven. We also plan to add a Core-language
evaluator so that the CλaSH compiler can use partial-
evaluation techniques to support (finite) recursive de-
scriptions and list constructs (instead of size-indexed
vectors). This evaluator will also allow us to properly
support recursively defined higher-order functions (e.g.,
map), instead of the current solution for these functions
which is based on VHDL template code. There is also a
design visualization tool in the making (expected Jan-
uary 2011).

Further reading

http://clash.ewi.utwente.nl

9.5.2 ForSyDe

Report by: Ingo Sander
Participants: Hosein Attarzadeh, Alfonso Acosta, Axel

Jantsch, Jun Zhu
Status: experimental

The ForSyDe (Formal System Design) methodology
has been developed with the objective to move system-
on-chip design to a higher level of abstraction. ForSyDe
is implemented as a Haskell-embedded behavioral DSL.
ForSyDe allows to model heterogeneous embedded

systems at a high level of abstraction by providing
libraries for different models of computation (MoCs).
This allows to model systems consisting of both digital
and analog hardware.
The current release is ForSyDe 3.1, which con-

tains two implementations of ForSyDe. The shallow-
embedded DSL has been designed for the modeling
purpose and provides a rapid-prototyping framework
which allows to model and simulate heterogeneous em-
bedded systems based on different MoCs. The deep-
embedded DSL supports only the synchronous MoC,
but comes with an embedded compiler with differ-
ent backends (simulation, synthesizable VHDL and
GraphML). It is possible to integrate and simulate
shallow-embedded models with deep-embedded mod-
els.
The source code, together with example system mod-

els, is available from HackageDB under the BSD3 li-
cense.

Features

ForSyDe systems are modeled as concurrent process
networks, where processes communicate via signals.
To create processes, ForSyDe uses higher-order func-
tions to implement the concept of process constructors,
which leads to a structured model with a clear separa-
tion of computation from communication.
The two DSL flavors of ForSyDe offer different fea-

tures:

1. Shallow-embedded DSL

Shallow-embedded signals
(ForSyDe.Shallow.Signal) are modeled as streams
of data isomorphic to lists. Systems built with them
are restricted to simulation. However, shallow-
embedded signals provide a rapid-prototyping
framework which allows to simulate heterogeneous
systems based on different models of computation.
At present ForSyDe supports the following models
of computation.
◦ Synchronous MoC
◦ Untimed MoC
◦ Continuous Time MoC

Process networks belonging to different MoCs com-
municate via domain interfaces, which establish a re-
lation with respect to timing between two MoCs.

2. Deep-embedded DSL
Deep-embedded signals (ForSyDe.Signal), based on
the same concepts as Lava (→ 3.7)(→ 9.5.3)(→ 11.6),
are aware of the system structure. Based on that
structural information ForSyDe’s embedded com-
piler can perform different analysis and transforma-
tions.

◦ Thanks to Template Haskell, specification of be-
havior is expressed in Haskell, not needing to
specifically design a DSL for that purpose.

◦ Embedded compiler backends:
– Simulation
– VHDL (with support for Modelsim and

Quartus II)
– GraphML (with yFiles graphical markup

support)
◦ Synchronous model of computation
◦ Support for hierarchy by component instantia-

tion
◦ Support for fixed-sized vectors

ForSyDe allows to integrate deep-embedded models
into shallow-embedded ones. This makes it possible
to simulate a synthesizable deep-embedded model to-
gether with its environment, which may consist of ana-
log and digital hardware, and software parts. Once the
functionality of the deep-embedded model is validated,
it can be synthesized to hardware using the VHDL-
backend of ForSyDe’s embedded compiler.

Further reading

http://www.ict.kth.se/forsyde/

9.5.3 Kansas Lava

Report by: Andy Gill
Participants: Tristan Bull, Andrew Farmer, Ed Komp
Status: ongoing

61

http://clash.ewi.utwente.nl
http://www.ict.kth.se/forsyde/

Kansas Lava is a modern implementation of a hard-
ware description language that uses functions to ex-
press hardware components, and leverages the abstrac-
tions in Haskell to build complex circuits. Lava, the
given name for a family of Haskell based hardware de-
scription libraries (→ 3.7)(→ 11.6), is an idiomatic way
of expressing hardware in Haskell which allows for sim-
ulation and synthesis to hardware.
Though there has been no public release (yet), we

have made considerable progress with Kansas Lava. We
have generated several large telemetry circuits, which
have been synthesized and tested on real hardware,
running at speeds comparable to other implementation
techniques. A talk about internals of Kansas Lava was
presented by Andrew Farmer at the Haskell implemen-
tors workshop in October, and the talk and slides are
available online.
Jun Inoue from Rice University visited CSDL for

October and November, to help connect his “staging”
work with the Kansas Lava work.
A release of Kansas Lava release is planned for the

end of the year.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

9.6 Proof Assistants and Reasoning

9.6.1 Zeno — Inductive Theorem Proving for
Haskell Programs

Report by: Will Sonnex
Participants: Sophia Drossopoulou, Susan Eisenbach
Status: Alpha 0.1.1

Zeno is a fully automated inductive theorem prov-
ing tool for proving properties of Haskell func-
tions. You can express a property such as
takeWhile p xs ++ dropWhile p xs === xs and it
will prove it to be true for all values of p :: a -> Bool
and xs :: [a], over all types a, using only the func-
tion definitions.
After its most recent update Zeno can now reason

about polymorphic types/functions, and you express
the properties to be proven in Haskell itself (thanks
to SPJ for the suggestion). It still cannot use all of
Haskell’s syntax: you cannot have internal functions
(let/where can only assign values), and you cannot use
type-classed polymorphic variables in function defini-
tions — you will have to create a monomorphic in-
stance of the function — but I hope to have these
added reasonably soon. It is also still missing primitive-
types/IO/imports so it still cannot be used with any
real-world Haskell code, it is more a bit of theorem
proving "fun".
Another feature is that Zeno lists all

the sub-properties it has proven within

each proof. When it verifies insertion-sort
(sorted (insertsort xs) === True) it also proves
the antisymmetry of <= and that the insert function
preserves the sorted property.
You can try Zeno out at http://www.doc.ic.ac.uk/

~ws506/tryzeno, the example code file given there has
some provable properties about a few Prelude functions
among other things. If you want the source code, it is
available at http://code.google.com/p/zeno but I would
advise you to use one of the branched versions, I make
no guarantee that the trunk will even compile.

Further reading

http://www.doc.ic.ac.uk/~ws506/tryzeno

9.6.2 HTab

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development
Current release: 1.5.4

HTab is an automated theorem prover for hybrid log-
ics based on a tableau calculus. It handles hybrid logic
with nominals, satisfaction operators, converse modal-
ities, universal and difference modalities, the down-
arrow binder, and role inclusion.
It is available on HackageDB (http://hackage.haskell.

org/package/HTab) and comes with sample formulas to
illustrate its input format.
The source code is distributed under the terms of the

GNU GPL.

Further reading

http://code.google.com/p/intohylo/

9.6.3 Plastic

Report by: Robin Adams
Participants: Zhaohui Luo
Status: prototype

The Plastic proof assistant was developed by Paul
Callaghan in 2001 as an implementation of the logical
framework LF, a Church-typed version of Martin-Löf’s
logical framework. Its development never advanced far
beyond the experimental, prototype stage.
We have recently taken up the development of Plas-

tic. A few years ago, Callaghan kindly adapted plastic
to implement the Type Theoretic Framework, a frame-
work for declaring several Logic-Enriched Type The-
ories (LETTs). We have already used this modified
version of Plastic to formalize Weyl’s Das Kontinuum
in a classical predicative LETT.
We are currently experimenting with using Plastic

for carrying out pluralist formalizations, where work in

62

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
http://www.doc.ic.ac.uk/~ws506/tryzeno
http://www.doc.ic.ac.uk/~ws506/tryzeno
http://code.google.com/p/zeno
http://www.doc.ic.ac.uk/~ws506/tryzeno
http://hackage.haskell.org/package/HTab
http://hackage.haskell.org/package/HTab
http://code.google.com/p/intohylo/

one mathematical setting may be reused in another set-
ting, by providing an appropriate translation between
the two.
For example, we have a proof script that proves a

theorem A in a classical LETT. We may reuse this in
a constructive LETT by plugging in a module that de-
scribes the double negation translation. The result is
a proof of the double negation translation of A in the
constructive LETT.
Plastic is written in Haskell.

Further reading

Details about this project will appear here soon: http:
//www.cs.rhul.ac.uk/~robin/plastic

9.6.4 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Daniel Seidel, Matthias Bartsch, Joachim

Breitner

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs
to be refined and extended. We aim to provide such
new theoretical foundations, as well as to apply the
theoretical results to practical problems.
We maintain a library and tools for generating free

theorems from Haskell types, originally implemented
by Sascha Böhme and with contributions from Joachim
Breitner and now Matthias Bartsch. Both the library
and a shell-based tool are available from Hackage (as
free-theorems and ftshell, respectively). There is also
a web-based tool at http://www-ps.iai.uni-bonn.de/ft/.
General features include:
◦ three different language subsets to choose from
◦ equational as well as inequational free theorems
◦ relational free theorems as well as specializations

down to function level
◦ support for algebraic data types, type synonyms and

renamings, type classes
The new version of the web-based tool, pepped up by
Matthias, is now online. It enables the user to declare
their own algebraic data types and so on, and then to
derive free theorems from types involving those. (Pre-
viously, this was only possible in the shell-based tool.)
Also, in addition to plain text, LATEX source, and PDF
output, the new version is able to output inline graphics
with nicely typeset theorems. Matthias is now working
on refactoring the internals of the generator, opening
up possibilities for better control by the user, as well
as for generating new forms of free theorems.

On the application side, we have another new
web interface (http://www-ps.iai.uni-bonn.de/cgi-bin/
b18n-combined-cgi), showcasing the technique (relying
on free theorems for correctness) from ICFP’10 pa-
per “Combining syntactic and semantic bidirectional-
ization”.

Further reading

http://www.iai.uni-bonn.de/~jv/project/

9.6.5 Streaming Component Combinators

Report by: Mario Blažević
Status: experimental, actively developed

Streaming Component Combinators are an experiment
at modeling dataflow architecture by using composable
streaming components. All components are categorized
into a small set of component types. A number of
components can be composed into a compound com-
ponent using a component combinator. For example,
two transducer components can be composed together
using a pipe operator into another transducer; one split-
ter and two transducers can be composed using an if
combinator into a single compound transducer. Com-
ponents are implemented as coroutines; the data flow
among them is synchronous, but individual steps of dif-
ferent coroutines can run in parallel.
There are two ways to use SCC: as an embedded

language in Haskell, or as a set of commands in a
command-line shell. The latter provides its own parser
and type checker, but otherwise relies on the former to
do the real work.
The original work was done in the OmniMark pro-

gramming language. Haskell was the language of
choice for the second implementation because its strong
typing automatically makes the embedded language
strongly typed, and because its purity forces the im-
plementation to expose the underlying semantics.
The currently planned future work includes extend-

ing the set of primitive components and component
combinators and improving their performance, as well
as extending the shell interface.
The latest stable version of SCC is available from

Hackage.

Further reading

◦ Home page: http://trac.haskell.org/SCC/
◦ Hackage: http://hackage.haskell.org/package/scc
◦ Conference paper: Mario Blažević, Stream-

ing component combinators, Extreme Markup
Languages, 2006. http://www.idealliance.org/
papers/extreme/proceedings/html/2006/Blazevic01/
EML2006Blazevic01.html

63

http://www.cs.rhul.ac.uk/~robin/plastic
http://www.cs.rhul.ac.uk/~robin/plastic
http://www-ps.iai.uni-bonn.de/ft/
http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi
http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi
http://www.iai.uni-bonn.de/~jv/icfp10.pdf
http://www.iai.uni-bonn.de/~jv/icfp10.pdf
http://www.iai.uni-bonn.de/~jv/project/
http://trac.haskell.org/SCC/
http://hackage.haskell.org/package/scc
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html

◦ OmniMark implementation: http:
//developers.omnimark.com/etcetera/
streaming-component-combinators.tar.gz

9.6.6 CSP-M Animator and Model Checker

Report by: Marc Fontaine
Status: active development, download available

We develop a Haskell based, integrated CSP-M anima-
tor and model checker.
Communicating-Sequential-Processes is a formalism

for concurrent systems, invented by Tony Hoare.
Our Haskell-CSP-Tool features:

◦ FDR compatibility

◦ Fast computation of state spaces

◦ GTK+ based graphical user interface

◦ Support for shared-memory-parallelism / multicore
CPUs

Binary releases of the gui-tool are available for down-
load via http://www.stups.uni-duesseldorf.de/~fontaine/
csp.
The aim of the project is not only to write a black-

box end-user tool, but also to provide components that
can be useful for other formal methods researchers who
are investigating communicating sequential processes.
The following packages are available on Hackage:

CSPM-Frontend A FDR compatible CSP-M parser.

CSPM-CoreLanguage An abstract interface for a CSP
core language.

CSPM-FiringRules An implementation of the firing
rule semantic of CSP.

CSPM-Interpreter An interpreter for the functional
sub language included in FDR.

CSPM-cspm A small command line executable that
demonstrates how to clue the above libraries to-
gether.

Further reading

http://www.stups.uni-duesseldorf.de/~fontaine/csp

9.7 Natural Language Processing

9.7.1 NLP

Report by: Eric Kow

See: http://haskell.org/communities/05-2009/html/
report.html#sect6.10.1.

9.7.2 GenI

Report by: Eric Kow

See: http://haskell.org/communities/11-2009/html/
report.html#sect6.10.2.

9.7.3 Grammatical Framework

Report by: Krasimir Angelov
Participants: Olga Caprotti, Grégoire Détrez, Ramona

Enache, Thomas Hallgren, Aarne Ranta

Grammatical Framework (GF) is a programming lan-
guage for multilingual grammar applications. It can
be used as a more powerful alternative to Happy but
in fact its main usage is to describe natural language
grammars instead of programming languages. The lan-
guage itself will look familiar for most Haskell or ML
users. It is a dependently typed functional language
based on Per Martin-Löf’s type theory.
An important objective in the language development

was to make it possible to develop modular grammars.
The language provides modular system inspired from
ML but adapted to the specific requirements in GF.
The modules system was exploited to a large extent in
the Resource Libraries project. The library provides
large linguistically motivated grammars for a number
of languages. When the languages are closely related
the common parts in the grammar could be shared
using the modules system. Currently there are com-
plete grammars for Amharic, Bulgarian, Catalan, Dan-
ish, Dutch, English, Finnish, French, German, Interlin-
gua, Italian, Norwegian, Russian, Spanish, Swedish and
Urdu. There are also incomplete grammars for Ara-
bic, Latin, Thai, Turkish, and Hindi. On top of these
grammars a user with limited linguistic background can
build application grammars for a particular domain.
We are planning the release of GF 3.2 before the

end of this year. The latest development around GF
is mostly driven by the new research project MOLTO
(http://www.molto-project.eu/) which focuses on tools
for multilingual online translation. This are some of
the features that can be expected in the new release:

◦ We improve our web front-end so the users (trans-
lators, content authors, etc.) will work in a more
comfortable environment. There are some demos on
the GF home page.

◦ There is work in progress on a new editor which com-
bines free text authoring with structural editing.

◦ Now there is a web based browser which the gram-
marians can use to explore the content of the gram-
mars. The functionality is similar to what you would
expect from tools like Haddock for Haskell.

◦ The support for dependent types is becoming stable.
All abstract syntax trees are type checked before they

64

http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://www.stups.uni-duesseldorf.de/~fontaine/csp
http://www.stups.uni-duesseldorf.de/~fontaine/csp
http://www.stups.uni-duesseldorf.de/~fontaine/csp
http://haskell.org/communities/05-2009/html/report.html#sect6.10.1
http://haskell.org/communities/05-2009/html/report.html#sect6.10.1
http://haskell.org/communities/11-2009/html/report.html#sect6.10.2
http://haskell.org/communities/11-2009/html/report.html#sect6.10.2
http://www.molto-project.eu/

are used. We use the same type checking algorithm
as in Agda and we support the Agda style of implicit
arguments. If the abstract syntax in some grammar
uses dependent types then the parser checks whether
the parsed sentence is semantically consistent. When
GF is used for parsing formal languages like C/C++
then the concrete syntax of the grammar describes
the syntax of the language while the dependent types
in the abstract syntax can be used to specify which
programs are well-typed.

◦ We also support random and exhaustive generation
of lambda terms of a given type. Since the type sys-
tem supports dependent types, the generation is ac-
tually equivalent to proving a theorem in first-order
logic. In fact, we build our own in-house theorem
prover.

◦ Previously the parser in GF either produced some re-
sult or just failed. Now it is much more friendly and
could detect where exactly is the problem. If there
is a syntax error then the token position is reported.
If the parsing is successful but none of the possible
parse trees is semantically consistent then the incon-
sistent phrase is located and a detailed error message
is reported. In some cases semantic inconsistencies
can be detected even before the sentence is complete.
In formal languages, this corresponds to type check-
ing of incomplete programs.

◦ There is an alternative implementation of the GF
interpreter in Java which makes it possible to run
applications on platforms where Haskell is not well
supported. For instance we developed a user inter-
face which works on Android phones.

Further reading

http://www.grammaticalframework.org/

9.8 Others

9.8.1 xmonad

Report by: Gwern Branwen
Status: active development

XMonad is a tiling window manager for X. Windows
are arranged automatically to tile the screen without
gaps or overlap, maximizing screen use. Window man-
ager features are accessible from the keyboard; a mouse
is optional. XMonad is written, configured, and exten-
sible in Haskell. Custom layout algorithms, key bind-
ings, and other extensions may be written by the user
in config files. Layouts are applied dynamically, and
different layouts may be used on each workspace. Xin-
erama is fully supported, allowing windows to be tiled
on several physical screens.
Development since the last report has continued

apace, with versions 0.8, 0.8.1, 0.9 and 0.9.1 released,

with simultaneous releases of the XMonadContrib li-
brary of customizations and extensions, which has now
grown to no less than 205 modules encompassing a
dizzying array of features.
Details of changes between releases can be found in

the release notes:
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.7
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.8
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.9
◦ XMonad.Config.PlainConfig allows writing configs in

a more ’normal’ style, and not raw Haskell
◦ Supports using local modules in xmonad.hs;

for example: to use definitions from
/̃.xmonad/lib/XMonad/Stack/MyAdditions.hs

◦ xmonad –restart CLI option
◦ xmonad –replace CLI option
◦ XMonad.Prompt now has customizable keymaps
◦ Actions.GridSelect - a GUI menu for selecting win-

dows or workspaces
◦ Actions.OnScreen
◦ Extensions now can have state
◦ Actions.SpawnOn - uses state to spawn applications

on the workspace the user was originally on, and not
where the user happens to be

◦ Markdown manpages and not man/troff
◦ XMonad.Layout.ImageButtonDecoration &

XMonad.Util.Image
◦ XMonad.Layout.Groups
◦ XMonad.Layout.ZoomRow
◦ XMonad.Layout.Renamed
◦ XMonad.Layout.Drawer
◦ XMonad.Hooks.ScreenCorners
◦ XMonad.Actions.DynamicWorkspaceOrder
◦ XMonad.Actions.WorkspaceNames
◦ XMonad.Actions.DynamicWorkspaceGroups
Binary packages of XMonad and XMonadContrib

are available for all major Linux distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:

darcs get http://code.haskell.org/xmonad
◦ IRC channel: #xmonad @@ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

9.8.2 Bluetile

Report by: Jan Vornberger
Status: active development

Bluetile is a tiling window manager for X based on
xmonad ((→ 9.8.1)). Windows are arranged to use the
entire screen without overlapping. Bluetile’s focus lies
on making the tiling paradigm easily accessible to users
coming from traditional window managers by drawing

65

http://www.grammaticalframework.org/
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.7
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.7
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org

on known conventions and providing both mouse and
keyboard access for all features. It also tries to be us-
able “out of the box”, requiring minimal to no config-
uration in most cases.

◦ Hybrid approach: Stacking window layout & tiling
layouts available

◦ Maximizing & minimizing windows in all layouts

◦ All features accessible from mouse, as well as key-
board

◦ Good multihead support

◦ Proper handling of fullscreen applications

◦ Designed to integrate with the GNOME desktop en-
vironment

Further reading

http://www.bluetile.org/

9.8.3 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen

Bioinformatics in Haskell is a steadily growing field,
and the relevant section on Hackage now sports several
libraries and applications. The original bioinformatics
library supports working with nucleotide and protein
sequences and associated data. It supports a variety of

file and alignment formats, and provides basic functions
for working with sequences.
This library has been used in a number of applica-

tions, the latest are flowsim, a simulator for 454-style
sequences and a50, a tool for assessing the quality of
genome assemblies.
Lately, several libraries dealing with RNA structure

and analysis have been added. These support working
with thermodynamics parameters (most widely known
as the Turner set of parameters) and RNA family mod-
els as used by the Infernal Covariance Model algo-
rithms.
Algorithms depending on those libraries are a re-

implementation of RNAfold of the ViennaRNA pack-
age and a novel tool, called CMCompare, which pro-
vides a first algorithm to compare Infernal RNA family
models. Re-implemented programs serve as a testbed
for efficient arrays for Haskell (mainly the vector li-
brary). Several new algorithms are currently in devel-
opment.

Further reading

◦ http://blog.malde.org/
◦ http://www.tbi.univie.ac.at/~choener/Haskell/

9.8.4 IgorII

Report by: Martin Hofmann
Participants: Emanuel Kitzelmann, Ute Schmid
Status: experimental, active development

IgorII is a new method and an implemented prototype
for constructing recursive functional programs from a
few non-recursive, possibly non-ground, example equa-
tions describing a subset of the input/output behavior
of a target function to be implemented.
For a simple target function like reverse the sole

input would be the following, the k smallest w.r.t. the
input data type, examples:

reverse [] = []
reverse [a] = [a]
reverse [a,b] = [b,a]
reverse [a,b,c] = [c,b,a]

The result, shown below, computed by IgorII is a
recursive definition of reverse, where the subfunctions
last and init have been automatically invented by the
program.

reverse [] = []
reverse (x:xs) = (last (x:xs)):(reverse (init (x:xs))

last [x] = x
last (x:y:ys) = last (y:ys)
init [x] = []
init (x:y:ys) = x:(init (y:ys))

IgorII has been extended to use catamorphisms on
lists as higher-order templates. After enabling the
higher-order mode, given the previous examples of
reverse, the system outputs the following solution:

66

http://www.bluetile.org/
http://hackage.haskell.org/package/bio
http://hackage.haskell.org/package/bio
http://blog.malde.org/index.php/flowsim/
http://blog.malde.org/index.php/a50
http://hackage.haskell.org/package/RNAFoldProgs
http://www.tbi.univie.ac.at/~ivo/RNA/
http://hackage.haskell.org/package/CMCompare
http://infernal.janelia.org
http://blog.malde.org/
http://www.tbi.univie.ac.at/~choener/Haskell/

reverse xs = foldr snoc [] xs

snoc x xs = foldr cons [x] xs
cons x (y:ys) = x:(y:ys)

Recently, the use of list-catamorphism has been gen-
eralized to arbitrary inductive data types. Based on
the Pointless Haskell library IgorII uses its generic
implementation of recursion patterns to solve recursive
problems as e.g. mirroring binary trees, computing the
power set, or to find a recursive solution for the towers
of hanoi, to mention just a few.

Features

◦ termination by construction
◦ handling arbitrary user-defined data types
◦ utilization of arbitrary background knowledge
◦ automatic invention of auxiliary functions as subpro-

grams
◦ learning complex calling relationships (tree- and

nested recursion)
◦ allowing for variables in the example equations
◦ simultaneous induction of mutually recursive target

functions
◦ using catamorphisms on arbitrary inductive data

types as higher-order templates or generic recursion
schemes

Current Status and Future Plans

The original version of IgorII is implemented in the
reflective rewriting based programming and specifica-
tion language Maude. However, a Haskell implemen-
tation of the algorithm is the current research proto-
type. Both can be obtained from the project page.
A tool demo and a research paper about the use

of catamorphisms as higher-order templates were pre-
sented at PEPM 2010.
For the future, we plan to extend the system to use

other type morphisms as generic recursion schemes.
Also it would be worth investigating to which extent
knowledge about types, e.g. universal properties, can
be used for the synthesis process, e.g. to guide the
search or resolve ambiguities.

Further reading

◦ http://www.cogsys.wiai.uni-bamberg.de/effalip/
◦ http://www.inductive-programming.org/

9.8.5 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,

and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!

Further reading

◦ http://www.joachim-breitner.de/projects#arbtt
◦ http://www.joachim-breitner.de/blog/archives/

336-The-Automatic-Rule-Based-Time-Tracker.html
◦ http://darcs.nomeata.de/arbtt/doc/users_guide/

9.8.6 cltw (Twitter API Command-Line Utility)

Report by: Dino Morelli
Status: experimental, actively developed

This is a tool for performing some Twitter API func-
tions from the command-line. So far supporting
three calls: statuses/followers, statuses/friends, sta-
tuses/update.
cltw is available from Hackage, the darcs repository

below, and also in binary form for Arch Linux through
the AUR.

Further reading

◦ Project page: http://ui3.info/d/proj/cltw.html
◦ Source repository: darcs get http://ui3.info/darcs/

cltw

67

http://hackage.haskell.org/package/pointless-haskell
http://www.program-transformation.org/PEPM10/
http://www.cogsys.wiai.uni-bamberg.de/effalip/
http://www.inductive-programming.org/
http://www.joachim-breitner.de/projects#arbtt
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://darcs.nomeata.de/arbtt/doc/users_guide/
http://ui3.info/d/proj/cltw.html
http://ui3.info/darcs/cltw
http://ui3.info/darcs/cltw

10 Commercial Users

10.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Duncan Coutts, Andres Löh, Dmitry

Astapov

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
Business continues to go well, and the Well-Typed

team has therefore doubled in size since the last HCAR
edition. Andres Löh has become the third partner, and
Dmitry Astapov has joined as a subcontractor.
The new manpower is in part for the “Parallel

Haskell Project”, which has now begun. This is a 2-
year project, funded by Microsoft Research, to push
the real-world adoption and practical development of
parallel Haskell with GHC. We are working with four
companies that want to make use of parallel Haskell.
Our job is to help them succeed, including fixing any
problems with the tools that they might run into.
The second round of the Industrial Haskell Group’s

Collaborative Development Scheme has also just be-
gun. Expect to see some updates on what the IHG is
getting up to on our blog, and a summary in the next
HCAR.

Further reading

◦ http://www.well-typed.com/
◦ Blog: http://blog.well-typed.com/

10.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides a language, BSV, which is be-
ing used for all aspects of ASIC and FPGA system de-
sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. Unlike HW design with C, which can
only be used for “loop-and-array” computations, BSV

is universal, accommodating the diverse range of blocks
found in modern SoCs, from algorithmic “datapath”
blocks to complex control blocks such as processors,
DMAs, interconnects, and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality RTL (Verilog), which can be further syn-
thesized into netlists for ASICs and FPGAs using other
commercial tools. Automatic synthesis from atomic
transactions enables design-by-refinement, where an
initial executable approximate design is systematically
transformed into a quality implementation by succes-
sively adding functionality and architectural detail.
The core tool is implemented in Haskell (well over 100K
lines).
In addition to the core synthesis tool, Bluespec pro-

vides a fast simulation tool for BSV, and extensive
libraries and infrastructure to make it easy to build
FPGA-based accelerators for computationally intensive
software, including for the Xilinx XUP board popular
in universities.
These industrial strength tools have enabled some

large designs (over a million gates) and significant ar-
chitecture research projects in academia and indus-
try, because complex architectural models can now be
coded with the same convenience of expression as SW
languages, but with the execution speed of FPGAs.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor and electronic equipment compa-
nies, and universities. The tools are free for academic
teaching and research.

Further reading

◦ R.S.Nikhil, Bluespec, a General-Purpose Approach
to High-Level Synthesis Based on Parallel Atomic
Transactions, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ Small illustrative examples: http://sites.google.
com/a/bluespec.com/learning-bluespec/Home/
Small-Examples

◦ MIT courseware, “Complex Digital Systems”: http:
//csg.csail.mit.edu/6.375

◦ A fun example with many functional-programming
features — BluDACu, a parameterized Bluespec
hardware implementation of Sudoku: http://www.
bluespec.com/products/BluDACu.htm

68

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/
http://sites.google.com/a/bluespec.com/learning-bluespec/Home/Small-Examples
http://sites.google.com/a/bluespec.com/learning-bluespec/Home/Small-Examples
http://sites.google.com/a/bluespec.com/learning-bluespec/Home/Small-Examples
http://csg.csail.mit.edu/6.375
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://www.bluespec.com/products/BluDACu.htm

10.3 Industrial Haskell Group

Report by: Ian Lynagh
Participants: Duncan Coutts, Andres Löh, Dmitry

Astapov

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
It was formed in early 2009, and in the first 6 month
collaborative development scheme funded work on dy-
namic libraries, more flexible Integer library support
for GHC, and Cabal development work.
More recently, on behalf of the first of our university

members, we have diagnosed an issue with using GLUT
from within GHCi on Mac OS X. This issue will be
resolved in the upcoming GHC 7.0.1 release.
Meanwhile, the second iteration of the collaborative

development scheme is getting underway; details about
the tasks undertaken will be appearing on the Well-
Typed (→ 10.1) blog, and you can expect a summary
in the next HCAR edition.
We expect to run the collaborative development

scheme continuously, so if you are interested in join-
ing as a full member, please get in touch. Details of
this, as well as the associate and academic membership
options, are on the website.
If you are interested in joining the IHG, or if you

just have any comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

http://industry.haskell.org/

10.4 factis research GmbH

Report by: Stefan Wehr
Participants: David Leuschner, Harald Fischer
Status: beta, active development

factis research, located in Freiburg, Germany, develops
reliable and user-friendly mobile solutions. Our client
software runs under J2ME, Symbian, iPhone OS, An-
droid, and Blackberry. The server components are im-
plemented in Python and Haskell.
We are actively using Haskell for a number of

projects, most of which are released under an open-
source license:

◦ Server backends for our mobile software solutions.

◦ DPM (→ 6.5.4), a patch manager for darcs.

◦ HTF (→ 6.3.1), a test framework.

◦ fos (http://openfactis.org/fos/), a customer relation-
ship management tool. Originally, fos was written
as a Haskell GTK application, but we are currently
rewriting it as a web application.

◦ ntee (http://openfactis.org/ntee), an adaptation of
the Unix tool tee to network streams.

Further reading

http://www.factisresearch.com/

10.5 Tsuru Capital

Report by: Simon Cranshaw

Tsuru Capital is engaged in high-frequency market-
making on options markets. Tsuru is a private com-
pany, and trades with its own capital. Tsuru Capi-
tal currently runs arbitrage based liquidity provision
strategies on the Kospi 200 index and plans to expand
to Nikkei 225 index, and other electronic markets, over
the next year.
The trading software has been developed entirely in

Haskell, and is one of the few systems in the world
written completely in a functional language.

Further reading

http://tsurucapital.com/en/

10.6 Oblomov Systems

Report by: Martĳn Schrage

Oblomov Systems is a one-person software company
based in Utrecht, The Netherlands. Founded in 2009
for the Proxima 2.0 project (→ 9.2.6), Oblomov has
since then been working on a number of Haskell-related
projects. The main focus lies on web-applications and

69

mailto: info at industry.haskell.org
http://industry.haskell.org/
http://openfactis.org/fos/
http://openfactis.org/ntee
http://www.factisresearch.com/
http://tsurucapital.com/en/

(web-based) editors. Haskell has turned out to be ex-
tremely useful for implementing web servers that com-
municate with JavaScript clients or iPhone apps.
Awaiting the acceptance of Haskell by the world at

large, Oblomov Systems also offers software solutions
in Java, Objective C, and C#, as well as on the iPhone.

Further reading

http://www.oblomov.com

70

http://www.oblomov.com

11 Research and User Groups

11.1 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Conrad Rau, Manfred Schmidt-Schauß

One of our research topics focuses on programming lan-
guage semantics, especially on contextual equivalence
which is usually based on the operational semantics of
the language. We explored several call-by-need lambda
calculi. Deterministic call-by-need lambda calculi with
letrec provide a semantics for the core language of
Haskell. In the setting of such an extended calculus
we proved correctness of strictness analysis using ab-
stract reduction. Furthermore, we proved equivalence
of the call-by-name and call-by-need semantics of an
extended lambda calculus with letrec, case, and con-
structors.
Recently, we extended our investigations to paramet-

ric polymorphism and showed correctness of type de-
pendent program transformations. Most recently, in
collaboration with Elena Machkasova we have shown
that the call-by-need lambda calculus with letrec is iso-
morphic to the lazy lambda calculus and that bisimi-
larity coincides with contextual equivalence in the call-
by-need lambda calculus with letrec.
We also explored several nondeterministic exten-

sions of call-by-need lambda calculi and their appli-
cations. We analyzed a model for a lazy functional
language with direct-call I/O providing a semantics for
unsafePerformIO in Haskell. We investigated a call-
by-need lambda calculus extended with McCarthy’s
amb and an abstract machine for lazy evaluation of
concurrent computations. We have shown that mu-
tual similarity is a sound proof method w.r.t. contex-
tual equivalence in a class of untyped higher-order non-
deterministic call-by-need lambda calculi. A recent re-
sult is that the situation changes if recursive let is added
to such a calculus, i.e., for calculi with letrec and
nondeterminism all usual definitions of similarity are
unsound w.r.t. contextual equivalence.
In a recently started research project we try to au-

tomatize correctness proofs of program transforma-
tions. A main step for this goal is the computation
of overlappings between reductions of the operational
semantics and transformations steps. This computa-
tion requires the combination of several unification al-
gorithms. We implemented a prototype of this com-
bined algorithm in Haskell.
As a further research topic we analyzed the expres-

sivity of concurrency primitives in various functional
languages. In collaboration with Jan Schwingham-
mer and Joachim Niehren, we showed how to encode
Haskell’s MVars into a lambda calculus with storage
and futures which is an idealized core language of Al-
ice ML. We proved correctness of the encoding using
operational semantics and the notions of adequacy and
full-abstractness of translations.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

11.2 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell
— in particular our interest in Erlang has been grow-
ing — Haskell provides a major focus and common lan-
guage for teaching and research.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sections
of this report. Simon Thompson is close to complet-
ing a third edition of his Haskell text book, due out
in spring 2011. The Haskell Refactorer Hare (→ 6.1.5)
has recently been cabal-ised, and now features clone
detection and elimination facilities. Thomas Schilling
is developing ideas for improving type error messages
for GHC and on trace-based dynamic optimisations for
Haskell programs. Olaf Chitil is working on better lazy
assertions for Haskell.

Further reading

◦ PLAS group: http://www.cs.kent.ac.uk/research/
groups/plas/

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/research/groups/plas/hare.html

◦ Tracing and debugging with Hat: http://www.
haskell.org/hat

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/
◦ Scion: http://code.google.com/p/scion-lib/

71

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.haskell.org/hat
http://www.haskell.org/hat
http://www.cs.kent.ac.uk/projects/heat/
http://code.google.com/p/scion-lib/

11.3 Formal Methods at DFKI and
University Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Dietrich, Dominik

Lücke, Christoph Lüth, Till Mossakowski,
Lutz Schröder, Ewaryst Schulz

Status: active development

The activities of our group center on formal methods,
covering a variety of formal languages and also trans-
lations and heterogeneous combinations of these.
We are using the Glasgow Haskell Compiler and

many of its extensions to develop the Heterogeneous
tool set (Hets). Hets consists of parsers, static analyz-
ers, and proof tools for languages from the CASL fam-
ily, such as the Common Algebraic Specification Lan-
guage (CASL) itself, HasCASL, CoCASL, CspCASL,
and ModalCASL. Other languages supported include
Haskell (via Programatica), QBF, Maude, VSE, TPTP,
OWL, Common Logic, and LF type theory. The
Hets implementation is also based on some old Haskell
sources such as bindings to uDrawGraph (formerly
Davinci) and Tcl/TK that we maintain. A RESTful
interface to Hets is under development.
HasCASL is a general-purpose higher-order language

which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL and HOLCF.
The Coalgebraic Logic Satisfiability Solver CoLoSS

is being implemented jointly at DFKI Bremen and at
the Department of Computing, Imperial College Lon-
don. The tool is generic over representations of the syn-
tax and semantics of certain modal logics; it uses the
Haskell class mechanism, including multi-parameter
type classes with functional dependencies, extensively
to handle the generic aspects.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ Heterogeneous tool set:
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

◦ The Coalgebraic Logic Satisfiability Solver CoLoSS:
http://www.informatik.uni-bremen.de/~lschrode/
projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/

11.4 Haskell at Universiteit Gent, Belgium

Report by: Tom Schrĳvers

Haskell is one of the main research topics of the new
Programming Languages Group at the Department of
Applied Mathematics and Computer Science at the
University of Ghent, Belgium.
Haskell-related projects of the group members and

collaborators are:

◦ The Monad Zipper : Limitations of monad stacks
get in the way of developing highly modular pro-
grams with effects. This pearl demonstrates that
Functional Programming’s abstraction tools are up
to the challenge. Of course, abstraction must be
followed by clever instantiation: Huet’s zipper for
the monad stack makes components jump through
unanticipated hoops. This is joint work with Bruno
Oliveira, available together with Mauro Jaskelioff’s
monad transformer library in the Monatron package
on Hackage.

◦ EffectiveAdvice: EffectiveAdvice is a disciplined
model of (AOP-style) advice, inspired by Aldrich’s
Open Modules, that has full support for effects in
both base components and advice. EffectiveAdvice
is implemented as a Haskell library. Advice is mod-
eled by mixin inheritance and effects are modeled
by monads. Interference patterns previously identi-
fied in the literature are expressed as combinators.
Equivalence of advice, as well as base components,
can be checked by equational reasoning. Parametric-
ity, together with the combinators, is used to prove
two harmless advice theorems. The result is an ef-
fective model of advice that supports effects in both
advice and base components, and allows these effects
to be separated with strong non-interference guaran-
tees, or merged as needed. This is joint work with
Bruno Oliveira and William Cook.

◦ Type Checking: Recent results are on type inference
for GADTs, type invariants, and type checking for
type families. Ongoing work concerns the simplifica-
tion of type checking for Haskell extensive type sys-
tem, and adding new extensions. This is joint work
with Martin Sulzmann, Simon Peyton Jones, Manuel
Chakravarty, Dimitrios Vytiniotis, Stefan Monnier,
Louis-Julien Guillemette, and Dominic Orchard.

◦ The Monadic Constraint Programming Framework:
The main article on the MCP framework by Tom
Schrĳvers, Peter Stuckey and Phil Wadler has ap-
peared in the Journal of Functional Programming.
It explains how the framework captures the generic
aspects of Constraint Programming in Haskell. Of
particular interest is the solver-independent frame-
work for compositional search strategies.

72

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/

Currently we are extending the framework to act
as a finite domain modeling language for both the
problem description and the search component. The
model in Haskell serves as a high-level front-end for
a state-of-the-art Constraint Programming system
such as Gecode (C++). Models can be compiled
to C++ code, can be solved by calling Gecode from
Haskell at runtime, or can be solved purely in Haskell
itself. This is joint work with Pieter Wuille and
Guido Tack.

We are also involved in the organization of the Ghent
Functional Programming Group (→ 11.10).

Further reading

◦ http://users.ugent.be/~tschrĳv/Haskell/
◦ http://hackage.haskell.org/package/Monatron
◦ http://hackage.haskell.org/package/monadiccp

11.5 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. We have 10 meetings per year (Feb–
Nov) and meet on the third Thursday of each month.
We regularly get 20–30 attendees, with a 70/30 indus-
try/research split. Talks this year have included ma-
terial on Arrows, Scala’s Actors, Pattern Calculus, a
couple of different Haskell libraries, and the ATS pro-
gramming language. We usually have about 90 mins of
talks, starting at 6:30pm, then go for drinks afterwards.
All welcome.

Further reading

http://groups.google.com/group/fp-syd

11.6 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component of
the Department of Computer Science and Engineering
at Chalmers. In particular, Haskell has a very impor-
tant place, as it is used as the vehicle for teaching and
numerous projects. Besides functional programming,
language technology, and in particular domain specific
languages is a common aspect in our projects.

Property-based testing QuickCheck is the basis for
a European Union project on Property Based Test-
ing (www.protest-project.eu). We are applying the
QuickCheck approach to Erlang software, together
with Ericsson, Quviq, and others. Much recent work
has focused on PULSE, the ProTest User-Level Sched-
uler for Erlang, which has been used to find race
conditions in industrial software — see our ICFP
2009 paper for details. A new tool, QuickSpec, gen-
erates algebraic specifications for an API automati-
cally, in the form of equations verified by random
testing. We have published about it at TAP 2010;
an earlier paper can be found here: http://www.cse.
chalmers.se/~nicsma/quickspec.pdf. Lastly, we have de-
vised a technique to speed up testing of polymor-
phic properties: http://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=99387.

Natural language technology Grammatical Frame-
work (→ 9.7.3) is a declarative language for describing
natural language grammars. It is useful in various ap-
plications ranging from natural language generation,
parsing and translation to software localization. The
framework provides a library of large coverage gram-
mars for currently fifteen languages from which the de-
velopers could derive smaller grammars specific for the
semantics of a particular application.

Parser generator and template-haskell BNFC-meta
is a parser generator. Like the BNF Converter, it gen-
erates a compiler front end in Haskell. Two things sep-
arate BNFC-meta from BNFC and other parser gener-
ators:
◦ BNFC-meta is not a program but a library (the

parser description is embedded in a quasi-quote).
◦ BNFC-meta automatically provides quasi-quotes for

the specified language. This includes a powerful and
flexible facility for antiquotation.

More info: http://hackage.haskell.org/package/
BNFC-meta.

Generic Programming Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic
programming research at Chalmers. Recent develop-
ments include fundamental work on parametricity &
dependent types (ICFP 2010), a survey paper “Generic
programming with C++ concepts and Haskell type
classes” (JFP 2010) and two new PhD students. Pa-
trik Jansson leads a work-package on DSLs within the
EU project “Global Systems Dynamics and Policy”
(http://www.gsdp.eu/, started Oct. 2010). If you want
to apply DSLs, Haskell, and Agda to help modelling
global sustainability challenges, please get in touch!

Language-based security SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality

73

http://users.ugent.be/~tschrijv/Haskell/
http://hackage.haskell.org/package/Monatron
http://hackage.haskell.org/package/monadiccp
http://groups.google.com/group/fp-syd
www.protest-project.eu
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://www.gsdp.eu/

of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

DSP programming Feldspar is a domain-specific lan-
guage for digital signal processing (DSP), developed
in co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest. The
motivating application is telecom processing, but the
language is intended to be more general. As a first
stage, we have focused on the data-intensive numeric
algorithms which are at the core of any DSP applica-
tion. More recently, we have started to work on ex-
tending the language to deal with more system-level
aspects. The data processing language is purely func-
tional and highly inspired by Haskell. Currently the
language is implemented as an embedded language in
Haskell.
The implementation is available from Hackage:

http://hackage.haskell.org/package/feldspar-language.
There is also a code generator, developed at ELTE
University: http://hackage.haskell.org/package/
feldspar-compiler.
See also the official project page: http://feldspar.inf.

elte.hu.

Hardware design/verification The functional pro-
gramming group has developed three different hard-
ware description languages — Lava, Wired, and Chalk
(chronological order) — implemented in Haskell. Each
language targets a different abstraction level. The basic
idea behind all three is to model circuits as functions
from inputs to outputs. This allows structural hard-
ware description in standard functional programming
style.
Chalk is a new language for architecture design.

Once you have defined a Chalk circuit, you can sim-
ulate it, or explore it further using non-standard in-
terpretations. This is particularly useful if you want
to perform high-level power and performance analysis
early on in the design process.
More info: http://www.cse.chalmers.se/~wouter/

Publications/DCC2010.pdf.

In Lava, circuits are described at the gate level
(with some RTL support). The version developed at
Chalmers has a particular aim to support formal veri-
fication in a convenient way.
Wired is an extension to Lava, targeting (not exclu-

sively) semi-custom VLSI design. A particular aim of
Wired is to give the designer more control over on-chip
wires’ effects on performance. Some features of Wired
are:

◦ Initial description can be purely functional (a la
Lava).

◦ Incremental specification of physical aspects.

◦ Accurate, wire-aware timing/power analysis within
the system.

◦ Support for an academic 45nm cell library.

Wired is not actively developed at the moment, but
the system has recently been used to explore the layout
of multipliers (Kasyab P. Subramaniyan, Emil Axels-
son, Mary Sheeran and Per Larsson-Edefors. Layout
Exploration of Geometrically Accurate Arithmetic Cir-
cuits. Proceedings of IEEE International Conference of
Electronics, Circuits and Systems. 2009).
Home page: http://www.cse.chalmers.se/~emax/

wired/.

Automated reasoning Equinox is an automated the-
orem prover for pure first-order logic with equality.
Equinox actually implements a hierarchy of logics, re-
alized as a stack of theorem provers that use abstrac-
tion refinement to talk with each other. In the bottom
sits an efficient SAT solver. Paradox is a finite-domain
model finder for pure first-order logic with equality.
Paradox is a MACE-style model finder, which means
that it translates a first-order problem into a sequence
of SAT problems, which are solved by a SAT solver.
Infinox is an automated tool for analyzing first-order
logic problems, aimed at showing finite unsatisfiabil-
ity, i.e., the absence of models with finite domains. All
three tools are developed in Haskell.

Teaching Haskell is present in the curriculum as early
as the first year of the Bachelors program. We have
three courses solely dedicated to functional program-
ming (of which two are Masters-level courses), but
we also provide courses which use Haskell for teach-
ing other aspects of computer science, such as pro-
gramming languages, compiler construction, hardware
description and verification, data structures and pro-
gramming paradigms.

74

http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
http://hackage.haskell.org/package/feldspar-compiler
http://feldspar.inf.elte.hu
http://feldspar.inf.elte.hu
http://www.cse.chalmers.se/~wouter/Publications/DCC2010.pdf
http://www.cse.chalmers.se/~wouter/Publications/DCC2010.pdf
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~emax/wired/

11.7 Dutch Haskell User Group

Report by: Tom Lokhorst

The Dutch Haskell User Group is a diverse group of
people interested in Haskell and functional program-
ming.
Since the inception of our user group in April of 2009,

we have had monthly meetings and an afternoon sym-
posium. Our meetings alternate between pure socializ-
ing and evenings that include talks by members.
We have a wide range of international members; peo-

ple using functional programming in academia, as a
hobby, or for commercial purposes.
Anyone is welcome to join, from beginners to ad-

vanced users. Do join us!

Further reading

http://dutchhug.nl/

11.8 San Simón Haskell Community

Report by: Carlos Gomez

The San Simón Haskell Community from San Simón
University Cochabamba-Bolivia, is an informal Spanish
group that search to learn, share information, knowl-
edge and experience related to the functional paradigm.
Since more than a year, we are trying to expand

our community all across Latin American Haskell pro-
grammers, and in order to do that, we created a web
page (http://comunidadhaskell.org) that serves us as a
medium of communication and work environment. All
Haskell programmers are welcome to contribute to this
site.
Our main activity is the development of projects,

and related to that we have information links, a wiki,
a blog, some materials and lately we have a sec-
tion for challenges related to Haskell (http://challenges.
comunidadhaskell.org). We started an event for every
year in which we present the projects of the last year.
On 15th April 2010, we celebrated our 1st Open House
Haskell Community in which we presented our projects.
You can also meet us on Facebook, this community

is open to all Haskell programmers and specially to
Spanish Haskell programmers.

Further reading

http://comunidadhaskell.org

11.9 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming remains active at KU and
the Computer Systems Design Laboratory in ITTC.
The System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andy Gill) together form the core functional program-
ming initiative at KU. Apart from Kansas Lava (→
9.5.3) and ChalkBoard (→ 8.7.4), there are many other
FP and Haskell related things going on.

◦ We are developing a Haskell version of HOL. Tradi-
tionally, members of the higher-order logic theorem
(HOL) proving family have been implemented in the
Standard ML programming language or one of its
derivatives. HaskHOL aims to break with tradition
by implementing a lightweight HOL theorem prover
library as a Haskell hosted domain specific language.
Based on the HOL Light logical system, HaskHOL
aims to provide the ability for Haskell users to reason
about their code directly without having to trans-
form it or otherwise export it to an external tool.
For details talk to Evan Austin.

◦ We are actively working on enabling Type-Directed
Specification Refinement in Rosetta. Rosetta is a
specification language that focuses on the interac-
tion between different domains, such as state-based
and signal-based domains. With dependent types,
first-class types, and reflection, there are many ar-
eas where a traditional all-or-nothing typing analysis
would be impractical — especially when considering
that specifications are likely written at first in a high-
level, incomplete fashion. This project uses Inter-
preterLib (http://haskell.org/communities/11-2008/
html/report.html#sect5.5.6) and various Rosetta
analysis tools to define a typing analysis that at-
tempts to extract typing information, constraints,
and errors to present to the user, in order to guide
the specification refinement process. It is in the early
stages of development, but may eventually link up

75

http://dutchhug.nl/
http://comunidadhaskell.org
http://challenges.comunidadhaskell.org
http://challenges.comunidadhaskell.org
http://comunidadhaskell.org
http://haskell.org/communities/11-2008/html/report.html#sect5.5.6
http://haskell.org/communities/11-2008/html/report.html#sect5.5.6

with HaskHOL to discharge some TCC’s. For de-
tails talk to Mark Snyder.

◦ We are developing a library in Haskell for processing
Rosetta specifications. A current focus is the mod-
ularity and re-use of distinct processing elements,
such as type-checking, partial evaluation, and rea-
soning assistants. Mutually defined elements that
are more convenient to consider as distinct interact
via a reactive monadic computation, so the two el-
ements’ code can be managed as separate packages.
Also, our principal specification representation use
functors and type-level fixed points to achieve exten-
sibility and generic programming. The goal of the
library is to provide to a tight and graduated in-
terface to the basic processing elements, so that the
users may incorporate the most appropriate basic el-
ements when implementing their own, more domain-
specific Rosetta processors. For details talk to Nick
Frisby.

◦ We are working with other functional programming
groups (University of Iowa, St. Andrews, Heriot-
Watt, Halmstad University, and of course Chalmers)
to share our common experiences with using FPGA
boards, and generating VHDL. So far, we have cho-
sen and purchased common Xilinx boards, and have
a design for a so called “λ-bridge” between our UNIX
invocation infrastructures and our FPGA boards.
The idea is we can share experiences, for the sake of
being able to spend more time working on FP issues,
and bringing FP ideas to hardware related problems.

Further reading

◦ The Functional Programming Group: http://www.
ittc.ku.edu/csdl/fpg

◦ CSDL website: https://wiki.ittc.ku.edu/csdl/Main_
Page

11.10 Ghent Functional Programming
Group

Report by: Jeroen Janssen
Participants: Bart Coppens, Jasper Van der Jeugt, Tom

Schrĳvers, Andy Georges, Kenneth Hoste
Status: active

The Ghent Functional Programming Group is a new
user group aiming to bring together programmers, aca-
demics, and others interested in functional program-
ming located in the area of Ghent, Belgium. Our goal
is to have regular meetings with talks on functional pro-
gramming, organize functional programming related
events such as hackathons, and to promote functional
programming in Ghent by giving after-hours tutorials.
The first two meetings were reported on in the last

edition of HCAR. The third meeting was on June 29,
2010. The program was as follows:

1. Pierre Carbonnelle — Declarative programming for
Business Logic: a new open-source project

2. Tom Schrĳvers — Monadic Constraint Program-
ming

3. Wouter Kampmann, Lieven Lemiengre — Lightning
Talk on Scala

The fourth meeting was on October 7, 2010. The pro-
gram was as follows:

1. Stĳn Timbermont — Mapping Interpreters onto
Runtime Support

2. Tom Schrĳvers — Dictionaries: Eager or Lazy Type
Class Witnesses?

3. Dominique Devriese — Grammar Combinators - A
new model for shallow parser DSLs

On November 5–7, 2010 we hosted BelHac, the
first Belgian Haskell Hackathon, kindly sponsored by
Incubaid (http://www.incubaid.com), Well-Typed (→
10.1), and O’Reilly (http://www.oreilly.com).
On Friday, we started with a great introduction

to Haskell by Miran Lipovača, the author of http:
//learnyouahaskell.com. A lot of students from Ghent
University showed up for this tutorial — it is good to
see that there is an interest in Haskell among students.
In parallel, there was some hacking, since some people
already knew Haskell.
After that, we moved to another (more fancy) build-

ing to listen to talks by Duncan Coutts, Romain Sloot-
maekers and Don Stewart. The talks all focused around
“Haskell in the Industry”, and, quoting Don Stewart,
“felt like startup school for Haskellers”. Perhaps we will
see some new Haskell startups soon?
The talks were followed by a small reception, and af-

ter that, some obligatory Belgian beers in nearby pubs.
On Saturday and Sunday, the focus was on hacking.

We had a small contest: since we had some shiny new
Real World Haskell books to give away, we made a list
of people who uploaded a package to Hackage during
the Hackathon. On Sunday, three lucky winners were
chosen.

76

http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
https://wiki.ittc.ku.edu/csdl/Main_Page
http://www.incubaid.com
http://www.oreilly.com
http://learnyouahaskell.com
http://learnyouahaskell.com

We think this Hackathon was a success. Patches were
added to cabal, to the new Hackage, and, of course, a
lot of packages were released. We hope to see everyone
again at the next Hackathon!
If you want more information on GhentFPG you can

follow us on twitter (@ghentfpg), via Google Groups
(http://groups.google.com/group/ghent-fpg), or by vis-
iting us at irc.freenode.net in channel #ghentfpg.

Further reading

http://groups.google.com/group/ghent-fpg

77

http://groups.google.com/group/ghent-fpg
http://groups.google.com/group/ghent-fpg

	Community
	Haskellers
	Haskell Wikibook
	Cartesian Closed Comic

	Articles/Tutorials
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects
	Haskell Cheat Sheet
	Practice of Functional Programming

	Implementations
	Haskell Platform
	The Glasgow Haskell Compiler
	LHC
	The Helium Compiler
	UHC, Utrecht Haskell Compiler
	Exchanging Sources between Clean and Haskell
	The Reduceron
	Specific Platforms
	Debian Haskell Group
	Haskell in Gentoo Linux
	Fedora Haskell SIG

	Related Languages
	Agda
	MiniAgda
	Idris
	Clean
	Timber
	Disciple

	Haskell and …
	Haskell and Parallelism
	TwilightSTM
	Haskell-MPI
	Eden

	Haskell and the Web
	GHCJS: Haskell to Javascript compiler
	Hawk
	WAI
	Holumbus Search Engine Framework
	gitit
	Happstack
	Mighttpd --- Yet another Web Server
	Yesod
	Lemmachine
	Snap Framework

	Haskell and Games
	Nikki and the Robots
	Freekick2
	Dungeons of Wor

	Haskell and Compiler Writing
	UUAG
	AspectAG
	Berp
	LQPL --- A Quantum Programming Language Compiler and Emulator

	Development Tools
	Environments
	EclipseFP
	ghc-mod --- Happy Haskell Programming on Emacs
	Leksah --- Toward a Haskell IDE
	HEAT: The Haskell Educational Advancement Tool
	HaRe --- The Haskell Refactorer

	Documentation
	Haddock
	Hoogle
	lhs2TeX

	Testing and Analysis
	HTF: A Test Framework for Haskell
	SourceGraph
	HLint
	A Haskell Source File Scanning Tool

	Boilerplate Removal
	A Generic Deriving Mechanism for Haskell
	Derive
	Agata

	Code Management
	Darcs
	ipatch
	DarcsWatch
	DPM --- Darcs Patch Manager

	Interfacing to other Languages
	HSFFIG
	Hubris

	Deployment
	Cabal and Hackage
	Capri
	Shaker

	Google Summer of Code 2010
	Immix Garbage Collector on GHC
	Improvements to Cabal's Test Support
	A High Performance HTML Generation Library
	Hackage 2.0
	Improving Darcs' Network Performance

	Libraries
	Processing Haskell
	The Neon Library
	mueval

	Parsing and Transforming
	The grammar-combinators Parser Library
	language-python
	Loker
	ChristmasTree
	First Class Syntax Macros
	Utrecht Parser Combinator Library: uu-parsinglib
	Regular Expression Matching with Partial Derivatives

	Mathematical Objects
	AERN-Real and Friends
	hmatrix

	Data Types and Data Structures
	HList --- A Library for Typed Heterogeneous Collections
	Verified Priority Queues
	Graphalyze

	Generic and Type-Level Programming
	FlexiWrap
	uniplate
	Generic Programming at Utrecht University
	Optimizing Generic Functions

	User Interfaces
	Gtk2Hs
	Haskeline
	CmdArgs

	Graphics
	plot/plot-gtk
	diagrams
	GPipe
	ChalkBoard
	graphviz

	Text and Markup Languages
	HaTeX
	Haskell XML Toolbox
	tagsoup
	BlazeHtml
	Bravo

	Applications and Projects
	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners (previously: Exercise Assistants)
	Yahc
	Sifflet

	Data Management and Visualization
	HaskellDB
	lhae
	Pandoc
	Ferry (Database-Supported Program Execution)
	Sirenial
	The Proxima 2.0 Generic Editor

	Functional Reactive Programming
	Functional Hybrid Modelling
	Elerea

	Audio and Graphics
	Audio Signal Processing
	easyVision
	n-Dimensional Volume Calculation for Non-Convex Polytops
	Hemkay

	Hardware Design
	CaSH
	ForSyDe
	Kansas Lava

	Proof Assistants and Reasoning
	Zeno --- Inductive Theorem Proving for Haskell Programs
	HTab
	Plastic
	Free Theorems for Haskell
	Streaming Component Combinators
	CSP-M Animator and Model Checker

	Natural Language Processing
	NLP
	GenI
	Grammatical Framework

	Others
	xmonad
	Bluetile
	Biohaskell
	IgorII
	arbtt
	cltw (Twitter API Command-Line Utility)

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Industrial Haskell Group
	factis research GmbH
	Tsuru Capital
	Oblomov Systems

	Research and User Groups
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI and University Bremen
	Haskell at Universiteit Gent, Belgium
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Dutch Haskell User Group
	San Simón Haskell Community
	Functional Programming at KU
	Ghent Functional Programming Group

