
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Twenty-First Edition — November 2011

Janis Voigtländer (ed.)
Andreas Abel Iain Alexander Heinrich Apfelmus
Dmitry Astapov Emil Axelsson Christiaan Baaĳ
Justin Bailey Doug Beardsley Jean-Philippe Bernardy
Mario Blažević Gwern Branwen Joachim Breitner

Björn Buckwalter Bryan Buecking Joel Burget
Douglas Burke Carlos Camarão Erik de Castro Lopo

Roman Cheplyaka Olaf Chitil Duncan Coutts
Nils Anders Danielsson James Deng Dominique Devriese

Daniel Díaz Atze Dĳkstra Facundo Dominguez
Patai Gergely Jürgen Giesl Brett G. Giles
Andy Gill George Giorgidze Dmitry Golubovsky

Marco Gontĳo Torsten Grust Jurriaan Hage
Sönke Hahn Malte Harder Bastiaan Heeren

PÁLI Gábor János Jeroen Janssen Csaba Hruska
Oleg Kiselyov Michal Konečný Eric Kow
Ben Lippmeier Andres Löh Hans-Wolfgang Loidl
Tom Lokhorst Rita Loogen John MacFarlane

Christian Maeder José Pedro Magalhães Ketil Malde
Alex McLean Vivian McPhail Alp Mestanogullari
Simon Michael Arie Middelkoop Neil Mitchell
Dino Morelli JP Moresmau Ben Moseley

Takayuki Muranushi Jürgen Nicklisch-Franken Rishiyur Nikhil
Thomas van Noort Johan Nordlander David M. Peixotto

Jens Petersen Simon Peyton Jones Dan Popa
Antonio M. Quispe David Sabel Uwe Schmidt
Martĳn Schrage Tom Schrĳvers Jeremy Shaw
Axel Simon Ganesh Sittampalam Jan Šnajder

Michael Snoyman Andy Stewart Martin Sulzmann
Doaitse Swierstra Henning Thielemann Simon Thompson
Sergei Trofimovich Thomas Tuegel Marcos Viera
Janis Voigtländer David Waern Greg Weber
Kazu Yamamoto Brent Yorgey

http://tinyurl.com/haskcar

Preface

This is the 21st edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a
blue background. Entries for which I received a liveness ping, but which have seen no essential
update for a while, have been replaced with online pointers to previous versions. Other entries
on which no new activity has been reported for a year or longer have been dropped completely.
Please do revive such entries next time if you do have news on them.

A call for new entries and updates to existing ones will be issued on the usual mailing lists in
April. Now enjoy the current report and see what other Haskellers have been up to lately. Any
feedback is very welcome, as always.

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

mailto: hcar at haskell.org

Contents

1 Community 7
1.1 haskell.org . 7
1.2 Haskellers . 8

2 Books, Articles, Tutorials 9
2.1 Haskell: the craft of functional programming, 3rd edition . 9
2.2 The Monad.Reader . 9
2.3 Oleg’s Mini Tutorials and Assorted Small Projects . 9
2.4 A Tutorial on the Enumerator Library . 10
2.5 Practice of Functional Programming . 10

3 Implementations 11
3.1 Haskell Platform . 11
3.2 The Glasgow Haskell Compiler . 11
3.3 UHC, Utrecht Haskell Compiler . 14
3.4 Specific Platforms . 15
3.4.1 Haskell on FreeBSD . 15
3.4.2 Debian Haskell Group . 15
3.4.3 Haskell in Gentoo Linux . 16
3.4.4 Fedora Haskell SIG . 16
3.5 Fibon Benchmark Tools & Suite . 17

4 Related Languages 18
4.1 Agda . 18
4.2 MiniAgda . 18
4.3 Clean . 18
4.4 Timber . 19
4.5 Disciple . 19

5 Haskell and . . . 20
5.1 Haskell and Parallelism . 20
5.1.1 Eden . 20
5.1.2 GpH — Glasgow Parallel Haskell . 21
5.1.3 Parallel GHC project . 21
5.2 Haskell and the Web . 22
5.2.1 WAI . 22
5.2.2 Warp . 22
5.2.3 Holumbus Search Engine Framework . 23
5.2.4 Happstack . 23
5.2.5 Mighttpd2 — Yet another Web Server . 24
5.2.6 Yesod . 24
5.2.7 Snap Framework . 25
5.2.8 Ivy-web . 25
5.2.9 rss2irc . 26
5.3 Haskell and Games . 26
5.3.1 FunGEn . 26
5.3.2 Nikki and the Robots . 27
5.4 Haskell and Compiler Writing . 27
5.4.1 UUAG . 27
5.4.2 AspectAG . 28
5.4.3 LQPL — A Quantum Programming Language Compiler and Emulator 29

3

6 Development Tools 30
6.1 Environments . 30
6.1.1 EclipseFP . 30
6.1.2 ghc-mod — Happy Haskell Programming on Emacs . 30
6.1.3 Leksah — The Haskell IDE in Haskell . 30
6.1.4 HEAT: The Haskell Educational Advancement Tool . 31
6.1.5 HaRe — The Haskell Refactorer . 31
6.2 Documentation . 31
6.2.1 Haddock . 31
6.2.2 Hoogle . 32
6.2.3 lhs2TEX . 32
6.3 Testing and Analysis . 32
6.3.1 shelltestrunner . 32
6.3.2 HLint . 33
6.3.3 hp2any . 33
6.4 Optimization . 33
6.4.1 HFusion . 33
6.4.2 Optimizing Generic Functions . 34
6.5 Boilerplate Removal . 34
6.5.1 A Generic Deriving Mechanism for Haskell . 34
6.6 Code Management . 34
6.6.1 Darcs . 34
6.6.2 DarcsWatch . 35
6.6.3 darcsden . 35
6.6.4 darcsum . 35
6.6.5 Improvements to Cabal’s Test Support . 35
6.6.6 cab — A Maintenance Command of Haskell Cabal Packages . 36
6.6.7 Hackage-Debian . 36
6.7 Interfacing to other Languages . 36
6.7.1 HSFFIG . 36
6.8 Deployment . 36
6.8.1 Cabal and Hackage . 36
6.8.2 Capri . 37

7 Libraries 38
7.1 Processing Haskell . 38
7.1.1 The Neon Library . 38
7.2 Parsing and Transforming . 38
7.2.1 The grammar-combinators Parser Library . 38
7.2.2 epub-metadata . 38
7.2.3 Utrecht Parser Combinator Library: uu-parsinglib . 38
7.2.4 Regular Expression Matching with Partial Derivatives . 39
7.2.5 regex-applicative . 39
7.3 Mathematical Objects . 39
7.3.1 normaldistribution: Minimum Fuss Normally Distributed Random Values 39
7.3.2 dimensional: Statically Checked Physical Dimensions . 39
7.3.3 AERN-Real and Friends . 40
7.3.4 Paraiso . 41
7.4 Data Types and Data Structures . 41
7.4.1 HList — A Library for Typed Heterogeneous Collections . 41
7.4.2 Persistent . 41
7.5 Generic and Type-Level Programming . 42
7.5.1 Unbound . 42
7.5.2 FlexiWrap . 42
7.5.3 Generic Programming at Utrecht University . 42
7.6 User Interfaces . 43
7.6.1 Gtk2Hs . 43
7.7 Graphics . 44

4

7.7.1 Assimp . 44
7.7.2 plot/plot-gtk . 44
7.7.3 Craftwerk . 44
7.7.4 LambdaCube . 44
7.7.5 diagrams . 45
7.7.6 ChalkBoard . 45
7.8 Text and Markup Languages . 46
7.8.1 HaTeX . 46
7.8.2 Haskell XML Toolbox . 46

8 Applications and Projects 48
8.1 Education . 48
8.1.1 Holmes, Plagiarism Detection for Haskell . 48
8.1.2 Interactive Domain Reasoners . 48
8.2 Data Management and Visualization . 49
8.2.1 HaskellDB . 49
8.2.2 Pandoc . 49
8.2.3 DSH — Database Supported Haskell . 49
8.3 Functional Reactive Programming . 50
8.3.1 reactive-banana . 50
8.3.2 Functional Hybrid Modelling . 50
8.3.3 Elerea . 51
8.4 Audio and Graphics . 51
8.4.1 Audio Signal Processing . 51
8.4.2 Tidal, Texture and Live Music with Haskell . 52
8.4.3 Hemkay . 52
8.4.4 Functional Modelling of Musical Harmony . 52
8.4.5 Cologne . 53
8.5 Hardware Design . 53
8.5.1 CλaSH . 53
8.5.2 Kansas Lava . 54
8.6 Proof Assistants and Reasoning . 54
8.6.1 HERMIT . 54
8.6.2 Automated Termination Analyzer for Haskell . 55
8.6.3 Free Theorems for Haskell . 55
8.6.4 Streaming Component Combinators . 55
8.6.5 Swish . 56
8.7 Natural Language Processing . 56
8.7.1 NLP . 56
8.7.2 GenI . 57
8.8 Others . 57
8.8.1 Feldspar . 57
8.8.2 λ-Bridge . 57
8.8.3 GenProg — Genetic Programming Library . 58
8.8.4 Manatee . 58
8.8.5 xmonad . 59
8.8.6 Biohaskell . 60
8.8.7 Bullet . 60
8.8.8 Sloth2D . 60
8.8.9 hledger . 61
8.8.10 epub-tools (Command-line epub Utilities) . 61

9 Commercial Users 62
9.1 Well-Typed LLP . 62
9.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 62
9.3 Industrial Haskell Group . 63
9.4 Tsuru Capital . 63
9.5 Barclays Capital . 64

5

9.6 Oblomov Systems . 64

10 Research and User Groups 65
10.1 A French community for Haskell . 65
10.2 Haskell at Eötvös Loránd University (ELTE), Budapest . 65
10.3 Functional Programming at UFMG and UFOP . 66
10.4 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 67
10.5 Functional Programming at the University of Kent . 67
10.6 Formal Methods at DFKI and University Bremen . 68
10.7 Haskell at Universiteit Gent, Belgium . 68
10.8 Haskell in Romania . 69
10.9 fp-syd: Functional Programming in Sydney, Australia . 70
10.10 Functional Programming at Chalmers . 70
10.11 Functional Programming at KU . 72
10.12 Dutch Haskell User Group . 72
10.13 San Simón Haskell Community . 72
10.14 Ghent Functional Programming Group . 73

6

1 Community

1.1 haskell.org

Report by: Ganesh Sittampalam
Participants: Jason Dagit, Ian Lynagh, Don Stewart,

Johan Tibell, Vo Minh Thu, Malcolm
Wallace, Edward Z. Yang

Status: active

The haskell.org committee was formed a year ago to
formalise the previously ad-hoc arrangements around
managing the haskell.org infrastructure and money.
The committee’s “home page” is at http://www.haskell.
org/haskellwiki/Haskell.org_committee, and occasional
publicity is via a blog (http://haskellorg.wordpress.com)
and twitter account (http://twitter.com/#!/haskellorg)
as well as the Haskell mailing list.
In our first year of operation, the following has hap-

pened:

haskell.org incorporation

The most important work for the year has been trying
to get the ownership of haskell.org resources — prin-
cipally some money from our GSoC participation, and
various machines — on a sounder footing.
At the moment, Galois is kindly holding funds on

behalf of haskell.org. However, this causes them ad-
ministrative difficulties and it would also be better for
haskell.org for them to be held separately in a vehicle
with tax-free status (at least in the US) that can also
accept donations.
The main option we have been exploring is join-

ing the Software Freedom Conservancy (http://www.
sfconservancy.org). After seeking the community’s con-
sent, we have contacted them to begin the application
process. Unfortunately they are currently rather over-
worked and as they prioritise work for existing projects
over accepting new ones, we do not yet know when
there will be progress with this.
In the meantime we are also investigating joining

an alternative, Software in the Public Interest (http:
//www.spi-inc.org). Discussions about this option are
still ongoing.
The committee would like to thank Jason Dagit who

has been helping us to make progress on this issue over
the last few months, with the support of his employer
Galois.

Subdomain policy

In response to various requests for subdomains
of haskell.org, we have formulated the follow-
ing policy, now (belatedly!) documented at

http://www.haskell.org/haskellwiki/Haskell.org_
domain#Policy_on_adding_new_subdomains
Subdomains should be used for services rather than

content.
Content should normally be hosted at subpaths of

http://www.haskell.org
So for example a Haskell graphics re-

lated website should normally go at
http://www.haskell.org/graphics, rather than
http://graphics.haskell.org.
In contrast, during the year, we did add

revdeps.hackage.haskell.org for a hackage reverse-
dependency lookup service, and of course hack-
age.haskell.org already exists.
Clearly the line between services and content, and

indeed the precise definitions of each, is something of
a grey area, and we are certainly happy to be flexible
particularly if there are technical or other reasons for
doing things one way. Our overall goal is to minimise
unnecessary proliferation of subdomains and to try to
keep the haskell.org domain reasonably well organised,
while still helping people do useful things with it.

Move of www.haskell.org to a new dedicated host

For many years, www.haskell.org was generously
hosted by Paul Hudak at Yale. This was becoming in-
creasingly expensive for him so in late 2010 we moved
to a new dedicated host (lambda.haskell.org). At the
same time we put in place a policy that lambda would
host only “meta” community resources, thus limiting
the number of people who need to have accounts on
it. For some time before this new project content had
been created on community.haskell.org anyway, and
this move gave us the opportunity to move “legacy”
sites such as Gtk2Hs over to community. In addition,
community.haskell.org is now also a VM running on the
same machine.
The committee as a whole’s involvement in this was

only to approve the change — the sysadmin team did
all the actual work.

General

The haskell.org infrastructure as a whole is still in a
rather tenuous state. While the extreme unreliability
we saw for a while has improved with the reorganisa-
tion, the level of sysadmin resource/involvement is still
inadequate. The committee is open to ideas on how to
improve the situation.
Unfortunately we cannot provide a full statement of

haskell.org’s accounts with this report; we are doing
our best to track down the necessary information and

7

http://www.haskell.org/haskellwiki/Haskell.org_committee
http://www.haskell.org/haskellwiki/Haskell.org_committee
http://haskellorg.wordpress.com
http://twitter.com/#!/haskellorg
http://www.sfconservancy.org
http://www.sfconservancy.org
http://www.spi-inc.org
http://www.spi-inc.org
http://www.haskell.org/haskellwiki/Haskell.org_domain#Policy_on_adding_new_subdomains
http://www.haskell.org/haskellwiki/Haskell.org_domain#Policy_on_adding_new_subdomains
http://www.haskell.org

will produce them as soon as possible. Better control
and visibility of our finances and assets is of course one
of the benefits we are seeking by affiliating with SFC
or SPI.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Since the November 2010 HCAR, Haskellers has

added job postings, strike forces, and the ever im-
portant bling, as well as a brand new, community-
developed site design. Haskellers is quickly approach-
ing 800 active accounts. To be clear, the site is intended
for all members of the Haskell community, from profes-
sionals with 15 years experience to people just getting
into the language.

Further reading

http://www.haskellers.com/

8

http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 Haskell: the craft of functional
programming, 3rd edition

Report by: Simon Thompson

The third edition of one of the leading textbooks for
beginning Haskell programmers is thoroughly revised
throughout. New material includes thorough coverage
of property-based testing using QuickCheck and an ad-
ditional chapter on domain-specific languages as well as
a variety of new examples and case studies, including
simple games.
Existing material has been expanded and re-ordered,

so that some concepts — such as simple data types and
input/output — are presented at an earlier stage. The
running example of Pictures is now implemented using
web browser graphics as well as lists of strings.
The book uses GHCi, the interactive version of the

Glasgow Haskell Compiler, as its implementation of
choice. It has also been revised to include material
about the Haskell Platform, and the Hackage online
database of Haskell libraries. In particular, readers are
given detailed guidance about how to find their way
around what is available in these systems.
Publication details:
◦ Published by Addison Wesley, 2011. ISBN
0201882957.

Book website:
◦ http://www.haskellcraft.com
Solutions for bona fide instructors are available
from the Pearson website http://www.pearsoned.co.uk/
HigherEducation/Booksby/Thompson/

2.2 The Monad.Reader

Report by: Brent Yorgey

There are many academic papers about Haskell and
many informative pages on the HaskellWiki. Unfortu-
nately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a wiki page, but more casual than a journal
article.
There are plenty of interesting ideas that might not

warrant an academic publication—but that does not
mean these ideas are not worth writing about! Com-
municating ideas to a wide audience is much more im-
portant than concealing them in some esoteric journal.
Even if it has all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining

a neat idea about “warm fuzzy things” to the rest of
us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there have been two new is-

sues. Issue 18, published in July 2011, featured arti-
cles on a monadic formulation of MapReduce, parallel
monad comprehensions, and attributed variables. Issue
19, published in October 2011, was a special issue on
parallelism and concurrency, featuring an article on the
Mighttpd web server, a tutorial on the use of MPI from
Haskell, and an article about pipelines of coroutine-
based processes.

Further reading

http://themonadreader.wordpress.com/

2.3 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received two additions:

Type-safe Formatted IO

A set of several articles describes various type-safe im-
plementations of printf and scanf, with the same for-
mat descriptor. A type-safe printf converts the se-
quence of heterogeneous arguments to a string accord-
ing to a given format descriptor; the number and the
types of the arguments must agree with the descrip-
tor. Haskell’s Text.Printf.printf is not type-safe by
the above definition since the type checker does not
stop the programmer from passing to Text.Printf.printf
more or fewer arguments than required by the format-
ting string. The dual type-safe scanf extracts a se-
quence of heterogeneous arguments from a string by
interpreting the same format descriptor as a heteroge-
neous sequence of patterns binding zero or more vari-
ables. Although type-safe printf received a lot of at-
tention (from Danvy, Hinze, Asai), the type-safe scanf
is often neglected. Apparently it has been unknown if
type-safe printf and scanf could share the same format
descriptor.

9

http://www.haskellcraft.com
http://www.pearsoned.co.uk/HigherEducation/Booksby/Thompson/
http://www.pearsoned.co.uk/HigherEducation/Booksby/Thompson/
http://themonadreader.wordpress.com/
http://okmij.org/ftp/Haskell/

Our implementations of type-safe printf and scanf all
share the same insight of a simple embedded domain-
specific language (DSL) of formatting patterns. The
functions printf and scanf are two interpreters of the
language, building or parsing a string according to the
given pattern. The format descriptor, a term in our
DSL, can be interpreted in far more than two ways,
producing a family of printf/scanf-like functions.
The DSL of formatting patterns can be embedded

into Haskell as a (generalized) algebraic data type, or
as a family of overloaded functions (a type class). To
the end user, the difference is hardly noticeable. How-
ever, whereas the first embedding requires GADT, the
second one is entirely in Haskell98 and is extensible.
Finally, we implement printf that takes a C-like for-

mat string and the variable number of other arguments.
Unlike C of Haskell’s printf, ours is total: if the types
or the number of the other arguments do not match
the format string, a type error is reported. Likewise,
we build a type-safe scanf that takes a C-like format
string and the poly-variadic consumer function. We
use Template Haskell to translate the format string to
a term in the DSL of format descriptors.
http://okmĳ.org/ftp/type-formatting/

Annotating trees post factum

A common problem is annotating nodes of an already
constructed tree or other such data structure with ar-
bitrary new data. The original tree had been defined
with no provision for node attributes, and we are not at
liberty to change the data type definition. We should
not even require rebuilding of the tree as we add anno-
tations to its nodes. Our code must be pure functional;
in particular, the tree to annotate should remain as it
was. Finally, our solution should be expressible in a
typed language without resorting to the Universal type.
Tree annotations are common in compilers, associat-

ing each abstract syntax tree node with source location
data, inferred type, results of various analyses.
Our solution relies on the observation that each node

in a finite tree can be identified by its path – a sequence
of integers – with a decidable identity and order. To an-
notate tree nodes we build a separate finite map data
structure associating nodes’ paths with their annota-
tions. To add annotations of a different type, we build
another map.
http://okmĳ.org/ftp/Algorithms.html#tree-annot

2.4 A Tutorial on the Enumerator Library

Report by: Kazu Yamamoto

Enumerator/Iteratee (EI) developed by Oleg Kiselyov
is an API to enable modular programming in the IO
monad. A popular implementation of EI is the enumer-
ator library developed by John Millikin. This tutorial

is a gentle introduction of the background of EI and
how to use the enumerator library.

Further reading

http://www.mew.org/~kazu/proj/enumerator/

2.5 Practice of Functional Programming

Report by: Dmitry Astapov
Status: seven issues out, issue #8 is looming ahead,

collecting materials for more

“Practice of Functional Programing” is a Russian
electronic magazine promoting functional program-
ming. The magazine features articles that cover both
theoretical and practical aspects of the craft. Signif-
icant amount of the already published material is di-
rectly related to Haskell.
The magazine attempts to keep a bi-monthly release

schedule, with Issue #7 leaving the press at the end of
April 2011. Full contents of current and past issues are
available in PDF from the official site of the magazine
free of charge. Articles are in Russian, with English
annotations.

Further reading

http://fprog.ru/ for issues ##1–7

10

http://okmij.org/ftp/type-formatting/
http://okmij.org/ftp/Algorithms.html#tree-annot
http://www.mew.org/~kazu/proj/enumerator/
http://fprog.ru/

3 Implementations

3.1 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of the “blessed”
set of libraries and tools on which to build further
Haskell libraries and applications. It takes a core se-
lection of packages from the more than 3500 on Hack-
age (→ 6.8.1). It is intended to provide a comprehen-
sive, stable, and quality tested base for Haskell projects
to work from.
Historically, GHC shipped with a collection of pack-

ages under the name extralibs. Since GHC 6.12 the
task of shipping an entire platform has been transferred
to the Haskell Platform.

Recent progress

There has not been a release in the last 6 months.
While the plan calls for major releases every 6 months
this has not happened for a number of reasons. We took
the decision not to base a major release on GHC-7.2.1
and no new release in the 7.2.x series is expected. We
ran into some problems trying to prepare a release us-
ing GHC-7.0.4, however we may yet do a release using
GHC-7.0.4.

Looking forward

Major releases are supposed to take place on a 6 month
cycle. There will be a major release in Spring 2012
which will be based on the GHC-7.4.x series.
Our systems for coordinating and testing new re-

leases remains too time consuming, involving too much
manual work. Help from the community on this issue
would be very valuable.
The platform steering committee will be propos-

ing some modifications to the community review pro-
cess for accepting new packages into the platform pro-
cess with the aim of reducing the burden for pack-
age authors and keeping the review discussions pro-
ductive. Though we will be making some modifica-
tions, we would still like to invite package authors to
propose new packages. This can be initiated at any
time. We also invite the rest of the community to take
part in the review process on the libraries mailing list
〈libraries@haskell.org〉. The procedure involves writing a
package proposal and discussing it on the mailing list
with the aim of reaching a consensus. Details of the
procedure are on the development wiki.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform
◦ Download: http://hackage.haskell.org/platform/
◦ Wiki: http://trac.haskell.org/haskell-platform/
◦ Adding packages: http://trac.haskell.org/

haskell-platform/wiki/AddingPackages

3.2 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

GHC is still humming along, with the 7.2.1 release
(more of a "technology preview" than a stable release)
having been made in August, and attention now fo-
cused on the upcoming 7.4 branch. By the time you
read this, the 7.4 branch will have been created, and
will be in "feature freeze". We will then be trying to fix
as many bugs as possible before releasing later in the
year.
We advertised 7.2 as a technology preview, expecting

7.4 to merely consolidate the substantial new features
in 7.2. But as it turns out GHC 7.4 will have a further
wave of new features, especially in the type system.
Significant changes planned for the 7.4 branch are:

Declarations at the GHCi prompt. Daniel Winograd-
Cort (with help from Simon Marlow) has extended
GHCi so that it is possible to give any declaration at
the ghci prompt. For example,

Prelude> data D = D Int
Prelude> case D 5 of D x -> print x
5

This has already been merged, so will definitely be
in 7.4.

Data type promotion and kind polymorphism. As
we do more and more type-level programming, the
lack of a decent kind system (to make sure that
your type-level programs make sense) has become
an increasingly pressing issue. If all goes well, GHC
7.4 will take a substantial step forward:
◦ First, all simple data types (including lists

and tuples) will automatically be "promoted"
to be kinds as well, a design inspired by
Conor McBride’s Strachclyde Haskell Extension
[SHE]. For example:

type family F :: Bool -> *
type instance F True = Int
type instance F False = Char

11

mailto: libraries at haskell.org
http://haskell.org/haskellwiki/Haskell_Platform
http://hackage.haskell.org/platform/
http://trac.haskell.org/haskell-platform/
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://trac.haskell.org/haskell-platform/wiki/AddingPackages

◦ Second, GHC will support full kind polymor-
phism. For example, consider the following data
type declaration

data T f a = MkT (f a)
-- T :: forall k. (k -> *) -> k -> *

GHC will now infer the polymorphic kind
signature above, rather that "defaulting" to
T :: (*->*) -> * -> * as Haskell98 does.

These new kind-system developments are described
in "Giving Haskell a promotion" [KindPolymor-
phism]. Julien Cretin and José Pedro Magalhães
have done all the implementation.

Constraint kinds. Max Bolingbroke has implemented
another extension to GHC’s kind system, by adding
the kind Constraint that classifies type constraints.
This turns out to be a rather neat way to imple-
ment all the joy of Tom Schrĳvers and Dominic Or-
chard’s paper "Haskell type constraints unleashed"
[Unleashed]. For example, you can now say

type Stringy a = (Show a, Read a)
f :: Stringy a => a -> a
f = read . show

Here, the constraint (Stringy a) is a synonym for
(Show a, Read a). More importantly, by combin-
ing with associated types, we can write some funda-
mentally new kinds of programs:

class Coll c where
type X a :: Constraint
insert :: X a => a -> c a -> c a

instance Coll [] where
type X a = Eq a
insert x [] = [x]
insert x ys0@(y:ys)

| x==y = ys0
| otherwise = y : insert x ys

Here X is an associated constraint synonym of the
class Coll. The key point is that different in-
stances can give different definitions to X. The GHC
wiki page describes the design [WikiConstraint], and
Max’s blog posts give more examples [Constraint-
Famlies, ConstraintKind].

Associated type synonym defaults. Haskell lets you
give a default method for the operations of a class.
Associated type synonym defaults let you declare a
default type instance for the associated type syn-
onyms of a class. This feature, implemented by Max
Bolingbroke, nicely fills out a missing design corner.
For example

class C a where
type T a

type T a = [a] -- Default synonym
f :: T a -> a

instance C Int
f (x:xs) = x -- No definition

-- given for T

Since we do not give a definition for T in the in-
stance declaration, it filled in with the default given
in the class declaration, just as if you had written
type T Int = [Int].

Monad comprehensions. After a long absence,
monad comprehensions are back, thanks to
George Giorgidze and his colleagues. With
{-# LANGUAGE MonadComprehensions #-} the
comprehension [f x | x <- xs, x>4] is inter-
preted in an arbitrary monad, rather than being
restricted to lists. Not only that, it also generalises
nicely for parallel/zip and SQL-like comprehensions.
The aforementioned generalisations can be turned
on by enabling the MonadComprehensions extension
in conjunction with the ParallelListComp and
TransformListComp extensions.
Rebindable syntax is fully supported for standard
monad comprehensions with generators and filters.
We also plan to allow rebinding of the parallel/zip
and SQL-like monad comprehension notations.
For further details and usage examples, see the pa-
per "Bringing back monad comprehensions" [Monad-
Comp] at the 2011 Haskell Symposium.

Improved implementation of type constraints. Over
the last six months, Dimitrios and Simon PJ (with
Stephanie Weirich and Brent Yorgey) have figured
out several improvements to the GHC’s type con-
straint solver and its strongly-typed Core language.
The changes to the constraint solver eliminate
hundreds of lines of code, and make it more efficient
as well. The changes to the Core language make
it treat equality constraints uniformly with other
type constraints; this makes the internals vastly
more uniform. These changes are mostly invisible
to programmers, but the changes to Core allow
us to support equality superclasses for the first
time. Details in our paper "Practical aspects of
evidence-based compilation in System FC" [NewFC]

Profiling and hpc overhaul. GHC currently has three
different ways of tracking which pieces of code are
executed: cost-centre profiling, HPC coverage, and
GHCi debugger breakpoints. Each is implemented
in a different, and somewhat ad hoc way. Simon
Marlow has overhauled the whole system, unifiying
the three mechanisms into one. On the way he has
improved the semantics of cost centre stacks, which
should lead to more useful time and space profiles.
The +RTS -xc runtime flag, which displays a stack
backtrace when an exception is thrown, has been

12

greatly improved and should now produce useful in-
formation in most cases (it is still only available when
the program is compiled for profiling, however).

Changes to the way Safe Haskell works
[SafeHaskell]. David Terei has improved the
design of Safe Haskell since the 7.2.1 release. In
particular, it will no longer cause build failures for
users who do not explicitly enable it. The checking
that a package is trusted will only be done now if
the -fpackage-trust flag is present. This allows
package authors to use the Trustworthy pragma as
they please and not worry that a users local package
configuration will cause build failures. Users who
are explicitly using Safe Haskell to construct secure
systems should make use of the -fpackage-trust
flag to maintain the security of the old design. Also
since the 7.2.1 release, the safe status of a module
will now be automatically inferred by Safe Haskell.
These two changes make Safe Haskell easier to
use and push it behind the scenes where it mostly
belongs.

Joining in

We continue to receive some fantastic help from a num-
ber of members from the Haskell community. Amongst
those who have rolled up their sleeves recently are:

◦ Ben Gamari, Karel Gardas and Stephen Blackheath
have been working towards getting a registerised
ARM port working.

◦ Many people, including Sergei Trofimovich, Erik de
Castro Lopo, Joachim Breitner, Thorkil Naur, David
M Peixotto and Ben Lippmeier, have contributed
platform specific fixes for other platforms.

◦ Reiner Pope added Template Haskell support for un-
resolved infix expressions and patterns.

◦ José Pedro Magalhães has replaced the old generics
support with a new design.

◦ Peter Wortmann taught GHC how to compile
Objective-C++ files.

◦ Sam Anklesaria added support for additional .ghci
files.

◦ Mikolaj Konarski and Duncan Coutts have improved
GHC’s event logging.

◦ Geoffrey Mainland improved error messages for un-
terminated quasiquotations.

◦ Johan Tibell implemented a "population count"
primitive, and some other optimisations.

◦ Ross Paterson has fixed some problems with Arrows.

◦ Edward Z. Yang has been improving the RTS.

◦ George Roldugin improved the sync-all tool used by
GHC developers.

◦ Austin Seipp has been improving some of the com-
piler documentation.

◦ Miscellaneous fixes and improvements from Daniel
Fischer, Michal Terepeta and Lennart Kolmodin.

As ever, there is a lot still to do, and if you wait for
us to do something then you may have to wait a long
time. So do not wait; join in!

Other developments

Work continues on improving GHC in various direc-
tions. Active projects we know about include:

Cloud Haskell. The first version of Cloud Haskell has
been released, aiming to bring Erlang-style dis-
tributed actors to Haskell (http://hackage.haskell.
org/package/remote). See also the paper at Haskell
Symposium 2011 [CloudHaskell]. Next, we are work-
ing on expanding the backend to work with HPC
environments.

Parallel GHC project. Microsoft Research is funding a
2-year project to push the real-world use of parallel
Haskell. We are now into the second year of the
project and have some promising results from the
project partners. We have also taken on two new
commercial partner organisations which are inter-
ested in using Cloud Haskell. In addition to helping
the project partners we have been working on par-
allel profiling tools: we made a release of [Thread-
Scope] with new features for profiling programs that
use par sparks. For more details, see the HCAR Par-
allel GHC project entry (→ 5.1.3), and the project
home page [ParallelGhcProject]

Data Parallel Haskell. GHC 7.2 includes rudimentary
support for Data Parallel Haskell — just enough for a
little experimentation and to run simple benchmarks.
We are working on significantly improving this for
GHC 7.4. In particular, we aim to support the use
of basic types and classes from the standard Prelude
(replacing the minimalistic mock Prelude that DPH
programs had to use so far), and we are working on
drastically improved space and time complexity for
shared data structures in nested parallel programs,
such as the Barnes-Hut n-body algorithm.
Binary distributions of GHC 7.x require the installa-
tion of separate Data Parallel Haskell libraries from
Hackage — follow the instructions in the wiki docu-
mentation [DPH].
Moreover, we are working at the third revision of the
regular parallel array library [Repa]. It uses indexed
types to distinguish multiple array representations,
which helps to guide users to write high-performance

13

http://hackage.haskell.org/package/remote
http://hackage.haskell.org/package/remote

code. To see it in action, check out Ben Lippmeier’s
recent demo [Quasicrystals].

Contracts. Work on adding contracts to Haskell, along
the lines of Dana Xu’s thesis, but using a first order
logic theorem prover to check contract satisfaction
(with Koen Claessen, Dimitrios Vytiniotis, Charles-
Pierre Astolfi, and Nathan Collins).

Liquid types. Ranjit Jhala is working on adding liquid
types to GHC. Liquid Types are a form of (depen-
dent) refinement types that use predicate abstrac-
tion and SMT solvers to carry out type inference.
A prototype has been built that works for a subset
of the language (without typeclasses) [Liquid]. Cur-
rently, we are working on ways of handling at the
basic typeclasses (Ord, Num etc.), and building a
web-interface.

Vector instructions. Paul Monday and Geoff Main-
land are extending the code generator to exploit vec-
tor instructions (with Peter Braam, Duncan Coutts)
[VectorInstructions].

A modular package language for Haskell (with
Derek Dreyer and Scott Kilpatrick) [Packages].

Bibliography

◦ [CloudHaskell] Towards Haskell in the Cloud, Jeff
Epstein, Andrew P. Black, and Simon Peyton Jones,
Haskell Symposium 2011, http://research.microsoft.
com/~simonpj/papers/parallel/remote.pdf

◦ [ConstraintFamilies] Constraint families, Max Bol-
ingbroke, blog post, http://blog.omega-prime.co.uk/
?p=61

◦ [ConstraintKind] Constraint kinds for GHC, Max
Bolingbroke, blog post, http://blog.omega-prime.co.
uk/?p=127

◦ [DPH] Data Parallel Haskell documentation, DPH
Team, http://haskell.org/haskellwiki/GHC/Data_
Parallel_Haskell

◦ [KindPolymorphism] Giving Hasell a promotion,
Brent Yorgey, Stephanie Weirich, Julien Cretin,
Dimitrios Vytiniotis, and Simon Peyton Jones, sub-
mitted to TLDI’12, http://research.microsoft.com/
~simonpj/papers/ext-f/

◦ [Liquid] Liquid types home page, Ranjit Jhala, http:
//goto.ucsd.edu/~rjhala/liquid

◦ [MonadComp] Bringing back monad comprehen-
sions, George Giorgidze, Torsten Grust, Nils
Schweinsberg, and Jeroen Weĳers, Haskell Sym-
posium 2011, http://db.inf.uni-tuebingen.de/files/
giorgidze/haskell2011.pdf

◦ [NewFC] Practical aspects of evidence-based compi-
lation in System FC, Vytiniotis and Peyton Jones, re-
jected by ICFP 2011, http://research.microsoft.com/
~simonpj/papers/ext-f/

◦ [Packages] A package language for Haskell, GHC
wiki page, http://hackage.haskell.org/trac/ghc/wiki/
PackageLanguage

◦ [ParallelGhcProject] The Parallel GHC Project
home page, http://www.haskell.org/haskellwiki/
Parallel_GHC_Project

◦ [Quasicrystals] Quasicrystals Demo, Ben Lippmeier,
http://youtu.be/v_0Yyl19fiI

◦ [Repa] Repa: Regular, shape-polymorphic par-
allel arrays in Haskell, http://hackage.haskell.org/
package/repa

◦ [SafeHaskell] The Safe Haskell home page,
David Terei, http://www.scs.stanford.edu/~davidt/
safehaskell.html

◦ [SHE] The Strathclyde Haskell Enhancement,
Conor McBride, 2010, http://personal.cis.strath.ac.
uk/~conor/pub/she/

◦ [ThreadScope] Spark Visualization in Thread-
Scope, Duncan Coutts, Haskell Implementors
workshop 2011, http://www.haskell.org/haskellwiki/
HaskellImplementorsWorkshop/2011/Coutts

◦ [Unleashed] Haskell type constraints unleashed,
Tom Schrĳvers and Dominic Orchard, FLOPS
2010, http://tomschrĳvers.blogspot.com/2009/11/
haskell-type-constraints-unleashed.html

◦ [VectorInstructions] Using SIMD instructions via the
LLVM back end, GHC wiki page, http://hackage.
haskell.org/trac/ghc/wiki/SimdLlvm

◦ [WikiConstraint] Adding kind Constraint, GHC
wiki page, http://hackage.haskell.org/trac/ghc/wiki/
KindFact

3.3 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: many others
Status: active development

What is new? UHC is the Utrecht Haskell Compiler,
supporting almost all Haskell98 features and most of
Haskell2010, plus experimental extensions. The cur-
rent focus is on the Javascript backend.

14

http://research.microsoft.com/~simonpj/papers/parallel/remote.pdf
http://research.microsoft.com/~simonpj/papers/parallel/remote.pdf
http://blog.omega-prime.co.uk/?p=61
http://blog.omega-prime.co.uk/?p=61
http://blog.omega-prime.co.uk/?p=127
http://blog.omega-prime.co.uk/?p=127
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://goto.ucsd.edu/~rjhala/liquid
http://goto.ucsd.edu/~rjhala/liquid
http://db.inf.uni-tuebingen.de/files/giorgidze/haskell2011.pdf
http://db.inf.uni-tuebingen.de/files/giorgidze/haskell2011.pdf
http://research.microsoft.com/~simonpj/papers/ext-f/
http://research.microsoft.com/~simonpj/papers/ext-f/
http://hackage.haskell.org/trac/ghc/wiki/PackageLanguage
http://hackage.haskell.org/trac/ghc/wiki/PackageLanguage
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://youtu.be/v_0Yyl19fiI
http://hackage.haskell.org/package/repa
http://hackage.haskell.org/package/repa
http://www.scs.stanford.edu/~davidt/safehaskell.html
http://www.scs.stanford.edu/~davidt/safehaskell.html
http://personal.cis.strath.ac.uk/~conor/pub/she/
http://personal.cis.strath.ac.uk/~conor/pub/she/
http://www.haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Coutts
http://www.haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Coutts
http://tomschrijvers.blogspot.com/2009/11/haskell-type-constraints-unleashed.html
http://tomschrijvers.blogspot.com/2009/11/haskell-type-constraints-unleashed.html
http://hackage.haskell.org/trac/ghc/wiki/SimdLlvm
http://hackage.haskell.org/trac/ghc/wiki/SimdLlvm
http://hackage.haskell.org/trac/ghc/wiki/KindFact
http://hackage.haskell.org/trac/ghc/wiki/KindFact

What do we currently do and/or has recently been
completed? As part of the UHC project, the follow-
ing (student) projects and other activities are underway
(in arbitrary order):

◦ Tom Harper (3 month summer stay): Implementing
Fusion.

◦ Jurriën Stutterheim and others: building web appli-
cations with the Javascript backend.

◦ Jeroen Bransen (PhD): “Incremental Global Analy-
sis”.

◦ Jan Rochel (PhD): “Realising Optimal Sharing”,
based on work by Vincent van Oostrum and Clemens
Grabmayer.

◦ Arie Middelkoop (PhD, defense Jan 2012): type sys-
tem formalization and automatic generation from
type rules, in particular the Attribute Grammar vari-
ants Ruler-Core for supporting more complex type
system implementations.

◦ Jeroen Fokker: GRIN backend, whole program anal-
ysis.

◦ Doaitse Swierstra: parser combinator library.

◦ Atze Dĳkstra: overall architecture, type system,
bytecode interpreter + java + javascript backend,
garbage collector.

Background UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.4.1).

Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ UHC Blog: http://utrechthaskellcompiler.wordpress.
com

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

◦ Parser combinators: http://www.cs.uu.nl/wiki/HUT/
ParserCombinators

◦ Shuffle: http://www.cs.uu.nl/wiki/Ehc/Shuffle
◦ Ruler: http://www.cs.uu.nl/wiki/Ehc/Ruler

3.4 Specific Platforms

3.4.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of contrib-
utors who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both i386 and amd64) start-
ing from GHC 6.12.1, hence one can always download
vanilla binary distributions for each recent release.
We have a developer repository for Haskell ports

that features around 255 ports of many popular Cabal
packages. The updates committed to this repository
are continuously integrated to the official ports tree
on a regular basis. Though the FreeBSD Ports Col-
lection already has many important Haskell software:
GHC 7.0.3, Haskell Platform 2011.2.0.1, Gtk2Hs 0.12,
XMonad 0.10, Pandoc 1.8, Darcs 2.5, and Snap 0.5.2 –
that is going to be also incorporated into the upcoming
FreeBSD 9.0-RELEASE.
If you find yourself interested in helping us or simply

want to use the latest versions of Haskell programs on
FreeBSD, check out our page at the FreeBSD wiki (see
below) where you can find all important pointers and
information required for use, contact, or contribution.

Further reading

http://wiki.FreeBSD.org/Haskell

3.4.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. In total, we maintain 390
source packages, an increase of 80% over the number
from the last report.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with the profiling
data and the documentation packages register with the
system-wide index.
The transition to GHC 7, which involved renaming

all packages, is finished. The stable Debian release

15

http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
http://utrechthaskellcompiler.wordpress.com
http://utrechthaskellcompiler.wordpress.com
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/Ehc/Shuffle
http://www.cs.uu.nl/wiki/Ehc/Ruler
http://wiki.FreeBSD.org/Haskell

(“squeeze”) provides the Haskell Platform 2010.1.0.0,
Debian testing contains 2011.2.0.1 and in unstable we
are currently staging the to-be released 2011.3.0.0.
Other noteworthy additions to Haskell on Debian are
the yesod packages and a port of GHC to the 64bit
mainframe architecture “s390x”.

Further reading

http://wiki.debian.org/Haskell

3.4.3 Haskell in Gentoo Linux

Report by: Sergei Trofimovich

Gentoo Linux currently officially supports GHC 7.0.4
and GHC 6.12.3 on x86, amd64, sparc, alpha and some
arms.
The full list of packages available through the offi-

cial repository can be viewed at http://packages.gentoo.
org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.
There is also an overlay which contains almost 700

extra unofficial and testing packages. Thanks to the
Haskell developers using Cabal and Hackage (→ 6.8.1),
we have been able to write a tool called “hackport”
(initiated by Henning Günther) to generate Gentoo
packages with minimal user intervention. Notable
packages in the overlay include the latest version of
the Haskell Platform (→ 3.1) as well as the latest 7.2.1
release of GHC, as well as popular Haskell packages
such as pandoc (→ 8.2.2), gitit (http://www.haskell.
org/communities/11-2010/html/report.html#sect5.2.5),
yesod (→ 5.2.6) and others.
The team made considerable effort to port a lot of

popular packages to ghc-7.2. There is a lot of patches
sitting in overlay and waiting for upstream inclusion
though.
More information about the Gentoo Haskell Overlay

can be found at http://haskell.org/haskellwiki/Gentoo.
It is available via the Gentoo overlay manager “lay-
man”. If you choose to use the overlay, then any prob-
lems should be reported on IRC (#gentoo-haskell
on freenode), where we coordinate development, or
via email 〈haskell@gentoo.org〉 (as we have more peo-
ple with the ability to fix the overlay packages that
are contactable in the IRC channel than via the bug
tracker).
As always we are more than happy for (and in fact

encourage) Gentoo users to get involved and help us
maintain our tools and packages, even if it is as simple
as reporting packages that do not always work or need
updating: with such a wide range of GHC and package
versions to co-ordinate, it is hard to keep up! Please
contact us on IRC or email if you are interested!

For concrete tasks see our perpetual TODO
list: https://github.com/gentoo-haskell/gentoo-haskell/
blob/master/projects/doc/TODO.rst

3.4.4 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Lakshmi Narasimhan, Ben Boeckel, Michel

Salim, Shakthi Kannan, Bryan O’Sullivan,
and others

Status: ongoing

The Fedora Haskell SIG is an effort to provide good
support for Haskell in Fedora.
Fedora 16 is shipping early in November with ghc-

7.0.4 and haskell-platform-2011.2.0.1, and updates to
many of the packages. Newly added packages this
time include leksah, cabal-dev, cab, and over 25 new
libraries.
There are some packaging improvements:
◦ All Haskell interdependencies are now purely auto-

matically generated, with ABI hashes.
◦ Profiling subpackages for libraries have been merged

into the library development subpackages to simplify
packaging, installation, and maintenance: so there
are no prof subpackages in Fedora 16.

These changes have also been partially backported to
Fedora 14 and 15.
Fedora’s Haskell packages have been ported to some

new architectures:
◦ I forgot to mention in the last report that Fabio M. Di

Nitto had ported most of Fedora 15 Haskell Platform
to sparcv9.

◦ Jiri Skala has ported most of Fedora 15’s Haskell
Platform to ppc64, in addition to the existing ppc
port.

◦ I am also excited that Henrik NordstrÃűm has been
working on porting Fedora 15’s ghc-7.0.2 to armv7hl
and armv5tel.

From these ports have also followed various ghc boot-
strapping packaging improvements.
There are currently 139 Haskell source packages in

Fedora. Note the Fedora package version numbers
listed on the Hackage website refer to the packages for
the latest stable Fedora release.
In the Fedora 17 development cycle it is planned to

update ghc to 7.4 and continue work on packaging the
Snap and Yesod web frameworks.
Feedback from users and packaging contributions to

Fedora Haskell are always welcome: join us on #fedora-
haskell on Freenode IRC and our mailing-list.

Further reading

◦ Homepage: http://fedoraproject.org/wiki/SIGs/
Haskell

16

http://wiki.debian.org/Haskell
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://www.haskell.org/communities/11-2010/html/report.html#sect5.2.5
http://www.haskell.org/communities/11-2010/html/report.html#sect5.2.5
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/SIGs/Haskell

◦ Fedora 16 Haskell release-notes: http://fedoraproject.
org/wiki/Documentation_Development_Haskell_
Beat

◦ Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig?tg_paginate_limit=0

◦ Dependency graphs: https://fedoraproject.org/wiki/
Haskell_package_interdependencies

3.5 Fibon Benchmark Tools & Suite

Report by: David M. Peixotto
Status: stable

Fibon is a set of tools for running and analyzing bench-
mark programs in Haskell. It contains an optional set
of benchmarks from various sources including several
programs from the Hackage repository.

The Fibon benchmark tools draw inspiration from
both the venerable nofib Haskell benchmark suite and
the industry standard SPEC benchmark suite. The
tools automate the tedious parts of benchmarking:
building the benchmark in a sand-boxed directory, run-
ning the benchmark multiple times, verifying correct-
ness, collecting statistics, and summarizing results.

Benchmarks are built using the standard cabal
tool. Any program that has been cabalized can be
added as benchmark simply by specifying some meta-
information about the program inputs and expected
outputs. Fibon will automatically collect execution
times for benchmarks and can optionally read the
statistics output by the GHC runtime. The program
outputs are checked to ensure correct results making
Fibon a good option for testing the safety and perfor-
mance of program optimizations. The Fibon tools are
not tied to any one benchmark suite. As long as the
correct meta-information has been supplied, the tools
will work with any set of programs.

As a real life example of a complete benchmark
suite, Fibon comes with its own set of benchmarks
for testing the effectiveness of compiler optimizations
in GHC. The benchmark programs come from Hack-
age, the Computer Language Shootout, Data Parallel
Haskell, and Repa. The benchmarks were selected to
have minimal external dependencies so they could be
easily used with a version of GHC compiled from the
latest sources. The following figure shows the perfor-
mance improvement of GHC’s optimizations on the Fi-
bon benchmark suite.

This year, the Fibon benchmark suite has been up-
dated to include a Train problem size that can be used
for feedback directed optimization work. The Ref prob-
lem size has been increased so that the running time
of a benchmark program is comparable to the running
time when using the ref size of the SPEC benchmarks.
With this update a single benchmark will typically take
10 − 30 minutes to run depending on the power of
the computer hardware. See the README file for
more information on benchmark size and configuring
the benchmarks to finish in an acceptable amount of
time.
The Fibon tools and benchmark suite are ready for

public consumption. They can be found on github
at the url indicated below. People are invited to use
the included benchmark suite or just use the tools and
build a suite of their own creation. Any improvements
to the tools or additional benchmarks are most wel-
come. Benchmarks have been used to tell lies about
performance for many years, so join in the fun and
keep on fibbing with Fibon.

Further reading

◦ https://github.com/dmpots/fibon
◦ https://github.com/dmpots/fibon-benchmarks
◦ https://github.com/dmpots/fibon-config

17

http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
http://fedoraproject.org/wiki/Documentation_Development_Haskell_Beat
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig?tg_paginate_limit=0
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig?tg_paginate_limit=0
https://fedoraproject.org/wiki/Haskell_package_interdependencies
https://fedoraproject.org/wiki/Haskell_package_interdependencies
http://hackage.haskell.org/packages/hackage.html
http://hackage.haskell.org/packages/hackage.html
http://shootout.alioth.debian.org
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://hackage.haskell.org/package/repa
https://github.com/dmpots/fibon
https://github.com/dmpots/fibon-benchmarks
https://github.com/dmpots/fibon-config

4 Related Languages

4.1 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell, Andreas Abel, and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
At the time of writing version 2.3.0 is about to be

released, with the following new features (among oth-
ers):

◦ Instance arguments (Dominique Devriese).

◦ A JavaScript backend (Alan Jeffrey).

◦ More optimizations in the Epic backend (Olle
Fredriksson and Daniel Gustafsson).

◦ Pattern matching, multi-clause lambdas (Fredrik
Nordvall Forsberg, Karim Kanso and Noam Zeil-
berger).

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda

Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (→ 4.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Equality incorporates eta-
expansion at record and singleton types. Function ar-
guments can be declared as static; such arguments are
discarded during equality checking and compilation.

Recent features include bounded size quantification
and destructor patterns for a more general handling of
coinduction. In the long run, I plan to evolve Mini-
Agda into a core language for Agda with termination
certificates.
MiniAgda is available as Haskell source code and

compiles with GHC > 6.12.x.

Further reading

http://www2.tcs.ifi.lmu.de/~abel/miniagda/

4.3 Clean

Report by: Thomas van Noort
Participants: Rinus Plasmeĳer, John van Groningen
Status: active development

Clean is a general purpose, state-of-the-art, pure and
lazy functional programming language designed for
making real-world applications. Here is a short list of
notable features:

◦ Clean is a lazy, pure, and higher-order functional pro-
gramming language with explicit graph-rewriting se-
mantics.

◦ Although Clean is by default a lazy language, one can
smoothly turn it into a strict language to obtain op-
timal time/space behavior: functions can be defined
lazy as well as (partially) strict in their arguments;
any (recursive) data structure can be defined lazy as
well as (partially) strict in any of its arguments.

◦ Clean is a strongly typed language based on an ex-
tension of the well-known Milner/Hindley/Mycroft
type inferencing/checking scheme including the com-
mon higher-order types, polymorphic types, abstract
types, algebraic types, type synonyms, and existen-
tially quantified types.

◦ Clean has pattern matching, guards, list comprehen-
sions, array comprehensions and a lay-out sensitive
mode.

◦ Clean supports type classes and type constructor
classes to make overloaded use of functions and op-
erators possible.

◦ The uniqueness typing system in Clean makes it pos-
sible to develop efficient applications. In particular,
it allows a refined control over the single-threaded
use of objects which can influence the time and space
behavior of programs. Uniqueness typing can also be
used to incorporate destructive updates of objects

18

http://wiki.portal.chalmers.se/agda/
http://www2.tcs.ifi.lmu.de/~abel/miniagda/

within a pure functional framework. It allows de-
structive transformation of state information and en-
ables efficient interfacing to the nonfunctional world
(to C but also to I/O systems like X-Windows) of-
fering direct access to file systems and operating sys-
tems.

◦ Clean offers records and (destructively updateable)
arrays and files.

◦ The Clean type system supports dynamic typing, al-
lowing values of arbitrary types to be wrapped in a
uniform package and unwrapped via a type annota-
tion at run time. Using dynamics, code and data
can be exchanged between Clean applications in a
flexible and type-safe way.

◦ Clean provides a built-in mechanism for generic func-
tions.

◦ There is a Clean IDE and there are many libraries
available offering additional functionality.

◦ There is (experimental) support for the exchange
of sources between Clean and Haskell, please see
http://www.haskell.org/communities/11-2010/html/
report.html#sect3.6 for more information and future
plans.

Future plans

◦ We are currently working on the generic function
mechanism: we are improving efficiency and includ-
ing support for generic dependencies, the latter al-
lows us to use arbitrary generic functions on the type
parameters of a generic type argument.

◦ Clean is already available for 32-bit and 64-bit Win-
dows and Linux, we are currently working on 64-bit
Mac support.

Further reading

◦ http://wiki.clean.cs.ru.nl/
◦ http://wiki.clean.cs.ru.nl/Download_Clean

4.4 Timber

Report by: Johan Nordlander
Participants: Björn von Sydow, Andy Gill, Magnus

Carlsson, Per Lindgren, Thomas Hallgren,
and others

Status: actively developed

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect4.5.

4.5 Disciple

Report by: Ben Lippmeier
Participants: Erik de Castro Lopo
Status: experimental, active development

Disciple is a dialect of Haskell that uses strict evalua-
tion as the default and supports destructive update of
arbitrary data. Many Haskell programs are also Dis-
ciple programs, or will run with minor changes. In
addition, Disciple includes region, effect, and closure
typing, and this extra information provides a handle
on the operational behaviour of code that is not avail-
able in other languages. Our target applications are the
ones that you always find yourself writing C programs
for, because existing functional languages are too slow,
use too much memory, or do not let you update the
data that you need to.
Our compiler (DDC) is still in the “research pro-

totype” stage, meaning that it will compile programs
if you are nice to it, but expect compiler panics and
missing features. You will get panics due to ungraceful
handling of errors in the source code, but valid pro-
grams should compile ok. The test suite includes a few
thousand-line graphical demos, like a ray-tracer and an
n-body collision simulation, so it is definitely hackable.
Over the last six months we continued working to-

wards mechanising the metatheory of the DDC core
language in Coq. We’ve finished Progress and Preser-
vation for System-F2 with mutable algebraic data, and
are now looking into proving contextual equivalence of
rewrites in the presence of effects. Based on this experi-
ence, we’ve also started on an interpreter for a cleaned
up version of the DDC core language. We’ve taken the
advice of previous paper reviewers and removed depen-
dent kinds, moving witness expressions down to level
0 next to value expressions. In the resulting language,
types classify both witness and value expressions, and
kinds classify types. We’re also removing more-than
constraints on effect and closure variables, along with
dangerous type variables (which never really worked).
All over, it’s being pruned back to the parts we under-
stand properly, and the removal of dependent kinds will
make mechanising the metatheory easier. Writing an
interpreter for the core language also gets us a parser
for it, which we will need for performing cross module
inlining in the compiler proper.

Further reading

http://disciple.ouroborus.net

19

http://www.haskell.org/communities/11-2010/html/report.html#sect3.6
http://www.haskell.org/communities/11-2010/html/report.html#sect3.6
http://wiki.clean.cs.ru.nl/
http://wiki.clean.cs.ru.nl/Download_Clean
http://www.haskell.org/communities/11-2010/html/report.html#sect4.5
http://www.haskell.org/communities/11-2010/html/report.html#sect4.5
http://disciple.ouroborus.net

5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Oleg Lobachev, Rita Loogen,

Bernhard Pickenbrock
in Copenhagen: Jost Berthold

Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s main constructs are process abstractions and

process instantiations. The Eden logo

consists of four λ turned in such a way that they form
the Eden instantiation operator #05. Higher-level co-
ordination is achieved by defining skeletons, ranging
from a simple parallel map to sophisticated master-
worker schemes. They have been used to parallelize a
set of non-trivial programs.
Eden’s interface supports a simple definition of arbi-

trary communication topologies using Remote Data. A
PA-monad enables the eager execution of user defined
sequences of Parallel Actions in Eden.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Tutorial

Rita Loogen: Eden - Parallel Functional Programming
in Haskell, Draft Lecture Notes, CEFP Summer School,
Budapest, Hungary, June 2011.
(see also: http://www.mathematik.uni-marburg.de/
~eden/?content=cefp)

Implementation

The current release of the Eden compiler based on GHC
6.12.3 is available on our web pages, see http://www.
mathematik.uni-marburg.de/~eden. A release based on
GHC 7 is in preparation. It will include a shared mem-
ory mode which does not depend on a middleware like
MPI but which nevertheless uses multiple independent
heaps (in contrast to GHC’s threaded runtime system)
connected by Eden’s parallel runtime system. An Eden
variant of GHC’s head version is available in a reposi-
tory on github, see https://github.com/jberthold/ghc.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visual-
isation of Eden program runs on various levels. Activ-
ity profiles are produced for processing elements (ma-
chines), Eden processes and threads. In addition mes-
sage transfer can be shown between processes and ma-
chines. EdenTV has been written in Haskell and is
freely available on the Eden web pages.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ Oleg Lobachev: Implementation and Evaluation
of Algorithmic Skeletons: Parallelisation of Com-
puter Algebra Algorithms, Ph.D. thesis, Philipps-
Universität Marburg, Germany, October 2011.

◦ Rita Loogen: Eden - Parallel Functional Program-
ming in Haskell, Draft Lecture Notes, CEFP Sum-
mer School, Budapest, Hungary, June 2011.

◦ B. Pickenbrock: A Multicore Implementation of
Eden, Bachelor thesis, Philipps-Universität Mar-
burg, 2011 (in German).

◦ Jost Berthold, Andrzej Filinski, Fritz Henglein, Ken
Friis Larsen, Mogens Steffensen, and Brian Vinter:
Functional High Performance Financial IT — The
HIPERFIT Research Center in Copenhagen, Trends
in Functional Programming (TFP’11) — Revised Se-
lected Papers, Springer LNCS (to appear).

◦ J. Berthold: Orthogonal Serialisation for Haskell,
22nd Symposium on Implementation and Applica-
tion of Functional Languages (IFL 2010), Springer
LNCS 6647, pages 38-53, 2011.

◦ C. Brown, H.-W. Loidl, J. Berthold, and K. Ham-
mond: Improve your CASH flow: The Computer Al-
gebra SHell, In 22nd Symposium on Implementation
and Application of Functional Languages (IFL 2010),
Springer LNCS 6647, pages 169-184, 2011.

20

http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden
http://www.mathematik.uni-marburg.de/~eden
https://github.com/jberthold/ghc

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.1.2 GpH — Glasgow Parallel Haskell

Report by: Hans-Wolfgang Loidl
Participants: Phil Trinder, Patrick Maier, Mustafa

Aswad, Malak Aljabri, Robert Stewart
(Heriot-Watt University); Kevin

Hammond, Vladimir Janjic, Chris Brown
(St Andrews University)

Status: ongoing

Status

A distributed-memory, GHC-based implementation of
the parallel Haskell extension GpH and of a fundamen-
tally revised version of the evaluation strategies ab-
straction is available in a prototype version. In cur-
rent research an extended set of primitives, support-
ing hierarchical architectures of parallel machines, and
extensions of the runtime-system for supporting these
architectures are being developed.

System Evaluation and Enhancement

◦ Both GpH and Eden (→ 5.1.1) parallel Haskells are
being used for parallel language research and in the
SCIEnce and HPC-GAP projects (see below).

◦ We are extending the set of primitives for parallelism
to better control data locality.

◦ We are revising the evaluation strategies abstraction
for improved genericity.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universität Mar-
burg.

GpH Applications

As part of the SCIEnce EU FP6 I3 project (026133)
(April 2006 – December 2011) and the HPC-GAP
project (October 2009 – September 2013) we use Eden
and GpH as middleware to provide access to compu-
tational Grids from Computer Algebra (CA) systems,
including GAP, Maple MuPad and KANT. We have
developed and released SymGrid-Par, a Haskell-side
infrastructure for orchestrating heterogeneous compu-
tations across high-performance computational Grids.
Based on this infrastructure we have developed a range
of domain-specific parallel skeletons for parallelising
representative symbolic computation applications. We
are currently extending SymGrid-Par with support
for fault-tolerance, targeting massively parallel high-
performance architectures.
In recent work we have developed and released a

GHCi-based computer algebra shell (CASH) that gives

direct access to computer algebra functionality, pro-
vided by an SCSCP server, and enabling easy paral-
lelism on the Haskell side.

Implementations

The latest GUM implementation of GpH is built on
GHC 6.12, using either PVM or MPI as communica-
tions library. It implements a virtual shared memory
abstraction over a collection of physically distributed
machines. At the moment our main hardware plat-
forms are Intel-based Beowulf clusters of multicores.
We plan to connect several of these clusters into a wide-
area, hierarchical, heterogenous parallel architecture.

Further reading

http://www.macs.hw.ac.uk/~dsg/gph/

Contact

〈gph@macs.hw.ac.uk〉

5.1.3 Parallel GHC project

Report by: Eric Kow
Participants: Duncan Coutts, Andres Löh, Nicolas Wu,

Mikolaj Konarski
Status: active

Microsoft Research is funding a 2-year project to pro-
mote the real-world use of parallel Haskell. The project
started in November 2010, with four industrial part-
ners, and consulting and engineering support from
Well-Typed (→ 9.1). Each organisation is working
on its own particular project making use of parallel
Haskell. The overall goal is to demonstrate successful
serious use of parallel Haskell, and along the way to
apply engineering effort to any problems with the tools
that the organisations might run into.
The participating organisations are working on a di-

verse set of complex real world problems:

◦ Dragonfly (New Zealand): Hierarchical Bayesian
Modeling

◦ Los Alamos National Laboratory (USA): high per-
formance Monte Carlo algorithms to model the flow
of radiation and other physical phenomena

◦ Willow Garage Inc. (USA): Distributed Rigid Body
dynamics in ROS (Robot Operating System) on clus-
ters

◦ IĲ Innovation Institute Inc. (Japan): network
servers handling a massive number of concurrent con-
nections

21

http://www.mathematik.uni-marburg.de/~eden
http://www.macs.hw.ac.uk/~dsg/gph/
mailto: gph at macs.hw.ac.uk

Since the last report, the Parallel GHC project has
been joined by two new industrial partners, the re-
search and development group of Spanish telecoms
company Telefonica, and VETT a UK-based payment
processing company. We are excited to be working with
the teams at Telefonica I+D and VETT. We hope to
making good use of Cloud Haskell with these partners.
Meanwhile, there has been a lot of work in docu-

menting and presenting the work done in the project
to the world. The team at Los Alamos National Labo-
ratory have presented to their colleagues their work on
high performance Monte Carlo simulations using paral-
lel Haskell, now published under in the report LA-UR
11-0341. Duncan Coutts presented our recent work on
ThreadScope at the Haskell Implementors Workshop in
Tokyo (23 Sep). He talked about the new spark visual-
isation feature which shows a graphical representation
of spark creation and conversion statistics.
The project has also inspired some interesting write-

ups from project members working on the side. Bernie
Pope and Dmitry Astapov wrote an article for the re-
cent Monad Reader special edition on parallelism and
concurrency. In their article, Bernie and Dmitry dis-
cuss the Haskell MPI binding developed within the con-
text of this project. Kazu Yamamoto wrote an article
discusses the latest version of the high-performance web
server Mighttpd, particularly how it takes advantage of
the new IO manager in GHC 7.
In addition to documentation, the project has also

made a few software releases

◦ ThreadScope (0.2.0), with a new spark profiling vi-
sualisation, bookmarks, and other enhancements

◦ Gtk2Hs (0.12.1), adding GHC 7.2 compatibility,

◦ ghc-events (0.3.0.1), adding support for spark events
(GHC 7.3 needed for this)

Finally, we have completed a pure Haskell imple-
mentation of the "Modified Additive Lagged Fibonacci"
random number generator. This generator is attractive
for use in Monte Carlo simulations because it is split-
table and has good statistical quality, while providing
high performance. The LFG implementation will be
released on Hackage when it has undergone more ex-
tensive quality testing.

5.2 Haskell and the Web

5.2.1 WAI

Report by: Greg Weber
Status: stable

The Web Application Interface (WAI) is an inter-
face between Haskell web applications and Haskell web
servers. By targeting the WAI, a web framework or web

application gets access to multiple deployment plat-
forms. Platforms in use include CGI, the Warp web
server, and desktop webkit.
WAI is also a platform for sharing code between web

applications and web frameworks through WAI middle-
ware and WAI applications. WAI middleware can in-
spect and transform a request, for example by automat-
ically gzipping a response or logging a request. WAI
applications can send a response themselves. For exam-
ple, wai-app-static is used by Yesod to serve static files.
By targeting WAI, every web framework can share WAI
code instead of wasting effort re-implementing the same
functionality.
WAI is most often used in conjunction with the

Yesod web framework (→ 5.2.6), but it is designed in
a framework independent way. There are some plain
WAI users such as Hoogle (→ 6.2.2). There are also
some new web frameworks that take a completely dif-
ferent approach to web development that use WAI, such
as webwire (FRP) and dingo (GUI).
The WAI standard has proven itself capable for dif-

ferent users and there are no major plans for changes
and improvements. Future ideas include allowing Mid-
dleware to pass along arbitrary data.

Further reading

http://www.yesodweb.com/book/wai

5.2.2 Warp

Report by: Greg Weber

Warp is a high performance, easy to deploy HTTP
server backend for WAI (→ 5.2.1). Since the last
HCAR, Warp has become more battle tested and
can be considered a stable, production ready web
server. Due to the combined use of ByteStrings,
Blaze-Builder, Enumerators, and GHC’s improved I/O
manager, Wai+Warp has consistently proven to be
Haskell’s most performant web deployment option. Its
performance is better than dynamic language alterna-
tives and seems to be in league with industry standards
such as Nginx (benchmarks forthcoming). Warp cur-
rently serves Hoogle (→ 6.2.2), hums, and several pro-
duction Yesod web sites (→ 5.2.6).
“Warp: A Haskell Web Server” by Michael Snoyman

was published in the May/June 2011 issue of IEEE In-
ternet Computing:
◦ Issue page: http://www.computer.org/portal/web/

csdl/abs/mags/ic/2011/03/mic201103toc.htm
◦ PDF: http://steve.vinoski.net/pdf/IC-Warp_a_

Haskell_Web_Server.pdf

22

http://www.yesodweb.com/book/wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf

5.2.3 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Hübel, Sebastian Gauck, Stefan

Schmidt, Sebastian Schröder
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.
◦ The Holumbus Search Engine
◦ The Holumbus Distribution Library
◦ The Holumbus Storage System
◦ The Holumbus MapReduce Framework
The search engine package includes the indexer and

search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customizable result ranking
◦ Index structure designed for distributed search
◦ Git repository containing the current development

version of all packages under https://github.com/
fortytools/holumbus

◦ Distributed building of search indexes

Current Work

There are two running projects. The first, a masters
thesis done by Sebastian Schröder, deals with the de-

velopment of a framework for news systems. The func-
tionality will be like with google news, but the target is
to build news systems for specialized topics. We expect
to finish this project at the end of 2011.
In the second project a specialized search engine for

our university web site has been built. The new as-
pect in this application is a specialized free text search
for appointments, deadlines, announcements, meetings
and other dates. There is a running prototype of this
search engine. We expect to finish this work in Novem-
ber 2011 and then to use this engine as the official
search engine of our university web site.

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Git web interface, cur-
rent status, requirements, and documentation. Timo
Hübel’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/
doc/thesis-searching.pdf. Sebastian Gauck’s thesis
dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the
Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf.

5.2.4 Happstack

Report by: Jeremy Shaw

The Happstack project is focused on leveraging the
unique characteristics of Haskell to create a highly-
scalable, robust, and expressive web framework.
While Happstack is over 7 years old, it is still un-

dergoing active development and new innovation. It is
used in a number of commercial projects as well as the
new Hackage 2 server.
At the core of Happstack is the happstack-server

package which provides a fast, powerful, and easy to
use HTTP server with built-in support for templating
(via blaze-html), request routing, form-decoding, cook-
ies, file-uploads, etc. happstack-server is all you need
to create a simple website.
Happstack can also be extended using a wide range of

libraries which include support for alternative HTML
templating systems, javascript templating and gener-
ation, type-safe URLs, type-safe form generation and
validation, RAM-cloud database persistence, OpenId
authentication, and more.

Future plans

Upcoming innovations we will be exploring in Happ-
stack include:

◦ more powerful and flexible routing combinators

23

http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
https://github.com/fortytools/holumbus
https://github.com/fortytools/holumbus
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf

◦ a new system for processing form data which allows
fine grained enforcement of RAM and disk quotas
and avoids the use of temporary files

◦ better support for reusable web components (such as
components for authentication, threaded comments,
etc)

◦ fundamental architecture changes to the backend
which will allow for greater scalability

We will be blogging about our findings and soliciting
feedback.

Further reading

◦ http://www.happstack.com/
◦ http://www.happstack.com/docs/crashcourse/index.

html
◦ http://happstack.blogspot.com/

5.2.5 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 2 is a simple but
practical Web server in Haskell. It is now working on
Mew.org providing basic web features and CGI (mail-
man and contents search).
Mighttpd version 1 was implemented with two li-

braries c10k and webserver. Since GHC 6 uses select(),
more than 1,024 connections cannot be handled at the
same time. The c10k library gets over this barrier with
the pre-fork technique. The webserver library provides
HTTP transfer and file/CGI handling.
Mighttpd 2 stops using the c10k library be-

cause GHC 7 starts using epoll()/kqueue(). The
file/CGI handling part of the webserver library is re-
implemented as a web application on the wai library
(→ 5.2.1). For HTTP transfer, Mighttpd 2 links the
warp library (→ 5.2.2) which can send a file in zero
copy manner thank to sendfile().
The performance of Mighttpd 2 is now comparable

to highly tuned web servers written in C Please read
“The Monad.Reader” Issue 19 for more information.
You can install Mighttpd 2 (mighttpd2) from Hack-

ageDB.

Further reading

http://www.mew.org/~kazu/proj/mighttpd/en/

5.2.6 Yesod

Report by: Greg Weber
Participants: Michael Snoyman, Luite Stegeman,

Patrick Brisbin
Status: stable

Yesod is a web framework that helps users create highly
scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO. The standard
Warp web server utilizes this to serve more simluta-
neous requests than any other web application server
we know of.
But Yesod is even more focused on scalable devel-

opment. A developer should be able to continue to
productively write code as their application grows and
more team members join, including designers. The key
to achieving this is applying Haskell’s type-safety to an
otherwise traditional MVC REST web framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.

◦ type-safe urls - say goodbye to broken links

◦ no XSS attacks - user submissions are automatically
sanitized

◦ no SQL injection - sql queryies are automatically es-
caped

◦ database queries are always valid - querying is done
in Haskell and uses your schema

◦ valid template variables with proper template
insertion- variable are known at compile time and
treated differently according to their type

When type safety conflicts with programmer produc-
tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 7.4.2). Views
are handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Controllers are invoked
through declarative routing. Their return type shows
which response types are allowed for the request.
Yesod is broken up into many smaller projects and

uses (→ 5.2.1) to communicate with the server. This
means that many of the powerful features of Yesod can
be used in different web development stacks. Recently a
continuation-based FRP web framework called webwire
was released. It uses WAI and many other libraries that
have been produced under Yesod.
Yesod is currently on its 0.9 version. The last HCAR

entry was for the 0.8 version. Since then we have added:

◦ A complete i18n (internationalization) solution.

◦ A drasticaly improved development environment
that automatically recompiles and restarts your ap-
plication

24

http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://happstack.blogspot.com/
http://www.mew.org/~kazu/proj/mighttpd/en/

◦ An overhaul of the form system for more flexibility
and better error messages

◦ An overhaul of the template system for better error
messages

◦ The addition of shakespeare-text for easy string com-
bination

◦ An integrated logging system along with great devel-
opment request logging.

◦ GHC7.2 support while maintaining GHC6 compati-
bility

◦ support for coffeescript (a better javascript) tem-
plates.

◦ Static file serving with automatic caching headers

◦ Support for asynchronous javascript loading.

◦ Runtime configuration settings loaded from YAML
files.

◦ Posix signal handling

We are excited to be near a 1.0 release. 1.0 to us
means API stability and a web framework that gives
developers all the tools they need for productive web
development. But we already have a productive frame-
work in use by the Haskell community, including com-
mercial users.
To see an example site with source code available,

you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.

Further reading

http://www.yesodweb.com/

5.2.7 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.

The Snap Framework has seen two major releases
(0.5 and 0.6) since the last HCAR with a develop-
ment team that continues to grow. Snap 0.6 intro-
duces composable web application components called
snaplets, which allow you to build self-contained pieces
of your web site in a structured way. The snaplet API
simplifies distribution, installation, and configuration,
allowing you to easily add new functionality to your
application in a safe, clean way with very little boil-
erplate. Snap 0.6 also ships with built-in snaplets for
templating, sessions, and authentication.
In September, Gregory Collins gave a CUFP tutorial

on building web applications with Snap. The tutorial
demonstrated how to use long polling JSON calls to
implement a simple web-based chat room. Slides and
source code for his presentation are in the links below.
Since the 0.6 release an independently written

snaplet for accessing HDBC databases has already been
published. We expect to see more of this kind of third-
party development and hope to eventually have a vi-
brant ecosystem of snaplets providing a deep body of
pluggable functionality.

Further reading

◦ Snaplet Tutorial: http://snapframework.com/docs/
tutorials/snaplets-tutorial

◦ Snaplet Directory: http://snapframework.com/
snaplets

◦ CUFP Tutorial Slides: http://gregorycollins.net/
posts/2011/10/01/cufp-tutorial-slides

◦ CUFP Tutorial Source Code: https://github.com/
snapframework/cufp2011

◦ http://snapframework.com

5.2.8 Ivy-web

Report by: James Deng
Status: experimental

Ivy-web is a lightweight web framework, with type safe
routes, based on invertible-syntax, and i18n support,
influenced by Django, Snap, and Yesod.
The features of this web framework:

◦ Type safe routes, specify url-handler mapping in one
place. For example, we want a url mapping for blog
as "/blog/year-month-day" to Handler Int Int Int,
where year, month and day are integers. We can
declare as follows:

data Blog = Blog Int Int Int
deriving (Show,Eq,Typeable)

$ (defineIsomorphisms ’’ Blog)
instance Handler Blog where

get b@(Blog y m d) = do
t ← liftIO getClockTime
return $ responseHtml $ trans′ "blog"

++ show b ++ show t

25

https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/
http://www.yesodweb.com/
http://snapframework.com/docs/tutorials/snaplets-tutorial
http://snapframework.com/docs/tutorials/snaplets-tutorial
http://snapframework.com/snaplets
http://snapframework.com/snaplets
http://gregorycollins.net/posts/2011/10/01/cufp-tutorial-slides
http://gregorycollins.net/posts/2011/10/01/cufp-tutorial-slides
https://github.com/snapframework/cufp2011
https://github.com/snapframework/cufp2011
http://snapframework.com

rBlog = blog < $ > text "/blog/" ∗ >
int < − > int < − > int

We can reverse this mapping from handler value au-
tomatically, thus do not need to construct url string
manually in code, avoiding url errors.

ghci> url (Blog 2011 9 19)
== "/blog/2009-9-19"

◦ Simple yet elegant handler via type class.

class Handler a where
get, post, put, delete, handle :: a → Application
handle a req = case requestMethod req of

m | m ≡ methodGet → get a req
| m ≡ methodPost → post a req
| m ≡ methodPut → put a req
| m ≡ methodDelete → delete a req

otherwise → unimplemented req

◦ Flexible template system, utilize exsisting libraries
such as Blaze-Html and Hastache.

◦ Easy i18n — Wraps around i18n library.

◦ TODO: Auth system — Port from snap-auth.

◦ TODO: Modular app system like Django — The
current route system support modular routes very
well. Need works in modular config and data files
like static template files.

◦ TODO: Persistent library — Improving the DSH li-
brary is my current preference.

The principle of this library is KISS, and "don’t rein-
vent the wheel" by reusing existing state-of-the-art li-
braries.
For the example code listed above, please refer to

https://github.com/lilac/ivy-example/

Recent developments

I have ported ivy-web from wai to snap-server back-
end, and also wrote a sample project correspond to the
starter project of snap. When everything is fine and I
am free, I will upload the code and bump the version
to 0.2.

Further reading

◦ https://github.com/lilac/ivy-web/
◦ http://hackage.haskell.org/package/ivy-web

5.2.9 rss2irc

Report by: Simon Michael
Status: beta

rss2irc is an IRC bot that polls a single RSS or Atom
feed and announces new items to an IRC channel, with
options for customizing output and behavior. It aims
to be an easy to use, dependable bot that does its job
and creates no problems.
rss2irc was published in 2008 by Don Stewart. Simon

Michael took over maintainership in 2009, with the goal
of making a robust low-maintenance bot to stimulate
development in various free/open-source software com-
munities. It is currently used for several full-time bots
including:
◦ hackagebot — announces new hackage releases in

#haskell
◦ hledgerbot — announces hledger commits in #ledger
◦ zwikicommitbot — announces Zwiki commits in

#zwiki
◦ squeaksobot — announces Squeak and Smalltalk-

related Stack Overflow questions in #squeak
◦ squeakquorabot — announces Squeak/Smalltalk-

related Quora questions in #squeak
◦ etoystrackerbot — announces new Etoys bugs in

#etoys
◦ etoysupdatesbot — announces Etoys commits in

#etoys
◦ planetzopebot — announces new planet.zope.org

posts in #zope
The project is available under BSD license from

its home page at http://hackage.haskell.org/package/
rss2irc.
Since last report there has been a great deal of

cleanup and enhancement, but no new release on hack-
age yet due to an xml-related memory leak.

Further reading

http://hackage.haskell.org/package/rss2irc

5.3 Haskell and Games

5.3.1 FunGEn

Report by: Simon Michael
Status: usable; ready for contributors and users

FunGEn (Functional Game Engine) is a BSD-licensed
cross-platform 2D game engine implemented in and for
Haskell, using OpenGL and GLUT. It was created in
2002 by Andre Furtado, updated in 2008 by Simon
Michael and Miloslav Raus, and revived again in 2011,
with a GHC 6.12-tested 0.3 release on Hackage, pre-
liminary haddockification and a new home repo.

26

https://github.com/lilac/ivy-example/
https://github.com/lilac/ivy-web/
http://hackage.haskell.org/package/ivy-web
http://hackage.haskell.org/package/rss2irc
http://hackage.haskell.org/package/rss2irc
http://hackage.haskell.org/package/rss2irc

FunGEn remains the quickest path to building cross-
platform graphical games in Haskell, due to its conve-
nient game framework and widely-available dependen-
cies. It comes with several working examples that are
quite easy to read and build (pong, worms). In the
last six months there has been little activity and a new
maintainer would be welcome.
FunGEn-related discussions most often appear in the

#haskell-game channel on irc.freenode.net.

Further reading

http://darcsden.com/simon/fungen

5.3.2 Nikki and the Robots

Report by: Sönke Hahn
Participants: Joyride Laboratories GbR
Status: alpha, active

Nikki and the Robots is a 2D platformer written in
Haskell and produced by Joyride Laboratories. Nikki,
the protagonist, walks and jumps around the levels
wearing a cute ninja/cat costume. Nikki refrains from
using any tools or weapons, with one exception: The
Robots. These come in various types with different
abilities and can be used by Nikki to solve puzzles,
overcome obstacles, and complete the level tasks. The
game features an integrated level editor.
We made our first binary release of Nikki and the

Robots in April 2011.

Publishing

We are releasing the game and the level editor under
an open source license (LGPL). The included graphics
are published under a permissive Creative Commons
license (cc-by-sa). We are also planning to create a
server that will allow players to upload the levels they
created and download levels from other players. We
hope that a community of coders, level creators, and
players will emerge around the game.
Simultaneously, we are working on episodes that we

plan to sell via the game. These will include new graph-
ics, more robots, a story line, other characters, and
other surprises.

(Just to clarify: The licensing is very permissive.
It allows others to create their own episodes and dis-
tribute them freely or sell them. This would be very
welcome. If anybody is interested in this, we propose
to join forces and sell all our episodes through one sys-
tem.)

Technologies Used

◦ Qt for user input and rendering.

◦ OpenGL as an efficient rendering backend for Qt.
Everything will remain 2D, though - we promise!

◦ Hipmunk, the Haskell bindings to the chipmunk
physics engine.

Getting Involved

The project is still in alpha stage, so there are some
features that are not yet implemented. For some, we
have a clear vision on how to implement them; for oth-
ers, we do not. If you want to get involved, check out
our darcs repo, our launchpad site, and do not hesitate
to contact us.

Further reading

◦ http://joyridelabs.de
◦ http://joyridelabs.de/game/code/
◦ http://joyridelabs.de/game/download/

5.4 Haskell and Compiler Writing

5.4.1 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are
defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be

27

http://darcsden.com/simon/fungen
http://joyridelabs.de
http://joyridelabs.de/game/code/
http://joyridelabs.de/game/download/

specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.3), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects. The
current version is 0.9.39 (October 2011), is extensively
tested, and is available on Hackage. Recently, we
improved the Cabal support and ensured compatibility
with GHC 7.
We are working on the following enhancements of the

UUAG system:

First-class AGs We provide a translation from UUAG
to AspectAG (→ 5.4.2). AspectAG is a library of
strongly typed Attribute Grammars implemented us-
ing type-level programming. With this extension, we
can write the main part of an AG conveniently with
UUAG, and use AspectAG for (dynamic) extensions.
Our goal is to have an extensible version of the UHC.

Ordered evaluation We have implemented a variant of
Kennedy and Warren (1976) for ordered AGs. For
any absolutely non-circular AGs, this algorithm finds
a static evaluation order, which solves some of the
problems we had with an earlier approach for ordered
AGs. A static evaluation order allows the generated
code to be strict, which is important to reduce the
memory usage when dealing with large ASTs. The
generated code is purely functional, does not require
type annotations for local attributes, and the Haskell
compiler proves that the static evaluation order is
correct.

Multi-core evaluation Our algorithm for ordered AGs
identifies statically which subcomputations of chil-
dren of a production are independent and suitable
for parallel evaluation. Together with the strict eval-
uation as mentioned above, which is important when
evaluating in parallel, the generated code can auto-
matically exploit multi-core CPUs. We are currently
evaluating the effectiveness of this approach.

Stepwise evaluation In the recent past we worked on
a stepwise evaluation scheme for AGs. Using this
scheme, the evaluation of a node may yield user-
defined progress reports, and the evaluation to the
next report is considered to be an evaluation step.
By asking nodes to yield reports, we can encode the
parallel exploration of trees and encode breadth-first
search strategies.

We are currently also running a Ph.D. project that in-
vestigates incremental evaluation.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

5.4.2 AspectAG

Report by: Marcos Viera
Participants: Doaitse Swierstra, Wouter Swierstra
Status: experimental

AspectAG is a library of strongly typed Attribute
Grammars implemented using type-level programming.

Introduction

Attribute Grammars (AGs), a general-purpose formal-
ism for describing recursive computations over data
types, avoid the trade-off which arises when building
software incrementally: should it be easy to add new
data types and data type alternatives or to add new
operations on existing data types? However, AGs are
usually implemented as a pre-processor, leaving e.g.
type checking to later processing phases and making
interactive development, proper error reporting and
debugging difficult. Embedding AG into Haskell as
a combinator library solves these problems. Previ-
ous attempts at embedding AGs as a domain-specific
language were based on extensible records and thus
exploiting Haskell’s type system to check the well-
formedness of the AG, but fell short in compactness
and the possibility to abstract over oft occurring AG
patterns. Other attempts used a very generic map-
ping for which the AG well-formedness could not be
statically checked. We present a typed embedding of
AG in Haskell satisfying all these requirements. The
key lies in using HList-like typed heterogeneous collec-
tions (extensible polymorphic records) and expressing
AG well-formedness conditions as type-level predicates
(i.e., typeclass constraints). By further type-level pro-
gramming we can also express common programming
patterns, corresponding to the typical use cases of mon-
ads such as Reader, Writer, and State. The paper
presents a realistic example of type-class-based type-
level programming in Haskell.
We have included support for local and higher-order

attributes. Furthermore, a translation from UUAG to
AspectAG is added to UUAGC as an experimental fea-
ture.

Current Status

We have recently added a combinator agMacro to pro-
vide support for “attribute grammars macros”; a mech-
anism that makes it easy to define attribute computa-
tion in terms of already existing attribute computation.

28

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc

Background

The approach taken in AspectAG was proposed by
Marcos Viera, Doaitse Swierstra, and Wouter Swier-
stra in the ICFP 2009 paper “Attribute Grammars Fly
First-Class: How to do aspect oriented programming
in Haskell”.
The Attribute Grammar Macros combinator is de-

scribed in a technical report: UU-CS-2011-028.

Further reading

http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

5.4.3 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.8.4 experimental released

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect5.4.4.

29

http://www.cs.nott.ac.uk/~gmh/icfp09.html
http://www.cs.uu.nl/research/techreps/UU-CS-2011-028.html
http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG
http://www.haskell.org/communities/11-2010/html/report.html#sect5.4.4
http://www.haskell.org/communities/11-2010/html/report.html#sect5.4.4

6 Development Tools

6.1 Environments

6.1.1 EclipseFP

Report by: JP Moresmau
Participants: B. Scott Michel, Alejandro Serrano,

building on code from Thiago Arrais, Leif
Frenzel, Thomas ten Cate, and others

Status: stable, maintained

EclipseFP is a set of Eclipse plugins to allow working
on Haskell code projects. It features Cabal integra-
tion (.cabal file editor, uses Cabal settings for compi-
lation), and GHC integration. Compilation is done via
the GHC API, syntax coloring uses the GHC Lexer.
Other standard Eclipse features like code outline, fold-
ing, and quick fixes for common errors are also pro-
vided. EclipseFP also allows launching GHCi sessions
on any module including extensive debugging facili-
ties. It uses Scion to bridge between the Java code
for Eclipse and the Haskell APIs. The source code is
fully open source (Eclipse License) and anyone can con-
tribute. Current version is 2.1.0, released in September
2011 and supporting GHC 6.12 and 7.0, and more ver-
sions with additional features are planned. Feedback
on what is needed is welcome! The website has infor-
mation on downloading binary releases and getting a
copy of the source code. Support and bug tracking is
handled through Sourceforge forums.

Further reading

http://eclipsefp.sourceforge.net/

6.1.2 ghc-mod — Happy Haskell Programming on
Emacs

Report by: Kazu Yamamoto
Status: open source, actively developed

ghc-mod is an enhancement of the Haskell mode on

Emacs. It provides the following features:

Completion You can complete a name of keyword,
module, class, function, types, language extensions,
etc.

Code template You can insert a code template ac-
cording to the position of the cursor. For instance,
“module Foo where” is inserted in the beginning of
a buffer.

Syntax check Code lines with error messages are au-
tomatically highlighted thanks to flymake. You can
display the error message of the current line in an-
other window. hlint (→ 6.3.2) can be used instead
of GHC to check Haskell syntax.

Document browsing You can browse the module doc-
ument of the current line either locally or on Hack-
age.

Function type You can display the type/information
of the function on the cursor. (new)

ghc-mod consists of code in Emacs Lisp and a sub-
command in Haskell. The Emacs code executes the
sub-command to obtain information about your Haskell
environment. The sub-command makes use of the GHC
API for that purpose. ghc-mod now supports “hs-
source-dirs” in a cabal file and GHC 7.2.

Further reading

http://www.mew.org/~kazu/proj/ghc-mod/en/

6.1.3 Leksah — The Haskell IDE in Haskell

Report by: Jürgen Nicklisch-Franken
Participants: Hamish Mackenzie

Leksah is a Haskell IDE written in Haskell. It is still
beta quality, but we hope we can publish the 1.0 release
this year.

30

http://eclipsefp.sourceforge.net/
http://www.mew.org/~kazu/proj/ghc-mod/en/

The project has its focus on providing a practical tool
for Haskell development. Leksah has already proved its
usefulness in industrial projects. We have had positive
feedback and are pleased to see that a large number of
people are downloading Leksah and we hope you are
finding it useful.
Leksah is at a critical point in its development, as it

is difficult to bring a project of this size to a success,
considering we are just two developers which work on
it in their rare spare time. If you can spare some time
to work on part of the project, please get in touch by
mailing the Leksah group or log onto IRC #leksah. If
there is something you do not like about Leksah let
us know and we can probably show you where to get
started fixing it.
We believe that Leksah can be an important contri-

bution for Haskell, to make its way from an academic
language to a valuable tool in industry.

Further reading

http://leksah.org/

6.1.4 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect6.1.4.

6.1.5 HaRe — The Haskell Refactorer

Report by: Simon Thompson
Participants: Huiqing Li, Chris Brown, Claus Reinke

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its sixth major
release. HaRe supports full Haskell 98, and is inte-
grated with (X)Emacs and Vim. All the refactorings
that HaRe supports, including renaming, scope change,
generalization and a number of others, are module-
aware, so that a change will be reflected in all the
modules in a project, rather than just in the module
where the change is initiated. The system also con-
tains a set of data-oriented refactorings which together
transform a concrete data type and associated uses of
pattern matching into an abstract type and calls to
assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.

In order to allow users to extend HaRe themselves,
HaRe includes an API for users to define their own
program transformations, together with Haddock doc-
umentation. Please let us know if you are using the
API.
Snapshots of HaRe are available from our webpage,

as are related presentations and publications from
the group (including LDTA’05, TFP’05, SCAM’06,
PEPM’08, PEPM’10, TFP’10, Huiqing’s PhD thesis
and Chris’s PhD thesis). The final report for the
project appears there, too.

Recent developments

◦ HaRe 0.6, which is compatible with GHC-6.12.1, has
been released; HaRe 0.6 is available on Hackage, and
also downloadable from our project webpage.

◦ HaRe 0.6 comes with a number of new refactorings,
including adding and removing fields and construc-
tors to data-type definitions, folding and unfolding
against as-patterns, merging and splitting function
definitions, converting between let and where con-
structs, introducing pattern matching and generative
folding.

◦ Support for automatic detection and semi-automatic
elimination of duplicated code in Haskell programs is
also available from HaRe 0.6.

◦ Support for a number of new refactorings for parallel
Haskell have recently been added to HaRe. These
include support to introduce simple divide and con-
quer parallelism, using the new Strategies module.
The refactorings are designed to issue warnings to
the user when ill-defined evaluation degrees are set,
together with support for adding a threshold value.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

6.2 Documentation

6.2.1 Haddock

Report by: David Waern
Status: experimental, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates docu-
mentation by parsing and typechecking Haskell source
code directly and including documentation supplied
by the programmer in the form of specially-formatted
comments in the source code itself. Haddock has direct
support in Cabal (→ 6.8.1), and is used to generate the
documentation for the hierarchical libraries that come
with GHC, Hugs, and nhc98 (http://www.haskell.org/
ghc/docs/latest/html/libraries) as well as the documen-
tation on Hackage.

31

http://leksah.org/
http://www.haskell.org/communities/11-2010/html/report.html#sect6.1.4
http://www.haskell.org/communities/11-2010/html/report.html#sect6.1.4
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries

The latest release is version 2.9.4, released October
3 2011.
Recent changes:

◦ Support for GHC 7.2 and Alex 3.x

◦ New –qual flag for qualification of names

◦ Print doc coverage information to stdout

◦ Speed up generation of index

◦ Various bug fixes

Future plans

◦ Although Haddock understands many GHC lan-
guage extensions, we would like it to understand all
of them. Currently there are some constructs you
cannot comment, like GADTs and associated type
synonyms.

◦ Error messages is an area with room for improve-
ment. We would like Haddock to include accurate
line numbers in markup syntax errors.

◦ On the HTML rendering side we want to make more
use of Javascript in order to make the viewing expe-
rience better. The frames-mode could be improved
this way, for example.

◦ Finally, the long term plan is to split Haddock into
one program that creates data from sources, and sep-
arate backend programs that use that data via the
Haddock API. This will scale better, not requiring
adding new backends to Haddock for every tool that
needs its own format.

Further reading

◦ Haddock’s homepage: http://www.haskell.org/
haddock/

◦ Haddock’s developer Wiki and Trac: http://trac.
haskell.org/haddock

◦ Haddock’s mailing list: haddock@projects.haskell.org

6.2.2 Hoogle

Report by: Neil Mitchell
Status: stable

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name,
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online. Hoogle is available as a web interface,
a command line tool, and a lambdabot plugin.

Hoogle has seen significant revisions in the last few
months. Hoogle can now search all of Hackage (→
6.8.1), and has a brand new look and feel, including
instant results as you type. Work continues improving
the performance and quality of the results.

Further reading

http://haskell.org/hoogle

6.2.3 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.17, so there has not been a

new release since the last report. Development repos-
itory and bug tracker are on GitHub. There are still
plans for a rewrite of lhs2TEX with the goal of clean-
ing up the internals and making the functionality of
lhs2TEX available as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

6.3 Testing and Analysis

6.3.1 shelltestrunner

Report by: Simon Michael
Status: stable

shelltestrunner was first released in 2009, inspired by
the test suite in John Wiegley’s ledger project. It is a
command-line tool for doing repeatable functional test-
ing of command-line programs or shell commands. It
reads simple declarative tests specifying a command,
some input, and the expected output, error output and
exit status. Tests can be run selectively, in parallel,
with a timeout, in color, and/or with differences high-
lighted.
In the last six months, shelltestrunner has had

three releases (1.0, 1.1, 1.2) and acquired a home

32

http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://trac.haskell.org/haddock
http://trac.haskell.org/haddock
haddock@projects.haskell.org
http://haskell.org/hoogle
http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex

page. Projects using it include hledger, yesod, berp,
and eddie. shelltestrunner is free software released
under GPLv3+ from Hackage or http://joyful.com/
shelltestrunner.

Further reading

http://joyful.com/repos/shelltestrunner

6.3.2 HLint

Report by: Neil Mitchell
Status: stable

HLint is a tool that reads Haskell code and suggests
changes to make it simpler. For example, if you call
maybe foo id it will suggest using fromMaybe foo in-
stead. HLint is compatible with almost all Haskell ex-
tensions, and can be easily extended with additional
hints.
There have been numerous feature improvements

since the last HCAR, including features to detect dupli-
cated code within a module. HLint can be tried online
within hpaste.org.

Further reading

http://community.haskell.org/~ndm/hlint/

6.3.3 hp2any

Report by: Patai Gergely
Status: experimental

This project was born during the 2009 Google Summer
of Code under the name “Improving space profiling ex-
perience”. The name hp2any covers a set of tools and
libraries to deal with heap profiles of Haskell programs.
At the present moment, the project consists of three
packages:

◦ hp2any-core: a library offering functions to read
heap profiles during and after run, and to perform
queries on them.

◦ hp2any-graph: an OpenGL-based live grapher that
can show the memory usage of local and remote pro-
cesses (the latter using a relay server included in the
package), and a library exposing the graphing func-
tionality to other applications.

◦ hp2any-manager: a GTK application that can dis-
play graphs of several heap profiles from earlier runs.

The project also aims at replacing hp2ps by reimple-
menting it in Haskell and possibly adding new output
formats. The manager application shall be extended
to display and compare the graphs in more ways, to
export them in other formats and also to support live

profiling right away instead of delegating that task to
hp2any-graph.
Recently, the hp2any project joined forces with

hp2pretty, which resulted in increased performance in
the core library.

Further reading

◦ http://www.haskell.org/haskellwiki/Hp2any
◦ http://code.google.com/p/hp2any/
◦ http://gitorious.org/hp2pretty

6.4 Optimization

6.4.1 HFusion

Report by: Facundo Dominguez
Participants: Alberto Pardo
Status: experimental

HFusion is an experimental tool for optimizing Haskell
programs. The tool performs source to source trans-
formations by the application of a program transfor-
mation technique called fusion. The aim of fusion is to
reduce memory management effort by eliminating the
intermediate data structures produced in function com-
positions. It is based on an algebraic approach where
functions are internally represented in terms of a recur-
sive program scheme known as hylomorphism.
We offer a web interface to test the technique on

user-supplied recursive definitions and HFusion is also
available as a library on Hackage. The last improve-
ment to HFusion has been to accept as input an expres-
sion containing any number of compositions, returning
the expression which results from applying fusion to
all of them. Compositions which cannot be handled by
HFusion are left unmodified.

In its current state, HFusion is able to fuse composi-
tions of general recursive functions, including primitive
recursive functions (like dropWhile or insertions in bi-
nary search trees), functions that make recursion over
multiple arguments like zip, zipWith or equality pred-
icates, mutually recursive functions, and (with some
limitations) functions with accumulators like foldl. In
general, HFusion is able to eliminate intermediate data
structures of regular data types (sum-of-product types
plus different forms of generalized trees).

33

http://joyful.com/shelltestrunner
http://joyful.com/shelltestrunner
http://joyful.com/repos/shelltestrunner
http://community.haskell.org/~ndm/hlint/
http://www.haskell.org/haskellwiki/Hp2any
http://code.google.com/p/hp2any/
http://gitorious.org/hp2pretty

Further reading

◦ HFusion publications: http://www.fing.edu.uy/inco/
proyectos/fusion

◦ HFusion web interface: http://www.fing.edu.uy/inco/
proyectos/fusion/tool

◦ HFusion on Hackage: http://hackage.haskell.org/
package/hfusion

6.4.2 Optimizing Generic Functions

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Andres Löh
Status: actively developed

Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. Several generic program-
ming libraries for Haskell have been developed in the
past few years. These libraries have been compared in
detail with respect to expressiveness, extensibility, typ-
ing issues, etc., but performance comparisons have been
brief, limited, and preliminary. It is widely believed
that generic programs run slower than hand-written
code.
At Utrecht University we are looking into the perfor-

mance of different generic programming libraries and
how to optimize them. We have confirmed that generic
programs, when compiled with the standard optimiza-
tion flags of the Glasgow Haskell Compiler (GHC), are
substantially slower than their hand-written counter-
parts. However, we have also found that advanced
optimization capabilities of GHC, such as inline prag-
mas and rewrite rules, can be used to further optimize
generic functions, often achieving the same efficiency
as hand-written code.
We are continuing our research in this topic and hope

to provide more information in the near future.

Further reading

http://dreixel.net/research/pdf/ogie.pdf

6.5 Boilerplate Removal

6.5.1 A Generic Deriving Mechanism for Haskell

Report by: José Pedro Magalhães
Participants: Atze Dĳkstra, Johan Jeuring, Andres Löh,

Simon Peyton Jones
Status: actively developed

Haskell’s deriving mechanism supports the automatic
generation of instances for a number of functions. The
Haskell 98 Report only specifies how to generate in-
stances for the Eq, Ord, Enum, Bounded, Show, and
Read classes. The description of how to generate in-
stances is largely informal. As a consequence, the
portability of instances across different compilers is not

guaranteed. Additionally, the generation of instances
imposes restrictions on the shape of datatypes, depend-
ing on the particular class to derive.
We have developed a new approach to Haskell’s

deriving mechanism, which allows users to specify
how to derive arbitrary class instances using standard
datatype-generic programming techniques. Generic
functions, including the methods from six standard
Haskell 98 derivable classes, can be specified entirely
within Haskell, making them more lightweight and
portable.
We have implemented our deriving mechanism to-

gether with many new derivable classes in UHC (→ 3.3)
and GHC. The implementation in GHC has a more con-
venient syntax; consider enumeration:

class GEnum a where
genum :: [a]
default genum :: (Representable a,

Enum′ (Rep a))
⇒ [a]

genum = map to enum′

The Enum′ and GEnum classes are defined by the
generic library writer. The end user can then give in-
stances for his/her datatypes without defining an im-
plementation:

instance (GEnum a)⇒ GEnum (Maybe a)
instance (GEnum a)⇒ GEnum [a]

These instances are empty, and therefore use the
(generic) default implementation. This is as convenient
as writing deriving clauses, but allows defining more
generic classes. This implementation relies on the new
functionality of default signatures, like in genum above,
which are like standard default methods but allow for
a different type signature.

Further reading

http://www.haskell.org/haskellwiki/Generics

6.6 Code Management

6.6.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and

34

http://www.fing.edu.uy/inco/proyectos/fusion
http://www.fing.edu.uy/inco/proyectos/fusion
http://www.fing.edu.uy/inco/proyectos/fusion/tool
http://www.fing.edu.uy/inco/proyectos/fusion/tool
http://hackage.haskell.org/package/hfusion
http://hackage.haskell.org/package/hfusion
http://dreixel.net/research/pdf/ogie.pdf
http://www.haskell.org/ghc/docs/latest/html/users_guide/generic-programming.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#class-default-signatures
http://www.haskell.org/haskellwiki/Generics

merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent release, Darcs 2.5.2, was in March

2011. The Darcs 2.5.x line provides faster repository-
local operations, and faster record with long patch his-
tories, among other bug fixes and features. The most
recent version adds compatibility with Haskell Plat-
form 2011.2.0.0.
We are currently working on releasing Darcs 2.8,

which will include Alexey Levan’s 2010 Google Sum-
mer of Code work on optimised darcs get (using the
“optimize –http” command) and a few refinements to
Adolfo Builes’ cache reliability work. The Darcs 2.8
release is planned to include a faster and more human-
readable annotate command.
Meanwhile, we are happy to have been able to par-

ticipate in the Google Summer of Code 2011 (as part
of Haskell.org). We had two projects this year, one
to develop a a bidirectional bridge between Darcs and
Git (and potentially other VCSs), and the other to do
some new exploratory work on primitive patch types for
a future Darcs 3. The bridge project will improve col-
laboration between Darcs and Git users, allowing each
to contribute to projects hosted in the other’s VCS of
choice. The primitive patches work will allow us to
implement some ideas we have been discussing in the
Darcs team in recent months, in particular, separation
of file dentifiers from file names and the separation of
on-disk patch contents from their in-memory represen-
tation. Making a prototype implementation of these
ideas will give us a better idea how feasible they are
in practice and help us to identify the technical diffi-
culities that may be lurking around the corner. Both
projects were succesful; see below for their respective
wrap-ups and prototypes.
Darcs is free software licensed under the GNU GPL

(version 2 or greater). Darcs is a proud member of
the Software Freedom Conservancy, a US tax-exempt
501(c)(3) organization. We accept donations at http:
//darcs.net/donations.html.

Further reading

◦ http://darcs.net

◦ http://web.mornfall.net/blog/soc_reloaded:
_outcomes.html

6.6.2 DarcsWatch

Report by: Joachim Breitner
Status: working

See: http://www.haskell.org/communities/05-2011/
html/report.html#sect5.6.3.

6.6.3 darcsden

Report by: Simon Michael
Participants: Alex Suraci, Simon Michael, Scott

Lawrence, Daniel Patterson, Daniel Goran
Status: beta, low activity

http://darcsden.com is a free Darcs (→ 6.6.1) reposi-
tory hosting service, similar to patch-tag.com or (in
essence) github. The darcsden software is also avail-
able (on darcsden) so that anyone can set up a similar
service. darcsden is available under BSD license and
was created by Alex Suraci.
Alex keeps the service running and fixes bugs, but

is mostly focussed on other projects. darcsden has a
clean UI and codebase and is a viable hosting option
for smaller projects despite occasional glitches.
The last Hackage release was in 2010. Other commit-

ters have been submitting patches, and the darcsden
software is close to becoming a just-works installable
darcs web ui for general use.

Further reading

http://darcsden.com

6.6.4 darcsum

Report by: Simon Michael
Status: occasional development; suitable for daily

use

darcsum is an emacs add-on providing an efficient, pcl-
cvs-like interface for the Darcs revision control sys-
tem (→ 6.6.1). It is especially useful for reviewing and
recording pending changes.
Simon Michael took over maintainership in 2010, and

tried to make it more robust with current Darcs. The
tool remains slightly fragile, as it depends on Darcs’
exact command-line output, and needs updating when
that changes. Dave Love has contributed a large num-
ber of cleanups. darcsum is available under the GPL
version 2 or later from http://joyful.com/darcsum.
In the last six months darcsum acquired a home page,

but there has been little other activity. We are looking
for a new maintainer for this useful tool.

Further reading

http://joyful.com/darcsum/

6.6.5 Improvements to Cabal’s Test Support

Report by: Thomas Tuegel
Participants: Johan Tibell (Mentor)
Status: active development

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect7.2.

35

http://darcs.net/donations.html
http://darcs.net/donations.html
http://darcs.net
http://web.mornfall.net/blog/soc_reloaded:_outcomes.html
http://web.mornfall.net/blog/soc_reloaded:_outcomes.html
http://www.haskell.org/communities/05-2011/html/report.html#sect5.6.3
http://www.haskell.org/communities/05-2011/html/report.html#sect5.6.3
http://darcsden.com
http://darcsden.com
http://joyful.com/darcsum
http://joyful.com/darcsum/
http://www.haskell.org/communities/11-2010/html/report.html#sect7.2
http://www.haskell.org/communities/11-2010/html/report.html#sect7.2

6.6.6 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg, cabal, and cabal-dev.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.

cab now supports GHC 7.2.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.6.7 Hackage-Debian

Report by: Marco Gontĳo
Status: unconcluded

Hackage-Debian is a tool for creating a Debian repos-
itory with all, or almost all, of the packages in Hack-
age. It is highly based on the debian available at
http://hackage.haskell.org/package/debian. It should
build a snapshot of the Hackage database and then
track each new package added to build it on demand.
It is still under development, but the first release should
be announced soon.
A limitation of the first version being developed is

that it only builds the latest version of each library.
So, if a library depends on an older version of another
library, it will not be built. This is the reason why it
does not build all packages, but almost all of them.
Also, the first version will only deal with libraries,

but there are plans to also build programs.
The darcs repository for both hackage-debian

and the modified version of the debian package
that it uses are available at http://marcot.eti.br/
darcs/hackage-debian and http://marcot.eti.br/darcs/
haskell-debian.

6.7 Interfacing to other Languages

6.7.1 HSFFIG

Report by: Dmitry Golubovsky
Status: release

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect6.6.1.

6.8 Deployment

6.8.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
Hackage is a distribution point for Cabal packages.

It is an online archive of Cabal packages which can
be used via the website and client-side software such
as cabal-install. Hackage enables users to find, browse
and download Cabal packages, plus view their API doc-
umentation.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

We have had two successful Google Summer of Code
projects on Cabal this year. Sam Anklesaria worked
on a “cabal repl” feature to launch an interactive GHCi
session with all the appropriate pre-processing and con-
text from the project’s .cabal file. Mikhail Glushenkov
worked on a feature so that “cabal install” can build
independent packages in parallel (not to be confused
with building modules within a package in parallel).
The code from both projects is available and they are
awaiting integration into the main Cabal repository,
which we expect to happen over the course of the next
few months.
The “cabal test” feature which was developed as a

GSoC project last summer has matured significantly
in the last 6 months, thanks to continuing effort from
Thomas Tuegel and Johan Tibell. The basic test inter-
face will be ready to use in the next release, and there
has been some progress on the “detailed” test interface.
The IHG is currently sponsoring some work on cabal-

install. The first fruits of this work is a new dependency
solver for cabal-install which is now included in the de-
velopment version. The new solver can find solutions in
more cases and produces more detailed error messages
when it cannot find a solution. In addition, it is better
about avoiding and warning about breaking existing in-
stalled packages. We also expect it to be a better basis
for other features in future. For more details see the
presentation by Andres Löh.
http://haskell.org/haskellwiki/

HaskellImplementorsWorkshop/2011/Loeh
The last 6 months has seen significant progress on the

new hackage-server implementation with help from
many new volunteers, in particular Max Bolingbroke,
but also several other people who helped at hackathons
and subsequently. The IHG funded Well-Typed to im-
prove package mirroring so that continuous nearly-live
mirroring is now possible. We are also grateful to fac-

36

http://www.mew.org/~kazu/proj/cab/en/
http://hackage.haskell.org/package/debian
http://marcot.eti.br/darcs/hackage-debian
http://marcot.eti.br/darcs/hackage-debian
http://marcot.eti.br/darcs/haskell-debian
http://marcot.eti.br/darcs/haskell-debian
http://www.haskell.org/communities/11-2010/html/report.html#sect6.6.1
http://www.haskell.org/communities/11-2010/html/report.html#sect6.6.1
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Loeh
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Loeh

tis research GmbH who have kindly donated a VM to
help the hackage developers test the new server code.
We expect to do live mirroring and public beta testing
using this server during the next few months.

Looking forward

Users are increasingly relying on hackage and cabal-
install and are increasingly frustrated by dependency
problems. Solutions to the variety of problems do ex-
ist. It will however take sustained effort to solve them.
The good news is that there is the realistic prospect of
the new hackage-server being ready in the not too dis-
tant future with features to help monitor and encourage
package quality, and the recent work on cabal-install
should reduce the frustration level somewhat.
The last 6 months has seen a good upswing in the

number of volunteers spending their time on cabal and
hackage, so much so that a clear bottleneck is patch
review and integration bandwidth. A similar issue is
that many of the long standing bugs and feature re-
quests require significant refactoring work which many
volunteers feel reluctant or unable to do. Assistance in
these areas would be very valuable indeed.
We would like to encourage people considering con-

tributing to join the cabal-devel mailing list so that
we can increase development discussion and improve
collaboration. The bug tracker is reasonably well main-
tained and it should be relatively clear to new contrib-
utors what is in need of attention and which tasks are
considered relatively easy.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.
org/

◦ Bug tracker: http://hackage.haskell.org/trac/
hackage/

6.8.2 Capri

Report by: Dmitry Golubovsky
Status: experimental

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect6.7.2.

37

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/
http://www.haskell.org/communities/11-2010/html/report.html#sect6.7.2
http://www.haskell.org/communities/11-2010/html/report.html#sect6.7.2

7 Libraries

7.1 Processing Haskell

7.1.1 The Neon Library

Report by: Jurriaan Hage

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect8.1.1.

7.2 Parsing and Transforming

7.2.1 The grammar-combinators Parser Library

Report by: Dominique Devriese
Status: partly functional

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect8.2.1.

7.2.2 epub-metadata

Report by: Dino Morelli
Status: stable, actively developed

Library for parsing and manipulating ePub files and
OPF package data. An attempt has been made here
to very thoroughly implement the OPF Package Doc-
ument specification.
epub-metadata is available from Hackage, the Darcs

repository below, and also in binary form for Arch
Linux through the AUR.
See also epub-tools (→ 8.8.10).

Further reading

◦ Project page: http://ui3.info/d/proj/epub-metadata.
html

◦ Source repository: darcs get http://ui3.info/darcs/
epub-metadata

7.2.3 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

The previous extension for recognizing merging parsers
was generalized so now any kind of applicative and
monadic parsers can be merged in an interleaved way.
As an example take the situation where many different
programs write log entries into a log file, and where
each log entry is uniquely identified by a transaction
number (or process number) which can be used to dis-
tinguish them. E.g., assume that each transaction con-
sists of an a, a b and a c action, and that a digit is

used to identify the individual actions belonging to the
same transaction; the individual transactions can now
be recognized by the parser:

pABC :: Grammar String
pABC = (λa d → d : a)<$> pA<∗> (pDigit′ >>=

λd → pB ∗> mkGram (pSym d) ∗>
pC ∗>mkGram (pSym d)

)

Now running many merged instances of this parser on
the input returns the list of first lines prefixed by their
number:

run (pmMany(pABC)) "a2a1b1b2c2a3b3c1c3"
Result: ["2a","1a","3a"]

Furthermore the library was provided with many
more examples in two modules in the Demo directory.

Features

◦ Much simpler internals than the old li-
brary (http://haskell.org/communities/05-2009/
html/report.html#sect5.5.8).

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the in-
put and provide excellent error messages. As such
they are “surprise free” when used by people not fully
aware of their internal workings.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library basically provides the to be preferred ap-
plicative interface and a monadic interface where this
is really needed (which is hardly ever).

◦ No need for try-like constructs which makes writing
Parsec based parsers tricky.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative interface. This makes it e.g. pos-
sible to deal with white space or comments in the
input in a completely separate way, without having
to think about this in the parser for the language
at hand (provided of course that white space is not
syntactically relevant).

38

http://www.haskell.org/communities/11-2010/html/report.html#sect8.1.1
http://www.haskell.org/communities/11-2010/html/report.html#sect8.1.1
http://www.haskell.org/communities/11-2010/html/report.html#sect8.2.1
http://www.haskell.org/communities/11-2010/html/report.html#sect8.2.1
http://ui3.info/d/proj/epub-metadata.html
http://ui3.info/d/proj/epub-metadata.html
http://ui3.info/darcs/epub-metadata
http://ui3.info/darcs/epub-metadata
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8

Future plans

Since the part dealing with merging is relatively inde-
pendent of the underlying parsing machinery we may
split this off into a separate package. This will enable
us also to make use of a different parsing engines when
combining parsers in a much more dynamic way. In
such cases we want to avoid too many static analyses.
Future versions will contain a check for grammars

being not left-recursive, thus taking away the only re-
maining source of surprises when using parser combi-
nator libraries. This makes the library even greater
for use teaching environments. Future versions of the
library, using even more abstract interpretation, will
make use of computed look-ahead information to speed
up the parsing process further.
The old library in the uulib package stays stable, and

can continue to be used. A few changes were needed in
order to make it compile with GHC 7.2.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list which was moved
to 〈parsing@lists.science.uu.nl〉 (see also http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators).

7.2.4 Regular Expression Matching with Partial
Derivatives

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu
Status: stable

We are still improving the performance of our matching
algorithms. The latest implementation can be down-
loaded via hackage.

Further reading

◦ http://hackage.haskell.org/package/regex-pderiv
◦ http://sulzmann.blogspot.com/2010/04/

regular-expression-matching-using.html

7.2.5 regex-applicative

Report by: Roman Cheplyaka
Status: active development

regex-applicative is aimed to be an efficient and easy
to use parsing combinator library for Haskell based on
regular expressions.
Regular expressions have Perl-like (left-biased) se-

mantics to satisfy most of the daily regex needs, but
also allow longest matching prefix search useful for lex-
ical analysis.
For example, the following code finds filename exten-

sions:

import Text.Regex.Applicative

getExtension :: String -> Maybe String
getExtension str =

str =~
many anySym *>
sym ’.’ *>
many anySym

More examples can be found on the wiki.

Further reading

◦ http://hackage.haskell.org/package/regex-applicative
◦ http://github.com/feuerbach/regex-applicative

7.3 Mathematical Objects

7.3.1 normaldistribution: Minimum Fuss Normally
Distributed Random Values

Report by: Björn Buckwalter
Status: stable

Normaldistribution is a new package that lets you pro-
duce normally distributed random values with a min-
imum of fuss. The API builds upon, and is largely
analogous to, that of the Haskell 98 Random module
(more recently System.Random). Usage can be as sim-
ple as: sample ← normalIO. For more information and
examples see the package description on Hackage.

Further reading

http://hackage.haskell.org/package/normaldistribution

7.3.2 dimensional: Statically Checked Physical
Dimensions

Report by: Björn Buckwalter
Status: active, stable core with experimental extras

Dimensional is a library providing data types for per-
forming arithmetics with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage within
the frame of the si. Example:

d :: Fractional a ⇒ Time a → Length a
d t = a /_2 ∗ t ˆ pos2

where a = 9.82 ∗˜ (meter / second ˆ pos2)

The dimensional library is stable with units being
added on an as-needed basis. The primary documen-
tation is the literate Haskell source code. The wiki on

39

mailto: doaitse at swierstra.net
mailto: parsing at lists.science.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://hackage.haskell.org/package/regex-pderiv
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
https://github.com/feuerbach/regex-applicative/wiki/Examples
http://hackage.haskell.org/package/regex-applicative
http://github.com/feuerbach/regex-applicative
http://hackage.haskell.org/package/normaldistribution

the project web site has several usage examples to help
with getting started.
Ongoing experimental work includes:

◦ Support for user-defined dimensions and a proof-of-
concept implementation of the cgs system of units.

◦ dimensional-vectors — a rudimentary linear algebra
library which statically tracks the sizes of vectors
and matrices as well as the physical dimensions of
their elements on a per element basis, disallowing
non-sensical operations. This library makes it very
difficult to accidentally implement, e.g., a Kalman
filter incorrectly. My work on dimensional-vectors is
need-driven and tends to occur in spurts.

◦ dimensional-experimental — a library in heavy flux
of which the most interesting feature is probably au-
tomatic differentiation of functions involving physi-
cal quantities. Example:

v :: Fractional a ⇒ Time a → Velocity a
v t = diff d t

The core library, dimensional, can be installed off
Hackage using cabal. The experimental packages can
be cloned off of Github.
Dimensional relies on numtype for type-level integers

(e.g., pos2 in the above example), ad for automatic dif-
ferentiation, and HList (→ 7.4.1) for type-level vector
and matrix representations.

Further reading

◦ http://dimensional.googlecode.com
◦ https://github.com/bjornbm/dimensional-vectors
◦ https://github.com/bjornbm/

dimensional-experimental

7.3.3 AERN-Real and Friends

Report by: Michal Konečný
Participants: Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of libraries that will provide:

◦ a reliable and fast arbitrary precision correctly
rounded interval arithmetic, including both stan-
dard and inverted intervals with Kaucher arithmetic

◦ arbitrary precision arithmetic of interval polyno-
mials and polynomial intervals to
– automatically reduce overestimations in inter-

val computations
– efficiently support validated numerical integra-

tion

– automatically decide many inequalities and in-
terval inclusions with non-linear and elementary
functions that occur in numerical theorem prov-
ing and specifically in the verification of numer-
ical programs

◦ a type class hierarchy for validated and exact com-
putation, featuring

– standard mathematical structures such as
posets and lattices extended to take account of
rounding errors and partially decided relations
such as equality

– separate treatment of numerical order and in-
terval refinement order

– ability to increase computational effort to re-
duce the effect of rounding and partiality, con-
verging to no rounding and total relations with
infinite effort

– extensive set of QuickCheck properties for each
type class, enabling automatic checking of, e.g.,
algebraic properties such as associativity ex-
tended to take account of rounding

◦ a framework for distributed query-driven lazy
dataflow exact numerical computation with tidy ex-
act semantics based on Domain Theory

There are stable older versions of the libraries on
Hackage but these lack the type classes described
above.
We are currently in the process of redesigning and

rewriting the libraries from scratch. Out of the newly
designed code we recently released libraries featuring

◦ the type classes for approximate real number opera-
tions

◦ correctly rounded real interval arithmetic with Dou-
ble endpoints

A release of interval arithmetic with MPFR end-
points is planned as soon as a solution is found for
an easier installation of the hmpfr package. (Currently
one has to compile a ghc without gmp to use hmpfr.)
We have made progress on implementing polynomial

intervals with a core written in C but have suspended
the development until we finish a Haskell-only imple-
mentation of an arithmetic of interval polynomials (ie
polynomials with interval coefficients). We are likely
to use interval polynomials as endpoints for polyno-
mial intervals when the work on polynomial intervals
is resumed.
The development files now include demos that apply

interval polynomials on validated simulation of selected
ODE IVPs and hybrid systems.
All AERN development is open and we welcome con-

tributions and new developers.

40

http://dimensional.googlecode.com
https://github.com/bjornbm/dimensional-vectors
https://github.com/bjornbm/dimensional-experimental
https://github.com/bjornbm/dimensional-experimental

Further reading

http://code.google.com/p/aern/

7.3.4 Paraiso

Report by: Takayuki Muranushi
Status: active development

Paraiso is a domain-specific language (DSL) embed-
ded in Haskell, aimed at generating explicit type of
partial differential equations solving programs, for ac-
celerated and/or distributed computers. Equations for
fluids, plasma, general relativity, and many more falls
into this category. This is still a tiny domain for a com-
puter scientist, but large enough that an astrophysicist
(I am) might spend even his entire life in it.
In Paraiso we can describe equation-solving algo-

rithms in mathematical, simple notation using builder
monads. At the moment it can generate programs for
multicore CPUs as well as single GPU, and tune their
performance via automated benchmarking and genetic
algorithms. The experiment is under way; the fluid
simulator I am using is 464 lines in Haskell. So far,
Paraiso has tried more than 117’000 different imple-
mentations of this single algorithm, each being about
10’000 lines of CUDA program. The best one found so
far is 33.4 times faster than the initial guess, and twice
faster than the hand-tuned implementation.
Anyone can get Paraiso from hackage (http://

hackage.haskell.org/package/Paraiso) or github (https:
//github.com/nushio3/Paraiso).
The next big challenge is to make Paraiso generate

distributed computations.

Further reading

http://paraiso-lang.org/wiki/

7.4 Data Types and Data Structures

7.4.1 HList — A Library for Typed Heterogeneous
Collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We and others have also used HList
for type-safe database access in Haskell. HList-based
Records form the basis of OOHaskell. The HList li-
brary relies on common extensions of Haskell 2010.
HList is being used in AspectAG (→ 5.4.2), typed
EDSL of attribute grammars, and in HaskellDB.
The October 2011 version of HList library has many

changes, mainly related to deprecating TypeCast (in fa-
vor of ~) and getting rid of overlapping instances. The
only use of OverlappingInstances is in the implementa-
tion of the generic type equality predicate TypeEq. We
plan to remove even that remaining single occurrence.
The code works with GHC 7.0.4.
Future plans include the implementation of TypeEq

without resorting to overlapping instances (so, HList
will be overlapping-free), and moving towards type
functions and expressive kinds.

Further reading

◦ HList: http://okmĳ.org/ftp/Haskell/types.html#
HList

◦ OOHaskell: http://homepages.cwi.nl/~ralf/
OOHaskell/

7.4.2 Persistent

Report by: Greg Weber
Participants: Michael Snoyman
Status: stable

Persistent is a type-safe data store interface for Haskell.
Haskell has many different database bindings avail-
able. However, most of these have little knowledge of a
schema and therefore do not provide useful static guar-
antees. They also force database-dependent interfaces
and data structures on the programmer.
There are Haskell specific data stores such as acid-

state that get around these flaws. This allows one to
easily store any Haskell type and have type-safe inter-
actions with data. However, the use case is limited
to in memory storage without replication, and they
aren’t designed to interface with other programming
languages.
Persistent maintains much of the advantage of using

native Haskell data types — you store and retrieve nor-
mal Haskell records, and your queries are also type-safe
— they must match the schema. However, Persistent
lets you persist your data to a battle tested database
of your choice that is well optimized for your prob-
lem domain. Persistent is backend agnostic, and there

41

http://code.google.com/p/aern/
http://hackage.haskell.org/package/Paraiso
http://hackage.haskell.org/package/Paraiso
https://github.com/nushio3/Paraiso
https://github.com/nushio3/Paraiso
http://paraiso-lang.org/wiki/
http://okmij.org/ftp/Haskell/types.html#HList
http://okmij.org/ftp/Haskell/types.html#HList
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/

are currently interfaces to Sqlite, Postgresql, and Mon-
goDB.
Since the last report, Persistent has undergone an

internal re-write and major API changes. The Mon-
goDB backend has been polished and works out of the
box with the Yesod web framework. Here is a quick
example of the new Persistent query language:

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones"] []

Future plans

There are 3 main directions for Persistent:
◦ Improvements that work across all Persistent back-
ends (example: better application-level joins)

◦ Better database-specific integration (example: bet-
ter SQL joins)

◦ Adding more database backends
Most of Persistent development occurs within the

Yesod (→ 5.2.6) community. However, there is nothing
specific to Yesod about it. You can have a type-safe,
productive way to store data, even on a project that
has nothing to do with web development.

Further reading

http://yesodweb.com/book/persistent

7.5 Generic and Type-Level Programming

7.5.1 Unbound

Report by: Brent Yorgey
Participants: Stephanie Weirich, Tim Sheard
Status: actively maintained

Unbound is a domain-specific language and library for
working with binding structure. Implemented on top
of the RepLib generic programming framework, it au-
tomatically provides operations such as alpha equiva-
lence, capture-avoiding substitution, and free variable
calculation for user-defined data types, requiring only
a tiny bit of boilerplate on the part of the user. It fea-
tures a simple yet rich combinator language for bind-
ing specifications, including support for pattern bind-
ing, type annotations, recursive binding, nested bind-
ing, and multiple atom types.
Since the last HCAR, a new version of Unbound has

been released, adding support for several set-like bind-
ing strategies (where the order of bound variables does
not matter) and for GADTs which do not use existen-
tial quantification.

Further reading

◦ http://byorgey.wordpress.com/2011/08/24/
unbound-now-supports-set-binders-and-gadts/

◦ http://byorgey.wordpress.com/2011/03/28/
binders-unbound/

◦ http://hackage.haskell.org/package/unbound
◦ http://code.google.com/p/replib/

7.5.2 FlexiWrap

Report by: Iain Alexander
Status: experimental

A library of flexible newtype wrappers which simplify
the process of selecting appropriate typeclass instances,
which is particularly useful for composed types.
Version 0.1.0 has been released on Hackage, provid-

ing support for a more comprehensive range of type-
classes when wrapping simple values, and some docu-
mentation. Work is still ongoing to flesh out the type-
class instances available and improve the documenta-
tion.

7.5.3 Generic Programming at Utrecht University

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Sean Leather
Status: actively developed

One of the research themes investigated within the
Software Technology Center in the Department of In-
formation and Computing Sciences at Utrecht Univer-
sity is generic programming. Over the last 15 years, we
have played a central role in the development of generic
programming techniques, languages, and libraries.
Currently we maintain a number of generic pro-

gramming libraries and applications. We report
most of them in this entry; emgm was reported on
before (http://haskell.org/communities/05-2009/html/
report.html#sect5.9.3), and our generic deriving mech-
anism has its own entry (→ 6.5.1).

multirec This library represents datatypes uniformly
and grants access to sums (the choice between con-
structors), products (the sequence of constructor ar-
guments), and recursive positions. Families of mu-
tually recursive datatypes are supported. Functions
such as map, fold, show, and equality are provided as
examples within the library. Using the library func-
tions on your own families of datatypes requires some
boilerplate code in order to instantiate the frame-
work, but is facilitated by the fact that multirec
contains Template Haskell code that generates these
instantiations automatically.
The multirec library can also be used for type-
indexed datatypes. As a demonstration, the zipper
library is available on Hackage. With this datatype-
generic zipper, you can navigate values of several
types.

42

http://yesodweb.com/book/persistent
http://byorgey.wordpress.com/2011/08/24/unbound-now-supports-set-binders-and-gadts/
http://byorgey.wordpress.com/2011/08/24/unbound-now-supports-set-binders-and-gadts/
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://hackage.haskell.org/package/unbound
http://code.google.com/p/replib/
http://www.cs.uu.nl/wiki/Center
http://www.cs.uu.nl/
http://www.cs.uu.nl/
http://www.uu.nl/EN
http://www.uu.nl/EN
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://www.cs.uu.nl/wiki/GenericProgramming/Libraries
http://haskell.org/communities/05-2009/html/report.html#sect5.9.3
http://haskell.org/communities/05-2009/html/report.html#sect5.9.3
http://hackage.haskell.org/package/zipper

The latest version available on Hackage includes lim-
ited support for datatype compositions; we are still
planning to extend the library with support for pa-
rameterized datatypes.

regular While multirec focuses on support for mu-
tually recursive regular datatypes, regular supports
only single regular datatypes. The approach used is
similar to that of multirec, namely using type fam-
ilies to encode the pattern functor of the datatype
to represent generically. There have been no ma-
jor releases of the regular or regular-extras pack-
ages on Hackage since the last report. The current
versions provide a number of typical generic func-
tions, but also some less well-known but useful func-
tions: deep seq, QuickCheck’s arbitrary and coarbi-
trary, and binary’s get and put.

instant-generics Using type families and type
classes in a way similar to multirec and regular,
instant-generics is yet another approach to
generic programming, supporting a large variety of
datatypes and allowing the definition of type-indexed
datatypes. It was first described by Chakravarty
et al., and forms the basis of one of our rewriting
libaries. It is available on Hackage.

syb Scrap Your Boilerplate (syb) has been supported
by GHC since the 6.0 release. This library is based on
combinators and a few primitives for type-safe cast-
ing and processing constructor applications. It was
originally developed by Ralf Lämmel and Simon Pey-
ton Jones. Since then, many people have contributed
with research relating to syb or its applications.

Since syb has been separated from the base package,
it can now be updated independently of GHC. We
have recently released version 0.3 on Hackage, which
has some minor extensions and fixes.

Annotations We presented two applications of generic
annotations at the Workshop on Generic Program-
ming 2010: selections and storage. In the former
we use annotations at every recursive position of a
datatype to allow for inserting position information
automatically. This allows for informative parsing
error messages without the need for explicitly chang-
ing the datatype to contain position information. In
the latter we use the annotations as pointers to lo-
cations in the heap, allowing for transparent and ef-
ficient data structure persistency on disk.

Rewriting We also maintain two libraries for generic
rewriting: a simple, earlier library based on
regular, and the guarded rewriting library, based on
instant-generics. The former allows for rewriting
only on regular datatypes, while the latter supports
more datatypes and also rewriting rules with precon-
ditions.

We also continue to look at benchmarking and
improving the performance of different libraries for
generic programming (→ 6.4.2).

Further reading

http://www.cs.uu.nl/wiki/GenericProgramming

7.6 User Interfaces

7.6.1 Gtk2Hs

Report by: Axel Simon
Participants: Duncan Coutts, Andy Stewart, and many

others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ High quality vector graphics using Cairo

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

In a heroic effort, Duncan Coutts has adjusted
Gtk2Hs and its build system to run with GHC 7.X
compilers. A release 0.12.1 was the result of this effort
which, however, was only announced on the Gtk2Hs
website. Since then a few but important bugs have
been fixed, amongst them one relating to slow Cairo
drawing. These bug fixes are now in the current 0.12.2
release.

Further reading

◦ News and downloads: http://haskell.org/gtk2hs/
◦ Development version: darcs get http://code.

haskell.org/gtk2hs/

43

http://hackage.haskell.org/package/multirec
http://hackage.haskell.org/package/regular
http://hackage.haskell.org/package/regular-extras
http://www.cse.unsw.edu.au/~chak/project/generics/
http://www.cse.unsw.edu.au/~chak/project/generics/
http://hackage.haskell.org/package/instant-generics
http://web.archive.org/web/20080622204226/http://www.cs.vu.nl/boilerplate/
http://hackage.haskell.org/package/syb
http://portal.acm.org/citation.cfm?id=1863495.1863501
http://portal.acm.org/citation.cfm?id=1863495.1863500
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting
http://www.cs.uu.nl/wiki/GenericProgramming/GuardedRewriting
http://www.cs.uu.nl/wiki/GenericProgramming
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/

7.7 Graphics

7.7.1 Assimp

Report by: Joel Burget
Status: actively developed

Assimp is a set of bindings to the Assimp Open Asset
Import Library. This library can import many different
types of 3D models for use in graphics. The full list
of formats is available at the project website (linked
below) and at the git repo for the project. Assimp is
being developed alongside the Cologne ray tracer (→
8.4.5) but could be useful in any 3D graphics project.

Further reading

◦ https://github.com/joelburget/assimp
◦ http://assimp.sourceforge.net

7.7.2 plot/plot-gtk

Report by: Vivian McPhail
Status: active development

See: http://www.haskell.org/communities/05-2011/
html/report.html#sect6.7.2.

7.7.3 Craftwerk

Report by: Malte Harder
Participants: Jannis Harder
Status: active development

Craftwerk is a 2D vector graphic library. The motiva-
tion was to have a graphic library that is able to gener-
ate output which can be embedded into LATEX as well
as support for rendering with Cairo. Thus the library
separates the graphic’s data structure from any context
dependency and the aim is to support various drivers.
Currently a driver for output with the TikZ pack-
age (http://sourceforge.net/projects/pgf/) for LATEX is
available. Using the additional craftwerk-cairo and
craftwerk-gtk packages, direct rendering into PDF
files or GTK widgets is possible. The craftwerk-gtk
package also provides functions to generate simple user
interfaces for interactive graphics.

Above, two examples are shown. In the first, you can
see a screenshot of the GTK interface for interactive
graphics showing a Sierpiński triangle, and the second
is a simple example of a tree rendered with the Cairo
driver. Graphics or figures can be created in a hier-
archical fashion including the application of styles and
decorations to subnodes. The current functionality in-
cludes almost the complete Cairo function set extended
by arrow tips and a few primitives. The same function
set is supported for TikZ output, and graphics gener-
ated with the two drivers match closely. Immediate
development tasks are:
◦ Improvement of rendering speed in the Cairo driver.
◦ Better and unified text rendering capabilities.
◦ Refactoring of the UI module towards better usabil-

ity.
Besides additional functionality, a long term goal is

to support other drivers like Wumpus, Haha (ASCII
rendering) or OpenGL. Craftwerk could also serve as
an intermediate layer for libraries like plot or chart
to enable LATEX export. At the moment the library
is still at a preliminary stage and the next step is a
consolidation of a basic feature set. Any contributions
or ideas are welcome and the latest code as well as
experiments with other drivers are available on GitHub.

Further reading

◦ http://hackage.haskell.org/package/craftwerk-0.1
◦ http://mahrz.github.com/craftwerk

7.7.4 LambdaCube

Report by: Csaba Hruska
Status: experimental, active development

LambdaCube is a 3D rendering engine entirely written
in Haskell.
The main goal of this project is to provide a modern

and feature rich graphical backend for various Haskell
projects, and in the long run it is intended to be a
practical solution even for serious purposes. The en-
gine uses Ogre3D’s (http://www.ogre3d.org) mesh and
material file format, therefore it should be easy to find
or create new content for it. The code sits between the
low-level C API (raw OpenGL, DirectX or anything
equivalent; the engine core is graphics backend agnos-

44

https://github.com/joelburget/assimp
http://assimp.sourceforge.net
http://www.haskell.org/communities/05-2011/html/report.html#sect6.7.2
http://www.haskell.org/communities/05-2011/html/report.html#sect6.7.2
http://sourceforge.net/projects/pgf/
http://hackage.haskell.org/package/craftwerk-0.1
http://mahrz.github.com/craftwerk
http://www.ogre3d.org

tic) and the application, and gives the user a high-level
API to work with.
The most important features are the following:
◦ loading and displaying Ogre3D models
◦ resource management
◦ modular architecture
If your system has OpenGL and GLUT installed,

the lambdacube-examples package should work out of
the box. The engine is also integrated with the Bullet
physics engine (→ 8.8.7), and you can find a running
example in the lambdacube-bullet package.

Since the last update, the current version of the li-
brary saw only a few minor updates: fast serialisation
(using its own binary format) and various bugfixes. Be-
hind the scenes, we are working on a completely new
version, which will provide a graphics-oriented data-
flow DSL (in the same spirit as GPipe). The goal is to
allow the description of complex effects without muta-
ble variables.
In the meantime, we also built a fully functional

Stunts example, which is available as a separate pack-
age.
Everyone is invited to contribute! You can help

the project by playing around with the code, thinking
about API design, finding bugs (well, there are a lot of
them anyway), creating more content to display, and
generally stress testing the library as much as possible
by using it in your own projects.

Further reading

◦ http://www.haskell.org/haskellwiki/
LambdaCubeEngine

◦ http://hackage.haskell.org/package/stunts
◦ http://www.youtube.com/watch?v=kDu5aCGc8l4

7.7.5 diagrams

Report by: Brent Yorgey
Participants: Ryan Yates
Status: active development

The diagrams library provides an embedded domain-
specific language for declarative drawing. The overall
vision is for diagrams to become a viable alternative

to DSLs like MetaPost or Asymptote, but with the ad-
vantages of being declarative—describing what to draw,
not how to draw it—and embedded—putting the entire
power of Haskell (and Hackage) at the service of dia-
gram creation.

Development on the library has proceeded apace
since the last HCAR, and the 0.4 release now features
a comprehensive user manual as well as support for
a large collection of primitive shapes, many different
modes of composition, paths, cubic splines, images,
text, arbitrary monoidal annotations, named subdia-
grams, and more.
There is plenty more work to be done; new contrib-

utors are particularly welcome!

Future plans

Plans for the near future include a native SVG backend,
improved font support, arrowheads, and improvements
to the handling of named subdiagrams. Longer-term
plans include support for animations, a custom Gtk ap-
plication for editing diagrams, and any other awesome
stuff we think of.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://code.google.com/p/diagrams/issues/list

7.7.6 ChalkBoard

Report by: Andy Gill
Status: suspended

ChalkBoard is a domain specific language for describ-
ing images. The language is uncompromisingly func-
tional and encourages the use of modern functional id-
ioms. The novel contribution of ChalkBoard is that it
uses off-the-shelf graphics cards to speed up rendering
of our functional description. We always intended to
use ChalkBoard to animate educational videos, as well

45

http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://hackage.haskell.org/package/stunts
http://www.youtube.com/watch?v=kDu5aCGc8l4
http://projects.haskell.org/diagrams
http://code.google.com/p/diagrams/issues/list

as for processing streaming videos. ChalkBoard also
has an animation language, based round an applicative
functor, Active. It has been called Functional Reactive
Programming, without the reactive part!
ChalkBoard has been released on hackage, but is not

actively being developed. It would be nice to port the
code to HTML5, and we are happy to act as mentors
for this effort.
Kevin Matlage graduated in May 2011 with an MS.

His MS thesis was about the design, implementa-
tion and applications of ChalkBoard. The thesis was
awarded the departmental Miller award, for best MS of
the year. Congratulations Kevin!

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard

7.8 Text and Markup Languages

7.8.1 HaTeX

Report by: Daniel Díaz
Status: In development
Current release: Version 3

Description

HaTeX is an implementation of LATEX, with the aim
to be a helpful tool to generate LATEX code.

From a global sight, it’s composed of:

1. The LATEX syntax description.

2. A renderer of LATEX code.

3. A set of combinators of LATEX entities.

4. A monadic implementation of combinators.

5. Methods for a subset of LATEX packages.

What is new?

The third version of HaTeX has just released, and it is
a completely new implementation. Althought a lot of
code is still valid, the internal representation of values
has changed drastically. Now, the LATEX code is writ-
ten in an Abstract Syntax Tree (AST), via the LaTeX
datatype.

Future plans

A near future plan is to analyze the final AST output
to find possible errors in your LATEX code, and to
warn you about this. Code is already adapting to this
feature.

Other new coming features are tree draws from a

tree data structure, to extend the AMS-LATEX func-
tionality (currently, too limited) and to implement a
LATEX code parser.

Contact

If you are someway interested in this project, please,
feel free to give any kind of opinion or idea, or to ask
any question you have. A good place to take contact
and stay tuned is the HaTeX mailing list:

hatex <at> projects.haskell.org

Of course, you always can mail to the maintainer.

Further reading

◦ HaTeX project page: http://dhelta.net/hprojects/
HaTeX

7.8.2 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 9.1)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml and HXML, but introduces a more general ap-
proach for processing XML with Haskell. The process-
ing model is based on arrows. The arrow interface is
more flexible than the filter approach taken in the ear-
lier HXT versions and in HaXml. It is also safer; type
checking of combinators becomes possible with the ar-
row approach.
HXT is partitioned into a collection of smaller pack-

ages: The core package is hxt. It contains a validating
XML parser, an HTML parser, filters for manipulating
XML/HTML and so called XML pickler for converting
XML to and from native Haskell data.
Basic functionality for character handling

and decoding is separated into the packages
hxt-charproperties and hxt-unicode. These
packages may be generally useful even for non XML
projects.
HTTP access can be done with the help of the pack-

ages hxt-http for native Haskell HTTP access and
hxt-curl via a libcurl binding. An alternative lazy non
validating parser for XML and HTML can be found in
hxt-tagsoup.

46

http://www.ittc.ku.edu/csdl/fpg/Tools/ChalkBoard
http://dhelta.net/hprojects/HaTeX
http://dhelta.net/hprojects/HaTeX

The XPath interpreter is in package hxt-xpath, the
XSLT part in hxt-xslt and the Relax NG valida-
tor in hxt-relaxng. For checking the XML Schema
Datatype definitions, also used with Relax NG, there
is a separate and generally useful regex package
hxt-regex-xmlschema.
The old HXT approach working with filter

hxt-filter is still available, but currently only with
hxt-8. It has not (yet) been updated to the hxt-9 mayor
version.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based

on Tagsoup (http://www.haskell.org/communities/
05-2010/html/report.html#sect5.11.3)

◦ Binding to the expat parser via hexpat package
◦ Easy de-/serialization between native Haskell data

and XML by pickler and pickler combinators
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ HTTP access via Haskell bindings to libcurl and via

Haskell HTTP package
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ Lightweight regex library with full support of Uni-

code and XML Schema Datatype regular expression
syntax

◦ An HXT Cookbook for using the toolbox and the
arrow interface

◦ Basic XSLT support
◦ GitHub repository with current development ver-

sions of all packages http://github.com/UweSchmidt/
hxt

Current Work

In October 2011 a project has been started as part of
a master thesis for an XML validator based on XML
Schema. Experiences with developing the Relax-NG
have shown, that such a project may be done within
such a limited time. The XML picklers can be used to
easily parse XML Schema an transform it into an AST.
So the core work consists of developing an appropriate
abstract syntax and to normalize, check and transform
this AST before validating XML documents. Within
this project the XML data type library already in use
with Relax-NG is planned to be completed. In the
current version, time and date data types are not yet
supported. We expect to finish the work in March 2012.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes links to downloads, documentation, and
further information.
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT). The conversion between XML
and native Haskell data types is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

47

http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://github.com/UweSchmidt/hxt
http://github.com/UweSchmidt/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML

8 Applications and Projects

8.1 Education

8.1.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).
In November 2010, Gerben Verburg started to

reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, but is currently unpublished.
The tool will not be made available through Hackage,

but will be available free of use to lecturers on request.
Please contact J.Hage@uu.nl for more information.
We also have a implemented graph based that com-

putes near graph-isomorphism that seems to work re-
ally well in comparing control-flow graphs in an inex-
act fashion. However, it does not scale well enough in
terms of computations to be included in the compari-
son, and is not mature enough to deal with certain easy
refactorings.
Future work includes a Hare-against-Holmes bash in

which Hare users will do their utmost to fool Holmes.

8.1.2 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder
Status: experimental, active development

The Ideas project (at Open Universiteit Nederland
and Universiteit Utrecht) aims at developing interac-
tive domain reasoners on various topics. These reason-
ers assist students in solving exercises incrementally by
checking intermediate steps, providing feedback on how

to continue, and detecting common mistakes. The rea-
soners are based on a strategy language, from which
all feedback is derived automatically. The calculation
of feedback is offered as a set of web services, enabling
external (mathematical) learning environments to use
our work. We currently have a binding with the Digital
Mathematics Environment (DWO) of the Freudenthal
Institute, the ActiveMath learning system (DFKI and
Saarland University), and our own online exercise as-
sistant that supports rewriting logical expressions into
disjunctive normal form.

We are adding support for more exercise types,
mainly at the level of high school mathematics. For
example, our tool now covers simplifying expressions
with exponents, rational equations, and derivatives.
We have investigated how users can interleave solving
different parts of exercises. Recently, we have focused
on designing a functional programming tutor. This tool
lets you practice introductory functional programming
exercises. We are investigating how we can add test-
ing to the tutor, and how we can let teachers configure
the tutor for particular programming exercises. This is
ongoing research.
The feedback services are available as a Cabal source

package. The latest release is version 1.0 from Septem-
ber 1, 2011.

Further reading

◦ Online exercise assistant (for logic), accessible from
our project page.

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science, 3(3):349–
370, 2010.

◦ Bastiaan Heeren and Johan Jeuring. Interleav-
ing Strategies. Conference on Intelligent Com-
puter Mathematics, Mathematical Knowledge Man-
agement (MKM 2011).

◦ Johan Jeuring, Alex Gerdes, and Bastiaan Heeren.
A Programming Tutor for Haskell. To appear in
Lecture Notes Central European School on Func-
tional Programming, (CEFP 2011). Try our tutor
at http://ideas.cs.uu.nl/ProgTutor/.

48

http://ideas.cs.uu.nl/ProgTutor/
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/www
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://people.cs.uu.nl/bastiaan/SpecifyingStrategiesJournal.html
http://people.cs.uu.nl/bastiaan/InterleavingStrategies.html
http://people.cs.uu.nl/bastiaan/InterleavingStrategies.html
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/CEFP/
http://ideas.cs.uu.nl/ProgTutor/

8.2 Data Management and Visualization

8.2.1 HaskellDB

Report by: Justin Bailey
Status: active development

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect9.2.1.

8.2.2 Pandoc

Report by: John MacFarlane
Participants: Andrea Rossato, Peter Wang, Paulo

Tanimoto, Eric Kow, Luke Plant, Justin
Bogner, Paul Rivier, Nathan Gass,

Puneeth Chaganti, Josef Svenningsson,
Etienne Millon, Joost Kremers

Status: active development

Pandoc aspires to be the swiss army knife of text
markup formats: it can read markdown and (with some
limitations) HTML, LaTeX, Textile, and reStructured-
Text, and it can write markdown, reStructuredText,
HTML, DocBook XML, OpenDocument XML, ODT,
RTF, groff man, MediaWiki markup, GNU Texinfo,
LaTeX, ConTeXt, EPUB, Textile, Emacs org-mode,
Slidy, and S5. Pandoc’s markdown syntax includes ex-
tensions for LaTeX math, tables, definition lists, foot-
notes, and more.
Since the last report, many new features have been

added and improvements made. Some highlights:
◦ Support for Textile input and output.
◦ Support for Emacs org-mode output.
◦ A new “builder” module for constructing Pandoc

documents programatically.
◦ Support for LATEXmath macros in markdown docu-

ments.
◦ Support for automatic citations and bibliographies

using Andrea Rossato’s citeproc-hs library.
These last two changes bring two of the most pow-

erful features of LATEXto pandoc.

Further reading

http://johnmacfarlane.net/pandoc/

8.2.3 DSH — Database Supported Haskell

Report by: Torsten Grust
Participants: George Giorgidze, Tom Schreiber, Jeroen

Weĳers, Alexander Ulrich
Status: active development

Database-Supported Haskell, DSH for short, is a
Haskell library for database-supported program execu-
tion. Using the DSH library, a relational database man-
agement system (RDBMS) can be used as a coprocessor
for the Haskell programming language, especially for
those program fragments that carry out data-intensive
and data-parallel computations. Rather than embed-
ding a relational language into Haskell, DSH turns id-
iomatic Haskell programs into SQL queries. The DSH
library and the FerryCore package it uses are available
on Hackage (http://hackage.haskell.org/package/DSH).

DSH in the Real World. We have used DSH for
large scale data analysis. Specifically, in collaboration
with researchers working in social and economic sci-
ences, we used DSH to analyse the entire history of
Wikipedia (terabytes of data) and a number of online
forum discussions (gigabytes of data).
Because of the scale of the data, it would be unthink-

able to conduct the data analysis in Haskell without
using the database-supported program execution tech-
nology featured in DSH. We have formulated several
DSH queries directly in SQL as well and found that
the equivalent DSH queries were much more concise,
easier to write and maintain (mostly due to DSH’s sup-
port for nesting, Haskell’s abstraction facilities and the
monad comprehension notation, see below).
One long-term goal is to allow researchers who are

not necessarily expert programmers or database engi-
neers to conduct large scale data analysis themselves.

Towards a New Compilation Strategy. As of to-
day, DSH relies on a query compilation strategy coined
loop-lifting. Loop-lifting comes with important and de-
sirable properties (e.g., the number of SQL queries is-
sued for a given DSH program only depends on the
static type of the program’s result). The strategy, how-
ever, relies on a rather complex and monolithic map-
ping of programs to the relational algebra. To remedy
this, we are currently exploring a new strategy based
on the flattening transformation as conceived by Guy
Blelloch. Originally designed to implement the data-
parallel declarative language NESL, we revisit flatten-
ing in the context of query compilation (which targets
database kernels, one particular kind of data-parallel
execution environment). Initial results are promising
and DSH might switch over in the not too far future.
We hope to further improve query quality and also
address the formal correctness of DSH’s program-to-
queries mapping.

Related Work. Motivated by DSH we reintroduced
the monad comprehension notation into GHC and also
extended it for parallel and SQL-like comprehensions.
The extension is available in GHC 7.2.

Further reading

http://db.inf.uni-tuebingen.de/research/dsh

49

http://www.haskell.org/communities/11-2010/html/report.html#sect9.2.1
http://www.haskell.org/communities/11-2010/html/report.html#sect9.2.1
http://johnmacfarlane.net/pandoc/

8.3 Functional Reactive Programming

8.3.1 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a library for functional reactive pro-
gramming (FRP). The goal is to create a solid founda-
tion for anything FRP-related.

◦ Users can finally start experimenting with graphical
user interfaces based on FRP as the library can be
hooked into any existing event-based framework like
wxHaskell or Gtk2Hs. A plethora of example code
helps with getting started.

◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation.

◦ It features an efficient implementation. No more
spooky time leaks, predicting space & time usage
should be straightforward.

Version 0.4.3 of the reactive-banana library has been
released on Hackage. It provides a solid push-based
implementation of a subset of the semantics for FRP
pioneered by Conal Elliott. Compared to the previ-
ous report, interoperability with external event frame-
works has been improved. The library now also pro-
vides many examples, as shown in the screenshot.

Current development focuses on a more integrated
notion of time and dynamic event switching.

Further reading

◦ Project homepage: http://haskell.org/haskellwiki/
Reactive-banana

◦ Example code: http://haskell.org/haskellwiki/
Reactive-banana/Examples

◦ Cabal package: http://hackage.haskell.org/package/
reactive-banana

◦ Developer blog: http://apfelmus.nfshost.com/blog.
html

8.3.2 Functional Hybrid Modelling

Report by: George Giorgidze
Participants: Joey Capper, Henrik Nilsson
Status: active research and development

The goal of the FHM project is to gain a better foun-
dational understanding of noncausal, hybrid modelling
and simulation languages for physical systems and ul-
timately to improve on their capabilities. At present,
our central research vehicle to this end is the design and
implementation of a new such language centred around
a small set of core notions that capture the essence of
the domain.
Causal modelling languages are closely related to

synchronous data-flow languages. They model system
behaviour using ordinary differential equations (ODEs)
in explicit form. That is, cause-effect relationship be-
tween variables must be explicitly specified by the mod-
eller. In contrast, noncausal languages model system
behaviour using differential algebraic equations (DAEs)
in implicit form, without specifying their causality. In-
ferring causality from usage context for simulation pur-
poses is left to the compiler. The fact that the causality
can be left implicit makes modelling in a noncausal lan-
guage more declarative (the focus is on expressing the
equations in a natural way, not on how to express them
to enable simulation) and also makes the models much
more reusable.
FHM is an approach to modelling which combines

functional programming and noncausal modelling. In
particular, the FHM approach proposes modelling with
first class models (defined by continuous DAEs) using
combinators for their composition and discrete switch-
ing. The discrete switching combinators enable mod-
elling of hybrid systems (i.e., systems that exhibit both
continuous and discrete dynamic behaviour). The key
concepts of FHM originate from work on Functional
Reactive Programming (FRP).
We are implementing Hydra, an FHM language, as

a domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting and en-
ables modellers to use the domain specific syntax in
their models. The present prototype implementation
of Hydra enables modelling with first class models and
supports combinators for their composition and dis-
crete switching.
We implemented support for dynamic switching

among models that are computed at the point when
they are being “switched in”. Models that are com-
puted at run-time are just-in-time (JIT) compiled to
efficient machine code. This allows efficient simulation
of structurally dynamic systems where the number of
structural configurations is large, unbounded or impos-
sible to determine in advance. This goes beyond to
what current state-of-the-art noncausal modelling lan-
guages can model. The implementation techniques that
we developed should benefit other modelling and sim-
ulation languages as well.
We are also exploring ways of utilising the type sys-

tem to provide stronger correctness guarantees and to
provide more compile time reassurances that our sys-
tem of equations is not unsolvable. Properties such as
equational balance (ensuring that the number of equa-

50

http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://hackage.haskell.org/package/reactive-banana
http://hackage.haskell.org/package/reactive-banana
http://apfelmus.nfshost.com/blog.html
http://apfelmus.nfshost.com/blog.html

tions and unknowns are balance) and ensuring the solv-
ability of locally scoped variables are among our goals.
Furthermore, a small core language for FHM is being
developed and formalised in the dependently-typed lan-
guage Agda, allowing us to prove important properties,
such as the termination and productivity of the struc-
tural dynamics.
In July, this year, I submitted my PhD thesis featur-

ing an in-depth description of the design, semantics and
implementation of the Hydra language. In addition,
the thesis features a range of example physical systems
modelled in Hydra. The examples are carefully chosen
to showcase those language features of Hydra that are
lacking in other noncausal modelling languages. The
next release of Hydra is planned for December, this
year. The release will feature all examples from the
thesis.

Further reading

The implementation of Hydra and related papers (in-
cluding my PhD thesis) are available from http://db.
inf.uni-tuebingen.de/team/giorgidze.

8.3.3 Elerea

Report by: Patai Gergely
Status: experimental, active

Elerea (Eventless reactivity) is a tiny discrete time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialised monad, while stateless combina-
tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. The library comes in three major
variants, which all have precise denotational semantics:
◦ Simple: signals are plain discrete streams isomorphic
to functions over natural numbers;

◦ Param: adds a globally accessible input signal for
convenience;

◦ Clocked: adds the ability to freeze whole subnet-
works at will.
The code is readily available via cabal-install

in the elerea package. You are advised to in-
stall elerea-examples as well to get an idea how
to build non-trivial systems with it. The exam-
ples are separated in order to minimize the de-
pendencies of the core library. The experimental
branch is showcased by Dungeons of Wor, found in
the dow package (http://www.haskell.org/communities/
05-2010/html/report.html#sect6.11.2). Additionally,
the basic idea behind the experimental branch is laid

out in the WFLP 2010 article Efficient and Composi-
tional Higher-Order Streams.
Since the last report, the Clocked variant of the li-

brary was completely reimplemented. As opposed to
the previous version, the new implementation correctly
executes according to the desired semantics, and it is
also more efficient.

Further reading

◦ http://hackage.haskell.org/package/elerea
◦ http://hackage.haskell.org/package/elerea-examples
◦ http://hackage.haskell.org/package/dow
◦ http://sgate.emt.bme.hu/documents/patai/

publications/PataiWFLP2010.pdf
◦ http://babel.ls.fi.upm.es/events/wflp2010/video/

video-08.html (WFLP talk)

8.4 Audio and Graphics

8.4.1 Audio Signal Processing

Report by: Henning Thielemann
Status: experimental, active development

In this project, audio signal algorithms are written in
Haskell, that is, no binding to existing sound synthesis
systems like SuperCollider. The highlights are:
◦ It is based on the Numeric Prelude frame-

work (http://haskell.org/communities/05-2009/html/
report.html#sect5.6.2).

◦ We support physical units while maintaining effi-
ciency,

◦ There are frameworks for abstraction from sample
rate. That is, the sampling rate can be omitted in
most parts of a signal processing expression.

◦ We checked several low-level implementations in or-
der to achieve reasonable speed. We complement
the standard list type with a lazy StorableVector
structure and a StateT s Maybe a generator, like in
stream-fusion. Now, both our custom signal genera-
tor type and the Stream type from stream-fusion can
be fused to work directly on storable vectors.

◦ There is support for causal processes. Causal signal
processes only depend on current and past data and
thus are suitable for real-time processing (in contrast
to a function like time reversal). These processes
are modeled as mapAccumL like functions. Many im-
portant operations like function composition main-
tain the causality property. They are important for
sharing on a per sample basis and in feedback loops
where they statically warrant that no future data is
accessed.

◦ Type class framework for unifying lazy time values
and signals expressed by lists, storable vectors or sig-
nal generators.

51

http://db.inf.uni-tuebingen.de/team/giorgidze
http://db.inf.uni-tuebingen.de/team/giorgidze
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://hackage.haskell.org/package/elerea
http://hackage.haskell.org/package/elerea-examples
http://hackage.haskell.org/package/dow
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2

◦ Connection to ALSA bindings, in order to provide
real-time sound synthesis controlled by MIDI events
from keyboards or sequencers.

◦ A real-time software synthesizer that employs Just-
In-Time-compilation and vector instructions pro-
vided by the Low-Level Virtual Machine (http://
llvm.org/)

Recent advances are:
◦ Allow to describe acyclic arrow networks using a
functional notation. By observation of sharing and
the new Vault data structure we get the same effi-
ciency as when using arrow combinators or the arrow
syntax.

Further reading

◦ http://www.haskell.org/haskellwiki/Synthesizer
◦ http://hackage.haskell.org/package/vault

8.4.2 Tidal, Texture and Live Music with Haskell

Report by: Alex McLean
Status: experimental

For a number of years, I have been improvising live mu-
sic with Haskell. I have made a pattern library called
Tidal and have most recently been working on an ex-
perimental visual language on front of that called Tex-
ture (formerly known as Text, and I am still in the
process of renaming it). There are various videos and
some more information on my homepage.
I have been using Tidal and its predecessors in

live performance for some years, as shown this video
of a performance in Norway: http://piksel.blip.tv/file/
4521577/. The quality of the recording is not perfect,
but it does show people dancing to Haskell. This per-
formance was with Dave Griffiths (who used his own
visual Scheme language SchemeBricks), we perform to-
gether (usually as a trio with Adrian Ward) as Slub,
and are available for bookings.
Texture is rather experimental, but I recently ran a

workshop with it, and got six non-programmers writing
Haskell code to improvised music of the acid techno
genre together over a few hours.
The code is available at http://darcs.slab.org/, but

is undocumented and difficult to get running. Those
interested in dabbling in this area would probably be
better off looking at hsc3 or haskore. Conductive is
another new and interesting library.
At the moment I am finishing off my PhD thesis on

a related topic, after that I intend to spend some time
packaging Tidal and Texture properly.
Folks interested in Haskell and music, as well as other

artforms should consider signing up to the haskell art
mailing list.

Further reading

http://yaxu.org/

8.4.3 Hemkay

Report by: Patai Gergely
Status: experimental, active

Hemkay (An M.K. Player Whose Name Starts with
an H) is a simple music module player that performs
all the mixing in Haskell. It supports the popular Pro-
Tracker format and some of its variations with different
numbers of channels. The device independent mixing
functionality can be found in the hemkay-core pack-
age.
The current version of the player uses the list-based

PortAudio bindings for playback, which is highly inef-
ficient.
Since the last update, the mixer went through

some performance optimisations. However, the im-
proved mixing performance can only be exploited either
through the alternative callback interface of PortAudio
(check the hemkay/callback branch on GitHub), or
through the OpenAL version (hemkay/openal branch).
Out of the two, the PortAudio version is significantly
more efficient, but it is prone to random crashes. Note
that this alternative PortAudio binding is only avail-
able on GitHub.

Further reading

◦ http://hackage.haskell.org/package/hemkay-core
◦ http://hackage.haskell.org/package/hemkay
◦ http://en.wikipedia.org/wiki/MOD_(file_format)
◦ https://github.com/cobbpg/hemkay
◦ https://github.com/mietek/portaudio

8.4.4 Functional Modelling of Musical Harmony

Report by: José Pedro Magalhães
Participants: W. Bas de Haas
Status: actively developed

Music theory has been essential in composing and per-
forming music for centuries. Within Western tonal mu-
sic, from the early Baroque on to modern-day jazz and
pop music, the function of chords within a chord se-
quence can be explained by harmony theory. Although
Western tonal harmony theory is a thoroughly studied
area, formalising this theory is a hard problem.
We have developed a system, named HarmTrace,

that formalises the rules of tonal harmony as a Haskell
(generalized) algebraic datatype. Given a sequence of
chord labels, the harmonic function of a chord in its
tonal context is automatically derived. For this, we use
several advanced functional programming techniques,
such as type-level computations, datatype-generic pro-
gramming, and error-correcting parsers. We have an
experience report at ICFP’11 detailing this project.
As an example, we show a tree representation of the

harmony analysis of a short music fragment:

52

http://llvm.org/
http://llvm.org/
http://www.haskell.org/haskellwiki/Synthesizer
http://hackage.haskell.org/package/vault
http://yaxu.org/
http://piksel.blip.tv/file/4521577/
http://piksel.blip.tv/file/4521577/
http://pawfal.org/dave/
http://slub.org/
http://darcs.slab.org/
http://hackage.haskell.org/package/hsc3
http://hackage.haskell.org/package/haskore
http://hackage.haskell.org/package/conductive-base
http://www.haskell.org/haskellwiki/Haskell_art
http://www.haskell.org/haskellwiki/Haskell_art
http://yaxu.org/
http://hackage.haskell.org/package/hemkay-core
http://hackage.haskell.org/package/hemkay
http://en.wikipedia.org/wiki/MOD_(file_format)
https://github.com/cobbpg/hemkay
https://github.com/mietek/portaudio
http://dreixel.net/research/pdf/fmmh.pdf

Piece
T

T
I

I:maj

D
D

D
V7
V:7

V /V
II7

II:7

S
IV

IV:maj

V / IV
I7
I:7

V / I
Vmin
V:min

S
IV
ins

V / IV
I7
I:7

V / I
Vmin
V:min

This tree is a visual representation of a value of a
Haskell datatype encoding musical harmony, with com-
mon notions such as tonic, dominant, etc. Such trees
are generated from input sequences of chord labels such
as C:maj F:maj G:7 C:Maj.
A functional model of harmony offers various ben-

efits: for instance, it can help musicologists in batch-
analysing large corpora of digitised scores, but it has
proven to be especially useful for solving Music Infor-
mation Retrieval (MIR) problems. MIR is the research
field that aims to provide methods that keep large col-
lections of digital music accessible and maintainable.
Hence, besides generating musically meaningful har-
monic analyses, HarmTrace explores ways of exploit-
ing these generated analyses to improve the similar-
ity assessment of chord sequences and the automatic
extraction for chord labels from musical audio. Some
empirical evidence showing that the harmonic analyses
of HarmTrace improve harmonic similarity estimation
has been published at the International Society for Mu-
sic Information Retrieval conference 2011.
The code is also available on Hackage.

Further reading

http://www.cs.uu.nl/wiki/GenericProgramming/
HarmTrace

8.4.5 Cologne

Report by: Joel Burget
Status: actively developed

Cologne is a ray tracer being developed in Haskell. The
goal is to produce a fun and relatively performant ray
tracer. The project has been slowed down recently as
my main focus has been on importing more complex
models through the Assimp project (→ 7.7.1), but de-
velopment should pick up this summer. Check out this
render of the smallpt scene:

Further reading

https://github.com/joelburget/Cologne

8.5 Hardware Design

8.5.1 CλaSH

Report by: Christiaan Baaĳ
Participants: Arjan Boeĳink, Jan Kuper, Anja

Niedermeier, Matthĳs Kooĳman, Marco
Gerards

Status: experimental

CλaSH (CAES Language for Synchronous Hardware)
is a functional hardware description language that bor-
rows both its syntax and semantics from Haskell. The
clock is implicit for the descriptions made in CλaSH:
the behaviour of the circuit is described as transition
from the current state to the next, which occurs ev-
ery clock cycle. The current state is an input of such
a transition function, and the updated state part of
its result tuple. As descriptions are also valid Haskell,
simulations can simply be performed by a Haskell com-
piler/interpreter (GHC only, due to the use of type
families).
Instead of being an embedded language such

as ForSyDe (http://www.haskell.org/communities/
05-2010/html/report.html#sect6.8.1) and Lava (→
8.5.2)(→ 10.10), CλaSH has a compiler which can
translate Haskell to synthesizable VHDL. The
compiler has support for, amongst others: polymor-
phism, higher-order functions, user-defined algebraic
datatypes, and all of Haskell’s choice mechanisms. The
CλaSH compiler uses GHC for parsing, de-sugaring,
and type-checking. The resulting Core-language
description is then transformed into a normal form,
from which a translation to VHDL is direct. The
transformation system uses a set of rewrite rules
which are exhaustively applied until a description is
in normal form. Examples of these rewrite rules are
β-reduction and η-expansion, but also transformations
to transform higher-order functions to first-order

53

http://ismir2011.ismir.net/papers/PS1-5.pdf
http://ismir2011.ismir.net/papers/PS1-5.pdf
http://hackage.haskell.org/package/HarmTrace
http://www.cs.uu.nl/wiki/GenericProgramming/HarmTrace
http://www.cs.uu.nl/wiki/GenericProgramming/HarmTrace
https://github.com/joelburget/Cologne
http://www.haskell.org/communities/05-2010/html/report.html#sect6.8.1
http://www.haskell.org/communities/05-2010/html/report.html#sect6.8.1

functions, and transformation for the specialization of
polymorphic functions.
The CλaSH compiler was first presented to the com-

munity, after 7 months of work, at the Haskell 2009
symposium in Edinburgh, Scotland. Support for ar-
rows and the corresponding syntax, which eases the
composition of transition functions, was added in July
2010 and was subsequently presented at IFL 2010 in
Alphen a/d Rĳn, The Netherlands.
The CλaSH compiler, available as a library, can

be found both on Hackage (http://hackage.haskell.
org/package/clash, stable) and github (http://github.
com/christiaanb/clash/, development). The com-
piler/interpreter is also available as an executable,
which is basically the GHC binary extended with the
CλaSH library, on the CλaSH website (http://clash.ewi.
utwente.nl).

What is new?

There is now simulation and synthesis support
for hardware descriptions that have multiple
clock domains, starting with version 0.1.3.0 of
CλaSH. Example usage of multiple clock do-
mains is explained here: http://www.haskell.org/
pipermail/haskell-cafe/2011-March/090471.html. The
code for the demo (which uses multiple clock
domains) we did at the DATE’11 conference
is available here: http://github.com/christiaanb/
DE1-Cyclone-II-FPGA-Board-Support-Package.

Further reading

http://clash.ewi.utwente.nl

8.5.2 Kansas Lava

Report by: Andy Gill
Participants: Andy Gill, Andrew Farmer, Ed Komp,

Bowe Neuenschwander, Garrin Kimmell
(University of Iowa)

Status: ongoing

Kansas Lava is a Domain Specific Language (DSL) for
expressing hardware descriptions of computations, and
is hosted inside the language Haskell. Kansas Lava pro-
grams are descriptions of specific hardware entities, the
connections between them, and other computational
abstractions that can compile down to these entities.
Large circuits have been successfully expressed using
Kansas Lava, and Haskell’s powerful abstraction
mechanisms, as well as generic generative techniques,
can be applied to good effect to provide descriptions
of highly efficient circuits. Kansas Lava draws con-
siderably from Xilinx Lava (http://www.haskell.org/
communities/11-2010/html/report.html#sect3.7) and
Chalmers Lava (→ 10.10).

The release of Kansas Lava, version 0.2.4, happened
in early November. Based round this release, there
are a number of resources for users, including a (draft)
tutorial, and a youtube channel with walkthroughs of
our Lava in use.
On top of Kansas Lava, we are developing Kansas

Lava Cores, which was released on hackage at the same
time as Kansas Lava. In hardware, a core is a com-
ponent that can be realized as a circuit, typically on
an FPGA. Kansas Lava Cores contains about a dozen
cores, and basic board support for Spartan3e, as well
as an emulator for the Spartan3e.
Using various components provided as Kansas Lava

Cores, we are developing the λ-bridge (→ 8.8.2), with
implementations in Haskell and Kansas Lava of a sim-
ple protocol stack for communicating with FPGAs. We
have early prototypes working, and implementation in
Kansas Lava continues.
Finally, we are working on a Lava idiom called a

Patch, which is a Kansas Lava component interface
that uses types to declare protocols and handshakes
needed and used. Most of components in the Kansas
Lava Cores are instances of our Patch idiom. There
is a PADL 2012 paper describing Patch, including
the design and implementation of a controller for an
ST7066U-powered LCD display.
Tristan Bull graduated in May 2011 with an MS. His

MS thesis was about using Kansas Lava. Congratula-
tions Tristan!

Further reading

◦ http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

◦ http://www.youtube.com/playlist?list=
PL211F8711E3B3DF9C

8.6 Proof Assistants and Reasoning

8.6.1 HERMIT

Report by: Andy Gill
Participants: Andy Gill, Andrew Farmer, Ed Komp,

Nathan Schwermann, PostDoc (TBA)
Status: active

The Haskell Equational Reasoning Model-to-
Implementation Tunnel (HERMIT) is an NSF-funded
project being run at KU (→ 10.11) to improving
the Applicability of Haskell-Hosted Semi-Formal
Models to High Assurance Development. Specifically,
HERMIT will use the worker/wrapper transformation,
a Haskell-hosted DSL, and a new refinement UI to
perform rewrites directly on Haskell Core, the GHC
internal representation.
This project is a substantial case study into the ap-

plication of worker/wrapper on larger examples. In
particular, we want to demonstrate the equivalences

54

http://hackage.haskell.org/package/clash
http://hackage.haskell.org/package/clash
http://github.com/christiaanb/clash/
http://github.com/christiaanb/clash/
http://clash.ewi.utwente.nl
http://clash.ewi.utwente.nl
http://www.haskell.org/pipermail/haskell-cafe/2011-March/090471.html
http://www.haskell.org/pipermail/haskell-cafe/2011-March/090471.html
http://github.com/christiaanb/DE1-Cyclone-II-FPGA-Board-Support-Package
http://github.com/christiaanb/DE1-Cyclone-II-FPGA-Board-Support-Package
http://clash.ewi.utwente.nl
http://www.haskell.org/communities/11-2010/html/report.html#sect3.7
http://www.haskell.org/communities/11-2010/html/report.html#sect3.7
http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
http://www.youtube.com/playlist?list=PL211F8711E3B3DF9C
http://www.youtube.com/playlist?list=PL211F8711E3B3DF9C

between efficient Haskell programs, and their clear,
specification-style Haskell counterparts. In doing so,
there are several open problems, including refinement
scripting and management scaling issues, data repre-
sentation and presentation challenges, and understand-
ing the theoretical boundaries of the worker/wrapper
transformation.
The project is currently being staffed up, and is ex-

pected to run through 2013, and will be released open-
source in due time.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT

8.6.2 Automated Termination Analyzer for Haskell

Report by: Jürgen Giesl
Participants: Matthias Raffelsieper, Peter

Schneider-Kamp, Stephan Swiderski, René
Thiemann

Status: actively developed

There are many powerful techniques for automated ter-
mination analysis of term rewriting. However, up to
now they have hardly been used for real programming
languages. We developed an approach which permits
the application of existing techniques from term rewrit-
ing to prove termination of most functions defined in
Haskell programs. In particular, we show how termi-
nation techniques for ordinary rewriting can be used
to handle those features of Haskell which are miss-
ing in term rewriting (e.g., lazy evaluation, polymor-
phic types, and higher-order functions). We imple-
mented our results in the termination prover AProVE.
When testing it on existing standard Haskell-libraries,
it turned out that AProVE can fully automatically
prove termination of the vast majority of the functions
in the libraries.

Further reading

◦ For details on our approach:

J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S.
Swiderski, and R. Thiemann. Automated Ter-
mination Proofs for Haskell by Term Rewriting.
ACM Transactions on Programming Languages and
Systems, 33(2), 2011. http://dx.doi.org/10.1145/
1890028.1890030

◦ To access the implementation via a web interface and
for further information on our experiments:

http://aprove.informatik.rwth-aachen.de/eval/
Haskell/

8.6.3 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Daniel Seidel

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs to
be refined and extended. We aim to provide such new
theoretical foundations, as well as to apply the theoret-
ical results to practical problems. The research grant
that sponsored Daniel’s position has been extended for
another round of funding. However, currently we are
both consumed by teaching the (by local definition, im-
perative) programming intro course here at U Bonn, in
C (yes, in C), plus an advanced functional program-
ming course, in Haskell.
On the practical side, we maintain a library and tools

for generating free theorems from Haskell types, orig-
inally implemented by Sascha Böhme and with con-
tributions from Joachim Breitner and now Matthias
Bartsch. Both the library and a shell-based tool are
available from Hackage (as free-theorems and ftshell,
respectively). There is also a web-based tool at http:
//www-ps.iai.uni-bonn.de/ft/. Features include:
◦ three different language subsets to choose from
◦ equational as well as inequational free theorems
◦ relational free theorems as well as specializations

down to function level
◦ support for algebraic data types, type synonyms and

renamings, type classes
◦ plain text, LATEX source, PDF, and inline graphics
output with nicely typeset theorems

Further reading

http://www.iai.uni-bonn.de/~jv/project/

8.6.4 Streaming Component Combinators

Report by: Mario Blažević
Status: experimental, actively developed

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect9.6.5.

55

http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT
http://dx.doi.org/10.1145/1890028.1890030
http://dx.doi.org/10.1145/1890028.1890030
http://aprove.informatik.rwth-aachen.de/eval/Haskell/
http://aprove.informatik.rwth-aachen.de/eval/Haskell/
http://www-ps.iai.uni-bonn.de/ft/
http://www-ps.iai.uni-bonn.de/ft/
http://www.iai.uni-bonn.de/~jv/project/
http://www.haskell.org/communities/11-2010/html/report.html#sect9.6.5
http://www.haskell.org/communities/11-2010/html/report.html#sect9.6.5

8.6.5 Swish

Report by: Douglas Burke
Participants: Graham Klyne, Vasili I Galchin
Status: experimental

Swish is a framework for performing deductions in
RDF data using a variety of techniques. Swish is con-
ceived as a toolkit for experimenting with RDF infer-
ence, and for implementing stand-alone RDF file pro-
cessors (usable in similar style to CWM, but with a
view to being extensible in declarative style through
added Haskell function and data value declarations).
It explores Haskell as “a scripting language for the Se-
mantic Web”, is a work-in-progress, and currently in-
corporates:
◦ Support for Turtle, Notation3, and NTriples formats.
◦ RDF graph isomorphism testing and merging.
◦ Display of differences between RDF graphs.
◦ Inference operations in forward chaining, backward

chaining and proof-checking modes.
◦ Simple Horn-style rule implementations, extendable

through variable binding modifiers and filters.
◦ Class restriction rule implementation, primarily for

datatype inferences.
◦ RDF formal semantics entailment rule implementa-

tion.
◦ Complete, ready-to-run, command-line and script-

driven programs.

Current Work

A number of incremental changes have been made to
the code base, including support for version 7.2 of GHC
and some minor optimisations. A parser and formatter
for the Turtle format were added, the API changed
to use the Text datatype where appropriate, and the
vocabulary module was extended to include terms from
the Dublin Core, FOAF, Geo and SIOC vocabularies.

Future plans

Continue the clean up and replacement of code with
packages from Hacakge. Look for commonalities with
the other existing RDF Haskell package, rdf4h. Com-
munity input — whether it be patches, new code or
just feature requests — are more than welcome.

Further reading

◦ https://bitbucket.org/doug_burke/swish/
◦ http://www.ninebynine.org/RDFNotes/Swish/Intro.

html
◦ http://protempore.net/rdf4h/

8.7 Natural Language Processing

8.7.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell. Since the last report, there
have been several new releases in the community:

◦ brillig [Hackage]: Partial implementation of the Brill
part of speech tagging algorithm (see also the sequor
package) (Eric Kow)

◦ tokenize [Hackage]: Simple tokenizer for English text
(Grzegorz Chrupala)

◦ monad-atom [Hackage]: Monadically convert objects
to unique atoms and back (Grzegorz Chrupala)

◦ nlp-scores [Hackage]: Scoring functions commonly
used for evaluation in NLP and IR. Accuracy, Recip-
rocal Rank, Average Accuracy (Grzegorz Chrupala)

◦ Grammatical Framework: Programming with Multi-
lingual Grammars, Aarne Rante, CSLI Publications,
Stanford, 2011, 340 pp, ISBN-10: 1-57586-626-9 (Pa-
per), 1-57586-627-7 (Cloth).

Also in development are the following packages

◦ alpinocorpus-server : Server for the Alpino
treebank library (https://github.com/danieldk/
alpinocorpus-server) (Daniel de Kok)

◦ alpinocorpus-haskell: Haskell bindings for the Alpino
treebank library. (https://github.com/danieldk/
alpinocorpus-haskell) (Daniel de Kok)

At the present, the mailing list is mainly used to
make announcements to the Haskell NLP community.
Recently, there has been a small uptick in activity, with
users looking for NLP libraries on the mailing list. We
hope this will further expand and bindings that would
be most useful to us and ways of spreading awareness
about Haskell in the NLP world.

Further reading

http://projects.haskell.org/nlp

56

https://bitbucket.org/doug_burke/swish/
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://protempore.net/rdf4h/
https://github.com/danieldk/alpinocorpus-server
https://github.com/danieldk/alpinocorpus-server
https://github.com/danieldk/alpinocorpus-haskell
https://github.com/danieldk/alpinocorpus-haskell
http://projects.haskell.org/nlp

8.7.2 GenI

Report by: Eric Kow
GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.
Work on GenI has begun anew. Since May 2011, Eric

is working with Computational Linguistics Ltd and SRI
international to develop new features for GenI and im-
prove its scalability and performance for use in an in-
teractive tutoring application. We are excited to see
GenI potentially being used in the real world!

GenI is available on Hackage, and can be installed via
cabal-install. Our most recent release of GenI was ver-
sion 0.20.2 (2009-12-02), with some bugfixes and sim-
plifications. For more information, please contact us
on the geni-users mailing list.

Further reading

◦ http://projects.haskell.org/GenI

◦ Paper from Haskell Workshop 2006:
http://hal.inria.fr/inria-00088787/en

◦ http://websympa.loria.fr/wwsympa/info/geni-users

8.8 Others

8.8.1 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and developed in co-operation by Ericsson,
Chalmers University of Technology (Göteborg, Swe-
den) and Eötvös Loránd (ELTE) University (Budapest,
Hungary).
The motivating application of Feldspar is telecoms

processing, but the language is intended to be useful
for DSP in general. The aim is to allow DSP functions
to be written in functional style in order to raise the
abstraction level of the code and to enable more high-
level optimizations. The current version consists of an
extensive library of numeric and array processing op-
erations as well as a code generator producing C code
for running on embedded targets.
The current version deals with the data-intensive nu-

meric algorithms which are at the core of any DSP ap-
plication. More recently, we have started to work on
extending the language to deal with more system-level
aspects such as memory layout and concurrency.
The implementation is available from Hackage.

Further reading

◦ http://feldspar.inf.elte.hu
◦ http://hackage.haskell.org/package/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-compiler

8.8.2 λ-Bridge

Report by: Andy Gill
Participants: Andy Gill, Bowe Neuenschwander, Patrick

Miller, Ed Komp
Status: ongoing

The λ-bridge effort provides enabling technology for
using functional programming on FPGA fabrics and
boards. The majority of the artifacts are shared doc-
umentation of ways to use FPGA board, and libraries
(software and hardware) that facilitate the use of FP-
GAs. Techniques for programming FPGA boards are
well documented, and there are many online examples
and other resources to draw from. Getting data to
and from a new hardware configuration, however, is a
problem every bit (pun intended) as challenging as pro-
gramming a FPGA in the first place. From empirical
evidence, engineers that need communications with a

57

http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users
http://feldspar.inf.elte.hu
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler

host processor write custom VHDL or Verilog for their
specific board to solve this problem. λ-bridge helps
solve this problem.
We are using Kansas Lava (→ 8.5.2) to generate vari-

ous “Cores” that provide a network protocol stack cen-
tered round the simple λ-bridge protocol, while being
generic about the physical layer. For example, we sup-
port the RS-232 cable and UDP over ethernet, and have
plans for USB and (where applicable) directly via a
motherboard bus. The protocol is also implemented in
Haskell, to provided the host-side support. Using the
λ-bridge is not the fastest way of communicating with
a board, but we hope will be an easy way of getting
up and running with a design. Between Kansas Lava,
Kansas Lava Cores, and λ-bridge, we plan to introduce
a new generation of functional programmers to the joys
of FPGA programming.
We are especially interested in using λ-bridge to

build a bridge between the statistics language R, and
FPGA board, in an attempt to speed up some com-
mon statical operations by offshoring the computation
to FPGAs.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/LambdaBridge

8.8.3 GenProg — Genetic Programming Library

Report by: Jan Šnajder
Status: experimental

The GenProg library is a framework for genetic pro-
gramming. Genetic programming is an evolutionary
technique, inspired by biological evolution, to evolve
programs for solving specific problems. A genetic pro-
gram is represented as an abstract syntax tree and as-
sociated with a custom-defined fitness value indicating
the quality of the solution. Starting from a randomly
generated initial population of genetic programs, the
genetic operators of selection, crossover, and (occasion-
ally) mutation are used to evolve programs of increas-
ingly better quality. Standard reference is John Koza’s
Genetic programming: On the Programming of Com-
puters by Means of Natural Selection.
In GenProg, a genetic program is represented by a

value of an algebraic datatype. To use a datatype as a
genetic program, it suffices to define it as an instance
of the GenProg typeclass. Any custom datatype can be
made an instance of the GenProg typeclass. In partic-
ular, to use instances of the Data typeclass as genetic
programs it suffices to define two simple functions: one
for the generation of random terminal nodes and an-
other for the generation of random nonterminal nodes.
The evolution is governed by several user defined pa-
rameters, such as population size, crossover and muta-
tion probabilities, termination criterion, and mutation
function. The package is available on Hackage.

Further reading

http://hackage.haskell.org/package/genprog

8.8.4 Manatee

Report by: Andy Stewart
Status: active development

Manatee’s aim is to build a Haskell Operating System.
I am an Emacs fan (http://www.emacswiki.org/

emacs/AndyStewart) that uses Emacs everyday for ev-
erything. But Emacs does not support multi-thread
and is not safe enough. So I am building my own
Haskell integrated environment — Manatee.
You can write any application in it, and the Manatee

framework will mix your application with the current
environment. And, most importantly, it gives you a
uniform experience with different applications.

Framework

Manatee uses a multi-process framework that makes
the extension and the core running in separate pro-
cesses to protect the application. It will minimize your
losses when some unexpected exception happens in the
current application; you just need to close/reload the
current tab, any other application and the core are still
running safely.
Manatee uses a Model-View split design; you can

split the current window to get different views for the
same buffer (a bit like Emacs’s buffers and windows).
Then you can mix any applications together with this
design for working efficiently.

Future plans

I have written the below applications in Manatee:
◦ Web Browser
◦ Download Manager
◦ Editor
◦ File Manager
◦ Image Viewer
◦ IRC Client

58

http://www.ittc.ku.edu/csdl/fpg/Tools/LambdaBridge
http://hackage.haskell.org/package/genprog
http://www.emacswiki.org/emacs/AndyStewart
http://www.emacswiki.org/emacs/AndyStewart

◦ Multimedia Player
◦ PDF Viewer
◦ Process Manager
◦ News Reader
◦ Terminal
More applications are in development, you are welcome
to join us!

Further reading

◦ Screenshots: http://goo.gl/MkVw
◦ Videos: http://www.youtube.com/watch?v=
weS6zys3U8k, http://www.youtube.com/watch?
v=A3DgKDVkyeM

◦ Wiki page: http://haskell.org/haskellwiki/Manatee

Contact

◦ Mailing lists: 〈manatee-user@googlegroups.com〉,
〈manatee-develop@googlegroups.com〉

◦ IRC channel: irc.freenode.net, 6667, ##manatee

8.8.5 xmonad

Report by: Gwern Branwen
Status: active development

XMonad is a tiling window manager for X. Windows
are arranged automatically to tile the screen without
gaps or overlap, maximizing screen use. Window man-
ager features are accessible from the keyboard; a mouse
is optional. XMonad is written, configured, and exten-
sible in Haskell. Custom layout algorithms, key bind-
ings, and other extensions may be written by the user
in config files. Layouts are applied dynamically, and
different layouts may be used on each workspace. Xin-
erama is fully supported, allowing windows to be tiled
on several physical screens.
Development since the last report has continued;

XMonad founder Don Stewart has stepped down and
Adam Vogt is the new maintainer. After gestating for
2 years, version 0.10 has been released, with simulta-
neous releases of the XMonadContrib library of cus-
tomizations (which has now grown to no less than 216
modules encompassing a dizzying array of features) and
the xmonad-extras package of extensions,

Details of changes between releases can be found in
the release notes:
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.8
◦ http://haskell.org/haskellwiki/Xmonad/Notable_

changes_since_0.9
◦ the Darcs repositories have been upgraded to the

hashed format
◦ XMonad.Config.PlainConfig allows writing configs in

a more ’normal’ style, and not raw Haskell
◦ Supports using local modules in xmonad.hs;

for example: to use definitions from
/̃.xmonad/lib/XMonad/Stack/MyAdditions.hs

◦ xmonad –restart CLI option
◦ xmonad –replace CLI option
◦ XMonad.Prompt now has customizable keymaps
◦ Actions.GridSelect - a GUI menu for selecting win-

dows or workspaces & substring search on window
names

◦ Actions.OnScreen
◦ Extensions now can have state
◦ Actions.SpawnOn - uses state to spawn applications

on the workspace the user was originally on, and not
where the user happens to be

◦ Markdown manpages and not man/troff
◦ XMonad.Layout.ImageButtonDecoration &

XMonad.Util.Image
◦ XMonad.Layout.Groups
◦ XMonad.Layout.ZoomRow
◦ XMonad.Layout.Renamed
◦ XMonad.Layout.Drawer
◦ XMonad.Layout.FullScreen
◦ XMonad.Hooks.ScreenCorners
◦ XMonad.Actions.DynamicWorkspaceOrder
◦ XMonad.Actions.WorkspaceNames
◦ XMonad.Actions.DynamicWorkspaceGroups
Binary packages of XMonad and XMonadContrib

are available for all major Linux distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:

darcs get http://code.haskell.org/xmonad
◦ IRC channel: #xmonad @@ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

59

http://goo.gl/MkVw
http://www.youtube.com/watch?v=weS6zys3U8k
http://www.youtube.com/watch?v=weS6zys3U8k
http://www.youtube.com/watch?v=A3DgKDVkyeM
http://www.youtube.com/watch?v=A3DgKDVkyeM
http://haskell.org/haskellwiki/Manatee
mailto: manatee-user at googlegroups.com
mailto: manatee-develop at googlegroups.com
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org

8.8.6 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen, Nick

Ingolia, Felipe Almeida Lessa

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now sports several li-
braries and applications. The biohaskell web site co-
ordinates this effort, and provides documentation and
related information. Anybody interested in the combi-
nation of Haskell and bioinformatics is encouraged to
sign up to the mailing list.
Bioinformatics is a diverse field, and consequently,

we have different libraries covering mostly separate ar-
eas. This summer, some of us participated at the BOSC
codefest, and we agreed to factor out common data
types that other libraries could use. The result is bio-
core, currently in revision 0.2. There is an ongoing
effort to adapt existing libraries to biocore.
The biolib library that supports various sequence and

alignment-oriented file formats and operations, is now
in the process of being deprecated. Functionality is
gradually being factored out, and this has so far re-
sulted in separate libraries for 454 sequencing reads
(biosff), and PSL alignment files (biopsl).
The Biobase-prefixed libraries provide basic func-

tionality for a number of data formats. A number
of additional libraries are provided: RNAfold is a
partial port the ViennaRNA package, MC-Fold-DP:
a polynomial-time version of the original MC-Fold
pipeline, while RNAwolf provides a novel RNA-folding
algorithm with non-canonical secondary structures. On
the level of non-coding RNA prediction, CMCompare is
used to assess the discriminatory power of RNA family
models.
The biostockholm package supports parsing and

pretty printing of files in Stockholm 1.0 format. These
formats are used by Pfam and Rfam for multiple se-
quence alignments.
Finally, there is samtools wrapping the samtools C

library for accessing and manipulating BAM alignment
files, and seqloc providing functionality for manipulat-
ing sequence locations and annotation.

Further reading

◦ http://biohaskell.org
◦ http://www.tbi.univie.ac.at/~choener/haskell.html

8.8.7 Bullet

Report by: Csaba Hruska
Status: experimental, active development

Bullet is a professional open source multi-threaded 3D
Collision Detection and Rigid Body Dynamics Library
written in C++. It is free for commercial use under
the zlib license. The Haskell bindings ship their own
(auto-generated) C compatibility layer, so the library
can be used without modifications. The Haskell bind-
ing provides a low level API to access Bullet C++ class
methods. Some bullet classes (Vector, Quaternion, Ma-
trix, Transform) have their own Haskell representation,
others are binded as class pointers. The Haskell API
provides access to some advanced features, like con-
straints, vehicle and more.
At the current state of the project most common

services are accessible from Haskell, i.e., you can load
collision shapes and step the simulation, define con-
straints, create raycast vehicle, etc. More advanced
Bullet features (soft body simulation, Multithread and
GPU constaint solver, etc.) will be added later.

Further reading

http://www.haskell.org/haskellwiki/Bullet

8.8.8 Sloth2D

Report by: Patai Gergely
Status: experimental, active

Sloth2D is a purely functional 2D physics library with
composable high-level abstractions. The primary in-
tent behind this initiative is not to compete with ex-
isting engines, but rather to experiment with novel,
composable abstractions for physics. This might even-
tually lead to better high-level interfaces for exist-
ing engines, e.g., the Chipmunk and Bullet bindings
(→ 8.8.7). However, in the long run it might grow into
something that is usable in practice by itself.
The cabalised source is available on GitHub.

Current features:
◦ 100% pure implementation
◦ deterministic simulation (replayable regardless of

sampling rate)
◦ convex colliders
Planned features:
◦ other collider shapes: concave, round, half-plane
◦ collision layers
◦ spatial hashing for more efficient collision detection
◦ object deactivation
◦ support for raycasting
◦ serialisation of physics state

60

http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org
http://biohaskell.org/cgi-bin/mailman/listinfo/biohaskell
http://biohaskell.org/Libraries
http://www.open-bio.org/wiki/Codefest_2011
http://www.open-bio.org/wiki/Codefest_2011
http://hackage.haskell.org/packages/biocore
http://hackage.haskell.org/packages/biocore
http://biohaskell.org/Libraries/Bio
http://hackage.haskell.org/package/biostockholm
http://pfam.sanger.ac.uk/
http://rfam.sanger.ac.uk/
http://www.ingolia-lab.org/software/samtools/
http://hackage.haskell.org/package/seqloc
http://biohaskell.org
http://www.tbi.univie.ac.at/~choener/haskell.html
http://www.haskell.org/haskellwiki/Bullet

◦ combinators on dynamic worlds
◦ constraints
◦ friction
◦ stacking
◦ a scene graph-based interface to define the world in

a compact manner

Further reading

https://github.com/cobbpg/sloth2d

8.8.9 hledger

Report by: Simon Michael
Status: ongoing development; suitable for daily use

hledger is a library and end-user tool (with command-
line, curses and web interfaces) for converting, record-
ing, and analyzing financial transactions, using a simple
human-editable plain text file format. It is a haskell
port and friendly fork of John Wiegley’s Ledger, li-
censed under GNU GPLv3+.
hledger aims to be a reliable, practical tool for daily

use. It reports charts of accounts or account balances,
filters transactions by type, helps you record new trans-
actions, converts CSV data from your bank, publishes
your text journal with a rich web interface, generates
simple charts, and provides an API for use in your own
financial scripts and apps.
In the last six months there have been two major

releases. 0.15 focussed on features and 0.16 focussed
on quality. Changes include:

◦ new modal command-line interface, extensible with
hledger-* executables in the path

◦ more useful web interface, with real account registers
and basic charts

◦ hledger-web no longer needs to create support files,
and uses latest yesod & warp

◦ more ledger compatibility

◦ misc command enhancements, API improvements,
bug fixes, documentation updates

◦ lines of code increased by 3k to 8k

◦ project committers increased by 6 to 21

Current plans include:

◦ Continue the release rhythm of odd-numbered =
features, even-numbered = quality/stability/polish,
and releasing on the first of a month

◦ In 0.17, clean up the storage layer, allow rcs integra-
tion via filestore, and read (or convert) more formats

◦ Keep working towards wider usefulness, improving
the web interface and providing standard financial
reports

Further reading

http://hledger.org

8.8.10 epub-tools (Command-line epub Utilities)

Report by: Dino Morelli
Status: stable, actively developed

A suite of command-line utilities for creating and ma-
nipulating epub book files. Included are: epubmeta,
epubname, epubzip.
epub-tools is available from Hackage, the Darcs

repository below, and also in binary form for Arch
Linux through the AUR.
Recent work has been centered on epubname and

includes: Smarter parsing of dates in the OPF data,
specifically for picking out publication date. The file
naming architecture has been completely overhauled,
is now more monadic and simpler. It’s much easier for
a developer to add support for new magazines.

Further reading

◦ Project page: http://ui3.info/d/proj/epub-tools.html
◦ Source repository: darcs get http://ui3.info/darcs/

epub-tools

61

https://github.com/cobbpg/sloth2d
http://hledger.org
http://ui3.info/d/proj/epub-tools.html
http://ui3.info/darcs/epub-tools
http://ui3.info/darcs/epub-tools

9 Commercial Users

9.1 Well-Typed LLP

Report by: Andres Löh
Participants: Duncan Coutts, Ian Lynagh, Mikolaj

Konarski, Nicolas Wu, Eric Kow, Bernie
Pope

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
We are continuing to grow, with currently seven peo-

ple working as full- or part-time consultants. While we
aren’t currently officially hiring, we are still regularly
looking for fresh blood, so if you would be interested
working for us, feel free to check in with us or send us
your CV at any time.
We are working for a variety of commercial clients,

but naturally, only some of our projects are publically
visible.
We continue to be involved in the support of

GHC (→ 3.2). We have contributed to the 7.2.1 re-
lease and are currently working towards the upcoming
7.4.1 release.
We coordinate and do work for the Industrial Haskell

Group (IHG) (→ 9.3). We have recently implemented
a new dependency solver for Cabal and worked on the
Hackage server.
Within the Parallel GHC Project (→ 5.1.3), we con-

tinue to help our old and new partners to implement
parallel, concurrent and distributed software in Haskell,
and work to improve the tools and libraries, such as
ThreadScope.
In addition, we continue to be quite involved in the

community, maintaining several packages on Hackage.
We have been present at the recent CamHac as well
as the Haskell in Leipzig meeting and of course ICFP,
Haskell Symposium, Haskell Implementors Workshop
and CUFP. We have been teaching at the Utrecht Sum-
mer School in Computer Science and the FPDay in
Cambridge, and are involved in the Oxford and Mu-
nich Haskell user groups.
Several events in the future are currently being

planned, we will for example speak at the FP eXchange
in London on March 16, 2012, and we will certainly try
to participate in the next European Haskell Hackathon.
We are of course always looking for new clients and

projects, too, so if you are interested in hiring us, just
drop us a mail.

Further reading

◦ http://www.well-typed.com/
◦ Blog: http://blog.well-typed.com/

9.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.
BSV is used for all aspects of ASIC and FPGA de-

sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universally applicable, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality Verilog, which can be further synthe-
sized into netlists for ASICs and FPGAs using third-
party tools. Atomic transactions enable design-by-
refinement, where an initial executable approximate
design is systematically transformed into a quality im-
plementation by successively adding functionality and
architectural detail. The synthesis tool is implemented
in Haskell (well over 100K lines).
Bluesim is a fast simulation tool for BSV. There are

extensive libraries and infrastructure to make it easy to
build FPGA-based accelerators for compute-intensive
software, including for the Xilinx XUPv6 board popu-
lar in universities, and the Convey HC-1 high perfor-
mance computer.
BSV is also enabling the next generation of com-

puter architecture education and research. Students
implement and explore architectural models on FP-
GAs, whose speed permits evaluation using whole-
system software.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor and electronic equipment compa-
nies, and universities. The tools are free for academic
teaching and research.

62

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/

Further reading

◦ Bluespec, a General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions,
R.S. Nikhil, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com.

◦ http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

◦ http://www.cl.cam.ac.uk/~swm11/examples/
bluespec/: Simon Moore’s BSV examples (U.
Cambridge).

◦ http://csg.csail.mit.edu/6.375: Complex Digital Sys-
tems, MIT courseware.

◦ http://www.bluespec.com/products/BluDACu.htm: A
fun example with many functional programming fea-
tures — BluDACu, a parameterized Bluespec hard-
ware implementation of Sudoku.

9.3 Industrial Haskell Group

Report by: Andres Löh
Participants: Duncan Coutts, Ian Lynagh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
The main activity of the IHG is to fund work on the

Haskell development platform. It currently operates
two schemes:

◦ The collaborative development scheme pools re-
sources from full members in order to fund specific
development projects to their mutual benefit.

◦ Associate and academic members contribute to a
separate fund which is used for maintenance and de-
velopment work that benefits the members and com-
munity in general.

We welcome two new associate members to the IHG:
Silkapp (www.silkapp.com) and Pararallel Scientific.
In the past six months, the collaborative develop-

ment scheme funded work on cabal-install as well as
improvements to the Hackage server. An intermediate
status report on the new dependency solver for cabal-
install has been presented at the Haskell Implemen-
tors Workshop. The solver is available for testing as a
branch in the Cabal repository and will soon be merged
into the trunk.
Details of the tasks undertaken are appearing on the

Well-Typed (→ 9.1) blog and on the IHG status page.
The collaborative development scheme is running

continuously, so if you are interested in joining as a
member, please get in touch. Details of the different
membership options (full, associate, or academic) can
be found on the website.

If you are interested in joining the IHG, or if you
just have any comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

◦ http://industry.haskell.org/
◦ http://industry.haskell.org/status/
◦ http://www.haskell.org/wikiupload/b/b4/

HIW2011-Talk-Loeh.pdf
◦ http://darcs.haskell.org/cabal-branches/

cabal-modular-solver/

9.4 Tsuru Capital

Report by: Bryan Buecking

Tsuru Capital is engaged in high-frequency market-
making on options markets. Tsuru is a private com-
pany, and trades with its own capital. Tsuru Capi-
tal currently runs arbitrage based liquidity provision
strategies on the Kospi 200 index and plans to expand
to Nikkei 225 index, and other electronic markets, over
the next year.
The trading software has been developed entirely in

Haskell, and is one of the few systems in the world
written completely in a functional language.
Since 2010 we have opened our doors to students,

post graduates, and anyone looking for real world ex-
perience. And continue to do so by offering paid 3
month internship positions every quarter.
Over the past year we have spent a good deal of time

building GUIs for our trading system, and tools for log-
ging and playback. As a result we have contributed bits
and pieces of our work to Hackage, and will continue
to do so as we flesh out our framework.

Further reading

◦ http://www.tsurucapital.com/
◦ http://blog.kfish.org/2011/09/iteratees-at-tsuru.html

63

http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
www.silkapp.com
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://industry.haskell.org/status/
http://www.haskell.org/wikiupload/b/b4/HIW2011-Talk-Loeh.pdf
http://www.haskell.org/wikiupload/b/b4/HIW2011-Talk-Loeh.pdf
http://darcs.haskell.org/cabal-branches/cabal-modular-solver/
http://darcs.haskell.org/cabal-branches/cabal-modular-solver/
http://www.tsurucapital.com/
http://blog.kfish.org/2011/09/iteratees-at-tsuru.html

9.5 Barclays Capital

Report by: Ben Moseley

Barclays Capital has been using Haskell as the basis for
our FPF (Functional Payout Framework) project for
about six years now. The project develops a DSL and
associated tools for describing and processing exotic
equity options.
For the first half of its life the project focused only

on the most exotic options — those which the legacy
systems were unable to handle. Over the past few years
however, FPF has expanded to provide the trade repre-
sentation and tooling for the vast majority of our equity
exotics and with that the team has grown significantly
in both size and geographical distribution. We now
have 10 full-time Haskell developers spread between
New York, Hong Kong, Kiev and London (with the
latter being the biggest development hub).
Our main language is a deeply embedded DSL which

has proved very successful, but we are now reaching
the stage where some of the traditional DSEL limita-
tions (e.g., error messages and syntactical restrictions)
have started to hinder its further adoption. As a result
of this we are now working on a new, non-embedded,
front-end FPF language which is based on stream ar-
rows and we are investigating the possibility of us-
ing the Causal Commutative Arrows approach (Liu,
Cheng, Hudak 2009). For the parsing part of this work
we have been very impressed by Doaitse Swierstra’s
uu-parsinglib (→ 7.2.3).
There are a number of other interesting projects go-

ing on within the team — these include a new C com-
piler (compiling our DSL into C) and performance im-
provement work as this has become more important as
our trade population has grown. One interesting aspect
of the new C compiler is that it has used an approach
inspired by Rodriguez et al’s "Generic programming
with fixed points for mutually recursive datatypes" to
capture the internal AST in a flexible manner through
the use of GADTs. (The majority of the rest of our
codebase uses standard ADTs but in an unfixed form
which facilitates traversals using standard catamor-
phisms, paramorphisms, apomorphisms etc.).
We have been and remain very satisfied GHC users

and feel that it would have been significantly harder to
develop our systems in any other current language.

9.6 Oblomov Systems

Report by: Martĳn Schrage

Oblomov Systems is a one-person software company
based in Utrecht, The Netherlands. Founded in 2009
for the Proxima 2.0 project (http://www.haskell.org/
communities/05-2010/html/report.html#sect6.4.5),
Oblomov has since then been working on a number
of Haskell-related projects. The main focus lies on
web-applications and (web-based) editors. Haskell has
turned out to be extremely useful for implementing
web servers that communicate with JavaScript clients
or iPhone apps.
Awaiting the acceptance of Haskell by the world

at large, Oblomov Systems also offers software solu-
tions in Java, Objective C, and C#, as well as on the
iPhone/iPad. Currently, Oblomov Systems is work-
ing together with Ordina NV on a substantial Haskell
project for the Council for the Judiciary in The Nether-
lands.

Further reading

http://www.oblomov.com

64

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.oblomov.com

10 Research and User Groups

10.1 A French community for Haskell

Report by: Alp Mestanogullari
Participants: Valentin Robert, Fabien Georget, and

others
Status: ongoing

During the past few months, we have seen many new
Haskellers in the French-speaking communities. Aside
from this, Valentin Robert has published a translation
of Learn You a Haskell For Great Good in French (see
the further reading section). It seems Haskell is finally
getting more interest from French developers and that
is the reason why we are now trying to create some
activity around this.
We are currently working on the basics:

◦ getting an adequate wiki/website,

◦ figuring out some project ideas, may they be docu-
mentation or software projects,

◦ working on a first French Hackathon event for French
Haskellers to meet and get to know each other.

Among us, we happen to have people interested in
many areas (Haskell for web programming, high per-
formance Haskell, etc.) so on the long-term we may be
able to provide resources about various topics. Another
possible idea would be to have some kind of workgroups
that would work on a given project, or even do bug
hunting for an already existing project. And we have
many other ideas, but it will depend on how the com-
munity’s activity grows. Our priorities are the website
and the first Hackathon, that may happen in June in
Strasbourg. This is yet to be confirmed.
We warmly welcome anyone interested in helping us

create this community! There are all kinds of tasks to
accomplish so you do not need to be a Haskell guru
to contribute. We also welcome any French-speaking
haskellers or even functional programmers to join us
either on the IRC channel #haskell-fr on Freenode
or on the mailing list.

Further reading

◦ Homepage: http://www.haskell.fr/
◦ LYAH in French: http://lyah.haskell.fr/
◦ Haskell-fr mailing list: http://www.haskell.org/
mailman/listinfo/haskell-fr

◦ Original announcement: http://tinyurl.com/3o9tatf

10.2 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on Haskell and Agda
are run at Eötvös Loránd University, Faculty of Infor-
matics.

◦ Programming for first-year BSc students using
Haskell, it is officially in the curriculum.

◦ Advanced functional programming using Haskell, it
is an optional course for BSc and MSc students.

◦ Programming in Agda as an optional course for BSc
and MSc students.

◦ Other Haskell-related courses on Lambda Calculus,
Type Theory and Implementation of Functional Lan-
guages.

There is an interactive online evaluation and test-
ing system, called ActiveHs. It contains several hun-
dred systematized exercises and it may be also used
as a teaching aid. There is also some experimenting
going on about supporting SVG graphics, and extend-
ing the embedded interpreter and testing environment
with safe emulation of IO values. ActiveHs is now also
avaiable on Hackage.
We started to work on translating our course mate-

rials to English, because we are planning to use it for
teaching foreign students in the coming years.
This year we organized the Central European Func-

tional Programming Summer School again with more
than 60 students. There were many professional lec-
tures delivered by experts on functional programming,
like Simon Marlow, Andrew Butterfield, Rinus Plas-
meĳer, or Mary Sheeran.

Research

We have some research projects in functional program-
ming that use Haskell.

65

http://www.haskell.fr/
http://lyah.haskell.fr/
http://www.haskell.org/mailman/listinfo/haskell-fr
http://www.haskell.org/mailman/listinfo/haskell-fr
http://tinyurl.com/3o9tatf

◦ Feldspar, a high-level domain-specific language for
digital signal processing developed for Ericsson in co-
operation with Chalmers University of Technology.
Our task is to implement an efficient multi-platform
ISO C99 code generator for the language.

◦ Software Technologies for Distributed and Manycore
Systems started in 2010. The Project is supported
by the European Union and co-financed by the Eu-
ropean Social Fund.

Further reading

◦ Haskell course materials (in English): http://pnyf.
inf.elte.hu/fp/Overview_en.xml

◦ Agda course materials (in English): http://pnyf.inf.
elte.hu/fp/Overview_en.xml#agda

◦ ActiveHs: http://hackage.haskell.org/package/
activehs

◦ CEFP2011: http://plc.inf.elte.hu/cefp/
◦ Feldspar home page: http://feldspar.inf.elte.hu/

10.3 Functional Programming at UFMG
and UFOP

Report by: Carlos Camarão
Participants: Marco Gontĳo, Lucília Figueiredo, Rodrigo

Ribeiro, Cristiano Vasconcellos, Elton
Ribeiro

Status: active development

The Functional Programming groups at Universidade
Federal de Minas Gerais and Universidade Federal de
Ouro Preto are working on projects that include the
following ones:

Proposal for a Solution to Haskell’s Multi-parameter
Type Class Dilemma The proposal consists of using
a simple satisfiability trigger condition: check satisfia-
bility if and only if there exists an unreachable variable
in a constraint.
This eliminates the need for functional dependencies

(and any other additional mechanism in the language)
to tackle ambiguity and overloading resolution.
E-mail messages about the proposal exchanged in

Haskell-cafe and Haskell-prime have not been construc-
tive. The discussion in Haskell-cafe deviated to what
we see as an ortogonal issue, of import and export of
instances (see more about this in the next paragraph).
So unfortunately the proposal has not been incor-

porated in Haskell yet. A paper about it has been
published at SBLP’2009 (see below).
We have implemented the proposal in a proptotype

Haskell front-end (https://github.com/rodrigogribeiro/
core), and are currently working on this front-end so
that it can type all existing Haskell libraries (that use
multi-parameter type classes and higher-rank polymor-
phism).

Controlling the scope of instances in Haskell Marco
Gontĳo is about to finish his MSc dissertation on the
subject. This is a simple and natural change that makes
module export and import free of treating instances as
a special case. It also allows alternative instances of a
class for the same type to be defined and used in dif-
ferent module scopes of a program, eliminates not only
problems related to the existence of orphan instances
but also the pollution of the global scope by unused
instances.
An article about this has been published at

SBLP’2011 (see below). Marco Gontĳo is currently im-
plementing the proposal, in our Haskell compiler proto-
type (https://github.com/rodrigogribeiro/core); if time
permits, also in GHC.

Decidable type inference for Haskell overloading
When types have constraints, decidability of type in-
ference is based mainly on decidability of constraint set
satisfiability. We have designed a termination criterion
for Haskell’s type inference algorithm that deals with
all the “complicated cases” (given in e.g. the PPDP’04
and ACM TOPLAS 2005 references below).
A paper about this is being (re)written. An

implementation is available at https://github.com/
rodrigogribeiro/core.

First Class Overloading and Intersection Types A
paper about this has been published at SBLP’2011 (see
below).
The work is currently being implemented in our

compiler front-end, available at https://github.com/
rodrigogribeiro/core.
The Hindley-Milner type system imposes the restric-

tion that function parameters must have monomor-
phic types. Lifting this restriction and providing sys-
tem F “first class” polymorphism is clearly desirable,
but comes with the difficulty that complete type in-
ference for higher-rank type systems is undecidable.
More practical systems supporting higher-rank types
have been proposed, which rely on system F, and re-
quire appropriate type annotations for the definition
of functions with polymorphic type parameters. But
these type annotations do inevitably disallow some pos-
sible uses of defined higher-rank functions. To avoid
this problem, we propose the annotation of intersection
types for specifying the types of function parameters
used polymorphically inside a function body.
Future work involves extending this work to allow

also annotation of union types, supporting then the
use (manipulation) of heterogeneous data structures by
means of overloaded functions.

Further reading

◦ A Solution to Haskell’s Multi-paramemeter
Type Class Dilemma, Carlos Camarão, Rodrigo
Ribeiro, Lucília Figueiredo, Cristiano Vasconcellos,

66

http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://pnyf.inf.elte.hu/fp/Overview_en.xml#agda
http://pnyf.inf.elte.hu/fp/Overview_en.xml#agda
http://hackage.haskell.org/package/activehs
http://hackage.haskell.org/package/activehs
http://plc.inf.elte.hu/cefp/
http://feldspar.inf.elte.hu/
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core

SBLP’2009 (13th Brazilian Symposium on Pro-
gramming Languages). http://www.dcc.ufmg.br/
~camarao/CT/solution-to-mptc-dilemma.pdf

◦ Controlling the Scope of Instances in Haskell,
Marco Silva, Carlos Camarão, SBLP’2011 (15th
Brazilian Symposium on Programming Lan-
guages). http://www.dcc.ufmg.br/~camarao/
controlling-the-scope-of-instances-in-Haskell-sblp2011.
pdf

◦ Constraint-set satisfiability for Overloading, Carlos
Camarão, Lucília Figueiredo, Cristiano Vasconcellos,
ACM Press Conf. Proceedings of PPDP’04 , 67–77,
2004. http://www.dcc.ufmg.br/~camarao/CT/cs-sat/
cssat.pdf

◦ A theory of overloading, Peter J. Stuckey, Martin
Sulzmann, ACM TOPLAS 2005, 27(6), 1216–1269.
http://portal.acm.org/citation.cfm?id=1108974

◦ First Class Overloading via Intersection Type
Parameters, Elton Máximo Cardoso, Carlos Ca-
marão, Lucília Figueiredo, SBLP’2011 (15th
Brazilian Symposium on Programming Lan-
guages). http://www.dcc.ufmg.br/~camarao/CT/
intersection-type-parameters.pdf

10.4 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Altug Anis, Conrad Rau, Manfred

Schmidt-Schauß

Programming language semantics. One of our re-
search topics focuses on programming language seman-
tics, especially on contextual equivalence which is usu-
ally based on the operational semantics of the language.
Deterministic call-by-need lambda calculi with letrec

provide a semantics for the core language of Haskell.
For such an extended lambda calculus we proved cor-
rectness of strictness analysis using abstract reduction,
and we proved equivalence of the call-by-name and
call-by-need semantics. Recently we have shown that
applicative bisimilarity is complete w.r.t. contextual
equivalence in this calculus.
We also explored several nondeterministic extensions

of call-by-need lambda calculi and their applications. A
recent result is that for calculi with letrec and non-
determinism usual definitions of applicative similarity
are unsound w.r.t. contextual equivalence.
We analyzed a higher-order functional language with

concurrent threads, monadic IO and synchronizing
variables as a core language of Concurrent Haskell. To
assure declarativeness of concurrent programming we
extended the language by implicit, monadic, and con-
current futures. Using contextual equivalence based
on may- and should-convergence, we have shown that
various transformations preserve program equivalence,

e.g. the monad laws hold in our calculus. Most recently
we have shown that the language with concurrency con-
servatively extends the pure core language of Haskell,
i.e. all program equivalences for the pure part also hold
in the concurrent language.
In a recent research project we try to automate cor-

rectness proofs of program transformations. These
proofs require to analyze the overlappings between re-
ductions of the operational semantics and transforma-
tion steps by computing so-called forking and com-
muting diagrams. Recently we implemented an algo-
rithm as a combination of several unification algorithms
in Haskell which computes these diagrams. Ongoing
research is to automate the corresponding induction
proofs (which use the diagrams) using automated ter-
mination provers for term rewriting systems.
Grammar based compression. Another research

topic of our group focuses on algorithms on grammar
compressed strings and trees. One goal is to recon-
struct known algorithms on strings and terms (unifica-
tion, matching, rewriting etc.) for their use on gram-
mars without prior decompression. We recently devel-
oped an algorithm for computing the congruence clo-
sure on grammar compressed terms. We implemented
several algorithms in Haskell which are available as a
Cabal package.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

10.5 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell
— in particular our interest in Erlang has been grow-
ing — Haskell provides a major focus and common lan-
guage for teaching and research.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sections
of this report. The third edition of Simon Thompson’s
text book Haskell: the craft of functional programming
appeared in June 2011. Thomas Schilling presented
his work on improving type error messages for GHC at
TFP 2011 and his work on trace-based dynamic optimi-
sations for Haskell programs at IFL 2011. Olaf Chitil is
working on more expressive lazy assertions for Haskell.

67

http://www.dcc.ufmg.br/~camarao/CT/solution-to-mptc-dilemma.pdf
http://www.dcc.ufmg.br/~camarao/CT/solution-to-mptc-dilemma.pdf
http://www.dcc.ufmg.br/~camarao/controlling-the-scope-of-instances-in-Haskell-sblp2011.pdf
http://www.dcc.ufmg.br/~camarao/controlling-the-scope-of-instances-in-Haskell-sblp2011.pdf
http://www.dcc.ufmg.br/~camarao/controlling-the-scope-of-instances-in-Haskell-sblp2011.pdf
http://www.dcc.ufmg.br/~camarao/CT/cs-sat/cssat.pdf
http://www.dcc.ufmg.br/~camarao/CT/cs-sat/cssat.pdf
http://portal.acm.org/citation.cfm?id=1108974
http://www.dcc.ufmg.br/~camarao/CT/intersection-type-parameters.pdf
http://www.dcc.ufmg.br/~camarao/CT/intersection-type-parameters.pdf
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html

Further reading

◦ PLAS group: http://www.cs.kent.ac.uk/research/
groups/plas/

◦ Haskell: the craft of functional programming: http:
//www.haskellcraft.com

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/research/groups/plas/hare.html

◦ Tracing and debugging with Hat: http://www.
haskell.org/hat

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/

◦ Scion: http://code.google.com/p/scion-lib/

10.6 Formal Methods at DFKI and
University Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Dietrich,

Christoph Lüth, Till Mossakowski, Lutz
Schröder, Ewaryst Schulz

Status: active development

The activities of our group center on formal methods,
covering a variety of formal languages and also trans-
lations and heterogeneous combinations of these.
We are using the Glasgow Haskell Compiler and

many of its extensions to develop the Heterogeneous
tool set (Hets). Hets consists of parsers, static ana-
lyzers, and proof tools for languages from the CASL
family, such as the Common Algebraic Specification
Language (CASL) itself (which provides many-sorted
first-order logic with partiality, subsorting and in-
duction), HasCASL, CoCASL, CspCASL, and Modal-
CASL. Other languages supported include Haskell
(via Programatica), QBF, Maude, VSE, TPTP, THF,
OWL, Common Logic, FPL (logic of functional pro-
grams) and LF type theory. The Hets implementation
is also based on some old Haskell sources such as bind-
ings to uDrawGraph (formerly Davinci) and Tcl/TK
that we maintain. Apart from a Gtk2Hs user interface
hets also provides many functionalities as a web server
based on warp (→ 5.2.2).
HasCASL is a general-purpose higher-order language

which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL.
The Coalgebraic Logic Satisfiability Solver CoLoSS

is being implemented jointly at DFKI Bremen and at
the Department of Computing, Imperial College Lon-
don. The tool is generic over representations of the syn-
tax and semantics of certain modal logics; it uses the
Haskell class mechanism, including multi-parameter
type classes with functional dependencies, extensively
to handle the generic aspects.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ Heterogeneous tool set:
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

◦ The Coalgebraic Logic Satisfiability Solver CoLoSS:
http://www.informatik.uni-bremen.de/~lschrode/
projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/

10.7 Haskell at Universiteit Gent, Belgium

Report by: Tom Schrĳvers

Haskell is one of the main research topics of the new
Programming Languages Group at the Department of
Applied Mathematics and Computer Science at the
University of Ghent, Belgium.

Teaching UGent is a great place for Haskell-
aficionados:

◦ As of this academic year, make Haskell part of your
curriculum with our brand new Functional and Logic
Programming Languages course.

◦ Explore Haskell in depth with one of our Haskell mas-
ter thesis topics.

◦ Attend the thriving Ghent Functional Programming
Group (→ 10.14).

Research Haskell-related projects of the group mem-
bers and collaborators are:

◦ Search Combinators: Search heuristics often make all
the difference between effectively solving a combina-
torial problem and utter failure. Hence, the ability to
swiftly design search heuristics that are tailored to-
wards a problem domain is essential to performance
improvement. In other words, this calls for a high-
level domain-specific language (DSL).
The tough technical challenge we face when design-
ing a DSL for search heuristics, is to bridge the gap
between a conceptually simple specification language
(high-level, purely functional and naturally compo-
sitional) and an efficient implementation (typically
low-level, imperative and highly non-modular). We
overcome this challenge with a systematic approach
in Haskell that disentangles different primitive con-
cepts into separate monadic modular mixin compo-
nents, each of which corresponds to a feature in the

68

http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.haskell.org/hat
http://www.haskell.org/hat
http://www.cs.kent.ac.uk/projects/heat/
http://code.google.com/p/scion-lib/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/

high-level DSL. The great advantage of mixin com-
ponents to provide a semantics for our DSL is its
modular extensibility.
This is joint work with Guido Tack, Pieter Wuille,
Horst Samulowitz and Peter Stuckey, following up on
Monadic Constraint Programming, a monadic DSL
for Constraint Programming in Haskell.

◦ Monads, Zippers and Views: Virtualizing the Monad
Stack: We make monadic components more reusable
and robust to changes by employing two new tech-
niques for virtualizing the monad stack: the monad
zipper and monad views. The monad zipper is a
higher-order monad transformer that creates virtual
monad stacks by ignoring particular layers in a con-
crete stack. Monad views provide a general frame-
work for monad stack virtualization: they take the
monad zipper one step further and integrate it with
a wide range of other virtualizations. For instance,
particular views allow restricted access to monads
in the stack. Furthermore, monad views provide
components with a call-by-reference-like mechanism
for accessing particular layers of the monad stack.
With our two new mechanisms, the monadic effects
required by components no longer need to be lit-
erally reflected in the concrete monad stack. This
makes these components more reusable and robust
to changes.
This is joint work with Bruno Oliveira, part of
which is available together with Mauro Jaskelioff’s
monad transformer library in the Monatron package
on Hackage.

◦ EffectiveAdvice: EffectiveAdvice is a disciplined
model of (AOP-style) advice, inspired by Aldrich’s
Open Modules, that has full support for effects in
both base components and advice. EffectiveAdvice
is implemented as a Haskell library. Advice is mod-
eled by mixin inheritance and effects are modeled
by monads. Interference patterns previously identi-
fied in the literature are expressed as combinators.
Equivalence of advice, as well as base components,
can be checked by equational reasoning. Parametric-
ity, together with the combinators, is used to prove
two harmless advice theorems. The result is an ef-
fective model of advice that supports effects in both
advice and base components, and allows these effects
to be separated with strong non-interference guaran-
tees, or merged as needed. This is joint work with
Bruno Oliveira and William Cook.

Further reading

◦ http://users.ugent.be/~tschrĳv/haskell.html
◦ http://users.ugent.be/~tschrĳv/SearchCombinators/
◦ http://hackage.haskell.org/package/Monatron
◦ http://hackage.haskell.org/package/monadiccp

10.8 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
Group. The Ro/Haskell page becomes more and more
known as time goes. Actually, the Ro/Haskell Group is
officially a project of the Faculty of Sciences, “V. Alec-
sandri” Univ. of Bacãu, România (http://stiinte.ub.ro)
based by volunteers. During the academic year 2011 –
2012 the "Gentle Introduction to Haskell 98" was trans-
lated in Romanian and was published by MatrixRom
Publishing House (http://www.matrixrom.ro). Roma-
nian title : "O mica introducere in Haskell 98". Prof
Paul Hudak had offered a forward for Romanian users.

Website:

On the 7th of Oct. 2011, the main Ro/Haskell’s web
page counter recorded the total of almost 40 000 times
accessed. Some pages was added, included one dedicate
to the above book and some pages dedicated to the
Leksah IDE. (http://leksah.org)

Books:

The book “The Practice Of Monadic Interpretation”
by Dan Popa had been published in November 2008.
The book had developed into a full PhD. thesis which
was successfully defended in public in September 2010.
No English version is available so far.
Actually the Official Publishing House of the

Ro/Haskell Group is MatrixRom (www.matrixrom.
ro). Speaking of books, the “Gentle introduction
to Haskell” was prepared this year and was on the
market in a Romanian translation. The introduc-
tory chapter (http://www.haskell.org/wikiupload/3/38/
Gentle_1-19-v06-3Aprilie.pdf.zip) can be downloaded
from http://www.haskell.org/haskellwiki/Gentle where
two other versions are available, too: French and of
course English.
“An Introduction to Haskell by Examples” is now

out of print but if you need, a special pack can be pro-
vided based on the agreement of the author 〈popavdan@
yahoo.com〉. Also available on special request from PIM
Publishing House, in Iasi.

Products:

Haskell products like Rodin (a small DSL a bit like
C but written in Romanian) begin to spread, proving
the power of the Haskell language. The Pseudocode
Language Rodin is used as a tool for teaching basics
of Computer Science in some high-schools from various
cities. Rodin was asked to become a FOSS (Free &
Open Source Software) and will be. To have a sort
of C using native keywords was a success in teaching

69

http://users.ugent.be/~tschrijv/haskell.html
http://users.ugent.be/~tschrijv/SearchCombinators/
http://hackage.haskell.org/package/Monatron
http://hackage.haskell.org/package/monadiccp
http://stiinte.ub.ro
http://www.matrixrom.ro
http://leksah.org
www.matrixrom.ro
www.matrixrom.ro
http://www.haskell.org/wikiupload/3/38/Gentle_1-19-v06-3Aprilie.pdf.zip
http://www.haskell.org/wikiupload/3/38/Gentle_1-19-v06-3Aprilie.pdf.zip
http://www.haskell.org/haskellwiki/Gentle
mailto: popavdan at yahoo.com
mailto: popavdan at yahoo.com

basics of Computer Science: algorithms and structured
programming.

Linguists:

A group of researchers from the field of linguistics lo-
cated at the State Univ. from Bacãu (The LOGOS
Group) is declaring the intention of bridging the gap
between semiotics, high level linguistics, structural-
ism, nonverbal communication, dance semiotics (and
some other intercultural subjects) and Computational
Linguistics (meaning Pragmatics, Semantics, Syntax,
Lexicology, etc.) using Haskell as a tool for real
projects. Probably the situation from Romania is not
well known: Romania is probably one of those countries
where computational linguistics is studied by computer
scientists less than linguists. We had begun by pub-
lishing an article about The Rodin Project in order to
attract linguists. We are trying to extend the base of
available books in libraries.

At Bacãu “V. Alecsandri” University

We have teaching Haskell at two Faculties: Sciences
(The Computers Science being included) and we hope
we will work with Haskell with the TI students from
the Fac. of Engineering, where a course on Formal Lan-
guages was requested.

At Brasov “Transilvania” University

The book "An Introduction to Haskell by Examples"
was requested by teachers from the "Transilvania"
Univ. of Brasov., where a master course on functional
programming in Haskell was introduced.

Notions:

We are promoting new notions: pseudoconstructors
over monadic values (which act both as semantic repre-
sentations and syntactic structure), modular trees (ex-
panding trees beyound the fixity of the data declara-
tions) and ADFA — adaptive/adaptable determinist
finite automata. A dictionary of new notions and con-
cepts is not made, making difficult to launch new ideas
and also to track work of the authors.

Unsolved problems:

PhD. advisors (specialized in monads, language engi-
neering, and Haskell) are almost impossible to find.
This fact seems to block somehow the hiring of good
specialists in Haskell. Also it is difficult to track the
Haskell related activity from various universities, like
those from: Sibiu, Baia Mare, Timisoara. Please report
them using the below address.

Contact

〈popavdan@yahoo.com〉

Further reading

◦ Ro/Haskell: http://www.haskell.org/haskellwiki/Ro/
Haskell

◦ Rodin: http://www.haskell.org/haskellwiki/Rodin
◦ Gentle introduction to Haskell (Ro): http://www.

haskell.org/haskellwiki/Gentle
◦ ADFA: http://www.haskell.org/haskellwiki/ADFA
◦ Report from: http://stiinte.ub.ro (the Faculty I be-

long to)

10.9 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. Members of the group include users
of Haskell, Ocaml, LISP, Scala, F#, Scheme and oth-
ers. We have 10 meetings per year (Feb–Nov) and meet
on the third Thursday of each month. We regularly
get 20–30 attendees, with a 70/30 industry/research
split. Talks this year have included material on Cate-
gory Theory, theorem proving, type systems, Template
Haskell and a couple of different Haskell libraries. We
usually have about 90 mins of talks, starting at 6:30pm,
then go for drinks afterwards. All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/

10.10 Functional Programming at
Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component of
the Department of Computer Science and Engineering
at Chalmers. In particular, Haskell has a very impor-
tant place, as it is used as the vehicle for teaching and
numerous projects. Besides functional programming,
language technology, and in particular domain specific
languages is a common aspect in our projects.
The FP group has two new PostDocs: Moa Johans-

son and Meng Wang. Moa works on automated rea-
soning about recursive programs and Meng works on
random generation of typed terms.
We have a just started a new 5-year project called

“RAW FP: Productivity and Performance through Re-
source Aware Functional Programming”.

70

mailto: popavdan at yahoo.com
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Rodin
http://www.haskell.org/haskellwiki/Gentle
http://www.haskell.org/haskellwiki/Gentle
http://www.haskell.org/haskellwiki/ADFA
http://stiinte.ub.ro
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/

Property-based testing QuickCheck is the basis for
a European Union project on Property Based Test-
ing (www.protest-project.eu). We are applying the
QuickCheck approach to Erlang software, together
with Ericsson, Quviq, and others. Much recent work
has focused on PULSE, the ProTest User-Level Sched-
uler for Erlang, which has been used to find race
conditions in industrial software — see our ICFP
2009 paper for details. A new tool, QuickSpec, gen-
erates algebraic specifications for an API automati-
cally, in the form of equations verified by random
testing. We have published about it at TAP 2010;
an earlier paper can be found here: http://www.cse.
chalmers.se/~nicsma/quickspec.pdf. Lastly, we have de-
vised a technique to speed up testing of polymor-
phic properties: http://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=99387.

Natural language technology Grammatical Frame-
work (http://www.haskell.org/communities/11-2010/
html/report.html#sect9.7.3) is a declarative language
for describing natural language grammars. It is useful
in various applications ranging from natural language
generation, parsing and translation to software local-
ization. The framework provides a library of large
coverage grammars for currently fifteen languages from
which the developers could derive smaller grammars
specific for the semantics of a particular application.

Parser generator and template-haskell BNFC-meta
is an embedded parser generator, presented at the
Haskell Symposium 2011. Like the BNF Converter, it
generates a compiler front end in Haskell. Two things
separate BNFC-meta from BNFC and other parser gen-
erators:
◦ BNFC-meta is not a program but a library (the
parser description is embedded in a quasi-quote).

◦ BNFC-meta automatically provides quasi-quotes for
the specified language. This includes a powerful and
flexible facility for antiquotation.

More info: http://hackage.haskell.org/package/
BNFC-meta.

Generic Programming Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic pro-
gramming research at Chalmers. Recent developments
include fundamental work on “Proofs for Free” (exten-
sions of the parametricity & dependent types work from
ICFP 2010), a Haskell Symposium paper on “Embed-
ded Parser Generators” (see BNFC-meta above) and a
workshop on “DSLs for Economical and Environmen-
tal Modelling”. Patrik Jansson leads a work-package
on DSLs within the EU project “Global Systems Dy-
namics and Policy” (http://www.gsdp.eu/, started Oct.
2010). If you want to apply DSLs, Haskell, and Agda to
help modelling global sustainability challenges, please
get in touch!

Language-based security SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

Embedded domain-specific languages The func-
tional programming group has developed several dif-
ferent domain-specific languages embedded in Haskell.
The active ones are:

◦ Feldspar (→ 8.8.1) is a domain-specific language
for digital signal processing (DSP), developed in
co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest.

◦ Obsidian is a language for data-parallel program-
ming targeting GPGPUs.

The following languages are not actively developed
at the moment:

◦ Lava is a language for structural hardware descrip-
tion. Circuits are modeled as ordinary Haskell func-
tions, and many of Haskell’s advantages (such as
higher-order functions and polymorphism) are also
available for Lava descriptions. There are several
versions of Lava around. The version developed at
Chalmers aims particularly at supporting formal ver-
ification in a convenient way.

◦ Wired is an extension to Lava, targeting (not exclu-
sively) semi-custom VLSI design. A particular aim
of Wired is to give the designer more control over on-
chip wires’ effects on performance. The most recent
activity was to use Wired to explore the layout of
multipliers (Kasyab P. Subramaniyan, Emil Axels-
son, Mary Sheeran and Per Larsson-Edefors. Layout
Exploration of Geometrically Accurate Arithmetic
Circuits. Proceedings of IEEE International Confer-
ence of Electronics, Circuits and Systems. 2009).
Home page: http://www.cse.chalmers.se/~emax/
wired/.

71

www.protest-project.eu
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/EmbeddedParserGenerators
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ParaDep
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/EmbeddedParserGenerators
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/EmbeddedParserGenerators
http://wiki.portal.chalmers.se/cse/pmwiki.php/GSDP/DSL4EE
http://wiki.portal.chalmers.se/cse/pmwiki.php/GSDP/DSL4EE
http://www.gsdp.eu/
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~emax/wired/

Automated reasoning Equinox is an automated the-
orem prover for pure first-order logic with equality.
Equinox actually implements a hierarchy of logics, re-
alized as a stack of theorem provers that use abstrac-
tion refinement to talk with each other. In the bottom
sits an efficient SAT solver. Paradox is a finite-domain
model finder for pure first-order logic with equality.
Paradox is a MACE-style model finder, which means
that it translates a first-order problem into a sequence
of SAT problems, which are solved by a SAT solver.
Infinox is an automated tool for analyzing first-order
logic problems, aimed at showing finite unsatisfiabil-
ity, i.e., the absence of models with finite domains. All
three tools are developed in Haskell.

Teaching Haskell is present in the curriculum as early
as the first year of the Bachelors program. We have
three courses solely dedicated to functional program-
ming (of which two are Masters-level courses), but
we also provide courses which use Haskell for teach-
ing other aspects of computer science, such as pro-
gramming languages, compiler construction, hardware
description and verification, data structures and pro-
gramming paradigms.
During 2012 the FP group will develop (and teach) a

new MSc level course on “Parallel Functional Program-
ming”.

10.11 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming remains active at KU and
the Computer Systems Design Laboratory in ITTC.
The System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andy Gill) together form the core functional program-
ming initiative at KU. Apart from Kansas Lava (→
8.5.2), ChalkBoard (→ 7.7.6), Lambda Bridge (→
8.8.2) and HERMIT (→ 8.6.1), there are several other
FP and Haskell related things going on.

◦ We are continuing our development of a lightweight
Haskell version of HOL. Traditionally, members of
the higher-order logic theorem (HOL) proving fam-
ily have been implemented in the Standard ML
programming language or one of its derivatives.

HaskHOL aims to break with tradition by imple-
menting a lightweight HOL theorem prover library
as a Haskell hosted domain specific language. Based
on the HOL Light logical system, HaskHOL aims to
provide the ability for Haskell users to reason about
their code directly without having to transform it or
otherwise export it to an external tool. For details
talk to Evan Austin.

◦ We are developing a library in Haskell for processing
Rosetta specifications. A current focus is the mod-
ularity and re-use of distinct processing elements,
such as type-checking, partial evaluation, and rea-
soning assistants. Mutually defined elements that
are more convenient to consider as distinct interact
via a reactive monadic computation, so the two el-
ements’ code can be managed as separate packages.
Also, our principal specification representation use
functors and type-level fixed points to achieve exten-
sibility and generic programming. The goal of the
library is to provide to a tight and graduated in-
terface to the basic processing elements, so that the
users may incorporate the most appropriate basic el-
ements when implementing their own, more domain-
specific Rosetta processors. For details talk to Nick
Frisby.

Further reading

◦ The Functional Programming Group: http://www.
ittc.ku.edu/csdl/fpg

◦ CSDL website: https://wiki.ittc.ku.edu/csdl/Main_
Page

10.12 Dutch Haskell User Group

Report by: Tom Lokhorst

See: http://www.haskell.org/communities/05-2010/
html/report.html#sect8.6.

10.13 San Simón Haskell Community

Report by: Antonio M. Quispe

The San Simón Haskell Community from San Simón
University Cochabamba-Bolivia, is an informal Spanish
group that aspire to learn, share information, knowl-
edge and experience related to the functional paradigm.
Our main activity is the development of projects,

we have some projects in our Web Page (http://
comunidadhaskell.org) that serves us as a medium of
communication and work environment.
Our last activity was the Local Haskell Hackathon

that was held on April 8, 9 and 10 in our University.
There were 15 participants of different levels in func-
tional programming. We have been working on projects
idbjava (decompiler bytecode java), lexer and parser for
Ruby, emulator for CNC machine, and some Haskell

72

http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
https://wiki.ittc.ku.edu/csdl/Main_Page
http://www.haskell.org/communities/05-2010/html/report.html#sect8.6
http://www.haskell.org/communities/05-2010/html/report.html#sect8.6
http://comunidadhaskell.org
http://comunidadhaskell.org

games. We have had a wonderful time of 2 days of pro-
gramming, and I want to thank Vladimir Costas and
Pablo Azero for their assistence in the realization of
this event.
The next thing we are waiting on is the 2nd Open

House Haskell community where we will show some of
the projects we are working on.
I want to encourage all Spanish Haskell programmers

to meet us on Facebook.

Further reading

http://comunidadhaskell.org

10.14 Ghent Functional Programming
Group

Report by: Jeroen Janssen
Participants: Bart Coppens, Jasper Van der Jeugt, Tom

Schrĳvers, Andy Georges, Kenneth Hoste
Status: active

The Ghent Functional Programming Group is a user
group aiming to bring together programmers, aca-
demics, and others interested in functional program-
ming located in the area of Ghent, Belgium. Our goal
is to have regular meetings with talks on functional pro-
gramming, organize functional programming related
events such as hackathons, and to promote functional
programming in Ghent by giving after-hours tutorials.
The first seven GhentFPG meetings and BelHac were

reported on in the previous HCARs. Since then we
have held two other GhentFPG meetings. GhentFPG
#8, held in June 2011, was a combination of talks and
a problem-solving activity, where we pickled our brains
on a problem from the ACM World Finals Program-
ming Contest. GhentFPG #9 was a regular meeting
with one normal talk and three lightning talks:

1. Jurriën Stutterheim — Snaplets: composable and
reusable web components.

2. Andy Georges — hCole-server (lightning talk).

3. Kenneth Hoste — GA: a genetic algorithm library
(lightning talk).

4. Jasper Van der Jeugt — WebSockets (lightning
talk).

If you want more information on GhentFPG you can
follow us on twitter (@ghentfpg), via Google Groups
(http://groups.google.com/group/ghent-fpg), or by vis-
iting us at irc.freenode.net in channel #ghentfpg.

Further reading

http://groups.google.com/group/ghent-fpg

73

http://comunidadhaskell.org
http://groups.google.com/group/ghent-fpg
http://groups.google.com/group/ghent-fpg

	Community
	haskell.org
	Haskellers

	Books, Articles, Tutorials
	Haskell: the craft of functional programming, 3rd edition
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects
	A Tutorial on the Enumerator Library
	Practice of Functional Programming

	Implementations
	Haskell Platform
	The Glasgow Haskell Compiler
	UHC, Utrecht Haskell Compiler
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Haskell in Gentoo Linux
	Fedora Haskell SIG

	Fibon Benchmark Tools & Suite

	Related Languages
	Agda
	MiniAgda
	Clean
	Timber
	Disciple

	Haskell and …
	Haskell and Parallelism
	Eden
	GpH --- Glasgow Parallel Haskell
	Parallel GHC project

	Haskell and the Web
	WAI
	Warp
	Holumbus Search Engine Framework
	Happstack
	Mighttpd2 --- Yet another Web Server
	Yesod
	Snap Framework
	Ivy-web
	rss2irc

	Haskell and Games
	FunGEn
	Nikki and the Robots

	Haskell and Compiler Writing
	UUAG
	AspectAG
	LQPL --- A Quantum Programming Language Compiler and Emulator

	Development Tools
	Environments
	EclipseFP
	ghc-mod --- Happy Haskell Programming on Emacs
	Leksah --- The Haskell IDE in Haskell
	HEAT: The Haskell Educational Advancement Tool
	HaRe --- The Haskell Refactorer

	Documentation
	Haddock
	Hoogle
	lhs2TeX

	Testing and Analysis
	shelltestrunner
	HLint
	hp2any

	Optimization
	HFusion
	Optimizing Generic Functions

	Boilerplate Removal
	A Generic Deriving Mechanism for Haskell

	Code Management
	Darcs
	DarcsWatch
	darcsden
	darcsum
	Improvements to Cabal's Test Support
	cab --- A Maintenance Command of Haskell Cabal Packages
	Hackage-Debian

	Interfacing to other Languages
	HSFFIG

	Deployment
	Cabal and Hackage
	Capri

	Libraries
	Processing Haskell
	The Neon Library

	Parsing and Transforming
	The grammar-combinators Parser Library
	epub-metadata
	Utrecht Parser Combinator Library: uu-parsinglib
	Regular Expression Matching with Partial Derivatives
	regex-applicative

	Mathematical Objects
	normaldistribution: Minimum Fuss Normally Distributed Random Values
	dimensional: Statically Checked Physical Dimensions
	AERN-Real and Friends
	Paraiso

	Data Types and Data Structures
	HList --- A Library for Typed Heterogeneous Collections
	Persistent

	Generic and Type-Level Programming
	Unbound
	FlexiWrap
	Generic Programming at Utrecht University

	User Interfaces
	Gtk2Hs

	Graphics
	Assimp
	plot/plot-gtk
	Craftwerk
	LambdaCube
	diagrams
	ChalkBoard

	Text and Markup Languages
	HaTeX
	Haskell XML Toolbox

	Applications and Projects
	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners

	Data Management and Visualization
	HaskellDB
	Pandoc
	DSH --- Database Supported Haskell

	Functional Reactive Programming
	reactive-banana
	Functional Hybrid Modelling
	Elerea

	Audio and Graphics
	Audio Signal Processing
	Tidal, Texture and Live Music with Haskell
	Hemkay
	Functional Modelling of Musical Harmony
	Cologne

	Hardware Design
	CaSH
	Kansas Lava

	Proof Assistants and Reasoning
	HERMIT
	Automated Termination Analyzer for Haskell
	Free Theorems for Haskell
	Streaming Component Combinators
	Swish

	Natural Language Processing
	NLP
	GenI

	Others
	Feldspar
	-Bridge
	GenProg --- Genetic Programming Library
	Manatee
	xmonad
	Biohaskell
	Bullet
	Sloth2D
	hledger
	epub-tools (Command-line epub Utilities)

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Industrial Haskell Group
	Tsuru Capital
	Barclays Capital
	Oblomov Systems

	Research and User Groups
	A French community for Haskell
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Functional Programming at UFMG and UFOP
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI and University Bremen
	Haskell at Universiteit Gent, Belgium
	Haskell in Romania
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	Dutch Haskell User Group
	San Simón Haskell Community
	Ghent Functional Programming Group

