
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Twenty-Third Edition — November 2012

Janis Voigtländer (ed.)
Andreas Abel Heinrich Apfelmus Emil Axelsson
Doug Beardsley Jean-Philippe Bernardy Jeroen Bransen
Gwern Branwen Joachim Breitner Björn Buckwalter

Erik de Castro Lopo Olaf Chitil Duncan Coutts
Jason Dagit Nils Anders Danielsson Romain Demeyer
Daniel Díaz Atze Dĳkstra Adam Drake

Sebastian Erdweg Ben Gamari Andy Georges
Patai Gergely Brett G. Giles Andy Gill

George Giorgidze Torsten Grust Jurriaan Hage
Bastiaan Heeren Mike Izbicki PÁLI Gábor János

Guillaume Hoffmann Csaba Hruska Paul Hudak
Oleg Kiselyov Michal Konečný Eric Kow
Ben Lippmeier Andres Löh Hans-Wolfgang Loidl
Rita Loogen Ian Lynagh Christian Maeder

José Pedro Magalhães Ketil Malde Antonio Mamani
Simon Marlow Dino Morelli JP Moresmau
Ben Moseley Takayuki Muranushi Jürgen Nicklisch-Franken
Tom Nielsen Rishiyur Nikhil Jens Petersen
David Sabel Uwe Schmidt Martĳn Schrage

Tom Schrĳvers Andrew G. Seniuk Jeremy Shaw
Christian Höner zu Siederdissen Michael Snoyman Doaitse Swierstra

Henning Thielemann Sergei Trofimovich Bernhard Urban
Marcos Viera Janis Voigtländer Daniel Wagner
Greg Weber Kazu Yamamoto Edward Z. Yang

Brent Yorgey

http://tinyurl.com/haskcar


Preface

This is the 23rd edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a
blue background. Entries for which I received a liveness ping, but which have seen no essential
update for a while, have been replaced with online pointers to previous versions. Other entries
on which no new activity has been reported for a year or longer have been dropped completely.
Please do revive such entries next time if you do have news on them.

A call for new entries and updates to existing ones will be issued on the Haskell mailing list
in April. Now enjoy the current report and see what other Haskellers have been up to lately.
Any feedback is very welcome, as always.

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

mailto: hcar at haskell.org


Contents

1 Community 6
1.1 haskell.org . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Haskellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Books, Articles, Tutorials 7
2.1 In Japanese: Learn You a Haskell for Great Good! . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Monad.Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Oleg’s Mini Tutorials and Assorted Small Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Implementations 9
3.1 Haskell Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The Glasgow Haskell Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 UHC, Utrecht Haskell Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Specific Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.1 Haskell on FreeBSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Debian Haskell Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.3 Haskell in Gentoo Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.4 Fedora Haskell SIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Related Languages and Language Design 14
4.1 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 MiniAgda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Disciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 SugarHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Haskell and . . . 16
5.1 Haskell and Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 Eden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 GpH — Glasgow Parallel Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.3 Parallel GHC project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.4 Static Verification of Transactions in STM Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Haskell and the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1 WAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.2 Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.3 Holumbus Search Engine Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.4 Happstack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.5 Mighttpd2 — Yet another Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.6 Yesod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.7 Snap Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Haskell and Compiler Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 MateVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 CoCoCo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.3 UUAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.4 AspectAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.5 LQPL — A Quantum Programming Language Compiler and Emulator . . . . . . . . . . . . . . . . 24

6 Development Tools 26
6.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.1 EclipseFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.2 ghc-mod — Happy Haskell Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.3 HEAT: The Haskell Educational Advancement Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Code Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



6.2.1 Darcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 DarcsWatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.3 cab — A Maintenance Command of Haskell Cabal Packages . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.1 Cabal and Hackage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2 Portackage — A Hackage Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.1 lhs2TEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.2 Hat — the Haskell Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Libraries, Applications, Projects 31
7.1 Language Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.1 Conduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.2 Free Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.1 Holmes, Plagiarism Detection for Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.2 Interactive Domain Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Parsing and Transforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.1 epub-metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.2 Utrecht Parser Combinator Library: uu-parsinglib . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4 Generic and Type-Level Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4.1 Unbound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4.2 A Generic Deriving Mechanism for Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4.3 Optimising Generic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5 Proof Assistants and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5.1 HERMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5.2 HTab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.5.3 Free Theorems for Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.6 Mathematical Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.6.1 dimensional: Statically Checked Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.6.2 AERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6.3 Paraiso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.6.4 Bullet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.7 Data Types and Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.7.1 HList — A Library for Typed Heterogeneous Collections . . . . . . . . . . . . . . . . . . . . . . . . 38
7.7.2 Persistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.7.3 DSH — Database Supported Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.8 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.8.1 Gtk2Hs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.8.2 xmonad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.9 Functional Reactive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.9.1 reactive-banana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.9.2 Functional Hybrid Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.9.3 Elerea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.10 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.10.1 LambdaCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.10.2 diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.11 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.11.1 Audio Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.11.2 Live-Sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.11.3 Chordify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.11.4 Euterpea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.12 Text and Markup Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.12.1 HaTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.12.2 Haskell XML Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.12.3 epub-tools (Command-line epub Utilities) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.13 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.13.1 NLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4



7.13.2 GenI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.14 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.14.1 Bayes-stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.14.2 Homomorphic Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.15 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.15.1 ADPfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.15.2 Biohaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.16 Embedding DSLs for Low-Level Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.16.1 Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.16.2 Kansas Lava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.17 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.17.1 Clckwrks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.17.2 leapseconds-announced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.17.3 arbtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.17.4 sshtun (Wrapper daemon to manage an ssh tunnel) . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.17.5 hMollom — Haskell implementation of the Mollom API . . . . . . . . . . . . . . . . . . . . . . . . 53
7.17.6 hGelf — Haskell implementation of the Graylog extended logging format . . . . . . . . . . . . . . . 53
7.17.7 Galois Open-Source Projects on GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Commercial Users 54
8.1 Well-Typed LLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators . . . . . . . . . . . . . . . 54
8.3 Industrial Haskell Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4 Barclays Capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.5 Oblomov Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.6 madvertise Mobile Advertising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.7 OpenBrain Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Research and User Groups 57
9.1 Haskell at Eötvös Loránd University (ELTE), Budapest . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Artificial Intelligence and Software Technology at Goethe-University Frankfurt . . . . . . . . . . . 57
9.3 Functional Programming at the University of Kent . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.4 Formal Methods at DFKI and University Bremen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.5 Haskell at Universiteit Gent, Belgium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.6 fp-syd: Functional Programming in Sydney, Australia . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.7 Functional Programming at Chalmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.8 Functional Programming at KU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.9 San Simón Haskell Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.10 Ghent Functional Programming Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5



1 Community

1.1 haskell.org

Report by: Jason Dagit
Participants: Ganesh Sittampalam, Edward Z. Yang, Vo

Minh Thu, Mark Lentczner, Edward
Kmett, Brent Yorgey

Status: active

The haskell.org committee is in its second year
of operation managing the haskell.org infrastruc-
ture and money. The committee’s “home page”
is at http://www.haskell.org/haskellwiki/Haskell.org_
committee, and occasional publicity is via a blog (http:
//haskellorg.wordpress.com) and twitter account (http:
//twitter.com/#!/haskellorg) as well as the Haskell
mailing list.
Since the last community report, the following has

happened:

haskell.org incorporation

Haskell.org has now joined Software in the Public In-
terest (http://www.spi-inc.org). This allows haskell.org
to accept donations as a US-based non-profit as well as
pay for services with these donations. Currently, most
of the money in the haskell.org account comes from
GSoC participation.
We are currently in the process of establishing guide-

lines for fund raising and appropriate ways to spend
funds. The main expense of haskell.org at this time is
server hosting. The GSoC participant reimbursement
is actually paid by Google and we do not consider this
a normal expense as Google reimburses us for the full
amount.

Assets

At the start of 2011 the haskell.org account had
$7,261.73 USD, and by the end of the year the account
balance was $13,056.32. The haskell.org expenses for
2011 include:

◦ GSoC Participant Reimbursements: $2,816.41

◦ Server Hosting Fees: $705.41

The haskell.org income for 2011 includes:

◦ GSoC Payments: $6,500.00

◦ Google GSoC Participant Reimbursements:
$2,816.41

Note that the participant reimbursement paid
by haskell.org matches the reimbursement given to
haskell.org by Google. The haskell.org credits for 2011

include only GSoC payments of $9,316.41, leaving us
with a balance of $13,056.32 at the end of 2011.
Haskell.org has the following server assets:
◦ abbot, kindly hosted by Galois
◦ sparky, kindly hosted by Chalmers but technically

owned by Oxford Department of Computer Science
◦ lambda, commercially hosted
◦ lun, a VM hosted on lambda
◦ www, a VM hosted on lambda
◦ haskell.org domain name

General

The haskell.org infrastructure is becoming more sta-
ble, but still suffers from occasional hiccups. While
the extreme unreliability we saw for a while has im-
proved with the reorganisation, the level of sysadmin
resource/involvement is still inadequate. The commit-
tee is open to ideas on how to improve the situation.
With the task of incorporation behind us, the

haskell.org committee can now focus on establishing
guidelines around donations, fund raising, and appro-
priate uses of funds.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Since the May 2011 HCAR, Haskellers has added

polls, which provides a convenient means of surveying
a large cross-section of the active Haskell community.
There are now over 1300 active accounts, versus 800
one year ago.
Haskellers remains a site intended for all members

of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

6

http://www.haskell.org/haskellwiki/Haskell.org_committee
http://www.haskell.org/haskellwiki/Haskell.org_committee
http://haskellorg.wordpress.com
http://haskellorg.wordpress.com
http://twitter.com/#!/haskellorg
http://twitter.com/#!/haskellorg
http://www.spi-inc.org
http://www.haskellers.com/


2 Books, Articles, Tutorials

2.1 In Japanese: Learn You a Haskell for
Great Good!

Report by: Takayuki Muranushi
Participants: Hideyuki Tanaka
Status: available

An official translation of the book “Learn You a
Haskell for Great Good!” by Miran Lipovača (http:
//learnyouahaskell.com/) to Japanese is now available
in stores.
The original book is an elaborate and popular in-

troduction to the programming language Haskell. The
reader will walk through the playland of Haskell deco-
rated with funky examples and illustrations, and with-
out noticing any difficulties, will become one with the
core concepts of Haskell, say types, type classes, lazy
evaluations, functors, applicatives and monads. The
translators have added a short article on handling
multi-byte strings in Haskell.
We are grateful to all the people’s work that made

this wonderful book available in Japanese, including
the publisher, our kind reviewers, and the original au-
thor Miran. We wish for prosperity of the Haskell com-
munity in Japan and in many countries, and for those
who don’t read Japanese, we’d just like to let you know
that we’re doing fine in Japan!
Publication details:
◦ Published by Ohmsha, 2012. ISBN 4274068854.
◦ Original book published by No Starch Press, 2011.

ISBN 1593272839.
Book website:
◦ http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=

978-4-274-06885-0

Further reading

http://www.amazon.co.jp/dp/4274068854/

2.2 The Monad.Reader

Report by: Edward Z. Yang

There are many academic papers about Haskell and
many informative pages on the HaskellWiki. Unfortu-
nately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a wiki page, but more casual than a journal
article.
There are plenty of interesting ideas that might not

warrant an academic publication—but that does not

mean these ideas are not worth writing about! Com-
municating ideas to a wide audience is much more im-
portant than concealing them in some esoteric journal.
Even if it has all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining
a neat idea about “warm fuzzy things” to the rest of
us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR there has been one new issue,

featuring articles on Haskell error reporting, enumerat-
ing tuples and the MapReduce monad.

Further reading

http://themonadreader.wordpress.com/

2.3 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received three additions:

Haskell with only one type class

Type classes are so ingrained in Haskell that one can
hardly think about the language without them. And
yet, if we remove the type class declaration and the
standard type classes, leaving the language with a sin-
gle, fixed, pre-defined type class with a single method,
no expressivity is lost. We can still write all Haskell98
type-class programming idioms including constructor
classes, as well as multi-parameter type classes and
even some functional dependencies. Adding the equal-
ity constraint gives us all functional dependencies,
bounded existentials, and even associated data types.
Besides clarifying the role of type classes as method
bundles, we propose a simpler model of overloading res-
olution than that of Hall et al.
http://okmĳ.org/ftp/Haskell/TypeClass.html#Haskell1

Higher-order polymorphic selection

This mini-tutorial shows an example of how looking at
the problem in a different way turns it from impossi-
ble (at least, in System F) to elementary, expressible

7

http://learnyouahaskell.com/
http://learnyouahaskell.com/
http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-06885-0
http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-06885-0
http://www.amazon.co.jp/dp/4274068854/
http://themonadreader.wordpress.com/
http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Haskell/TypeClass.html#Haskell1


in the Hindley-Milner system. The problem is about
selectors, such as tuple selectors:

fst :: forall a b . (a, b)→ a
snd :: forall a b . (a, b)→ b

First, we would like to write a function g that takes a
selector as an argument and applies it to several het-
erogeneous tuples. For example:

g sel = (sel (1, ’b’), sel (true, "four"))

It is already a problem to type such a function in Sys-
tem F, let alone in the Hindley-Milner system. But we
want more: a function that takes functions like g as an
argument:

fs g = (g snd, (), g fst)
test = f (λsel → (sel (1, ’b’), sel (true, "four")))

The mini-tutorial first shows a brute-force solution,
emulating the necessary higher-rank polymorphism.
Then we change the point of view: we now represent
the function as a ‘table’, ‘indexed’ by the selector argu-
ment. This change of representation is quite like apply-
ing the eta-rule for sums. In this new representation,
the problem becomes trivial:

g′ = (g_fst, g_snd)
where
g_fst = (fst (1, ’b’), fst (True, "four"))
g_snd = (snd (1, ’b’), snd (True, "four"))
fs g′ = (fst g′, (), snd g′)
test = fs g′

http://okmĳ.org/ftp/Computation/extra-polymorphism.
html#ho-poly-sel

Parametric polymorphism over a type class

A Haskell-Cafe message posed a problem of parameter-
izing a function by a type class rather than by a type.
Can we write the following two definitions as a single
polymorphic definition, eliminating the code duplica-
tion?

foo :: (Num c,Num d)⇒
(forall b .Num b ⇒ a → b)→ a → (c, d)

foo f x = (f x, f x)
bar :: (Read c,Read d)⇒

(forall b . Read b ⇒ a → b)→ a → (c, d)
bar f x = (f x, f x)

The only difference between foo and bar is the type
class constraint: Num vs Read. The problem thus is to
parameterize over constraints. The mini-tutorial de-
velops the solution without resorting to the recently
added Constraint kind, showing that first-class con-
straints have always been available in Haskell.

The type class Apply

class Apply l a b | l b → a where
apply :: l → a → b

data LRead = LRead
instance Read b ⇒ Apply LRead String b where

apply = read

introduces the correspondence between constraints and
ordinary types. For example, the shown instance maps
the type LRead to the constraint Read. The type-class
Apply also gets around higher-rank polymorphism;
therefore, the types are inferrable. The mini-tutorial
then explores the fact that the quantification over ar-
bitrary type predicates (expressed as constraints) gives
the unrestricted set comprehension.
http://okmĳ.org/ftp/Computation/extra-polymorphism.
html#class-quantification

8

http://okmij.org/ftp/Computation/extra-polymorphism.html#ho-poly-sel
http://okmij.org/ftp/Computation/extra-polymorphism.html#ho-poly-sel
http://okmij.org/ftp/Computation/extra-polymorphism.html#class-quantification
http://okmij.org/ftp/Computation/extra-polymorphism.html#class-quantification


3 Implementations

3.1 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of the “blessed”
set of libraries and tools on which to build further
Haskell libraries and applications. It takes a core se-
lection of packages from the more than 4500 on Hack-
age (→ 6.3.1). It is intended to provide a comprehen-
sive, stable, and quality tested base for Haskell projects
to work from.
Historically, GHC shipped with a collection of pack-

ages. For the last few years the task of shipping an en-
tire platform has been transferred to the Haskell Plat-
form.

Recent progress

The latest major version of the platform was released
in June and includes GHC-7.4.1 and updates to tools
like cabal and many libraries.
Mark Lentczner has taken over as the platform re-

lease manager, and has been doing a great job coor-
dinating between package maintainers, and volunteers
building the platform for different operating systems.
Mark presented a status update and future plans at the
recent Haskell implementors workshop. Mark also led
an effort to rationalise our use of the haskell.org server
resources.

Looking forward

Major releases take place on a 6 month cycle. The next
release is due soon in mid November. It will be based
on GHC-7.4.2. It includes three new libraries:

◦ The async package by Simon Marlow provides a
simple abstraction for running IO actions asyn-
chronously. This is much like the fork/join or fu-
tures libraries that are becoming popular in other
languages. There are many existing examples of this
pattern in various Haskell code bases, since it is quite
easy to implement, in terms of forkIO and MVars.
This new package should help to standardise exist-
ing practice, and cover corner cases like asynchronous
exceptions.

◦ The split package provides functions for splitting
lists (usually strings) on delimeters. While Haskell
has had functions like words and lines for years,

the standard libraries have never provided other con-
venient splitting functions, partly because there are
so many different use cases and combinations. The
split package provides a collection of functions you
can combine to get just the kind of split you want,
plus convenience functions for a number of special
cases.

◦ The vector package provides flat sequences. Un-
like the existing arrays package, vectors are not
multi-dimensional and always indexed from 0. But
in turn vectors provide a much larger collection of
useful functions (many of which only make sense for
sequnces, not for multi-dimensional arrays). The li-
brary is carefully tuned for compact in-memory rep-
resentations and speed.

The timing of the GHC-7.6 release was such that we
took the decision to go with 7.4.2. It is likely that
the following platform release in the spring will use the
by-then stable 7.6.x version. Haskell users need to get
used to the idea that there will always be a significant
lag between the latest major GHC release and when
that version makes it into the latest stable platform
release. This is due to the time to test and update other
packages, and to get important fixes incorporated back
into a GHC bug-fix release.
Our systems for coordinating and testing new re-

leases remains too time consuming, involving too much
manual work. Help from the community on automation
would be very valuable.
While we did get several new packages into the plat-

form this release, there are still improvements we could
make to keep the process running smoothly. Mark and
the platform steering committee will be proposing some
modifications to lower the barrier to entry. Neverth-
less, we would still like to encourage package authors
to propose new packages. This can be initiated at any
time. We also invite the rest of the community to take
part in the review process on the libraries mailing list
〈libraries@haskell.org〉. The current procedure involves
writing a package proposal and discussing it on the
mailing list with the aim of reaching a consensus. De-
tails of the procedure are on the development wiki.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform
◦ Download: http://haskell.org/platform/
◦ Wiki: http://trac.haskell.org/haskell-platform/
◦ Adding packages: http://trac.haskell.org/

haskell-platform/wiki/AddingPackages

9

mailto: libraries at haskell.org
http://haskell.org/haskellwiki/Haskell_Platform
http://haskell.org/platform/
http://trac.haskell.org/haskell-platform/
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://trac.haskell.org/haskell-platform/wiki/AddingPackages


3.2 The Glasgow Haskell Compiler

Report by: Simon Marlow
Participants: many others

We made a bug-fix release of GHC 7.4.2 in June, and
a completely new release of GHC 7.6 in August. As
well as the usual raft of general improvements, GHC
7.6 included some new features:

◦ Multi-way if, and case.

◦ Kind polymorphism and data kinds [7].

◦ Deferred type errors [6].

◦ Improved support for generic programming (→
7.4.2), [8].

◦ The ability to change at runtime the number of pro-
cessors running Haskell threads.

◦ The first supported GHC for 64-bit Windows.

◦ Type-level literal symbols.

We expect to do a 7.6.2 release quite soon, and a 7.8.1
release in a few months’ time.
Here is what we have been up to in the last six months:

Kind polymorphism and data kinds is a major new
feature of GHC 7.6. It’s described in “Giving Haskell
a promotion” [7], and has already been used in inter-
esting ways (“The Right Kind of Generic Program-
ming” [8], “Dependently Typed Programming with
Singletons” [9]). Leading up to the GHC 7.6 release
Simon PJ has been working hard on making kind
polymorphism work properly, which was a lot more
work than he anticipated.
There is plenty more to do here, such as exploiting
kind polymorphism to make a better Typeable class.

Type holes. Thĳs Alkemade and Sean Leather have
been working on another variant of deferred error
messages, that would allow you to write a program
that contains as-yet-unwritten sub-terms, or “holes”
and have GHC report a fairly precise type for the
hole. The HEAD now has an initial implementa-
tion (-XTypeHoles), and there are ongoing discus-
sions about how to make it better still. Details on
their wiki page [10].

Data parallelism. We are currently completely rewrit-
ing our implementation of vectorisation avoidance [1]
in GHC’s vectoriser. This leads to an overall much
simpler and more robust vectoriser. In particular,
it will be more liberal in allowing scalar subcom-
putations imported from modules compiled without
vectorisation (such as the standard Prelude). This
should finally enable us to get rid of the specialised,
mini-Prelude in the DPH libraries.

After having solved the problem of obtaining asymp-
totically work-efficient vectorisation [2], we are now
turning to improving the constants in the DPH li-
braries, and in particular, to achieve more reliable
fusion in the presence of segmented operations, folds,
and parallelism. Ben Lippmeier has a few exciting
ideas on major improvements in that direction that
we will discuss in more detail once we have con-
ducted more experiments. We plan to finish the
new vectorisation-avoidance infrastructure in time
for GHC 7.8, but the new fusion system will likely
not be ready in time for that release.
Moreover, Trevor McDonell has made good progress
in devising a novel fusion system for the embedded
Accelerate GPU language. We hope to be able to
release it around the same time as GHC 7.8.

Overlapping type family instances. Richard Eisen-
berg is close to finishing an implementation of
overlapping type family instances. The overlap
mechanism is distinct from overlapping type class
instances, as the programmer has to give an ex-
plicit ordering to the overlapping instances. More
information can be found on the wiki page [11].

Dynamic libraries by default. In GHC 7.8, it will be
possible to build GHC in such a way that by default it
will dynamically link against Haskell libraries, rather
than statically linking as it does now. As well as
smaller binary sizes, this has the big advantage that
GHCi will be able to use the system linker to load
libraries, rather than our own linker implementation.
This will mean fewer GHCi bugs, and make it a lot
easier to add GHCi support to other platforms. We
plan to make this the default way of building GHC
on as many platforms as possible.

The new code generator. Several years since this
project was started, the new code generator is finally
working [14], and is now switched on by default in
master. It will be in GHC 7.8.1. From a user’s per-
spective there should be very little difference, though
some programs will be faster.
There are three important improvements in the gen-
erated code. One is that let-no-escape functions are
now compiled much more efficiently: a recursive let-
no-escape now turns into a real loop in C--. The
second improvement is that global registers (R1, R2,
etc.) are now available for the register allocator to
use within a function, provided they aren’t in use for
argument passing. This means that there are more
registers available for complex code sequences. The
third improvement is that we have a new sinking pass
that replaces the old “mini-inliner” from the native
code generator, and is capable of optimisations that
the old pass couldn’t do.
Hand-written C-- code can now be written in a
higher-level style with real function calls, and most

10



of the hand-written C-- code in the RTS has been
converted into the new style. High-level C-- does
not mention global registers such as R1 explicitly,
nor does it manipulate the stack; all this is handled
by the C-- code generator in GHC. This is more ro-
bust and simpler, and means that we no longer need
a special calling-convention for primops — they now
use the same calling convention as ordinary Haskell
functions.
We’re interested in hearing about both performance
improvements and regressions due to the new code
generator.

Improved floating point register allocation. On x86-
64 there are now six machine registers available for
any mixture of floating-point types. Previously a
maximum of four values of type Float and two val-
ues of type Double could simultaneously be kept in
machine registers.

SIMD primitives. The simd branch now supports
passing SSE vector values in machine registers. We
expect the simd branch to be merged in time for 7.8.

Type-nat solver. Iavor S. Diatchki has been working
on the type-checker to add support for discharging
constraints involving arithmetic operations at the
type-level. This work is on the type-nats branch
of GHC. The basic support for common operations
is fairly stable, and now it is in the testing phase.
The most externally visible changes to the solver
are: experimental support for matching on type-level
naturals, using an auxiliary type family [12], and
the module GHC .TypeLits was refactored to make
it compatible with Richard Eisenberg’s singletons li-
brary [13]. Next, we plan to work on integration with
the master branch, and experimental support for the
inverse operations of what’s currently in the solver
(i.e., (-), (/), Log, Root).

As always there is far more to do than we can handle,
and there is loads of space for people to contribute. Do
join us!

Bibliography

◦ [1] Vectorisation avoidance, Gabriele Keller et al.,
HS’12, http://www.cse.unsw.edu.au/~chak/papers/
KCLLP12.html

◦ [2] Work-efficient higher-order vectorisation, Ben
Lippmeier et al., ICFP’12, http://www.cse.unsw.edu.
au/~chak/papers/LCKLP12.html

◦ [6] Equality proofs and deferred type er-
rors, Dimitrios Vytiniotis et al., ICFP’12,
http://research.microsoft.com/en-us/um/people/
simonpj/papers/ext-f/

◦ [7] Giving Haskell a promotion, Brent Yorgey et
al., TLDI’12, http://research.microsoft.com/en-us/
um/people/simonpj/papers/ext-f/

◦ [8] The Right Kind of Generic Programming,
José Pedro Magalhães, WGP’12, http://dreixel.net/
research/pdf/trkgp.pdf

◦ [9] Dependently typed programming with singletons,
Richard Eisenberg and Stephanie Weirich, HS’12,
http://www.cis.upenn.edu/~eir/pubs.html

◦ [10] Holes in GHC: http://hackage.haskell.org/trac/
ghc/wiki/Holes

◦ [11] Overlapping type family instances: http://
hackage.haskell.org/trac/ghc/wiki/NewAxioms

◦ [12] Matching on type nats: http://hackage.haskell.
org/trac/ghc/wiki/TypeNats/MatchingOnNats

◦ [13] Singletons and kinds: http://hackage.haskell.
org/trac/ghc/wiki/TypeNats/SingletonsAndKinds

◦ [14] The new codegen is nearly ready to go live: http:
//hackage.haskell.org/trac/ghc/blog/newcg-update

3.3 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: many others
Status: active development

What is new? UHC is the Utrecht Haskell Compiler,
supporting almost all Haskell98 features and most of
Haskell2010, plus experimental extensions. The cur-
rent focus is on the Javascript backend.

What do we currently do and/or has recently been
completed? As part of the UHC project, the follow-
ing (student) projects and other activities are underway
(in arbitrary order):

◦ (completed) Jurriën Stutterheim and others: build-
ing web applications with the Javascript backend.
See the below UHC Javascript url for more info.

◦ (ongoing) Jeroen Bransen (PhD): “Incremental
Global Analysis”.

◦ (ongoing) Jan Rochel (PhD): “Realising Optimal
Sharing”, based on work by Vincent van Oostrum
and Clemens Grabmayer.

◦ (ongoing) Atze Dĳkstra: overall architecture, type
system, bytecode interpreter + java + javascript
backend, garbage collector.

Background. UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.3.3).

11

http://www.cse.unsw.edu.au/~chak/papers/KCLLP12.html
http://www.cse.unsw.edu.au/~chak/papers/KCLLP12.html
http://www.cse.unsw.edu.au/~chak/papers/LCKLP12.html
http://www.cse.unsw.edu.au/~chak/papers/LCKLP12.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://dreixel.net/research/pdf/trkgp.pdf
http://dreixel.net/research/pdf/trkgp.pdf
http://www.cis.upenn.edu/~eir/pubs.html
http://hackage.haskell.org/trac/ghc/wiki/Holes
http://hackage.haskell.org/trac/ghc/wiki/Holes
http://hackage.haskell.org/trac/ghc/wiki/NewAxioms
http://hackage.haskell.org/trac/ghc/wiki/NewAxioms
http://hackage.haskell.org/trac/ghc/wiki/TypeNats/MatchingOnNats
http://hackage.haskell.org/trac/ghc/wiki/TypeNats/MatchingOnNats
http://hackage.haskell.org/trac/ghc/wiki/TypeNats/SingletonsAndKinds
http://hackage.haskell.org/trac/ghc/wiki/TypeNats/SingletonsAndKinds
http://hackage.haskell.org/trac/ghc/blog/newcg-update
http://hackage.haskell.org/trac/ghc/blog/newcg-update


Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ UHC Github repository: https://github.com/
UU-ComputerScience/uhc

◦ UHC Javascript backend: http://
uu-computerscience.github.com/uhc-js/

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

3.4 Specific Platforms

3.4.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of contrib-
utors who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both i386 and amd64) start-
ing from GHC 6.12.1, hence one can always download
vanilla binary distributions for each recent release.
We have a developer repository for Haskell ports

that features around 400 ports of many popular Ca-
bal packages. The updates committed to this repos-
itory are continuously integrated to the official ports
tree on a regular basis. However, the FreeBSD Ports
Collection already includes many popular and impor-
tant Haskell software: GHC 7.4.1, Haskell Platform
2012.2.0.0, Gtk2Hs, wxHaskell, XMonad, Pandoc, Gi-
tit, Yesod, Happstack, Snap, Agda, git-annex, and so
on — all of them will be available as part of the soon-
to-be-published FreeBSD 9.1-RELEASE.
If you find yourself interested in helping us or simply

want to use the latest versions of Haskell programs on
FreeBSD, check out our page at the FreeBSD wiki (see
below) where you can find all important pointers and
information required for use, contact, or contribution.

Further reading

http://wiki.FreeBSD.org/Haskell

3.4.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.

We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 500 source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.
The stable Debian release (“squeeze”) provides the

Haskell Platform 2010.1.0.0 and GHC 6.12, Debian
testing (“wheezy”) and unstable (“sid”) contain the
Platform version 2012.3.0.0 with GHC 7.4.1. Debian
wheezy is currently frozen, so no new uploads to test-
ing and unstable are happening at the moment. We
are however working on the infrastructure: Full sup-
port for running hoogle to search all installed Haskell
documentation is in the making.
Debian users benefit from the Haskell ecosystem

on 13 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.4.3 Haskell in Gentoo Linux

Report by: Sergei Trofimovich

Gentoo Linux currently officially supports GHC 7.4.1,
GHC 7.0.4 and GHC 6.12.3 on x86, amd64, sparc, al-
pha, ppc, ppc64 and some arm platforms.
The full list of packages available through the offi-

cial repository can be viewed at http://packages.gentoo.
org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.
There is also an overlay which contains almost 800

extra unofficial and testing packages. Thanks to the
Haskell developers using Cabal and Hackage (→ 6.3.1),
we have been able to write a tool called “hackport” (ini-
tiated by Henning Günther) to generate Gentoo pack-
ages with minimal user intervention. Notable packages
in the overlay include the latest version of the Haskell
Platform (→ 3.1) as well as the latest 7.4.1 release of
GHC, as well as popular Haskell packages such as pan-
doc, gitit, yesod (→ 5.2.6) and others.
As usual GHC 7.4 branch required some packages to

be patched. For a 6 months period we have got about
150 patches waiting for upstream inclusion.
Over the time more and more people get involved

in gentoo-haskell project which reflects positively on
haskell ecosystem health status.
More information about the Gentoo Haskell Overlay

can be found at http://haskell.org/haskellwiki/Gentoo.

12

http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
https://github.com/UU-ComputerScience/uhc
https://github.com/UU-ComputerScience/uhc
http://uu-computerscience.github.com/uhc-js/
http://uu-computerscience.github.com/uhc-js/
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://wiki.FreeBSD.org/Haskell
http://wiki.debian.org/Haskell
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo


It is available via the Gentoo overlay manager “lay-
man”. If you choose to use the overlay, then any prob-
lems should be reported on IRC (#gentoo-haskell
on freenode), where we coordinate development, or
via email 〈haskell@gentoo.org〉 (as we have more peo-
ple with the ability to fix the overlay packages that
are contactable in the IRC channel than via the bug
tracker).
As always we are more than happy for (and in fact

encourage) Gentoo users to get involved and help us
maintain our tools and packages, even if it is as simple
as reporting packages that do not always work or need
updating: with such a wide range of GHC and package
versions to co-ordinate, it is hard to keep up! Please
contact us on IRC or email if you are interested!
For concrete tasks see our perpetual TODO

list: https://github.com/gentoo-haskell/gentoo-haskell/
blob/master/projects/doc/TODO.rst

3.4.4 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Lakshmi Narasimhan, Shakthi Kannan,

Michel Salim, Ben Boeckel, and others
Status: ongoing

The Fedora Haskell SIG works on providing good
Haskell support in the Fedora Project Linux distribu-
tion.
Fedora 18 will ship in December with ghc-7.4.1 and

haskell-platform-2012.2.0.0, and version updates also
to many other packages. New packages added since
the release of Fedora 17 include cabal-rpm, happstack-
server, hledger, and a bunch of libraries. Cabal-rpm
has been revamped to replace the previously used ca-
bal2spec packaging shell-script.
At the time of writing there are now 205 Haskell

source packages in Fedora. The Fedora package ver-
sion numbers listed on the Hackage website refer to
the latest branched version of Fedora (currently 18).
Fedora 19 work is starting now with ghc-7.4.2,

haskell-platform-2012.4 and plans finally to package up
Yesod.
If you want to help with package reviews and Fe-

dora Haskell packaging, please join us on Freenode irc
#fedora-haskell and our low-traffic mailing-list, or fol-
low @fedorahaskell.

Further reading

◦ Homepage: http://fedoraproject.org/wiki/SIGs/
Haskell

◦ Mailing-list: https://admin.fedoraproject.org/
mailman/listinfo/haskell

◦ Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig

◦ Package changes: http://git.fedorahosted.org/cgit/
haskell-sig.git/tree/packages/diffs/f17-f18.compare

13

mailto: haskell at gentoo.org
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/SIGs/Haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f17-f18.compare
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f17-f18.compare


4 Related Languages and Language Design

4.1 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell, Andreas Abel, and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
The next version of Agda is still under develop-

ment. Some of the changes were mentioned in the last
HCAR entry. More recently Stevan Andjelkovic has
contributed a LATEX backend, with the aim to support
both precise, Agda-style highlighting, and lhs2TeX-
style alignment of code.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda

Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (→ 4.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Bounded size quantification
and destructor patterns for a more general handling
of coinduction. Equality incorporates eta-expansion at
record and singleton types. Function arguments can be
declared as static; such arguments are discarded during
equality checking and compilation.
Recently, I have added more comfortable syntax for

data type declarations and let-definitions. Data and
codata types can now also be defined recursively. In
the long run, I plan to evolve MiniAgda into a core
language for Agda with termination certificates.

MiniAgda is available as Haskell source code and
compiles with GHC 6.12.x – 7.4.1.

Further reading

http://www2.tcs.ifi.lmu.de/~abel/miniagda/

4.3 Disciple

Report by: Ben Lippmeier
Participants: Tran Ma, Amos Robinson, Erik de Castro

Lopo
Status: experimental, active development

Disciple Core is an explicitly typed language based on
System-F2, intended as an intermediate representation
for a compiler. In addition to the polymorphism of
System-F2 it supports region, effect and closure typ-
ing. Evaluation order is left-to-right call-by-value by
default, but explicit lazy evaluation is also supported.
The language includes a capability system to track
whether objects are mutable or constant, and to ensure
that computations that perform visible side effects are
not suspended with lazy evaluation.
The Disciplined Disciple Compiler (DDC) is being

rewritten to use the redesigned Disciple Core language.
This new DDC is at a stage where it will parse and
type-check core programs, and compile first-order func-
tions over lists to executables via C or LLVM backends.
There is also an interpreter that supports the full lan-
guage.

What is new?

◦ Tran Ma has extended the core language with wit-
nesses of Distinctness, which encode the fact that
two regions of memory cannot alias at runtime. This
information is used during program transformation
in DDC, as well as being converted to LLVM alias-
ing metadata. Aliasing metadata allows the LLVM
compiler to perform alias dependent follow-on opti-
misations, such as Global Value Numbering (GVN).

◦ Amos Robinson has added a rewrite rule system
which understands the Disciple effect typing mecha-
nism. Rewrite rules can be given constraints that
ensure they only fire when particular expressions
have non-interfering effects. This enables rewrite rule
based transformations such as build/fold fusion to
work in the presence of (non-interfering) effects.

◦ Ben Lippmeier has been working on the compiler
framework and code generators. DDC now supports

14

http://wiki.portal.chalmers.se/agda/
http://www2.tcs.ifi.lmu.de/~abel/miniagda/


cross module inlining and a few basic code trans-
formations like let-floating. All code that constructs
heap objects is written directly in our lowest-level in-
termediate language, Disciple Salt (a bit like Cmm).
This language is a fragment of the full Disciple Core
language, so we can use the same AST right up until
final code generation, either via C or LLVM. All run-
time system code is written directly in Disciple Salt,
and then inlined into user-written programs during
compilation.

Future plans

We are currently fixing bugs in preparation for a release
at the end of November.

Further reading

http://disciple.ouroborus.net

4.4 SugarHaskell

Report by: Sebastian Erdweg
Participants: Tillmann Rendel, Felix Rieger, Klaus

Ostermann
Status: active

SugarHaskell is a generic extension of Haskell that en-
ables programmers to define and use flexible syntactic
extensions of Haskell. SugarHaskell extensions are or-
ganized as regular libraries, which define an extended
syntax and a transformation of the extended syntax
into Haskell’s base syntax (or an extension thereof). To
activate an extension, a SugarHaskell programmer sim-
ply imports the library that defines the extension; the
extension is active in the remainder of the current file.
Our Haskell Symposium paper [4] contains numerous
examples, including arrow notation and, as illustrated
in the following, idiom brackets:

import Control.Applicative
import Control.Applicative.IdiomBrackets
instance Traversable Tree where

traverse f Leaf = (| Leaf |)
traverse f (Node l x r) =

(| Node (traverse f l) (f x) (traverse f r) |)

The library Control.Applicative.IdiomBrackets pro-
vides a syntactic extension for programming with ap-
plicatives, using idiomatic brackets (| ... |). Uses of
idiom brackets are desugared in-place to produce plain
Haskell code. Generally, the usage of syntactic exten-
sions in a program is transparent to its clients.
SugarHaskell provides both a compiler and an

Eclipse-based IDE. The SugarHaskell compiler is avail-
able as a Hackage package [2] and can be easily installed
using cabal-install. Since our system is implemented in
Java, the SugarHaskell package requires a preinstalled
Java runtime. Moreover, we distribute the source code

via github, and involvement of others is welcome. The
SugarHaskell IDE is available as an Eclipse plugin and
can be installed from our Eclipse update site [3]. The
IDE provides some standard editor services such as
code coloring or outlining for Haskell, and is also exten-
sible itself to accommodate user-defined editor services
for SugarHaskell extensions.

SugarHaskell is a research prototype that is under
active development. We work both on the implemen-
tation and the conceptional foundation of the system.
The feedback cycle is short and any feedback is appre-
ciated.

Further reading

[1] http://sugarj.org
[2] http://hackage.haskell.org/package/sugarhaskell
[3] Eclipse update site: http://sugarj.org/update
[4] Sebastian Erdweg, Felix Rieger, Tillmann Rendel,

and Klaus Ostermann. Layout-sensitive Lan-
guage Extensibility with SugarHaskell. In
Haskell Symposium, pages 149–160. ACM, 2012.

15

http://disciple.ouroborus.net
http://sugarj.org
http://hackage.haskell.org/package/sugarhaskell
http://sugarj.org/update


5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Oleg Lobachev,

Rita Loogen,
in Copenhagen: Jost Berthold

Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s primitive constructs are process abstractions

and process instantiations. The Eden logo

consists of four λ turned in such a way that they form
the Eden instantiation operator (#). Higher-level coor-
dination is achieved by defining skeletons, ranging from
a simple parallel map to sophisticated master-worker
schemes. They have been used to parallelize a set of
non-trivial programs.
Eden’s interface supports a simple definition of arbi-

trary communication topologies using Remote Data. A
PA-monad enables the eager execution of user defined
sequences of Parallel Actions in Eden.

Web Pages

http://www.mathematik.uni-marburg.de/~eden

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Tutorial

Rita Loogen: Eden - Parallel Functional Programming
in Haskell, in: V. Zsók, Z. Horváth, and R. Plasmeĳer

(Eds.): CEFP 2011, Springer LNCS 7241, 2012, pp.
142-206.
(see also: http://www.mathematik.uni-marburg.de/
~eden/?content=cefp)

Implementation

Eden is implemented by modifications to the Glasgow-
Haskell Compiler (extending its runtime system to use
multiple communicating instances). Apart from MPI
or PVM in cluster environments, Eden supports a
shared memory mode on multicore platforms, which
uses multiple independent heaps but does not depend
on any middleware. Building on this runtime support,
the Haskell package edenmodules defines the language,
and edenskels provides libraries of parallel skeletons.
The current stable release of the Eden compiler is

based on GHC 7.4.2. Binary packages and source
code are available on our web pages, the Eden libraries
(Haskell-level) are also available via Hackage.
A newer variant based on GHC-7.6.1 (and match-

ing Eden libraries) are available as source code via git
repositories at http://james.mathematik.uni-marburg.
de:8080/gitweb. We plan the next full release of Eden
with the next (minor or major) GHC release.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visual-
isation of Eden program runs on various levels. Activ-
ity profiles are produced for processing elements (ma-
chines), Eden processes and threads. In addition mes-
sage transfer can be shown between processes and ma-
chines. EdenTV is written in Haskell and is freely avail-
able on the Eden web pages and on hackage.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ Oleg Lobachev: Parallel Computation Skeletons with
Premature Termination Property, in Functional and
Logic Programming (FLOPS) 2012, Springer LNCS
7294, pp. 197–212.

◦ P. Rabanal, I. Rodríguez, F. Rubio:, A Func-
tional Approach to Parallelize Particle Swarm Opti-
mization, Metaheurísticas, Algoritmos Evolutivos y
Bioinspirados, MAEB’12, 2012.

◦ Rita Loogen: Eden - Parallel Functional Program-
ming in Haskell, in: V. Zsók, Z. Horváth, and R.
Plasmeĳer (Eds.): CEFP 2011, Springer LNCS 7241,
2012, pp. 142-206.

16

http://www.mathematik.uni-marburg.de/~eden
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://james.mathematik.uni-marburg.de:8080/gitweb
http://james.mathematik.uni-marburg.de:8080/gitweb


◦ Mischa Dieterle, Thomas Horstmeyer, Jost Berthold,
Rita Loogen: Iterating Skeletons — Structured Par-
allelism by Composition, Draft Proceedings of the
Symposium on the Implementation and Application
of Functional Languages (IFL 2012), Technical Re-
port RR–12–06, Oxford University, 2012.

◦ Thomas Horstmeyer and Rita Loogen: Graph-Based
Communication in Eden, revised and extended ver-
sion of TFP 2009 paper, submitted to Higher-Order
Symbol Computation (HOSC), October 2012.

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.1.2 GpH — Glasgow Parallel Haskell

Report by: Hans-Wolfgang Loidl
Participants: Phil Trinder, Patrick Maier, Mustafa

Aswad, Malak Aljabri, Evgenĳ Belikov,
Pantazis Deligianis, Robert Stewart,

Prabhat Totoo (Heriot-Watt University);
Kevin Hammond, Vladimir Janjic, Chris

Brown (St Andrews University)
Status: ongoing

Status

A distributed-memory, GHC-based implementation of
the parallel Haskell extension GpH and of a fundamen-
tally revised version of the evaluation strategies ab-
straction is available in a prototype version. In cur-
rent research an extended set of primitives, support-
ing hierarchical architectures of parallel machines, and
extensions of the runtime-system for supporting these
architectures are being developed.

Main activities

We have been extending the set of primitives for par-
allelism in GpH, to provide enhanced control of data
locality in GpH applications. Results from applica-
tions running on up to 256 cores of our Beowulf cluster
demonstrate significant improvements in performance
when using these extensions.
In the context of the SICSA MultiCore Challenge,

we are comparing the performance of several paral-
lel Haskell implementations (in GpH and Eden) with
other functional implementations (F#, Scala and SAC)
and with implementations produced by colleagues in
a wide range of other parallel languages. The latest
challenge application was the n-body problem. A sum-
mary of this effort is available on the following web
page, and sources of several parallel versions will be up-
loaded shortly: http://www.macs.hw.ac.uk/sicsawiki/
index.php/MultiCoreChallenge.
New work has been launched into the direction of

inherently parallel data structures for Haskell and us-
ing such data structures in symbolic applications. This
work aims to develop foundational building blocks in

composing parallel Haskell applications, taking a data-
centric point of view. Current work focuses on data
structures such as append-trees to represent lists and
quad-trees in an implementation of the n-body prob-
lem.
Another strand of development is the improvement

of the GUM runtime-system to better deal with hier-
archical and heterogeneous architectures, that are be-
coming increasingly important. We are revisiting basic
resource policies, such as those for load distribution,
and are exploring modifications that provide enhanced,
adaptive behaviour for these target platforms.

GpH Applications

As part of the SCIEnce EU FP6 I3 project (026133)
(April 2006 – December 2011) and the HPC-GAP
project (October 2009 – September 2013) we use Eden,
GpH and HdpH as middleware to provide access to
computational Grids from Computer Algebra (CA) sys-
tems, in particular GAP. We have developed and re-
leased SymGrid-Par, a Haskell-side infrastructure for
orchestrating heterogeneous computations across high-
performance computational Grids. Based on this in-
frastructure we have developed a range of domain-
specific parallel skeletons for parallelising representa-
tive symbolic computation applications. A Haskell-side
interface to this infrastructures is available in the form
of the Computer Algebra Shell CASH, which is down-
loadable from Hackage. We are currently extending
SymGrid-Par with support for fault-tolerance, target-
ing massively parallel high-performance architectures.

Implementations

The latest GUM implementation of GpH is built on
GHC 6.12, using either PVM or MPI as communica-
tions library. It implements a virtual shared memory
abstraction over a collection of physically distributed
machines. At the moment our main hardware plat-
forms are Intel-based Beowulf clusters of multicores.
We plan to connect several of these clusters into a wide-
area, hierarchical, heterogenous parallel architecture.

Further reading

http://www.macs.hw.ac.uk/~dsg/gph/

Contact

〈gph@macs.hw.ac.uk〉

5.1.3 Parallel GHC project

Report by: Duncan Coutts
Participants: Duncan Coutts, Andres Löh, Mikolaj

Konarski, Edsko de Vries
Status: active

17

http://www.mathematik.uni-marburg.de/~eden
http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge
http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge
http://www.macs.hw.ac.uk/~dsg/gph/
mailto: gph at macs.hw.ac.uk


Microsoft Research funded a 2-year project, which is
now coming to an end, to promote the real-world use of
parallel Haskell. The project involved industrial part-
ners working on their own tasks using parallel Haskell,
and consulting and engineering support from Well-
Typed (→ 8.1). The overall goal has been to demon-
strate successful serious use of parallel Haskell, and
along the way to apply engineering effort to any prob-
lems with the tools that the organisations might run
into. In addition we have put significant engineering
work into a new implementation of Cloud Haskell.
The participating organisations are working on a di-

verse set of complex real world problems:

◦ Dragonfly (New Zealand): Hierarchical Bayesian
Modeling

◦ Los Alamos National Laboratory (USA): high per-
formance Monte Carlo algorithms to model the flow
of radiation and other physical phenomena

◦ IĲ Innovation Institute Inc. (Japan): network
servers handling a massive number of concurrent con-
nections

◦ Telefonica I+D: processing large graphs representing
social networks

As the project winds down, we will be publishing
more details about the outcomes of these projects.
On the engineering side, the two main areas of fo-

cus in the project recently have been ThreadScope and
Cloud Haskell.

ThreadScope. The latest release of ThreadScope
(version 0.2.2) provides detailed statistics about heap
and GC behaviour. It is much like the output that can
be obtained by running your program with +RTS -s
but presented in a more friendly way and with the abil-
ity to see the same statistics for any period within the
program, not just the entire program run. This work
could be extended to show graphs of the heap size over
time. Compared to GHC’s traditional heap profiling
this does not require recompiling in profiling mode and
is very low overhead, but what is lost is the detailed
breakdown of the heap by type, cost centre or retainer.
In addition there is a new feature to emit phase mark-

ers from user code and have these visualised in the
ThreadScope timeline window.
These new features rely on the development version

of GHC, and so will become generally available with
GHC-7.8.
Finally, there is an alpha release of an ambitious new

feature to integrate data from Linux’s “perf” system
into ThreadScope. The Linux “perf” system lets us
see events in the OS such as system calls and other in-
ternal kernel trace points, and also to collect detailed
CPU performance counters. Our work has focused on

capturing and transforming this data source, and inte-
grating it with the existing RTS event tracing system
which we believe will enable many useful new visuali-
sations. Our initial new visualisation in ThreadScope
lets us see when system calls are occurring. We hope
that this and other future work in this area will help
developers who are trying to optimise the performance
of applications like network servers.

Cloud Haskell. For about the last year we have been
working on a new implementation of Cloud Haskell.
This is the same idea for concurrent distributed pro-
gramming in Haskell that Simon Peyton Jones has been
telling everyone about, but it’s a new implementation
designed to be robust and flexible.
The summary about the new implementation is that

it exists, it works, it’s on hackage, and we think it is
now ready for serious experiments.
Compared to the previous prototype:

◦ it is much faster;

◦ it can run on multiple kinds of network;

◦ has backends to support different environments (like
cluster or cloud);

◦ has a new system for dealing with node disconnect
and reconnect;

◦ has a more precisely defined semantics;

◦ supports composable, polymorphic serialisable clo-
sures;

◦ and internally the code is better structured and eas-
ier to work with.

By the time you read this, we will have also re-
leased a backend for the Windows Azure cloud plat-
form. Backends for other environments should be rela-
tively straightforward to develop.
Further details including papers, videos and blog

posts are on the Cloud Haskell homepage.

Further reading

◦ Parallel GHC project homepage: http://www.haskell.
org/haskellwiki/Parallel_GHC_Project

◦ Cloud Haskell homepage: http://www.haskell.org/
haskellwiki/Cloud_Haskell

◦ ThreadScope homepage: http://www.haskell.org/
haskellwiki/ThreadScope

5.1.4 Static Verification of Transactions in STM
Haskell

Report by: Romain Demeyer
Participants: Wim Vanhoof
Status: ongoing work

This PhD project targets the detection of concurrency
bugs in STM Haskell. We focus on static analysis, i.e.,

18

http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Cloud_Haskell
http://www.haskell.org/haskellwiki/Cloud_Haskell
http://www.haskell.org/haskellwiki/ThreadScope
http://www.haskell.org/haskellwiki/ThreadScope


we try to find errors by analyzing the source code of
the program without executing it. Specifically, we tar-
get what we call application-level bugs, i.e., when the
shared memory becomes inconsistent with respect to
the design of the application because of an unexpected
interleaving of the threads that access the memory. Our
approach is to check that each transaction of the pro-
gram preserves a given user-defined consistency prop-
erty.
We have already defined, formalized and developed a

framework of verification and, now, we try to evaluate
which range of concurrency bugs we are able to detect.
The ongoing work also includes the implementation of
a prototype and the research in order to reduce the
number of annotations the programmer has to provide
for running the analysis.

Contact

Please feel free to contact me at rde@info.fundp.ac.be
for further information.

5.2 Haskell and the Web

5.2.1 WAI

Report by: Greg Weber
Status: stable

The Web Application Interface (WAI) is an inter-
face between Haskell web applications and Haskell web
servers. By targeting the WAI, a web framework or web
application gets access to multiple deployment plat-
forms. Platforms in use include CGI, the Warp web
server, and desktop webkit.
Since the last HCAR, WAI has switched to con-

duits (→ 7.1.1). WAI also added a vault parameter to
the request type to allow middleware to store arbitrary
data.
WAI is also a platform for re-using code between web

applications and web frameworks through WAI mid-
dleware and WAI applications. WAI middleware can
inspect and transform a request, for example by auto-
matically gzipping a response or logging a request.
By targeting WAI, every web framework can share

WAI code instead of wasting effort re-implementing
the same functionality. There are also some new web
frameworks that take a completely different approach
to web development that use WAI, such as webwire
(FRP) and dingo (GUI). Since the last HCAR, another
web framework called Scotty was released. WAI appli-
cations can send a response themselves. For example,
wai-app-static is used by Yesod to serve static files.
However, one does not need to use a web framework,
but can simply build a web application using the WAI
interface alone. The Hoogle web service targets WAI
directly.

The WAI standard has proven itself capable for dif-
ferent users and there are no outstanding plans for
changes or improvements.

Further reading

http://www.yesodweb.com/book/wai

5.2.2 Warp

Report by: Greg Weber

Warp is a high performance, easy to deploy HTTP
server backend for WAI (→ 5.2.1). Since the last
HCAR, Warp has switched from enumerators to con-
duits (→ 7.1.1), added SSL support, and websockets
integration.
Due to the combined use of ByteStrings, blaze-

builder, conduit, and GHC’s improved I/O manager,
WAI+Warp has consistently proven to be Haskell’s
most performant web deployment option.
Warp is actively used to serve up most of the users

of WAI (and Yesod).
“Warp: A Haskell Web Server” by Michael Snoyman

was published in the May/June 2011 issue of IEEE In-
ternet Computing:
◦ Issue page: http://www.computer.org/portal/web/

csdl/abs/mags/ic/2011/03/mic201103toc.htm
◦ PDF: http://steve.vinoski.net/pdf/IC-Warp_a_

Haskell_Web_Server.pdf

5.2.3 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Kranz, Sebastian Gauck, Stefan

Schmidt
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.

19

rde@info.fundp.ac.be
http://www.yesodweb.com/book/wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/


◦ The Holumbus Search Engine
◦ The Holumbus Distribution Library
◦ The Holumbus Storage System
◦ The Holumbus MapReduce Framework
The search engine package includes the indexer and

search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customizable result ranking
◦ Index structure designed for distributed search
◦ Git repository containing the current development

version of all packages under https://github.com/
fortytools/holumbus

◦ Distributed building of search indexes

Current Work

Currently there are activities to optimize the index
structures of the framework. In the past there have
been problems with the space requirements during in-
dexing. The data structures and evaluation strategies
have been optimized to prevent space leaks. A sec-
ond index structure working with cryptographic keys
for document identifiers is under construction. This
will further simplify partial indexing and merging of
indexes.
There is a small project extracting the sources of the

data structure used for the index to build a separate
package. The search tree used in Holumbus is a space
optimised version of a radix tree, which enables fast
prefix and fuzzy search.
The second project, a specialized search engine for

the FH-Wedel web site, has been finished http://w3w.
fh-wedel.de/. The new aspect in this application is a
specialized free text search for appointments, deadlines,
announcements, meetings and other dates.
The Hayoo! and the FH-Wedel search engine have

been adopted to run on top of the Snap framework (→
5.2.7).

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Git web interface, cur-
rent status, requirements, and documentation. Timo
Kranz’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/

doc/thesis-searching.pdf. Sebastian Gauck’s thesis
dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the
Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf.

5.2.4 Happstack

Report by: Jeremy Shaw

Happstack is a fast, modern framework for creating web
applications. Happstack is well suited for MVC and
RESTful development practices. We aim to leverage
the unique characteristics of Haskell to create a highly-
scalable, robust, and expressive web framework.
Happstack pioneered type-safe Haskell web program-

ming, with the creation of technologies including web-
routes (type-safe URLS) and acid-state (native Haskell
database system). We also extended the concepts be-
hind formlets, a type-safe form generation and process-
ing library, to allow the separation of the presentation
and validation layers.
Some of Happstack’s unique advantages include:

◦ a large collection of flexible, modular, and well docu-
mented libraries which allow the developer to choose
the solution that best fits their needs for databases,
templating, routing, etc.

◦ the most flexible and powerful system for defining
type-safe URLs.

◦ a type-safe form generation and validation library
which allows the separation of validation and pre-
sentation without sacrificing type-safety

◦ a powerful, compile-time HTML templating system,
which allows the use of XML syntax

A recent addition to the Happstack family is the
happstack-foundation library. It combines what we
believe to be the best choices into a nicely integrated
solution. happstack-foundation uses:

◦ happstack-server for low-level HTTP functionality

◦ acid-state for type-safe database functionality

◦ web-routes for type-safe URL routing

◦ reform for type-safe form generation and processing

◦ HSP for compile-time, XML-based HTML templates

◦ JMacro for compile-time Javascript generation and
syntax checking

20

https://github.com/fortytools/holumbus
https://github.com/fortytools/holumbus
http://w3w.fh-wedel.de/
http://w3w.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf


Future plans

Happstack is the oldest, actively developed Haskell web
framework. We are continually studying and applying
new ideas to keep Happstack fresh. By the time the
next release is complete, we expect very little of the
original code will remain. If you have not looked at
Happstack in a while, we encourage you to come take
a fresh look at what we have done.
Some of the projects we are currently working on

include:

◦ a fast pipes-based HTTP and websockets backend
with a high level of evidence for correctness

◦ a dynamic plugin loading system

◦ a more expressive system for weakly typed URL rout-
ing combinators

◦ a new system for processing form data which allows
fine grained enforcement of RAM and disk quotas
and avoids the use of temporary files

◦ a major refactoring of HSP (fewer packages, migra-
tion to Text/Builder, a QuasiQuoter, and more).

One focus of Happstack development is to create in-
dependent libraries that can be easily reused. For ex-
ample, the core web-routes and reform libraries are in
no way Happstack specific and can be used with other
Haskell web frameworks. Additionally, libraries that
used to be bundled with Happstack, such as IxSet, Safe-
Copy, and acid-state, are now independent libraries.
The new backend will also be available as an indepen-
dent library.
When possible, we prefer to contribute to existing

libraries rather than reinvent the wheel. For example,
our preferred templating library, HSP, was created by
and is still maintained by Niklas Broberg. However, a
significant portion of HSP development in the recent
years has been fueled by the Happstack team.
We are also working directly with the Fay team to

bring an improved type-safety to client-side web pro-
gramming. In addition to the new happstack-fay inte-
gration library, we are also contributing directly to Fay
itself.
For more information check out the happstack.com

website — especially the “Happstack Philosophy” and
“Happstack 8 Roadmap”.

Further reading

◦ http://www.happstack.com/
◦ http://www.happstack.com/docs/crashcourse/index.

html

5.2.5 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 2 is a simple but
practical Web server in Haskell. It is now working on
Mew.org serving static files, CGI (mailman and con-
tents search) and reverse proxy for back-end Yesod ap-
plications.
Mighttpd is based on Warp providing performance

on par with nginx. You can use the mightyctl com-
mand to reload configuration files dynamically and
shutdown Mighttpd gracefully.
You can install Mighttpd 2 (mighttpd2) from Hack-

ageDB.

Further reading

◦ http://www.mew.org/~kazu/proj/mighttpd/en/
◦ http://www.iĳ.ad.jp/en/company/development/tech/

mighttpd/
◦ http://www.yesodweb.com/blog/2012/10/

future-work-warp

5.2.6 Yesod

Report by: Greg Weber
Participants: Michael Snoyman, Luite Stegeman, Felipe

Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, we have
created a web framework that helps users create highly
scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO.
But Yesod is even more focused on scalable develop-

ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.

◦ declarative routing with type-safe urls — say good-
bye to broken links

◦ no XSS attacks — form submissions are automati-
cally sanitized

◦ database safety through the Persistent library (→
7.7.2) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.

When type safety conflicts with programmer produc-
tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting

21

http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://www.mew.org/~kazu/proj/mighttpd/en/
http://www.iij.ad.jp/en/company/development/tech/mighttpd/
http://www.iij.ad.jp/en/company/development/tech/mighttpd/
http://www.yesodweb.com/blog/2012/10/future-work-warp
http://www.yesodweb.com/blog/2012/10/future-work-warp


to provide Easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 7.7.2). View
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing.
Their return type shows which response types are al-
lowed for the request.
Yesod is broken up into many smaller projects

and leverages Wai (→ 5.2.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks.
Yesod finally reached its 1.0 version. The last HCAR

entry was for the 0.8 version. Some of the major
changes since then are:

◦ Luite Stegemen contributed a faster and improved
development environment that used the GHC API

◦ Nubis Bruno contributed yesod-test, a convenient
testing framework.

◦ Flexible session interface

◦ Flexible placement of Javascript on the HTML page

◦ Switch from enumerators to conduits

We are excited to have achieved a 1.0 release. This
signifies maturity and API stability and a web frame-
work that gives developers all the tools they need for
productive web development. Future directions for
Yesod are now largely driven by community input and
patches. Easier client-side interaction is definitely one
concern that Yesod is working on going forward. The
1.0 release features better coffeescript support and even
roy.js support
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.
To see an example site with source code available,

you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

5.2.7 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, Gabriel Gonzalez, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.
The Snap Framework has seen one major release

(0.9) since the last HCAR. Some of the major features
added are support for choosing different configurations
based on user-specified execution environments (such
as production or development), an improved project
template demonstrating use of the session and auth
snaplets, new functions allowing you to retrieve socket
information for a running server, and of course a num-
ber of other bug fixes and minor features.
Another piece of exciting news is that we recently

received funding for paid Snap development. We’re us-
ing it to get another paid developer working with the
core Snap team to write better and more comprehensive
documentation and help with some specific implemen-
tation tasks.
Since the last HCAR we have done a LOT of behind-

the-scenes work on some big improvements that will be
coming out in upcoming releases. In keeping with our
tradition, we’re taking our time with these features to
make sure they measure up to the high quality that
Snap users have come to expect. When these features
are finished Snap will have more than two and a half
years of development, and we think it will be worthy
of a 1.0 release.

Further reading

◦ Snaplet Directory: http://snapframework.com/
snaplets

◦ http://snapframework.com

5.3 Haskell and Compiler Writing

5.3.1 MateVM

Report by: Bernhard Urban
Participants: Harald Steinlechner
Status: active development

MateVM is a method-based Java Just-In-Time Com-
piler. That is, it compiles a method to native code on
demand (i.e. on the first invocation of a method). We
use existing libraries:

22

http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/
http://snapframework.com/snaplets
http://snapframework.com/snaplets
http://snapframework.com


hs-java for proccessing Java Classfiles according to
The Java Virtual Machine Specification.

harpy enables runtime code generation for i686 ma-
chines in Haskell, in a domain specific language style.

We think that Haskell is perfectly suitable for compiler
challenges, as already well known. However, we have to
jump between “Haskell world” and “native code world”,
due to the requirements of a Just-In-Time Compiler.
This poses some special challenges when it comes to
signal handling and other interesing rather low level
operations. Not immediately visible, the task turns out
to be well suited for Haskell although we experienced
some tensions with signal handling and GHCi. We are
looking forward to sharing our experience on this.
While we are currently able to execute simple

Java programs, many features are missing for a full
JavaVM, most noteable are Classloader, Floating Point
or Threads. We would like to use GNU Classpath as
base library some day. Other hot topics are Hoopl and
Garbage Collection at the moment. In the long-run, we
would like to implement features known from adaptive
compilation, e.g. method inlining or stack allocation of
objects.
If you are interested in this project, do not hestiate

to join us on IRC (#MateVM @ OFTC) or contact us on
Github.

Further reading

◦ https://github.com/MateVM
◦ http://docs.oracle.com/javase/specs/jvms/se7/html/
◦ http://hackage.haskell.org/package/hs-java
◦ http://hackage.haskell.org/package/harpy
◦ http://www.gnu.org/software/classpath/
◦ http://hackage.haskell.org/package/hoopl-3.8.7.4
◦ http://en.wikipedia.org/wiki/Club-Mate

5.3.2 CoCoCo

Report by: Marcos Viera
Participants: Doaitse Swierstra, Arthur Baars, Arie

Middelkoop, Atze Dĳkstra, Wouter
Swierstra

Status: experimental

CoCoCo (Compositional Compiler Construction) is a
set of libraries and tools in the form of a collection of
embedded domain specific languages (EDSL) in Haskell
for constructing extensible compilers, where compilers
can be composed out of separately compiled and stati-
cally type checked language-definition fragments.
Our approach builds on:

◦ the introduction of a naming structure which makes
it possible to represent mutually dependent struc-
tures and the possibility to inspect and manipulate
such structures in a type-safe way

◦ the description of typed grammar fragments as first
class Haskell values, and the typed Left-Corner
Transform to remove left-recursion

◦ the possibility to construct a self-analysing, error cor-
recting parser on the fly

◦ the possibility to deal with attribute grammars as
first class Haskell values, which can be transformed,
composed and finally evaluated.

As a case study we have implemented an Oberon0
compiler, which is available as a Hackage package:

◦ http://hackage.haskell.org/package/oberon0.

Its implementation is described in a technical report:

◦ Viera, M., Swierstra, S.D.: Compositional Compil-
ers Construction: Oberon0. UU-CS 2012-016, Insti-
tute of Information and Computing Science (October
2012).

Related Libraries

◦ murder: The murder library is an EDSL for gram-
mar fragments as first-class values. It provides com-
binators to define and extend grammars, and pro-
duce compilers out of them.
http://hackage.haskell.org/package/murder

◦ AspectAG: Library of strongly typed Attribute
Grammars implemented using type-level program-
ming.
http://hackage.haskell.org/package/AspectAG

◦ TTTAS: Library for Typed Transformations of
Typed Abstract Syntax.
http://hackage.haskell.org/package/TTTAS

◦ uulib: Fast Parser Combinators and Pretty Printing
Combinators .
http://hackage.haskell.org/package/uulib

◦ uu-parsinglib: New version of the Utrecht Univer-
sity parser combinator library, which provides online,
error correction, annotation free, applicative style
parser combinators.
http://hackage.haskell.org/package/uu-parsinglib

Further reading

http://www.cs.uu.nl/wiki/Center/CoCoCo

5.3.3 UUAG

Report by: Jeroen Bransen
Participants: ST Group of Utrecht University
Status: stable, maintained

23

https://github.com/MateVM
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://hackage.haskell.org/package/hs-java
http://hackage.haskell.org/package/harpy
http://www.gnu.org/software/classpath/
http://hackage.haskell.org/package/hoopl-3.8.7.4
http://en.wikipedia.org/wiki/Club-Mate
http://hackage.haskell.org/package/oberon0
http://hackage.haskell.org/package/murder
http://hackage.haskell.org/package/AspectAG
http://hackage.haskell.org/package/TTTAS
http://hackage.haskell.org/package/uulib
http://hackage.haskell.org/package/uu-parsinglib
http://www.cs.uu.nl/wiki/Center/CoCoCo


UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are
defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.3), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects.
The current version is 0.9.42.1 (November 2012), is
extensively tested, and is available on Hackage. There
is also a Cabal plugin for easy use of AG files in
Haskell projects. Recently, we have improved the
building procedure to make sure that the UUAGC
can both be built from source as well as from the
included generated Haskell sources, without the need
of an external bootstrap program. Also, we added
code generation for Ocaml.
We are working on the following enhancements of the

UUAG system:

First-class AGs. We provide a translation from UUAG
to AspectAG (→ 5.3.4). AspectAG is a library of
strongly typed Attribute Grammars implemented us-
ing type-level programming. With this extension, we
can write the main part of an AG conveniently with
UUAG, and use AspectAG for (dynamic) extensions.
Our goal is to have an extensible version of the UHC.

Ordered evaluation. We have implemented a variant
of Kennedy and Warren (1976) for ordered AGs. For
any absolutely non-circular AGs, this algorithm finds
a static evaluation order, which solves some of the
problems we had with an earlier approach for ordered
AGs. A static evaluation order allows the generated
code to be strict, which is important to reduce the
memory usage when dealing with large ASTs. The
generated code is purely functional, does not require

type annotations for local attributes, and the Haskell
compiler proves that the static evaluation order is
correct.

Incremental evaluation. We are currently also run-
ning a Ph.D. project that investigates incremental
evaluation of AGs. In this ongoing work we hope
to improve the UUAG compiler by adding support
for incremental evaluation, for example by stati-
cally generating different evaluation orders based on
changes in the input.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

5.3.4 AspectAG

Report by: Marcos Viera
Participants: Doaitse Swierstra, Wouter Swierstra
Status: experimental

See: http://www.haskell.org/communities/11-2011/
html/report.html#sect5.4.2.

5.3.5 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett and Rajika Kumarasiri
Status: v 0.9.0 experimental released in July 2012

LQPL (Linear Quantum Programming Language) is a
functional quantum programming language inspired by
Peter Selinger’s paper “Towards a Quantum Program-
ming Language”.
The LQPL system consists of a compiler, a GUI

based front end and an emulator. Compiled programs
are loaded to the emulator by the front end. LQPL
incorporates a simple module / include system (more
like C’s include than Haskell’s import), predefined uni-
tary transforms, quantum control and classical control,
algebraic data types, and operations on purely classical
data.
The largest difference since the previous release of

the package is that LQPL is now split into separate
components. These consist of:

◦ The compiler (written in Haskell) — available at the
command line and via a TCP/IP interface.

◦ The emulator (written in Haskell) — available as a
server via a TCP/IP interface.

◦ The front end (Java/Swing)— with version 0.9, the
front end was rewritten as a Java/Swing application,
which connects to both the compiler and the emula-
tor via TCP/IP. A text based / command line inter-
face is being considered.

24

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2


A screenshot of the new interface (showing a proba-
bilistic list) is included below.

Quantum programming allows us to provide a fair
coin toss, as shown in the code example below.

qdata Coin = {Heads | Tails}‚
toss ::( ; c:Coin) =‚
{ q = |0>; Had q;‚

measure q of ‚
|0> => {c = Heads}‚
|1> => {c = Tails}‚

}‚

This allows programming of probabilistic algorithms,
such as leader election.
Separation into modules was a preparatory step for

improving the performance of the emulator and adding
optimization features to the language.

Further reading

Documentation and executable downloads may be
found at http://pll.cpsc.ucalgary.ca/lqpl/index.html.
The source code, along with a wiki and bug tracker, is
available at https://bitbucket.org/BrettGilesUofC/lqpl.

25

http://pll.cpsc.ucalgary.ca/lqpl/index.html
https://bitbucket.org/BrettGilesUofC/lqpl


6 Development Tools

6.1 Environments

6.1.1 EclipseFP

Report by: JP Moresmau
Participants: building on code from B. Scott Michel,

Alejandro Serrano, Thiago Arrais, Leif
Frenzel, Thomas ten Cate, Martĳn
Schrage, Adam Foltzer and others

Status: stable, maintained, and actively developed

EclipseFP is a set of Eclipse plugins to allow work-
ing on Haskell code projects. Its goal is to offer a fully
featured Haskell IDE in a platform developers coming
from other languages may already be familiar with. It
features Cabal integration (.cabal file editor, uses Cabal
settings for compilation, allows the user to install Cabal
packages from within the IDE), and GHC integration.
Compilation is done via the GHC API, syntax color-
ing uses the GHC Lexer. Other standard Eclipse fea-
tures like code outline, folding, and quick fixes for com-
mon errors are also provided. HLint suggestions can
be applied in one click. EclipseFP also allows launch-
ing GHCi sessions on any module including extensive
debugging facilities: the management of breakpoints
and the evaluation of variables and expressions uses the
Eclipse debugging framework, and requires no knowl-
edge of GHCi syntax. It uses the BuildWrapper Haskell
tool to bridge between the Java code for Eclipse and
the Haskell APIs. It also provides a full package and
module browser to navigate the Haskell packages in-
stalled on your system, integrated with Hackage. The
source code is fully open source (Eclipse License) on
github and anyone can contribute. Current version is
2.3.2, released in October 2012 and supporting GHC
7.0 and above, and more versions with additional fea-
tures are planned and actively worked on. Feedback
on what is needed is welcome! The website has infor-
mation on downloading binary releases and getting a

copy of the source code. Support and bug tracking is
handled through Sourceforge forums.

Further reading

http://eclipsefp.github.com/

6.1.2 ghc-mod — Happy Haskell Programming

Report by: Kazu Yamamoto
Status: open source, actively developed

ghc-mod is a backend command to enrich Haskell pro-
gramming on editors including Emacs and Vim. The
ghc-mod package on Hackage includes the ghc-mod
command and Emacs front-end.
Emacs front-end provides the following features:

Completion. You can complete a name of keyword,
module, class, function, types, language extensions,
etc.

Code template. You can insert a code template ac-
cording to the position of the cursor. For instance,
“module Foo where” is inserted in the beginning of
a buffer.

Syntax check. Code lines with error messages are au-
tomatically highlighted thanks to flymake. You can
display the error message of the current line in an-
other window. hlint can be used instead of GHC to
check Haskell syntax.

Document browsing. You can browse the module doc-
ument of the current line either locally or on Hack-
age.

Expression type. You can display the
type/information of the expression on the cur-
sor.

There are two Vim plugins:

◦ ghcmod-vim

◦ syntastic

ghc-mod now supports GHC 7.6.

Further reading

http://www.mew.org/~kazu/proj/ghc-mod/en/

26

http://eclipsefp.github.com/
http://www.mew.org/~kazu/proj/ghc-mod/en/


6.1.3 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Heat was designed
for novice students learning the functional program-
ming language Haskell. Heat provides a small number
of supporting features and is easy to use. Heat is dis-
tributed as a single, portable Java jar-file and works on
top of GHCi.
Heat provides the following features:

◦ Editor for a single module with syntax-highlighting
and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the relevant
source line is highlighted and no further expression
can be evaluated in the console until the source has
been changed and successfully recompiled.

◦ A tree structure provides a program summary, giving
definitions of types and types of functions.

◦ Automatic checking of either Boolean or QuickCheck
properties of a program; results shown in summary.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

6.2 Code Management

6.2.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent release, Darcs 2.8.2, was in Septem-

ber 2012. Some key changes in Darcs 2.8 include a

faster and more readable darcs annotate, a darcs
obliterate -O which can be used to conveniently
“stash” patches, and hunk editing for the darcs
revert command.
We have some fairly exciting work merged into main-

line Darcs for the next release. First, we have a new re-
base feature which should be a great help for darcs users
that maintain long-term and conflict prone branches.
The new rebase feature will also be useful for some
more day to day use cases such as the “deep amend-
record” feature many of us have long wished for, or
even just more basic patch cleanups and reorganisa-
tion. Second, the 2012 Google Summer of Code project
by BSRK Aditya has been successful, with the long-
promised patch index optimisation now merged into
mainline. The patch index will help Darcs users who
need to search for changes to specific files within a large
number of patches (particularly relevant to darcs host-
ing sites).
More generally, our work has emphasised two of our

key priorities: code quality and Darcs hosting. For code
quality we have embarked on an overhaul of our module
organisation along with work towards deeper refactors
such as abstracting over the use of IO to better capture
some of our darcs-specific state.
Darcs hosting is also a hot area in Darcs develop-

ment. Simon Michael has pushed forward development
of the original Darcsden code by Alex Suraci, resulting
in the recent darcsden 1.0 release (September 2012) and
new public host http://hub.darcs.net. Feedback and
help pushing forward this new Darcs hosting option
will be greatly appreciated!
Darcs is free software licensed under the GNU GPL

(version 2 or greater). Darcs is a proud member of
the Software Freedom Conservancy, a US tax-exempt
501(c)(3) organization. We accept donations at http:
//darcs.net/donations.html.

Further reading

◦ http://darcs.net

◦ http://wiki.darcs.net/Development/Priorities

6.2.2 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.2.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
DarcsWatch continues to be used by the xmonad

project (→ 7.8.2), the Darcs project itself, and a few
developers. At the time of writing (November 2012), it
was tracking 39 repositories and 4552 patches submit-
ted by 238 users.

27

http://www.cs.kent.ac.uk/projects/heat/
http://hub.darcs.net
http://darcs.net/donations.html
http://darcs.net/donations.html
http://darcs.net
http://wiki.darcs.net/Development/Priorities


Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

6.2.3 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg, cabal, and cabal-dev.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.
cab now provides the “ghci” subcommands.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.3 Deployment

6.3.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
Hackage is a distribution point for Cabal packages.

It is an online archive of Cabal packages which can
be used via the website and client-side software such
as cabal-install. Hackage enables users to find, browse
and download Cabal packages, plus view their API doc-
umentation.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

The Cabal packaging system has always faced grow-
ing pains. We have been through several cycles where
we’ve faced chronic problems, made major improve-
ments which bought us a year or two’s breathing space
while package authors and users become ever more am-
bitious and start to bump up against the limits again.

In the last few years we have gone from a situation
where 10 dependencies might be considered a lot, to a
situation now where the major web frameworks have
a 100+ dependencies and we are again facing chronic
problems.
The Cabal/Hackage maintainers and contributors

have been pursuing a number of projects to address
these problems:
The IHG sponsored Well-Typed (→ 8.1) to work on

cabal-install resulting in a new package dependency
constraint solver. This was incorporated into the cabal-
install-0.14 release in the spring, and which is now
in the latest Haskell Platform release. The new de-
pendency solver does a much better job of finding
install plans. In addition the cabal-install tool now
warns when installing new packages would break exist-
ing packages, which is a useful partial solution to the
problem of breaking packages.
We had two Google Summer of Code projects on Ca-

bal this year, focusing on solutions to other aspects of
our current problems. The first is a project by Mikhail
Glushenkov (and supervised by Johan Tibell) to incor-
porate sandboxing into cabal-install. In this context
sandboxing means that we can have independent sets
of installed packages for different projects. This goes
a long way towards alleviating the problem of differ-
ent projects needing incompatible versions of common
dependencies. There are several existing tools, most
notably cabal-dev, that provide some sandboxing fa-
cility. Mikhail’s project was to take some of the ex-
perience from these existing tools (most of which are
implemented as wrappers around the cabal-install pro-
gram) and to implement the same general idea, but
properly integrated into cabal-install itself. We expect
the results of this project will be incorporated into a
cabal-install release within the next few months.
The other Google Summer of Code project this year,

by Philipp Schuster (and supervised by Andres Löh), is
also aimed at the same problem: that of different pack-
ages needing inconsistent versions of the same common
dependencies, or equivalently the current problem that
installing new packages can break existing installed
packages. The solution is to take ideas from the Nix
package manager for a persistent non-destructive pack-
age store. In particular it lifts an obscure-sounding but
critical limitation: that of being able to install multi-
ple instances of the same version of a package, built
against different versions of their dependencies. This
is a big long-term project. We have been making steps
towards it for several years now. Philipp’s project has
made another big step, but there’s still more work be-
fore it is ready to incorporate into ghc, ghc-pkg and
cabal.

Looking forward

Johan Tibell and Bryan O’Sullivan have volunteered
as new release managers for Cabal. Bryan moved all

28

http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://www.mew.org/~kazu/proj/cab/en/


the tickets from our previous trac instance into github,
allowing us to move all the code to github. Johan man-
aged the latest release and has been helping with man-
aging the inflow of patches. Our hope is that these
changes will increase the amount of contributions and
give us more maintainer time for reviewing and inte-
grating those contributions. Initial indications are pos-
itive. Now is a good time to get involved.
The IHG is currently sponsoring Well-Typed to work

on getting the new Hackage server ready for switchover,
and helping to make the switchover actually happen.
We have recruited a few volunteer administrators for
the new site. The remaining work is mundane but im-
portant tasks like making sure all the old data can be
imported, and making sure the data backup system is
comprehensive. Initially the new site will have just a
few extra features compared to the old one. Once we
get past the deployment hurdle we hope to start get-
ting more contributions for new features. The code is
structured so that features can be developed relatively
independently, and we intend to follow Cabal and move
the code to github.
We would like to encourage people considering con-

tributing to take a look at the bug tracker on github,
take part in discussions on tickets and pull requests, or
submit their own. The bug tracker is reasonably well
maintained and it should be relatively clear to new con-
tributors what is in need of attention and which tasks
are considered relatively easy. For more in-depth dis-
cussion there is also the cabal-devel mailing list.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.
org/

◦ Bug tracker: https://github.com/haskell/cabal/

6.3.2 Portackage — A Hackage Portal

Report by: Andrew G. Seniuk

Portackage (fremissant.net/portackage) is a web inter-
face to all of hackage.haskell.org, which at the time
of writing includes some 4000 packages exposing over
17000 modules. There are package and module views,
as seen in the screenshots.

The package view includes links to the package, home-
page, and bug tracker when available. Each name in
the module tree view links to the Haddock API page.
Control-hovering will show the fully-qualified name in
a tooltip.
Portackage is only a few days old; imminent further

work includes
◦ Tree branches will be collapsed by default.
◦ Cookies (as well as server DB) will maintain persis-

tent state of which nodes you have open, since this
information carries value, both in terms of cost to re-
construct manually, and of personal mnemonics — if
nodes were collapsed, you would forget where things
were, instead of having them right there filtered out.

◦ A flat list of modules with the filtering text input
field would be good, but the full list of modules is
too large for the present naïve JavaScript.

The code itself is mostly Haskell, but is still too green
to expose on Hackage.

6.4 Others

6.4.1 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.18 and has been released

in September 2012. The main change is compatibil-
ity with GHC 7.6. Development repository and bug
tracker are on GitHub. There are still plans for a
rewrite of lhs2TEX with the goal of cleaning up the in-
ternals and making the functionality of lhs2TEX avail-
able as a library.

29

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
https://github.com/haskell/cabal/
fremissant.net/portackage
hackage.haskell.org


Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

6.4.2 Hat — the Haskell Tracer

Report by: Olaf Chitil

Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.
Hat helps locating errors in programs. Furthermore,

it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.
Tracing a program with Hat consists of two phases:

First the program needs to be run such that it addi-
tionally writes a trace to file. To add trace-writing,
hat-trans translates all the source modules Module of
a Haskell program into tracing versions Hat.Module.
These are compiled as normal and when run the pro-
gram does exactly the same as the original program
except for additionally writing a trace to file. Second,
after the program has terminated, you view the trace
with a browsing tool. Hat comes with several tools
to selectively view fragments of the trace in different
ways: hat-observe for Hood-like observations, hat-trail
for exploring a computation backwards, hat-explore for
freely stepping through a computation, hat-detect for
algorithmic debugging, . . .
Hat is distributed as a package on Hackage that

contains all Hat tools and tracing versions of stan-
dard libraries. Currently Hat supports Haskell 98 plus
some language extensions such as multi-parameter type
classes and functional dependencies. For portability all
viewing tools use a textual interface; however, many
tools use some Unix-specific features and thus run on
Unix / Linux / OS X, but not on Windows.
Hat was mostly built around 2000–2004 and then

disappeared because of lack of maintenance. Now it is
back and new developments have started.
Currently the source-to-source transformation of

hat-trans is being rewritten to use the haskell-src-exts
parser. Thus small bugs of the current parser will dis-
appear and in the future it will be easier to cover more
Haskell language extensions.
When a traced program uses any libraries besides

the standard Haskell 98 / 2010 ones, these libraries
currently have to be manually transformed (in trusted
mode). A new tool will be built to easily wrap any
existing libraries such that they can be used by a traced
program (without tracing the computations inside the
libraries).
Feedback on Hat is welcome.

Further reading

◦ Initial website: http://olafchitil.github.com/hat
◦ Hackage package: http://hackage.haskell.org/

package/hat

30

http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex
http://olafchitil.github.com/hat
http://hackage.haskell.org/package/hat
http://hackage.haskell.org/package/hat


7 Libraries, Applications, Projects

7.1 Language Features

7.1.1 Conduit

Report by: Michael Snoyman
Status: stable

While lazy I/O has served the Haskell community well
for many purposes in the past, it is not a panacea.
The inherent non-determinism with regard to resource
management can cause problems in such situations as
file serving from a high traffic web server, where the
bottleneck is the number of file descriptors available to
a process.
Left fold enumerators have been the most common

approach to dealing with streaming data without us-
ing lazy I/O. While it is certainly a workable solution,
it requires a certain inversion of control to be applied
to code. Additionally, many people have found the
concept daunting. Most importantly for our purposes,
certain kinds of operations, such as interleaving data
sources and sinks, are prohibitively difficult under that
model.
The conduit package was designed as an alternate

approach to the same problem. The root of our simplifi-
cation is removing one of the constraints in the enumer-
ator approach. In order to guarantee proper resource
finalization, the data source must always maintain the
flow of execution in a program. This can lead to con-
fusing code in many cases. In conduit, we separate out
guaranteed resource finalization as its own component,
namely the ResourceT transformer.
Once this transformation is in place, data produc-

ers, consumers, and transformers (known as Sources,
Sinks, and Conduits, respectively) can each maintain
control of their own execution, and pass off control via
coroutines. The user need not deal directly with any
of this low-level plumbing; a simple monadic interface
(inspired greatly by the pipes package) is sufficient for
almost all use cases.
Since its initial release, conduit has been through

many design iterations, all the while keeping to its ini-
tial core principles. The most recent major release —
version 0.5 — was made in June of this year. This
design is working efficiently and properly for conduit’s
use cases, and there are no plans for further breaking
changes. The package can be considered mature and
ready to be used by the general public.
There is a rich ecosystem of libraries available to

be used with conduit, including cryptography, network
communications, serialization, XML processing, and
more. The Web Application Interface was the origi-
nal motivator for creating the library, and continues

to use it for expressing request and response bodies be-
tween servers and applications. As such, conduit is also
a major player in the Yesod ecosystem.
The library is available on Hackage. The Haddocks

contain a fairly detailed tutorial explaining common us-
age patterns. You can find many conduit-based pack-
ages in the Conduit category on Hackage as well.

Further reading

◦ http://hackage.haskell.org/packages/archive/conduit/
0.5.2.7/doc/html/Data-Conduit.html

◦ http://hackage.haskell.org/packages/archive/pkg-list.
html#cat:conduit

7.1.2 Free Sections

Report by: Andrew G. Seniuk

Free sections (package freesect) extend Haskell (or
other languages) to better support partial function ap-
plication. The package can be installed from Hackage
and runs as a preprocessor. Free sections can be explic-
itly bracketed, or usually the groupings can be inferred
automatically.

zipWith ( f _ $ g _ z ) xs ys‚
-- context inferred‚

= zipWith _[ f _ $ g _ z ]_ xs ys‚
-- explicit bracketing‚

= zipWith (\ x y -> f x $ g y z ) xs ys‚
-- after the rewrite‚

Free sections can be understood by their place in
a tower of generalisations, ranging from simple func-
tion application, through usual partial application, to
free sections, and to named free sections. The latter
(where _ wildcards include identifier suffixes) have the
same expressivity as a lambda function wrapper, but
the syntax is more compact and semiotic.
Although the rewrite provided by the extension is

simple, there are advantages of free sections relative to
explicitly written lambdas:
◦ lambda forces the programmer to invent fresh names

for the wildcards
◦ lambda forces the programmer to repeat those

names, and place them correctly
◦ freesect wildcards stand out vividly, indicating where

the awaited expressions will go
◦ reading the lambda requires visual pattern-matching

between left and right sides
◦ lambda is longer overall, and prefaces the expression

of interest with boilerplate
On the other hand, the lambda (or named free section)
is more powerful than the anonymous free section:

31

http://hackage.haskell.org/packages/archive/conduit/0.5.2.7/doc/html/Data-Conduit.html
http://hackage.haskell.org/packages/archive/conduit/0.5.2.7/doc/html/Data-Conduit.html
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit


◦ it can achieve arbitrary permutations without further
ado; but anonymous wildcards preserve their lexical
order

◦ it is more expressive when nesting is involved, be-
cause the variables are not anonymous
Free sections (like function wrappers generally) are

especially useful in refactoring and retrofitting exisitng
code, although once familiar they can also be useful
from the ground up. Philosophically, use of this sort
of syntax promotes “higher-order programming”, since
any expression can so easily be made into a function,
in numerous ways, simply by replacing parts of it with
freesect wildcards. That this is worthwhile is demon-
strated by the frequent usefulness of sections.
The notion of free sections emanated from an en-

compassing research agenda around vagaries of lexical
syntax. Immediate plans specific to free sections in-
clude:
◦ possibly something could be prepared for academic
publication

◦ implementing the named free sections extension-
extension for completeness

◦ attempting to get it accepted into some project
(maybe some Haskell compiler) which handles pars-
ing (my code uses a fork of HSE, and divergence is
accruing)
Otherwise, pretty much a one-off which will be

deemed stable in a few months. Maybe I’ll try extend-
ing some language which lacks lambdas (or where its
lambda syntax is especially unpleasant).

Further reading

fremissant.net/freesect

7.2 Education

7.2.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

See: http://www.haskell.org/communities/11-2011/
html/report.html#sect8.1.1.

7.2.2 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder,

Bram Schuur
Status: experimental, active development

The Ideas project (at Open Universiteit Nederland
and Utrecht University) aims at developing interac-
tive domain reasoners on various topics. These rea-
soners assist students in solving exercises incrementally
by checking intermediate steps, providing feedback on
how to continue, and detecting common mistakes. The
reasoners are based on a strategy language, from which
feedback is derived automatically. The calculation of

feedback is offered as a set of web services, enabling
external (mathematical) learning environments to use
our work. We currently have a binding with the Digital
Mathematics Environment of the Freudenthal Institute
(first/left screenshot), the ActiveMath learning system
of the DFKI and Saarland University (second/right
screenshot), and our own online exercise assistant that
supports rewriting logical expressions into disjunctive
normal form.

We are adding support for more exercise types,
mainly at the level of high school mathematics. For
example, our domain reasoner now covers simplifying
expressions with exponents, rational equations, and
derivatives. We have investigated how users can in-
terleave solving different parts of exercises. We have
extended our strategy language with different combi-
nators for interleaving, and have shown how the in-
terleaving combinators are implemented in the parsing
framework we use for recognizing student behavior and
providing hints.
Recently, we have focused on designing the Ask-Elle

functional programming tutor. This tool lets you prac-
tice introductory functional programming exercises in
Haskell. The tutor can both guide a student towards
developing a correct program, as well as analyse in-
termediate, incomplete, programs to check whether
or not certain properties are satisfied. We are plan-
ning to include checking of program properties using
QuickCheck, for instance for the generation of coun-
terexamples. We have to guide the test-generation pro-
cess to generate test-cases that do not use the part of
the program that has yet to be developed. We also
want to make it as easy as possible for teachers to add
programming exercises to the tutor, and to adapt the
behavior of the tutor by disallowing or enforcing partic-
ular solutions, and by changing the feedback. Teachers
can adapt feedback by annotating the model solutions
of an exercise. The tutor has an improved web-interface
and is used in an introductory FP course at Utrecht
University.

32

fremissant.net/freesect
http://www.haskell.org/communities/11-2011/html/report.html#sect8.1.1
http://www.haskell.org/communities/11-2011/html/report.html#sect8.1.1
http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/ProgTutor/


The feedback services are available as a Cabal source
package. The latest release is version 1.0 from Septem-
ber 1, 2011.

Further reading

◦ Online exercise assistant (for logic), accessible from
our project page.

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science, 3(3):349–
370, 2010.

◦ Bastiaan Heeren and Johan Jeuring. Interleav-
ing Strategies. Conference on Intelligent Com-
puter Mathematics, Mathematical Knowledge Man-
agement (MKM 2011).

◦ Johan Jeuring, Alex Gerdes, and Bastiaan Heeren.
A Programming Tutor for Haskell. To appear in
Lecture Notes Central European School on Func-
tional Programming, (CEFP 2011). Try our tutor
at http://ideas.cs.uu.nl/ProgTutor/.

7.3 Parsing and Transforming

7.3.1 epub-metadata

Report by: Dino Morelli
Status: stable, actively developed

See: http://www.haskell.org/communities/05-2011/
html/report.html#sect6.2.4.

7.3.2 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

The previous extension for recognizing merging parsers
was generalized so now any kind of applicative and
monadic parsers can be merged in an interleaved way.
As an example take the situation where many different
programs write log entries into a log file, and where
each log entry is uniquely identified by a transaction
number (or process number) which can be used to dis-
tinguish them. E.g., assume that each transaction con-
sists of an a, a b and a c action, and that a digit is
used to identify the individual actions belonging to the
same transaction; the individual transactions can now
be recognized by the parser:

pABC = do d ← mkGram (pa ∗> pDigit)
mkGram (pb ∗> pSym d)
∗>mkGram (pc ∗> pSym d)

Now running many merged instances of this parser on
the input returns the list of numbers, each identifying
an occurrence of an "abc" subsequence:

run (pmMany(pABC)) "a2a1b1b2c2a3b3c1c3"‚
Result: "213"‚

Furthermore the library was provided with many
more examples in two modules in the Demo directory.

Features

◦ Much simpler internals than the old li-
brary (http://haskell.org/communities/05-2009/
html/report.html#sect5.5.8).

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the in-
put and provide excellent error messages. As such
they are “surprise free” when used by people not fully
aware of their internal workings.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library basically provides the to be preferred ap-
plicative interface and a monadic interface where this
is really needed (which is hardly ever).

◦ No need for try-like constructs which makes writing
Parsec based parsers tricky.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative interface. This makes it e.g. pos-
sible to deal with white space or comments in the
input in a completely separate way, without having
to think about this in the parser for the language
at hand (provided of course that white space is not
syntactically relevant).

Future plans

Since the part dealing with merging is relatively inde-
pendent of the underlying parsing machinery we may
split this off into a separate package. This will enable
us also to make use of a different parsing engines when
combining parsers in a much more dynamic way. In
such cases we want to avoid too many static analyses.
Future versions will contain a check for grammars

being not left-recursive, thus taking away the only re-
maining source of surprises when using parser combi-
nator libraries. This makes the library even greater
for use teaching environments. Future versions of the
library, using even more abstract interpretation, will
make use of computed look-ahead information to speed
up the parsing process further.
Students are working on a package for processing

options which makes use of the merging parsers, so that
the various options can be set in a flexible but typeful
way.

33

http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/www
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/InterleavingStrategies.html
http://www.open.ou.nl/bhr/InterleavingStrategies.html
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/CEFP/
http://ideas.cs.uu.nl/ProgTutor/
http://www.haskell.org/communities/05-2011/html/report.html#sect6.2.4
http://www.haskell.org/communities/05-2011/html/report.html#sect6.2.4
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8


Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list which was moved
to 〈parsing@lists.science.uu.nl〉 (see also http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators).

7.4 Generic and Type-Level Programming

7.4.1 Unbound

Report by: Brent Yorgey
Participants: Stephanie Weirich, Tim Sheard
Status: actively maintained

Unbound is a domain-specific language and library for
working with binding structure. Implemented on top
of the RepLib generic programming framework, it au-
tomatically provides operations such as alpha equiv-
alence, capture-avoiding substitution, and free vari-
able calculation for user-defined data types (including
GADTs), requiring only a tiny bit of boilerplate on the
part of the user. It features a simple yet rich combina-
tor language for binding specifications, including sup-
port for pattern binding, type annotations, recursive
binding, nested binding, set-like (unordered) binders,
and multiple atom types.

Further reading

◦ http://byorgey.wordpress.com/2011/08/24/
unbound-now-supports-set-binders-and-gadts/

◦ http://byorgey.wordpress.com/2011/03/28/
binders-unbound/

◦ http://hackage.haskell.org/package/unbound
◦ http://code.google.com/p/replib/

7.4.2 A Generic Deriving Mechanism for Haskell

Report by: José Pedro Magalhães
Participants: Atze Dĳkstra, Johan Jeuring, Andres Löh,

Simon Peyton Jones
Status: actively developed

Haskell’s deriving mechanism supports the automatic
generation of instances for a number of functions. The
Haskell 98 Report only specifies how to generate in-
stances for the Eq, Ord, Enum, Bounded, Show, and
Read classes. The description of how to generate in-
stances is largely informal. As a consequence, the
portability of instances across different compilers is not
guaranteed. Additionally, the generation of instances
imposes restrictions on the shape of datatypes, depend-
ing on the particular class to derive.
We have developed a new approach to Haskell’s

deriving mechanism, which allows users to specify
how to derive arbitrary class instances using standard

datatype-generic programming techniques. Generic
functions, including the methods from six standard
Haskell 98 derivable classes, can be specified entirely
within Haskell, making them more lightweight and
portable.
We have implemented our deriving mechanism to-

gether with many new derivable classes in UHC (→ 3.3)
and GHC. The implementation in GHC has a more con-
venient syntax; consider enumeration:

class GEnum a where
genum :: [a ]
default genum :: (Representable a,

Enum′ (Rep a))⇒ [a ]
genum = map to enum′

The Enum′ and GEnum classes are defined by the
generic library writer. The end user can then give in-
stances for his/her datatypes without defining an im-
plementation:

instance (GEnum a)⇒ GEnum (Maybe a)
instance (GEnum a)⇒ GEnum [a ]

These instances are empty, and therefore use the
(generic) default implementation. This is as convenient
as writing deriving clauses, but allows defining more
generic classes. This implementation relies on the new
functionality of default signatures, like in genum above,
which are like standard default methods but allow for
a different type signature.
GHC 7.6.1 brings support for automatic derivation

of Generic1 instances, meaning that generic functions
that abstract over type containers (such as fmap) are
now also supported.

Further reading

http://www.haskell.org/haskellwiki/GHC.Generics

7.4.3 Optimising Generic Functions

Report by: José Pedro Magalhães
Status: actively developed

Datatype-generic programming increases program re-
liability by reducing code duplication and enhancing
reusability and modularity. However, it is known that
datatype-generic programs often run slower than type-
specific variants, and this factor can prevent adoption
of generic programming altogether. There can be mul-
tiple reasons for the performance penalty, but often it is
caused by conversions to and from representation types
that do not get eliminated during compilation.
Fortunately, it is also known that generic functions

can be specialised to concrete datatypes, removing any
overhead from the use of generic programming. We
have investigated compilation techniques to specialise

34

mailto: doaitse at swierstra.net
mailto: parsing at lists.science.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://byorgey.wordpress.com/2011/08/24/unbound-now-supports-set-binders-and-gadts/
http://byorgey.wordpress.com/2011/08/24/unbound-now-supports-set-binders-and-gadts/
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://hackage.haskell.org/package/unbound
http://code.google.com/p/replib/
http://www.haskell.org/ghc/docs/latest/html/users_guide/generic-programming.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#class-default-signatures
http://www.haskell.org/haskellwiki/GHC.Generics


generic functions and remove the performance over-
head of generic programs in Haskell. We used a rep-
resentative generic programming library and inspected
the generated code for a number of example generic
functions. After understanding the necessary com-
piler optimisations for producing efficient generic code,
we benchmarked the runtime of our generic functions
against handwritten variants, and concluded that all
the overhead can indeed be removed automatically by
the compiler. More details can be found in the IFL’12
draft paper linked below.

Further reading

Optimisation of Generic Programs through Inlining

7.5 Proof Assistants and Reasoning

7.5.1 HERMIT

Report by: Andy Gill
Participants: Andy Gill, Andrew Farmer, Ed Komp, Neil

Sculthorpe, Adam Howell, Robert Blair,
Ryan Scott, Patrick Flor, Michael Tabone

Status: active

The Haskell Equational Reasoning Model-to-
Implementation Tunnel (HERMIT) is an NSF-funded
project being run at KU (→ 9.8), which aims to
improve the applicability of Haskell-hosted Semi-
Formal Models to High Assurance Development.
Specifically, HERMIT will use: a Haskell-hosted DSL;
the Worker/Wrapper Transformation; and a new
refinement user interface to perform rewrites directly
on Haskell Core, the GHC internal representation.
This project is a substantial case study of the ap-

plication of Worker/Wrapper on larger examples. In
particular, we want to demonstrate the equivalences
between efficient Haskell programs, and their clear
specification-style Haskell counterparts. In doing so
there are several open problems, including refinement
scripting and managing scaling issues, data represen-
tation and presentation challenges, and understand-
ing the theoretical boundaries of the worker/wrapper
transformation.
The project started in Spring 2012, and is expected

to run for two years. The HERMIT team currently con-
sists of one assistant professor, one research engineer,
one post-doc, one PhD student, one Masters student,
two undergraduates, and three student and ex-student
volunteers.
We have reworked KURE (http://www.haskell.org/

communities/11-2008/html/report.html#sect5.5.7), a
Haskell-hosted DSL for strategic programming, as the
basis of our rewrite capabilities, and constructed the
rewrite kernel making use of the GHC Plugins archi-
tecture. As for interfaces to the kernel, we currently
have a command-line REPL, we are constructing a

web-based API, and an Android version is planned. A
detailed introduction to the HERMIT architecture and
implementation can be found in our Haskell Sympo-
sium 2012 paper. Thus far, we have used HERMIT to
successfully mechanize about a dozen small examples
of program transformations, drawn from the literature
on techniques such as concatenate vanishes, tupling
transformation, and worker/wrapper. A discussion of
our experiences mechanizing these examples can be
found in our IFL 2012 paper.
Funded by the NSF REU initiative and ITTC (our

research center), we are also working on an Android
application interface for HERMIT, where gestures can
be used to manipulate Haskell Core programs. Five
KU undergraduates are working on the Android appli-
cation.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT

7.5.2 HTab

Report by: Guillaume Hoffmann
Status: active development

HTab is an automated theorem prover for hybrid log-
ics based on a tableau calculus. It handles hybrid logic
with nominals, satisfaction operators, converse modal-
ities, universal modalities, the down-arrow binder, and
role inclusion.
Main changes of version 1.6.0 are the switch to a bet-

ter blocking mechanism called pattern-based blocking,
and general effort to reduce and clean up the source
code (removing some features in the process) to facili-
tate further experiments.
It is available on Hackage and comes with sample

formulas to illustrate its input format.

Further reading

http://code.google.com/p/intohylo/

7.5.3 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Daniel Seidel

See: http://www.haskell.org/communities/11-2011/
html/report.html#sect8.6.3.

7.6 Mathematical Objects

7.6.1 dimensional: Statically Checked Physical
Dimensions

Report by: Björn Buckwalter
Status: active, stable core with experimental extras

Dimensional is a library providing data types for per-
forming arithmetics with physical quantities and units.

35

http://dreixel.net/research/pdf/ogpi_draft.pdf
http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT
http://code.google.com/p/intohylo/
http://www.haskell.org/communities/11-2011/html/report.html#sect8.6.3
http://www.haskell.org/communities/11-2011/html/report.html#sect8.6.3


Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage within
the frame of the SI. Example:

d :: Fractional a ⇒ Time a → Length a
d t = a /_2 ∗ t ˆ pos2

where a = 9.82 ∗˜ (meter / second ˆ pos2)

The dimensional library is stable with units being
added on an as-needed basis. The primary documen-
tation is the literate Haskell source code. The wiki on
the project web site has several usage examples to help
with getting started.
Ongoing experimental work includes:

◦ Support for user-defined dimensions and a proof-of-
concept implementation of the CGS system of units.

◦ dimensional-vectors — a rudimentary linear algebra
library which statically tracks the sizes of vectors
and matrices as well as the physical dimensions of
their elements on a per element basis, disallowing
non-sensical operations. This library makes it very
difficult to accidentally implement, e.g., a Kalman
filter incorrectly. My work on dimensional-vectors is
need-driven and tends to occur in spurts.

◦ dimensional-experimental — a library in heavy flux
of which the most interesting feature is probably au-
tomatic differentiation of functions involving physi-
cal quantities. Example:

v :: Fractional a ⇒ Time a → Velocity a
v t = diff d t

◦ dimensional-tf — dimensional was originally imple-
mented using functional dependencies but in January
2012 a port using type families was released. For the
time being dimensional-tf is considered experimental
but if it eventually proves itself to be a better dimen-
sional it will be merged into the latter with a major
version bump.

The core library, dimensional, as well as dimensional-
tf, can be installed off Hackage using cabal. The other
experimental packages can be cloned off of Github.
Dimensional relies on numtype for type-level integers

(e.g., pos2 in the above example), ad for automatic dif-
ferentiation, and HList (→ 7.7.1) for type-level vector
and matrix representations.

Further reading

◦ http://dimensional.googlecode.com
◦ https://github.com/bjornbm/dimensional-vectors

◦ https://github.com/bjornbm/
dimensional-experimental

◦ http://flygdynamikern.blogspot.com/2012/02/
announce-dimensional-tf-010-statically.html

7.6.2 AERN

Report by: Michal Konečný
Participants: Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of libraries that will provide:

◦ A reliable arbitrary-precision correctly rounded in-
terval arithmetic, including both standard inter-
vals and inverted intervals with Kaucher arithmetic.
Reliability is achieved using extensive QuickCheck
testing against a nearly-complete formalisation of the
real numbers.

◦ Arbitrary-precision arithmetic of polynomial in-
tervals (similar to but more general than Taylor
Models). This is useful for example for:

– Automatically reducing overestimations in in-
terval computations.

– Efficiently supporting validated numerical in-
tegration, specifically in the simulation of or-
dinary differential equation (ODE) and hybrid
system initial value problems (IVPs).

– Automatically deciding many inequalities and
interval inclusions with non-linear and elemen-
tary functions that occur in numerical theorem
proving and, specifically, in the verification of
numerical programs.

◦ A type class hierarchy for validated and exact com-
putation, featuring:

– Standard mathematical structures such as
posets and lattices extended to take account of
rounding errors and partially decided relations
such as equality.

– Both numerical order and interval refinement
order.

– An ability to increase computational effort with
the view to reduce the negative effects of round-
ing and of the partial ability to decide equality.
The approximate operations and partially de-
cided relations converge to exact operations and
totally decided relations as effort approaches in-
finity.

– Extensive set of QuickCheck properties for each
type class, enabling automatic checking of, e.g.,
algebraic properties such as associativity, ex-
tended to take account of rounding.

36

http://dimensional.googlecode.com
https://github.com/bjornbm/dimensional-vectors
https://github.com/bjornbm/dimensional-experimental
https://github.com/bjornbm/dimensional-experimental
http://flygdynamikern.blogspot.com/2012/02/announce-dimensional-tf-010-statically.html
http://flygdynamikern.blogspot.com/2012/02/announce-dimensional-tf-010-statically.html


– Benchmarks for comparing the efficiency of var-
ious versions of validated approximate arith-
metic, e.g., various interval arithmetics and var-
ious function enclosure arithmetics.

◦ Tools for interactive plotting of univariate function
enclosures (see figure below for a screenshot of an
early prototype).

◦ A framework for distributed query-driven lazy
dataflow validated numerical computation with de-
notational exact semantics based on Domain Theory.

There are stable older versions of the libraries on
Hackage but these lack the type classes described
above.
We are still in the process of redesigning and rewrit-

ing the libraries. Out of the newly designed code, we
have so far released libraries featuring:

◦ The type classes for approximate real number oper-
ations.

◦ Correctly rounded real interval arithmetic with Dou-
ble endpoints.

A release of interval arithmetic with MPFR end-
points is planned in before the end of 2012 despite the
fact that currently one has to recompile GHC to use
MPFR safely.
We have made progress on implementing polynomial

intervals and plan to release them by the end of 2012.
The development files include demos that solve selected
ODE and hybrid system IVPs using polynomial inter-
vals.
All AERN development is open and we welcome con-

tributions and new developers.

Further reading

http://code.google.com/p/aern/

7.6.3 Paraiso

Report by: Takayuki Muranushi
Status: active development

Paraiso is a domain-specific language (DSL) embed-
ded in Haskell, aimed at generating explicit type of
partial differential equations solving programs, for ac-
celerated and/or distributed computers. Equations for
fluids, plasma, general relativity, and many more falls
into this category. This is still a tiny domain for a com-
puter scientist, but large enough that an astrophysicist
(I am) might spend even his entire life in it.
In Paraiso we can describe equation-solving algo-

rithms in mathematical, simple notation using builder
monads. At the moment it can generate programs for
multicore CPUs as well as single GPU, and tune their
performance via automated benchmarking and genetic
algorithms. The first set of experiment have been per-
formed and published as a paper (http://arxiv.org/abs/
1204.4779), accepted to Computational Science & Dis-
covery.
Anyone can get Paraiso from hackage (http://

hackage.haskell.org/package/Paraiso) or github (https:
//github.com/nushio3/Paraiso).

Further reading

http://paraiso-lang.org/wiki/

7.6.4 Bullet

Report by: Csaba Hruska
Status: experimental, active development

Bullet is a professional open source multi-threaded 3D
Collision Detection and Rigid Body Dynamics Library
written in C++. It is free for commercial use under
the zlib license. The Haskell bindings ship their own
(auto-generated) C compatibility layer, so the library
can be used without modifications. The Haskell bind-
ing provides a low level API to access Bullet C++ class
methods. Some bullet classes (Vector, Quaternion, Ma-
trix, Transform) have their own Haskell representation,
others are binded as class pointers. The Haskell API
provides access to some advanced features, like con-
straints, vehicle and more.
At the current state of the project most common

services are accessible from Haskell, i.e., you can load
collision shapes and step the simulation, define con-
straints, create raycast vehicle, etc. More advanced
Bullet features (soft body simulation, Multithread and
GPU constaint solver, etc.) will be added later.
Currently we are developing a new high level FRP

based API, which is built top of Bullet.Raw module
using the Elerea library.

37

http://code.google.com/p/aern/
http://arxiv.org/abs/1204.4779
http://arxiv.org/abs/1204.4779
http://hackage.haskell.org/package/Paraiso
http://hackage.haskell.org/package/Paraiso
https://github.com/nushio3/Paraiso
https://github.com/nushio3/Paraiso
http://paraiso-lang.org/wiki/


Further reading

http://www.haskell.org/haskellwiki/Bullet

7.7 Data Types and Data Structures

7.7.1 HList — A Library for Typed Heterogeneous
Collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).
An immediate application of HLists is the imple-

mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We and others have also used HList
for type-safe database access in Haskell. HList-based
Records form the basis of OOHaskell. The HList li-
brary relies on common extensions of Haskell 2010.
HList is being used in AspectAG (→ 5.3.4), typed
EDSL of attribute grammars, and in HaskellDB.
The October 2012 version of HList library marks

the significant re-write to take advantage of the fancier
types offered by GHC 7.4+. HList now relies on type-
level booleans, natural numbers and lists, and on kind
polymorphism. A number of operations are imple-
mented as type functions. Another notable addition is

unfold for heterogeneous lists. Many operations (pro-
jection, splitting) are now implemented in terms of un-
fold. Such a refactoring moved more computations to
type-level, with no run-time overhead.
Currently the core of HList has been re-written:

HList, HArray, TIP – up to records. In the near fu-
ture, we will finish the re-writing and take advantage
of the better kind polymorphism supported by GHC
7.6+.

Further reading

◦ HList: http://okmĳ.org/ftp/Haskell/types.html#
HList

◦ OOHaskell: http://homepages.cwi.nl/~ralf/
OOHaskell/

7.7.2 Persistent

Report by: Greg Weber
Participants: Michael Snoyman, Felipe Lessa
Status: stable

Persistent is a type-safe data store interface for Haskell.
Haskell has many different database bindings avail-
able. However, most of these have little knowledge
of a schema and therefore do not provide useful static
guarantees. Persistent is designed to work across differ-
ent databases, and works on Sqlite, PostgreSQL, Mon-
goDB, and MySQL. MySQL is a new edition since the
last HCAR, thanks to Felipe Lessa.
Since the last report, Persistent has been struc-

tured into separate type-classes. There is one for
storage/serialization, and one for querying. This
means that anyone wanting to create database ab-
stractions can re-use the battle-testsed persistent stor-
age/serialization layer. Persistent’s query layer is uni-
versal across different backends and uses combinators:

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones" ] [ ]

There are some drawbacks to the query layer: it
doesn’t cover every use case. Since the last HCAR
report, Persistent has gained some very good support
for raw SQL. One can run arbitrary SQL queries and
get back Haskell records or types for single columns.
Persistent also gained the ability to store embedded

objects. One can store a list or a Map inside a col-
umn/field. The current implementation is most useful
for MongoDB. In SQL an embedded object is stored as
JSON.

Future plans

Future directions for Persistent:
◦ Full CouchDB support
◦ A MongoDB specific query layer
◦ Adding key-value databases like Redis without a

query layer.

38

http://www.haskell.org/haskellwiki/Bullet
http://okmij.org/ftp/Haskell/types.html#HList
http://okmij.org/ftp/Haskell/types.html#HList
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/


Most of Persistent development occurs within the
Yesod (→ 5.2.6) community. However, there is nothing
specific to Yesod about it. You can have a type-safe,
productive way to store data, even on a project that
has nothing to do with web development.

Further reading

http://yesodweb.com/book/persistent

7.7.3 DSH — Database Supported Haskell

Report by: Torsten Grust
Participants: George Giorgidze, Tom Schreiber,

Alexander Ulrich, Jeroen Weĳers
Status: active development

Database-Supported Haskell, DSH for short, is a
Haskell library for database-supported program execu-
tion. Using the DSH library, a relational database man-
agement system (RDBMS) can be used as a coprocessor
for the Haskell programming language, especially for
those program fragments that carry out data-intensive
and data-parallel computations. Rather than embed-
ding a relational language into Haskell, DSH turns id-
iomatic Haskell programs into SQL queries. The DSH
library and the FerryCore package it uses are available
on Hackage (http://hackage.haskell.org/package/DSH).
Support for algebraic data types. Algebraic data
types (ADTs) are the essential data modelling tool of
a number of functional programming languages like
Haskell, OCaml and F#. In recent work we added sup-
port for ADTs to DSH. ADTs may be freely constructed
and deconstructed in queries and may show up in the
result type. The number of relational queries gener-
ated is small and statically determined by the type of
the query.
DSH in the Real World. We have used DSH for
large scale data analysis. Specifically, in collaboration
with researchers working in social and economic sci-
ences, we used DSH to analyse the entire history of
Wikipedia (terabytes of data) and a number of online
forum discussions (gigabytes of data).
Because of the scale of the data, it would be unthink-

able to conduct the data analysis in Haskell without
using the database-supported program execution tech-
nology featured in DSH. We have formulated several
DSH queries directly in SQL as well and found that
the equivalent DSH queries were much more concise,
easier to write and maintain (mostly due to DSH’s sup-
port for nesting, Haskell’s abstraction facilities and the
monad comprehension notation, see below).
One long-term goal is to allow researchers who are

not necessarily expert programmers or database engi-
neers to conduct large scale data analysis themselves.

Towards a New Compilation Strategy. As of to-
day, DSH relies on a query compilation strategy coined
loop-lifting. Loop-lifting comes with important and de-
sirable properties (e.g., the number of SQL queries is-
sued for a given DSH program only depends on the
static type of the program’s result). The strategy, how-
ever, relies on a rather complex and monolithic map-
ping of programs to the relational algebra. To remedy
this, we are currently exploring a new strategy based
on the flattening transformation as conceived by Guy
Blelloch. Originally designed to implement the data-
parallel declarative language NESL, we revisit flatten-
ing in the context of query compilation (which targets
database kernels, one particular kind of data-parallel
execution environment). Initial results are promising
and DSH might switch over in the not too far future.
We hope to further improve query quality and also
address the formal correctness of DSH’s program-to-
queries mapping.
Related Work. Motivated by DSH we reintroduced
the monad comprehension notation into GHC and also
extended it for parallel and SQL-like comprehensions.
The extension is available in GHC 7.2. We have also
implemented a Haskell extension for overloading the list
notation. This extension will be available in GHC in
the near future.

Further reading

http://db.inf.uni-tuebingen.de/research/dsh

7.8 User Interfaces

7.8.1 Gtk2Hs

Report by: Daniel Wagner
Participants: Axel Simon, Duncan Coutts, Andy

Stewart, and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

39

http://yesodweb.com/book/persistent


◦ High quality vector graphics using Cairo

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

The most recent release includes GHC 7.6 compati-
bility (thanks to John Lato) and several minor behav-
ioral improvements.

Further reading

◦ News and downloads: http://haskell.org/gtk2hs/
◦ Development version: darcs get http://code.
haskell.org/gtk2hs/

7.8.2 xmonad

Report by: Gwern Branwen
Status: active development

XMonad is a tiling window manager for X. Windows
are arranged automatically to tile the screen without
gaps or overlap, maximizing screen use. Window man-
ager features are accessible from the keyboard; a mouse
is optional. XMonad is written, configured, and exten-
sible in Haskell. Custom layout algorithms, key bind-
ings, and other extensions may be written by the user
in config files. Layouts are applied dynamically, and
different layouts may be used on each workspace. Xin-
erama is fully supported, allowing windows to be tiled
on several physical screens.
Development since the last report has continued;

XMonad founder Don Stewart has stepped down and
Adam Vogt is the new maintainer. After gestating for
2 years, version 0.10 has been released, with simulta-
neous releases of the XMonadContrib library of cus-
tomizations (which has now grown to no less than 216
modules encompassing a dizzying array of features) and
the xmonad-extras package of extensions,
Details of changes between releases can be found in

the release notes:
◦ http://haskell.org/haskellwiki/Xmonad/Notable_
changes_since_0.8

◦ http://haskell.org/haskellwiki/Xmonad/Notable_
changes_since_0.9

◦ the Darcs repositories have been upgraded to the
hashed format

◦ XMonad.Config.PlainConfig allows writing configs in
a more ’normal’ style, and not raw Haskell

◦ Supports using local modules in xmonad.hs;
for example: to use definitions from
/̃.xmonad/lib/XMonad/Stack/MyAdditions.hs

◦ xmonad –restart CLI option
◦ xmonad –replace CLI option

◦ XMonad.Prompt now has customizable keymaps
◦ Actions.GridSelect - a GUI menu for selecting win-

dows or workspaces & substring search on window
names

◦ Actions.OnScreen
◦ Extensions now can have state
◦ Actions.SpawnOn - uses state to spawn applications

on the workspace the user was originally on, and not
where the user happens to be

◦ Markdown manpages and not man/troff
◦ XMonad.Layout.ImageButtonDecoration &

XMonad.Util.Image
◦ XMonad.Layout.Groups
◦ XMonad.Layout.ZoomRow
◦ XMonad.Layout.Renamed
◦ XMonad.Layout.Drawer
◦ XMonad.Layout.FullScreen
◦ XMonad.Hooks.ScreenCorners
◦ XMonad.Actions.DynamicWorkspaceOrder
◦ XMonad.Actions.WorkspaceNames
◦ XMonad.Actions.DynamicWorkspaceGroups
Binary packages of XMonad and XMonadContrib

are available for all major Linux distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:
darcs get http://code.haskell.org/xmonad

◦ IRC channel: #xmonad @@ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

7.9 Functional Reactive Programming

7.9.1 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a practical library for functional
reactive programming (FRP).
FRP offers an elegant and concise way to express

interactive programs such as graphical user interfaces,
animations, computer music or robot controllers. It
promises to avoid the spaghetti code that is all too com-
mon in traditional approaches to GUI programming.
The goal of the library is to provide a solid founda-

tion.

40

http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org


◦ Writing graphical user interfaces with FRP is made
easy. The library can be hooked into any existing
event-based framework like wxHaskell or Gtk2Hs. A
plethora of example code helps with getting started.
You can mix FRP and imperative style. If you don’t
know how to express functionality in terms of FRP,
just temporarily switch back to the imperative style.

◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ It features an efficient implementation. No more
spooky time leaks, predicting space & time usage
should be straightforward.

Status. Version 0.7.0.0 of the reactive-banana library
has been released on hackage.
Compared to the previous report, the library now

features efficient dynamic event switching, also known
as first class events. This means that events and behav-
iors can now be created on the fly, they no longer have
to be specified fully at compilation time. For instance,
it is now possible to implement a GUI where text entry
widgets can be added and removed on user command.
The source code example BarTab.hs demonstrates this.
This is a significant milestone because in very early

approaches to FRP, dynamic event switching has been
the cause of major inefficiencies, namely the so-called
time leaks. By using the type system, reactive-banana
can rule out these gross inefficiencies.
The API for dynamic event switching explores a dif-

ferent part of the design space than other packages for
FRP, in particular the sodium library. There is a trade-
off: reactive-banana is simpler when you don’t use dy-
namic event switching, sodium is simpler for heavy uses
of dynamic event switching. Hopefully, time will tell
which approach provides the more pleasant overall FRP
experience.
Current development. Programming GUIs for the

world wide web has become very important in re-
cent years. Fortunately, efforts to compile Haskell to
JavaScript are reaching the point of becoming usable
now, and I intend to make FRP with reactive-banana
available for the web as soon as possible, for instance
by reducing dependencies on GHC extensions and li-
braries.
Reactive-banana’s implementation of dynamic event

switching addresses the grossest of inefficiencies, but
some more benign efficiency problems still remain, in
particular concerning garbage collection of dynamic
events. They will be addressed in a future version.
Notable use cases. In his reactive-balsa library, Hen-

ning Thielemann uses reactive-banana to control digital
musical instruments with MIDI in real-time.

Further reading

◦ Project homepage: http://haskell.org/haskellwiki/
Reactive-banana

◦ Example code: http://haskell.org/haskellwiki/
Reactive-banana/Examples

◦ BarTab example: http://haskell.org/haskellwiki/
Reactive-banana/Examples#bartab

◦ reactive-balsa: http://www.haskell.org/haskellwiki/
Reactive-balsa

◦ sodium: http://hackage.haskell.org/package/sodium

7.9.2 Functional Hybrid Modelling

Report by: George Giorgidze
Participants: Joey Capper, Henrik Nilsson
Status: active research and development

The goal of the FHM project is to gain a better foun-
dational understanding of noncausal, hybrid modelling
and simulation languages for physical systems and ul-
timately to improve on their capabilities. At present,
our central research vehicle to this end is the design and
implementation of a new such language centred around
a small set of core notions that capture the essence of
the domain.
Causal modelling languages are closely related to

synchronous data-flow languages. They model system
behaviour using ordinary differential equations (ODEs)
in explicit form. That is, cause-effect relationship be-
tween variables must be explicitly specified by the mod-
eller. In contrast, noncausal languages model system
behaviour using differential algebraic equations (DAEs)
in implicit form, without specifying their causality. In-
ferring causality from usage context for simulation pur-
poses is left to the compiler. The fact that the causality
can be left implicit makes modelling in a noncausal lan-
guage declarative (the focus is on expressing the equa-
tions in a natural way, not on how to express them
to enable simulation) and also makes the models more
reusable.
FHM is an approach to modelling which combines

purely functional programming and noncausal mod-
elling. In particular, the FHM approach proposes mod-
elling with first class models (defined by continuous
DAEs) using combinators for their composition and
discrete switching. The discrete switching combina-
tors enable modelling of hybrid systems (i.e., systems
that exhibit both continuous and discrete dynamic be-
haviour). The key concepts of FHM originate from
work on Functional Reactive Programming (FRP).
We are implementing Hydra, an FHM language, as

a domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting and en-
ables modellers to use the domain specific syntax in
their models. The present prototype implementation
of Hydra enables modelling with first class models and
supports combinators for their composition and dis-
crete switching.

41

http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Reactive-banana/Examples#bartab
http://haskell.org/haskellwiki/Reactive-banana/Examples#bartab
http://www.haskell.org/haskellwiki/Reactive-balsa
http://www.haskell.org/haskellwiki/Reactive-balsa
http://hackage.haskell.org/package/sodium


We implemented support for dynamic switching
among models that are computed at the point when
they are being “switched in”. Models that are com-
puted at run-time are just-in-time (JIT) compiled to
efficient machine code. This allows efficient simulation
of structurally dynamic systems where the number of
structural configurations is large, unbounded or impos-
sible to determine in advance. This goes beyond to
what current state-of-the-art noncausal modelling lan-
guages can model. The implementation techniques that
we developed should benefit other modelling and sim-
ulation languages as well.
We are also exploring ways of utilising the type sys-

tem to provide stronger correctness guarantees and to
provide more compile time reassurances that our sys-
tem of equations is not unsolvable. Properties such as
equational balance (ensuring that the number of equa-
tions and unknowns are balance) and ensuring the solv-
ability of locally scoped variables are among our goals.
Furthermore, a minimal core language for FHM is be-

ing developed and formalised in the dependently-typed
language Agda. The goals of the core language are to
capture the essence of Hydra such that we can demon-
strate its correctness and prove the existance of a num-
ber of desirable properties. Of particular interest is the
soundness of the implementation with respect to the
formal semantics, and properties such as termination
and productivity for the structural dynamics.
Recently, George Giorgidze completed his PhD the-

sis featuring an in-depth description of the design and
implementation of the Hydra language. In addition,
the thesis features a range of example physical systems
modelled in Hydra. The examples are carefully chosen
to showcase those language features of Hydra that are
lacking in other noncausal modelling languages.

Further reading

The implementation of Hydra and related papers (in-
cluding George’s PhD thesis) are available from http:
//db.inf.uni-tuebingen.de/team/giorgidze.
Implementation and articles relating to the formal-

isation of an FHM core language can be found at
http://cs.nott.ac.uk/~jjc.

7.9.3 Elerea

Report by: Patai Gergely
Status: experimental, active

Elerea (Eventless reactivity) is a tiny discrete time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialised monad, while stateless combina-

tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. The library comes in three major
variants, which all have precise denotational semantics:
◦ Simple: signals are plain discrete streams isomorphic

to functions over natural numbers;
◦ Param: adds a globally accessible input signal for

convenience;
◦ Clocked: adds the ability to freeze whole subnet-

works at will.
The code is readily available via cabal-install

in the elerea package. You are advised to in-
stall elerea-examples as well to get an idea how
to build non-trivial systems with it. The exam-
ples are separated in order to minimize the de-
pendencies of the core library. The experimental
branch is showcased by Dungeons of Wor, found in
the dow package (http://www.haskell.org/communities/
05-2010/html/report.html#sect6.11.2). Additionally,
the basic idea behind the experimental branch is laid
out in the WFLP 2010 article Efficient and Composi-
tional Higher-Order Streams.
Since the last report, the API was extended with

effectful combinators that allow IO computations to be
used in the definitions of the signals. The primary use
for this functionality is to provide FRP-style bindings
on top of imperative libraries. At the moment, a high-
level Elerea based API for the Bullet physics library is
under development.

Further reading

◦ http://hackage.haskell.org/package/elerea
◦ http://hackage.haskell.org/package/elerea-examples
◦ http://hackage.haskell.org/package/dow
◦ http://sgate.emt.bme.hu/documents/patai/

publications/PataiWFLP2010.pdf
◦ http://babel.ls.fi.upm.es/events/wflp2010/video/

video-08.html (WFLP talk)

7.10 Graphics

7.10.1 LambdaCube

Report by: Csaba Hruska
Participants: Gergely Patai
Status: experimental, active development

LambdaCube 3D is a domain specific language and li-
brary that makes it possible to program GPUs in a
purely functional style.
Programming with LambdaCube constitutes of com-

posing a pure data-flow description, which is compiled
into an executable module and accessed through a high-
level API. The language provides a uniform way to de-
fine shaders and compositor chains by treating both
streams and framebuffers as first-class values.

42

http://db.inf.uni-tuebingen.de/team/giorgidze
http://db.inf.uni-tuebingen.de/team/giorgidze
http://cs.nott.ac.uk/~jjc
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://hackage.haskell.org/package/elerea
http://hackage.haskell.org/package/elerea-examples
http://hackage.haskell.org/package/dow
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html


In its current state, LambdaCube is already func-
tional, but still in its infancy. The current API is a
rudimentary EDSL that is not intended for direct use
in the long run. It is essentially the internal phase of
a compiler backend exposed for testing purposes. To
exercise the library, we have created two small proof
of concept examples: a port of the old LambdaCube
Stunts example, and a Quake III level viewer.
Over the last few months, we extended the imple-

mentation with some essential major features:

◦ texture support

◦ multi-pass rendering

◦ sharing detection and CSE in the shaders (through
hash-consing)

We also improved the existing examples and created
new ones: a showcase for variance shadow mapping and
another for integration with the Bullet physics engine.
Last but not least, we finally started a new blog ded-

icated to LambdaCube. The blog is intended to be
the primary source of information and updates on the
project from now on.
Everyone is invited to contribute! You can help

the project by playing around with the code, thinking
about API design, finding bugs (well, there are a lot of
them anyway), creating more content to display, and
generally stress testing the library as much as possible
by using it in your own projects.

Further reading

◦ https://lambdacube3d.wordpress.com/
◦ https://github.com/csabahruska/lc-dsl
◦ http://www.haskell.org/haskellwiki/

LambdaCubeEngine
◦ http://www.youtube.com/watch?v=kDu5aCGc8l4

7.10.2 diagrams

Report by: Brent Yorgey
Participants: Jan Bracker, Andy Gill, Chris Mears,

Michael Sloan, Ryan Yates
Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is still much more to
be done, but diagrams is already quite fully-featured,
with a comprehensive user manual, a large collection of
primitive shapes and attributes, many different modes
of composition, paths, cubic splines, images, text, arbi-
trary monoidal annotations, named subdiagrams, and
more.

What’s new

Development proceeds slowly (since most of the main
developers are busy with other things) but passionately.
The upcoming 0.6 release didn’t make it out the door in
time for the HCAR deadline, but look for a new release
in early December! New features in 0.6 will include:

◦ All diagrams-related repositories have now moved to
github, to foster increased contribution.

◦ “Traces”, which give an easy way to find arbitrary
points on the boundary of a diagram (useful for, e.g.
drawing connecting lines between diagrams).

◦ Proper support for subdiagrams, making possible ad-
vanced techniques like constructing animations via
keyframing.

◦ Nicer syntax for constructing literal points and vec-
tors.

◦ More work on SVG, postscript, and HTML5 can-
vas backends. The status of various backends
can be seen at http://projects.haskell.org/diagrams/
backend-tests/all-index.html.

◦ Two new general-purpose libraries spun off from
diagrams-core, namely monoid-extras (containing
some special-purpose constructions on monoids) and
dual-tree (a rose tree data structure with cached
and accumulating monoidal annotations).

◦ Many other small improvements, new features, and
bug fixes.

43

https://lambdacube3d.wordpress.com/
https://github.com/csabahruska/lc-dsl
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.youtube.com/watch?v=kDu5aCGc8l4
http://projects.haskell.org/diagrams/backend-tests/all-index.html
http://projects.haskell.org/diagrams/backend-tests/all-index.html


Some other exciting recent things in diagrams-land:

◦ The diagrams-builder package allows render-
ing diagrams dynamically, at run time, and
has been used to support things like inline di-
agrams code in blog posts and LATEX docu-
ments (see https://byorgey.wordpress.com/2012/08/
28/creating-documents-with-embedded-diagrams/).

◦ Brent recently presented a paper at the Haskell Sym-
posium, Monoids: Theme and Variations, based
on diagrams and motivating the design of some of
its core data structures: http://www.cis.upenn.edu/
~byorgey/pub/monoid-pearl.pdf.

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of
its size, generality, and enthusiastic embrace of ad-
vanced type system features, diagrams can be intim-
idating to would-be users and contributors; however,
we are actively working on new documentation and
resources to help combat this. For more information
on ways to contribute and how to get started, see
the Contributing page on the diagrams wiki: http:
//haskell.org/haskellwiki/Diagrams/Contributing.

Future plans

Some exciting work on animation, interactivity, and
using diagrams as a high-powered presentation tool is
underway—stay tuned!
A native SVG backend is under active development

and almost ready to be used as a drop-in replacement

for the cairo backend. The cairo backend will still be
supported, but SVG will replace cairo as the default
“out-of-the-box” backend, vastly simplifying installa-
tion for new useres. Other features planned for the
near future include better arrow support, multi-page
diagrams, and gradients. Longer-term plans include a
richer API for drawing curved paths, interactive dia-
grams, and a custom Gtk application for interactively
developing diagrams and animations.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://haskell.org/haskellwiki/Diagrams
◦ http://github.com/diagrams
◦ https://byorgey.wordpress.com/2012/08/28/

creating-documents-with-embedded-diagrams/
◦ http://www.cis.upenn.edu/~byorgey/pub/

monoid-pearl.pdf
◦ http://www.youtube.com/watch?v=X-8NCkD2vOw

7.11 Audio

7.11.1 Audio Signal Processing

Report by: Henning Thielemann
Status: experimental, active development

This project covers many aspects of audio signal
processing in Haskell. It is based on the Numeric
Prelude framework (http://haskell.org/communities/
05-2009/html/report.html#sect5.6.2). Over the time
the project has grown to a set of several packages:
◦ synthesizer-core: Raw implementations of oscilla-

tors, noise generation, frequency filters, resampling,
pitch and time manipulation, Fourier transforma-
tion. Support for several data structures like lists,
signal generators, storable vectors and causal signal
processing arrows that allow you to balance between
efficiency and flexibility.

◦ synthesizer-dimensional: Type-safe physical
units in signal processing and abstraction from sam-
ple rate.

◦ synthesizer-midi: Render audio streams from se-
quences of MIDI events.

◦ synthesizer-alsa: Everything that is needed for a
real-time software synthesizer within the Advanced
Linux Sound Architecture ALSA.

◦ synthesizer-llvm: Highly efficient signal process-
ing by Just-In-Time compilation and vectorization
through the Low-Level Virtual Machine (http://llvm.
org/), including a real-time software synthesizer.

◦ sample-frame, sample-frame-np: Type classes
shared between the packages for various sample for-
mats (integer, float, logarithmic encoding, stereo).

◦ alsa-core, alsa-pcm, alsa-seq, jack: Bindings to
audio input and output via ALSA and JACK.

44

https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
https://byorgey.wordpress.com/2012/08/28/creating-documents-with-embedded-diagrams/
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://llvm.org/
http://llvm.org/


◦ sox, soxlib: Reading and writing many audio file
formats and play sounds via sox shell command or
libsox binary interface.

Recent advances are:
◦ Extended and safer bindings to ALSA PCM and
ALSA MIDI sequencer.

◦ MIDI, ALSA and LLVM code is now cleanly sepa-
rated.

◦ Example program split-record that divides an au-
dio file according to pauses.

Further reading

http://www.haskell.org/haskellwiki/Synthesizer

7.11.2 Live-Sequencer

Report by: Henning Thielemann
Participants: Johannes Waldmann
Status: experimental, active

The Live-Sequencer allows to program music in the
style of Haskore, but it is inherently interactive. You
cannot only listen to changes to the music quickly, but
you can alter the music while it is played. Changes to
the music may not have an immediate effect but are
respected when their time has come.
Additionally users can alter parts of the modules of a

musical work via a WWW interface. This way multiple
people including the auditory can take part in a live
composition. This mode can also be used in education,
when students shall solve small problems in an exercise.
Technical background: The music is represented as

lazy list of MIDI events. (MIDI is the Musical Instru-
ment Digital Interface). The MIDI events are sent via
ALSA and thus can control any kind of MIDI applica-
tion, be it software synthesizers on the same computer
or external hardware synthesizers. The application can
also receive MIDI events that are turned into program
code. We need certain ALSA functionality for precise
timing of events. Thus the sequencer is currently bound
to Linux.
The Live-Sequencer can be run either as command-

line program without editing functions or as an inter-
active program based on wxwidgets.
The used language is a much simplified kind of

Haskell. It provides no sharing, misses many syntac-
tic constructs and is untyped. However the intersec-
tion between Haskell and the Live-Sequencer language
is large enough for algorithmic music patterns and we
provide several examples that are contained in this in-
tersection.

Future plans

◦ Define proper semantics for live changes to a program
◦ Use of Helium’s parser, module system and type

checker
◦ Refined reduction steps for educational purposes

◦ Highlighting of active terms that better fits to the
music

Further reading

http://www.haskell.org/haskellwiki/Live-Sequencer

7.11.3 Chordify

Report by: José Pedro Magalhães
Participants: W. Bas de Haas, Dion ten Heggeler, Gĳs

Bekenkamp, Tĳmen Ruizendaal
Status: actively developed

Chordify is a music player that extracts chords from
musical sources like Soundcloud, Youtube, or your own
files, and shows you which chord to play when. The
aim of Chordify is to make state-of-the-art music tech-
nology accessible to a broader audience. Our interface
is designed to be simple: everyone who can hold a mu-
sical instrument should be able to use it.
Behind the scenes, we use the sonic annotator for

extraction of audio features. These features consist
of the downbeat positions and the tonal content of a
piece of music. Next, the Haskell program HarmTrace
takes these features and computes the chords. Harm-
Trace uses a model of Western tonal harmony to aid
in the chord selection. At beat positions where the au-
dio matches a particular chord well, this chord is used
in final transcription. However, in case there is uncer-
tainty about the sounding chords at a specific position
in the song, the HarmTrace harmony model will select
the correct chords based on the rules of tonal harmony.
We have recently entered an open beta testing phase,

so we invite all users to visit chordify.net, request a
beta account, and try Chordify. We are especially in-
terested in feedback. The code for HarmTrace is avail-
able on Hackage, and we have ICFP’11 and ISMIR’12
publications describing some of the technology behind
Chordify.

Further reading

http://chordify.net

45

http://www.haskell.org/haskellwiki/Synthesizer
http://www.haskell.org/haskellwiki/Live-Sequencer
http://www.omras2.org/SonicAnnotator
http://hackage.haskell.org/package/HarmTrace
http://chordify.net
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
http://chordify.net


7.11.4 Euterpea

Report by: Paul Hudak
Participants: Donya Quick, Daniel Winograd-Cort
Status: prototype release, active development

Overview

Euterpea is a Haskell library for computer music appli-
cations. It is a descendent of Haskore and HasSound,
and is intended for both educational purposes as well
as serious computer music development. Euterpea can
be thought of as a “wide-spectrum” DSL, suitable for
high-level music representation, algorithmic composi-
tion, and analysis; mid-level concepts such as MIDI;
and low-level audio processing, sound synthesis, and
instrument design. It also includes a musical user in-
terface (MUI), a set of GUI widgets such as sliders,
buttons, and so on.
The audio and MIDI-stream processing aspects of

Euterpea are based on arrows, which makes programs
analogous to signal processing diagrams. Using arrows
prevents certain kinds of space leaks, and facilitates sig-
nificant optimization strategies (in particular, the use
of causal commutative arrows.
Euterpea is being developed at Yale in Paul Hudak’s

research group, where it has become a key component
of Yale’s new Computing and the Arts major. Hudak is
teaching a two-term sequence in computer music using
Euterpea, and is developing considerable pedagogical
material, including a new textbook tentatively titled
The Haskell School of Music — From Signals to Sym-
phonies (HSoM). The name “Euterpea” is derived from
“Euterpe”, who was one of the nine Greek Muses (god-
desses of the arts), specifically the Muse of Music.

Status

The system is stable enough for experimental computer
music applications, and for use in coursework either to
teach Haskell programming or to teach computer music
concepts.
All source code, papers, and a draft of the HSoM

textbook can be found on the Yale Haskell Group web-
site at: http://haskell.cs.yale.edu/.

History

Haskore is a Haskell library developed over 15 years ago
by Paul Hudak and his students at Yale for high-level
computer music applications. HasSound was a later
development that served as a functional front-end to
csound’s sound synthesis capabilities. Euterpea com-
bines Haskore with a native Haskell realization of Has-
Sound (i.e. no csound dependencies).

Future Plans

Euterpea is a work in progress, as is the HSoM text-
book. Computer-music specific MUI widgets (such
as keyboards and guitar frets), further optimization
strategies, better support for real-time MIDI and audio
processing, and a parallel (multicore) implementation
are amongst the planned future goals.
Anyone who would like to contribute to the project,

please contact Paul Hudak at paul.hudak@yale.edu.

FurtherReading

Please visit http://haskell.cs.yale.edu/. Click on “Eu-
terpea” to learn more about the library, “Publica-
tions” to find our papers on computer music (including
HSoM), and “CS431” or “CS432” to see the course ma-
terial used in two computer music classes at Yale that
use Euterpea.

7.12 Text and Markup Languages

7.12.1 HaTeX

Report by: Daniel Díaz
Status: Stabilizing and improving
Current release: Version 3.3

Description

HaTeX is a Haskell implementation of LATEX, with the
aim to be a helpful tool to generate or parse LATEX code.

From a global sight, it’s composed of:

1. The LaTeX datatype, as an AST for LATEX.

2. A set of combinators of LATEX blocks.

3. A renderer of LATEX code.

4. A parser of LATEX code.

5. Methods to analyze the LATEX AST.

6. A monadic implementation of combinators.

7. Methods for a subset of LATEX packages.

What is new?

Since the release of the version 3 to the current 3.3, the
most notable changes have been:

3.1 New module Warnings. Here we added methods to
analyze a LATEX AST.

3.2 Implemented the parser. Also support for greek
letters and implementation of the graphicx package.

3.3 Tree rendering from a Haskell tree. A typeclass
(LaTeXC) puts together monoid and monad inter-
faces.

Furthermore, now is available an open source user’s
guide.

46

http://haskell.cs.yale.edu/
paul.hudak@yale.edu
http://haskell.cs.yale.edu/


Future plans

The next mission of HaTeX is to enhance what cur-
rently is. Fixing bugs, extend documentation, improve
the guide, add useful functions.

Contact

If you are someway interested in this project, please,
feel free to give any kind of opinion or idea, or to ask
any question you have. A good place to take contact
and stay tuned is the HaTeX mailing list:

hatex <at> projects.haskell.org

Of course, you always can mail to the maintainer.

Further reading

7.12.2 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: eighth major release (current release: 9.3)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml and HXML, but introduces a more general ap-
proach for processing XML with Haskell. The process-
ing model is based on arrows. The arrow interface is
more flexible than the filter approach taken in the ear-
lier HXT versions and in HaXml. It is also safer; type
checking of combinators becomes possible with the ar-
row approach.
HXT is partitioned into a collection of smaller pack-

ages: The core package is hxt. It contains a validating
XML parser, an HTML parser, filters for manipulating
XML/HTML and so called XML pickler for converting
XML to and from native Haskell data.
Basic functionality for character handling

and decoding is separated into the packages
hxt-charproperties and hxt-unicode. These
packages may be generally useful even for non XML
projects.
HTTP access can be done with the help of the pack-

ages hxt-http for native Haskell HTTP access and
hxt-curl via a libcurl binding. An alternative lazy non
validating parser for XML and HTML can be found in
hxt-tagsoup.
The XPath interpreter is in package hxt-xpath, the

XSLT part in hxt-xslt and the Relax NG valida-
tor in hxt-relaxng. For checking the XML Schema

Datatype definitions, also used with Relax NG, there
is a separate and generally useful regex package
hxt-regex-xmlschema.
The old HXT approach working with filter

hxt-filter is still available, but currently only with
hxt-8. It has not (yet) been updated to the hxt-9 mayor
version.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based

on Tagsoup (http://www.haskell.org/communities/
05-2010/html/report.html#sect5.11.3)

◦ Binding to the expat parser via hexpat package
◦ Easy de-/serialization between native Haskell data

and XML by pickler and pickler combinators
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ HTTP access via Haskell bindings to libcurl and via

Haskell HTTP package
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ XML Schema validator (next release)
◦ Lightweight regex library with full support of Uni-

code and XML Schema Datatype regular expression
syntax

◦ An HXT Cookbook for using the toolbox and the
arrow interface

◦ Basic XSLT support
◦ GitHub repository with current development ver-

sions of all packages http://github.com/UweSchmidt/
hxt

Current Work

The master thesis and project implementing an XML
Schema validator started in October 2011 has been fin-
ished. The validator will be released in a separate mod-
ule hxt-xmlschema. Integration with hxt has been pre-
pared in hxt-9.3. The XML Schema datatype library
has also been completed, all datatypes including date
and time types are implemented. But there is still a
need for testing the validator, especially with the W3C
test suite. Hopefully testing will be done in the next
few months. With the release of the schema validator
the the master thesis will also be published on the HXT
homepage. The current state of the validator can be
found in the HXT repository on github.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)

47

http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://github.com/UweSchmidt/hxt
http://github.com/UweSchmidt/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html


includes links to downloads, documentation, and
further information.
The latest development version of HXT can be found

on github under (https://github.com/UweSchmidt/hxt).
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT ). The conversion between XML
and native Haskell data types is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

7.12.3 epub-tools (Command-line epub Utilities)

Report by: Dino Morelli
Status: stable, actively developed

A suite of command-line utilities for creating and ma-
nipulating epub book files. Included are: epubmeta,
epubname, epubzip.
epubmeta is a command-line utility for examining

and editing epub book metadata. With it you can ex-
port, import and edit the raw OPF Package XML doc-
ument for a given book. Or simply dump the metadata
to stdout for viewing in a friendly format.
epubname is a command-line utility for renaming

epub ebook files based on their OPF Package meta-
data. It tries to use author names and title info to
construct a sensible name. epubname has recently un-
dergone extensive redesign:

◦ Major change of the formatting rules system. Re-
naming machinery is now described in a domain-
specific language, NOT in statically compiled code.
Users are able to extend the functionality with cus-
tom naming rules in conf files.

◦ Added interactive mode to ask about each file rename
as they happen, this is like darcs now!

◦ Added ability to specify target directory for books to
be moved to as part of renaming.

epubzip is a handy utility for zipping up the files
that comprise an epub into an .epub zip file. Using
the same technology as epubname, it can try to make
a meaningful filename for the book.
epub-tools is available from Hackage and the Darcs

repository below.

Further reading

◦ Project page: http://ui3.info/d/proj/epub-tools.html
◦ Source repository: darcs get http://ui3.info/darcs/

epub-tools

7.13 Natural Language Processing

7.13.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell.

Recently released packages and projects

◦ approx-rand-test Approximate randomization test,
eg. for testing whether differences in performance
of parse disambiguation/fluency ranking models is
significant or not. (https://github.com/danieldk/
approx-rand-test)

◦ GenI 0.22: (a long overdue update), surface realiser
for Natural Language Generation (https://projects.
haskell.org/GenI) (Eric Kow)

◦ Latent Dirichlet Allocation, a hierarchical Bayesian
admixture model commonly used for topic modeling
and many other NLP applications (Grzegorz Chru-
pala)
– lda an experimental implementation

of Latent Dirichlet Allocation (http:
//hackage.haskell.org/package/lda)

– swift-lda Gibbs sampler for Latent Dirichlet Al-
location. The sampler can be used in an online
as well as batch mode (http://hackage.haskell.
org/package/swift-lda/).

– colada Colada implements incremental word
class class induction using Latent Dirichlet Al-
location (LDA) with a Gibbs sampler (http:
//hackage.haskell.org/package/colada):

New packages and projects in development

◦ NubFinder : Research project to develop technology
to search and analyze user opinions on the Web.
(https://sites.google.com/site/nubfinder)

◦ alpinocorpus-server : Server for the Alpino
treebank library (https://github.com/danieldk/
alpinocorpus-server) (Daniel de Kok)

◦ alpinocorpus-haskell: Haskell bindings for the Alpino
treebank library. (https://github.com/danieldk/
alpinocorpus-haskell) (Daniel de Kok)

At the present, the mailing list is mainly used to
make announcements to the Haskell NLP community.

48

https://github.com/UweSchmidt/hxt
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://ui3.info/d/proj/epub-tools.html
http://ui3.info/darcs/epub-tools
http://ui3.info/darcs/epub-tools
https://github.com/danieldk/approx-rand-test
https://github.com/danieldk/approx-rand-test
https://projects.haskell.org/GenI
https://projects.haskell.org/GenI
http://hackage.haskell.org/package/lda
http://hackage.haskell.org/package/lda
http://hackage.haskell.org/package/swift-lda/
http://hackage.haskell.org/package/swift-lda/
http://hackage.haskell.org/package/colada
http://hackage.haskell.org/package/colada
https://sites.google.com/site/nubfinder
https://github.com/danieldk/alpinocorpus-server
https://github.com/danieldk/alpinocorpus-server
https://github.com/danieldk/alpinocorpus-haskell
https://github.com/danieldk/alpinocorpus-haskell


At the time of this writing, there is an ongoing Cours-
era online NLP class, for which some of list members
have expressed an interest in doing the assingments in
Haskell. We hope that we will continue to expand the
list and expand our ways of making it useful to people
potentially using Haskell in the NLP world.

Further reading

http://projects.haskell.org/nlp

7.13.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.

Since May 2011, Eric is working with Computational
Linguistics Ltd and SRI international to develop new

features for GenI and improve its scalability and per-
formance for use in an interactive tutoring application.
Most recently, we have released an long overdue update
to GenI, featuring GHC 7 support, simpler installation,
library cleanups, bugfixes, and a handful of new UI fea-
tures.
GenI is available on Hackage, and can be installed

via cabal-install. Our most recent release of GenI was
version 0.22 (2012-04-22). For more information, please
contact us on the geni-users mailing list.

Further reading

◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

7.14 Machine Learning

7.14.1 Bayes-stack

Report by: Ben Gamari
Participants: Laura Dietz
Status: stable, actively developed

Bayes-stack is a framework for inference on probabilis-
tic graphical models. It supports hierarchical latent
variable models, including Latent Dirichlet allocation
and even more complex topic model derivatives. We
focus on inference using blocked collapsed Gibbs sam-
pling, but the framework is also suitable for other iter-
ative update methods.
Bayes-stack is written for parallel environments run-

ning on multi-core machines. While many researchers
see collapsed Gibbs sampling as a hindrance for paral-
lelism, we embrace its robustness against mildly out-
of-date state. In bayes-stack, a model is represented
as blocks of jointly updated random variables. Each
inference worker thread will repeatedly pick a block,
fetch the current model state, and compute a new set-
ting for its variables. It then pushes an update function
to a thread responsible for updating the global state.
This thread will accumulate state updates, committing
them only periodically to manage memory bandwidth
and cache pressure.
Unlike other approaches where sets of variables are

evolved independently for several iterations, bayes-
stack synchronizes the model state after only a few
variables have been processed. This improves conver-
gence properties while incurring minimal performance
costs.
The project provides two packages. The core of

the framework is contained in the bayes-stack pack-
age while network-topic-models demonstrates use of
the framework, providing several topic model imple-
mentations. These include Latent Dirichlet Allocation

49

http://projects.haskell.org/nlp
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users


(LDA), the shared taste model for social network analy-
sis, and the citation influence model for citation graphs.
Haskell’s ability to capture abstraction without com-

promising performance has enabled us to preserve the
purity of the model definition while safely utilizing con-
currency. Tools like GHC’s event log and Threadscope
have been extremely helpful in evaluating the perfor-
mance characteristics of the parallel sampler.
Currently our focus is on improving scalability of the

inference. While our inference approach should allow
us to find a reasonable trade-off between data-sharing
and performance, much work still remains to realize
this potential.
We thank Simon Marlow for both his discussions con-

cerning parallel performance tuning with GHC as well
as his continuing work in pushing forward the state
of high-performance concurrency in Haskell. Further-
more, we are excited about work surrounding Thread-
scope by Duncan Coutts, Peter Wortmann, and others.

Further reading

◦ http://www.github.com/bgamari/bayes-stack
◦ http://www.cs.umass.edu/~dietz/delayer/

7.14.2 Homomorphic Machine Learning

Report by: Mike Izbicki
Status: preliminary

I have been exploring the algebraic properties of ma-
chine learning algorithms using Haskell. For example,
the training of a Naive Bayes classifier turns out to
be a semigroup homomorphism. This algebraic inter-
pretation has two main advantages: First, all semi-
group homomorphisms can be converted into an online
and/or parallel algorithm for free using specially de-
signed higher-order functions. Second, we can perform
cross-validation on homomorphisms much faster than
we can on non-homomorphic functions.
I am in the process of writing a prototype library

for homomorphic learning called HLearn. Haskell was
the natural choice for implementing the project due to
its emphasis on algebra and its high performance. My
goal is to have an initial release sometime in 2012. I
can be contacted at 〈mike@izbicki.me〉.

7.15 Bioinformatics

7.15.1 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion provides a domain-specific language (DSL)
for the formulation of dynamic programs with a special
emphasis on computational biology. Following ideas

established in Algebraic dynamic programming (ADP)
a problem is separated into a grammar defining the
search space and one or more algebras that score and
select elements of the search space. The DSL has been
designed with performance and a high level of abstrac-
tion in mind.
As an example, consider a grammar that recognizes

palindromes. Given the non-terminal p, as well as
parsers for single characters c and the empty input ε,
the production rule for palindromes can be formulated
as p→ c p c | ε.
The corresponding ADPfusion code is similar:

(p, f <<< c % p % c ||| g <<< e ... h)‚

We need a number of combinators as “glue” and
additional evaluation functions f , g, and h. With
f c1 p c2 = p && (c1 ≡ c2) scoring a candidate,
g e = True, and h xs = or xs determining if the
current substring is palindromic.
As of now, code written in ADPfusion achieves per-

formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

The current (post-ICFP) code contains numerous
improvements, including better grammar handling
(fewer combinators!) and new possibilities for combin-
ing grammars and algebras.
Details can be found in the paper (ICFP’12 proceed-

ings) with a preprint available on the ADPfusion home-
page.

Further reading

◦ http://www.tbi.univie.ac.at/~choener/adpfusion
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://dx.doi.org/10.1145/2364527.2364559

50

http://www.github.com/bgamari/bayes-stack
http://www.cs.umass.edu/~dietz/delayer/
mailto: mike at izbicki.me
http://www.tbi.univie.ac.at/~choener/adpfusion
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559


7.15.2 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen, Nick

Ignolia, Felipe Almeida Lessa, Dan
Fornika, Maik Riechert, Ashish Agarwal,

Grant Rotskoff

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now contains 51 li-
braries and applications. The biohaskell web site co-
ordinates this effort, and provides documentation and
related information. Anybody interested in the combi-
nation of Haskell and bioinformatics is encouraged to
sign up to the mailing list, and to register and docu-
ment their contributions on the http://biohaskell.org
wiki.

Further reading

◦ http://biohaskell.org
◦ http://blog.malde.org
◦ http://www.tbi.univie.ac.at/~choener/haskell/
◦ http://adp-multi.ruhoh.com

7.16 Embedding DSLs for Low-Level
Processing

7.16.1 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and developed in co-operation by Ericsson,
Chalmers University of Technology (Göteborg, Swe-
den) and Eötvös Loránd (ELTE) University (Budapest,
Hungary).
The motivating application of Feldspar is telecoms

processing, but the language is intended to be useful
for DSP in general. The aim is to allow DSP functions
to be written in pure functional style in order to raise
the abstraction level of the code and to enable more
high-level optimizations. The current version consists
of an extensive library of numeric and array processing
operations as well as a code generator producing C code
for running on embedded targets.

The current version deals with the data-intensive nu-
meric algorithms which are at the core of any DSP
application. We have recently added support for the
expression and compilation of parallel algorithms. As
future work remains to extend the language to deal
with interaction with the environment (e.g., process-
ing of streaming data) and to support compilation to
heterogeneous multi-core targets.

Further reading

◦ https://github.com/Feldspar/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-compiler

7.16.2 Kansas Lava

Report by: Andy Gill
Participants: Andy Gill, Bowe Neuenschwander
Status: ongoing

Kansas Lava is a Domain Specific Language (DSL) for
expressing hardware descriptions of computations, and
is hosted inside the language Haskell. Kansas Lava pro-
grams are descriptions of specific hardware entities, the
connections between them, and other computational
abstractions that can compile down to these entities.
Large circuits have been successfully expressed using
Kansas Lava, and Haskell’s powerful abstraction mech-
anisms, as well as generic generative techniques, can be
applied to good effect to provide descriptions of highly
efficient circuits.
Kansas Lava has undergone considerable changes

over the last 12 months.

◦ The Patches idea (normalizing handshaking circuits)
and the Wakarusa Monad (compiling state machines
into untyped Fabrics) have been rejected. There
was a PEPM’12 paper about Patches, including
the design and implementation of a controller for
an ST7066U-powered LCD display. Wakarusa was
never written up.

◦ Patches and Wakarusa have been replaced with a
unified enhancement of the Fabric monad. The Fab-
ric monad historically provided access to named in-
put/output ports, and now also provides named vari-
ables, implemented by ports that loop back on them-
selves. This additional primitive capability allows for
a typed state machine monad. This design gives an
elegant stratospheric pattern: purely functional cir-
cuits using streams; a monad for layout over space;
and a monad for state generation, that acts over
time.

◦ On top of Kansas Lava, we are developing Kansas
Lava Cores. In hardware, a core is a component that
can be realized as a circuit, typically on an FPGA.
Kansas Lava Cores contains about a dozen cores, and

51

http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org
http://biohaskell.org/cgi-bin/mailman/listinfo/biohaskell
http://biohaskell.org
http://biohaskell.org
http://blog.malde.org
http://www.tbi.univie.ac.at/~choener/haskell/
http://adp-multi.ruhoh.com
https://github.com/Feldspar/feldspar-language
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler


basic board support for Spartan3e, as well as a high-
fidelity emulator for the Spartan3e. The cores and
the simulator has been rewritten to use the new Fab-
ric and new state-machine generation monad.

◦ Using various components provided as Kansas Lava
Cores, we continue developing the λ-bridge with im-
plementations (in Haskell and Kansas Lava) of a
simple protocol stack for communicating with FP-
GAs. This bridge is based on the best-effort, unreli-
able, but acknowledgment-centric access to an 8-bit
WISHBONE-compliant hardware bus, and idempo-
tent transaction requests. This has the advantage
of moving the implementation of the complexity of
providing reliable communications into the Haskell
code. The net effect is that programmers can use
Haskell to talk to real hardware over multiple possi-
ble physical connections (RS232, RJ-45, USB, etc),
and communicate via standard Haskell idioms like
file Handles, Chans, and MVars.

◦ Finally, with Iavor Diatchki (Galois), we are rework-
ing our sized-types library to use the new kind Nat
in GHC 7.6.

Further reading

◦ http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

◦ http://www.youtube.com/playlist?list=
PL211F8711E3B3DF9C

7.17 Others

7.17.1 Clckwrks

Report by: Jeremy Shaw

clckwrks (pronounced “clockworks”) is a blogging and
content management system (CMS). It is intended to
compete directly with popular PHP-based systems.
Pages and posts are written in markdown and can be
edited directly in the browser. The system can be ex-
tended via plugins and themes packages.
At present, clckwrks is still alpha, and requires

Haskell knowledge to install and configure. However,
the goal is to create an end user system that requires
zero Haskell knowledge. It will be possible to one-click
install plugins and themes and perform all other ad-
ministrative functions via the browser.

Future plans

We are currently focused on four tasks:

1. Overhaul of the plugin system to support one-click
installation of plugins and themes

2. Improvements to the user experience in the core
blogging and page editing functionality

3. Simplifying installation

4. Improved documentation

Once the core is solid, we will focus development efforts
on creating plugins to extend the core functionality.

Further reading

http://www.clckwrks.com/

7.17.2 leapseconds-announced

Report by: Björn Buckwalter
Status: stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondTable with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.
Version 2012 of leapseconds-announced contains all

leap seconds up to 2012-07-01. A new version will be
uploaded if/when the IERS announces a new leap sec-
ond.

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/leapseconds-announced

◦ http://github.com/bjornbm/leapseconds-announced

7.17.3 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!
By now, the data collected by some arbtt users has

become quite large. This awoke the dormant devel-
opment and the newly released version 0.6.4 sports
processing in constant memory and faster time-related
functions.

Further reading

◦ http://www.joachim-breitner.de/projects#arbtt

52

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
http://www.youtube.com/playlist?list=PL211F8711E3B3DF9C
http://www.youtube.com/playlist?list=PL211F8711E3B3DF9C
http://www.clckwrks.com/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://github.com/bjornbm/leapseconds-announced
http://www.joachim-breitner.de/projects#arbtt


◦ http://www.joachim-breitner.de/blog/archives/
336-The-Automatic-Rule-Based-Time-Tracker.html

◦ http://darcs.nomeata.de/arbtt/doc/users_guide/

7.17.4 sshtun (Wrapper daemon to manage an ssh
tunnel)

Report by: Dino Morelli
Status: experimental, actively developed

This is a daemon that executes an ssh command to form
a secure tunnel and then blocks on it. If the tunnel
goes down, sshtun can attempt to reestablish it. It can
also be set up to monitor a file on an http server to
determine if the tunnel should be up or not, so you can
switch it on or off remotely.
sshtun is available from Hackage and the Darcs

repository below.

Further reading

◦ Project page: http://ui3.info/d/proj/sshtun.html
◦ Source repository: darcs get http://ui3.info/darcs/

sshtun

7.17.5 hMollom — Haskell implementation of the
Mollom API

Report by: Andy Georges
Status: active

Mollom (http://mollom.com) is a anti-comment-spam
service, running in the cloud. The service can be used
for free (limited number of requests per day) or paid,
with full support. The service offers a REST based
API (http://mollom.com/api/rest). Several libraries are
offered freely on the Mollom website, for various lan-
guages and web frameworks – PHP, Python, Drupal,
etc.
hMollom is an implementation of this API, commu-

nicating with the Mollom service for each API call that
is made and returning the response as a Haskell data
type, along with some error checking.
hMollom is currently under active development. The

current release targets the Mollom REST API. We
carefully track new developments in the Mollom API.
The development happens on GitHub, see http:

//github.com/itkovian/hMollom, packages are put on
Hackage.

Further reading

http://github.com/itkovian/hMollom

7.17.6 hGelf — Haskell implementation of the
Graylog extended logging format

Report by: Andy Georges
Status: active

Graylog (http://graylog2.org) is a log management
framework that allows setting up event log monitoring
and anlysis through various tools. The logging format
used is GELF — The GrayLog Extended Logging For-
mat.
At the moment of writing hGelf, there was no Haskell

package available on Hackage that allows wrapping log
messages in this format. hGelf aimed to fill this void.
The development of hGelf happens on GitHub, see

https://github.com/itkovian/hGelf, packages are put on
Hackage.

Further reading

http://github.com/itkovian/hGelf

7.17.7 Galois Open-Source Projects on GitHub

Report by: Jason Dagit
Status: active

Galois is pleased to announce the movement of our open
source projects to GitHub!
As part of our commitment to giving back to the

open source community, we have decided that we can
best publish our work using GitHub’s public website.
This move should provide the open source community
more direct access to our repositories, as well as more
advanced collaboration tools.
Moved repositories include the widely-used XML and

JSON libraries, our FiveUI extensible UI Analysis tool,
our high-speed Cereal serialization library, our SHA
and RSA crypto packages, the HaLVM, and more. For
a list of our open source packages, please see our main
GitHub page here: https://github.com/galoisinc
We are very excited to interact with the GitHub com-

munity and utilize all the great tools there. On the
other hand, if you’re not a GitHub user, please feel free
to continue to send us any patches or suggestions as
per usual.
For those currently hacking on projects using our old

repositories at code.galois.com, we apologize for the
inconvenience! The trees on GitHub hold the exact
same trees, however, so you should be able to add a re-
mote tree (git remote add) and push without too much
difficulty.

53

http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://darcs.nomeata.de/arbtt/doc/users_guide/
http://ui3.info/d/proj/sshtun.html
http://ui3.info/darcs/sshtun
http://ui3.info/darcs/sshtun
http://mollom.com
http://mollom.com/api/rest
http://github.com/itkovian/hMollom
http://github.com/itkovian/hMollom
http://github.com/itkovian/hMollom
http://graylog2.org
https://github.com/itkovian/hGelf
http://github.com/itkovian/hGelf
https://github.com/galoisinc


8 Commercial Users

8.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Andres Löh, Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
We are working for a variety of commercial clients,

but naturally, only some of our projects are publically
visible.
We continue to be involved in the development and

maintenance of GHC (→ 3.2). Since the last HCAR, we
have put out the 7.4.2 patch release as well as 7.6.1, the
first release of a new stable branch. We are expecting
to put out a 7.6.2 bug-fix release in the not too distant
future, as well as a 7.8.1 release with the latest goodies.
On behalf of the Industrial Haskell Group (IHG) (→

8.3), we have now completed the 64bit Windows port
of GHC, and it was released as part of GHC 7.6.1. We
have now turned our attention to the Hackage server,
and are working on getting the new Hackage 2 imple-
mentation to the point where it is usable as the central
hackage.haskell.org server.
The Parallel GHC Project (→ 5.1.3) is drawing

to a close now. Information about the part-
ner organisations’ projects can be found on the
wiki page (http://www.haskell.org/haskellwiki/Parallel_
GHC_Project), and will also be presented in forthcom-
ing talks and publications. There have also been a
number of useful off-shoots of the project, most no-
tably a much improved ThreadScope application (for
debugging performance of concurrent and parallel pro-
grams), and a new full implementation of Cloud Haskell
(an Erlang-like system for Haskell, now ready for early
adopters).
We continue to be involved in the community, main-

taining several packages on Hackage and giving talks
at a number of conferences. More recently, we have
partnered with Skills Matter to offer public beginners
and advanced Haskell courses on a quarterly basis. See
the “Training” section of our website for more details.
We are of course always looking for new clients and

projects, so if you have something we could help you
with, just drop us an e-mail.

Further reading

◦ http://www.well-typed.com/

◦ Blog: http://blog.well-typed.com/

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.
BSV is used for all aspects of ASIC and FPGA de-

sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universally applicable, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality Verilog, which can be further synthe-
sized into netlists for ASICs and FPGAs using third-
party tools. Atomic transactions enable design-by-
refinement, where an initial executable approximate
design is systematically transformed into a quality im-
plementation by successively adding functionality and
architectural detail. The synthesis tool is implemented
in Haskell (well over 100K lines).
Bluesim is a fast simulation tool for BSV. There are

extensive libraries and infrastructure to make it easy to
build FPGA-based accelerators for compute-intensive
software, including for the Xilinx XUPv6 board popu-
lar in universities, and the Convey HC-1 high perfor-
mance computer.
BSV is also enabling the next generation of com-

puter architecture education and research. Students
implement and explore architectural models on FP-
GAs, whose speed permits evaluation using whole-
system software.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor and electronic equipment compa-
nies, and universities. The tools are free for academic
teaching and research.

54

mailto: info at well-typed.com
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.haskell.org/haskellwiki/Parallel_GHC_Project
http://www.well-typed.com/
http://blog.well-typed.com/


Further reading

◦ Abstraction in Hardware System Design, R.S. Nikhil,
in Communications of the ACM, 54:10, October
2011, pp. 36-44.

◦ Bluespec, a General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions,
R.S. Nikhil, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com.

◦ http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

◦ http://www.cl.cam.ac.uk/~swm11/examples/
bluespec/: Simon Moore’s BSV examples (U.
Cambridge).

◦ http://csg.csail.mit.edu/6.375: Complex Digital Sys-
tems, MIT courseware.

◦ http://www.bluespec.com/products/BluDACu.htm: A
fun example with many functional programming fea-
tures — BluDACu, a parameterized Bluespec hard-
ware implementation of Sudoku.

8.3 Industrial Haskell Group

Report by: Andres Löh
Participants: Duncan Coutts, Ian Lynagh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
The main activity of the IHG is to fund work on the

Haskell development platform. It currently operates
two schemes:

◦ The collaborative development scheme pools re-
sources from full members in order to fund specific
development projects to their mutual benefit.

◦ Associate and academic members contribute to a
separate fund which is used for maintenance and de-
velopment work that benefits the members and com-
munity in general.

In the past six months, the collaborative develop-
ment scheme funded work on a Win64 port of GHC
and on the new Hackage server (→ 6.3.1).
The Win64 port of GHC is now complete and re-

leased (as a part of GHC 7.6). There’s an installer
available for the 64-bit Windows version, so it should
be easy enough to get started.
The main focus of current IHG work is the transition

to the new Hackage server. In a first phase, we have
been fixing a number of outstanding bugs and memory
issues with the Hackage server. We are now confident
that Hackage 2 is stable enough to go into production.
We are continuing to work on a number of issues such as
somewhat improved security (per-package maintainer

groups that restrict who can upload new versions of
a package), a good backup infrastructure, and provid-
ing a smooth migration from Hackage to Hackage 2.
Among other things, we can now import all of the old
account data into the new Hackage sever.
Snapshots of the new server are intermittently being

made available at http://new-hackage.haskell.org.
Details of the tasks undertaken are appearing on

the Well-Typed (→ 8.1) blog, on the IHG status page
and on standard communication channels such as the
Haskell mailing list.
The collaborative development scheme is running

continuously, so if you are interested in joining as a
member, please get in touch. Details of the different
membership options (full, associate, or academic) can
be found on the website.
We are particularly interested in new members who

might be willing to fund further efforts on Cabal and
Hackage.
If you are interested in joining the IHG, or if you

just have any comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

◦ http://industry.haskell.org/
◦ http://industry.haskell.org/status/

8.4 Barclays Capital

Report by: Ben Moseley

Barclays Capital has been using Haskell as the basis
for our FPF (Functional Payout Framework) project
for about seven years now. The project develops a
DSL and associated tools for describing and process-
ing exotic equity options. FPF is much more than just
a payoff language — a major objective of the project
is not just pricing but “zero-touch” management of the
entire trade lifecycle through automated processing and
analytic tools.
For the first half of its life the project focused only on

the most exotic options — those which were too com-
plicated for the legacy systems to handle. Over the
past few years however, FPF has expanded to provide
the trade representation and tooling for the vast major-
ity of our equity exotics trades and with that the team
has grown significantly in both size and geographical
distribution. We now have eight permanent full-time
Haskell developers spread between Hong Kong, Kiev
and London (with the latter being the biggest develop-
ment hub).
Our main front-end language is currently a deeply

embedded DSL which has proved very successful, but
we have recently been working on a new non-embedded
implementation. This will allow us to bypass some

55

http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://new-hackage.haskell.org
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://industry.haskell.org/status/


of the traditional DSEL limitations (e.g., error mes-
sages and syntactical restrictions) whilst addressing
some business areas which have historically been prob-
lematic. The new language is based heavily on arrows,
but has a custom (restrictive but hopefully easier-to-
use than raw arrow-notation) syntax. We are using
a compiler from our custom DSL syntax into Haskell
source (with standard transformers from Ross Pater-
son’s “arrows” package) to provide the semantics for
the language but plan to develop a number of indepen-
dent backends. Our hope is that, over time, this will
gradually replace our embedded DSL as the front end
for all our tools. For the parsing part of this work we
have been very impressed by Doaitse Swierstra’s uu-
parsinglib (→ 7.3.2).
We have been and remain very satisfied GHC users

and feel that it would have been significantly harder to
develop our systems in any other current language.

8.5 Oblomov Systems

Report by: Martĳn Schrage

See: http://www.haskell.org/communities/11-2011/
html/report.html#sect9.6.

8.6 madvertise Mobile Advertising

Report by: Adam Drake

madvertise Mobile Advertising, GmbH is Europe’s
leading marketplace for mobile app and web advertis-
ing, with traffic frequencies of up to 25.000 requests
per second. madvertise was founded in 2009 and the
recent purchase of Turkish mobile advertising firm Mo-
bilike has raised the number of employees at madvertise
to approximately 95.
Haskell is used in the Research and Data Science

group at madvertise, especially to tackle problems in
large scale data analysis and machine learning. One
example of our use of Haskell is in the initial design for
a real-time bidding system for ad impressions, includ-
ing optimizations for publisher revenue and liquidity
management. Such a system must support a high level
of concurrency as each ad request results in a full-cycle
auction taking place, and Haskell excels in such an en-
vironment. Another example of our usage of Haskell is
in the toolchain for constructing a system to measure
and act upon information theoretic entropy for high-
frequency data in a real-time fashion.
Haskell is used at madvertise as a general purpose

language that is preferred for making full use of mul-
ticore hardware, providing code correctness, and for
providing clarity and stability through the type sys-
tem. We plan to continue to use Haskell where appro-
priate, including the possibility of production systems
in the future, and to open-source as many of our tools
as possible.

Further reading

http://madvertise.com

8.7 OpenBrain Ltd.

Report by: Tom Nielsen

OpenBrain Ltd. is developing a new platform for sta-
tistical computing that enables optimal decisions tak-
ing into account all the available information. We
have developed a new statistical programming lan-
guage (BAYSIG) that augments a Haskell-like func-
tional programming language with Bayesian inference
and first-class ordinary and stochastic differential equa-
tions. BAYSIG is designed to support a declarative
style of programming where almost all the work con-
sists in building probabilistic models of observed data.
Data analysis, risk assessment, decision, hypothesis
testing and optimal control procedures are all derived
mechanically from the definition of these models. We
are targeting a range of application areas, including fi-
nancial, clinical and life sciences data.
We are building a web application (http://BayesHive.

com) to make this platform accessible to a wide range
of users. Users can upload and analyse varied types
of data using a point-and-click interface. Models and
analyses are collected in literate programming-like doc-
uments that can be published by users as blogs.
We use Haskell for almost all aspects of implement-

ing this platform. The BAYSIG compiler is written
in Haskell, which is particularly well suited for imple-
menting the recursive syntactical transformations un-
derlying statistical inference. BayesHive.com is being
developed in Yesod.

Contact

〈tomn@openbrain.org〉

Further reading

http://BayesHive.com

56

http://www.haskell.org/communities/11-2011/html/report.html#sect9.6
http://www.haskell.org/communities/11-2011/html/report.html#sect9.6
http://madvertise.com
http://BayesHive.com
http://BayesHive.com
mailto: tomn at openbrain.org
http://BayesHive.com


9 Research and User Groups

9.1 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on Haskell and Agda
that run at Eötvös Loránd University, Faculty of Infor-
matics.

◦ Programming for first-year BSc students using
Haskell, it is officially in the curriculum. It is also
taught for foreign language students as part of their
program.

◦ Advanced functional programming using Haskell, it
is an optional course for BSc and MSc students.

◦ Programming in Agda as an optional course for BSc
and MSc students.

◦ Other Haskell-related courses on Lambda Calculus,
Type Theory and Implementation of Functional Lan-
guages.

There is an interactive online evaluation and test-
ing system, called ActiveHs. It contains several hun-
dred systematized exercises and it may be also used
as a teaching aid. There is also some experimenting
going on about supporting SVG graphics, and extend-
ing the embedded interpreter and testing environment
with safe emulation of IO values, providing support for
Agda. ActiveHs is now also avaiable on Hackage.
We have been translating our course materials to En-

glish, some of the materials is already available.

Further reading

◦ Haskell course materials (in English): http://pnyf.
inf.elte.hu/fp/Overview_en.xml

◦ Agda course materials (in English): http://pnyf.inf.
elte.hu/fp/Index_a.xml

◦ ActiveHs: http://hackage.haskell.org/package/
activehs

9.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Conrad Rau, Manfred Schmidt-Schauß

Semantics of programming languages. One of
our research interests focuses on programming language
semantics, especially on contextual equivalence and
bisimilarity. Deterministic call-by-need lambda calculi
with letrec provide a semantics for the core language of
Haskell. For such extended lambda calculi we proved
correctness of strictness analysis using abstract reduc-
tion, equivalence of the call-by-name and call-by-need
semantics, and completeness of applicative bisimilarity
w.r.t. contextual equivalence. We also explored sev-
eral nondeterministic extensions of call-by-need lambda
calculi and their applications. An important result is
that for calculi with letrec and nondeterminism usual
definitions of applicative similarity are unsound w.r.t.
contextual equivalence.
A recent topic are core languages of concurrent pro-

gramming languages, like Concurrent Haskell. We an-
alyzed a higher-order functional language with con-
current threads, monadic IO, synchronizing variables
and implicit, monadic, and concurrent futures. Us-
ing contextual equivalence based on may- and should-
convergence, we have shown that several transforma-
tions preserve program equivalence. We also proved
correctness of a Sestoft-like abstract machine for this
language. An important result is that the language
with concurrency conservatively extends the pure core
language of Haskell, i.e. all program equivalences for
the pure part also hold in the concurrent language.
Most recently, we analyzed Software Transactional

Memory in a concurrent calculus with futures. An ob-
viously correct big-step-semantics was used as a speci-
fication to show correctness of a highly concurrent im-
plementation.
An ongoing project tries to automate correctness

proofs of program transformations. These proofs re-
quire to compute so-called forking and commuting di-
agrams. We implemented an algorithm as a combina-
tion of several unification algorithms in Haskell which
computes these diagrams. To conclude the correct-
ness proofs we automated the corresponding induction
proofs (which use the diagrams) using automated ter-
mination provers for term rewriting systems.
Grammar based compression. Another research

topic of our group focuses on algorithms on grammar
compressed strings and trees. One goal is to recon-

57

http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://pnyf.inf.elte.hu/fp/Index_a.xml
http://pnyf.inf.elte.hu/fp/Index_a.xml
http://hackage.haskell.org/package/activehs
http://hackage.haskell.org/package/activehs


struct known algorithms on strings and terms (unifica-
tion, matching, rewriting etc.) for their use on gram-
mars without prior decompression. We implemented
several of those algorithms in Haskell which are avail-
able as a Cabal package.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. This September
we welcomed Scott Owens as a new group member and
lecturer. We are a group of staff and students with
shared interests in functional programming. While our
work is not limited to Haskell — in particular our in-
terest in Erlang has been growing — Haskell provides
a major focus and common language for teaching and
research.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sec-
tions of this report, such as Simon Thompson’s text
book Haskell: the craft of functional programming.
At the Haskell Implementors Workshop 2012 Thomas
Schilling presented his work on trace-based dynamic
optimisations for Haskell programs. Olaf Chitil pre-
sented at ICFP 2012 his practial lazy contracts for
Haskell, which are available from Hackage. He also
maintains the Haskell IDE Heat. Recently he resur-
rected the Haskell tracer Hat (→ 6.4.2). Hat is now on
Hackage and new developments have started.
We are always looking for PhD students to work with

us. We are particularly keen to recruit students in-
terested in programming tools for tracing, refactoring,
type checking and any useful feedback for a program-
mer. The school and university have support for strong
candidates: more details at http://www.cs.kent.ac.uk/
pg or contact any of us individually by email.

Further reading

◦ PLAS group: http://www.cs.kent.ac.uk/research/
groups/plas/

◦ Haskell: the craft of functional programming: http:
//www.haskellcraft.com

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/research/groups/plas/hare.html

◦ A trace-based just-in-time compiler for Haskell http:
//www.youtube.com/watch?v=PtEcLs2t9Ws

◦ Scion: http://code.google.com/p/scion-lib/

◦ Hat, the Haskell Tracer: http://olafchitil.github.com/
hat

◦ Practial Lazy Typed Contracts for Haskell: http://
www.cs.kent.ac.uk/~oc/contracts.html

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/

9.4 Formal Methods at DFKI and
University Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Dietrich,

Christoph Lüth, Till Mossakowski
Status: active development

The activities of our group center on formal methods,
covering a variety of formal languages and also trans-
lations and heterogeneous combinations of these.
We are using the Glasgow Haskell Compiler and

many of its extensions to develop the Heterogeneous
tool set (Hets). Hets consists of parsers, static ana-
lyzers, and proof tools for languages from the CASL
family, such as the Common Algebraic Specification
Language (CASL) itself (which provides many-sorted
first-order logic with partiality, subsorting and induc-
tion), HasCASL, CoCASL, CspCASL, and an extended
modal logic based on CASL.
Other languages supported include Isabelle, QBF,

Maude, VSE, TPTP, THF, FPL (logic of functional
programs), LF type theory and still Haskell (via Pro-
gramatica). More recently, description logics like
OWL, RDF, Common Logic, and DOL (the Dis-
tributed Ontology Language) have been integrated.
The user interface of the Hets implementation (about

200K lines of Haskell code) is based on some old
Haskell sources such as bindings to uDrawGraph (for-
merly Davinci) and Tcl/TK that we maintain and also
gtk2hs (→ 7.8.1), but we are moving to a mere web
interface based on warp (→ 5.2.2).
HasCASL is a general-purpose higher-order language

which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ Heterogeneous tool set:
http://www.dfki.de/cps/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

58

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/pg
http://www.cs.kent.ac.uk/pg
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.youtube.com/watch?v=PtEcLs2t9Ws
http://www.youtube.com/watch?v=PtEcLs2t9Ws
http://code.google.com/p/scion-lib/
http://olafchitil.github.com/hat
http://olafchitil.github.com/hat
http://www.cs.kent.ac.uk/~oc/contracts.html
http://www.cs.kent.ac.uk/~oc/contracts.html
http://www.cs.kent.ac.uk/projects/heat/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/cps/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/


9.5 Haskell at Universiteit Gent, Belgium

Report by: Tom Schrĳvers
Participants: Steven Keuchel

Haskell is one of the main research topics of the new
Programming Languages Group at the Department of
Applied Mathematics and Computer Science at the
University of Ghent, Belgium.

Teaching. UGent is a great place for Haskell-
aficionados:

◦ Make Haskell part of your studies with the elec-
tive course Functional and Logic Programming Lan-
guages.

◦ Explore the theory behind Haskell in the new master
course on Programming Language Fundamentals.

◦ Explore Haskell in depth with one of our Haskell mas-
ter thesis topics.

◦ Attend the thriving Ghent Functional Programming
Group (→ 9.10).

Research. Haskell-related projects of the group mem-
bers and collaborators are:

◦ Meta-Theory à la Carte:
Formalizing meta-theory, or proofs about program-
ming languages, in a proof assistant has many well-
known benefits. However, the considerable effort in-
volved in mechanizing proofs has prevented it from
becoming standard practice. This cost can be amor-
tized by reusing as much of an existing formalization
as possible when building a new language or extend-
ing an existing one. Unfortunately reuse of compo-
nents is typically ad-hoc, with the language designer
cutting and pasting existing definitions and proofs,
and expending considerable effort to patch up the
results.
This work presents a more structured approach to
the reuse of formalizations of programming language
semantics through the composition of modular defi-
nitions and proofs. The key contribution is the de-
velopment of an approach to induction for extensible
Church encodings which uses a novel reinterpretation
of the universal property of folds. These encodings
provide the foundation for a framework, formalized
in Coq, which uses type classes to automate the com-
position of proofs from modular components.
Several interesting language features, including
binders and general recursion, illustrate the capa-
bilities of our framework. We reuse these features
to build fully mechanized definitions and proofs for
a number of languages, including a version of mini-
ML. Bounded induction enables proofs of properties

for non-inductive semantic functions, and mediat-
ing type classes enable proof adaptation for more
feature-rich languages.
This is joint work with Ben Delaware and Bruno
Oliveira.

◦ Generic Conversions of Abstract Syntax Representa-
tions:
This work presents a datatype-generic approach to
syntax with variable binding. A universe specifies the
binding and scoping structure of object languages,
including binders that bind multiple variables as well
as sequential and recursive scoping. Two interpreta-
tions of the universe are given: one based on para-
metric higher-order abstract syntax and one on well-
typed de Bruĳn indices. The former provides con-
venient interfaces to embedded domain-specific lan-
guages, but is awkward to analyse and manipulate
directly, while the latter is a convenient representa-
tion in implementations, but is unusable as a surface
language. We show how to generically convert from
the parametric HOAS interpretation to the de Bruĳn
interpretation thereby taking the pain from DSL de-
veloper to write the conversion themselves.
This is joint work with Johan Jeuring.

◦ Modular Reasoning about Incremental Programming:
Incremental Programming (IP) is a programming
style in which new program components are defined
as increments of other components. Examples of
IP mechanisms include: Object-oriented program-
ming (OOP) inheritance, aspect-oriented program-
ming (AOP) advice and feature-oriented program-
ming (FOP). A characteristic of IP mechanisms is
that, while individual components can be indepen-
dently defined, the composition of components makes
those components become tightly coupled, sharing
both control and data flows. This makes reasoning
about IP mechanisms a notoriously hard problem:
modular reasoning about a component becomes very
difficult; and it is very hard to tell if two tightly cou-
pled components interfere with each other’s control
and data flows.
This work presents modular reasoning about interfer-
ence (MRI), a purely functional model of IP embed-
ded in Haskell. MRI models inheritance with mixins
and side-effects with monads. It comes with a range
of powerful reasoning techniques: equational reason-
ing, parametricity and reasoning with algebraic laws
about effectful operations. These techniques enable
modular reasoning about interference in the presence
of side-effects.
MRI formally captures harmlessness, a hard-to-
formalize notion in the interference literature, in two
theorems. We prove these theorems with a non-
trivial combination of all three reasoning techniques.

59



This is joint work with Bruno Oliveira and William
Cook.

◦ Search Combinators:

Search heuristics often make all the difference be-
tween effectively solving a combinatorial problem
and utter failure. Hence, the ability to swiftly design
search heuristics that are tailored towards a problem
domain is essential to performance improvement. In
other words, this calls for a high-level domain-specific
language (DSL).

The tough technical challenge we face when design-
ing a DSL for search heuristics, is to bridge the gap
between a conceptually simple specification language
(high-level, purely functional and naturally compo-
sitional) and an efficient implementation (typically
low-level, imperative and highly non-modular). We
overcome this challenge with a systematic approach
in Haskell that disentangles different primitive con-
cepts into separate monadic modular mixin compo-
nents, each of which corresponds to a feature in the
high-level DSL. The great advantage of mixin com-
ponents to provide a semantics for our DSL is its
modular extensibility.

This is joint work with Guido Tack, Pieter Wuille,
Horst Samulowitz and Peter Stuckey, following up on
Monadic Constraint Programming, a monadic DSL
for Constraint Programming in Haskell.

Further reading

◦ http://users.ugent.be/~tschrĳv/haskell.html
◦ http://users.ugent.be/~tschrĳv/SearchCombinators/
◦ http://hackage.haskell.org/package/Monatron
◦ http://hackage.haskell.org/package/monadiccp

9.6 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. Members of the group include users
of Haskell, Ocaml, LISP, Scala, F#, Scheme and oth-
ers. We have 10 meetings per year (Feb–Nov) and meet
on the third Thursday of each month. We regularly get
20–30 attendees, with a 70/30 industry/research split.
Talks this year have included material on compilers,
theorem proving, type systems, Haskell web program-
ming, OCaml and Jocaml. We usually have about 90
mins of talks, starting at 6:30pm, then go for drinks
afterwards. All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/
◦ http://fp-syd.ouroborus.net/wiki/Past/2012

9.7 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component of
the Department of Computer Science and Engineering
at Chalmers. In particular, Haskell has a very impor-
tant place, as it is used as the vehicle for teaching and
numerous projects. Besides functional programming,
language technology, and in particular domain specific
languages is a common aspect in our projects.

Property-based testing. QuickCheck, developed at
Chalmers, is one of the standard tools for testing
Haskell programs. It has been ported to Erlang and
used by Ericsson, Quviq, and others. QuickCheck con-
tinues to be improved; tools and related techniques:

◦ PULSE, the ProTest User-Level Scheduler for Er-
lang, which has been used to find race conditions in
industrial software.

◦ We have shown how to sucessfully apply QuickCheck
to polymorphic properties: http://publications.lib.
chalmers.se/cpl/record/index.xsql?pubid=99387.

Natural language technology. Grammatical Frame-
work (http://www.haskell.org/communities/11-2010/
html/report.html#sect9.7.3) is a declarative language
for describing natural language grammars. It is useful
in various applications ranging from natural language
generation, parsing and translation to software local-
ization. The framework provides a library of large
coverage grammars for currently fifteen languages from
which the developers could derive smaller grammars
specific for the semantics of a particular application.

Parser generator and template-haskell. BNFC-meta
is an embedded parser generator, presented at the
Haskell Symposium 2011. Like the BNF Converter, it
generates a compiler front end in Haskell. Two aspects
distinguish BNFC-meta from BNFC and other parser
generators:
◦ BNFC-meta is not a program but a library (the

parser description is embedded in a quasi-quote).
◦ BNFC-meta automatically provides quasi-quotes for

the specified language. This includes a powerful and
flexible facility for anti-quotation.

More info: http://hackage.haskell.org/package/
BNFC-meta.

60

http://users.ugent.be/~tschrijv/haskell.html
http://users.ugent.be/~tschrijv/SearchCombinators/
http://hackage.haskell.org/package/Monatron
http://hackage.haskell.org/package/monadiccp
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2012
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/EmbeddedParserGenerators
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta


Generic Programming. Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic
programming research at Chalmers. Recent develop-
ments include fundamental work on “Proofs for Free”
(extensions of the parametricity & dependent types
work from ICFP 2010, now published in JFP 2012).
Patrik Jansson leads a work-package on DSLs within
the EU project “Global Systems Dynamics and Pol-
icy” (http://www.gsdp.eu/, started Oct. 2010). If you
want to apply DSLs, Haskell, and Agda to help mod-
elling Global Systems Science, please get in touch!
Jansson and Bernardy have also just started a new
project called “Strongly Typed Libraries for Programs
and Proofs”.

Language-based security. SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory. Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

Embedded domain-specific languages. The func-
tional programming group has developed several dif-
ferent domain-specific languages embedded in Haskell.
The active ones are:

◦ Feldspar (→ 7.16.1) is a domain-specific language
for digital signal processing (DSP), developed in
co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest.

◦ Obsidian is a language for data-parallel program-
ming targeting GPGPUs.

The following languages are not actively developed at
the moment:

◦ Lava is a language for structural hardware descrip-
tion. Circuits are modeled as ordinary Haskell func-
tions, and many of Haskell’s advantages (such as
higher-order functions and polymorphism) are also
available for Lava descriptions. There are several
versions of Lava around. The version developed at
Chalmers aims particularly at supporting formal ver-
ification in a convenient way.

◦ Wired is an extension to Lava, targeting (not exclu-
sively) semi-custom VLSI design. A particular aim
of Wired is to give the designer more control over on-
chip wires’ effects on performance. The most recent
activity was to use Wired to explore the layout of
multipliers (Kasyab P. Subramaniyan, Emil Axels-
son, Mary Sheeran and Per Larsson-Edefors. Layout
Exploration of Geometrically Accurate Arithmetic
Circuits. Proceedings of IEEE International Confer-
ence of Electronics, Circuits and Systems. 2009).
Home page: http://www.cse.chalmers.se/~emax/
wired/.

Automated reasoning. We are responsible for a suite
of automated-reasoning tools:

◦ Equinox is an automated theorem prover for pure
first-order logic with equality. Equinox actually im-
plements a hierarchy of logics, realized as a stack
of theorem provers that use abstraction refinement
to talk with each other. In the bottom sits an effi-
cient SAT solver. Paradox is a finite-domain model
finder for pure first-order logic with equality. Para-
dox is a MACE-style model finder, which means that
it translates a first-order problem into a sequence of
SAT problems, which are solved by a SAT solver.

◦ Infinox is an automated tool for analyzing first-
order logic problems, aimed at showing finite un-
satisfiability, i.e., the absence of models with finite
domains. All three tools are developed in Haskell.

◦ QuickSpec generates algebraic specifications for an
API automatically, in the form of equations veri-
fied by random testing. http://www.cse.chalmers.se/
~nicsma/quickspec.pdf

◦ Hip (the Haskell Inductive Prover) is a new tool
to automatically prove properties about Haskell pro-
grams by using induction or co-induction. The ap-
proach taken is to compile Haskell programs to first
order theories. Induction is applied on the meta
level, and proof search is carried out by automated
theorem provers for first order logic with equality.

◦ On top of Hip we built HipSpec, which automat-
ically tries to find appropriate background lemmas
for properties where only doing induction is too
weak. It uses the translation and structural induc-
tion from Hip. The background lemmas are from
the equational theories built by QuickSpec. Both
the user-stated properties and those from QuickSpec
are now tried to be proven with induction. Con-
jectures proved to be theorems are added to the
theory as lemmas, to aid proving later properties
which may require them. For more information,
see the draft paper http://web.student.chalmers.se/
~danr/hipspec-atx.pdf

61

http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ParaDep
http://www.gsdp.eu/
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/StronglyTypedLibrariesForProgramsAndProofs
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/StronglyTypedLibrariesForProgramsAndProofs
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf


Teaching. Haskell is present in the curriculum as
early as the first year of the Bachelors program. We
have four courses solely dedicated to functional pro-
gramming (of which three are Masters-level courses),
but we also provide courses which use Haskell for teach-
ing other aspects of computer science, such as pro-
gramming languages, compiler construction, hardware
description and verification, data structures and pro-
gramming paradigms.

9.8 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming is vibrant at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexander)
and the Functional Programming Group (lead by Andy
Gill) together form the core functional programming
initiative at KU. Apart from Kansas Lava (→ 7.16.2)
and HERMIT (→ 7.5.1), there are several other FP and
Haskell related things going on, primarily in the area
of web technologies.
We are interested in providing better support for in-

teractive applications in Haskell by building on top of
existing web technologies, like the fast Chrome browser,
HTML5, and JavaScript. This is motivated partly
by having easy tools to interactively teach program-
ming in Haskell, and partly by the needs of the HER-
MIT (→ 7.5.1) project.
Towards this, we have developed a lightweight web

framework called Scotty. Modeled after Ruby’s popu-
lar Sinatra framework, Scotty is intended to be a cheap
and cheerful way to write RESTful, declarative web
applications. Scotty borrows heavily from the Yesod
(→ 5.2.6) ecosystem, conforming to the WAI (→ 5.2.1)
interface and using the fast Warp (→ 5.2.2) web server
by default. More information can be found at the link
below.
On top of Scotty, we are building sunroof, a deeply-

embedded Javascript compiler, allowing for the han-
dling of arbitrary asynchronous Javascript events di-
rectly on the browser. The initial design and imple-
mentation was written up in XLDI’12.
Finally, in August 2012 Nicolas Frisby successfully

defended his PhD, and plans to start an internship at
MSR Cambridge early next year.

Further reading

◦ The Functional Programming Group: http://www.
ittc.ku.edu/csdl/fpg

◦ CSDL website: https://wiki.ittc.ku.edu/csdl/Main_
Page

◦ http://www.ittc.ku.edu/csdl/fpg/Tools/Scotty
◦ http://www.ittc.ku.edu/csdl/fpg/Tools/BlankCanvas

9.9 San Simón Haskell Community

Report by: Antonio Mamani
Participants: Carlos Gomez

The San Simón Haskell Community from San Simón
University Cochabamba-Bolivia, is an informal Spanish
group that aims to learn, share information, knowledge
and experience related to the functional paradigm.
On October last year, we participated on the XVIII

National Congress of Computer Science of Bolivia
(Congreso Nacional de Ciencias de la Computaciń de
Bolivia), in which we organized two special activities:
a Journal in Functional Programming (We had a very
good introduction to functional paradigm and haskell
[Msc. Vladimir Costas] and many short talks about
the benefits of knowing Haskell and other functional
languages [members of San Simon Haskell Commu-
nity]) and the 2nd Open House Haskell Community
(We showed some of the projects we were working on).
Projects in the 2nd Open House Haskell Community:

1. L-System — Application that renders an L-
System using wxHaskell (http://hackage.haskell.org/
package/lsystem) [Carlos Gomez]

2. Compiler IDL - Java — Generate code from IDL
to Java. [Richard Jaldin]

3. Mini Java — Mini-Java compiler from scratch.
[Antonio Mamani]

4. 3S Functional Web Browser — Bachelor theses
project about experimenting the implementation
of a web browser with Haskell. (http://hsbrowser.
wordpress.com/3s-functional-web-browser/) [Carlos
Gomez]

This year, we are planning to organize the 2nd local
Haskell Hackathon and the 3rd Open House Haskell
Community. That’s all for now, see you on facebook.

9.10 Ghent Functional Programming
Group

Report by: Andy Georges
Participants: Jeroen Janssen, Tom Schrĳvers, Jasper

Van der Jeugt
Status: active

62

http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
https://wiki.ittc.ku.edu/csdl/Main_Page
http://www.ittc.ku.edu/csdl/fpg/Tools/Scotty
http://www.ittc.ku.edu/csdl/fpg/Tools/BlankCanvas
http://hackage.haskell.org/package/lsystem
http://hackage.haskell.org/package/lsystem
http://hsbrowser.wordpress.com/3s-functional-web-browser/
http://hsbrowser.wordpress.com/3s-functional-web-browser/


The Ghent Functional Programming Group is a user
group aiming to bring together programmers, aca-
demics, and others interested in functional program-
ming located in the area of Ghent, Belgium. Our goal
is to have regular meetings with talks on functional pro-
gramming, organize functional programming related
events such as hackathons, and to promote functional
programming in Ghent by giving after-hours tutorials.
While we are open to all functional languages, quite
frequently, the focus is on Haskell, since most atten-
dees are familiar with this language. The group has
been active for two and a half years, holding meetings
on a regular basis.
We have reported in previous HCARs on the first

eleven meetings. Since May 2012, we had a single meet-
ing. The GhentFPG #12 meeting took place on May
8, 2012 and involved two talks.

◦ Tom Schrĳvers — Discussion on the Flemish Pro-
gramming Contest 2012, with a focus on using the
right Haskell data types for solving several of the
given problems.

◦ Jasper Van der Jeugt — Tutorial on parallelisation
in Haskell.

The attendance at the meetings usually varies be-
tween 10 to 15 people. We do have a number of Ghent
University students attending. However, due to a shift
in venue, the attendence has dropped slighty.
The plans for the fall 2012 Hackathon have shifted

due to busy schedules of the GhentFPG organisers. In
this academic year, we do plan to review the approach
used during the meetings, because talks seem to attract
more attendees compared to problem solving or coding
events.
If you want more information on GhentFPG you can

follow us on twitter (@ghentfpg), via Google Groups
(http://groups.google.com/group/ghent-fpg), or by vis-
iting us at irc.freenode.net in channel #ghentfpg.

Further reading

◦ http://www.haskell.org/haskellwiki/Ghent_
Functional_Programming_Group

◦ http://groups.google.com/group/ghent-fpg

63

http://groups.google.com/group/ghent-fpg
http://www.haskell.org/haskellwiki/Ghent_Functional_Programming_Group
http://www.haskell.org/haskellwiki/Ghent_Functional_Programming_Group
http://groups.google.com/group/ghent-fpg

	Community
	haskell.org
	Haskellers

	Books, Articles, Tutorials
	In Japanese: Learn You a Haskell for Great Good!
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects

	Implementations
	Haskell Platform
	The Glasgow Haskell Compiler
	UHC, Utrecht Haskell Compiler
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Haskell in Gentoo Linux
	Fedora Haskell SIG


	Related Languages and Language Design
	Agda
	MiniAgda
	Disciple
	SugarHaskell

	Haskell and …
	Haskell and Parallelism
	Eden
	GpH --- Glasgow Parallel Haskell
	Parallel GHC project
	Static Verification of Transactions in STM Haskell

	Haskell and the Web
	WAI
	Warp
	Holumbus Search Engine Framework
	Happstack
	Mighttpd2 --- Yet another Web Server
	Yesod
	Snap Framework

	Haskell and Compiler Writing
	MateVM
	CoCoCo
	UUAG
	AspectAG
	LQPL --- A Quantum Programming Language Compiler and Emulator


	Development Tools
	Environments
	EclipseFP
	ghc-mod --- Happy Haskell Programming
	HEAT: The Haskell Educational Advancement Tool

	Code Management
	Darcs
	DarcsWatch
	cab --- A Maintenance Command of Haskell Cabal Packages

	Deployment
	Cabal and Hackage
	Portackage --- A Hackage Portal

	Others
	lhs2TeX
	Hat --- the Haskell Tracer


	Libraries, Applications, Projects
	Language Features
	Conduit
	Free Sections

	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners

	Parsing and Transforming
	epub-metadata
	Utrecht Parser Combinator Library: uu-parsinglib

	Generic and Type-Level Programming
	Unbound
	A Generic Deriving Mechanism for Haskell
	Optimising Generic Functions

	Proof Assistants and Reasoning
	HERMIT
	HTab
	Free Theorems for Haskell

	Mathematical Objects
	dimensional: Statically Checked Physical Dimensions
	AERN
	Paraiso
	Bullet

	Data Types and Data Structures
	HList --- A Library for Typed Heterogeneous Collections
	Persistent
	DSH --- Database Supported Haskell

	User Interfaces
	Gtk2Hs
	xmonad

	Functional Reactive Programming
	reactive-banana
	Functional Hybrid Modelling
	Elerea

	Graphics
	LambdaCube
	diagrams

	Audio
	Audio Signal Processing
	Live-Sequencer
	Chordify
	Euterpea

	Text and Markup Languages
	HaTeX
	Haskell XML Toolbox
	epub-tools (Command-line epub Utilities)

	Natural Language Processing
	NLP
	GenI

	Machine Learning
	Bayes-stack
	Homomorphic Machine Learning

	Bioinformatics
	ADPfusion
	Biohaskell

	Embedding DSLs for Low-Level Processing
	Feldspar
	Kansas Lava

	Others
	Clckwrks
	leapseconds-announced
	arbtt
	sshtun (Wrapper daemon to manage an ssh tunnel)
	hMollom --- Haskell implementation of the Mollom API
	hGelf --- Haskell implementation of the Graylog extended logging format
	Galois Open-Source Projects on GitHub


	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Industrial Haskell Group
	Barclays Capital
	Oblomov Systems
	madvertise Mobile Advertising
	OpenBrain Ltd.

	Research and User Groups
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI and University Bremen
	Haskell at Universiteit Gent, Belgium
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	San Simón Haskell Community
	Ghent Functional Programming Group


