
Haskell Communities and Activities Report

http://www.haskell.org/communities/

Thirteenth Edition – December 22, 2007

Andres Löh (ed.)
Lloyd Allison alpheccar Tiago Miguel Laureano Alves

Krasimir Angelov Apfelmus Carlos Areces
Sengan Baring-Gould Alistair Bayley Clifford Beshers

Chris Brown Bjorn Buckwalter Andrew Butterfield
Manuel Chakravarty Olaf Chitil Duncan Coutts

Nils Anders Danielsson Robert Dockins Frederik Eaton
Keith Fahlgren Jeroen Fokker Simon Frankau

Leif Frenzel Richard A. Frost Clemens Fruhwirth
Andy Gill George Giorgidze Daniel Gorin

Martin Grabmüller Murray Gross Jurriaan Hage
Kevin Hammond Bastiaan Heeren Christopher Lane Hinson

Guillaume Hoffmann Paul Hudak Liyang Hu
Graham Hutton Wolfgang Jeltsch Antti-Juhani Kaĳanaho
Oleg Kiselyov Dirk Kleeblatt Lennart Kolmodin

Slawomir Kolodynski Eric Kow Huiqing Li
Andres Löh Rita Loogen Salvador Lucas
Ian Lynagh Ketil Malde Christian Maeder

Simon Marlow Steffen Mazanek Conor McBride
Neil Mitchell Andy Adams-Moran Dino Morelli
Yann Morvan Matthew Naylor Rishiyur Nikhil
Stefan O’Rear Simon Peyton-Jones Dan Popa
Claus Reinke David Roundy Alberto Ruiz
David Sabel Uwe Schmidt Ganesh Sittampalam

Anthony Sloane Dominic Steinitz Don Stewart
Jennifer Streb Martin Sulzmann Doaitse Swierstra

Wouter Swierstra Hans van Thiel Henning Thielemann
Peter Thiemann Simon Thompson Phil Trinder
Andrea Vezzosi Miguel Vilaca Joost Visser

Janis Voigtländer Edsko de Vries Malcolm Wallace
Mark Wassell Ashley Yakeley Bulat Ziganshin

http://www.haskell.org/communities/

Preface

This is the 13th edition of the Haskell Communities and Activities Report, and it arrives just in
time for the break between the years – if you are bored by all the free time you might suddenly
have, why not sit down and study what other Haskellers have been up to during the past six
months?

As always, entries that are completely new (or have been revived after disappearing temporar-
ily from the edition) are formatted using a blue background. Updated entries have a header
with a blue background. In the most cases, I have dropped entries that have not been changed
for a year or longer.

Many thanks to all the contributors. A special “thank you” to the many contributors that
have attempted to reduce my workload this year by sending their entries in the preferred LATEX
style – more than ever before: This has made the experience of assembling the report an even
greater pleasure!

An interesting idea can be found in the Ansemond LLC entry (→ 7.1.1), where a screenshot
is included. I would like the report to become more colourful and have more pictures. So, for
previous editions, if you would like to include a screenshot along with your Haskell-related tool
or application, please send it along with your entry.

Many Haskell projects exist now, and most of them seem to be looking for developers. If you
are an enthusiastic Haskell programmer, please consider supporting one of the existing projects
by offering your help, and please don’t forget some of the “older”, yet still very successful
projects such as Darcs (→ 6.13) and Cabal (→ 4.1.1) over the continuous stream of new project
and software announcements.

Despite the fun it has been, my time as editor of the Haskell Communities and Activities
Report is coming to an end. I am therefore looking for a new editor who would like to take over
and continue the report, possibly adapting it to her or his own vision. Please contact me if you
are interested. A separate announcement will follow.

If a new editor can be found, we might prepare the next edition together, probably around
May, so watch the mailing lists around this time for announcements – we continue to depend
and rely on your contributions!

Feedback is of course very welcome 〈hcar@haskell.org〉. Enjoy the Report!

Andres Löh, Universiteit Utrecht, The Netherlands

2

mailto: hcar at haskell.org

Contents

1 General 6
1.1 HaskellWiki and haskell.org . 6
1.2 #haskell . 6
1.3 Planet Haskell . 6
1.3.1 Haskell Weekly News . 7
1.4 The Monad.Reader . 7
1.5 Books and tutorials . 7
1.5.1 New textbook – Programming in Haskell . 7
1.5.2 Haskell Wikibook . 7
1.5.3 Gtk2Hs tutorial . 8

2 Implementations 9
2.1 The Glasgow Haskell Compiler . 9
2.2 yhc . 11
2.3 The Helium compiler . 12

3 Language 13
3.1 Variations of Haskell . 13
3.1.1 Liskell . 13
3.1.2 Haskell on handheld devices . 13
3.2 Non-sequential Programming . 13
3.2.1 GpH – Glasgow Parallel Haskell . 13
3.2.2 Eden . 14
3.3 Type System/Program Analysis . 15
3.3.1 Free Theorems for Haskell . 15
3.3.2 Agda . 15
3.3.3 Epigram . 16
3.3.4 Chameleon project . 17
3.3.5 XHaskell project . 17
3.3.6 HaskellJoin . 18
3.3.7 Uniqueness Typing . 18
3.4 Backend . 18
3.4.1 The Reduceron . 18

4 Libraries 20
4.1 Packaging and Distribution . 20
4.1.1 Cabal and HackageDB . 20
4.2 General libraries . 20
4.2.1 HPDF . 20
4.2.2 The Neon Library . 21
4.2.3 Test.IOSpec . 21
4.2.4 GSLHaskell . 21
4.2.5 An Index Aware Linear Algebra Library . 21
4.3 Parsing and Transforming . 22
4.3.1 Graph Parser Combinators . 22
4.3.2 uniplate . 22
4.3.3 InterpreterLib . 22
4.3.4 hscolour . 23
4.3.5 Utrecht Parsing Library and Attribute Grammar System . 23
4.3.6 The X-SAIGA Project (was: Left-Recursive Parser Combinators) 23
4.4 System . 24
4.4.1 hspread . 24

3

4.4.2 Harpy . 24
4.4.3 hs-plugins . 24
4.4.4 The libpcap Binding . 25
4.5 Databases and data storage . 25
4.5.1 Takusen . 25
4.6 Data types and data structures . 25
4.6.1 Data.Record . 25
4.6.2 Data.ByteString . 26
4.6.3 stream-fusion (was: Data.List.Stream) . 26
4.6.4 Edison . 26
4.6.5 dimensional . 27
4.6.6 Numeric prelude . 27
4.6.7 HList – a library for typed heterogeneous collections . 28
4.7 Data processing . 28
4.7.1 binary . 28
4.7.2 binarydefer . 29
4.7.3 The Haskell Cryptographic Library . 29
4.7.4 The Haskell ASN.1 Library . 29
4.7.5 2LT: Two-Level Transformation . 30
4.8 User interfaces . 30
4.8.1 Shellac . 30
4.8.2 Grapefruit – A declarative GUI and graphics library . 31
4.8.3 Gtk2Hs . 31
4.8.4 VTY . 32
4.9 (Multi-)Media . 32
4.9.1 Programming of Modular Synthesizers . 32
4.9.2 Haskore revision . 32
4.10 Web and XML programming . 33
4.10.1 tagsoup . 33
4.10.2 HaXml . 33
4.10.3 Haskell XML Toolbox . 33
4.10.4 WASH/CGI – Web Authoring System for Haskell . 34

5 Tools 35
5.1 Foreign Function Interfacing . 35
5.1.1 C→Haskell . 35
5.2 Scanning, Parsing, Analysis . 35
5.2.1 Alex version 2 . 35
5.2.2 Happy . 35
5.2.3 SdfMetz . 35
5.3 Transformations . 36
5.3.1 derive . 36
5.3.2 Term Rewriting Tools written in Haskell . 36
5.3.3 HaRe – The Haskell Refactorer . 37
5.3.4 VooDooM . 37
5.4 Testing and Debugging . 38
5.4.1 Haskell Program Coverage . 38
5.4.2 Hat . 39
5.4.3 Lazy SmallCheck . 39
5.5 Development . 40
5.5.1 Haskell Mode Plugins for Vim . 40
5.5.2 cpphs . 40
5.5.3 Visual Haskell . 40
5.5.4 EclipseFP – Haskell support for the Eclipse IDE . 41
5.5.5 Haddock . 41
5.5.6 Hoogle – Haskell API Search . 41

4

6 Applications 42
6.1 Exercise Assistants . 42
6.2 Lambda Shell . 42
6.3 xmonad . 43
6.4 GenI . 43
6.5 Roguestar . 43
6.6 mmisar . 43
6.7 Inference Services for Hybrid Logics . 43
6.7.1 HyLoRes . 44
6.7.2 HTab . 44
6.7.3 HGen . 44
6.8 Saoithín: a 2nd-order proof assistant . 44
6.9 Raskell . 45
6.10 photoname . 45
6.11 HJS – Haskell Javascript Interpreter . 45
6.12 FreeArc . 45
6.13 Darcs . 46
6.14 lambdabot . 46
6.15 yi . 47
6.16 INblobs – Interaction Nets interpreter . 47
6.17 lhs2TEX . 47
6.18 Emping . 48
6.19 Audio signal processing . 48
6.20 hmp3 . 49
6.21 easyVision . 49

7 Users 50
7.1 Commercial users . 50
7.1.1 Ansemond LLC . 50
7.1.2 Barclays Capital Quantitative Analytics Group . 50
7.1.3 Credit Suisse Global Modelling and Analytics Group . 50
7.1.4 Bluespec tools for design of complex chips . 51
7.1.5 Galois, Inc. 52
7.1.6 SeeReason Partners, LLC . 52
7.2 Haskell in Education . 52
7.3 Research Groups . 52
7.3.1 Foundations and Methods Group at Trinity College Dublin . 52
7.3.2 Functional Programming at University of Nottingham . 53
7.3.3 Artificial Intelligence and Software Technology at JWG-University Frankfurt 54
7.3.4 Formal Methods at Bremen University and DFKI Lab Bremen . 55
7.3.5 Functional Programming at Brooklyn College, City University of New York 56
7.3.6 Functional Programming at Macquarie University . 56
7.3.7 Functional Programming at the University of Kent . 56
7.3.8 Programming Languages & Systems at UNSW . 57
7.3.9 Haskell in Romania . 57
7.3.10 SCIence project . 57
7.4 User groups . 58
7.4.1 Bay Area Functional Programmers . 58
7.4.2 OpenBSD Haskell . 58
7.4.3 Haskell in Gentoo Linux . 58
7.5 Individuals . 58
7.5.1 Oleg’s Mini tutorials and assorted small projects . 58
7.5.2 dot.ghci . 59
7.6 A Survey on the Use of Haskell in Natural-Language Processing . 60
7.6.1 Inductive Programming . 60
7.6.2 Bioinformatics tools . 60

5

1 General

1.1 HaskellWiki and haskell.org

Report by: Ashley Yakeley

HaskellWiki is a MediaWiki installation running on
haskell.org, including the haskell.org “front page”. Any-
one can create an account and edit and create pages.
Examples of content include:

◦ Documentation of the language and libraries

◦ Explanation of common idioms

◦ Suggestions and proposals for improvement of the
language and libraries

◦ Description of Haskell-related projects

◦ News and notices of upcoming events

We encourage people to create pages to describe and
advertise their own Haskell projects, as well as add to
and improve the existing content. All content is sub-
mitted and available under a “simple permissive” li-
cense (except for a few legacy pages).

In addition to HaskellWiki, the haskell.org website
hosts some ordinary HTTP directories. The machine
also hosts mailing lists. There is plenty of space and
processing power for just about anything that peo-
ple would want to do there: if you have an idea for
which HaskellWiki is insufficient, contact the maintain-
ers, John Peterson and Olaf Chitil, to get access to this
machine.

Further reading

◦ http://haskell.org/
◦ http://haskell.org/haskellwiki/Mailing_Lists

1.2 #haskell

Report by: Don Stewart

The #haskell IRC channel is a real-time text chat
where anyone can join to discuss Haskell. The channel
has continued to grow in the last 6 months, now aver-
aging around 390 users, with a record 436 users. It is
one of the largest channels on freenode. The irc channel
is home to hpaste and lambdabot (→ 6.14), two useful
Haskell bots. Point your IRC client to irc.freenode.net
and join the #haskell conversation!

For non-English conversations about Haskell there is
now:

◦ #haskell.de – German speakers
◦ #haskell.dut – Dutch speakers
◦ #haskell.es – Spanish speakers
◦ #haskell.fi – Finnish speakers
◦ #haskell.fr – French speakers
◦ #haskell.hr – Croatian speakers
◦ #haskell.it – Italian speakers
◦ #haskell.jp – Japenese speakers
◦ #haskell.no – Norwegian speakers
◦ #haskell_ru – Russian speakers
◦ #haskell.se – Swedish speakers

Related Haskell channels are now emerging, includ-
ing:
◦ #haskell-overflow – Overflow conversations
◦ #haskell-blah – Haskell people talking about any-

thing except Haskell itself
◦ #gentoo-haskell – Gentoo/Linux specific Haskell

conversations (→ 7.4.3)
◦ #haskell-books – Authors organizing the collabo-

rative writing of the Haskell +wikibook
◦ #darcs – Darcs revision control channel (written in

Haskell) (→ 6.13)
◦ #ghc – GHC developer discussion (→ 2.1)
◦ #happs – HAppS Haskell Application Server channel
◦ #xmonad – Xmonad a tiling window manager written

in Haskell (→ 6.3)

Further reading

More details at the #haskell home page: http://
haskell.org/haskellwiki/IRC_channel

1.3 Planet Haskell

Report by: Antti-Juhani Kaĳanaho
Status: (slightly) updated

Planet Haskell is an aggregator of Haskell people’s
blogs and other Haskell-related news sites. As of mid-
November 2007 content from 78 blogs and other sites
is being republished in a common format.

A common misunderstanding about Planet Haskell
is that it republishes only Haskell content. That is not
its mission. A Planet shows what is happening in the
community, what people are thinking about or doing.
Thus Planets tend to contain a fair bit of “off-topic”
material. Think of it as a feature, not a bug.

For information on how to get added to Planet,
please read http://planet.haskell.org/policy.html.

6

http://haskell.org/
http://haskell.org/haskellwiki/Mailing_Lists
http://haskell.org/haskellwiki/IRC_channel
http://haskell.org/haskellwiki/IRC_channel
http://planet.haskell.org/policy.html

Further reading

http://planet.haskell.org/

1.3.1 Haskell Weekly News

Report by: Don Stewart

The Haskell Weekly News (HWN) is a weekly newslet-
ter covering developments in Haskell. Content includes
announcements of new projects, jobs, discussions from
the various Haskell communities, notable project com-
mit messages, Haskell in the blogspace, and more. The
Haskell Weekly News also publishes latest releases up-
loaded to Hackage.

It is published in html form on The Haskell Se-
quence, via mail on the Haskell mailing list, on Planet
Haskell (→ 1.3), and via RSS. Headlines are published
on haskell.org (→ 1.1).

Further reading

◦ Archives, and more information can be found at:
http://www.haskell.org/haskellwiki/Haskell_Weekly_
News

1.4 The Monad.Reader

Report by: Wouter Swierstra

There are plenty of academic papers about Haskell and
plenty of informative pages on the Haskell Wiki. Unfor-
tunately, there’s not much between the two extremes.
That’s where The Monad.Reader tries to fit in: more
formal than a Wiki page, but more casual than a jour-
nal article.

There are plenty of interesting ideas that maybe
don’t warrant an academic publication – but that
doesn’t mean these ideas aren’t worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if its all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining
a neat idea about ‘warm fuzzy things’ to the rest of us
can still be plain fun.

The Monad.Reader is also a great place to write
about a tool or application that deserves more atten-
tion. Most programmers don’t enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.

Since the last HCAR there have been two new is-
sues, including a special issue about this year’s Sum-
mer of Code. I’m always interested in new submissions,
whether you’re an established researcher or fledgling

Haskell programmer. Check out the Monad.Reader
homepage for all the information to you need to start
writing your article.

Further reading

All the recent issues and the information you need to
start writing an article are available from: http://www.
haskell.org/haskellwiki/The_Monad.Reader.

1.5 Books and tutorials

1.5.1 New textbook – Programming in Haskell

Report by: Graham Hutton

Haskell is one of the leading languages for teaching
functional programming, enabling students to write
simpler and cleaner code, and to learn how to structure
and reason about programs. This introduction is ideal
for beginners: it requires no previous programming ex-
perience and all concepts are explained from first prin-
ciples via carefully chosen examples. Each chapter in-
cludes exercises that range from the straightforward to
extended projects, plus suggestions for further reading
on more advanced topics. The presentation is clear
and simple, and benefits from having been refined and
class-tested over several years.

Features include: freely accessible powerpoint slides
for each chapter; solutions to exercises, and examina-
tion questions (with solutions) available to instructors;
downloadable code that’s fully compliant with the lat-
est Haskell release.

Publication details:

◦ Published by Cambridge University Press, 2007.
Paperback: ISBN 0521692695; Hardback: ISBN:
0521871727; eBook: ISBN 051129218X.

In-depth review:

◦ Duncan Coutts, The Monad.Reader, http://www.
haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf

Further information:

◦ http://www.cs.nott.ac.uk/~gmh/book.html

1.5.2 Haskell Wikibook

Report by: Apfelmus
Participants: Eric Kow, David House, Joeri van Eekelen

and other contributors
Status: active development

7

http://planet.haskell.org/
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/Haskell_Weekly_News
http://www.haskell.org/haskellwiki/The_Monad.Reader
http://www.haskell.org/haskellwiki/The_Monad.Reader
http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.cs.nott.ac.uk/~gmh/book.html

The goal of the Haskell wikibook project is to build a
community textbook about Haskell that is at once free
(as in freedom and in beer), gentle and comprehensive.
We think that the many marvelous ideas of lazy func-
tional programming can and thus should be accessible
to everyone in a central place.

Since the last report, the wikibook has been progress-
ing slowly but steadily. A chapter about Applicative
Functors has been added, the module about Monads
is being rewritten and comprehensive material about
graph reduction and lazy evaluation is beginning to
emerge. Thanks to the authors and to the many con-
tributors that spot mistakes and ask those questions
we’d never thought of!

Further reading

◦ http://en.wikibooks.org/wiki/Haskell

◦ Mailing list: 〈wikibook@haskell.org〉

1.5.3 Gtk2Hs tutorial

Report by: Hans van Thiel

Part of the original GTK+2.0 tutorial by Tony Gail
and Ian Main has been adapted to Gtk2Hs (→ 4.8.3),
which is the Haskell binding to the GTK GUI library.

The Gtk2Hs tutorial assumes intermediate level
Haskell programming skills, but no prior GUI program-
ming experience.

See: http://darcs.haskell.org/gtk2hs/docs/tutorial/
Tutorial_Port/

Available, at the time of writing (November 2007):
2. Getting Started
3. Packing

3.1 Packing Widgets
3.2 Packing Demonstration Program
3.3 Packing Using Tables

4. Miscellaneous Widgets
4.1 The Button Widget
4.2 Adjustments, Scale and Range
4.3 Labels
4.4 Arrows and Tooltips
4.5 Dialogs, Stock Items and Progress Bars
4.6 Text Entries and Status Bars
4.7 Spin Buttons

5. Aggregated Widgets
5.1 Calendar
5.2 File Selection
5.3 Font and Color Selection
5.4 Notebook

6. Supporting Widgets
6.1 Scrolled Windows
6.2 EventBoxes and ButtonBoxes
6.3 The Layout Container
6.4 Paned Windows and Aspect Frames

The completed tutorial will consist of ten or more chap-
ters and will also build on “Programming with gtkmm”

by Murray Cumming et al. and the Inti (Integrated
Foundation Classes) tutorial by the Inti team. Com-
pletion is expected in 2Q 2008.

The Glade tutorial, an introduction to visual Gtk2Hs
programming, has been updated to Glade 3 by to
Alex Tarkovsky. It is available on: http://haskell.org/
gtk2hs/docs/tutorial/glade/

8

http://en.wikibooks.org/wiki/Haskell
mailto: wikibook at haskell.org
http://darcs.haskell.org/gtk2hs/docs/tutorial/Tutorial_Port/
http://darcs.haskell.org/gtk2hs/docs/tutorial/Tutorial_Port/
http://haskell.org/gtk2hs/docs/tutorial/glade/
http://haskell.org/gtk2hs/docs/tutorial/glade/

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by: Simon Peyton-Jones, Simon Marlow,
Norman Ramsey, Manuel Chakravarty, Ian

Lynagh and many others

Lots has happened on the GHC front over the last few
months. We released GHC 6.8.1 on 3 November 2007.
GHC now has so many users, and such a large feature
“surface area”, that simply getting to the point where
we can make a release is becoming quite a challenge.
Indeed, a good deal of our effort in the last six months
has been in the form of consolidation: fixing bugs and
solidifying what we have.

These graphs show “tickets” which include bugs, fea-
ture requests, and tasks. Of the “open tickets”, about
half are bugs. Notice the big spike in “closed tickets”
just before the 6.8.1 release!

The major new features of 6.8.1 were described in
the last issue of the Haskell Communities Newsletter,
so we won’t repeat them here. Instead, here are some
of the highlights of what we are working on now.

Syntactic and front-end enhancements

Several people have developed syntactic innovations,
which are (or will shortly be) in the HEAD:

Three improvements to records

◦ Wild-card patterns for records. If you have

data T = MkT {x,y::Int, z::Bool}

then you can say

f :: T -> Int
f (MkT {..}) = x+y

g :: Int -> Int -> T
g x y = MkT {..}

where
z = x>y

The “..” in a pattern brings into scope all the
fields of the record; while in a record construc-
tion it uses variables with those names to ini-
tialise the record fields. Here’s the user manual en-
try: http://www.haskell.org/ghc/dist/current/docs/
users_guide/syntax-extns.html#record-wildcards.

◦ Record puns is a slightly less abbreviated approach.
You can write f like this:

f (MkT {x,y}) = x+y

whereas Haskell 98 requires you to write x=x,y=y in
the pattern. Similarly in record construction.

◦ Record field disambiguation is useful when there are
several types in scope, all with the same field name.
For example, suppose another data type S had an x
field. Then if you write

h (MkT {x=p,y=q}) = ...

there is no doubt which x you mean, but Haskell 98
will complain that there are two xs in scope. Record
field disambiguation just uses the constructor to de-
cide which x you must mean.

None of these changes tackle the deeper issue of
whether or not Haskell’s current approach to records
is the Right Way; rather the changes just make the
current approach work a bit better. Furthermore, they
are all somewhat controversial, because they make it
harder to see where something comes into scope. Let’s
see what you think!

9

http://www.haskell.org/ghc/dist/current/docs/users_guide/syntax-extns.html#record-wildcards
http://www.haskell.org/ghc/dist/current/docs/users_guide/syntax-extns.html#record-wildcards

View patterns

View patterns are implemented, by Dan Licata. Here’s
a simple example:

polar :: Complex -> (Float, Float)
polar = ...

f :: Complex -> Bool
f (polar -> (r,theta)) = r <= 1

Here polar is an ordinary function, used to transform
the Complex to polar form. The view pattern is the
argument pattern for f. Many details here: http://
hackage.haskell.org/trac/ghc/wiki/ViewPatterns.

Generalised list comprehensions

Generalised list comprehensions (see Comprehensive
comprehensions: comprehensions with “Order by” and
“Group by”, Phil Wadler and Simon Peyton Jones,
Haskell Workshop 2007) have been implemented by
Max Bolinbroke. Example:

[(the dept, sum salary)
| (name, dept, salary) <- employees
, then sortWith by salary
, then takeWhile by salary < 50
, then take 5]

More details here: http://hackage.haskell.org/trac/ghc/
wiki/SQLLikeComprehensions.

Quasi-quoting

We are keen to get Geoff Mainland’s quasi-quoting
mechanism into GHC (see “Why It’s Nice to be Quoted:
Quasiquoting for Haskell”, Geoffrey Mainland. Haskell
Workshop 2007). Geoff is working on polishing it up.

Type system stuff

The big innovation in GHC’s type system has been the
gradual introduction of indexed type families in the
surface syntax, and of type equalities in the internal
machinery.

Indexed data families (called “associated data types”
when declared in type classes) are fairly simple, and
they work fine in GHC 6.8.1. Indexed type families
(aka “associated type synonyms”) are a different kettle
of fish, especially when combined with the ability to
mention type equalities in overloaded types, thus:

f :: forall a b. (a ~ [b]) => ...

Tom Schrĳvers spent three months at Cambridge,
working on the theory and implementation of a type
inference algorithm. As a result we have a partially-
working implementation, and we understand the prob-
lem much better, but there is still much to do, both
on the theoretical and practical front. It’s trickier than

we thought! We have a short paper Towards open type
functions for Haskell which describes some of the issues,
and a wiki page (http://hackage.haskell.org/trac/ghc/
wiki/TypeFunctions) that we keep up to date; it has a
link to details of implementation status. This is all joint
work with Martin Sulzmann, Manuel Chakravarty, and
Tom Schrĳvers.

Parallel GC

Since 6.6 GHC has had support for running parallel
Haskell on a multi-processor out of the box. However,
the main drawback has been that the garbage collector
is still single-threaded and stop-the-world. Since GC
can commonly account for 30% of runtime (depending
on the GC settings), this can seriously put a crimp in
your parallel speedup.

Roshan James did an internship at MSR in 2006 dur-
ing which he and Simon M worked on parallelising the
major collections in GHC’s generational garbage collec-
tor. We had a working algorithm, but didn’t observe
much speedup on a multi-processor. Since then, Simon
rewrote the implementation and spent a large amount
of time with various profiling tools, which uncovered
some cache-unfriendly behaviour. We are now seeing
some speedup, but there is more tweaking and measur-
ing still to be done.

This parallel GC is likely to be in GHC 6.10. Note
that parallel GC is independent of whether the Haskell
program itself is parallel – so even single-threaded
Haskell programs (e.g. GHC itself) should benefit from
it.

The other side of the coin is to parallelise the minor
collections. These are normally too small and quick to
apply the full-scale parallel GC to, and yet the whole
system still has to stop to perform a minor GC. The
solution is almost certainly to allow each CPU to GC its
own nursery independently. There is existing research
describing how to do this, and we plan to try applying
it in context of GHC.

Data parallel Haskell

After many months of designing, re-designing, and fi-
nally implementing a vectorisation pass operating on
GHC’s Core intermediate language, we finally have a
complete path from nested data parallel array pro-
grams to the low-level, multi-threaded array library
in package ndp. We are very excited about having
reached this milestone, but the path is currently very
thin, complete unoptimised, and requires a special Pre-
lude mockup. More work is required before vectorisa-
tion is ready for end-users, but now that the core in-
frastructure is in place, we expect more rapid progress
on user-visible features.

Besides working on optimisations and completing the
backend library, we still need to implement Partial Vec-
torisation of Haskell Programs (http://www.cse.unsw.

10

http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns
http://research.microsoft.com/%7Esimonpj/papers/list-comp/index.htm
http://research.microsoft.com/%7Esimonpj/papers/list-comp/index.htm
http://research.microsoft.com/%7Esimonpj/papers/list-comp/index.htm
http://research.microsoft.com/%7Esimonpj/papers/list-comp/index.htm
http://hackage.haskell.org/trac/ghc/wiki/SQLLikeComprehensions
http://hackage.haskell.org/trac/ghc/wiki/SQLLikeComprehensions
http://research.microsoft.com/%7Esimonpj/papers/assoc-types/index.htm
http://research.microsoft.com/%7Esimonpj/papers/assoc-types/index.htm
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions
http://www.cse.unsw.edu.au/~chak/papers/CLPK07.html
http://www.cse.unsw.edu.au/~chak/papers/CLPK07.html

edu.au/~chak/papers/CLPK07.html) and the treatment
of unboxed types, which is crucial to vectorise the stan-
dard Prelude. Most of the code was written by Roman
Leshchinskiy.

Back end stuff

GHC’s back end code generator has long been known
to generate poor code, particularly for tight loops of
the kind that are cropping up more and more in highly
optimised Haskell code. So in typical GHC style, rather
than patch the immediate problem, we’re redesigning
the entire back end.
What we want to do:

◦ Split the STG-to-C-- code generator (codeGen) into
two: one pass generating C-- with functions and
calls, and a second pass (“CPS”) to manifest the
stack and calling/return conventions.

◦ Redesign the calling and return conventions, so that
we can use more registers for parameter passing (this
will entail decommissioning the via-C code generator,
but the native code generator will outperform it).

◦ Give the back end more opportunity to do low-level
transformation and optimisation, e.g. by exposing
loops at the C-- level.

◦ Implement more optimisations over C--.

◦ Plug in a better register allocator.

What we’ve done so far:

◦ Michael Adams came for an internship and built a
CPS converter for GHC’s internal C-- data type.

◦ He had barely left when Norman Ramsey arrived for
a short sabbatical. Based on his experience of build-
ing back ends for the Quick C-- compiler, he worked
on a new zipper-based data structure to represent
C-- code, and a sophisticated dataflow framework
so that you can write new dataflow analyses in 30
mins.

◦ Ben Lippmeir spent his internship building a graph-
colouring, coalescing register allocator for GHC’s na-
tive code generator.

As a result, we now have lots of new code. Some of
it is working; much of it is as yet un-integrated and
un-tested. However, once we have it all glued back to-
gether, GHC will become a place where you can do Real
Work on low-level optimisations, and code generation.
Indeed John Dias (one of Norman’s graduate students)
will spend six months here in 2008 to do work on code
generation.

In short, GHC’s back end, which has long been a
poor relation, is getting a lot of very sophisticated at-
tention. Expect good things.

Libraries

GHC ships with a big bunch of libraries. That is good
for users, but it has two bad consequences, both of
which are getting worse with time. First, it make it
much harder to get a release together, because we have
to test more and more libraries too. Second, it’s harder
(or perhaps impossible) to upgrade the libraries in-
dependently from GHC. There’s a meta-issue too: it
forces us into a gate-keeper role in which a library gets
a big boost by being in the “blessed set” shipped with
GHC.

Increasingly, therefore, we are trying to decouple
GHC from big libraries. We ship GHC with a set of
“boot” libraries, without which GHC will not func-
tion at all, and “extra” libraries, which just hap-
pen to come with some binary distributions of GHC,
and which can be upgraded separately at any time.
To further that end, we’ve split the “base” pack-
age into a bunch of smaller packages, and expect
to further split it up for GHC 6.10. This has led
to lots of pain, because old programs that depended
on ‘base’ now need to depend on other packages
too; see upgrading packages (http://www.haskell.org/
haskellwiki/Upgrading_packages) for details. But it’s
good pain, and matters should improve too as Ca-
bal matures. We have been exploring possibilities for
lessening the pain in 6.10: http://hackage.haskell.org/
trac/ghc/wiki/PackageCompatibility. We have also de-
vised a package versioning policy which will help future
library upgrades: http://www.haskell.org/haskellwiki/
Package_versioning_policy.

2.2 yhc

Report by: Neil Mitchell

The York Haskell Compiler (yhc) is a fork of the nhc98
compiler, with goals such as increased portability, plat-
form independent bytecode, integrated Hat support
and generally being a cleaner code base to work with.
Yhc now compiles and runs almost all Haskell 98 pro-
grams, has basic FFI support – the main thing missing
is haskell.org base libraries, which is being worked on.

Since that last HCAR we have continued to improve
our Yhc.Core library, making use of it in a number of
projects (optimisers, analysis tools) to be made avail-
able shortly. The Javascript back end has undergone
lots of improvements with new libraries for writing dy-
namic web pages.

Further reading

◦ Homepage:
http://www.haskell.org/haskellwiki/Yhc

◦ Darcs repository:
http://darcs.haskell.org/yhc

11

http://www.cse.unsw.edu.au/~chak/papers/CLPK07.html
http://www.haskell.org/haskellwiki/Upgrading_packages
http://www.haskell.org/haskellwiki/Upgrading_packages
http://hackage.haskell.org/trac/ghc/wiki/PackageCompatibility
http://hackage.haskell.org/trac/ghc/wiki/PackageCompatibility
http://www.haskell.org/haskellwiki/Package_versioning_policy
http://www.haskell.org/haskellwiki/Package_versioning_policy
http://www.haskell.org/haskellwiki/Yhc
http://darcs.haskell.org/yhc

2.3 The Helium compiler

Report by: Jurriaan Hage
Participants: Jurriaan Hage, Bastiaan Heeren

Helium is a compiler that supports only a subset of
Haskell (e.g., n+k patterns are missing). Moreover,
type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back. The Helium compiler is still available for Down-
load from http://www.cs.uu.nl/helium/.

At this moment, we are working on making version
1.7 available. Internally little will change except that
the interface to Helium will be generalized so that mul-
tiple versions of Helium can side by side (motivated by
the development of Neon) and that the logging facility
can be more easily used outside our own environment.
The loggings obtained in classes outside our university
may help to improve the external validity of studies
performed by using Neon (→ 4.2.2).

12

http://www.cs.uu.nl/helium/

3 Language

3.1 Variations of Haskell

3.1.1 Liskell

Report by: Clemens Fruhwirth
Status: experimental

When Haskell consists of Haskell semantics plus Haskell
syntax, then Liskell consists of Haskell semantics plus
Lisp syntax. Liskell is Haskell on the inside but looks
like Lisp on the outside, as in its source code it uses the
typical Lisp syntax forms, namely symbol expressions,
that are distinguished by their fully parenthesized pre-
fix notation form. Liskell captures the most Haskell
syntax forms in this prefix notation form, for instance:
if x then y else z becomes (if x y z), while a + b
becomes (+ a b).

Except for aesthetics, there is another argument for
Lisp syntax: meta-programming becomes easy. Liskell
features a different meta-programming facility than the
one found in Haskell with Template Haskell. Before
turning the stream of lexed tokens into an abstract
Haskell syntax tree, Liskell adds an intermediate pro-
cessing data structure: the parse tree. The parse tree is
essentially is a string tree capturing the nesting of lists
with their enclosed symbols stored as the string leaves.
The programmer can implement arbitrary code expan-
sion and transformation strategies before the parse tree
is seen by the compilation stage.

After the meta-programming stage, Liskell turns the
parse tree into a Haskell syntax tree before it sent to
the compilation stage. Thereafter the compiler treats it
as regular Haskell code and produces a Haskell calling
convention compatible output. You can use Haskell
libraries from Liskell code and vice versa.

Liskell is implemented as an extension to GHC
and its darcs branch is freely available from the
project’s website. The Liskell Prelude features a set
of these parse tree transformations that enables tra-
ditional Lisp-styled meta-programming as with def-
macro and backquoting. The project’s website demon-
strates meta-programming application such as proof-of-
concept versions of embedding Prolog inference, a min-
imalistic Scheme compiler and type-inference in meta-
programming.

The future development roadmap includes stabiliza-
tion of its design, improving the user experience for
daily programming – especially error reporting – and
improving interaction with Emacs.

Further reading

http://liskell.org

3.1.2 Haskell on handheld devices

Report by: Anthony Sloane
Participants: Michael Olney
Status: unreleased

The project at Macquarie University (→ 7.3.6) to run
Haskell on handheld devices based on Palm OS has a
running implementation for small tests but, like most
ports of languages to Palm OS, we are dealing with
memory allocation issues. Also, other higher priority
projects have now intervened so this project is going
into the background for a while.

3.2 Non-sequential Programming

3.2.1 GpH – Glasgow Parallel Haskell

Report by: Phil Trinder
Participants: Phil Trinder, Abyd Al Zain, Greg

Michaelson, Kevin Hammond, Jost
Berthold, Murray Gross

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is
available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

System Evaluation and Enhancement

◦ A major revision of the parallel runtime environment
for GHC 6.8 is currently under development. The
GpH and Eden parallel Haskells share much of the
implementation technology and both are being used
for parallel language research and in the SCIEnce
project (see below).

◦ We have developed an adaptive runtime environ-
ment (GRID-GUM) for GpH on computational
grids. GRID-GUM incorporates new load man-
agement mechanisms that cheaply and effectively
combine static and dynamic information to adapt
to the heterogeneous and high-latency environment
of a multi-cluster computational grid. We have
made comparative measures of GRID-GUM’s per-
formance on high/low latency grids and heteroge-
neous/homogeneous grids using clusters located in
Edinburgh, Munich and Galashiels. Results are pub-
lished in:

13

http://liskell.org
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/"
http://www.mathematik.uni-marburg.de/~eden/"

Al Zain A. Implementing High-Level Parallelism on
Computational Grids, PhD Thesis, Heriot-Watt Uni-
versity, 2006.

Al Zain A. Trinder P.W. Loidl H.W. Michaelson G.J.
Evaluating a High-Level Parallel Language (GpH) for
Computational Grids, IEEE Transactions on Parallel
and Distributed Systems (February 2008).

◦ SMP-GHC, an implementation of GpH for multi-core
machines has been developed by Tim Harris, Satnam
Singh, Simon Marlow and Simon Peyton Jones.

◦ We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universitat Mar-
burg.

GpH Applications

◦ As part of the SCIEnce EU FP6 I3 project
(026133) (→ 7.3.10) (April 2006 - April 2011) we
use GpH and Eden to provide access to compu-
tational grids from Computer Algebra(CA) sys-
tems, including GAP, Maple MuPad and KANT.
We have implemented an interface, GCA, which or-
chestrates computational algebra components into
a high-performance parallel application. GCA is
capable of exploiting a variety of modern paral-
lel/multicore architectures without any change to the
underlying code. GCA is also capable of orches-
trating heterogeneous computations across a high-
performance computational Grid.

Implementations

The GUM implementation of GpH is available in two
main development branches.

◦ The focus of the development has switched to ver-
sions tracking GHC releases, currently GHC 6.8, and
the development version is available upon request to
the GpH mailing list (see the GpH web site).

◦ The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

Our main hardware platform are Intel-based Beowulf
clusters. Work on ports to other architectures is also
moving on (and available on request):

◦ A port to a Mosix cluster has been built in the
Metis project at Brooklyn College, with a first ver-
sion available on request from Murray Gross.

Further reading

◦ GpH Home Page:
http://www.macs.hw.ac.uk/~dsg/gph/

◦ Stable branch binary snapshot:
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.
06-snap-i386-unknown-linux.tar

◦ Stable branch installation instructions:
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM

Contact

〈gph@macs.hw.ac.uk〉, 〈mgross@dorsai.org〉

3.2.2 Eden

Report by: Rita Loogen

Description

Eden has been jointly developed by two groups at
Philipps Universität Marburg, Germany and Univer-
sidad Complutense de Madrid, Spain. The project has
been ongoing since 1996. Currently, the team consists
of the following people:

in Madrid: Ricardo Peña, Yolanda Ortega-Mallén,
Mercedes Hidalgo, Fernando Rubio, Clara Segura,
Alberto Verdejo

in Marburg: Rita Loogen, Jost Berthold, Steffen
Priebe, Mischa Dieterle

Eden extends Haskell with a small set of syntactic
constructs for explicit process specification and cre-
ation. While providing enough control to implement
parallel algorithms efficiently, it frees the programmer
from the tedious task of managing low-level details by
introducing automatic communication (via head-strict
lazy lists), synchronisation, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in parallel.
Process instantiation is expressed by the predefined in-
fix operator (#) :: Process a b -> a -> b.
Higher-level coordination is achieved by defining skele-
tons, ranging from a simple parallel map to sophisti-
cated replicated-worker schemes. They have been used
to parallelise a set of non-trivial benchmark programs.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén and Ri-
cardo Peña: Parallel Functional Programming in
Eden, Journal of Functional Programming 15(3), 2005,
pages 431–475.

Implementation

A major revision of the parallel Eden runtime environ-
ment for GHC 6.8.1 is available on request. Support

14

http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.sci.brooklyn.cuny.edu/~metis/
http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: mgross at dorsai.org

for Glasgow parallel Haskell (GpH) is currently being
added to this version of the runtime environment. It is
planned for the future to maintain a common parallel
runtime environment for Eden, GpH and other parallel
Haskells.

Recent and Forthcoming Publications

◦ Mischa Dieterle: Parallel functional implementa-
tion of Master-Worker-Skeletons, Diploma Thesis,
Philipps-University Marburg, October 2007 (in Ger-
man).

◦ Jost Berthold, Mischa Dieterle, Rita Loogen: Func-
tional Implementation of a Distributed Work Pool
Skeleton, submitted.

◦ Jost Berthold, Mischa Dieterle, Rita Loogen, Steffen
Priebe: Hierarchical Master-Worker Skeletons, Prac-
tical Aspects of Declarative Languages (PADL) 08,
San Francisco, USA, January 2008, LNCS, Springer,
to appear.

◦ Jost Berthold, Abyd Al-Zain, and Hans-Wolfgang
Loidl: Adaptive High-Level Scheduling in a Generic
Parallel Runtime Environment, Practical Aspects of
Declarative Languages (PADL) 08, San Francisco,
USA, January 2008, LNCS, Springer, to appear.

◦ Jost Berthold and Rita Loogen: Visualising Par-
allel Functional Program Runs - Case Studies with
the Eden Trace Viewer, Parallel Computing: Archi-
tectures, Algorithms and Applications, Proceedings
of the International Conference ParCo 2007, NIC-
Series, to appear.

◦ Mercedes Hidalgo-Herrero and Yolanda Ortega-
Mallén: To be or not to be . . . lazy, In Draft Proceed-
ings of 19th Intl. Symposium on the Implementation
of Functional Languages (IFL 2007), University of
Kent, Canterbury (UK) 2007.

◦ A. de la Encina, L. Llana, F. Rubio, M. Hidalgo-
Herrero: Observing Intermediate Structures in a
Parallel Lazy Functional Language, 9th International
ACM-SIGPLAN Symposium on Principles and Prac-
tice of Declarative Programming, PPDP’07, ACM
Press 2007, pages 111-120.

◦ Mercedes Hidalgo-Herrero, Alberto Verdejo, Yolanda
Ortega-Mallén: Using Maude and its strategies for
defining a framework for analyzing Eden semantics,
WRS 06 (6th International Workshop on Reduction
Strategies in Rewriting and Programming), Elec-
tronic Notes in Theoretical Computer Science, Vol-
ume 174, Issue 10, Pages 119-137 (July 2007).

◦ A. de la Encina, I. Rodríguez, F. Rubio: Testing
Speculative Work in a Lazy / Eager Parallel Func-
tional Language., LCPC’05, LNCS 4339, Springer
2007.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.3 Type System/Program Analysis

3.3.1 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Sascha Böhme and Florian Stenger

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs to
be refined and extended. We aim to provide such new
theoretical foundations, as well as to apply the theo-
retical results to practical problems. For recent appli-
cation papers, see “Proving Correctness via Free Theo-
rems: The Case of the destroy/build-Rule” (PEPM’08)
and “Much Ado about Two: A Pearl on Parallel Prefix
Computation” (POPL’08).

Also on the practical side, Sascha Böhme imple-
mented a library and tool for generating free theorems
from Haskell types. Downloadable source and a web in-
terface are accessible at http://linux.tcs.inf.tu-dresden.
de/~voigt/ft. Features include:

◦ three different language subsets to choose from

◦ equational as well as inequational free theorems

◦ relational free theorems as well as specializations
down to function level

◦ support for algebraic data types, type synonyms and
renamings, type classes

While the web interface is restricted to algebraic data
types, type synonyms, and type classes from Haskell
standard libraries, a shell-based application contained
in the source package also enables the user to declare
their own algebraic data types and so on, and then to
derive free theorems from types involving those.

Further reading

http://wwwtcs.inf.tu-dresden.de/~voigt/project/

3.3.2 Agda

Report by: Nils Anders Danielsson
Status: Actively developed by a number of people

Do you crave for highly expressive types, but do not
want to resort to type-class hackery? Then Agda might

15

http://www.mathematik.uni-marburg.de/~eden
http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://wwwtcs.inf.tu-dresden.de/~voigt/project/

provide a view of what the future has in store for you.
Agda is a dependently typed functional program-

ming language (developed using Haskell). The lan-
guage has inductive families, i.e. GADTs which can be
indexed by values and not just types. Other goodies
include parameterised modules, mixfix operators, and
an interactive Emacs interface (the type checker can
assist you in the development of your code).

A lot of work remains in order for Agda to become
a full-fledged programming language (effects, good li-
braries, mature compilers, documentation, . . .), but al-
ready in its current state it can provide lots of fun as
a platform for experiments in dependently typed pro-
gramming.

Further reading

The Agda Wiki: http://www.cs.chalmers.se/~ulfn/
Agda/

3.3.3 Epigram

Report by: Conor McBride

Epigram is a prototype dependently typed functional
programming language, equipped with an interactive
editing and typechecking environment. High-level Epi-
gram source code elaborates into a dependent type the-
ory based on Zhaohui Luo’s UTT. The definition of
Epigram, together with its elaboration rules, may be
found in ‘The view from the left’ by Conor McBride
and James McKinna (JFP 14 (1)).

A new version, Epigram 2, based on Observational
Type Theory (see ‘Observational Equality, Now!’ by
Thorsten Altenkirch, Conor McBride, and Wouter
Swierstra) is in preparation.

Motivation

Simply typed languages have the property that any
subexpression of a well typed program may be replaced
by another of the same type. Such type systems may
guarantee that your program won’t crash your com-
puter, but the simple fact that True and False are al-
ways interchangeable inhibits the expression of stronger
guarantees. Epigram is an experiment in freedom from
this compulsory ignorance.

Specifically, Epigram is designed to support pro-
gramming with inductive datatype families indexed
by data. Examples include matrices indexed by
their dimensions, expressions indexed by their types,
search trees indexed by their bounds. In many ways,
these datatype families are the progenitors of Haskell’s
GADTs, but indexing by data provides both a con-
ceptual simplification – the dimensions of a matrix are

numbers – and a new way to allow data to stand as
evidence for the properties of other data. It is no good
representing sorted lists if comparison does not produce
evidence of ordering. It is no good writing a type-safe
interpreter if one’s typechecking algorithm cannot pro-
duce well-typed terms.

Programming with evidence lies at the heart of Epi-
gram’s design. Epigram generalises constructor pattern
matching by allowing types resembling induction prin-
ciples to express as how the inspection of data may
affect both the flow of control at run time and the text
and type of the program in the editor. Epigram ex-
tracts patterns from induction principles and induction
principles from inductive datatype families.

History

James McKinna and Conor McBride designed Epigram
in 2001, whilst based at Durham, working with Zhao-
hui Luo and Paul Callaghan. McBride’s prototype im-
plementation of the language, ‘Epigram 1’ emerged in
2004: it is implemented in Haskell, interfacing with
the xemacs editor. This implementation effort involved
inventing a number of new programming techniques
which have found their way into the Haskell community
at large: central components of Control.Applicative
and Data.Traversable started life in the source code
for Epigram.

Following the Durham diaspora, James McKinna
and Edwin Brady went to St. Andrews, where they
continued their work on phase analysis and efficient
compilation of dependently typed programs. More re-
cently, with Kevin Hammond, they have been study-
ing applications of dependent types to resource-aware
computation in general, and network protocols in par-
ticular.

Meanwhile, Conor McBride went to Nottingham to
work with Thorsten Altenkirch. They set about re-
designing Epigram’s underlying type theory, radically
changing its treatment of logical propositions in gen-
eral, and equality in particular, making significant
progress on problems which have beset dependent type
theories for decades.

The Nottingham duo grew into a strong team of en-
thusiastic researchers. Peter Morris successfully com-
pleted a PhD on generic programming in Epigram and
is now a research assistant: his work has led to the re-
design of Epigram’s datatype language. Nicolas Oury
joined from Paris as a postdoctoral research fellow, and
is now deeply involved in all aspects of design and
implementation. PhD students James Chapman and
Wouter Swierstra are working on Epigram-related top-
ics, studying formalized metatheory and effectful pro-
gramming, respectively. Meanwhile, Nottingham re-
search on containers, involving Neil Ghani, Peter Han-
cock and Rawle Prince, together with the Epigram
team, continues to inform design choices as the lan-
guage evolves.

16

http://www.cs.chalmers.se/~ulfn/Agda/
http://www.cs.chalmers.se/~ulfn/Agda/

Epigram 1 was used successfully by Thorsten Al-
tenkirch, Conor McBride, and Peter Hancock in an
undergraduate course on Computer Aided Formal Rea-
soning http://www.e-pig.org/darcs/g5bcfr/. It has also
been used in a number of graduate-level courses.

James McKinna is now at Radboud University, Ni-
jmegen; Edwin Brady is still at St. Andrews; Thorsten
Altenkirch, Peter Morris, Nicolas Oury, James Chap-
man and Wouter Swierstra are still in Nottingham;
Conor McBride has left academia. All are still con-
tributing to the Epigram project.

Current Status

Epigram 2 is based on a radical redesign of our under-
lying type theory. The main novelties are

◦ a bidirectional approach to typechecking, separating
syntactically the terms whose types are inferred from
those for which types are pushed in—with stronger
guarantees of prior type information, we can reduce
clutter in terms and support greater overloading;

◦ explicit separation of propositions and sets, ensuring
that proofs never influence control-flow and can be
erased at run-time;

◦ a type-directed approach to propositional equal-
ity, comparing functions extensionally, records com-
ponentwise, data by construction, and proofs
trivially—we shall soon support equality for codata
by bisimulation and for quotients by whatever you
want;

◦ three closed universes of data structures, finite enu-
merations, record types, and inductive datatypes,
each with its datatype of type descriptions—this sup-
ports generic programming over all of Epigram 2’s
data structures and removes the need for any means
of ‘making new stuff’ other than definition.

Nicolas Oury, Peter Morris, and Conor McBride
have implemented this theory, together with a system
supporting interactive construction (and destruction)
within it. This the engine which will drive Epigram 2:
we plan to equip it with human-accessible controls and
release it for the benefit of the curious, shortly. With
this in place, we shall reconstruct the Epigram source
language and its elaboration mechanism: constructs in
source become constructions in the core.

There is still a great deal of work to do. We need
to incorporate the work from Edwin Brady and James
McKinna on type erasure and efficient compilation; we
need to bring out and exploit the container structure of
data; we need to support programming with effects (in-
cluding non-termination); we need a declarative proof
language, as well as a functional programming lan-
guage.

The Epigram project relies on Haskell, its libraries,
and tools such as alex (→ 5.2.1), happy (→ 5.2.2), bnfc,

cabal (→ 4.1.1), and darcs (→ 6.13). We have recently
developed tools for assembling the modules correspond-
ing to each component of the Epigram system from files
corresponding to each feature of the Epigram language:
this may prove useful to others, so we hope to clean
them up and release them. Meanwhile, as Haskell it-
self edges ever closer to dependent types, the Epigram
project has ever more to contribute, in exploration of
the design space, in the development of implementation
technique, and in experimentation with the pragmatics
of programming with such power and precision.

Epigram source code and related research papers
can be found on the web at http://www.e-pig.org and
its community of experimental users communicate via
the mailing list 〈epigram@durham.ac.uk〉. The current,
rapidly evolving state of Epigram 2 can be found at
http://www.e-pig.org/epilogue/.

3.3.4 Chameleon project

Report by: Martin Sulzmann

Chameleon is a Haskell style language which integrates
sophisticated reasoning capabilities into a program-
ming language via its CHR programmable type system.
Thus, we can program novel type system applications
in terms of CHRs which previously required special-
purpose systems.

Chameleon including examples and documenta-
tion is available via http://taichi.ddns.comp.nus.edu.sg/
taichiwiki/ChameleonHomePage.

3.3.5 XHaskell project

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu and

Martin Sulzmann

XHaskell is an extension of Haskell which combines
parametric polymorphism, algebraic data types and
type classes with XDuce style regular expression types,
subtyping and regular expression pattern matching.
The latest version can be downloaded via http://taichi.
ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage.

Latest developments

We have fully implemented the system which can be
used in combination with the Glasgow Haskell Com-
piler. We have taken care to provide meaningful type
error messages in case the static checking of programs
fails. Our system also allows to defer some static checks
until run-time.

We make use of GHC-as-a-library so that the
XHaskell programmer can easily integrate her pro-
grams into existing applications and take advantage of

17

http://www.e-pig.org/darcs/g5bcfr/
http://www.e-pig.org
mailto: epigram at durham.ac.uk
http://www.e-pig.org/epilogue/
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ChameleonHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/ChameleonHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/XhaskellHomePage

the many libraries available in GHC. We also provide
a convenient interface to the HaXML parser.

3.3.6 HaskellJoin

Report by: Martin Sulzmann
Participants: Edmund S. L. Lam and Martin Sulzmann

HaskellJoin extends Haskell with Join-calculus style
concurrency primitives. The novelty lies in the addi-
tion of guards and propagated join patterns. These
additional features prove to be highly useful. See for
details: http://taichi.ddns.comp.nus.edu.sg/taichiwiki/
HaskellJoinRules.

Latest developments

We have implemented a prototype in STM Haskell. Ex-
perimental results show that we can achieve significant
speed-ups on multi-core architectures (more cores =
programs runs faster).

HaskellJoin subsumes in expressive power “ADOM:
Agent Domain of Monads” which is no longer sup-
ported.

3.3.7 Uniqueness Typing

Report by: Edsko de Vries
Participants: Rinus Plasmeĳer, David M Abrahamson
Status: ongoing

An important feature of pure functional programming
languages is referential transparency. A consequence
of referential transparency is that functions cannot be
allowed to modify their arguments, unless it can be
guaranteed that they have the sole reference to that
argument. This is the basis of uniqueness typing.

We have been developing a uniqueness type system
based on that of the language Clean but with vari-
ous improvements: no subtyping is required, and the
type language does not include constraints (types in
Clean often involve implications between uniqueness
attribute). This makes the type system sufficiently sim-
ilar to standard Hindley/Milner type systems that (1)
standard inference algorithms can be applied, and (2)
that modern extensions such as arbitrary rank types
and generalized algebraic data types (GADTs) can eas-
ily be incorporated.

Although our type system is developed in the con-
text of the language Clean, it is also relevant to Haskell
because the core uniqueness type system we propose is
very similar to the Haskell’s core type system. More-
over, we are currently working on defining syntactic
conventions, which programmers can use to write type
annotations, and compilers can use to report types,
without mentioning uniqueness at all.

Further reading

◦ Edsko de Vries, Rinus Plasmeĳer and David Abra-
hamson, “Equality-Based Uniqueness Typing”. Pre-
sented at TFP 2007, submitted for post-proceedings.

◦ Edsko de Vries, Rinus Plasmeĳer and David Abra-
hamson, “Uniqueness Typing Redefined”, in Z.
Horváth, V. Zsók, and Andrew Butterfield (Eds.):
IFL 2006, LNCS 4449 (to appear).

3.4 Backend

3.4.1 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman, Neil Mitchell
Status: Experimental

The Reduceron is a prototype of a special-purpose
graph reduction machine, built using an FPGA, fea-
turing:

◦ parallel, dual-port, quad-word, stack, heap and com-
binator memories

◦ two-cycle n-ary application node unwinding (where
n ≤ 8)

◦ octo-instantiation (8 words per cycle) of supercom-
binator bodies

◦ parallel instantiation of combinator spine to heap
and stack

The Reduceron is an extremely simple machine, con-
taining just four instructions, and executes core Haskell
almost directly. The translator from Yhc.Core to Re-
duceron bytecode and the FPGA machine are both im-
plemented in Haskell, the latter using Lava. Other no-
table differences since the initial release of Reduceron
are:

◦ Performs supercombinator (not SK) reduction, with
data types encoded as functions, inspired by Jan
Martin Jansen’s SAPL interpreter

◦ Uses entirely on-chip memories on a Xilinx Virtex-II
FPGA

◦ Has a garbage collector (in hardware)

◦ Includes a basic bytecode interpreter written in C,
which is competitive with the nhc98 compiler on a
small set of examples

◦ Includes Lava support for multi-output primitives
and Xilinx block RAMs

◦ Includes three new Lava modules: CircLib.hs, a pre-
lude of common circuits; CascadedRam.hs, for con-
structing RAMs of various widths and sizes; and
RTL.hs, for writing register-transfer level descrip-
tions.

18

http://taichi.ddns.comp.nus.edu.sg/taichiwiki/HaskellJoinRules
http://taichi.ddns.comp.nus.edu.sg/taichiwiki/HaskellJoinRules

The URL below links to the latest code, details and
results of the Reduceron experiment.

Further reading

http://www.cs.york.ac.uk/~mfn/reduceron2/

19

http://www.cs.york.ac.uk/~mfn/reduceron2/

4 Libraries

4.1 Packaging and Distribution

4.1.1 Cabal and HackageDB

Report by: Duncan Coutts

Background

The Haskell Cabal is a Common Architecture for Build-
ing Applications and Libraries. It is an API distributed
with GHC (→ 2.1), nhc98, and Hugs which allows a de-
veloper to easily build and distribute packages.

HackageDB (Haskell Package Database) is an online
database of packages which can be interactively queried
via the website and client-side software such as cabal-
install. From HackageDB, an end-user can download
and install Cabal packages.

Recent progress

The last year has seen HackageDB take off. It has
grown from a handful of packages to over 300. It has
also seen the release of a major new version of the Cabal
library – the 1.2.x series – which is bundled with recent
GHC versions. This release was a big step forward in
terms of new features, fewer rough edges and improved
internal design.

Growing pains

The rapid growth of the HackageDB collection has
highlighted some problems. There is now a lot of choice
in packages but relatively little information to help
users decide which package they want or whether it
is likely to build on their platform.

Another problem is having to manually download
and build packages and their dependencies. Fortu-
nately this problem has a solution in the form of
the command line tool cabal-install which has be-
come increasingly usable in the last few months. The
plan is for cabal-install to be the primary com-
mand line interface to Cabal and HackageDB, replacing
runhaskell Setup.lhs and other cabal-* wrappers
you may have heard of. Everyone is encouraged to pre-
view this bright new future by trying the latest devel-
opment versions of the Cabal library and cabal-install
tool.

Looking forward

There is a great deal to do. The Cabal library needs a
proper dependency framework. There are many good
ideas for technical and social solutions to the current

problems with HackageDB. Unfortunately, for some-
thing that is now a vital piece of community infras-
tructure, there are relatively few people working on the
solutions. We would like to encourage people to get in-
volved, join the development mailing list, get the code
and check the bug tracker for what needs to be done.

Even if you do not have time for hacking, you prob-
ably have a favourite Cabal bug or limitation. Do not
just assume it is well known. Make sure it is prop-
erly described on the bug tracker and add yourself to
the cc list so Cabal hackers can get some impression of
priorities.

People

Cabal has seen contributions from 39 people in the
three and a half years since Isaac Jones started the
project. By simplistically counting patches we see that
90% of the code is by the top 8 contributors who have
50 or more patches each. 5% is by the next 5 most ac-
tive contributors with 10 or more patches each. Contri-
butions from a further 26 people make up the remaining
5%.

Further reading

◦ Cabal homepage http://www.haskell.org/cabal
◦ HackageDB package collection http://hackage.

haskell.org/
◦ Bug tracker http://hackage.haskell.org/trac/hackage/

4.2 General libraries

4.2.1 HPDF

Report by: alpheccar
Status: Continuous development

HPDF is an Haskell library allowing to generate PDF
documents. HPDF is supporting several features of the
PDF standard like outlines, multi-pages, annotations,
actions, image embedding, shapes, patterns, text.

In addition to the standard PDF features, HPDF
is providing some typesetting features built on top of
the PDF core. With HPDF, it is possible to define
complex styles for sentences and paragraphs. HPDF is
implementing an optimum-fit line breaking algorithm
a bit like the TeX one and HPDF is using the standard
Liang hyphenation algorithm.

HPDF is at version 1.3. It is progressing continu-
ously.

20

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/

HPDF is available on Hackage (→ 4.1.1).
There are several missing features: the only sup-

ported fonts are the standard PDF ones. A next ver-
sion should support TrueType and different character
encodings. For support of Asian languages, I’ll ask for
help in the Haskell community.

I also plan to define an API easing the definition of
complex layouts (slides, books). Currently the layout
has to be coded by hand but it is already possible to
build complex things.

The documentation is a bit weak and will have to be
improved.

Further reading

http://www.alpheccar.org

4.2.2 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van Keeken im-
plemented a library to data mine logged Helium (→ 2.3)
programs to investigate aspects of how students pro-
gram Haskell, how they learn to program and how
good Helium in generating understandable feedback
and hints. The software can be downloaded from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Neon which also
gives some examples of output generated by the sys-
tem. The downloads only contain a small samples of
loggings, but it will allow programmers to play with it.

4.2.3 Test.IOSpec

Report by: Wouter Swierstra
Status: active development

The Test.IOSpec library provides a pure specification
of several functions in the IO monad. This may be of
interest to anyone who wants to debug, reason about,
analyse, or test impure code.

The Test.IOSpec library is essentially a drop-in re-
placement for several other modules, most notably
Data.IORef and (most of) Control.Concurrent. Once
you’re satisfied that your functions are reasonably well-
behaved with respect to the pure specification, you can
drop the Test.IOSpec import in favour of the “real” IO
modules.

The current release is described by a recent Haskell
Workshop paper. The development version in the
darcs repository, however, supports several exciting
new features, including a modular way to combine
specifications and a specification of STM. I have used
Test.IOSpec to test and debug several substantial pro-
grams, such as a distributed Sudoku solver. If you use

Test.IOSpec for anything useful at all, I’d love to hear
from you.

Further reading

http://www.cs.nott.ac.uk/~wss/repos/IOSpec/

4.2.4 GSLHaskell

Report by: Alberto Ruiz
Status: active development

GSLHaskell is a simple library for linear algebra and
numerical computation, internally implemented using
GSL, BLAS and LAPACK.

A new version with important changes has been re-
cently released. The internal code has been rewritten,
based on an improved matrix representation. The in-
terface is now simpler and more generic. It works on
Linux, Windows and Mac OS X.

The library is available from HackageDB (→ 4.1.1)
with the new name “hmatrix” (because only a small
part of GSL is currently available, and matrix compu-
tations are based on LAPACK).

Most linear algebra functions mentioned in GNU-
Octave’s Quick Reference are already available both
for real and complex matrices: eig, svd, chol, qr, hess,
schur, inv, pinv, expm, norm, and det. There are also
functions for numeric integration and differentiation,
nonlinear minimization, polynomial root finding, and
more than 200 GSL special functions. A brief manual
is available at the URL below.

This library is used in the easyVision project (→
6.21).

Further reading

http://alberrto.googlepages.com/gslhaskell

4.2.5 An Index Aware Linear Algebra Library

Report by: Frederik Eaton
Status: unstable; actively maintained

The index aware linear algebra library is a Haskell in-
terface to a set of common vector and matrix oper-
ations. The interface exposes index types to the type
system so that operand conformability can be statically
guaranteed. For instance, an attempt to add or multi-
ply two incompatibly sized matrices is a static error.

The library should still be considered alpha quality.
A backend for sparse vector types is near completion,
which allows low-overhead “views” of tensors as arbi-
trarily nested vectors. For instance, a matrix, which we
represent as a tuple-indexed vector, could also be seen
as a (rank 1) vector of (rank 1) vectors. These different

21

http://www.alpheccar.org
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.nott.ac.uk/~wss/repos/IOSpec/
http://alberrto.googlepages.com/gslhaskell

views usually produce different behaviours under com-
mon vector operations, thus increasing the expressive
power of the interface.

Further reading

◦ Original announcement:
http://article.gmane.org/gmane.comp.lang.haskell.
general/13561

◦ Library:
http://ofb.net/~frederik/stla/

4.3 Parsing and Transforming

4.3.1 Graph Parser Combinators

Report by: Steffen Mazanek
Status: research prototype

A graph language can be described by a graph grammar
in a manner similar to a string grammar known from
the theory of formal languages. Unfortunately, graph
parsing is known to be computationally expensive in
general. There are even context-free graph languages
the parsing of which is NP-complete.

Therefore we have developed the Haskell library
graph parser combinators, a new approach to graph
parsing inspired by the well-known string parser com-
binators. The basic idea is to define primitive graph
parsers for elementary graph components and a set
of combinators for the construction of more advanced
graph parsers. Using graph parser combinators efficient
special-purpose graph parsers can be composed conve-
niently in a for Haskell programmers familiar manner.

The following features are already implemented:

◦ a module PolyStateSet that is an extension of
PolyState of the polyparse library that can deal
with sets of tokens

◦ graph type declarations for several purposes

◦ graph parser combinators for important graph pat-
terns

◦ parsers for several example graph languages

◦ for comparison a general-purpose parser for hyper-
edge replacement graph grammars

The library will soon be provided via hackage (→
4.1.1).

4.3.2 uniplate

Report by: Neil Mitchell

Uniplate is a boilerplate removal library, with similar
goals to the original Scrap Your Boilerplate work. It re-

quires fewer language extensions, and allows more suc-
cinct traversals with higher performance than SYB. A
paper including many examples was presented at the
Haskell Workshop 2007c̃refhaskell-workshop.

If you are writing a compiler, or any program that
operates over values with many constructors and nested
types, you should be using a boilerplate removal library.
This library provides a gentle introduction to the field,
and can be used practically to achieve substantial sav-
ings in code size and maintainability.

Further reading

◦ Homepage:
http://www-users.cs.york.ac.uk/~ndm/uniplate

4.3.3 InterpreterLib

Report by: Jennifer Streb
Participants: Garrin Kimmell, Nicolas Frisby, Mark

Snyder, Philip Weaver, Jennifer Streb,
Perry Alexander

Maintainer: Garrin Kimmell, Nicolas Frisby
Status: beta, actively developed

The InterpreterLib library is a collection of modules
for constructing composable, monadic interpreters in
Haskell. The library provides a collection of functions
and type classes that implement semantic algebras in
the style of Hutton and Duponcheel. Datatypes for re-
lated language constructs are defined as non-recursive
functors and composed using a higher-order sum func-
tor. The full AST for a language is the least fixed
point of the sum of its constructs’ functors. To de-
note a term in the language, a sum algebra combinator
composes algebras for each construct functor into a se-
mantic algebra suitable for the full language and the
catamorphism introduces recursion. Another piece of
InterpreterLib is a novel suite of algebra combinators
conducive to monadic encapsulation and semantic re-
use. The Algebra Compiler, an ancillary preprocessor
derived from polytypic programming principles, gener-
ates functorial boilerplate Haskell code from minimal
specifications of language constructs. As a whole, the
InterpreterLib library enables rapid prototyping and
simplified maintenance of language processors.

InterpreterLib is available for download at the link
provided below. Version 1.0 of InterpreterLib was re-
leased in April 2007.

Further reading

http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

〈nfrisby@ittc.ku.edu〉

22

http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://article.gmane.org/gmane.comp.lang.haskell.general/13561
http://ofb.net/~frederik/stla/
http://www-users.cs.york.ac.uk/~ndm/uniplate
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: nfrisby at ittc.ku.edu

4.3.4 hscolour

Report by: Malcolm Wallace
Status: stable, maintained

HsColour is a small command-line tool (and Haskell
library) that syntax-colorises Haskell source code for
multiple output formats. It consists of a token lexer,
classification engine, and multiple separate pretty-
printers for the different formats. Current supported
output formats are ANSI terminal codes, HTML (with
or without CSS), and LaTeX. In all cases, the colours
and highlight styles (bold, underline, etc) are config-
urable. It can additionally place HTML anchors in
front of declarations, to be used as the target of links
you generate in Haddock documentation.

HsColour is widely used to make source code in blog
entries look more pretty, to generate library documen-
tation on the web, and to improve the readability of
ghc’s intermediate-code debugging output.

Further reading

◦ http://www.cs.york.ac.uk/fp/darcs/hscolour

4.3.5 Utrecht Parsing Library and Attribute
Grammar System

Report by: Doaitse Swierstra and Jeroen Fokker
Status: Released as cabal packages

The Utrecht attribute grammar system has been ex-
tended:

◦ the attribute flow analysis has been completely im-
plemented by Joost Verhoog, and it is now possible
to generate visit-function based evaluators, which are
much faster and use less space. We assume that such
functions are strict in all their arguments, and gen-
erate the appropriate ‘seq‘ calls to make the GHC
aware of this. As a result also case’s are generated
instead on let’s wherever possible.

Several improvements were made: better error re-
porting of cyclic dependencies, and a large speed
improvements in the overall flow analysis have been
made. The first versions of the EHC now compile
without circularities, nor direct nor induced by fix-
ing the attribute evaluation orders

◦ we are adding better support for higher order at-
tribute grammars and forwarding rules

◦ Tthe error correcting strategies of the parser com-
binators are now being used as a base for providing
automatic feedback in systems for training strategies
(Johan Jeuring, Arthur van Leeuwen)

◦ a start has been made with providing Haddock in-
formation with the code of the parser combinators

◦ we plan to enhance the parser combinators with
a second basic parsing engine, in order to support
monadic uses of the combinators while keeping the
error correcting capabilities

The software is again available through the Haskell
Utrecht Tools page. (http://www.cs.uu.nl/wiki/HUT/
WebHome).

4.3.6 The X-SAIGA Project (was: Left-Recursive
Parser Combinators)

Report by: Richard A. Frost
Participants: Rahmatullah Hafiz, Paul Callaghan
Status: Code available

The goal of the X-Saiga project is to create algorithms
and implementations which enable language processors
(recognizers, parsers, interpreters, translators, etc.) to
be constructed as modular and efficient embedded eX-
ecutable SpecificAtIons of GrAmmars.

To achieve modularity, we have chosen to base our
algorithms on top-down parsing. To accommodate am-
biguity, we implement inclusive choice through back-
tracking search. To achieve polynomial complexity, we
use memoization. We have developed an algorithm
which accommodates direct left-recursion using curtail-
ment of search. Indirect left recursion is also accommo-
dated using curtailment together with a test to deter-
mine whether previously computed and memoized re-
sults may be reused depending on the context in which
they were created and the context in which they are
being considered for reuse.

The algorithm is described more fully in Frost, R.,
Hafiz, R. and Callaghan, P. (2007) Modular and Effi-
cient Top-Down Parsing for Ambiguous Left-Recursive
Grammars. Proceedings of the 10th International
Workshop on Parsing Technologies (IWPT), ACL-
SIGPARSE. Pages: 109 - 120, June 2007, Prague.

http://cs.uwindsor.ca/~hafiz/iwpt-07.pdf
We have implemented our algorithms, at various

stages of their development, in Miranda (up to 2006)
and in Haskell (from 2006 onwards). A description
of a Haskell implementation of our 2007 algorithm
can be found in Frost, R., Hafiz, R. and Callaghan,
P. (2008) Parser Combinators for Ambiguous Left-
Recursive Grammars. Proceedings of the 10th Interna-
tional Symposium on Practical Aspects of Declarative
Languages (PADL), to be published in LNCS. January
2008, San Francisco, USA.

http://cs.uwindsor.ca/~hafiz/PADL_PAPER_FINAL.
pdf

The X-SAIGA website contains more information,
links to other publications, proofs of termination and
complxity, and Haskell code of the development ver-
sion.

http://cs.uwindsor.ca/~hafiz/proHome.html

23

http://www.cs.york.ac.uk/fp/darcs/hscolour
http://www.cs.uu.nl/wiki/HUT/WebHome
http://www.cs.uu.nl/wiki/HUT/WebHome
http://cs.uwindsor.ca/~hafiz/iwpt-07.pdf
http://cs.uwindsor.ca/~hafiz/PADL_PAPER_FINAL.pdf
http://cs.uwindsor.ca/~hafiz/PADL_PAPER_FINAL.pdf
http://cs.uwindsor.ca/~hafiz/proHome.html

We are currently extending our algorithm and impl-
mentation to accommodate executable specifications of
full-general attribute grammars.

4.4 System

4.4.1 hspread

Report by: Andrea Vezzosi
Participants: Andrea Vezzosi, Jeff Muller
Status: active

hspread is a client library for the Spread toolkit. It
is fully implemented in Haskell using the binary pack-
age (→ 4.7.1) for fast parsing of network packets. Its
aim is to make easier to implement correct distributed
applications by taking advantage of the guarantees
granted by Spread, such as reliable and total ordered
messages, and supports the most recent version of the
protocol.

There is interest in further developing an higher level
framework for Haskell distributed programming by ex-
tending the protocol if necessary.

Further reading

◦ Hackage:
http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/hspread

◦ Developement version:
darcs get http://happs.org/repo/hspread

◦ Spread homepage:
http://www.spread.org

4.4.2 Harpy

Report by: Martin Grabmüller and Dirk Kleeblatt
Status: experimental

Harpy is a library for run-time code generation of IA-32
machine code. It provides not only a low level interface
to code generation operations, but also a convenient do-
main specific language for machine code fragments, a
collection of code generation combinators and a disas-
sembler. We use it in two independent (unpublished)
projects: On the one hand, we are implementing a just-
in-time compiler for functional programs, on the other
hand, we use it to implement an efficient type checker
for a dependently typed language. It might be useful
in other domains, where specialized code generated at
run-time can improve performance.

Harpy’s implementation makes use of the foreign
function interface, but only contains functions written
in Haskell. Moreover, it has some uses of other interest-
ing Haskell extensions as for example multi-parameter

type classes to provide an in-line assembly language,
and Template Haskell to generate stub functions to call
run-time generated code. The disassembler uses Parsec
to parse the instruction stream.

We intend to implement supporting operations for
garbage collectors cooperating with run-time generated
code.

A second release is forthcoming, featuring improve-
ments in the memory management, better floating
point instruction support, and named labels that are
shown in the disassembler output.

Further reading

http://uebb.cs.tu-berlin.de/harpy/

4.4.3 hs-plugins

Report by: Don Stewart
Status: maintained

hs-plugins is a library for dynamic loading and run-
time compilation of Haskell modules, for Haskell and
foreign language applications. It can be used to im-
plement application plugins, hot swapping of modules
in running applications, runtime evaluation of Haskell,
and enables the use of Haskell as an application exten-
sion language.

hs-plugins has been ported to GHC 6.6.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hs-plugins/

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

24

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hspread
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hspread
darcs get http://happs.org/repo/hspread
http://www.spread.org
http://uebb.cs.tu-berlin.de/harpy/
http://www.cse.unsw.edu.au/~dons/hs-plugins/
http://www.cse.unsw.edu.au/~dons/code/hs-plugins/

4.4.4 The libpcap Binding

Report by: Dominic Steinitz
Participants: Greg Wright, Dominic Steinitz, Nicholas

Burlett

Nicholas Burlett has now created a cabalized version
and made it available on hackage. However, beware
that this doesn’t use autoconf to check your system
supports sa_len and it doesn’t check which version of
libpcap is installed. It will probably work but may not.
If it doesn’t then try this:

darcs get

http://www.haskell.org/networktools/src/pcap

◦ Install libpcap. I used 0.9.4.
◦ autoheader
◦ autoconf
◦ ./configure
◦ hsc2hs Pcap.hsc
◦ ghc -o test test.hs --make -lpcap -fglasgow-exts

All contributions are welcome especially if you know
how to get cabal to run autoconf and check for versions
of non-Haskell libraries.

4.5 Databases and data storage

4.5.1 Takusen

Report by: Alistair Bayley and Oleg Kiselyov
Status: active development

Takusen is a library for accessing DBMS’s. Like
HSQL, we support arbitrary SQL statements (currently
strings, extensible to anything that can be converted to
a string).

Takusen’s ‘unique-selling-point’ is safety and effi-
ciency. We statically ensure all acquired database re-
sources such as cursors, connection and statement han-
dles are released, exactly once, at predictable times.
Takusen can avoid loading the whole result set in mem-
ory and so can handle queries returning millions of
rows, in constant space. Takusen also supports au-
tomatic marshalling and unmarshalling of results and
query parameters. These benefits come from the design
of query result processing around a left-fold enumera-
tor.

Currently we fully support Oracle, Sqlite, and Post-
greSQL, and ODBC support exists but is not fully
tested.

Since the last report we have:

◦ added an ODBC backend

◦ improved the installation process so that we can
build Haddock docs with Cabal

A new release to promote the ODBC code should
be forthcoming; until then interested souls can get the
latest from the darcs repo.

Future plans

◦ complete ODBC interface.
◦ Large object support.
◦ MS SQL Server and Sybase interfaces, via FreeTDS.

Further reading

◦ darcs get http://darcs.haskell.org/takusen/
◦ browse docs:

http://darcs.haskell.org/takusen/doc/html
(see Database.Enumerator for Usage instructions
and examples)

4.6 Data types and data structures

4.6.1 Data.Record

Report by: Claus Reinke
Status: library sketch

Extensible records, or the lack thereof, continue to be a
popular subject of discussion. There is no lack of pro-
posals, some implemented, some not, but there seems
to be no obvious winner that would justify substan-
tial implementation efforts, not to mention upsetting
Haskell’s already featureful type system.

Ever since seeing the Trex in Hugs development
in Nottingham, I had been wondering about whether
there were smaller aspects of extensible record systems
that might be added as general features to the current
type system, so that a record system could be defined
on top of the extended system. The latter turned out to
be almost possible with the then prevailing Hugs type
system, but for commutative row constructors (label
ordering should not matter) and negated type predi-
cates (record ‘has’ label vs. record ‘lacks’ label).

Since then, extensions to the HList library (→ 4.6.7)
have demonstrated that one can abuse GHC’s type sys-
tem implementation to get just enough expressiveness
for defining a record system (an impressive feat), pro-
vided one is prepared to define a global ordering on
record field labels. Separately, Daan Leĳen’s scoped
labels proposal suggested that accepting the absence
of negative predicates leads to a different, but not nec-
essarily worse record system.

With all these ideas in the air, I found myself need-
ing an extensible record system for a modular attribute
grammar problem and was surprised to find an imple-
mentation of such a system within the limitations of
GHC’s type system – Data.Record was born! It was
based on scoped labels, but went further in providing

25

http://www.haskell.org/networktools/src/pcap
http://darcs.haskell.org/takusen/
http://darcs.haskell.org/takusen/doc/html

record concatenation as well. I first posted the mod-
ule Data.Record as an attachment to a Haskell’ ticket
on type sharing, and to the Haskell’ list as an example
of how code using only language extensions nominally
supported in both GHC and Hugs would nevertheless
only work in GHC, not in Hugs.

One of the recent revivals of the extensible records
discussion made me dust off that old code and add
some of the features requested for alternative systems.
In particular, there is now support for unscoped op-
erations (negative predicates, no duplicate labels) and
for record label permutation. The former means that
this code could grow into a library supporting all the
major extensible record system styles, the latter means
that record code can be label-order independent with-
out needing a global ordering on labels (a prerequisite
in most other type-class-based extensible record sys-
tems).

The code is not currently in a release state, being an
insufficiently systematic collection of features from sev-
eral systems, but usable, with examples, and if there
was sufficient interest, I could try getting it more or-
ganised. Please let me know if you like what is there
sufficiently to warrant such an effort.

Further reading

http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/
#records

4.6.2 Data.ByteString

Report by: Don Stewart
Status: active development

Data.ByteString provides packed strings (byte arrays
held by a ForeignPtr), along with a list interface to
these strings. It lets you do extremely fast IO in
Haskell; in some cases, even faster than typical C im-
plementations, and much faster than [Char]. It uses a
flexible “foreign pointer” representation, allowing the
transparent use of Haskell or C code to manipulate the
strings.

Data.ByteString is written in Haskell98 plus the for-
eign function interface and cpp. It has been tested
successfully with GHC 6.4, 6.6, 6.8, Hugs 2005–2006,
and the head version of nhc98.

Work on Data.ByteString continues. In particular,
a new fusion mechanism, stream fusion, has been de-
veloped, which should further improve performance
of ByteStrings. This work is described in the recent
“Stream Fusion: From Lists to Streams to Nothing at
All” paper. Data.ByteString has recently been ported
to nhc98.

Further reading

◦ Source and documentation can be found at
http://www.cse.unsw.edu.au/~dons/fps.html

◦ The source repository is available:
darcs get
http://darcs.haskell.org/bytestring

4.6.3 stream-fusion (was: Data.List.Stream)

Report by: Don Stewart
Status: active development

Data.List.Stream provides the standard Haskell list
data type and api, with an improved fusion sys-
tem, as described in the papers “Stream Fusion” and
“Rewriting Haskell Strings”. Code written to use
the Data.List.Stream library should run faster (or at
worst, as fast) as existing list code. A precise, cor-
rect reimplementation is a major goal of this project,
and Data.List.Stream comes bundled with around 1000
QuickCheck properties, testing against the Haskell98
specification, and the standard library.

This library is under active development, and we ex-
pect to port the ndp and bytestring libraries to use it.

Further reading

◦ Source and documentation can be found at:
http://www.cse.unsw.edu.au/~dons/streams.html

4.6.4 Edison

Report by: Rob Dockins
Status: stable, maintained

Edison is a library of purely function data structures
for Haskell originally written by Chris Okasaki. Con-
ceptually, it consists of two things:

1. A set of type classes defining data the following
data structure abstractions: “sequences”, “collec-
tions” and “associative collections”

2. Multiple concrete implementations of each of the ab-
stractions.

In theory, either component may be used indepen-
dently of the other.

I took over maintenance of Edison about 18 months
ago in order to update Edison to use the most current
Haskell tools. The following major changes have been
made since version 1.1, which was released in 1999.

◦ Typeclasses updated to use fundeps (by Andrew Bro-
mage)

◦ Implementation of ternary search tries (by Andrew
Bromage)

26

http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/#records
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/#records
http://www.cse.unsw.edu.au/~dons/fps.html
http://darcs.haskell.org/bytestring
http://www.cse.unsw.edu.au/~dons/streams.html

◦ Modules renamed to use the hierarchical module ex-
tension

◦ Documentation haddockized

◦ Source moved to a darcs repository

◦ Build system cabalized

◦ Unit tests integrated into a single driver program
which exercises all the concrete implementations
shipped with Edison

◦ Multiple additions to the APIs (mostly the associ-
ated collection API)

Edison is currently in maintain-only mode. I don’t
have the time required to enhance Edison in the ways I
would like. If you are interested in working on Edison,
don’t hesitate to contact me.

The biggest thing that Edison needs is a benchmark-
ing suite. Although Edison currently has an extensive
unit test suite for testing correctness, and many of the
data structures have proven time bounds, I have no way
to evaluate or compare the quantitative performance
of data structure implementations in a principled way.
Unfortunately, benchmarking data structures in a non-
strict language is difficult to do well. If you have an
interest or experience in this area, your help would be
very much appreciated.

Further reading

◦ http://www.cs.princeton.edu/~rdockins/edison/
home/

4.6.5 dimensional

Report by: Bjorn Buckwalter
Status: active, mostly stable

Dimensional is a library providing data types for per-
forming arithmetic with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage.

Following a reorganization of the module hierarchy
the core of dimensional is now mostly stable while ad-
ditional units are being added on an as-needed basis.
In addition to the si system of units dimensional has
experimental support for user-defined dimensions and
a proof-of-concept implementation of the cgs system
of units.

The most recent release is compatible with ghc 6.6.x
and above and can be downloaded from hackage or the
project web site. The primary documentation is the
literate haskell source code but the wiki on the project
web site has a few usage examples to help with getting
started.

Further reading

http://dimensional.googlecode.com

4.6.6 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Henning Thielemann,

Mikael Johansson
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck properties,
superfluous super-classes like Show are removed, se-
mantic and representation-specific operations are sepa-
rated, the hierarchy of type classes is more fine grained,
and identifiers are adapted to mathematical terms.

There are both certain new type classes representing
algebraic structures and new types of mathematical ob-
jects.

Currently supported algebraic structures are
◦ group (additive),
◦ ring,
◦ principal ideal domain,
◦ field,
◦ algebraic closures,
◦ transcendental closures,
◦ module and vector space,
◦ normed space,
◦ lattice,
◦ differential algebra,
◦ monoid.

There is also a collection of mathematical object
types, which is useful both for applications and test-
ing the class hierarchy. The types are
◦ lazy Peano number
◦ complex number, quaternion,
◦ residue class,
◦ fraction,
◦ partial fraction,
◦ numbers equipped with physical units (dynamic

checks only),
◦ fixed point arithmetic with respect to arbitrary bases

and numbers of fraction digits,
◦ infinite precision number in an arbitrary positional

system as lazy lists of digits supporting also numbers
with terminating representations,

◦ polynomial, power series, Laurent series
◦ root set of a polynomial,
◦ matrix (basics only),

27

http://www.cs.princeton.edu/~rdockins/edison/home/
http://www.cs.princeton.edu/~rdockins/edison/home/
http://dimensional.googlecode.com

◦ algebra, e.g. multi-variate polynomial (basics only),
◦ permutation group.
Due to Haskell’s flexible type system, you can combine
all these types, e.g. fractions of polynomials, residue
classes of polynomials, complex numbers with physical
units, power series with real numbers as coefficients.

Using the revised system requires hiding some of
the standard functions provided by Prelude, which is
fortunately supported by GHC (→ 2.1). The library
has basic Cabal support and a growing test-suite of
QuickCheck tests for the implemented mathematical
objects.

Future plans

Collect more Haskell code related to mathematics,
e.g. for linear algebra. Study of alternative numeric
type class proposals and common computer algebra
systems. Ideally each data type resides in a separate
module. However this leads to mutual recursive depen-
dencies, which cannot be resolved if type classes are
mutually recursive. We start to resolve this by fixing
the types of some parameters of type class methods.
E.g. power exponents become simply Integer instead
of Integral, which has also the advantage of reduced
type defaulting.

A still unsolved problem arises for residue classes,
matrix computations, infinite precision numbers, fixed
point numbers and others. It should be possible to
assert statically that the arguments of a function are
residue classes with respect to the same divisor, or that
they are vectors of the same size. Possible ways out are
encoding values in types or local type class instances.
The latter one is still neither proposed nor implemented
in any Haskell compiler. The modules are implemented
in a way to keep all options open. That is, for each
number type there is one module implementing the
necessary operations which expect the context as a pa-
rameter. Then there are several modules which provide
different interfaces through type class instances to these
operations.

Further reading

http://darcs.haskell.org/numericprelude/

4.6.7 HList – a library for typed heterogeneous
collections

Report by: Oleg Kiselyov
Developers: Oleg Kiselyov, Ralf Lämmel,

Keean Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous of the standard list library, providing a host

of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable, and compiled-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We and now others (Alexandra
Silva, Joost Visser: PURe.CoddFish project) have also
used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell http:
//darcs.haskell.org/OOHaskell. The HList library relies
on common extensions of Haskell 98.

The HList repository is available via Darcs (→ 6.13):
http://darcs.haskell.org/HList

The library is being optimized and extended. Since
the last report, we have added ConsUnion.hs to build
homogeneous lists of heterogeneous components by
constructing the union on-the-fly. We added Tem-
plate Haskell code to eliminate the annoying boilerplate
when defining record ‘labels’. We optimized record
projection, which should be especially noticeable for
record narrowing. We added equivR, record equiva-
lence modulo field order, with witnessing conversions.
ConsUnion.hs checks for record types and treat the
latter equivalent modulo the order of fields. This gives
optimized, shallower unions.

Further reading

◦ HList:
http://homepages.cwi.nl/~ralf/HList/

◦ OOHaskell:
http://homepages.cwi.nl/~ralf/OOHaskell/

4.7 Data processing

4.7.1 binary

Report by: Lennart Kolmodin
Participants: Duncan Coutts, Don Stewart, Binary

Strike Team
Status: active

The Binary Strike Team is pleased to announce the
release of a new, pure, efficient binary serialisation li-
brary.

The ‘binary’ package provides efficient serialisa-
tion of Haskell values to and from lazy ByteStrings.
ByteStrings constructed this way may then be written
to disk, written to the network, or further processed

28

http://darcs.haskell.org/numericprelude/
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/HList
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/

(e.g. stored in memory directly, or compressed in mem-
ory with zlib or bzlib).

The binary library has been heavily tuned for per-
formance, particularly for writing speed. Throughput
of up to 160M/s has been achieved in practice, and
in general speed is on par or better than NewBinary,
with the advantage of a pure interface. Efforts are un-
derway to improve performance still further. Plans are
also taking shape for a parser combinator library on top
of binary, for bit parsing and foreign structure parsing
(e.g. network protocols).

Data.Derive (→ 5.3.1) has support for automatically
generating Binary instances, allowing to read and write
your data structures with little fuzz.

Binary was developed by a team of 8 during the
Haskell Hackathon, and since then has in total 15 peo-
ple contributed code and many more given feedback
and cheerleading on #haskell.

The underlying code is currently being rewritten to
give even better performance – both reading and writ-
ing – still exposing the same API.

The package is is available through Hackage (→
4.1.1).

Further reading

◦ Homepage
http://www.cse.unsw.edu.au/~dons/binary.html

◦ Hackage
http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/binary

◦ Development version
darcs get –partial
http://darcs.haskell.org/binary

4.7.2 binarydefer

Report by: Neil Mitchell

The Binary Defer library provides a framework for do-
ing binary serialisation, with support for deferred load-
ing. Deferred loading is for when a large data structure
exists, but typically only a small fraction of this data
structure will be required. By using deferred loading,
some of the data structure can be read quickly, and the
rest can be read on demand, in a pure manner.

This library is at the heart of Hoogle 4 (→ 5.5.6),
but has already found uses outside that application,
including to do offline sorts etc.

Further reading

◦ Homepage:
http://www-users.cs.york.ac.uk/~ndm/binarydefer

4.7.3 The Haskell Cryptographic Library

Report by: Dominic Steinitz

The current version is still 4.0.3.
This means no dependency on NewBinary which had

been requested by several people.
The interface to SHA-1 is still different from MD5

and the whole library needs a rethink. Unfortunately,
I don’t have the time to undertake much work on it
at the moment and it is not clear when I will have
more time. I’m therefore looking for someone to help
keeping the repository up-to-date with contributions,
re-structuring the library and managing releases.

I have restructured SHA-1 to be more Haskell-like
and it’s now obvious how it mirrors the specification.
However, this has led to rather poor performance and
it’s not obvious (to me at least) what can be done with-
out sacrificing clarity.

Several people have posted more efficient versions of
SHA-1 but not as patches. Given my limited time, I
haven’t been able to do anything with these.

This release contains:
◦ DES
◦ Blowfish
◦ AES
◦ Cipher Block Chaining (CBC)
◦ PKCS#5 and nulls padding
◦ SHA-1
◦ MD5
◦ RSA
◦ OAEP-based encryption (Bellare-Rogaway)

Further reading

http://www.haskell.org/crypto http://hackage.haskell.
org/trac/crypto.

4.7.4 The Haskell ASN.1 Library

Report by: Dominic Steinitz

The current release is 0.0.11 which contains functions
to handle ASN.1, X.509, PKCS#8 and PKCS#1.5.

This still has a dependency on NewBinary.
The current version handles the Basic Encoding

Rules (BER). In addition, a significant amount of work
has been undertaken on handling the Packed Encoding
Rules (PER) using a GADT to represent the Abstract
Syntax Tree (we’ll probably move the BER to use the
same AST at some point). You can download the cur-
rent working version and try the unit and QuickCheck
property tests for PER. These are not yet built by Ca-
bal.

This release supports:

29

http://www.cse.unsw.edu.au/~dons/binary.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/binary
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/binary
http://darcs.haskell.org/binary
http://www-users.cs.york.ac.uk/~ndm/binarydefer
http://www.haskell.org/crypto
http://hackage.haskell.org/trac/crypto
http://hackage.haskell.org/trac/crypto

◦ X.509 identity certificates
◦ X.509 attribute certificates
◦ PKCS#8 private keys
◦ PKCS#1 version 1.5

Further reading

http://haskell.org/asn1.

4.7.5 2LT: Two-Level Transformation

Report by: Joost Visser, Tiago Miguel Laureano Alves
Participants: Pablo Berdaguer, Alcino Cunha, José

Nuno Oliveira, Hugo Pacheco, Tiago Alves
Status: active

A two-level data transformation consists of a type-level
transformation of a data format coupled with value-
level transformations of data instances corresponding
to that format. Examples of two-level data transfor-
mations include XML schema evolution coupled with
document migration, and data mappings used for in-
teroperability and persistence.

In the 2LT project, support for two-level transforma-
tions is being developed using Haskell, relying in par-
ticular on generalized abstract data types (GADTs).
Currently, the 2LT package offers:

◦ A library of two-level transformation combinators.
These combinators are used to compose trans forma-
tion systems which, when applied to an input type,
produce an output type, together with the conver-
sion functions that mediate between input and out
types.

◦ Front-ends for VDM-SL, XML and SQL. These
front-ends support (i) reading a schema, (ii) apply-
ing a two-level transformation system to produce
a new schema, (iii) convert a document/database
corresponding to the input schema to a docu-
ment/database corresponding to the output schema,
and vice versa.

◦ A combinator library for transformation of point-
free and structure-shy functions. These combinators
are used to compose transformation systems for op-
timization of conversion functions, and for migration
of queries through two-level transformations. Inde-
pendent of two-level transformation, the combinators
can be used to specializes structure-shy programs
(such as XPath queries and strategic functions) to
structure-sensitive point-free from, and vice versa.

◦ Support for schema constraints using point-free ex-
pressions. Constraints present in the initial schema
are preserved during the transformation process and
new contraints are added in specific transformations
to ensure semantic preservation. Constraints can be

simplified using the already existent library for trans-
formation of point-free functions.

The various sets of transformation combinators are
reminiscent of the combinators of Strafunski and the
Scrap-your-Boilerplate approach to generic functional
programming.

An release of 2LT is available from the project URL.
Recently, the 2LT project has been migrated to

Google Code. New functionality is planned, such as
elaboration of the front-ends and the creation of a web
interface.

Further reading

Project URL: http://2lt.googlecode.com

◦ Alcino Cunha, José Nuno Oliveira, Joost Visser.
Type-safe Two-level Data Transformation. Formal
Methods 2006.

◦ Alcino Cunha, Joost Visser. Strongly Typed Rewrit-
ing For Coupled Software Transformation. RULE
2006.

◦ Pablo Berdaguer, Alcino Cunha, Hugo Pacheco,
Joost Visser. Coupled Schema Transformation and
Data Conversion For XML and SQL. PADL 2007.

◦ Alcino Cunha and Joost Visser. Transformation of
Structure-Shy Programs, Applied to XPath Queries
and Strategic Functions. PEPM 2007.

◦ Tiago L. Alves, Paulo Silva and Joost Visser.
Constraint-aware Schema Transformation. Draft,
2007.

4.8 User interfaces

4.8.1 Shellac

Report by: Rob Dockins
Status: beta, maintained

Shellac is a framework for building read-eval-print style
shells. Shells are created by declaratively defining a set
of shell commands and an evaluation function. Shel-
lac supports multiple shell backends, including a ‘basic’
backend which uses only Haskell IO primitives and a
full featured ‘readline’ backend based on the the Haskell
readline bindings found in the standard libraries.

This library attempts to allow users to write shells
in a declarative way and still enjoy the advanced fea-
tures that may be available from a powerful line editing
package like readline.

Shellac is available from Hackage, as is the related
Shellac-readline package.

Shellac has been successfully used by several inde-
pendent projects and the API is now fairly stable. I

30

http://haskell.org/asn1
http://2lt.googlecode.com

will likely be releasing an officially “stable” version in
the not-too-distant future. I anticipate few changes
from the current version.

Further reading

http://www.cs.princeton.edu/~rdockins/shellac/home

4.8.2 Grapefruit – A declarative GUI and graphics
library

Report by: Wolfgang Jeltsch
Participants: Wolfgang Jeltsch, Matthias Reisner
Status: provisional

Grapefruit is a library for creating graphical user inter-
faces and animated graphics in a declarative way.

Fundamental to Grapefruit is the notion of signal. A
signal denotes either a time-varying value (the contin-
uous case) or a sequence of values assigned to discrete
points in time (the discrete case). Signals can be con-
structed in a purely functional manner.

User interfaces are described as systems of intercon-
nected components which communicate via signals. To
build such systems, the methods from the Arrow and
ArrowLoop classes are used. For describing animated
graphics, a special signal type exists.

Grapefruit also provides list signals. A list signal
is a list-valued signal which can be updated incremen-
tally and thus efficiently. In addition, a list signal as-
sociates an identity with each element so that moving
an element within the list can be distinguished from
removing the element and adding it again. List signals
can be used to describe dynamic user interfaces, i.e.,
user interfaces with a changing set of components and
changing order of components.

Grapefruit descriptions of user interfaces and anima-
tions always cover their complete lifetime. No explicit
event handler registrations and no explicit recalcula-
tions of values are necessary. This is in line with the
declarative nature of Haskell because it stresses the be-
havior of GUIs and animations instead of how this be-
havior is achieved. Internally though, Grapefruit is im-
plemented efficiently using a common event dispatching
and handling mechanism.

Grapefruit is currently based on Gtk2Hs (→ 4.8.3)
and HOpenGL but implementations on top of other
GUI and graphics libraries are possible. The aim is
to provide alternative implementations based on differ-
ent GUI toolkits so that a single application is able to
integrate itself into multiple desktop environments.

Further reading

http://haskell.org/haskellwiki/Grapefruit

4.8.3 Gtk2Hs

Report by: Duncan Coutts
Maintainer: Axel Simon and Duncan Coutts
Status: beta, actively developed

Gtk2Hs is a GUI Library for Haskell based on Gtk+.
Gtk+ is an extensive and mature multi-platform toolkit
for creating graphical user interfaces.

GUIs written using Gtk2Hs use themes to resemble
the native look on Windows and, of course, various
desktops on Linux, Solaris and FreeBSD. Gtk+ and
Gtk2Hs also support Mac OS X (it currently uses the
X11 server but a native port is in progress – see below).

Gtk2Hs features:
◦ automatic memory management (unlike some other

C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ high quality vector graphics using Cairo
◦ extensive reference documentation
◦ an implementation of the “Haskell School of Expres-

sion” graphics API
◦ support for the Glade visual GUI builder
◦ bindings to some Gnome extensions: GConf, a source

code editor widget and a widget that embeds the
Mozilla/Firefox rendering engine

◦ an easy-to-use installer for Windows
◦ packages for Fedora, Gentoo (→ 7.4.3), Debian and

FreeBSD

The Gtk2Hs library is actively maintained and devel-
oped. We had a major new release back in July and an-
other update in November. Of particular note is an in-
troductory tutorial that Hans van Thiel and other con-
tributors have been writing over the past few months.

In the medium term we hope to support the new fea-
tures in Gtk+ 2.10, to improve the signals API. In the
longer term we hope to modularise Gtk2Hs and enable
it to be built and distributed with Cabal and Hackage.
A promising recent development is that Gtk+’s native
(non-X11) backend for Mac OS X has got to the point
where Gtk2Hs can be built against it and most of the
demo programs work.

The two core maintainers have had less time than they
would have liked in recent months to work on Gtk2Hs.
This has slowed progress on the medium term goals.
On the other hand it is a good opportunity for other
contributors to get involved. There are plenty of po-
tential coding projects and Hans has been organising
people working on the tutorials. We are interested in
feedback from people using Gtk2Hs and especially in
interesting applications that we can show off on the
website.

31

http://www.cs.princeton.edu/~rdockins/shellac/home
http://haskell.org/haskellwiki/Grapefruit

Further reading

◦ News, downloads and documentation:
http://haskell.org/gtk2hs/

◦ Development version:
darcs get http://haskell.org/gtk2hs/darcs/gtk2hs/

4.8.4 VTY

Report by: Stefan O’Rear

VTY (Virtualized tTY) is a terminal control library,
similar to Stefan Wehr’s hscurses. However vty is de-
signed to have a much easier to use API; all commu-
nication is accomplished using 5 functions (most using
only 2), with a simple data type. Code which describes
screen images is pure and declarative. Vty supports all
generally useful features of the Linux terminal emula-
tor except for palette setting. It is used successfully
by Shellac (→ 4.8.1), Yi (→ 6.15), and the author’s un-
published HsLife program.

Current disadvantages are poor support for non-
Linux terminals, poor performance, and a lack of in-
terested hacking/maintainership.

Further reading

◦ Source repository:
darcs get http://members.cox.net/stefanor/vty

4.9 (Multi-)Media

4.9.1 Programming of Modular Synthesizers

Report by: George Giorgidze
Status: Early Development

In this project we develop a purely functional frame-
work for programming modular synthesizers in Haskell
using Yampa. A synthesizer, be it a hardware instru-
ment or a pure software implementation, as here, is
said to be modular if it provides sound-generating and
sound-shaping components that can be interconnected
in arbitrary ways.

Basic sound-generating and sound-shaping modules
have been implemented, which are already enough
to implement one particular instance of our frame-
work; namely an application capable of playing stan-
dard MIDI files with respectable performance, using
the SoundFont instrument description standard. The
application implements subsets of the aforementioned
standards.

Source code and binaries are available under the BSD
license.

Future plans

We would like to see a richer collection of sound-
generating and sound-shaping modules in the frame-
work, and complete implementation of MIDI, Sound-
Font and related standards. However one might find
some other interesting continuation of the work; we
are open for suggestions and would be happy if some-
one wishes to collaborate.

Further reading

◦ Source code and related papers are available from:
http://cs.nott.ac.uk/~ggg/

◦ Video of the demo presented at Haskell Workshop
2007:
http://video.google.com/videoplay?docid=
-8742804023527878309

4.9.2 Haskore revision

Report by: Henning Thielemann and Paul Hudak
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e. without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design deci-
sions, and fixing bugs. Specific improvements include:

1. Basic Cabal support.

2. The Music data type has been generalized in the
style of Hudak’s “polymorphic temporal media.”

3. The Music data type has been made abstract by
providing functions that operate on it.

4. The notion of instruments is now very general.
There are simple predefined instances of the Music
data type, where instruments are identified by
Strings or General MIDI instruments, but any other
custom type is possible, including types with instru-
ment specific parameters.

5. Support for CSound orchestra files has been im-
proved and extended, thus allowing instrument de-
sign in a signal-processing manner using Haskell, in-
cluding feedback and signal processors with multiple
outputs.

6. Support for the software synthesizer SuperCollider
both in real-time and non-real-time mode through
the Haskell interface by Rohan Drape.

7. The AutoTrack project has been adapted and in-
cluded.

32

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/darcs/gtk2hs/
http://members.cox.net/stefanor/vty
http://cs.nott.ac.uk/~ggg/
http://video.google.com/videoplay?docid=-8742804023527878309
http://video.google.com/videoplay?docid=-8742804023527878309

8. Support for infinite Music objects is improved.
CSound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed
with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (→ 6.19).)

9. The test suite is based on QuickCheck and HUnit.

10. Currently we separate a package for managing
event lists and a package for managing MIDI files,
based on it.

Future plans

◦ Split into a core package and add-ons, as soon as
Cabal supports that.

◦ Generate note sheets, say via Lilypond.
◦ Allow modulation of instruments similar to the con-

trollers in the MIDI system.
◦ Connect to other Haskore related projects.

Further reading

◦ http://www.haskell.org/haskellwiki/Haskore
◦ http://darcs.haskell.org/haskore/

4.10 Web and XML programming

4.10.1 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.

The library provides a basic data type for a list of
unstructured tags, a parser to convert HTML into this
tag type, and useful functions and combinators for find-
ing and extracting information. The library has seen
real use in an application to give Hackage listings, and
is used in the next version of Hoogle (→ 5.5.6).

Work continues on the API of tagsoup, and the im-
plementation. Lots of people have made use of tagsoup
in their applications, generating lots of valuable feed-
back. A new version of tagsoup is imminent.

Further reading

◦ Homepage:
http://www-users.cs.york.ac.uk/~ndm/tagsoup

4.10.2 HaXml

Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public stable release is 1.13.2, with sup-
port for building via Cabal for ghc-6.6.x.

The development version (currently at 1.18, also
available through a darcs repository) includes a much-
requested lazy parser, and a SAX-like streaming parser.
Only some minor work still remains, to tidy things up
before the development version is tagged and released
as stable.

We recently split off the new lazy parser combinators
used by HaXml into a separate library package called
polyparse.

Further reading

◦ http://haskell.org/HaXml
◦ http://www.cs.york.ac.uk/fp/HaXml-devel
◦ darcs get http://darcs.haskell.org/packages/HaXml
◦ http://www.cs.york.ac.uk/fp/polyparse

4.10.3 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: sixth major release (current release: 7.1)

Description

The Haskell XML Toolbox is a collection of tools for
processing XML with Haskell. It is itself purely writ-
ten in Haskell 98. The core component of the Haskell
XML Toolbox is a validating XML-Parser that sup-
ports almost fully the Extensible Markup Language
(XML) 1.0 (Second Edition), There is a validator based
on DTDs and a new more powerful validator for Relax
NG schemas.

The Haskell XML Toolbox bases on the ideas of
HaXml (→ 4.10.2) and HXML, but introduces a more
general approach for processing XML with Haskell.
Since release 5.1 there is a new arrow interface simi-
lar to the approach taken by HXML. This interface is
more flexible than the old filter approach. It is also
safer, type checking of combinators becomes possible
with the arrow interface.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Flexible arrow interface with type classes for XML

filter
◦ Package support for ghc

33

http://www.haskell.org/haskellwiki/Haskore
http://darcs.haskell.org/haskore/
http://www-users.cs.york.ac.uk/~ndm/tagsoup
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-devel
http://darcs.haskell.org/packages/HaXml
http://www.cs.york.ac.uk/fp/polyparse

◦ Native Haskell support of HTTP 1.1 and FILE pro-
tocol

◦ HTTP and access via other protocols via external
program curl

◦ Tested with W3C XML validation suite
◦ Example programs for filter and arrow interface
◦ Relax NG schema validator based on the arrows in-

terface
◦ A HXT Cookbook for using the toolbox and the ar-

row interface
◦ Basic XSLT support
◦ darcs repository with current development version

(7.2) under http://darcs.fh-wedel.de/hxt

Current Work

A master thesis has been finished developing an XSLT
system. The result is a rather complete implementation
of an XSLT transformer system. Only minor features
are missing. The implementation consists of about only
2000 lines of Haskell code. The XSLT module is in-
cluded since the HXT 7.0 release.

A second master student’s project, the development
of a web server called Janus, has been finished in Oc-
tober of 2006. The title is A Dynamic Webserver with
Servlet Functionality in Haskell Representing all Inter-
nal Data by Means of XML. HXT with the arrows in-
terface has been used for processing all internal data of
this web server. The Janus server is highly configurable
and can be used not only as HTTP server, but for vari-
ous other server like tasks. The results of this work will
be available via a darcs repository in June 2007. Cur-
rent activity consists of testing, example applications,
demos and documentation.

A new project, an application for HXT and Janus
will start in summer 2007: Two master students will
construct an index and search engine for specialized
search tasks. This system will be highly configurable,
such that tasks like searching within a web site, search
of articles within a book store or search within a news-
paper archive becomes possible. Distribution of the
index and search engines within a network architecture
will be an additional aspect of this project.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML process-
ing using arrows and RDF documents, and master
thesises describing the design of the toolbox, the
DTD validator, the arrow based Relax NG val-
idator and the XSLT system. A getting started
tutorial about HXT is avaliable in the Haskell Wiki
(http://www.haskell.org/haskellwiki/HXT).

4.10.4 WASH/CGI – Web Authoring System for
Haskell

Report by: Peter Thiemann

WASH/CGI is an embedded DSL (read: a Haskell li-
brary) for server-side Web scripting based on the purely
functional programming language Haskell. Its imple-
mentation is based on the portable common gateway
interface (CGI) supported by virtually all Web servers.
WASH/CGI offers a unique and fully-typed approach
to Web scripting. It offers the following features
◦ complete interactive server-side script in one pro-

gram
◦ a monadic, type-safe interface to generating XHTML

output
◦ type-safe compositional approach to specifying form

elements; callback-style programming interface for
forms

◦ type-safe interfaces to state with different scopes: in-
teraction, persistent client-side (cookie-style), persis-
tent server-side

◦ high-level API for reading, writing, and sending
email

◦ documented preprocessor for translating markup in
syntax close to XHTML syntax into WASH/HTML

Completed Items are:
◦ fully cabalized
◦ WASH server pages with a modified version of Si-

mon Marlow’s hws web server; the current prototype
supports dynamic compilation and loading of WASH
source (via Don Stewart’s hs-plugins (→ 4.4.3)) as
well as the implementation of a session as a continu-
ally running server thread

◦ Transactional interface to server-side variables and to
databases. The interface is inspired by the work on
STM (software transactional memory), but modified
to be useful in the context of web applications. The
interface relies on John Goerzens hdbc package and
its PostgreSQL driver.

Current work includes
◦ improvement of the database interface
◦ authentication interface
◦ user manual (still in the early stages)

Further reading

The WASH Webpage (http://www.informatik.
uni-freiburg.de/~thiemann/WASH/) includes exam-
ples, a tutorial, a draft user manual, and papers about
the implementation.

34

http://darcs.fh-wedel.de/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.informatik.uni-freiburg.de/~thiemann/WASH/
http://www.informatik.uni-freiburg.de/~thiemann/WASH/

5 Tools

5.1 Foreign Function Interfacing

5.1.1 C→Haskell

Report by: Manuel Chakravarty
Status: active

C→Haskell is an interface generator that simplifies the
development of Haskell bindings to C libraries. It reads
C header files to automate many tedious aspects of in-
terface generation and to minimise the opportunity for
introducing errors when translating C declarations to
Haskell.

Duncan Coutts has been busy implementing a new C
parser that is very closely aligned to gcc’s grammar and
has been tested on a large pool of open source code.

More information is at http://www.cse.unsw.edu.au/
~chak/haskell/c2hs/.

5.2 Scanning, Parsing, Analysis

5.2.1 Alex version 2

Report by: Simon Marlow
Status: stable, maintained

Alex is a lexical analyser generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyser generator is often used in conjunction with a
parser generator (such as Happy) to build a complete
parser.

The latest release is version 2.1.0.

Changes in version 2.1.0:

◦ Alex is now in a Darcs repository (→ 6.13), here:
http://cvs.haskell.org/darcs/alex.

◦ Happy has a new build system, based on Cabal. If
you have GHC 6.4.2 or later (or Cabal 1.1.4 or later),
then you should be able to build and install Alex
on any platform. On Windows, Perl is required in
addition to GHC for building, but that is all.

◦ There was a slight change in the error semantics, to
enable more informative error messages.

Further reading

http://www.haskell.org/alex/

5.2.2 Happy

Report by: Simon Marlow
Status: stable, maintained

Happy is a tool for generating Haskell parser code from
a BNF specification, similar to the tool Yacc for C.
Happy also includes the ability to generate a GLR
parser (arbitrary LR for ambiguous grammars).

The latest release is 1.16, released 8 January 2007.
There have been no changes to the darcs sources since
1.16, but I have some pending changes to fix one annoy-
ing bug (Happy crashes instead of emitting error mes-
sages), and I have some changes that speed up Happy
by 10% or so.

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/
happy-glr/.

5.2.3 SdfMetz

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser
Status: stable, maintained

SdfMetz supports grammar engineering by calculating
grammar metrics and other analyses. Currently it sup-
ports four different grammar formalisms (SDF, DMS,
Antlr and Bison) from which it calculates size, com-
plexity, structural, and ambiguity metrics. Output is
a textual report or in Comma Separated Value format.
The additional analyses implemented are visualization,
showing the non-singleton levels of the grammar, or
printing the grammar graph in DOT format. The
definition of all except the ambiguity and the NPath
metrics were taken from the paper A metrics suite for
grammar based-software by James F. Power and Brian
A. Malloy. The ambiguity metrics were defined by the
tool author exploiting specific aspects of SDF gram-
mars and the NPath metric definition was taken from
the paper NPATH: a measure of execution path com-
plexity and its applications.

Future plans

Efforts are underway to development functionalities to
compute quality profiles based on histograms. Further-
more more metrics will be added and a web-interface
is planed.

35

http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://www.cse.unsw.edu.au/~chak/haskell/c2hs/
http://cvs.haskell.org/darcs/alex
http://www.haskell.org/alex/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/

The tool was initially developed in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) to develop a grammar for ISO VDM-
SL.

Further reading

The web site of SdfMetz (http://wiki.di.uminho.pt/wiki/
bin/view/PURe/SdfMetz) includes tables of metric val-
ues for a series of SDF grammar as computed by
SdfMetz. The tool is distributed as part of the UMinho
Haskell Libraries and Tools.

5.3 Transformations

5.3.1 derive

Report by: Neil Mitchell and Stefan O’Rear
Participants: Neil Mitchell, Stefan O’Rear, Twan van

Laarhoven, Spencer Janssen, Andrea
Vezzosi

The instance derivation mechanism in Haskell is use-
ful, but it has too little power for many uses. User
defined classes cannot be derived automatically even
when there is an obvious algorithm to do it. Previous
attempts, such as DrIFT, are restricted in output form
and closed in the supported classes.

Data.Derive is designed to rectify both of these is-
sues. By design, implementing derivation for a new
class is extremely simple: add a single module to the
GHC search path. Data.Derive uses an Abstract Syn-
tax Tree for output, allowing us to operate both as a
preprocessor a la DrIFT and Template Haskell based
build integration.

The Derive tool has also attracted new features not
present in DrIFT. Twan van Laarhoven has imple-
mented deriving support for Functor, as proposed for
Haskell’. Neil Mitchell has done some work on guessing
inductive instances, allowing users to specify an exam-
ple of the instance, and then automatically inferring
the rules to derive it.

Further reading

◦ Homepage:
http://www-users.cs.york.ac.uk/~ndm/derive

5.3.2 Term Rewriting Tools written in Haskell

Report by: Salvador Lucas

During the last years, we have developed a number
of tools for implementing different termination analy-
ses and making declarative debugging techniques avail-
able for Term Rewriting Systems. We have also im-
plemented a small subset of the Maude / OBJ lan-

guages with special emphasis on the use of simple pro-
grammable strategies for controlling program execu-
tion and new commands enabling powerful execution
modes.

The tools have been developed at the Technical Uni-
versity of Valencia (UPV) as part of a number of re-
search projects. The following people is (or has been)
involved in the development of these tools: Beatriz
Alarcón, María Alpuente, Demis Ballis (Università di
Udine), Santiago Escobar, Moreno Falaschi (Univer-
sità di Siena), Javier García-Vivó, Raúl Gutiérrez, José
Iborra, Salvador Lucas, Rafael Navarro, Eloy Romero,
Pascal Sotin (Université du Rennes).

Status

The previous work lead to the following tools:

◦ MU-TERM: a tool for proving termination of
rewriting with replacement restrictions (first version
launched on February 2002).

http://zenon.dsic.upv.es/muterm

Standalone versions of the tool are available for dif-
ferent platforms (Linux, Mac OS X, Windows). A
web-based interface (developed in HAppS) is also
available:

http://zenon.dsic.upv.es/webmuterm

◦ Debussy: a declarative debugger for OBJ-like lan-
guages (first version launched on December 2002).

http://www.dsic.upv.es/users/elp/debussy

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions (first version launched on January 2003).

http://www.dsic.upv.es/users/elp/ondemandOBJ

http://www.dsic.upv.es/users/elp/GVerdi

◦ GVerdi: A Rule-based System for Web site Verifica-
tion (first version launched on January 2005).

All these tools have been written in Haskell (mainly de-
veloped using Hugs and GHC) and use popular Haskell
libraries like HAppS, hxml-0.2, Parsec, RegexpLib98,
wxHaskell.

Immediate plans

Improve the existing tools in a number of different ways
and investigate mechanisms (XML, .NET, . . .) to plug
them to other client / server applications (e.g., compil-
ers or complementary tools).

References

◦ Building .NET GUIs for Haskell applications. B.
Alarcón and S. Lucas. 6th International Conference
on .NET Technologies, pages 57–66, 2006.

36

http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://wiki.di.uminho.pt/wiki/bin/view/PURe/SdfMetz
http://www-users.cs.york.ac.uk/~ndm/derive
http://zenon.dsic.upv.es/muterm
http://zenon.dsic.upv.es/webmuterm
http://www.dsic.upv.es/users/elp/debussy
http://www.dsic.upv.es/users/elp/ondemandOBJ
http://www.dsic.upv.es/users/elp/GVerdi

◦ Proving Termination of Context-Sensitive Rewrit-
ing With MU-TERM B. Alarcón, R. Gutiérrez, J.
Iborra, and S. Lucas. Electronic Notes in Theoreti-
cal Computer Science, 118:105-115, 2007.

◦ Abstract Diagnosis of Functional Programs M.
Alpuente, M. Comini, S. Escobar, M. Falaschi, and S.
Lucas Selected papers of the International Workshop
on Logic Based Program Development and Trans-
formation, LOPSTR’02, LNCS 2664:1–16, Springer-
Verlag, Berlin, 2003.

◦ OnDemandOBJ: A Laboratory for Strategy Annota-
tions M. Alpuente, S. Escobar, and S. Lucas 4th In-
ternational Workshop on Rule-based Programming,
RULE’03, Electronic Notes in Theoretical Computer
Science, volume 86.2, Elsevier, 2003.

◦ Connecting Remote Tools: Do it by yourSELF! M.
Alpuente and S. Lucas. ERCIM News 61:48–49,
April 2005.

◦ MU-TERM: A Tool for Proving Termination of
Context-Sensitive Rewriting S. Lucas 15th Interna-
tional Conference on Rewriting Techniques and Ap-
plications, RTA’04, LNCS 3091:200–209, Springer-
Verlag, Berlin, 2004.

◦ A Rule-based System for Web site Verification.
Demis Ballis and Javier García-Vivó. 1st In-
ternational Workshop on Automated Specification
and Verification of Web Sites, WWV’05, Valencia
(SPAIN). Electronic Notes in Theoretical Computer
Science, 157(2):11–17, 2006.

5.3.3 HaRe – The Haskell Refactorer

Report by: Huiqing Li, Chris Brown, Claus Reinke and
Simon Thompson

Refactorings are source-to-source program transforma-
tions which change program structure and organisa-
tion, but not program functionality. Documented in
catalogues and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs has as
its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its fourth major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalisation and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls

to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately. The version
about to be released (at the time of writing) works
with GHC 6.6.1, but not GHC 6.4; the earlier releases
work with 6.4.*.

In order to allow users to extend HaRe themselves,
HaRe includes an API for users to define their own
program transformations, together with Haddock (→
5.5.5) documentation. Please let us know if you are
using the API.

There have been some recent developments for
adding program slicing techniques to HaRe. These
techniques include a refactoring to split functions re-
turning tuples into separate definitions, and to also
put them back together again. There have also been
some new refactorings added which work on data types:
adding a constructor to a data type and converting a
data type into a newtype. The immediate aim for the
development of HaRe is to support a number of type-
based refactorings.

A snapshot of HaRe is available from our webpage,
as are recent presentations from the group (including
LDTA 05, TFP05, SCAM06), and an overview of recent
work from staff, students and interns. Among this is an
evaluation of what is required to port the HaRe system
to the GHC API (→ 2.1), and a comparative study of
refactoring Haskell and Erlang programs.

The final report for the project appears there too,
together with an updated refactoring catalogue and the
latest snapshot of the system. Huiqing’s PhD thesis
on refactoring Haskell programs is now available online
from our project webpage.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

5.3.4 VooDooM

Report by: Tiago Miguel Laureano Alves
Maintainer: Tiago Alves, Paulo Silva
Status: stable, maintained

VooDooM supports understanding and re-engineering
of VDM-SL specifications.

Understanding is accomplished through the extrac-
tion and derivation of different kinds of graphs such
as type dependency, function dependency and strongly
connected components graphs. These graphs can be
subject of both visualization (by exporting into DOT
format) and metrication (generating CSV or text re-
port).

Re-engineering is supported through the applica-
tion of transformation rules to the datatypes to ob-
tain an equivalent relational representation. The re-
lational representation can be exported as VDM-SL

37

http://www.cs.kent.ac.uk/projects/refactor-fp/

datatypes (inserted back into th e original specifica-
tion) and/or SQL table definitions (can be fed to a
relational DBMS).

The first VooDooM prototype, supporting re-
engineering, was developed in a student project by
Tiago Alves and Paulo Silva. The prototype was fur-
ther enhanced and continued as an open source project
(http://voodoom.sourceforge.net/) in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) by Tiago Alves and finally in the con-
text of a MSc thesis project.

Future plans

It is planned that the re-engineering functionality of
VooDooM will be replaced by the one is being devel-
oped for the 2LT project (→ 4.7.5), which will add
XML and Haskell generation.

Further reading

VooDooM is available from http://voodoom.
sourceforge.net/. The implementation of VooDooM
makes ample use of strategic programming, using Stra-
funski, and is described in Strategic Term Rewriting
and Its Application to a VDM-SL to SQL Conversion
(Alves et al., Formal Methods 2005) and in the
MSc thesis VooDooM: Support for understanding and
re-engineering of VDM-SL specifications.

5.4 Testing and Debugging

5.4.1 Haskell Program Coverage

Report by: Andy Gill
Status: released, maintained, in active development

Hpc is a tool-kit to record and display Haskell Pro-
gram Coverage. Hpc includes tools that instrument
Haskell programs to record program coverage, run in-
strumented programs, and display the coverage infor-
mation obtained.

Hpc provides coverage information of two kinds:
source coverage and boolean-control coverage. Source
coverage is the extent to which every part of the
program was used, measured at three different lev-
els: declarations (both top-level and local), alternatives
(among several equations or case branches) and expres-
sions (at every level). Boolean coverage is the extent to
which each of the values True and False is obtained in
every syntactic boolean context (ie. guard, condition,
qualifier).

Hpc displays both kinds of information in two dif-
ferent ways: textual reports with summary statistics
(hpc-report) and sources with colour mark-up (hpc-
markup). For boolean coverage, there are four possible
outcomes for each guard, condition or qualifier: both
True and False values occur; only True; only False;

never evaluated. In hpc-markup output, highlighting
with a yellow background indicates a part of the pro-
gram that was never evaluated; a green background
indicates an always-True expression and a red back-
ground indicates an always-False one.

Hpc provides a Haskell-to-Haskell translator as a
means for building instrumented binaries for gather-
ing coverage information, and an Hpc option already
checked into GHC 6.7 will make gathering coverage
over GHC specific Haskell code possible in GHC 6.8.

The file formats use by Hpc are simple and well
documented. The intent is that other tools can be
quickly built that process coverage information in cre-
ative ways.

Since the last HCAR report, there have been two
significant developments in Hpc camp.

◦ An Ajax based tracer has been developed that uses
the Hpc ticks to highlight actual control flow in-
side a Haskell program using a browser view of
Haskell source code. Unsurprisingly lazy functional
code jumps around in a semi-understandable man-
ner. The tracer turns out to be useful for finding
errors like head of [], because the tracer can run till
the exception is raised, then replay the control flow
backwards, showing what code fragment causes the
bad call to head.

◦ Hpc now has a small DSL for specifying code frag-
ments that should be ignored when computing and
displaying coverage. This DSL can be used to help
classify things like code that is genuinely expected to
never be called, for example if the code can only be
reached when a higher-level precondition has been
violated. The DSL can also be used to tag test code
to be ignored when considering system level cover-
age. Another use case is capturing the ignoring of
idioms that are expected to contain non-executed
code. This DSL is provided as a processor for the
open Hpc file formats, and works with the other Hpc
tools.

GHC has been sucessfully bootstrapping using Hpc,
and Hpc has already be deployed internally in Galois in
a number of places. In the future expect to see tighter
integration between Haskell testing tools and Hpc as
obtaining coverage results for test runs becomes stan-
dard practice in Haskell development.

Further reading

http://www.haskell.org/haskellwiki/Haskell_Program_
Coverage

38

http://voodoom.sourceforge.net/
http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://voodoom.sourceforge.net/
http://voodoom.sourceforge.net/
http://www.haskell.org/haskellwiki/Haskell_Program_Coverage
http://www.haskell.org/haskellwiki/Haskell_Program_Coverage

5.4.2 Hat

Report by: Olaf Chitil and Malcolm Wallace
Status: maintenance

The Haskell tracing system Hat is based on the idea
that a specially compiled Haskell program generates a
trace file alongside its computation. This trace can be
viewed in various ways with several tools: hat-observe,
hat-trail, hat-detect, hat-delta, hat-explore, hat-cover,
hat-anim, black-hat, hat-nonterm . . . Some views are
similar to classical debuggers for imperative languages,
some are specific to lazy functional language features
or particular types of bugs. All tools inter-operate and
use a similar command syntax.

Hat can be used both with nhc98 and ghc (→ 2.1).
Hat was built for tracing Haskell 98 programs, but it
also supports some language extensions (FFI, MPTC,
fundeps, hierarchical libs). A tutorial explains how to
generate traces, how to explore them, and how they
help to debug Haskell programs.

During the last half year only small bug fixes were
committed to the darcs (→ 6.13) repository, but sev-
eral other updates are also planned for the near future,
including new and improved trace-browsers.

Further reading

◦ A Theory of Tracing Pure Functional Programs
http://www.cs.kent.ac.uk/~oc/traceTheory.html

◦ http://www.haskell.org/hat
◦ darcs get http://darcs.haskell.org/hat

5.4.3 Lazy SmallCheck

Report by: Matthew Naylor
Participants: Fredrik Lindblad, Colin Runciman
Status: experimental

If there is any case in which a program fails, there is al-
most always a simple one, and the simplest cases are the
easiest to investigate. Such observations motivate the
development of SmallCheck, a library that tests pro-
gram properties for all fully-defined values up to some
size. We have developed a variant called Lazy Small-
Check, which generates partially-defined inputs that
are progressively refined as demanded by the property
under test. The key observation is that if a property
evaluates to True or False for a partially-defined input
then it would also do so for all refinements of that input.
By not generating such refinements, Lazy SmallCheck
may test the same input-space as SmallCheck using sig-
nificantly fewer tests, allowing larger input spaces to be
checked in a given amount of time.

A talk about Lazy SmallCheck was given at Fun in
the Afternoon at York, and the slides are available,
along with our initial implementation, on the Lazy
SmallCheck homepage. In the coming months we hope

to incorporate further search reduction techniques, in-
clude more of SmallCheck’s features (e.g. function gen-
eration), and explore more examples.

Further reading

http://www.cs.york.ac.uk/~mfn/lazysmallcheck/

39

http://www.cs.kent.ac.uk/~oc/traceTheory.html
http://www.haskell.org/hat
http://darcs.haskell.org/hat
http://www.cs.york.ac.uk/~mfn/lazysmallcheck/

5.5 Development

5.5.1 Haskell Mode Plugins for Vim

Report by: Claus Reinke
Participants: All Haskell & Vim users
Status: ongoing

There is no standard Haskell mode for Vim, but nu-
merous Vimmers with their own personalized Haskell
mode settings for Vim have the kind of IDE function-
ality at their fingertips that other Haskellers are still
looking for.

My own Haskell mode plugins for Vim seem to have
become increasingly popular over recent months and
collect several scripts that offer functionality based
on GHCi, on Haddock-generated documentation, and
on Vim’s own configurable program editing support.
This includes several insert mode completions (based
on imported or documented identifiers, on tag files, or
on words appearing in current and imported sources),
quickfix mode (list errors, jump to error locations), in-
ferred type tooltips, various editing helpers (insert im-
port statement, type declaration or module qualifier
for id under cursor, expand implicit into explicit im-
port statement, add option and language pragmas, ..),
and direct access to the Haddocks for id under cursor.

Surprisingly many Haskellers are not quite aware of
Vim’s IDE functions, so I created a little introductory
(and incomplete) tour of screenshots giving an incom-
plete overview of what is available (for more general in-
formation, see Vim’s excellent built-in :help, or browse
the help files online at http://vimdoc.sourceforge.net/
htmldoc/usr_toc.html; for more and current details of
haskell mode features, see the haskellmode.txt help
file at the project site).

Other Haskell-related plugins for Vim exist – please
add links to your own tricks and tips at haskell.org
(syntax-colouring works out of the box, other scripts
deal with indentation, . . . , perhaps there should be a
top-level ‘Haskell modes for Vim’ section at haskell.org,
similar to the ‘Haskell mode for Emacs’ section). I hope
these plugins might be useful to some of you (please let
me know if anything doesn’t work as advertized!), and
might even motivate some of you to give Vim a try. It is
really not as if Vim (or Emacs, for that matter) didn’t
have more IDE functionality than most of us ever use,
it is more that there is so much of it to learn and to
fine-tune to your personal preferences.

Further reading

◦ Haskell Mode Plugins for Vim:
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/

◦ A short tour of some Vim support for Haskell editing
(screenshots):

http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/
vim.html

◦ haskell.org section listing these and other Vim files:
http://www.haskell.org/haskellwiki/Libraries_and_
tools/Program_development#Vim

5.5.2 cpphs

Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust drop-in Haskell replacement for the
C pre-processor. It has a couple of benefits over the
traditional cpp – you can run it in Hugs when no C
compiler is available (e.g. on Windows); and it under-
stands the lexical syntax of Haskell, so you don’t get
tripped up by C-comments, line-continuation charac-
ters, primed identifiers, and so on. (There is also a
pure text mode which assumes neither Haskell nor C
syntax, for even greater flexibility.)

Cpphs can also unliterate .lhs files during prepro-
cessing, and you can install it as a library to call from
your own code, in addition to the stand-alone utility.

Current release is 1.4, containing some minor bug-
fixes, especially to macro expansions in cpp condition-
als.

Further reading

http://haskell.org/cpphs

5.5.3 Visual Haskell

Report by: Simon Marlow and Krasimir Angelov
Status: in development

Visual Haskell is a plugin for Microsoft’s Visual Studio
development environment to support development of
Haskell code. It is tightly integrated with GHC, which
provides support for intelligent editing features, and
Cabal, which provides support for building and pack-
aging multi-module programs and libraries.

Version 0.2 of Visual Haskell was released in Decem-
ber 2006. It includes support for Visual Studio 2005,
and comes with GHC 6.6.

The sources are in a darcs (→ 6.13) repository
here: http://darcs.haskell.org/vshaskell/, and are pro-
vided with a BSD-license. Why not take a look and
see what lengths you have to go to in order to write
Haskell code that plugs into Visual Studio!

Help is (still) welcome! Please drop us a
note: 〈simonmar@microsoft.com〉 and 〈kr.angelov@
gmail.com〉.

40

http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/vim.html
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/Vim/vim.html
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://haskell.org/cpphs
http://darcs.haskell.org/vshaskell/
mailto: simonmar at microsoft.com
mailto: kr.angelov at gmail.com
mailto: kr.angelov at gmail.com

5.5.4 EclipseFP – Haskell support for the Eclipse
IDE

Report by: Leif Frenzel
Status: working, though alpha

The Eclipse platform is an extremely extensible frame-
work for IDEs, developed by an Open Source Project.
Our project extends it with tools to support Haskell
development.

The aim is to develop an IDE for Haskell that pro-
vides the set of features and the user experience known
from the Eclipse Java IDE (the flagship of the Eclipse
project), and integrates a broad range of Haskell de-
velopment tools. Long-term goals include support
for language-aware IDE features, like refactoring and
structural search. The current version is 0.10.

Since the beginning of the year, a new subproject
called Cohatoe has developed a framework that al-
lows to partially implement Eclipse Plugins in Haskell.
Building on this framework, an EclipseFP 2 branch has
been opened where EclipseFP functionality is gradu-
ally re-implemented in Haskell, and new functionality
is added that integrates existing Haskell tools. Mile-
stone builds from the EclipseFP 2 branch are available
for download.

Every help is very welcome, be it in the form of code
contributions, docs or tutorials, or just any feedback
if you use the IDE. If you want to participate, please
subscribe to the development mailing list (see below).

Further reading

◦ http://eclipsefp.sf.net
◦ http://lists.sourceforge.net/lists/listinfo/

eclipsefp-develop

5.5.5 Haddock

Report by: Simon Marlow
Status: stable, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates doc-
umentation by parsing the Haskell source code di-
rectly, and including documentation supplied by the
programmer in the form of specially-formatted com-
ments in the source code itself. Haddock has direct
support in Cabal, and is used to generate the docu-
mentation for the hierarchical libraries that come with
GHC, Hugs, and nhc98 (http://www.haskell.org/ghc/
docs/latest/html/libraries).

The latest release is verison 0.8, released October 10
2006.

Work continues on a new version of Haddock based
on the GHC API; this will become version 2.0.

Changes since the 0.8 release:

◦ Thanks to Neil Mitchell, the index page generated
by Haddock now has a search box, and the list is
dynamically updated as you type.

Further reading

◦ There is a TODO list of outstanding bugs and miss-
ing features, which can be found here:
http://darcs.haskell.org/haddock/TODO

◦ Haddock’s home page is here:
http://www.haskell.org/haddock/

5.5.6 Hoogle – Haskell API Search

Report by: Neil Mitchell
Status: v3.0

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online.

Hoogle is still under development, but progress is
slow due to the author also trying to write a PhD.
Hoogle is available as a web interface, a command line
tool and a lambdabot (→ 6.14) plugin.

Further reading

http://haskell.org/hoogle

41

http://eclipsefp.sf.net
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://lists.sourceforge.net/lists/listinfo/eclipsefp-develop
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://darcs.haskell.org/haddock/TODO
http://www.haskell.org/haddock/
http://haskell.org/hoogle

6 Applications

6.1 Exercise Assistants

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Arthur van

Leeuwen, Josje Lodder, Harrie Passier,
Sylvia Stuurman

Status: experimental, active development

At the Open Universiteit Nederland we are building
a collection of tools that support students in solving
exercises incrementally by checking intermediate steps.
All our tools are completely written in Haskell. The
distinguishing feature of our tools is the detailed feed-
back that they provide, on several levels. For exam-
ple, we have an online exercise assistant that helps
to rewrite logical expressions into disjunctive normal
form. Students get instant feedback when solving an
exercise, and can ask for a hint at any point in the
derivation. Other areas covered by our tools are solving
linear equations, reducing matrices to echelon normal
form, and basic operations on fractions.

The simplest kind of error to deal with are the syn-
tactical errors, for which we use an error correcting
parser combinator library. For each exercise domain,
we have formulated a set of rewrite rules, as well as a
number of unsound (or buggy) rules to catch common
mistakes. With these rules we can check all interme-
diate steps submitted by the user. We also defined
strategies for solving the exercises. A strategy dictates
in which order the rules have to be applied to reach
the solution, and such a strategy takes the form of a
context-free grammar. Strategies are a powerful means
to report helpful and informative feedback.

For the near future, we have scheduled sessions with
students from our university to validate our approach,
and to collect information about the usability of our
tools. It is our intention to make the online assistants
publicly available. In the future we hope to apply
generic programming techniques to support exercises
from many more, different domains.

An online prototype version for rewriting logical ex-
pressions is available and can be accessed from our
project page.

Further reading

http://ideas.cs.uu.nl/trac

6.2 Lambda Shell

Report by: Rob Dockins
Status: beta, maintained

The Lambda Shell is a feature-rich shell environment
and command-line tool for evaluating terms of the pure,
untyped lambda calculus. The Lambda Shell builds
on the shell creation framework Shellac (→ 4.8.1), and
showcases most of Shellac’s features.

Features of the Lambda Shell include:

◦ Evaluate lambda terms directly from the shell
prompt using normal or applicative order. In nor-
mal order, one can evaluate to normal form, head
normal form, or weak head normal form.

◦ Define aliases for lambda terms using a top level,
non-recursive ‘let’ construct.

◦ Show traces of term evaluation, or dump the trace
to a file.

◦ Count the number of reductions when evaluating
terms.

◦ Test two lambda terms for beta-equivalence (that is;
if two terms, when evaluated to normal form, are
alpha equivalent).

◦ Programs can be entered from the command line (us-
ing the -e option) or piped into stdin (using the -s
option).

◦ Perform continuation passing style (CPS) transforms
on terms before evaluation using the double-bracket
syntax, e.g., ‘[[five]]’.

The Lambda Shell was written as a showcase and
textbook example for how to use the Shellac shell-
creation library. However, it can also be used to gain
a better understanding of the pure lambda calculus.

Further reading

◦ http://www.cs.princeton.edu/~rdockins/lambda/
home

◦ http://www.cs.princeton.edu/~rdockins/shellac/home

42

http://ideas.cs.uu.nl/trac
http://www.cs.princeton.edu/~rdockins/lambda/home
http://www.cs.princeton.edu/~rdockins/lambda/home
http://www.cs.princeton.edu/~rdockins/shellac/home

6.3 xmonad

Report by: Don Stewart
Status: active development

xmonad is a tiling window manager for X. Windows are
arranged automatically to tile the screen without gaps
or overlap, maximising screen use. Window manager
features are accessible from the keyboard: a mouse is
optional. xmonad is written, configured and extensible
in Haskell. Custom layout algorithms, key bindings and
other extensions may be written by the user in config
files. Layouts are applied dynamically, and different
layouts may be used on each workspace. Xinerama is
fully supported, allowing windows to be tiled on several
physical screens.

The new release 0.5 of xmonad is adding reconfigu-
ration in Haskell, without recompilation, for the first
time.

Further reading

◦ Home page:
http://xmonad.org/

◦ Darcs source:
darcs get http://code.haskell.org/xmonad

◦ IRC channel:
#xmonad @ irc.freenode.org

◦ Mailing list:
〈xmonad@haskell.org〉

6.4 GenI

Report by: Eric Kow
Status: unchanged, pinged

GenI is a surface realiser for Tree Adjoining Grammars.
Surface realisation can be seen as the last stage in a nat-
ural language generation pipeline. GenI in particular
takes an FB-LTAG grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated to the input semantics by the
grammar. It features a surface realisation library, sev-
eral optimisations, batch generation mode and a graph-
ical debugger written in wxHaskell. It was developed
within the TALARIS project and is free software li-
censed under the GNU GPL.

Further reading

◦ http://trac.loria.fr/~geni
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en

6.5 Roguestar

Report by: Christopher Lane Hinson
Status: early development

Roguestar is a science fiction role playing game belong-
ing to the roguelike family of games (e.g., nethack).
Implemented features include a terrain generator, line-
of-sight detection, and a frontend based on OpenGL.
Roguestar is in the early stages of development. It is
not yet “fun.”

RSAGL, the Roguestar Animation and Graphics Li-
brary, embeds a 3D modelling language within Haskell
and plans support for an animation language built on
a hierarchy of arrow transformers.

Roguestar is licensed under the GNU GPL. RSAGL
is licensed under a permissive license.

Further reading

http://roguestar.downstairspeople.org

6.6 mmisar

Report by: Slawomir Kolodynski
Status: under development

mmisar is a tool supporting translation of formalized
mathematics from the Metamath’s set.mm to the Isar
formal proof language so that it can be verified by Is-
abelle/ZF. I created it for my IsarMathLib project (a li-
brary of formalized mathematics for Isabelle/ZF). As of
release 1.4.0 IsarMathLib contains about 1000 facts and
500 proofs translated from Metamath to Isabelle/ZF
with mmisar. The tool is included in the distribution
of the IsarMathLib project and licensed under GPL. It
is under active development as I am using it to learn
Haskell. In the next release I am planning to rewrite
the parser for Metamath ZF formulas to base it on Par-
sec.

Further reading

◦ http://savannah.nongnu.org/projects/isarmathlib
◦ http://us.metamath.org/
◦ http://www.cl.cam.ac.uk/research/hvg/Isabelle/

6.7 Inference Services for Hybrid Logics

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

“Hybrid Logic” is a loose term covering a number of
logical systems living somewhere between modal and

43

http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org
http://trac.loria.fr/~geni
http://hal.inria.fr/inria-00088787/en
http://roguestar.downstairspeople.org
http://savannah.nongnu.org/projects/isarmathlib
http://us.metamath.org/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

classical logic. For more information on this languages,
see http://hylo.loria.fr

The Talaris group at Loria, Nancy, France (http:
//talaris.loria.fr) and the GLyC group at the Computer
Science Department of the University of Buenos Aires,
Argentina (http://www.glyc.dc.uba.ar/) are developing
a suite of tools for automated reasoning for hybrid log-
ics, available at http://hylo.loria.fr/intohylo/. Most of
them are (successfully) written in Haskell. A brief de-
scription of some of these tools follows.

6.7.1 HyLoRes

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

Status: active development
Current release: 2.4

HyLoRes is an automated theorem prover for hybrid
logics based on a resolution calculus. It is sound and
complete for a very expressive (but undecidable) hy-
brid logic, and it implements termination strategies for
certain important decidable fragments. The project
started in 2002, and has been evolving since then. It is
currently being extended to handle even more expres-
sive logics (including, in particular, temporal logics).
In the near future, we will investigate algorithms for
model generation.

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Gorin, D. Ordered Resolution with
Selection for H(@). In Proceedings of LPAR 2004,
pp. 125–141, Springer, Montevideo, Uruguay, 2005.

◦ Areces, C. and Heguiabehere, J. HyLoRes: A Hybrid
Logic Prover Based on Direct Resolution. In Pro-
ceedings of Advances in Modal Logic 2002, Toulouse,
France, 2002.

◦ Site and source:
http://hylo.loria.fr/intohylo/hylores.php

6.7.2 HTab

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

Status: active delopment
Current release: 1.2.2

HTab is an automated theorem prover for hybrid logics
based on a tableau calculus. The goal is to implement
a terminating tableau algorithm for the basic hybrid
logic and for the basic logic extended with the universal
modality. It is currently in early developments. It will
be tunable with various optimisations.

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

◦ Hoffmann, G. and Areces, C. HTab: a terminat-
ing tableaux system for hybrid logic. In Methods for
Modalities 5, Cachan, France, 2007.

◦ Site and source:
http://hylo.loria.fr/intohylo/htab.php

6.7.3 HGen

Report by: Carlos Areces, Daniel Gorin,
Guillaume Hoffmann

Status: active development
Current release: 1.1

HGen is a random CNF (conjunctive normal form)
generator of formulas for different hybrid logics. It is
highly parametrized to obtain tests of different com-
plexity for the different languages. It has been exten-
sively used in the development of HyLoRes (→ 6.7.1)
and HTab (→ 6.7.2).

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

◦ Areces, C. and Heguiabehere, J. hGen: A Random
CNF Formula Generator for Hybrid Languages. In
Methods for Modalities 3 (M4M-3), Nancy, France,
September 2003.

◦ Site and source:
http://hylo.loria.fr/intohylo/hgen.php

6.8 Saoithín: a 2nd-order proof assistant

Report by: Andrew Butterfield
Status: ongoing

Saoithín (pronounced “Swee-heen”) is a GUI-based
2nd-order predicate logic proof assistant. The motiva-
tion for its development is the author’s need for support
in doing proofs within the so-called “Unifying Theo-
ries of Programming” paradigm (UTP). This requires
support for 2nd-order logic, equational reasoning, and
meets a desire to avoid re-encoding the theorems into
some different logical form. It also provides proof tran-
scripts whose style makes it easier to check their cor-
rectness.

Saothín is implemented in GHC 6.4 and wxHaskell
0.9.4, and has been tested on a range of Windows plat-
forms (98/XP/Vista), and should work in principle on
Linux/Mac OS X. A first public release of the software
in some form is anticipated in early 2008.

44

http://hylo.loria.fr
http://talaris.loria.fr
http://talaris.loria.fr
http://www.glyc.dc.uba.ar/
http://hylo.loria.fr/intohylo/
http://hylo.loria.fr/intohylo/hylores.php
http://hylo.loria.fr/intohylo/htab.php
http://hylo.loria.fr/intohylo/hgen.php

Further reading

https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin

6.9 Raskell

Report by: Jennifer Streb
Participants: Garrin Kimmell, Nicolas Frisby, Mark

Snyder, Philip Weaver, Jennifer Streb,
Perry Alexander

Status: beta, actively maintained

Raskell is a Haskell-based analysis and interpreta-
tion environment for specifications written using the
system-level design language, Rosetta. The goal of
Rosetta is to compose heterogeneous specifications into
a single semantic environment. Rosetta provides mod-
eling support for different design domains employing se-
mantics and syntax appropriate for each. Therefore, in-
dividual specifications are written using semantics and
vocabulary appropriate for their domains. Information
is then composed across these domains by defining in-
teractions between them.

The heart of Raskell is a collection of composable in-
terpreters that support type checking, evaluation and
abstract interpretation of Rosetta specifications. Alge-
bra combinators allow semantic algebras for the same
constructs, but for different semantics, to be easily
combined. This facilitates further reuse of semantic
definitions. Comonads are used to structure a denota-
tion of temporal Rosetta specifications. We are also in-
vestigating the use of comonads to capture other mod-
els of computation as supported by Rosetta domains.
Using abstract interpretation we can transform speci-
fications between semantic domains without sacrificing
soundness. This allows for analysis of interactions be-
tween two specifications written in different semantic
domains. Raskell also includes a Parsec-based Rosetta
parser that generates both recursive and non-recursive
AST structures.

The Raskell environment is available for download
at the links below. It is continually being updated, so
we recommend checking back frequently for updates.
To build the Rosetta parser and type checker you must
also install InterpreterLib and algc (a preprocessor for
functorial boilerplate), both available at the third link
listed below.

Further reading

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-rosetta.htm#raskell

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-raskell.htm

◦ http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

〈alex@ittc.ku.edu〉

6.10 photoname

Report by: Dino Morelli
Status: stable, maintained

photoname is a command-line utility for renam-
ing/moving photo image files. The new folder location
and naming are determined by the EXIF photo shoot
date and the usually-camera-assigned serial number, of-
ten appearing in the filename.

Further reading

◦ Project page:
http://ui3.info/d/proj/photoname.html

◦ Source repository:
darcs get http://ui3.info/darcs/photoname

6.11 HJS – Haskell Javascript Interpreter

Report by: Mark Wassell
Status: in development

HJS is a Javascript interpreter and is based on the
grammar and behaviour as specified in ECMA-262,
3rd Edition, with additions and modifications from
JavaScript 1.5. Current status is that all of the lan-
guage can be parsed and work is underway to complete
the core behaviour and the built-in objects and their
methods. Possible options for future directions include
a pretty printer and providing multiple hosting envi-
ronments – DOM, WScript and Gtk2Hs are examples.

Further reading

http://www.haskell.org/haskellwiki/Libraries_and_
tools/HJS

6.12 FreeArc

Report by: Bulat Ziganshin
Status: beta

At this moment, FreeArc is the best practi-
cal archiver in the world, providing the max-
imum speed/compression ratio (http://www.
maximumcompression.com/data/summary_mf2.php).

Besides this, FreeArc provides a lot of features, in-
cluding solid archives with fast updates, tunable com-
pression algorithms, support for external compressors,
automatic selection of compression algorithm depend-
ing on file type, data encryption and recovery, Win32

45

https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: alex at ittc.ku.edu
http://ui3.info/d/proj/photoname.html
http://ui3.info/darcs/photoname
http://www.haskell.org/haskellwiki/Libraries_and_tools/HJS
http://www.haskell.org/haskellwiki/Libraries_and_tools/HJS
http://www.maximumcompression.com/data/summary_mf2.php
http://www.maximumcompression.com/data/summary_mf2.php

and Linux versions, tunable sorting and grouping of
files and FAR/Total Commander MultiArc support.

Such an ambitious goal was accomplished by bringing
together Haskell and C++: speed-critical parts (com-
pression, encryption) are written in C++ while every-
thing else benefits from fast development and high re-
liability opportunities provided by Haskell. I should
also note that compared to other archivers (tradition-
ally written in C++) FreeArc provides smarter algo-
rithms of archive management which is again due to
high level of Haskell programming paradigm.

Program sources are open so you can borrow there:

◦ compression libraries which includes 11 com-
pression algorithms with easy Haskell interface
(http://haskell.org/haskellwiki/Library/Compression)

◦ encryption code which provides AES, Blowfish,
Twofish and Serpent encryption algorithms with all
the bells and whistles (PRNG, PBKDF, SHA512)
required for really secure encryption of data streams

Moreover, the program includes a few more modules
that you may reuse in your program on BSD3 license:

◦ Win32Files.hs – implements I/O on Windows for files
> 4GB and files with Unicode names

◦ Files.hs – provides an OS-independent interface to
the features of Win32Files

◦ Charsets.hs – encode/decode data in OEM, ANSI,
UTF-8/16/32 encodings

◦ ByteStream.hs – binary serialization library

◦ UTF8Z.hs – UTF8-packed strings (like ByteString,
but with a more memory-efficient representation)

◦ Process.hs – allows to construct data-processing al-
gorithms from individual processes by joining them
together very much like ordinary programs are joined
by Unix shell

The program is extensively commented in Russian,
so for Russian-speaking Haskellers it may be an invalu-
able source for learning “practical Haskell”.

Further reading

◦ Download:
http://freearc.sourceforge.net

Contact

〈Bulat.Ziganshin@gmail.com〉

6.13 Darcs

Report by: David Roundy
Status: active development

Darcs is a distributed revision control system written
in Haskell. In darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a darcs repository to easily create their
own branch and modify it with the full power of darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, darcs remains very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

Work has been proceeding on the development of
darcs-2, the next major release. We expect that be-
fore Christmas this year, the darcs-2 framwork will be
integrated into the unstable branch of darcs and ready
for experimentation by bold users. At this point, we
will be looking for testing by a wide variety of inter-
ested users. It will also be an excellent time for new
darcs developers to join the fold, as we’ll have a fresh
start in many ways. In particular, somewhat a flexible
patch semantics will lead to the possibility of interest-
ing new features, such as a version of amend-record that
will work on older patches that are depended upon by
other patches.

Related to this new release, we would all like to thank
Eric Kow for the excellent job he has done as the main-
tainer of the darcs unstable branch. He will be stepping
down from this role, but continuing to contribute in the
form of patches. David Roundy will be once again step-
ping in as maintainer of the unstable branch, and will
thus be in position to shepherd in the darcs-2 release.

Also expect a ghc-6.8-compatibility release of darcs
soon. Patches great and small would be heartily wel-
come!

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.14 lambdabot

Report by: Don Stewart
Status: active development

lambdabot is an IRC robot with a plugin architecture,
and persistent state support. Plugins include a Haskell
evaluator, lambda calculus interpreter, unlambda in-
terpreter, pointfree programming, dictd client, fortune
cookies, Google search, online help and more.

Maintainence for lambdabot continues, along with
new plugins and new contributors.

Further reading

◦ Documentation can be found at:

46

http://freearc.sourceforge.net
mailto: Bulat.Ziganshin at gmail.com
http://darcs.net

http://www.cse.unsw.edu.au/~dons/lambdabot.html
◦ The source repository is available:

darcs get
http://code.haskell.org/lambdabot

6.15 yi

Report by: Don Stewart
Status: active development

yi is a project to write a Haskell-extensible editor. yi is
structured around an basic editor core, such that most
components of the editor can be overridden by the user,
using configuration files written in Haskell.

Yi activity has increased dramatically in the past
few months, as Jean-Philippe Bernardy has taken over
active development. In particular, Yi is now based
on top of the GHC-api (→ 2.1) library, enabling more
interactive and dynamic configuration and extension.
Significant architectural changes have occurred, includ-
ing: Vty frontend (→ 4.8.4) replaces Curses frontend;
linewrap support; GTK frontend (→ 4.8.3); dynamic
Haskell evaluation (like elisp!); new commands may be
dynamically defined; Syntax highlighting in GTK fron-
tend.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/yi.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/yi/

6.16 INblobs – Interaction Nets interpreter

Report by: Miguel Vilaca
Participants: Miguel Vilaca and Daniel Mendes
Status: active, maintained
Portability: portable (depends on wxHaskell)

INblobs is an editor and interpreter for Interaction Nets
– a graph-rewriting formalism introduced by Lafont,
inspired by Proof-nets for Multiplicative Linear Logic.

INblobs is built on top of the front-end Blobs from
Arjan van Ĳzendoorn, Martĳn Schrage and Malcolm
Wallace.

The tool is being developed using the repository sys-
tem Darcs (→ 6.13).

New features

◦ easier implementation of new reduction strategies
◦ automatic transformation of lambda terms into in-

teraction nets

◦ generation of textual descriptions allowing the use of
INblobs as a editor/frontend for textual IN compilers

◦ allow creation of properties’ checks
◦ Valid IN System check
◦ minor changes for better usability

Current Work

A new plugin that will allow INblobs to compile an tex-
tual functional program into Interaction Nets is being
developed.

Further reading

◦ Homepage:
http://haskell.di.uminho.pt/jmvilaca/INblobs/

◦ Blobs:
http://www.cs.york.ac.uk/fp/darcs/Blobs

6.17 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a pre-
processor that transforms literate Haskell code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

The program is stable and can take on large docu-
ments.

I am currently preparing a new release (1.13) that
will bring compatibility with GHC 6.8, with Cabal
1.2 (→ 4.1.1), and hopefully contain better support for
Windows. Help for testing and improving the Windows
version is welcome. Current snapshots are available
from the Subversion link below.

I would still like to collect some examples of lhs2TEX
formatting capabilities and create a gallery on the
homepage. If you have written a document that demon-
strates nicely what lhs2TEX can do, or if you have de-
signed clever formatting instructions to trick lhs2TEX
into doing things previously deemed impossible, please
contact me.

Further reading

◦ http://www.cs.uu.nl/~andres/lhs2tex
◦ https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/

lhs2TeX/trunk/

47

http://www.cse.unsw.edu.au/~dons/lambdabot.html
http://code.haskell.org/lambdabot
http://www.cse.unsw.edu.au/~dons/yi.html
http://www.cse.unsw.edu.au/~dons/code/yi/
http://haskell.di.uminho.pt/jmvilaca/INblobs/
http://www.cs.york.ac.uk/fp/darcs/Blobs
http://www.cs.uu.nl/~andres/lhs2tex
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/
https://svn.cs.uu.nl:12443/viewcvs/lhs2TeX/lhs2TeX/trunk/

6.18 Emping

Report by: Hans van Thiel

Emping is a utility that reads a table of nominal data,
in a csv format that can be generated from Open Office
Calc, derives all shortest rules for a selected attribute,
and writes them to a .csv file that can be read by OO
Calc. These rules are partially ordered, and in Emp-
ing 0.3 all inference chains can also be shown in OO
Calc. A Cabal package (including documentation) is
available on Hackage (→ 4.1.1). The next step in the
development of Emping is to display the poset of rules
(for a selected attribute) in a visual graph. But this is
still in the early stages.

Also see http://j-van-thiel.speedlinq.nl/ for the user
guide, two white papers, and downloads.

The connection with Haskell is just that it’s written
in it. But in Haskell it takes only 900 lines of source
code in 6 modules (18 pages of printed text, including
comments) to implement. Replacing a badly scalable
function in version 0.2 with a better one (same signa-
ture) in 0.3 proved, as expected, to be absolutely safe.

6.19 Audio signal processing

Report by: Henning Thielemann
Status: experimental, active development

In this project audio signals are processed using pure
Haskell code. The highlights are

◦ a simple signal synthesis backend for Haskore (→
4.9.2),

◦ experimental structures for filter networks,

◦ basic audio signal processing including some hard-
coded frequency filters,

◦ advanced framework for signal processing supported
by physical units, that is, the plain data can be
stored in a very simple number format, even fixed
point numbers, but the sampling parameters rate
and amplitude can be complex types, like numbers
with physical units,

◦ frameworks for inference of sample rate and ampli-
tude, that is, sampling rate and amplitude can be
omitted in most parts of a signal processing expres-
sion. They are inferred automatically, just as types
are inferred in Haskell’s type system. Although the
inference of signal parameters needs some prepro-
cessing, the frameworks preserve the functional style

of programming and do not need Arrows and accord-
ing notation.

We have checked three approaches, where the last
one is the most promising.

– Explicitly maintain a dictionary of signal pa-
rameters in a Reader-Writer-State monad,
which must be computed completely before any
signal processing takes place. This forces all
signal parameters to share the same type and
prohibits infinitely many signal processors to be
involved (e.g. concatenation of infinitely many
short noises).

– Simulation of logic programming by lazy cycles
of function applications (i.e. tied knots, fixed
points). The main problems are quadratical
computation complexity and a cumbersome and
error-prone application. Namely for each in-
put you have to handle a parameter output,
and vice versa for propagation of parameters
through the network. You need combinators
(infix operators) for combining these functions,
but you will easily run into cases where you
must plug manually, which is a nightmare.

– Unify only the sample rate. Use a Reader func-
tor / monad. Amplitude is propagated from in-
puts to outputs only. This is a bit conservative,
but fulfills our needs so far.

◦ We sketched a fusion framework that is specialised
to common signal processing routines.

The library comes with basic Cabal support and re-
quires the Numeric Prelude framework (→ 4.6.6) of re-
vised numeric type classes.

Future plans

◦ Design a common API to the Haskell synthesizer
code, CSound support included in Haskore (→ 4.9.2),
and the SuperCollider interface.

◦ Connect with the HaskellDSP library http://
haskelldsp.sourceforge.net/. (As a beginning we have
prepared and uploaded it to Hackage (→ 4.1.1).)

◦ Hope on faster code generated by Haskell compilers.
:-) Tests with the FastPackedString and the Binary
libraries where not promising. It seems that their fu-
sion doesn’t handle our cases. We will certainly need
a list structure with chunks of unboxed (Storable) el-
ements.

Further reading

◦ http://darcs.haskell.org/synthesizer/
◦ http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

48

http://j-van-thiel.speedlinq.nl/
http://haskelldsp.sourceforge.net/
http://haskelldsp.sourceforge.net/
http://darcs.haskell.org/synthesizer/
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf

6.20 hmp3

Report by: Don Stewart
Status: stable, maintained

hmp3 is a curses-based mp3 player frontend to mpg321
and mpg123. It is written in Haskell. It is designed
to be simple, fast and robust. It’s very stable. hmp3
has been updated to version 1.3, and is available from
hackage.

Further reading

◦ Documentation can be found at:
http://www.cse.unsw.edu.au/~dons/hmp3.html

◦ The source repository is available:
darcs get
http://www.cse.unsw.edu.au/~dons/code/hmp3/

6.21 easyVision

Report by: Alberto Ruiz
Status: experimental, active development

The easyVision project is a collection of libraries for
elementary computer vision and image processing ap-
plications. We take advantage of Haskell’s expressive
power without any performance loss, since all heavy nu-
merical computations are done by optimized libraries:
HOpenGL for 3D graphics and user interface, GSL-
Haskell (→ 4.2.4) for matrix computations, and an ex-
perimental binding to Intel’s IPP for fast image pro-
cessing. We use MPlayer for real time image grabbing
and video decoding.

The system exploits higher order functions to cre-
ate useful abstractions. For example, we use “camera
combinators” to define “virtual cameras” which per-
form any desired image processing on the infinite im-
age sequences generated by other cameras. We can also
define elaborate pattern recognition machines by com-
position of any desired chain of feature extractors and
simple classifiers.

Recent developments include support for more IPP
functions, a simpler way to manipulate state in the
applications, some useful camera combinators, and ad-
ditional illustrative examples.

Further reading

http://alberrto.googlepages.com/easyvision

49

http://www.cse.unsw.edu.au/~dons/hmp3.html
http://www.cse.unsw.edu.au/~dons/code/hmp3/
http://alberrto.googlepages.com/easyvision

7 Users

7.1 Commercial users

7.1.1 Ansemond LLC

Report by: Sengan Baring-Gould

Find It! Keep It! is a Mac Web Browser that lets
you keep the pages you visit in a database. A list
of these pages is shown in the “database view”. This
view is rendered by the browser from generated HTML
and is dynamically updated by Javascript DOM oper-
ations: tens of thousands of elements cannot efficiently
be placed on the screen using DOM operations only,
while rerendering a half a megabyte of HTML each
time a user interface element changes is unresponsive.
A glitch free user experience requires keeping these two
separate mechanisms synchronized which proved diffi-
cult.

A new Haskell implementation generates abstract
DOM operations which are then either rendered to
HTML or are converted to Javascript DOM operations
to be run within the browser. While this process is not
complex (difficult algorithm) it is complicated (hard
for the programmer to keep everything in mind). The
additional modularity afforded by laziness proved in-
valuable, enabling all the different pieces to be coded
much more independently and clearly than was possi-
ble in the original Python version. This same engine
could be used on a web server and would work with
any web browser. The Haskell version is scheduled to
ship in version 1.1 of Find It! Keep It!

Ansemond LLC is at http://www.ansemond.com

7.1.2 Barclays Capital Quantitative Analytics Group

Report by: Simon Frankau

Barclays Capital’s Quantitative Analytics group is us-
ing Haskell to develop an embedded domain-specific
functional language (called ‘FPF’) which is used to
specify exotic equity derivatives. These derivatives,
which are naturally best described in terms of math-
ematical functions, and constructed compositionally,
map well to being expressed in an embedded functional
language. This language is now regularly being used by
people who had no previous functional language expe-
rience.

The FPF description then serves as the core descrip-
tion of the trade structure, with different interpreta-
tions being used to perform operations from generating
pricing instructions for the bank’s risk systems through
to generating trade input forms and reports. The sys-
tem thus automates the introduction of new products,
replacing the previous approach of manually extending
each subsystem to cope with a new trade type manu-
ally. It has dramatically reduced the turnaround time
to make a new trade production-ready.

We have found Haskell to be a great language in
which to implement an embedded functional language,
and to be very effective as a language for rapid devel-
opment.

We’ve been working on the system for a little over
a year, and it has been in production use for most of
that time, with new features and interpretations being
added incrementally over that time.

We are hiring. Please contact Simon Frankau
〈Simon.Frankau@barcap.com〉 for more details.

7.1.3 Credit Suisse Global Modelling and Analytics
Group

Report by: Ganesh Sittampalam

GMAG, the quantitative modelling group at Credit Su-
isse, has been using Haskell for various projects since
the beginning of 2006, with the twin aims of improving
the productivity of modellers and making it easier for
other people within the bank to use GMAG models.

Many of GMAG’s models use Excel combined with
C addin code to carry out complex numerical computa-
tions and to manipulate data structures. This combina-
tion allows modellers to combine the flexibility of Excel
with the performance of compiled code, but there are
significant drawbacks: Excel does not support higher-
order functions and has a rather limited and idiosyn-

50

http://www.ansemond.com
mailto: Simon.Frankau at barcap.com

cratic type system. It is also extremely difficult to use
make reusable components out of spreadsheets or sub-
ject them to meaningful version control.

Because Excel is (in the main) a side-effect free en-
vironment, functional programming is in many ways a
natural fit, and we have been using Haskell in various
ways to replace or augment the spreadsheet environ-
ment.

So far, we have:
◦ Added higher-order functions to Excel, implemented

via (Haskell) addin code.
◦ Built tools to transform spreadsheets into directly

executable code.
◦ Written a “lint” tool to check for common errors in

spreadsheets.
Current projects include:

◦ Further work on tools for checking, manipulating and
transforming spreadsheets.

◦ A domain-specific language embedded in Haskell for
implementing reusable components that can be com-
piled into various target forms.
The addition of higher-order functions to Excel has

proved very popular, for example giving modellers the
ability to duplicate calculations without having to re-
peat them over a large area of the spreadsheet (which
is inflexible and causes maintenance headaches.)

An increasing number of modellers are being exposed
directly to Haskell by using our DSL, and they seem to
be picking it up fairly quickly. The reusable nature of
components makes it easier to quickly build complete
models that can be distributed to end-users.

We are hiring: please see http://tinyurl.com/2lqoq9.

Further reading

◦ CUFP 2006 talk about Credit Suisse:
http://cufp.galois.com/slides/2006/HowardMansell.
pdf

7.1.4 Bluespec tools for design of complex chips

Report by: Rishiyur Nikhil
Status: Commercial product

Bluespec, Inc. provides tools for chip design, model-
ing and verification (ASICs and FPGAs), inspired by
Haskell and Term Rewriting Systems. Bluespec also
uses Haskell to implement many of its tools (over 100K
lines of Haskell). Bluespec’s products include synthesis,
simulation and other tools for Bluespec SystemVerilog
(BSV).

BSV is based on the following semantic model: hard-
ware behavior is expressed using Rewrite Rules, and
inter-module communication is expressed using Rule-
based Interface Methods (which allow rules to be com-
posed from fragments that span module boundaries).

Because rules are atomic transactions, they eliminate
a majority of the “timing errors” and “race condi-
tions” that plague current hardware design using ex-
isting RTL languages like Verilog or VHDL. Rules also
enable powerful reasoning about the functional correct-
ness of systems. In other words, the concurrency model
provided by rules is much more powerful and abstract
than the low-level concurrency models provided by Ver-
ilog, VHDL and SystemC.

BSV incorporates Haskell-style polymorphism and
overloading (typeclasses) into SystemVerilog’s type sys-
tem. BSV also treats modules, interfaces, rules, func-
tions, etc. as first-class objects, permitting very power-
ful static elaboration (including recursion).

Bluespec tools synthesize source code into clocked
synchronous hardware descriptions (in Verilog RTL)
that can be simulated or further synthesized to netlists
using industry-standard tools. This automates the gen-
eration of control logic to manage complex concurrent
state update, a major source of errors in current design
methodology where this logic must be manually coded
by the designer.

The powerful Haskell-like static elaboration in BSV
is control adaptive, i.e., a parameterized design can
elaborate into different microarchitectures which have
different resource conflicts, but the typically complex
control logic necessary to manage these conflicts is syn-
thesized automatically based on the atomic transaction
semantics – this is key to BSV’s high level of abstrac-
tion.

Bluespec participates in standards committees like
IEEE P1800 (SystemVerilog) and IEEE P1666 (Sys-
temC), where it tries to encourage adoption of the
declarative programming ideas in BSV. One success has
been the adoption of Bluespec’s proposals for “tagged
unions (algebraic types) and pattern matching” in the
current IEEE SystemVerilog standard.

Status Bluespec SystemVerilog and its tools have
been available since 2004. The tools are now in use
by several major semiconductor companies (see Blue-
spec website or contact Bluespec for details) and several
universities (including MIT, CMU, UT Austin, Virginia
Tech, Indian Institute of Science, and U.Tokyo).

Availability Bluespec SystemVerilog tools are sold
commercially by Bluespec, Inc. Bluespec, Inc. also
makes all its tools available at no charge to academic
institutions for teaching and research.

Some historical notes and acknowledgements The
technology for synthesizing from Term Rewriting Sys-
tems to competitive RTL was originally developed by
James Hoe and Prof. Arvind at MIT in the late 1990s.
At Sandburst Corp., during 2000–2003, Lennart Au-
gustsson was the principal designer of “Bluespec Clas-
sic”, the first “industrial strength” variant of the lan-

51

http://tinyurl.com/2lqoq9
http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://cufp.galois.com/slides/2006/HowardMansell.pdf

guage, with Rishiyur Nikhil, Joe Stoy, Mieszko Lis and
Jacob Schwartz contributing to language and tool de-
velopment and use. The latter four continued work on
BSV at Bluespec, Inc. from 2003 with additional con-
tributions from Ravi Nanavati, Ed Czeck, Don Baltus,
Jeff Newbern, Elliot Mednick and several summer in-
terns.

Further reading

◦ Company website and wiki:
http://www.bluespec.com http://www.bluespec.com/
wiki

◦ Publications:
http://www.bluespec.com/technology/research.htm
Bringing Declarative Programming into a Commer-
cial Tool for Developing Integrated Circuits, Rishiyur
Nikhil, Commercial Users of Functional Program-
ming (CUFP), September 2006, slides of presenta-
tion at http://www.galois.com/cufp/
MIT courseware, “Complex Digital Systems”:
http://csg.csail.mit.edu/6.375 and
http://ocw.mit.edu/OcwWeb/
Electrical-Engineering-and-Computer-Science/
6-884Spring-2005/CourseHome/index.htm
CMU courseware, “Hardware Systems Engineering”:
http://www.ece.cmu.edu/~ece744
A fun example with lots of functional-programming
features–BluDACu, a parameterized Bluespec hard-
ware implementation of Sudoku:
http://www.bluespec.com/products/BluDACu.htm

7.1.5 Galois, Inc.

Report by: Andy Adams-Moran

Galois (now officially known as Galois, Inc.) is an
employee-owned software development company based
in Beaverton, Oregon, U.S.A. Galois started in late
1999 with the stated purpose of using functional lan-
guages to solve industrial problems. These days, we
emphasize the needs of our clients and their problem
domains over the techniques, and the slogan of the
Commercial Users of Functional Programming Work-
shop (see http://cufp.galois.com/) exemplifies our ap-
proach: Functional programming as a means not an
end.

Galois develops software under contract, and every
project (bar three) that we have ever done has used
Haskell. The exceptions used ACL2, Poly-ML, SML-
NJ and OCaml, respectively, so functional program-
ming languages and formal methods are clearly our
“secret sauce”. We deliver applications and tools to
clients in industry and the U.S. government. Some di-
verse examples: Cryptol, a domain-specific language
for cryptography (with an interpreter and a compiler,
with multiple targets); a GUI debugger for a special-
ized microprocessor; a specialized, high assurance web

server, file store, and wiki for use in secure environ-
ments, and numerous smaller research projects that fo-
cus on taking cutting-edge ideas from the programming
language and formal methods community and applying
them to real world problems.

Galois continues to grow from strength to strength.
As of Spring 2007, Galois is 23 engineers strong, with
a support staff of 8. We’ve been profitable and experi-
enced solid growth each of the last three years, and the
future looks good too.

Further reading

http://www.galois.com/.

7.1.6 SeeReason Partners, LLC

Report by: Clifford Beshers

Clifford Beshers, David Fox and Jeremy Shaw have
formed SeeReason Partners, LLC. Our plan is to de-
liver services over the internet, using Haskell to build
our applications whenever possible. We have chosen
primary mathematics skills as our domain, seeking to
create a social networking site with games and activi-
ties that are both fun and educational.

Often such projects employ large teams of develop-
ers and artists to hand-craft a look and feel. Whenever
possible, we want to exploit functional programming to
generate content or at least distribute the labor more
efficiently. Our primary content delivery platform will
be Macromedia Flash. We are working on a Haskell to
Flash compiler, as well as libraries to construct appli-
cations with Adobe’s Flex UI toolkit.

Formerly core members of the operating systems
group at Linspire, Inc, we continue to maintain the
tools for managing a Debian Linux distribution that
we developed there. Source code for these tools can
be found at our public source code repository http:
//src.seereason.org/. We plan use these tools to pro-
vide current archives of Haskell related packages.

We can be reached at 〈(cliff,david,jeremy)@seereason.
org〉 and on #haskell (→ 1.2) respectively as thetallguy,
dsfox and stepcut.

7.2 Haskell in Education

7.3 Research Groups

7.3.1 Foundations and Methods Group at Trinity
College Dublin

Report by: Andrew Butterfield
Participants: Andrew Butterfield, Glenn Strong, Hugh

Gibbons, Edsko de Vries

52

http://www.bluespec.com
http://www.bluespec.com/wiki
http://www.bluespec.com/wiki
http://www.bluespec.com/technology/research.htm
http://www.galois.com/cufp/
http://csg.csail.mit.edu/6.375
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-884Spring-2005/CourseHome/index.htm
http://www.ece.cmu.edu/~ece744
http://www.bluespec.com/products/BluDACu.htm
http://cufp.galois.com/
http://www.galois.com/
http://src.seereason.org/
http://src.seereason.org/
mailto: (cliff,david,jeremy) at seereason.org
mailto: (cliff,david,jeremy) at seereason.org

The Foundations and Methods Group focusses on for-
mal methods, category theory and functional program-
ming as the obvious implementation method. A sub-
group focusses on the use, semantics and development
of functional languages covering such areas as:

◦ Supporting OO-Design technique for functional pro-
grammers

◦ Using functional programs as invariants in impera-
tive programming

◦ Developing a GUI-based 2nd-order equational theo-
rem prover (→ 6.8)

◦ New approaches to uniqueness typing, applicable to
Hindley-Milner style type-inferencing.

Recent work in this area included:

◦ Formal aspects of Functional I/O

◦ Using Testing to Debug Formal Models

Members of other research groups at TCD have also
used Haskell, such as the work done on Image render-
ing using GHC/OpenGL, in the Interaction, Simulation
and Graphics Lab.

Further reading

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/
FunctionalProgramming

7.3.2 Functional Programming at University of
Nottingham

Report by: Liyang HU et al.

Nottingham is perhaps unique in the UK in bringing
together functional programming, type theory and cat-
egory theory to tackle fundamental issues in program
construction. With a total of 20 people in the area, we
have a spectrum of interests:

Application of Category Theory The Nottingham
group is active in applying ideas from category the-
ory to practical problems in functional programming.
Mauro Jaskelioff and Neil Ghani are working on mod-
ularity for structured operational semantics. (See also
the following sections on initial algebra semantics and
containers.)

Containers Nottingham is home to the EPSRC grant
on containers, a semantic model of functional data
structures. Neil Ghani, Thorsten Altenkirch, Peter
Hancock, Peter Morris and Rawle Prince are work-
ing with containers to both write and reason about
programs. Peter Morris has recently finished his PhD
which used containers as a basis for generic program-
ming with dependent types.

Datatype-Generic Design Patterns Ondrej Rypacek
together with Roland Backhouse and Henrik Nilsson
are working on formal reasoning about object-oriented
designs with emphasis on algebraic and datatype-
generic methods. Our goal is a sound mathemati-
cal model allowing us to disclose and formalise cor-
respondences between object-oriented and functional
programming.

Dependently-Typed Haskell Supported by a Mi-
crosoft Research studentship, Robert Reitmeier is
working on integrating dependent types in Haskell un-
der the supervision of Thorsten Altenkirch, with ad-
vice from Simon Peyton Jones. Together with Nico-
las Oury we are designing an alternative dependently-
typed intermediate language, influenced by our experi-
ences with Epigram.

Epigram Epigram (→ 3.3.3) is a dependently-typed
functional programming language in its second in-
carnation, implemented in Haskell. With advice
from Conor McBride the Epigram team Thorsten
Altenkirch, James Chapman, Peter Morris, Wouter
Swierstra and Nicolas Oury are working on both prac-
tical and theoretical aspects of the language.

Functional Reactive Programming Yampa, the lat-
est Haskell-based implementation of Functional Re-
active Programming (FRP), is currently being main-
tained by Henrik Nilsson. Under his supervision, Neil
Sculthorpe is working on efficient scalable implemen-
tation techniques for a Yampa-like language, while
George Giorgidze is applying the advantages of FRP to
non-causal modelling languages. The latter approach
is called Functional Hybrid Modelling.

Functional Specifications of Effects Wouter Swier-
stra and Throsten Altenkirch have been research-
ing pure specifications of several functions in the IO
monad. This research has resulted in the Test.IOSpec
library (→ 4.2.3), which may be of interest to anyone
who wants to debug, reason about, analyse, or test im-
pure code. Besides implementing these ideas in Haskell,
the specifications can be made total in the richer type
theories underlying Epigram (→ 3.3.3), Coq, and Agda
2 (→ 3.3.2).

Initial Algebra Semantics Neil Ghani has, with Patri-
cia Johann, been working on the initial algebra seman-
tics of advanced data types. They showed that there is
no need for the generalised folds in the literature as the
standard fold from initial algebra semantics, when cou-
pled with Right Kan extensions, is expressive enough.
Interestingly, Left Kan extensions can be employed to
give an initial algebra semantics for GADTs. They also
used the characterisation of initial algebras as limits to

53

https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
https://www.cs.tcd.ie/research_groups/fmg/moin.cgi/FunctionalProgramming
http://cs.nott.ac.uk/~mjj/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~nxg/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~pgh/
http://cs.nott.ac.uk/~pgh/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~rcp/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~oxr/
http://cs.nott.ac.uk/~rcb/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~rxr/
http://cs.nott.ac.uk/~txa/
http://strictlypositive.org/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~npo/
http://www.haskell.org/yampa/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~nas/
http://cs.nott.ac.uk/~nas/
http://cs.nott.ac.uk/~ggg/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/nxg/

give short cut fusion rules for both nested data types
and GADTs.

Quantum Programming Thorsten Altenkirch and
Alex Green are working on a Haskell library to inter-
face or simulate a hypothetical quantum computer –
the Quantum IO monad. This is related and inspired
by earlier work on the implementation of QML with
Jonathan Grattage who finished his PhD on the sub-
ject in 2006.

Reasoning About Programs Supported by a grant
from EPSRC, Graham Hutton, Nils Anders Danielsson,
and Diana Fulger have recently started a new project
on reasoning about exceptions and interrupts. This
project is also closely related to Liyang HU’s ongoing
research on reasoning about concurrent systems using
software transactional memory. During a sabbatical
at Galois (→ 7.1.5) in the summer of 2007, Graham
Hutton worked with Andy Gill on the worker/wrapper
transformation.

Teaching Haskell plays an important role in the un-
dergraduate programme at Nottingham, as well as
our China and Malaysia campuses. Modules on of-
fer include Functional Programming, Advanced Func-
tional Programming, Mathematics for Computer Sci-
ence, Principles of Programming Languages, Compil-
ers, and Computer-Aided Formal Verification, among
others.

Programming in Haskell Graham Hutton has re-
cently completed an introductory Haskell textbook (→
1.5.1), published by Cambridge University Press, 2007.

Events The group in Nottingham plays a leading role
in the Midlands Graduate School in the Foundations of
Computing Science, the British Colloquium for Theo-
retical Computer Science, and the Fun in the Afternoon
seminar series on functional programming.

FP Lunch Every Friday, Nottingham’s functional
programmers gather for lunch with helpings of infor-
mal, impromptu-style whiteboard talks. Lecturers,
PhD students and visitors are invited to discuss recent
developments, problems or projects of relevance. We
blog summaries of recent talks.

In the afternoon there is an hour-long seminar. We’re
always keen on speakers in any related areas: do get in
touch with Neil Ghani 〈nxg@cs.nott.ac.uk〉 if you would
like to visit our group. See you there!

Further reading

◦ Functional Programming at Nottingham:
http://fop.cs.nott.ac.uk/fp/

◦ Epigram:
http://e-pig.org/

◦ Quantum Programming:
http://fop.cs.nott.ac.uk/qml/

◦ Yampa:
http://haskell.org/yampa/

◦ Fun in the Afternoon:
http://fop.cs.nott.ac.uk/fun/

◦ Midlands Graduate School:
http://cs.nott.ac.uk/MGS/

◦ FP Lunch:
http://fop.cs.nott.ac.uk/fplunch/

7.3.3 Artificial Intelligence and Software
Technology at JWG-University Frankfurt

Report by: David Sabel
Members: David Sabel, Manfred Schmidt-Schauß

Equivalence of Call-by-Name and Call-by-Need

Haskell has a call-by-name semantics, but all efficient
implementations of Haskell use call-by-need evaluation
avoiding multiple evaluation of the same expression.
We showed equivalence of call-by-name and call-by-
need for a tiny deterministic letrec-calculus and also
the correctness of an unrestricted copy-reduction in
both calculi. We also proved that our method scales
up to extended letrec-calculi with constructors as well
as letrec-calculi with a parallel or operator.

Semantics for Haskell extended with direct-call I/O

We introduced the calculus FUNDIO which proposes a
non-standard way to combine lazy functional languages
with Input/Output using non-deterministic constructs.
Program equivalence is based on the operational small-
step semantics including the Input/Output behavior of
reduction sequences. We proved correctness of a con-
siderable set of program transformations. In particular
we have shown correctness of several optimizations of
evaluation, including strictness optimizations.

We also analyzed the core language of GHC and
the program transformations used in the GHC w.r.t.
the FUNDIO semantics. After turning off few trans-
formations which are not FUNDIO-correct and those
that have not yet been investigated, we have achieved
a FUNDIO-compatible modification of GHC which is
called HasFuse.

HasFuse correctly compiles Haskell programs which
make use of unsafePerformIO in the common (safe)
sense, since problematic optimizations are turned off
or performed more restrictively. HasFuse can also com-
pile programs which make use of unsafePerformIO in
arbitrary contexts, where the semantics is given by
FUNDIO. This allows to combine unsafePerformIO

54

http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~asg/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~dqf/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~gmh/
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://www.nottingham.ac.uk/cs/courses/ug_courses_introduction.php
http://nottingham.edu.cn/
http://www.nottingham.edu.my/
http://cs.nott.ac.uk/~nxg/G51FUN06/fun.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/Modules/0405/G53POP.html
http://cs.nott.ac.uk/~nhn/G52CMP/
http://cs.nott.ac.uk/~nhn/G52CMP/
http://e-pig.org/darcs/g53cfr/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/MGS/
http://cs.nott.ac.uk/MGS/
http://www.bctcs.ac.uk/
http://www.bctcs.ac.uk/
http://fop.cs.nott.ac.uk/fun/
http://fop.cs.nott.ac.uk/fplunch/
http://fop.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~nxg/
mailto: nxg at cs.nott.ac.uk
http://fop.cs.nott.ac.uk/fp/
http://e-pig.org/
http://fop.cs.nott.ac.uk/qml/
http://haskell.org/yampa/
http://fop.cs.nott.ac.uk/fun/
http://cs.nott.ac.uk/MGS/
http://fop.cs.nott.ac.uk/fplunch/

with monadic I/O in Haskell, where the result is reli-
able in the sense that I/O operations will not astonish-
ingly be duplicated.

Semantics and Transformations for Functional
Hardware Descriptions

We are currently investigating hardware descriptions in
a functional language, i.e. Haskell-Programs extended
by a parallel-or (por), where the non-deterministic op-
erator por is implemented using Concurrent Haskell.
As semantic model we use a call-by-need lambda cal-
culus extended with letrec, case, constructors and in
particular with por. Ongoing research is devoted to
prove correctness of circuit transformations, also in-
cluding latches and combinational cycles, on the level
of the high-level language descriptions.

Mutual Similarity

In order to achieve more inference rules for equality
in call-by-need lambda-calculi Matthias Mann has es-
tablished a soundness (w.r.t. contextual equivalence)
proof for mutual similarity in a non-deterministic call-
by-need lambda calculus. Moreover, we have shown
that Mann’s approach scales up well to more expres-
sive call-by-need non-deterministic lambda calculi, i.e.
similarity can be used as a co-induction-based proof
tool for establishing contextual preorder in a large class
of untyped higher-order call-by-need calculi, in par-
ticular calculi with constructors, case, let, and non-
deterministic choice. The focus of current research are
extensions of these calculi with potential applications
in Haskell.

Locally Bottom-Avoiding Choice

For modeling concurrent evaluation of functional
programs we investigated an extended call-by-need
lambda-calculus with McCarthy’s non-deterministic
amb-operator.

We introduced an observational equivalence based on
may- and must-termination w.r.t. a fair small step re-
duction semantics. We proved correctness of several
program transformations, in particular partial evalua-
tion using deterministic reductions. With the devel-
oped proof tools it appears promising to prove correct-
ness of further program transformations. Currently we
are developing an abstract machine for the calculus ex-
tended with amb and try to show correctness of this
machine. Further research is to apply the may- and
must-semantics to other concurrent lambda calculi.

Strictness Analysis using Abstract Reduction

The algorithm for strictness analysis using abstract re-
duction has been implemented at least twice: Once by
Nöcker in C for Concurrent Clean and on the other
hand by Schütz in Haskell in 1994. In 2005 we proved

correctness of the algorithm by using a call-by-need
lambda-calculus as a semantic basis. The proof is pub-
lished in the Journal of Functional Programming as a
forthcoming article appearing 2008.

Most implementations of strictness analysis use set
constants like > (all expressions) or ⊥ (expressions that
have no weak head normal form). We have shown that
the subset relationship problem of co-inductively de-
fined set constants is in DEXPTIME.

Further reading

◦ Chair for Artificial Intelligence and Software Tech-
nology
http://www.ki.informatik.uni-frankfurt.de

◦ References to all mentioned research topics are col-
lected on the following webpage
http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

7.3.4 Formal Methods at Bremen University and
DFKI Lab Bremen

Report by: Christian Maeder
Members: Mihai Codescu, Dominik Lücke, Christoph

Lüth, Christian Maeder, Achim Mahnke, Till
Mossakowski, Lutz Schröder

The activities of our group centre on formal meth-
ods and the Common Algebraic Specification Language
(CASL).

We are using Haskell to develop the Heterogeneous
tool set (Hets), which consists of parsers (using Parsec),
static analyzers and proof tools for languages from the
CASL family, such as CASL itself, HasCASL, CoCASL,
CspCASL and ModalCASL, and additionally OMDoc
and Haskell. HasCASL is a language for specification
and development of functional programs; Hets also con-
tains a translation from an executable HasCASL subset
to Haskell. There is a prototypical translation of a sub-
set of Haskell to Isabelle HOL and HOLCF.

Another project using Haskell is the Proof General
Kit, which designs and implements a component-based
framework for interactive theorem proving. The central
middleware of the toolkit is implemented in Haskell.
The project is the successor of the highly successful
Emacs-based Proof General interface. It is a cooper-
ation of David Aspinall from the University of Edin-
burgh and Christoph Lüth from Bremen.

The Coalgebraic Logic Satisfiability Solver CoLoSS
is being implemented jointly at DFKI-Lab Bremen
and at the Department of Computing, Imperial Col-
lege London. The tool is generic over representations
of the syntax and semantics of certain modal logics;
it uses the Haskell class mechanism, including multi-
parameter type classes with functional dependencies,
extensively to handle the generic aspects.

55

http://www.ki.informatik.uni-frankfurt.de
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html

Other extensions, libraries and tools of the Glas-
gow Haskell Compiler, that we exploit include con-
currency, existential and dynamic types, Template
Haskell, DriFT, Haddock (→ 5.5.5), Programmatica,
Shellac (→ 4.8.1), HaXml (→ 4.10.2) and hxt. We
also maintain old sources such as bindings to uDraw-
Graph (formerly Davinci) and Tcl/TK, Shared Anno-
tated Terms (ATerms), and haifa-lite.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ Heterogeneous tool set:
http://www.dfki.de/sks/hets

◦ Proof General Kit
http://proofgeneral.inf.ed.ac.uk/Kit

◦ The Coalgebraic Logic Satisfiability Solver CoLoSS
http://www.informatik.uni-bremen.de/~lschrode/
projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/

7.3.5 Functional Programming at Brooklyn College,
City University of New York

Report by: Murray Gross

A grant has provided us with 6 new quad-processor
machines, which we are currently integrating into our
existing Linux/Mosix cluster. When the integration is
complete, we will be comparing the performance and
behavior of the Brooklyn College version of GpH (→
3.2.1) and the SMP facility of the latest release of
GHC (→ 2.1).

In the area of applications, we are working two AI
projects, three-dimensional tic-tac-toe (noughts and
crosses), and an extended version of the Sudoku puzzle.
We have also begun work on a parallel implentation of
Skibinski’s quantum simulator, which we intend to use
to study Grover’s fast search algorithm.

Contact

Murray Gross 〈magross@its.brooklyn.cuny.edu〉

7.3.6 Functional Programming at
Macquarie University

Report by: Anthony Sloane
Group leaders: Anthony Sloane, Dominic Verity

Within our Programming Language Research Group
we are working on a number of projects with a Haskell
focus. Since the last report, work has progressed on
the following projects:

◦ Our alpha version of a port of the yhc (→ 2.2) run-
time to Palm OS handhelds is working but going into
a hiatus (→ 3.1.2).

◦ Kate Stefanov’s PhD thesis on off-the-shelf compres-
sion technology for bytecode-based programs was
passed. The main results relevant to Haskell folk
are good compression ratios for nhc bytecode using
a very simple extension of the LZW algorithm.

◦ Matt Robert’s work on the implementation of Jay’s
pattern calculus continues, with a focus on formal se-
mantics and comparison with related pattern-based
calculi.

◦ We are beginning work on a language processor gen-
eration project that will likely use Haskell-based
DSLs as the specification notations.

Further reading

Contact us via email to 〈plrg@ics.mq.edu.au〉 or find de-
tails on many of our projects at http://www.comp.mq.
edu.au/plrg/.

7.3.7 Functional Programming at the University of
Kent

Report by: Olaf Chitil

We are a group of staff and students with shared inter-
ests in functional programming. While our work is not
limited to Haskell, in particular our interest in Erlang
has been growing, Haskell provides a major focus and
common language for teaching and research. We are
continuously looking for new research students.

Our members pursue a variety of Haskell-related
projects, many of which are reported in other sections
of this report. Chris Brown continues extending HaRe,
the Haskell Refactorer (→ 5.3.3). Nik Sultana sub-
mitted his MSc thesis supervised by Simon Thompson
on formal verification of Haskell refactorings. Thomas
Davie, Yong Luo and Olaf Chitil have been working
together with the York functional programming group
on developing the Haskell tracer Hat (→ 5.4.2) further.
They are looking in particular at extensions and im-
provements of algorithmic debugging. Olaf Chitil and
Frank Huch (University of Kiel) developed an assertion
library for Haskell. Olaf Chitil also published a more
efficient variant of the pretty printing library PPrint.
Keith Hanna is continuing work on Vital, a document-
centered programming environment for Haskell, and on
Pivotal, a GHC-based implementation of a similar en-
vironment. Claus Reinke continues improving his pop-
ular Haskell Mode plugins for Vim 5.5.1, has posted a
mini-tutorial on getting more out of GHCi 7.5.2, has
undusted his old extensible record library 4.6.1 for the
recent revival of this topic, and has contributed some

56

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://proofgeneral.inf.ed.ac.uk/Kit
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/
mailto: magross at its.brooklyn.cuny.edu
mailto: plrg at ics.mq.edu.au
http://www.comp.mq.edu.au/plrg/
http://www.comp.mq.edu.au/plrg/

minor improvements to GHCi (in 6.8.2) and ghc-pkg
(part in 6.8.2, part pending for HEAD). The Kent Sys-
tems Research Group is developing an occam compiler
in Haskell (Tock).

Further reading

◦ FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

◦ Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

◦ Hat:
http://www.haskell.org/hat/

◦ Lazy Assertions and Pretty Printing:
http://www.cs.kent.ac.uk/~oc

◦ Vital:
http://www.cs.kent.ac.uk/projects/vital/

◦ Pivotal:
http://www.cs.kent.ac.uk/projects/pivotal/

◦ Tock:
https://www.cs.kent.ac.uk/research/groups/sys/wiki/
Tock

7.3.8 Programming Languages & Systems at
UNSW

Report by: Manuel Chakravarty

The PLS research group at the University of New
South Wales, Sydney, has produced a couple of Haskell
tools and libraries, including the new high-performance
packed string library Data.ByteString (→ 4.6.2),
the hs-plugins (→ 4.4.3) library for dynamically
loaded type-safe plugins, the interface generator
C→Haskell (→ 5.1.1), and the dynamic editor Yi (→
6.15). Moreover, we are contributing to widely used
Haskell software, such as GHC (→ 2.1), xmonad (→
6.3), and lambdabot (→ 6.14).

In cooperation with GHC HQ at Microsoft Research,
Cambridge, we introduced the idea of type classes with
associated types, and with GHC HQ and Martin Sulz-
mann, from the National University of Singapore, we
proposed GHC’s new intermediate language System
FC . Associated data types (aka data type families) and
System FC are fully implemented in GHC’s develop-
ment version and we are currently implementing associ-
ated type synonyms; see http://haskell.org/haskellwiki/
GHC/Indexed_types for details.

Together with GHC HQ, we are busy with finally
bringing nested data parallelism to GHC, with a fo-
cus to utilise multi-core CPUs. Parts of our im-
plementation are already ready for experimentation,
but are currently only suitable for the adventurous.
See http://haskell.org/haskellwiki/GHC/Data_Parallel_
Haskell for details.

Further details on PLS and the above mentioned ac-
tivities can be found at http://www.cse.unsw.edu.au/
~pls/.

7.3.9 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
group. Academic year: 2006–2007.

The Ro/Haskell page was initiated during the au-
tumn of 2006 by Dan Popa (Univ. Bacau,RO) as a
supplementary source of information for his students
of the Formal Languages Course. Haskell is used in
Bacau (State Univ.) to teach language(s) implementa-
tion.

January 31,2007. A manual of Haskell in Romanian
was published by Dan Popa (editor: Editura EduSoft,
Bacau). The readers are guided step by step from
the first function in Haskell to an expression evaluator,
modular monadic parsing and some words concerning
monadic semantic implementation.

February,2007: An other book concerning Haskell
was published by M.Gontineac (editor: Editura
Alexandru Myller, Iasi). A part of the book is focused
on Standard Prelude, carefully compiled and explained,
other one on the imperative programming in Haskell
using the I/O monad. The mathematic foundation of
functional languages are presented in the first chapter.

Both books are presented on the Ro/Haskell web-
page: http://www.haskell.org/haskellwiki/Ro/Haskell.

Actually the site of the Ro/Haskell group is visited
by students from three faculties, which belongs to two
(state) universities, from Bacau and Iasi. It was ac-
cessed more than 1000–1250 times and the number is
growing.

The University from Cluj is also involved in teaching
and research Haskell. Please contact them for details.

Books are donated to libraries in Bacau and Iasi, and
presented on editor’s website: www.edusoft.ro. (Id=81)

Papers were presented in International Conferences
like ICMI 45.

7.3.10 SCIence project

Report by: Kevin Hammond

SCIEnce (http://www.symbolic-computation.org/) is a
3.2M euros, 5-year project that brings together major
developers of symbolic computing systems, including
Maple, GAP, MuPAD and Kant with the world-leading
Centre for Research in Symbolic Computation at RISC-
Linz, Austria.

It makes essential use of functional programming
technology in the form of the GRID-GUM functional
programming system for the Grid, which is built on
the Glasgow Haskell Compiler. The objective is not
the technically infeasible goal of rewriting all these
(and more) complex systems in Haskell. Rather, we
use GRID-GUM to link components built from each of
the symbolic systems to form a coherent heterogeneous

57

http://www.cs.kent.ac.uk/research/groups/tcs/fp/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat/
http://www.cs.kent.ac.uk/~oc
http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
http://haskell.org/haskellwiki/GHC/Indexed_types
http://haskell.org/haskellwiki/GHC/Indexed_types
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.cse.unsw.edu.au/~pls/
http://www.cse.unsw.edu.au/~pls/
http://www.haskell.org/haskellwiki/Ro/Haskell
www.edusoft.ro
http://www.symbolic-computation.org/

whole. In this way, we hope to achieve what is cur-
rently a pious dream for conventional Grid technology,
and obtain a significant user base both for GRID-GUM
and for Haskell. We are, of course, taking full advan-
tage of Haskell’s abilities to compose and link software
components at a very high level of abstraction.

A fuller paper has appeared in the draft proceed-
ings of the 2007 Symposium on Trends in Functional
Programming (TFP 2007), New York, April 2007. A
revised version is currently being prepared for submis-
sion to the post-symposium proceedings.

7.4 User groups

7.4.1 Bay Area Functional Programmers

Report by: Keith Fahlgren

The Bay Area Functional Programmers group held
their inaugural meeting in September, giving program-
mers in the San Francisco Bay using or interested in
functional programming and functional programming
languages such as Haskell, OCaml, SML, Scala, and
Erlang a place to meet, discuss, and learn together.
We followed up the first informal meeting with an Oc-
tober talk by Alex Jacobson on HAppS (http://happs.
org/). November saw David Pollak present the Scala-
based web framework lift (http://liftweb.net). We’ll
finish our series on functional web frameworks with
Yariv Sadan presenting the Erlang framework ErlyWeb
(http://erlyweb.org/) in December. Videos & slides
are available for all the talks at the BayFP blog, as
well as information on how to join the mailing list:
http://bayfp.org/blog.

7.4.2 OpenBSD Haskell

Report by: Don Stewart

Haskell support on OpenBSD is now taken over by
Matthias Kilian, who has updated GHC and related
tools for this platform. OpenBSD support for the GHC
head branch continues.

For more information see,
http://ports.openbsd.nu/lang/ghc/

7.4.3 Haskell in Gentoo Linux

Report by: Duncan Coutts, Andres Löh

GHC version 6.8.2 is now in Gentoo and (almost) all
of the 60+ Haskell libraries and tools work with it too.
This includes the latest versions of all the “extralibs”

that were released with GHC 6.8.x. There are also
GHC binaries available for amd64, sparc and x86.

The fact that all 60+ packages work is no trivial mat-
ter since many of them do not yet have official releases
that work with ghc-6.8. The packages in Gentoo that
do not yet work with 6.8 are hmake, wxhaskell and
hs-plugins. In the case of the last two this is a long
standing issue since they have no releases that work
with ghc-6.6.1 either.

The current set of packages in portage is: alex,
alut, arrows, binary, bzlib, c2hs, cabal, cgi,
cpphs, darcs, drift, fgl, filepath, frown, glut,
gtk2hs, haddock, happy, harp, haskell-src,
haskell-src-exts, haxml, hdbc, hdbc-odbc,
hdbc-postgresql, hdbc-sqlite, hdoc, hmake,
hscolour, hslogger, hs-plugins, hsql, hsql-mysql,
hsql-odbc, hsql-postgresql, hsql-sqlite,
hsshellscript, html, http, hunit, hxt, iconv,
lhs2tex, missingh, mtl, network, openal, opengl,
parallel, quickcheck, regex-base, regex-compat,
regex-posix, rss, stm, time, uuagc, uulib,
wash, wxhaskell, x11, xhtml, xmobar, xmonad,
xmonad-contrib, zlib.

See also:
◦ http://packages.gentoo.org/category/dev-haskell
◦ http://packages.gentoo.org/package/dev-lang/ghc

Please report problems in the normal Gentoo bug
tracker at bugs.gentoo.org.

There are a further 150 packages in the Haskell over-
lay at http://haskell.org/haskellwiki/Gentoo. There you
can access and test the latest versions of the ebuilds,
and send patches using darcs (→ 6.13). The overlay
is also available via the Gentoo overlay manager “lay-
man”. If you choose to use the overlay then problems
should be reported on IRC (#gentoo-haskell on freen-
ode), where we coordinate development, or via email
〈haskell@gentoo.org〉.

We are having some difficulty deciding which are the
more popular packages that would be worth adding to
portage. If you have suggestions, please contact us.

7.5 Individuals

7.5.1 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini-tutorials and
assorted small projects (http://pobox.com/~oleg/ftp/
Haskell/) – has received three additions:

Class-parameterized classes, the type-level
logarithm, and the higher-order for-loop on types

We show invertible, terminating, 3-place addition, mul-
tiplication, and exponentiation relations on type-level

58

http://happs.org/
http://happs.org/
http://erlyweb.org/
http://bayfp.org/blog
http://ports.openbsd.nu/lang/ghc/
http://packages.gentoo.org/category/dev-haskell
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
http://pobox.com/~oleg/ftp/Haskell/
http://pobox.com/~oleg/ftp/Haskell/

unary, Peano numerals. In these relations any two
operands determine the third. We also show the invert-
ible factorial relation. This gives us all common arith-
metic operations on Peano numerals, including base-n
discrete logarithm, the n-th root, and the inverse of fac-
torial. The latter operations and division are defined
generically, as inverses of exponentiation, factorial and
multiplication, resp. The inversion method can work
with any representation of (type-level) numerals, bi-
nary or decimal.

The inverter itself is generic: it is a type-class func-
tion, that is, a type-class parameterized by the type-
class to ‘invert’. The inverter is a simple higher-order
for-loop on types. In Haskell98+multi-parameter type
classes, classes are already first-class, for all practical
purposes.
http://okmĳ.org/ftp/Haskell/types.html#peano-arithm

Restricted Monads

We show how to attain the gist of the restricted
datatype proposal (Hughes, 1999) in Haskell, now. We
need nothing but plain multi-parameter type classes:
no functional dependencies, no undecidable instances,
let alone more controversial extensions, are required.
Restricted monads thus should be implementable in
Haskell’.

Restricted monads are the extension of monads that
restrict the set of values of monadic actions. For ex-
ample, to implement MonadPlus more efficiently, one
often wishes monadic actions yielded the values whose
type is in the class Ord.

We propose a fully backward-compatible extension
to the monadic interface. All monads are members of
the extended monads, and all existing monadic code
should compile as it is. In addition, restricted monads
become expressible. The article defines the extended
interface with the functions

ret2 :: MN2 m a => a -> m a
fail2 :: MN2 m a => String -> m a
bind2 :: MN3 m a b => m a -> (a -> m b) -> m b

which have exactly the same type as the ordinary
monadic operations – only with more general con-
straints. Because new operations have exactly the
same type, one may use them in the regular monadic
code (given -fno-implicit-prelude flag) and with the do-
notation (cf. ‘rebindable syntax’ feature). Perhaps one
day this more general interface becomes the default
one.
http://okmĳ.org/ftp/Haskell/types.
html#restricted-datatypes

Impredicativity and explicit type applications

On a simple example we demonstrate that the type sys-
tem of Haskell with the common rank-2 extension (not

counting the extensions in GHC 6.6+) is already im-
predicative and permits explicit type applications and
a limited form of type abstractions (i.e., big-lambda).
A newtype containing a polymorphic type effectively
permits instantiating polytypes with polytypes. Intro-
ductions and eliminations of that newtype’s data con-
structor mark the places of type abstraction and type
application.

http://okmĳ.org/ftp/Haskell/types.
html#some-impredicativity

7.5.2 dot.ghci

Report by: Claus Reinke
Status: new

GHCi is no longer the impoverished offspring of GHC
and Hugs it started out as, and it keeps improving.
There are, however, still a few commands that Hugs
users miss in GHCi, and with the increasing amounts
of information available in GHCi, it can sometimes be
difficult to find the interesting bits.

Now, you can add some more feature requests to the
ticket tracker and hope that someone will get round to
implementing them, or you can get the GHC sources
and start contributing code yourself. Or, you can make
use of some of the less well known features of GHCi,
which allow you to define your own GHCi commands
(these are still somewhat awkward to use, but present
one of the areas in which GHCi has started to overtake
Hugs).

In an email to the haskell-cafe in September, I
demonstrated this approach in the form of a mini-
tutorial, starting with simple things like platform-
independent :pwd/:ls, then laying the ground-
work for more complex commands by defining
:redir <var> <cmd>, a command that redirects the
output of <cmd>, binding it to variable <var>. Based
on :redir, we can then define :grep <pat> <cmd>, to
filter the output of <cmd> for a pattern <pat> (think of
finding the help entries related to breakpoints, or the
variants of fold appearing in :browse Prelude). Tak-
ing some examples from the GHCi ticket tracker and
from Hugs’ commands, there is also :find <id> (open
the source for the definition of <id>), :b (:browse first
module listed in :show modules), and :le <mod> (load
module <mod>, edit location of first error, if any).

The commands are self-documenting, can be listed
and removed as a group, and should give a good start-
ing point for your own experiments with GHCi’s :def.
Since the email, which targeted GHC 6.6 and later, a
version for GHC 6.4.1 was added for those who needed
to work with an old installation (the commands in
that version differ slightly, to account for 6.4.1’s lim-
itations). Please let me know if you find this useful,
and remember to share your own GHCi tricks and tips!

59

http://okmij.org/ftp/Haskell/types.html#peano-arithm
http://okmij.org/ftp/Haskell/types.html#restricted-datatypes
http://okmij.org/ftp/Haskell/types.html#restricted-datatypes
http://okmij.org/ftp/Haskell/types.html#some-impredicativity
http://okmij.org/ftp/Haskell/types.html#some-impredicativity

Further reading

◦ http://www.haskell.org/pipermail/haskell-cafe/
2007-September/032260.html

◦ http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/
#dot.ghci

7.6 A Survey on the Use of Haskell in
Natural-Language Processing

Report by: Richard A. Frost

The survey “Realization of Natural-Language Inter-
faces Using Lazy Functional Programming” was pub-
lished in ACM Computing Surveys Volume 38 Issue
4 Article 11 in December 2006. It was in the Top
10 downloads from ACM Magazines and Surveys for
February and March of 2007.

The survey currently contains 168 references to rel-
evant publications. The survey will be updated as
more information becomes available. Please send
information on recent publications in this area to
〈rfrost at cogeco.ca〉

Further reading

A draft of the survey is available at:
http://cs.uwindsor.ca/~richard/PUBLICATIONS/

NLI_LFP_SURVEY_DRAFT.pdf

7.6.1 Inductive Programming

Report by: Lloyd Allison

Inductive Programming (IP): The learning of general
hypotheses from given data.

The project is to use Haskell to examine what are the
products of machine-learning / artificial-intelligence
(AI) from a programming point of view, and to do data
analysis with them.

There has been some progress since May 2007: Es-
timators and Models have been expanded to include
the Poisson and Geometric distributions. Naturally
these can be (and have been) used in and with the
existing types, classes, estimators and functions: Mod-
els (probability distributions), function-models (regres-
sions), time-series (e.g. Markov models), series segmen-
tation, mixture models, classification trees (and regres-
sion trees and model trees), and Bayesian networks. An
overhaul of the code remains overdue.

Prototype code is available (GPL) at the URL below.

Future plans

Planned are continuing applications to real data-sets,
and comparisons against other learners.

Further reading

http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

7.6.2 Bioinformatics tools

Report by: Ketil Malde

The Haskell bioinformatics library supports work-
ing with nucleotide and protein seqeunces, importing
Fasta-formatted files with associated quality, and also
the TwoBit and PHD sequence formats. BLAST out-
put in XML format is supported, and the standard
alignment algorithms (and some non-standard ones)
are provided.

It is considered in development (meaning things will
be added, some functionality may not be as complete
or well documented as one would wish, and so on),
but central parts should be fairly well documented and
come with a QuickCheck test suite.

The library abstracts functionality that is used in a
handful of applications, including:

◦ xsact – an EST clustering program

◦ RBR – a repeat detector/masker

◦ clusc – a tool for calculating cluster similarity with
a bunch of metrics

◦ dephd – a sequence quality assessment tool

◦ xml2x – a BLAST postprocessor and GO annotator

Everything is GPLed and available as darcs repos (→
6.13), at http://malde.org/~ketil/.

60

http://www.haskell.org/pipermail/haskell-cafe/2007-September/032260.html
http://www.haskell.org/pipermail/haskell-cafe/2007-September/032260.html
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/#dot.ghci
http://www.cs.kent.ac.uk/~cr3/toolbox/haskell/#dot.ghci
mailto: rfrost at cogeco.ca
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf
http://cs.uwindsor.ca/~richard/PUBLICATIONS/NLI_LFP_SURVEY_DRAFT.pdf
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/
http://malde.org/~ketil/

	General
	HaskellWiki and haskell.org
	#haskell
	Planet Haskell
	Haskell Weekly News

	The Monad.Reader
	Books and tutorials
	New textbook -- Programming in Haskell
	Haskell Wikibook
	Gtk2Hs tutorial

	Implementations
	The Glasgow Haskell Compiler
	yhc
	The Helium compiler

	Language
	Variations of Haskell
	Liskell
	Haskell on handheld devices

	Non-sequential Programming
	GpH -- Glasgow Parallel Haskell
	Eden

	Type System/Program Analysis
	Free Theorems for Haskell
	Agda
	Epigram
	Chameleon project
	XHaskell project
	HaskellJoin
	Uniqueness Typing

	Backend
	The Reduceron

	Libraries
	Packaging and Distribution
	Cabal and HackageDB

	General libraries
	HPDF
	The Neon Library
	Test.IOSpec
	GSLHaskell
	An Index Aware Linear Algebra Library

	Parsing and Transforming
	Graph Parser Combinators
	uniplate
	InterpreterLib
	hscolour
	Utrecht Parsing Library and Attribute Grammar System
	The X-SAIGA Project (was: Left-Recursive Parser Combinators)

	System
	hspread
	Harpy
	hs-plugins
	The libpcap Binding

	Databases and data storage
	Takusen

	Data types and data structures
	Data.Record
	Data.ByteString
	stream-fusion (was: Data.List.Stream)
	Edison
	dimensional
	Numeric prelude
	HList -- a library for typed heterogeneous collections

	Data processing
	binary
	binarydefer
	The Haskell Cryptographic Library
	The Haskell ASN.1 Library
	2LT: Two-Level Transformation

	User interfaces
	Shellac
	Grapefruit -- A declarative GUI and graphics library
	Gtk2Hs
	VTY

	(Multi-)Media
	Programming of Modular Synthesizers
	Haskore revision

	Web and XML programming
	tagsoup
	HaXml
	Haskell XML Toolbox
	WASH/CGI -- Web Authoring System for Haskell

	Tools
	Foreign Function Interfacing
	CHaskell

	Scanning, Parsing, Analysis
	Alex version 2
	Happy
	SdfMetz

	Transformations
	derive
	Term Rewriting Tools written in Haskell
	HaRe -- The Haskell Refactorer
	VooDooM

	Testing and Debugging
	Haskell Program Coverage
	Hat
	Lazy SmallCheck

	Development
	Haskell Mode Plugins for Vim
	cpphs
	Visual Haskell
	EclipseFP -- Haskell support for the Eclipse IDE
	Haddock
	Hoogle -- Haskell API Search

	Applications
	Exercise Assistants
	Lambda Shell
	xmonad
	GenI
	Roguestar
	mmisar
	Inference Services for Hybrid Logics
	HyLoRes
	HTab
	HGen

	Saoithín: a 2nd-order proof assistant
	Raskell
	photoname
	HJS -- Haskell Javascript Interpreter
	FreeArc
	Darcs
	lambdabot
	yi
	INblobs -- Interaction Nets interpreter
	lhs2TeX
	Emping
	Audio signal processing
	hmp3
	easyVision

	Users
	Commercial users
	Ansemond LLC
	Barclays Capital Quantitative Analytics Group
	Credit Suisse Global Modelling and Analytics Group
	Bluespec tools for design of complex chips
	Galois, Inc.
	SeeReason Partners, LLC

	Haskell in Education
	Research Groups
	Foundations and Methods Group at Trinity College Dublin
	Functional Programming at University of Nottingham
	Artificial Intelligence and Software Technology at JWG-University Frankfurt
	Formal Methods at Bremen University and DFKI Lab Bremen
	Functional Programming at Brooklyn College, City University of New York
	Functional Programming at Macquarie University
	Functional Programming at the University of Kent
	Programming Languages & Systems at UNSW
	Haskell in Romania
	SCIence project

	User groups
	Bay Area Functional Programmers
	OpenBSD Haskell
	Haskell in Gentoo Linux

	Individuals
	Oleg's Mini tutorials and assorted small projects
	dot.ghci

	A Survey on the Use of Haskell in Natural-Language Processing
	Inductive Programming
	Bioinformatics tools

