
The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 i

The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 7.6.2

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 ii

COLLABORATORS

TITLE :

The Glorious Glasgow Haskell Compilation
System User’s Guide, Version 7.6.2

ACTION NAME DATE SIGNATURE

WRITTEN BY The GHC Team January 27, 2013

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 iii

Contents

1 Introduction to GHC 1

1.1 Obtaining GHC . 1

1.2 Meta-information: Web sites, mailing lists, etc. 1

1.3 Reporting bugs in GHC . 2

1.4 GHC version numbering policy . 2

1.5 Release notes for version 7.6.1 . 3

1.5.1 Highlights . 3

1.5.2 Full details . 3

1.5.2.1 Language . 3

1.5.2.2 Compiler . 5

1.5.2.3 GHCi . 5

1.5.2.4 Template Haskell . 5

1.5.2.5 Runtime system . 5

1.5.2.6 Build system . 5

1.5.3 Libraries . 6

1.5.3.1 array . 6

1.5.3.2 base . 6

1.5.3.3 bin-package-db . 7

1.5.3.4 binary . 7

1.5.3.5 bytestring . 7

1.5.3.6 Cabal . 7

1.5.3.7 containers . 7

1.5.3.8 deepseq . 7

1.5.3.9 directory . 7

1.5.3.10 filepath . 7

1.5.3.11 ghc-prim . 8

1.5.3.12 haskell98 . 8

1.5.3.13 haskell2010 . 8

1.5.3.14 hoopl . 8

1.5.3.15 hpc . 8

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 iv

1.5.3.16 integer-gmp . 8

1.5.3.17 old-locale . 8

1.5.3.18 old-time . 8

1.5.3.19 process . 8

1.5.3.20 template-haskell . 9

1.5.3.21 time . 9

1.5.3.22 unix . 9

1.5.3.23 Win32 . 9

1.6 Release notes for version 7.6.2 . 9

1.6.1 GHC . 9

1.6.2 Haddock . 10

1.6.3 Hsc2hs . 10

1.6.4 Libraries . 10

1.6.4.1 base . 10

1.6.4.2 bytestring . 10

1.6.4.3 directory . 10

1.6.4.4 unix . 10

2 Using GHCi 11

2.1 Introduction to GHCi . 11

2.2 Loading source files . 11

2.2.1 Modules vs. filenames . 12

2.2.2 Making changes and recompilation . 12

2.3 Loading compiled code . 13

2.4 Interactive evaluation at the prompt . 14

2.4.1 I/O actions at the prompt . 14

2.4.2 Using do-notation at the prompt . 15

2.4.3 Multiline input . 16

2.4.4 Type, class and other declarations . 17

2.4.5 What’s really in scope at the prompt? . 18

2.4.5.1 :module and :load . 19

2.4.5.2 Qualified names . 19

2.4.5.3 The :main and :run commands . 20

2.4.6 The it variable . 20

2.4.7 Type defaulting in GHCi . 21

2.4.8 Using a custom interactive printing function . 22

2.5 The GHCi Debugger . 22

2.5.1 Breakpoints and inspecting variables . 23

2.5.1.1 Setting breakpoints . 25

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 v

2.5.1.2 Listing and deleting breakpoints . 25

2.5.2 Single-stepping . 26

2.5.3 Nested breakpoints . 26

2.5.4 The _result variable . 27

2.5.5 Tracing and history . 27

2.5.6 Debugging exceptions . 28

2.5.7 Example: inspecting functions . 29

2.5.8 Limitations . 30

2.6 Invoking GHCi . 30

2.6.1 Packages . 30

2.6.2 Extra libraries . 31

2.7 GHCi commands . 31

2.8 The :set and :seti commands . 35

2.8.1 GHCi options . 35

2.8.2 Setting GHC command-line options in GHCi . 36

2.8.3 Setting options for interactive evaluation only . 36

2.9 The .ghci file . 37

2.10 Compiling to object code inside GHCi . 37

2.11 FAQ and Things To Watch Out For . 38

3 Using runghc 39

3.1 Flags . 39

4 Using GHC 40

4.1 Getting started: compiling programs . 40

4.2 Options overview . 40

4.2.1 Command-line arguments . 41

4.2.2 Command line options in source files . 41

4.2.3 Setting options in GHCi . 41

4.3 Static, Dynamic, and Mode options . 41

4.4 Meaningful file suffixes . 42

4.5 Modes of operation . 42

4.5.1 Using ghc --make . 43

4.5.2 Expression evaluation mode . 43

4.5.3 Batch compiler mode . 44

4.5.3.1 Overriding the default behaviour for a file . 44

4.6 Help and verbosity options . 44

4.7 Filenames and separate compilation . 45

4.7.1 Haskell source files . 46

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 vi

4.7.2 Output files . 46

4.7.3 The search path . 46

4.7.4 Redirecting the compilation output(s) . 47

4.7.5 Keeping Intermediate Files . 48

4.7.6 Redirecting temporary files . 49

4.7.7 Other options related to interface files . 49

4.7.8 The recompilation checker . 49

4.7.9 How to compile mutually recursive modules . 50

4.7.10 Using make . 51

4.7.11 Dependency generation . 52

4.7.12 Orphan modules and instance declarations . 54

4.8 Warnings and sanity-checking . 55

4.9 Packages . 59

4.9.1 Using Packages . 59

4.9.2 The main package . 61

4.9.3 Consequences of packages for the Haskell language . 61

4.9.4 Package Databases . 61

4.9.4.1 The GHC_PACKAGE_PATH environment variable . 62

4.9.5 Package IDs, dependencies, and broken packages . 62

4.9.6 Package management (the ghc-pkg command) . 64

4.9.7 Building a package from Haskell source . 66

4.9.8 InstalledPackageInfo: a package specification . 67

4.10 Optimisation (code improvement) . 69

4.10.1 -O*: convenient “packages” of optimisation flags. 70

4.10.2 -f*: platform-independent flags . 70

4.11 GHC Backends . 73

4.11.1 Native code Generator (-fasm) . 73

4.11.2 LLVM Code Generator (-fllvm) . 73

4.11.3 C Code Generator (-fvia-C) . 73

4.11.4 Unregisterised compilation . 74

4.12 Options related to a particular phase . 74

4.12.1 Replacing the program for one or more phases . 74

4.12.2 Forcing options to a particular phase . 74

4.12.3 Options affecting the C pre-processor . 75

4.12.3.1 CPP and string gaps . 76

4.12.4 Options affecting a Haskell pre-processor . 76

4.12.5 Options affecting code generation . 76

4.12.6 Options affecting linking . 77

4.13 Using shared libraries . 80

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 vii

4.13.1 Building programs that use shared libraries . 80

4.13.2 Shared libraries for Haskell packages . 80

4.13.3 Shared libraries that export a C API . 81

4.13.4 Finding shared libraries at runtime . 81

4.13.4.1 Unix . 81

4.13.4.2 Mac OS X . 82

4.14 Using Concurrent Haskell . 82

4.15 Using SMP parallelism . 82

4.15.1 Compile-time options for SMP parallelism . 83

4.15.2 RTS options for SMP parallelism . 83

4.15.3 Hints for using SMP parallelism . 83

4.16 Platform-specific Flags . 84

4.17 Running a compiled program . 84

4.17.1 Setting RTS options . 84

4.17.1.1 Setting RTS options on the command line . 84

4.17.1.2 Setting RTS options at compile time . 85

4.17.1.3 Setting RTS options with the GHCRTS environment variable 85

4.17.1.4 “Hooks” to change RTS behaviour . 85

4.17.2 Miscellaneous RTS options . 85

4.17.3 RTS options to control the garbage collector . 86

4.17.4 RTS options for concurrency and parallelism . 90

4.17.5 RTS options for profiling . 90

4.17.6 Tracing . 90

4.17.7 RTS options for hackers, debuggers, and over-interested souls . 91

4.17.8 Getting information about the RTS . 92

4.18 Generating and compiling External Core Files . 93

4.19 Debugging the compiler . 93

4.19.1 Dumping out compiler intermediate structures . 93

4.19.2 Formatting dumps . 95

4.19.3 Suppressing unwanted information . 95

4.19.4 Checking for consistency . 95

4.19.5 How to read Core syntax (from some -ddump flags) . 95

4.20 Flag reference . 97

4.20.1 Help and verbosity options . 97

4.20.2 Which phases to run . 97

4.20.3 Alternative modes of operation . 98

4.20.4 Redirecting output . 98

4.20.5 Keeping intermediate files . 98

4.20.6 Temporary files . 99

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 viii

4.20.7 Finding imports . 99

4.20.8 Interface file options . 99

4.20.9 Recompilation checking . 99

4.20.10 Interactive-mode options . 100

4.20.11 Packages . 100

4.20.12 Language options . 101

4.20.13 Warnings . 104

4.20.14 Optimisation levels . 106

4.20.15 Individual optimisations . 106

4.20.16 Profiling options . 108

4.20.17 Program coverage options . 108

4.20.18 Haskell pre-processor options . 108

4.20.19 C pre-processor options . 108

4.20.20 Code generation options . 109

4.20.21 Linking options . 109

4.20.22 Plugin options . 110

4.20.23 Replacing phases . 111

4.20.24 Forcing options to particular phases . 111

4.20.25 Platform-specific options . 112

4.20.26 External core file options . 112

4.20.27 Compiler debugging options . 112

4.20.28 Misc compiler options . 114

5 Profiling 115

5.1 Cost centres and cost-centre stacks . 115

5.1.1 Inserting cost centres by hand . 117

5.1.2 Rules for attributing costs . 118

5.2 Compiler options for profiling . 118

5.3 Time and allocation profiling . 119

5.4 Profiling memory usage . 119

5.4.1 RTS options for heap profiling . 120

5.4.2 Retainer Profiling . 121

5.4.2.1 Hints for using retainer profiling . 122

5.4.3 Biographical Profiling . 122

5.4.4 Actual memory residency . 123

5.5 hp2ps––heap profile to PostScript . 123

5.5.1 Manipulating the hp file . 124

5.5.2 Zooming in on regions of your profile . 124

5.5.3 Viewing the heap profile of a running program . 125

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 ix

5.5.4 Viewing a heap profile in real time . 125

5.6 Profiling Parallel and Concurrent Programs . 125

5.7 Observing Code Coverage . 126

5.7.1 A small example: Reciprocation . 126

5.7.2 Options for instrumenting code for coverage . 127

5.7.3 The hpc toolkit . 127

5.7.3.1 hpc report . 128

5.7.3.2 hpc markup . 128

5.7.3.3 hpc sum . 129

5.7.3.4 hpc combine . 129

5.7.3.5 hpc map . 129

5.7.3.6 hpc overlay and hpc draft . 130

5.7.4 Caveats and Shortcomings of Haskell Program Coverage . 130

5.8 Using “ticky-ticky” profiling (for implementors) . 130

6 Advice on: sooner, faster, smaller, thriftier 133

6.1 Sooner: producing a program more quickly . 133

6.2 Faster: producing a program that runs quicker . 134

6.3 Smaller: producing a program that is smaller . 136

6.4 Thriftier: producing a program that gobbles less heap space . 136

7 GHC Language Features 137

7.1 Language options . 137

7.2 Unboxed types and primitive operations . 137

7.2.1 Unboxed types . 138

7.2.2 Unboxed tuples . 139

7.3 Syntactic extensions . 139

7.3.1 Unicode syntax . 139

7.3.2 The magic hash . 140

7.3.3 Hierarchical Modules . 140

7.3.4 Pattern guards . 141

7.3.5 View patterns . 142

7.3.6 n+k patterns . 143

7.3.7 Traditional record syntax . 143

7.3.8 The recursive do-notation . 144

7.3.8.1 Recursive binding groups . 144

7.3.8.2 The mdo notation . 145

7.3.9 Parallel List Comprehensions . 146

7.3.10 Generalised (SQL-Like) List Comprehensions . 146

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 x

7.3.11 Monad comprehensions . 148

7.3.12 Rebindable syntax and the implicit Prelude import . 150

7.3.13 Postfix operators . 150

7.3.14 Tuple sections . 151

7.3.15 Lambda-case . 151

7.3.16 Multi-way if-expressions . 151

7.3.17 Record field disambiguation . 152

7.3.18 Record puns . 152

7.3.19 Record wildcards . 153

7.3.20 Local Fixity Declarations . 154

7.3.21 Package-qualified imports . 154

7.3.22 Safe imports . 155

7.3.23 Summary of stolen syntax . 155

7.4 Extensions to data types and type synonyms . 155

7.4.1 Data types with no constructors . 155

7.4.2 Data type contexts . 156

7.4.3 Infix type constructors, classes, and type variables . 156

7.4.4 Liberalised type synonyms . 157

7.4.5 Existentially quantified data constructors . 158

7.4.5.1 Why existential? . 158

7.4.5.2 Existentials and type classes . 158

7.4.5.3 Record Constructors . 159

7.4.5.4 Restrictions . 160

7.4.6 Declaring data types with explicit constructor signatures . 161

7.4.7 Generalised Algebraic Data Types (GADTs) . 164

7.5 Extensions to the "deriving" mechanism . 165

7.5.1 Inferred context for deriving clauses . 165

7.5.2 Stand-alone deriving declarations . 166

7.5.3 Deriving clause for extra classes (Typeable, Data, etc) . 167

7.5.4 Generalised derived instances for newtypes . 167

7.5.4.1 Generalising the deriving clause . 168

7.5.4.2 A more precise specification . 169

7.6 Class and instances declarations . 169

7.6.1 Class declarations . 169

7.6.1.1 Multi-parameter type classes . 170

7.6.1.2 The superclasses of a class declaration . 170

7.6.1.3 Class method types . 170

7.6.1.4 Default method signatures . 171

7.6.2 Functional dependencies . 171

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 xi

7.6.2.1 Rules for functional dependencies . 171

7.6.2.2 Background on functional dependencies . 172

7.6.2.2.1 An attempt to use constructor classes . 173

7.6.2.2.2 Adding functional dependencies . 173

7.6.3 Instance declarations . 175

7.6.3.1 Relaxed rules for the instance head . 175

7.6.3.2 Relaxed rules for instance contexts . 175

7.6.3.3 Undecidable instances . 176

7.6.3.4 Overlapping instances . 177

7.6.3.5 Type signatures in instance declarations . 179

7.6.4 Overloaded string literals . 180

7.7 Type families . 180

7.7.1 Data families . 181

7.7.1.1 Data family declarations . 181

7.7.1.2 Data instance declarations . 181

7.7.1.3 Overlap of data instances . 182

7.7.2 Synonym families . 182

7.7.2.1 Type family declarations . 183

7.7.2.2 Type instance declarations . 183

7.7.2.3 Overlap of type synonym instances . 184

7.7.2.4 Decidability of type synonym instances . 184

7.7.3 Associated data and type families . 184

7.7.3.1 Associated instances . 185

7.7.3.2 Associated type synonym defaults . 185

7.7.3.3 Scoping of class parameters . 186

7.7.4 Import and export . 186

7.7.4.1 Examples . 186

7.7.4.2 Instances . 187

7.7.5 Type families and instance declarations . 187

7.8 Kind polymorphism . 188

7.8.1 Overview of kind polymorphism . 188

7.8.2 Overview . 188

7.8.3 Polymorphic kind recursion and complete kind signatures . 189

7.9 Datatype promotion . 189

7.9.1 Motivation . 189

7.9.2 Overview . 190

7.9.3 Distinguishing between types and constructors . 191

7.9.4 Promoted lists and tuples types . 191

7.9.5 Promoted Literals . 191

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 xii

7.9.6 Promoting existential data constructors . 192

7.10 Equality constraints . 192

7.11 The Constraint kind . 193

7.12 Other type system extensions . 194

7.12.1 Explicit universal quantification (forall) . 194

7.12.2 The context of a type signature . 194

7.12.3 Implicit parameters . 195

7.12.3.1 Implicit-parameter type constraints . 195

7.12.3.2 Implicit-parameter bindings . 196

7.12.3.3 Implicit parameters and polymorphic recursion . 197

7.12.3.4 Implicit parameters and monomorphism . 197

7.12.4 Explicitly-kinded quantification . 197

7.12.5 Arbitrary-rank polymorphism . 198

7.12.5.1 Examples . 199

7.12.5.2 Type inference . 200

7.12.5.3 Implicit quantification . 201

7.12.6 Impredicative polymorphism . 201

7.12.7 Lexically scoped type variables . 201

7.12.7.1 Overview . 202

7.12.7.2 Declaration type signatures . 202

7.12.7.3 Expression type signatures . 203

7.12.7.4 Pattern type signatures . 203

7.12.7.5 Class and instance declarations . 204

7.12.8 Generalised typing of mutually recursive bindings . 204

7.12.9 Monomorphic local bindings . 205

7.13 Deferring type errors to runtime . 205

7.13.1 Enabling deferring of type errors . 205

7.13.2 Deferred type errors in GHCi . 205

7.14 Template Haskell . 206

7.14.1 Syntax . 206

7.14.2 Using Template Haskell . 207

7.14.3 A Template Haskell Worked Example . 208

7.14.4 Using Template Haskell with Profiling . 209

7.14.5 Template Haskell Quasi-quotation . 209

7.15 Arrow notation . 211

7.15.1 do-notation for commands . 212

7.15.2 Conditional commands . 213

7.15.3 Defining your own control structures . 214

7.15.4 Primitive constructs . 215

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 xiii

7.15.5 Differences with the paper . 215

7.15.6 Portability . 216

7.16 Bang patterns . 216

7.16.1 Informal description of bang patterns . 216

7.16.2 Syntax and semantics . 217

7.17 Assertions . 218

7.18 Pragmas . 218

7.18.1 LANGUAGE pragma . 219

7.18.2 OPTIONS_GHC pragma . 219

7.18.3 INCLUDE pragma . 219

7.18.4 WARNING and DEPRECATED pragmas . 219

7.18.5 INLINE and NOINLINE pragmas . 220

7.18.5.1 INLINE pragma . 220

7.18.5.2 INLINABLE pragma . 221

7.18.5.3 NOINLINE pragma . 221

7.18.5.4 CONLIKE modifier . 221

7.18.5.5 Phase control . 222

7.18.6 LINE pragma . 222

7.18.7 RULES pragma . 222

7.18.8 SPECIALIZE pragma . 223

7.18.8.1 SPECIALIZE INLINE . 224

7.18.8.2 SPECIALIZE for imported functions . 224

7.18.8.3 Obsolete SPECIALIZE syntax . 225

7.18.9 SPECIALIZE instance pragma . 225

7.18.10 UNPACK pragma . 225

7.18.11 NOUNPACK pragma . 226

7.18.12 SOURCE pragma . 226

7.19 Rewrite rules . 226

7.19.1 Syntax . 226

7.19.2 Semantics . 227

7.19.3 How rules interact with INLINE/NOINLINE and CONLIKE pragmas 228

7.19.4 List fusion . 228

7.19.5 Specialisation . 230

7.19.6 Controlling what’s going on in rewrite rules . 230

7.19.7 CORE pragma . 231

7.20 Special built-in functions . 231

7.21 Generic classes . 231

7.22 Generic programming . 232

7.22.1 Deriving representations . 232

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 xiv

7.22.2 Writing generic functions . 233

7.22.3 Generic defaults . 234

7.22.4 More information . 234

7.23 Control over monomorphism . 234

7.23.1 Switching off the dreaded Monomorphism Restriction . 234

7.23.2 Monomorphic pattern bindings . 234

7.24 Concurrent and Parallel Haskell . 235

7.24.1 Concurrent Haskell . 235

7.24.2 Software Transactional Memory . 235

7.24.3 Parallel Haskell . 235

7.24.4 Annotating pure code for parallelism . 236

7.24.5 Data Parallel Haskell . 236

7.25 Safe Haskell . 236

7.25.1 Uses of Safe Haskell . 237

7.25.1.1 Strict type-safety (good style) . 237

7.25.1.2 Building secure systems (restricted IO Monads) . 237

7.25.2 Safe Language . 239

7.25.3 Safe Imports . 240

7.25.4 Trust and Safe Haskell Modes . 240

7.25.4.1 Trust check (-fpackage-trust disabled) . 240

7.25.4.2 Trust check (-fpackage-trust enabled) . 241

7.25.4.3 Example . 241

7.25.4.4 Trustworthy Requirements . 242

7.25.4.5 Package Trust . 242

7.25.5 Safe Haskell Inference . 242

7.25.6 Safe Haskell Flag Summary . 242

8 Foreign function interface (FFI) 244

8.1 GHC extensions to the FFI Addendum . 244

8.1.1 Unboxed types . 244

8.1.2 Newtype wrapping of the IO monad . 244

8.1.3 Primitive imports . 245

8.1.4 Interruptible foreign calls . 245

8.1.5 The CAPI calling convention . 245

8.2 Using the FFI with GHC . 246

8.2.1 Using foreign export and foreign import ccall "wrapper" with GHC 246

8.2.1.1 Using your own main() . 246

8.2.1.2 Making a Haskell library that can be called from foreign code 248

8.2.2 Using header files . 249

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 xv

8.2.3 Memory Allocation . 249

8.2.4 Multi-threading and the FFI . 249

8.2.4.1 Foreign imports and multi-threading . 249

8.2.4.2 The relationship between Haskell threads and OS threads . 250

8.2.4.3 Foreign exports and multi-threading . 250

8.2.4.4 On the use of hs_exit() . 250

8.2.5 Floating point and the FFI . 250

9 Extending and using GHC as a Library 252

9.1 Source annotations . 252

9.1.1 Annotating values . 252

9.1.2 Annotating types . 253

9.1.3 Annotating modules . 253

9.2 Using GHC as a Library . 253

9.3 Compiler Plugins . 254

9.3.1 Using compiler plugins . 254

9.3.2 Writing compiler plugins . 254

9.3.2.1 CoreToDo in more detail . 255

9.3.2.2 Manipulating bindings . 255

9.3.2.3 Using Annotations . 256

10 An External Representation for the GHC Core Language (For GHC 6.10) 257

10.1 Introduction . 1

10.2 External Grammar of Core . 2

10.3 Informal Semantics . 3

10.3.1 Program Organization and Modules . 4

10.3.2 Namespaces . 4

10.3.3 Types and Kinds . 5

10.3.3.1 Types . 5

10.3.3.2 Coercions . 5

10.3.3.3 Kinds . 5

10.3.3.4 Lifted and Unlifted Types . 6

10.3.3.5 Type Constructors; Base Kinds and Higher Kinds . 6

10.3.3.6 Type Synonyms and Type Equivalence . 6

10.3.4 Algebraic data types . 6

10.3.5 Newtypes . 7

10.3.6 Expression Forms . 8

10.3.7 Expression Evaluation . 9

10.4 Primitive Module . 11

10.4.1 Non-concurrent Back End . 11

10.4.2 Literals . 11

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 xvi

11 What to do when something goes wrong 13
11.1 When the compiler “does the wrong thing” . 13

11.2 When your program “does the wrong thing” . 13

12 Other Haskell utility programs 15
12.1 “Yacc for Haskell”: happy . 15

12.2 Writing Haskell interfaces to C code: hsc2hs . 15

12.2.1 command line syntax . 15

12.2.2 Input syntax . 16

12.2.3 Custom constructs . 17

12.2.4 Cross-compilation . 17

13 Running GHC on Win32 systems 19
13.1 Starting GHC on Windows platforms . 19

13.2 Running GHCi on Windows . 19

13.3 Interacting with the terminal . 19

13.4 Differences in library behaviour . 20

13.5 Using GHC (and other GHC-compiled executables) with cygwin . 20

13.5.1 Background . 20

13.5.2 The problem . 20

13.5.3 Things to do . 20

13.6 Building and using Win32 DLLs . 21

13.6.1 Creating a DLL . 21

13.6.2 Making DLLs to be called from other languages . 22

13.6.2.1 Using from VBA . 22

13.6.2.2 Using from C++ . 23

14 Known bugs and infelicities 24
14.1 Haskell standards vs. Glasgow Haskell: language non-compliance . 24

14.1.1 Divergence from Haskell 98 and Haskell 2010 . 24

14.1.1.1 Lexical syntax . 24

14.1.1.2 Context-free syntax . 24

14.1.1.3 Expressions and patterns . 25

14.1.1.4 Declarations and bindings . 25

14.1.1.5 Module system and interface files . 25

14.1.1.6 Numbers, basic types, and built-in classes . 25

14.1.1.7 In Prelude support . 26

14.1.1.8 The Foreign Function Interface . 26

14.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and Haskell 2010 27

14.2 Known bugs or infelicities . 27

14.2.1 Bugs in GHC . 27

14.2.2 Bugs in GHCi (the interactive GHC) . 28

15 Index 29

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 xvii

The Glasgow Haskell Compiler License

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

• Neither name of the University nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW AND THE CON-
TRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 1 / 37

Chapter 1

Introduction to GHC

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch compilation system for the Haskell 98
language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCi), described in Chapter 2, and a batch
compiler, described throughout Chapter 4. In fact, GHC consists of a single program which is just run with different options to
provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an interactive session and used in the
same way as interpreted code, and in fact when using GHCi most of the library code will be pre-compiled. This means you get
the best of both worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your program being actively
developed.

GHC supports numerous language extensions, including concurrency, a foreign function interface, exceptions, type system ex-
tensions such as multi-parameter type classes, local universal and existential quantification, functional dependencies, scoped type
variables and explicit unboxed types. These are all described in Chapter 7.

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time to spare) GHC can produce
pretty fast code. Alternatively, the default option is to compile as fast as possible while not making too much effort to optimise
the generated code (although GHC probably isn’t what you’d describe as a fast compiler :-).

GHC’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell program in a call-graph like
structure. See Chapter 5 for more details.

GHC comes with a number of libraries. These are described in separate documentation.

1.1 Obtaining GHC

Go to the GHC home page and follow the "download" link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to find out how to get the sources,
and build it on your system. Note that GHC itself is written in Haskell, so you will still need to install GHC in order to build it.

1.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:

• GHC home page

• GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appropriate.

http://www.haskell.org/
http://www.haskell.org/ghc/
http://hackage.haskell.org/trac/ghc/wiki/Building
http://www.haskell.org/ghc/
http://hackage.haskell.org/trac/ghc/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 2 / 37

glasgow-haskell-users: This list is for GHC users to chat among themselves. If you have a specific question about GHC, please
check the FAQ first.

list email address: glasgow-haskell-users@haskell.org

subscribe at: http://www.haskell.org/mailman/listinfo/glasgow-haskell-users.

admin email address: glasgow-haskell-users-admin@haskell.org

list archives: http://www.haskell.org/pipermail/glasgow-haskell-users/

glasgow-haskell-bugs: This list is for reporting and discussing GHC bugs. However, please see Section 1.3 before posting here.

list email address: glasgow-haskell-bugs@haskell.org

subscribe at: http://www.haskell.org/mailman/listinfo/glasgow-haskell-bugs.

admin email address: glasgow-haskell-bugs-admin@haskell.org

list archives: http://www.haskell.org/pipermail/glasgow-haskell-bugs/

cvs-ghc: The hardcore GHC developers hang out here. This list also gets commit message from the GHC darcs repository. There
are other lists for other darcs repositories (most notably cvs-libraries).

list email address: cvs-ghc@haskell.org

subscribe at: http://www.haskell.org/mailman/listinfo/cvs-ghc.

admin email address: cvs-ghc-admin@haskell.org

list archives: http://www.haskell.org/pipermail/cvs-ghc/

There are several other haskell and GHC-related mailing lists served by www.haskell.org. Go to http://www.haske-
ll.org/mailman/listinfo/ for the full list.

Some Haskell-related discussion also takes place in the Usenet newsgroup comp.lang.functional.

1.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please see this wiki page for information
on how to report it.

1.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable Releases Stable branches are numbered x.y, where y is even. Releases on the stable branch x.y are numbered x.y.z,
where z (>= 1) is the patchlevel number. Patchlevels are bug-fix releases only, and never change the programmer interface
to any system-supplied code. However, if you install a new patchlevel over an old one you will need to recompile any code
that was compiled against the old libraries.

The value of __GLASGOW_HASKELL__ (see Section 4.12.3) for a major release x.y.z is the integer xyy (if y is a single
digit, then a leading zero is added, so for example in version 6.8.2 of GHC we would have __GLASGOW_HASKELL__-
==608).

Stable snapshots We may make snapshot releases of the current stable branch available for download, and the latest sources are
available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date of the sources from which the snap-
shot was built, and x.y.z+1 is the next release to be made on that branch. For example, 6.8.1.20040225 would be a
snapshot of the 6.8 branch during the development of 6.8.2.

The value of __GLASGOW_HASKELL__ for a snapshot release is the integer xyy. You should never write any conditional
code which tests for this value, however: since interfaces change on a day-to-day basis, and we don’t have finer granularity
in the values of __GLASGOW_HASKELL__, you should only conditionally compile using predicates which test whether
__GLASGOW_HASKELL__ is equal to, later than, or earlier than a given major release.

http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:glasgow-haskell-users-admin@haskell.org
http://www.haskell.org/pipermail/glasgow-haskell-users/
mailto:glasgow-haskell-bugs@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-bugs
mailto:glasgow-haskell-bugs-admin@haskell.org
http://www.haskell.org/pipermail/glasgow-haskell-bugs/
mailto:cvs-ghc@haskell.org
http://www.haskell.org/mailman/listinfo/cvs-ghc
mailto:cvs-ghc-admin@haskell.org
http://www.haskell.org/pipermail/cvs-ghc/
http://www.haskell.org/mailman/listinfo/
http://www.haskell.org/mailman/listinfo/
http://hackage.haskell.org/trac/ghc/wiki/ReportABug
http://www.haskell.org/ghc/dist/stable/dist/
http://hackage.haskell.org/trac/ghc/wiki/Repositories

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 3 / 37

Unstable snapshots We may make snapshot releases of the HEAD available for download, and the latest sources are available
from the git repositories.

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of the sources from which the snap-
shot was built. For example, 6.7.20040225 would be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of __GLASGOW_HASKELL__ for a snapshot release is the integer xyy. You should never write any conditional
code which tests for this value, however: since interfaces change on a day-to-day basis, and we don’t have finer granularity
in the values of __GLASGOW_HASKELL__, you should only conditionally compile using predicates which test whether
__GLASGOW_HASKELL__ is equal to, later than, or earlier than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version flag (see Section 4.6).

1.5 Release notes for version 7.6.1

The significant changes to the various parts of the compiler are listed in the following sections. There have also been numerous
bug fixes and performance improvements over the 7.4 branch.

1.5.1 Highlights

The highlights, since the 7.4 branch, are:

• Polymorphic kinds and data promotion are now fully implemented and supported features: Section 7.8.

• Windows 64bit is now a supported platform.

• It is now possible to defer type errors until runtime using the -fdefer-type-errors flag: Section 7.13.

• The RTS now supports changing the number of capabilities at runtime with Control.Concurrent.setNumCapabil-
ities: Section 4.15.2.

1.5.2 Full details

1.5.2.1 Language

• There is a new extension ExplicitNamespaces that allows to qualify the export of a type with the type keyword.

• The behavior of the TypeOperator extension has changed: previously, only type operators starting with ":" were considered
type constructors, and other operators were treated as type variables. Now type operators are always constructors.

• It is now possible to explicitly annotate types with kind variables (#5862). You can now write, for example:

class Category (c :: k -> k -> *) where
type Ob c :: k -> Constraint
id :: Ob c a => c a a
(.) :: (Ob c a, Ob c b, Ob c c) => c b c -> c a b -> c a c

and the variable k, ranging over kinds, is in scope within the class declaration.

• It is now possible to derive instances of Generic1 automatically. See Section 7.22 for more information.

• There is a new FFI calling convention capi, enabled by the CApiFFI extension. For example, given the following declara-
tion:

foreign import capi "header.h f" f :: CInt -> IO CInt

GHC will generate code to call f using the C API defined in the header header.h. Thus f can be called even if it may be
defined as a CPP #define, rather than a proper function.

http://www.haskell.org/ghc/dist/current/dist/
http://hackage.haskell.org/trac/ghc/wiki/Repositories
http://hackage.haskell.org/trac/ghc/ticket/5862

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 4 / 37

• There is a new pragma CTYPE, which can be used to specify the C type that a Haskell type corresponds to, when it is used
with the capi calling convention.

• Generic default methods are now allowed for multi-parameter type classes.

• A constructor of a GADT is now considered infix (by a derived Show instance) if it is a two-argument operator with a fixity
declaration (#5712).

• There is a new extension InstanceSigs, which allows type signatures to be specified in instance declarations.

• GHC now supports numeric and string type literals (enabled by DataKinds), of kind Nat and Symbol respectively (see
Section 7.9.5).

• The type Any can now be used as an argument for foreign prim functions.

• The mdo keyword has been reintroduced. This keyword can be used to create do expressions with recursive bindings. The
behavior of the rec keyword has been changed, so that it does not perform automatic segmentation in a do expression
anymore.

• There is a new syntactic construct (enabled by the LambdaCase extension) for creating an anonymous function out of a case
expression. For example, the following expression:

\case
Nothing -> 0
Just n -> n

is equivalent to:

\x -> case x of
Nothing -> 0
Just n -> n

See Section 7.3.15 for more details.

• There is a new syntactic construct (enabled by the MultiWayIf extension) to create conditional expressions with multiple
branches. For example, you can now write:

if | x == 0 -> [...]
| x > 1 -> [...]
| x < 0 -> [...]
| otherwise -> [...]

See Section 7.3.16 for more information.

• Some limitations on the usage of unboxed tuples have been lifted. For example, when the UnboxedTuples extension is on,
an unboxed tuple can now be used as the type of a constructor, function argument, or variable:

data Foo = Foo (# Int, Int #)

f :: (# Int, Int #) -> (# Int, Int #)
f x = x

g :: (# Int, Int #) -> Int
g (# a,b #) = a

h x = let y = (# x,x #) in ...

Unboxed tuple can now also be nested:

f :: (# Int, (# Int, Int #), Bool #)

http://hackage.haskell.org/trac/ghc/ticket/5712

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 5 / 37

1.5.2.2 Compiler

• The -package flag now correctly loads only the most recent version of a package (#7030).

• In --make mode, GHC now gives an indication of why a module is being recompiled.

• There is a new flag -freg-liveness flag to control if STG liveness information is used for optimisation. The flag is
enabled by default.

• Package database flags have been renamed from -package-conf* to -package-db*.

• It is now possible to hide the global package db, and specify the order of the user and global package databases in the stack
(see Section 4.9.4).

1.5.2.3 GHCi

• Commands defined later have now precedence in the resolution of abbreviated commands (#3858).

• It is now possible to specify a custom pretty-printing function for expressions evaluated at the prompt using the -interac-
tive-print flag.

• GHCi now supports loading additional .ghci files via the -ghci-script flag (#5265).

• A new :seti command has been introduced, which sets an option that applies only at the prompt.

• Files are now reloaded after having been edited with the :edit command.

• default declarations can now be entered at the GHCi prompt.

1.5.2.4 Template Haskell

• Promoted kinds and kind polymorphism are now supported in Template Haskell.

• It is now possible to create fixity declarations in Template Haskell (#1541).

• Primitive byte-array literals can now be created with Template Haskell (#5877).

1.5.2.5 Runtime system

• The presentation of parallel GC work balance in +RTS -s is now expressed as a percentage value (with 100% being "perfect")
instead of a number from 1 to N, with N being the number of capabilities.

• The RTS now supports changing the number of capabilities at runtime with Control.Concurrent.setNumCapabil-
ities: Section 4.15.2.

• The internal timer is now based on a monotonic clock in both the threaded and non-threaded RTS, on all tier-1 platforms.

1.5.2.6 Build system

• GHC >= 7.0 is now required for bootstrapping.

• Windows 64bit is now a supported platform.

http://hackage.haskell.org/trac/ghc/ticket/7030
http://hackage.haskell.org/trac/ghc/ticket/3858
http://hackage.haskell.org/trac/ghc/ticket/5265
http://hackage.haskell.org/trac/ghc/ticket/1541
http://hackage.haskell.org/trac/ghc/ticket/5877

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 6 / 37

1.5.3 Libraries

There have been some changes that have effected multiple libraries:

• The deprecated function catch has been removed from Prelude.

The following libraries have been removed from the GHC tree:

• extensible-exceptions

• mtl

The following libraries have been added to the GHC tree:

• tranformers (version 0.3.0.0)

1.5.3.1 array

• Version number 0.4.0.1 (was 0.4.0.0)

1.5.3.2 base

• Version number 4.6.0.0 (was 4.5.1.0)

• The Text.Read module now exports functions

readEither :: Read a => String -> Either String a
readMaybe :: Read a => String -> Maybe a

• An infix alias for mappend in Data.Monoid has been introduced:

(<>) :: Monoid m => m -> m -> m

• The Bits class does not have a Num superclass anymore.

You can make code that works with both Haskell98/Haskell2010 and GHC by:

– Whenever you make a Bits instance of a type, also make Num instance, and

– Whenever you give a function, instance or class a Bits t constraint, also give it a Num t constraint.

• Applicative and Alternative instances for the ReadP and ReadPrec monads have been added.

• foldl’ and foldr’ in Data.Foldable are now methods of the Foldable class.

• The deprecated Control.OldException module has now been removed.

• Strict versions of modifyIORef and atomicModifyIORef have been added to the Data.IORef module:

modifyIORef’ :: IORef a -> (a -> a) -> IO ()
atomicModifyIORef’ :: IORef a -> (a -> (a,b)) -> IO b

Similarly, a strict version of modifySTRef has been added to Data.STRef.

• A bug in the fingerprint calculation for TypeRep (#5962) has been fixed.

• A new function lookupEnv has been added to System.Environment, which behaves like getEnv, but returns Noth-
ing when the environment variable is not defined, instead of throwing an exception.

http://hackage.haskell.org/trac/ghc/ticket/5962

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 7 / 37

• There is a new function getGCStatsEnabled in GHC.Stats, which checks whether GC stats have been enabled (for
example, via the -T RTS flag).

• QSem in Control.Concurrent is now deprecated, and will be removed in GHC 7.8. Please use an alternative, e.g. the
SafeSemaphore package, instead.

• A new function getExecutablePath has been added to System.Environment. This function returns the full path of
the current executable, as opposed to getProgName, which only returns the base name.

• The Data.HashTable module is now deprecated, and will be removed in GHC 7.8. Please use an alternative, e.g. the
hashtables package, instead.

• The Data.Ord module now exports the Down newtype, which reverses the sort order of its argument.

1.5.3.3 bin-package-db

• This is an internal package, and should not be used.

1.5.3.4 binary

• Version number 0.5.1.1 (was 0.5.1.0)

1.5.3.5 bytestring

• Version number 0.10.0.0 (was 0.9.2.1)

• A new module Data.ByteString.Lazy.Builder has been added.

The new module defines a Builder monoid, which allows to efficiently construct bytestrings by concatenation. Possible
applications include binary serialization, targets for efficient pretty-printers, etc.

1.5.3.6 Cabal

• Version number 1.16.0 (was 1.14.0)

• For details of the changes to the Cabal library, please see the Cabal changelog.

1.5.3.7 containers

• Version number 0.5.0.0 (was 0.4.2.1)

• See the announcement for details of the changes to the containers library.

1.5.3.8 deepseq

• Version number 1.3.0.1 (was 1.3.0.0)

1.5.3.9 directory

• Version number 1.2.0.0 (was 1.1.0.2)

• The dependency on the old-time package has been changed to time.

1.5.3.10 filepath

• Version number 1.3.0.1 (was 1.3.0.0)

http://www.haskell.org/pipermail/haskell-cafe/2012-May/101082.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 8 / 37

1.5.3.11 ghc-prim

• This is an internal package, and should not be used.

1.5.3.12 haskell98

• Version number 2.0.0.2 (was 2.0.0.1)

1.5.3.13 haskell2010

• Version number 1.1.1.0 (was 1.1.0.1)

1.5.3.14 hoopl

• Version number 3.9.0.0 (was 3.8.7.3)

• Compiler.Hoopl.Block now contains the Block datatype and all the operations on blocks.

• Compiler.Hoopl.Graph now has the operations on Graphs.

• Compiler.Hoopl.Util and Compiler.Hoopl.GraphUtil have been removed; their contents have been moved to
other modules.

• The Dataflow algorithms have been optimized.

• Numerous other API changes.

1.5.3.15 hpc

• Version number 0.6.0.0 (was 0.5.1.1)

• The dependency on the old-time package has been changed to time.

1.5.3.16 integer-gmp

• Version number 0.5.0.0 (was 0.4.0.0)

1.5.3.17 old-locale

• Version number 1.0.0.5 (was 1.0.0.4)

1.5.3.18 old-time

• Version number 1.1.0.1 (was 1.1.0.0)

1.5.3.19 process

• Version number 1.1.0.2 (was 1.1.0.1)

• Asynchronous exception bugs in readProcess and readProcessWithExitCode have been fixed.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 9 / 37

1.5.3.20 template-haskell

• Version number 2.8.0.0 (was 2.7.0.0)

• Promoted kinds and kind polymorphism are now supported in Template Haskell.

• Fixity declarations have been added to Template Haskell.

• The StringPrimL constructor for Lit now takes a Word8 array, instead of a String.

1.5.3.21 time

• Version number 1.4.1 (was 1.4)

1.5.3.22 unix

• Version number 2.6.0.0 (was 2.5.1.1)

• Bindings for mkdtemp and mkstemps have been added.

• New functions setEnvironment and cleanEnv have been added.

• Bindings for functions to access high resolution timestamps have been added.

1.5.3.23 Win32

• Version number 2.3.0.0 (was 2.2.2.0)

1.6 Release notes for version 7.6.2

The 7.6.2 release is a bugfix release. The changes relative to 7.6.1 are listed below.

1.6.1 GHC

• A long-standing typechecker bug which allowed unsafeCoerce to be written has been fixed.

• A bug has been fixed that caused GHC to sometimes not realise that recompilation was necessary.

• If both -H and a -M<size> flag are given, then GHC will no longer exceed the maximum heap size.

• An off-by-one error, which could cause segfaults, in the RTS flag parsing has been fixed.

• Various bugs that could cause GHC to panic when compiling certain source files have been fixed.

• Some bugs in type checking the DataKinds and PolyKinds extensions have been fixed.

• Performance of compiled programs has been improved in some cases.

• A bug in the RTS, which caused programs to keep waking up when they should be idle, has been fixed. This will particularly
help long-running often-idle programs such as xmonad.

• A bug in the RTS, which could cause programs to hang or segfault just before they terminate, has been fixed.

• It is now possible to build on Sparc/Solaris with a non-GNU linker.

• A bug which caused GHCi to fail to start on some 64bit Windows installations has been fixed. GHCi can now only use a 32bit
address space on 64bit Windows.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 10 / 37

• An interaction between Template Haskell and -fdefer-type-errors that could cause segfaults has been fixed.

• If reloading some modules fails, GHCi will now not unload modules that are unaffected by the failure.

• A bug that caused crashes when threadDelay is used with large arguments has been fixed.

• A bug which could cause segfaults when the -xc RTS flag is used has been fixed.

• A bug which caused duplicate type signatures to not be reported in some circumstance has been fixed.

• Using the -fth flag now gives a deprecated message.

• A bug that could cause spurious warnings when making rules involving primops has been fixed.

• The GHC API now consistently uses new DynFlags which are set with setSessionDynFlags.

1.6.2 Haddock

• Haddock now handles deprecation messages for re-exported entities correctly.

1.6.3 Hsc2hs

• Hsc2hs now handles absolute filenames on Windows correctly.

1.6.4 Libraries

1.6.4.1 base

• Version number 4.6.0.1 (was 4.6.0.0)

• A bug in division of 64bit values on 32bit platforms has been fixed.

• The labelThread function now handles Unicode values correctly.

• There have been some build fixes for building on NetBSD.

1.6.4.2 bytestring

• Version number 0.10.0.2 (was 0.10.0.0)

• A bug has been fixed that could cause programs using ByteStrings to give the wrong result.

1.6.4.3 directory

• Version number 1.2.0.1 (was 1.2.0.0)

1.6.4.4 unix

• Version number 2.6.0.1 (was 2.6.0.0)

• Fixed a bug which caused memory corruption when putEnv is used.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 11 / 37

Chapter 2

Using GHCi

GHCi1 is GHC’s interactive environment, in which Haskell expressions can be interactively evaluated and programs can be inter-
preted. If you’re familiar with Hugs, then you’ll be right at home with GHCi. However, GHCi also has support for interactively
loading compiled code, as well as supporting all2 the language extensions that GHC provides. . GHCi also includes an interactive
debugger (see Section 2.5).

2.1 Introduction to GHCi

Let’s start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 6.12.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Loading package ffi-1.0 ... linking ... done.
Prelude>

There may be a short pause while GHCi loads the prelude and standard libraries, after which the prompt is shown. As the banner
says, you can type :? to see the list of commands available, and a half line description of each of them. We’ll explain most of
these commands as we go along, and there is complete documentation for all the commands in Section 2.7.

Haskell expressions can be typed at the prompt:

Prelude> 1+2
3
Prelude> let x = 42 in x / 9
4.666666666666667
Prelude>

GHCi interprets the whole line as an expression to evaluate. The expression may not span several lines - as soon as you press
enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCi, since the expression can also be interpreted in the IO
monad, a let binding with no accompanying in statement can be signalled by an empty line, as in the above example.

2.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:
1The ‘i’ stands for “Interactive”
2except foreign export, at the moment

http://www.haskell.org/hugs/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 12 / 37

main = print (fac 20)

fac 0 = 1
fac n = n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current directory3 then we will need to
change to the right directory in GHCi:

Prelude> :cd dir

where dir is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCi, use the :load command:

Prelude> :load Main
Compiling Main (Main.hs, interpreted)
Ok, modules loaded: Main.

*Main>

GHCi has loaded the Mainmodule, and the prompt has changed to “*Main>” to indicate that the current context for expressions
typed at the prompt is the Main module we just loaded (we’ll explain what the * means later in Section 2.4.5). So we can now
type expressions involving the functions from Main.hs:

*Main> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “topmost” module to the :load command
(hint: :load can be abbreviated to :l). The topmost module will normally be Main, but it doesn’t have to be. GHCi will
discover which modules are required, directly or indirectly, by the topmost module, and load them all in dependency order.

2.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module M? Answer: it looks for the file M.hs, or M.lhs. This
means that for most modules, the module name must match the filename. If it doesn’t, GHCi won’t be able to find it.

There is one exception to this general rule: when you load a program with :load, or specify it when you invoke ghci, you can
give a filename rather than a module name. This filename is loaded if it exists, and it may contain any module you like. This is
particularly convenient if you have several Main modules in the same directory and you can’t call them all Main.hs.

The search path for finding source files is specified with the -i option on the GHCi command line, like so:

ghci -idir1:...:dirn

or it can be set using the :set command from within GHCi (see Section 2.8.2)4

One consequence of the way that GHCi follows dependencies to find modules to load is that every module must have a source
file. The only exception to the rule is modules that come from a package, including the Prelude and standard libraries such as
IO and Complex. If you attempt to load a module for which GHCi can’t find a source file, even if there are object and interface
files for the module, you’ll get an error message.

2.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give the :reload command. The
program will be recompiled as necessary, with GHCi doing its best to avoid actually recompiling modules if their external
dependencies haven’t changed. This is the same mechanism we use to avoid re-compiling modules in the batch compilation
setting (see Section 4.7.8).

3If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory of the shell from which it was started.
If you started GHCi from the “Start” menu in Windows, then the current directory is probably something like C:\Documents and Settings\user
name.

4Note that in GHCi, and --make mode, the -i option is used to specify the search path for source files, whereas in standard batch-compilation mode the
-i option is used to specify the search path for interface files, see Section 4.7.3.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 13 / 37

2.3 Loading compiled code

When you load a Haskell source module into GHCi, it is normally converted to byte-code and run using the interpreter. However,
interpreted code can also run alongside compiled code in GHCi; indeed, normally when GHCi starts, it loads up a compiled copy
of the base package, which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than interpreted code, but takes about 2x
longer to produce (perhaps longer if optimisation is on). So it pays to compile the parts of a program that aren’t changing very
often, and use the interpreter for the code being actively developed.

When loading up source modules with :load, GHCi normally looks for any corresponding compiled object files, and will use
one in preference to interpreting the source if possible. For example, suppose we have a 4-module program consisting of modules
A, B, C, and D. Modules B and C both import D only, and A imports both B & C:

A
/ \

B C
\ /
D

We can compile D, then load the whole program, like this:

Prelude> :! ghc -c D.hs
Prelude> :load A
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

*Main>

In the messages from the compiler, we see that there is no line for D. This is because it isn’t necessary to compile D, because the
source and everything it depends on is unchanged since the last compilation.

At any time you can use the command :show modules to get a list of the modules currently loaded into GHCi:

*Main> :show modules
D (D.hs, D.o)
C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)

*Main>

If we now modify the source of D (or pretend to: using the Unix command touch on the source file is handy for this), the
compiler will no longer be able to use the object file, because it might be out of date:

*Main> :! touch D.hs

*Main> :reload
Compiling D (D.hs, interpreted)
Ok, modules loaded: A, B, C, D.

*Main>

Note that module D was compiled, but in this instance because its source hadn’t really changed, its interface remained the same,
and the recompilation checker determined that A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*Main> :! ghc -c C.hs

*Main> :load A
Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 14 / 37

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module may only depend on other compiled
modules, and in this case C depends on D, which doesn’t have an object file, so GHCi also rejected C’s object file. Ok, so let’s
also compile D:

*Main> :! ghc -c D.hs

*Main> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by :reload, only :load:

*Main> :load A
Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D.

The automatic loading of object files can sometimes lead to confusion, because non-exported top-level definitions of a module
are only available for use in expressions at the prompt when the module is interpreted (see Section 2.4.5). For this reason, you
might sometimes want to force GHCi to load a module using the interpreter. This can be done by prefixing a * to the module
name or filename when using :load, for example

Prelude> :load *A
Compiling A (A.hs, interpreted)

*A>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module. If you have already loaded a number
of modules as object code and decide that you wanted to interpret one of them, instead of re-loading the whole set you can use
:add *M to specify that you want M to be interpreted (note that this might cause other modules to be interpreted too, because
compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the -fobject-code option (see Section 2.10).

HINT: since GHCi will only use a compiled object file if it can be sure that the compiled version is up-to-date, a good technique
when working on a large program is to occasionally run ghc --make to compile the whole project (say before you go for lunch
:-), then continue working in the interpreter. As you modify code, the changed modules will be interpreted, but the rest of the
project will remain compiled.

2.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

Prelude> reverse "hello"
"olleh"
Prelude> 5+5
10

2.4.1 I/O actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you type something of type IO a for some a, then GHCi
executes it as an IO-computation.

Prelude> "hello"
"hello"
Prelude> putStrLn "hello"
hello

Furthermore, GHCi will print the result of the I/O action if (and only if):

• The result type is an instance of Show.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 15 / 37

• The result type is not ().

For example, remembering that putStrLn :: String -> IO ():

Prelude> putStrLn "hello"
hello
Prelude> do { putStrLn "hello"; return "yes" }
hello
"yes"

2.4.2 Using do-notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you can bind values and functions to
names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax of a statement in a Haskell do expression.
However, there’s no monad overloading here: statements typed at the prompt must be in the IO monad.

Prelude> x <- return 42
Prelude> print x
42
Prelude>

The statement x <- return 42 means “execute return 42 in the IO monad, and bind the result to x”. We can then use
x in future statements, for example to print it as we did above.

If -fprint-bind-result is set then GHCi will print the result of a statement if and only if:

• The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly one variable.

• The variable’s type is not polymorphic, is not (), and is an instance of Show

.

Of course, you can also bind normal non-IO expressions using the let-statement:

Prelude> let x = 42
Prelude> x
42
Prelude>

Another important difference between the two types of binding is that the monadic bind (p <- e) is strict (it evaluates e),
whereas with the let form, the expression isn’t evaluated immediately:

Prelude> let x = error "help!"
Prelude> print x

*** Exception: help!
Prelude>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

Hint: you can also use let-statements to define functions at the prompt:

Prelude> let add a b = a + b
Prelude> add 1 2
3
Prelude>

However, this quickly gets tedious when defining functions with multiple clauses, or groups of mutually recursive functions,
because the complete definition has to be given on a single line, using explicit braces and semicolons instead of layout:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 16 / 37

Prelude> let { f op n [] = n ; f op n (h:t) = h ‘op‘ f op n t }
Prelude> f (+) 0 [1..3]
6
Prelude>

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in :{ and :} (each on a single line
of its own):

Prelude> :{
Prelude| let { g op n [] = n
Prelude| ; g op n (h:t) = h ‘op‘ g op n t
Prelude| }
Prelude| :}
Prelude> g (*) 1 [1..3]
6

Such multiline commands can be used with any GHCi command, and the lines between :{ and :} are simply merged into
a single line for interpretation. That implies that each such group must form a single valid command when merged, and that
no layout rule is used. The main purpose of multiline commands is not to replace module loading but to make definitions in
.ghci-files (see Section 2.9) more readable and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and printed by the GHCi command line
interface (for more information on exceptions, see the module Control.Exception in the libraries documentation).

Every new binding shadows any existing bindings of the same name, including entities that are in scope in the current module
context.

WARNING: temporary bindings introduced at the prompt only last until the next :load or :reload command, at which time
they will be simply lost. However, they do survive a change of context with :module: the temporary bindings just move to the
new location.

HINT: To get a list of the bindings currently in scope, use the :show bindings command:

Prelude> :show bindings
x :: Int
Prelude>

HINT: if you turn on the +t option, GHCi will show the type of each variable bound by a statement. For example:

Prelude> :set +t
Prelude> let (x:xs) = [1..]
x :: Integer
xs :: [Integer]

2.4.3 Multiline input

Apart from the :{ ... :} syntax for multi-line input mentioned above, GHCi also has a multiline mode, enabled by :s-
et +m, in which GHCi detects automatically when the current statement is unfinished and allows further lines to be added. A
multi-line input is terminated with an empty line. For example:

Prelude> :set +m
Prelude> let x = 42
Prelude|

Further bindings can be added to this let statement, so GHCi indicates that the next line continues the previous one by changing
the prompt. Note that layout is in effect, so to add more bindings to this let we have to line them up:

Prelude> :set +m
Prelude> let x = 42
Prelude| y = 3
Prelude|
Prelude>

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 17 / 37

Explicit braces and semicolons can be used instead of layout, as usual:

Prelude> do {
Prelude| putStrLn "hello"
Prelude| ;putStrLn "world"
Prelude| }
hello
world
Prelude>

Note that after the closing brace, GHCi knows that the current statement is finished, so no empty line is required.

Multiline mode is useful when entering monadic do statements:

Control.Monad.State> flip evalStateT 0 $ do
Control.Monad.State| i <- get
Control.Monad.State| lift $ do
Control.Monad.State| putStrLn "Hello World!"
Control.Monad.State| print i
Control.Monad.State|
"Hello World!"
0
Control.Monad.State>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

Prelude> do
Prelude| putStrLn "Hello, World!"
Prelude| ^C
Prelude>

2.4.4 Type, class and other declarations

[New in version 7.4.1] At the GHCi prompt you can also enter any top-level Haskell declaration, including data, type,
newtype, class, instance, deriving, and foreign declarations. For example:

Prelude> data T = A | B | C deriving (Eq, Ord, Show, Enum)
Prelude> [A ..]
[A,B,C]
Prelude> :i T
data T = A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30
instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter a declaration to fix a problem with
it or extend it. But there’s a gotcha: when a new type declaration shadows an older one, there might be other declarations that
refer to the old type. The thing to remember is that the old type still exists, and these other declarations still refer to the old type.
However, while the old and the new type have the same name, GHCi will treat them as distinct. For example:

Prelude> data T = A | B
Prelude> let f A = True; f B = False
Prelude> data T = A | B | C
Prelude> f A

<interactive>:2:3:
Couldn’t match expected type ‘main::Interactive.T’

with actual type ‘T’
In the first argument of ‘f’, namely ‘A’
In the expression: f A

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 18 / 37

In an equation for ‘it’: it = f A
Prelude>

The old, shadowed, version of T is displayed as main::Interactive.T by GHCi in an attempt to distinguish it from the
new T, which is displayed as simply T.

2.4.5 What’s really in scope at the prompt?

When you type an expression at the prompt, what identifiers and types are in scope? GHCi provides a flexible way to control
exactly how the context for an expression is constructed. Let’s start with the simple cases; when you start GHCi the prompt looks
like this:

Prelude>

Which indicates that everything from the module Prelude is currently in scope; the visible identifiers are exactly those that
would be visible in a Haskell source file with no import declarations.

If we now load a file into GHCi, the prompt will change:

Prelude> :load Main.hs
Compiling Main (Main.hs, interpreted)

*Main>

The new prompt is *Main, which indicates that we are typing expressions in the context of the top-level of the Main module.
Everything that is in scope at the top-level in the module Main we just loaded is also in scope at the prompt (probably including
Prelude, as long as Main doesn’t explicitly hide it).

The syntax *module indicates that it is the full top-level scope of module that is contributing to the scope for expressions typed
at the prompt. Without the *, just the exports of the module are visible.

We’re not limited to a single module: GHCi can combine scopes from multiple modules, in any mixture of * and non-* forms.
GHCi combines the scopes from all of these modules to form the scope that is in effect at the prompt.

NOTE: for technical reasons, GHCi can only support the *-form for modules that are interpreted. Compiled modules and package
modules can only contribute their exports to the current scope. To ensure that GHCi loads the interpreted version of a module,
add the * when loading the module, e.g. :load *M.

To add modules to the scope, use ordinary Haskell import syntax:

Prelude> import System.IO
Prelude System.IO> hPutStrLn stdout "hello\n"
hello
Prelude System.IO>

The full Haskell import syntax is supported, including hiding and as clauses. The prompt shows the modules that are currently
imported, but it omits details about hiding, as, and so on. To see the full story, use :show imports:

Prelude> import System.IO
Prelude System.IO> import Data.Map as Map
Prelude System.IO Map> :show imports
import Prelude -- implicit
import System.IO
import Data.Map as Map
Prelude System.IO Map>

Note that the Prelude import is marked as implicit. It can be overriden with an explicit Prelude import, just like in a Haskell
module.

Another way to manipulate the scope is to use the :module command, which provides a way to do two things that cannot be
done with ordinary import declarations:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 19 / 37

• :module supports the * modifier on modules, which opens the full top-level scope of a module, rather than just its exports.

• Imports can be removed from the context, using the syntax :module -M. The import syntax is cumulative (as in a Haskell
module), so this is the only way to subtract from the scope.

The full syntax of the :module command is:

:module [+|-] [*]mod1 ... [*]modn

Using the + form of the module commands adds modules to the current scope, and - removes them. Without either + or -,
the current scope is replaced by the set of modules specified. Note that if you use this form and leave out Prelude, an implicit
Prelude import will be added automatically.

After a :load command, an automatic import is added to the scope for the most recently loaded "target" module, in a *-form
if possible. For example, if you say :load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set
to *Bar if Bar is interpreted, or if Bar is compiled it will be set to Prelude Bar (GHCi automatically adds Prelude if it
isn’t present and there aren’t any *-form modules). These automatically-added imports can be seen with :show imports:

Prelude> :load hello.hs
[1 of 1] Compiling Main (hello.hs, interpreted)
Ok, modules loaded: Main.

*Main> :show imports
:module +*Main -- added automatically

*Main>

and the automatically-added import is replaced the next time you use :load, :add, or :reload. It can also be removed by
:module as with normal imports.

With multiple modules in scope, especially multiple *-form modules, it is likely that name clashes will occur. Haskell specifies
that name clashes are only reported when an ambiguous identifier is used, and GHCi behaves in the same way for expressions
typed at the prompt.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and type J<tab> then GHCi will expand
it to “Just ”.

2.4.5.1 :module and :load

It might seem that :module and :load do similar things: you can use both to bring a module into scope. However, there is a
clear difference. GHCi is concerned with two sets of modules:

• The set of modules that are currently loaded. This set is modified by :load, :add and :reload, and can be shown with
:show modules.

• The set of modules that are currently in scope at the prompt. This set is modified by import, :module, and it is also
modified automatically after :load, :add, and :reload, as described above.

You cannot add a module to the scope if it is not loaded. This is why trying to use :module to load a new module results in the
message “module M is not loaded”.

2.4.5.2 Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import qualified declaration for
every module in every package, and every module currently loaded into GHCi. This behaviour can be disabled with the flag
-fno-implicit-import-qualified.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 20 / 37

2.4.5.3 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the command-line arguments. However,
we cannot simply pass the arguments to the main function while we are testing in ghci, as the main function doesn’t take its
directly.

Instead, we can use the :main command. This runs whatever main is in scope, with any arguments being treated the same as
command-line arguments, e.g.:

Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]

We can also quote arguments which contains characters like spaces, and they are treated like Haskell strings, or we can just use
Haskell list syntax:

Prelude> :main foo "bar baz"
["foo","bar baz"]
Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run command:

Prelude> let foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> let bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo
Prelude> :main foo "bar baz"
foo
["foo","bar baz"]
Prelude> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]

2.4.6 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt, GHCi implicitly binds its value to the
variable it. For example:

Prelude> 1+2
3
Prelude> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an IO type, then it transforms it as follows:
an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or GHCi will complain:

Prelude> id

<interactive>:1:0:
No instance for (Show (a -> a))

arising from use of ‘print’ at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a ’do’ expression: print it

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 21 / 37

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type IO a for some a, then it will be bound to the result of the IO computation, which is of
type a. eg.:

Prelude> Time.getClockTime
Wed Mar 14 12:23:13 GMT 2001
Prelude> print it
Wed Mar 14 12:23:13 GMT 2001

The corresponding translation for an IO-typed e is

it <- e

Note that it is shadowed by the new value each time you evaluate a new expression, and the old value of it is lost.

2.4.7 Type defaulting in GHCi

Consider this GHCi session:

ghci> reverse []

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse []) (which is what GHCi computes
here) has type Show a => String and how that displays depends on the type a. For example:

ghci> reverse ([] :: String)
""
ghci> reverse ([] :: [Int])
[]

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s type-defaulting rules (Section 4.3.4
of the Haskell 2010 Report) as follows. The standard rules take each group of constraints (C1 a, C2 a, ..., Cn a) for
each type variable a, and defaults the type variable if

1. The type variable a appears in no other constraints

2. All the classes Ci are standard.

3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the -XExtendedDefaultRules flag is given, the following additional differences
apply:

• Rule 2 above is relaxed thus: All of the classes Ci are single-parameter type classes.

• Rule 3 above is relaxed this: At least one of the classes Ci is numeric, or is Show, Eq, or Ord.

• The unit type () is added to the start of the standard list of types which are tried when doing type defaulting.

The last point means that, for example, this program:

main :: IO ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means IO a actions default to IO (), which in turn means that ghci won’t try to print
a result when running them. This is particularly important for printf, which has an instance that returns IO a. However, it
is only able to return undefined (the reason for the instance having this type is so that printf doesn’t require extensions to the
class system), so if the type defaults to Integer then ghci gives an error when running a printf.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 22 / 37

2.4.8 Using a custom interactive printing function

[New in version 7.6.1] By default, GHCi prints the result of expressions typed at the prompt using the function System.IO.-
print. Its type signature is Show a => a -> IO (), and it works by converting the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-ascii characters.

The -interactive-print flag allows to specify any function of type C a => a -> IO (), for some constraint C, as
the function for printing evaluated expressions. The function can reside in any loaded module or any registered package.

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi with the command:

ghci -interactive-print=SpecPrinter.sprinter SpecPrinter

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!

*SpecPrinter> 42
42!

A custom pretty printing function can be used, for example, to format tree-like and nested structures in a more readable way.

The -interactive-print flag can also be used when running GHC in -e mode:

% ghc -e "[1,2,3]" -interactive-print=SpecPrinter.sprint SpecPrinter
[1,2,3]!

2.5 The GHCi Debugger

GHCi contains a simple imperative-style debugger in which you can stop a running computation in order to examine the values
of variables. The debugger is integrated into GHCi, and is turned on by default: no flags are required to enable the debugging
facilities. There is one major restriction: breakpoints and single-stepping are only available in interpreted modules; compiled
code is invisible to the debugger5.

The debugger provides the following:

• The ability to set a breakpoint on a function definition or expression in the program. When the function is called, or the
expression evaluated, GHCi suspends execution and returns to the prompt, where you can inspect the values of local variables
before continuing with the execution.

• Execution can be single-stepped: the evaluator will suspend execution approximately after every reduction, allowing local
variables to be inspected. This is equivalent to setting a breakpoint at every point in the program.

• Execution can take place in tracing mode, in which the evaluator remembers each evaluation step as it happens, but doesn’t
suspend execution until an actual breakpoint is reached. When this happens, the history of evaluation steps can be inspected.

• Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to help locate the source of an exception
in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features provide a useful second-best, which
will often be enough to establish the context of an error. For instance, it is possible to break automatically when an exception is
thrown, even if it is thrown from within compiled code (see Section 2.5.6).

5Note that packages only contain compiled code, so debugging a package requires finding its source and loading that directly.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 23 / 37

2.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

qsort [] = []
qsort (a:as) = qsort left ++ [a] ++ qsort right

where (left,right) = (filter (<=a) as, filter (>a) as)

main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

Prelude> :l qsort.hs
[1 of 1] Compiling Main (qsort.hs, interpreted)
Ok, modules loaded: Main.

*Main>

Now, let’s set a breakpoint on the right-hand-side of the second equation of qsort:

*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46

*Main>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in this case qsort.hs. Specifically,
it picks the leftmost complete subexpression on that line on which to set the breakpoint, which in this case is the expression
(qsort left ++ [a] ++ qsort right).

Now, we run the program:

*Main> main
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are currently stopped at a breakpoint, and
the location: [qsort.hs:2:15-46]. To further clarify the location, we can use the :list command:

[qsort.hs:2:15-46] *Main> :list
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list command lists the source code around the current breakpoint. If your output device supports it, then GHCi will
highlight the active subexpression in bold.

GHCi has provided bindings for the free variables6 of the expression on which the breakpoint was placed (a, left, right),
and additionally a binding for the result of the expression (_result). These variables are just like other variables that you
might define in GHCi; you can use them in expressions that you type at the prompt, you can ask for their types with :type, and
so on. There is one important difference though: these variables may only have partial types. For example, if we try to display
the value of left:

[qsort.hs:2:15-46] *Main> left

<interactive>:1:0:
Ambiguous type variable ‘a’ in the constraint:

‘Show a’ arising from a use of ‘print’ at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

6We originally provided bindings for all variables in scope, rather than just the free variables of the expression, but found that this affected performance
considerably, hence the current restriction to just the free variables.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 24 / 37

This is because qsort is a polymorphic function, and because GHCi does not carry type information at runtime, it cannot
determine the runtime types of free variables that involve type variables. Hence, when you ask to display left at the prompt,
GHCi can’t figure out which instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, :print, which can inspect the actual runtime value of a variable
and attempt to reconstruct its type. If we try it on left:

[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[qsort.hs:2:15-46] *Main> :print left
left = (_t1::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated computation (a suspension, or
thunk), and :print does not force any evaluation. The idea is that :print can be used to inspect values at a breakpoint
without any unfortunate side effects. It won’t force any evaluation, which could cause the program to give a different answer
than it would normally, and hence it won’t cause any exceptions to be raised, infinite loops, or further breakpoints to be triggered
(see Section 2.5.3). Rather than forcing thunks, :print binds each thunk to a fresh variable beginning with an underscore, in
this case _t1.

The flag -fprint-evld-with-show instructs :print to reuse available Show instances when possible. This happens
only when the contents of the variable being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use :force instead of :print. The :force
command behaves exactly like :print, except that it forces the evaluation of any thunks it encounters:

[qsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]

Now, since :force has inspected the runtime value of left, it has reconstructed its type. We can see the results of this type
reconstruction:

[qsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]
a :: Integer
left :: [Integer]
right :: [Integer]
_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been resolved. So we can ask for the value
of a, for example:

[qsort.hs:2:15-46] *Main> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than evaluating the whole expression
with :force. For example:

[qsort.hs:2:15-46] *Main> :print right
right = (_t1::[Integer])
[qsort.hs:2:15-46] *Main> seq _t1 ()
()
[qsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])

We evaluated only the _t1 thunk, revealing the head of the list, and the tail is another thunk now bound to _t2. The seq
function is a little inconvenient to use here, so you might want to use :def to make a nicer interface (left as an exercise for the
reader!).

Finally, we can continue the current execution:

[qsort.hs:2:15-46] *Main> :continue
Stopped at qsort.hs:2:15-46
_result :: [a]

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 25 / 37

a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main>

The execution continued at the point it previously stopped, and has now stopped at the breakpoint for a second time.

2.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to name a top-level function:

:break identifier

Where identifier names any top-level function in an interpreted module currently loaded into GHCi (qualified names may be
used). The breakpoint will be set on the body of the function, when it is fully applied but before any pattern matching has taken
place.

Breakpoints can also be set by line (and optionally column) number:

:break line
:break line column
:break module line
:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subexpression that begins and ends on that
line. If two complete subexpressions start at the same column, the longest one is picked. If there is no complete subexpression
on the line, then the leftmost expression starting on the line is picked, and failing that the rightmost expression that partially or
completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpression that encloses that location on
which to set the breakpoint. Note: GHC considers the TAB character to have a width of 1, wherever it occurs; in other words
it counts characters, rather than columns. This matches what some editors do, and doesn’t match others. The best advice is to
avoid tab characters in your source code altogether (see -fwarn-tabs in Section 4.8).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not considered to be breakpoint locations
(unless the variable is the right-hand-side of a function definition, lambda, or case alternative). The rule of thumb is that all
redexes are breakpoint locations, together with the bodies of functions, lambdas, case alternatives and binding statements. There
is normally no breakpoint on a let expression, but there will always be a breakpoint on its body, because we are usually interested
in inspecting the values of the variables bound by the let.

2.5.1.2 Listing and deleting breakpoints

The list of breakpoints currently enabled can be displayed using :show breaks:

*Main> :show breaks
[0] Main qsort.hs:1:11-12
[1] Main qsort.hs:2:15-46

To delete a breakpoint, use the :delete command with the number given in the output from :show breaks:

*Main> :delete 0

*Main> :show breaks
[1] Main qsort.hs:2:15-46

To delete all breakpoints at once, use :delete *.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 26 / 37

2.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a useful tool for identifying the source
of a bug. GHCi offers two variants of stepping. Use :step to enable all the breakpoints in the program, and execute until the
next breakpoint is reached. Use :steplocal to limit the set of enabled breakpoints to those in the current top level function.
Similarly, use :stepmodule to single step only on breakpoints contained in the current module. For example:

*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()

The command :step expr begins the evaluation of expr in single-stepping mode. If expr is omitted, then it single-steps
from the current breakpoint. :stepover works similarly.

The :list command is particularly useful when single-stepping, to see where you currently are:

[qsort.hs:5:7-47] *Main> :list
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:7-47] *Main>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it automatically do :list:

[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step
Stopped at qsort.hs:5:14-46
_result :: [Integer]
4
5 main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[qsort.hs:5:14-46] *Main>

2.5.3 Nested breakpoints

When GHCi is stopped at a breakpoint, and an expression entered at the prompt triggers a second breakpoint, the new breakpoint
becomes the “current” one, and the old one is saved on a stack. An arbitrary number of breakpoint contexts can be built up in
this way. For example:

[qsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]
... [qsort.hs:(1,0)-(3,55)] *Main>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with :step qsort [1,3]. This
new evaluation stopped after one step (at the definition of qsort). The prompt has changed, now prefixed with ..., to indicate
that there are saved breakpoints beyond the current one. To see the stack of contexts, use :show context:

... [qsort.hs:(1,0)-(3,55)] *Main> :show context
--> main

Stopped at qsort.hs:2:15-46
--> qsort [1,3]

Stopped at qsort.hs:(1,0)-(3,55)
... [qsort.hs:(1,0)-(3,55)] *Main>

To abandon the current evaluation, use :abandon:

... [qsort.hs:(1,0)-(3,55)] *Main> :abandon
[qsort.hs:2:15-46] *Main> :abandon

*Main>

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 27 / 37

2.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable _result to the value of the currently active expression.
The value of _result is presumably not available yet, because we stopped its evaluation, but it can be forced: if the type
is known and showable, then just entering _result at the prompt will show it. However, there’s one caveat to doing this:
evaluating _result will be likely to trigger further breakpoints, starting with the breakpoint we are currently stopped at (if we
stopped at a real breakpoint, rather than due to :step). So it will probably be necessary to issue a :continue immediately
when evaluating _result. Alternatively, you can use :force which ignores breakpoints.

2.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”. Traditional imperative debuggers
usually provide some kind of stack-tracing feature that lets you see the stack of active function calls (sometimes called the
“lexical call stack”), describing a path through the code to the current location. Unfortunately this is hard to provide in Haskell,
because execution proceeds on a demand-driven basis, rather than a depth-first basis as in strict languages. The “stack“ in GHC’s
execution engine bears little resemblance to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack
in addition to the dynamic call stack, and in fact this is exactly what our profiling system does (Chapter 5), and what some
other Haskell debuggers do. For the time being, however, GHCi doesn’t maintain a lexical call stack (there are some technical
challenges to be overcome). Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: essentially
this is like single-stepping backwards, and should in many cases provide enough information to answer the “how did I get here?”
question.

To use tracing, evaluate an expression with the :trace command. For example, if we set a breakpoint on the base case of
qsort:

*Main> :list qsort
1 qsort [] = []
2 qsort (a:as) = qsort left ++ [a] ++ qsort right
3 where (left,right) = (filter (<=a) as, filter (>a) as)
4

*Main> :b 1
Breakpoint 1 activated at qsort.hs:1:11-12

*Main>

and then run a small qsort with tracing:

*Main> :trace qsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[qsort.hs:1:11-12] *Main>

We can now inspect the history of evaluation steps:

[qsort.hs:1:11-12] *Main> :hist
-1 : qsort.hs:3:24-38
-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:3:24-38
-7 : qsort.hs:3:23-55
-8 : qsort.hs:(1,0)-(3,55)
-9 : qsort.hs:2:15-24
-10 : qsort.hs:2:15-46
-11 : qsort.hs:3:24-38
-12 : qsort.hs:3:23-55
-13 : qsort.hs:(1,0)-(3,55)
-14 : qsort.hs:2:15-24
-15 : qsort.hs:2:15-46
-16 : qsort.hs:(1,0)-(3,55)
<end of history>

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 28 / 37

To examine one of the steps in the history, use :back:

[qsort.hs:1:11-12] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main>

Note that the local variables at each step in the history have been preserved, and can be examined as usual. Also note that the
prompt has changed to indicate that we’re currently examining the first step in the history: -1. The command :forward can
be used to traverse forward in the history.

The :trace command can be used with or without an expression. When used without an expression, tracing begins from the
current breakpoint, just like :step.

The history is only available when using :trace; the reason for this is we found that logging each breakpoint in the history
cuts performance by a factor of 2 or more. GHCi remembers the last 50 steps in the history (perhaps in the future we’ll make this
configurable).

2.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come from?”. Exceptions such as
those raised by error or head [] have no context information attached to them. Finding which particular call to head in
your program resulted in the error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see Section 5.3).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and without modifying or recompiling the
source code. One way would be to set a breakpoint on the location in the source code that throws the exception, and then use
:trace and :history to establish the context. However, head is in a library and we can’t set a breakpoint on it directly.
For this reason, GHCi provides the flags -fbreak-on-exception which causes the evaluator to stop when an exception
is thrown, and -fbreak-on-error, which works similarly but stops only on uncaught exceptions. When stopping at an
exception, GHCi will act just as it does when a breakpoint is hit, with the deviation that it will not show you any source code
location. Due to this, these commands are only really useful in conjunction with :trace, in order to log the steps leading up to
the exception. For example:

*Main> :set -fbreak-on-exception

*Main> :trace qsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e
[<exception thrown>] *Main> :hist
-1 : qsort.hs:3:24-38
-2 : qsort.hs:3:23-55
-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24
-5 : qsort.hs:2:15-46
-6 : qsort.hs:(1,0)-(3,55)
<end of history>
[<exception thrown>] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main> :force as

*** Exception: Prelude.undefined
[-1: qsort.hs:3:24-38] *Main> :print as
as = ’b’ : ’c’ : (_t1::[Char])

The exception itself is bound to a new variable, _exception.

Breaking on exceptions is particularly useful for finding out what your program was doing when it was in an infinite loop. Just
hit Control-C, and examine the history to find out what was going on.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 29 / 37

2.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint and a function is in scope, the debugger
cannot show you the source code for it; however, it is possible to get some information by applying it to some arguments and
observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process by means of an example. To keep
things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*Main> :break 5
Breakpoint 0 activated at map.hs:5:15-28

*Main> map Just [1..5]
Stopped at map.hs:(4,0)-(5,12)
_result :: [b]
x :: a
f :: a -> b
xs :: [a]

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known yet, and thus it is not possible to
apply it to any arguments. Nevertheless, observe that the type of its first argument is the same as the type of x, and its result type
is shared with _result.

As we demonstrated earlier (Section 2.5.1), the debugger has some intelligence built-in to update the type of f whenever the
types of x or _result are discovered. So what we do in this scenario is force x a bit, in order to recover both its type and the
argument part of f.

*Main> seq x ()

*Main> :print x
x = 1

We can check now that as expected, the type of x has been reconstructed, and with it the type of f has been too:

*Main> :t x
x :: Integer

*Main> :t f
f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*Main> let b = f 10

*Main> :t b
b :: b

*Main> b
<interactive>:1:0:

Ambiguous type variable ‘b’ in the constraint:
‘Show b’ arising from a use of ‘print’ at <interactive>:1:0

*Main> :p b
b = (_t2::a)

*Main> seq b ()
()

*Main> :t b
b :: a

*Main> :p b
b = Just 10

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 30 / 37

*Main> :t b
b :: Maybe Integer

*Main> :t f
f :: Integer -> Maybe Integer

*Main> f 20
Just 20

*Main> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover the result type of f. But after that,
we are free to use f normally.

2.5.8 Limitations

• When stopped at a breakpoint, if you try to evaluate a variable that is already under evaluation, the second evaluation will hang.
The reason is that GHC knows the variable is under evaluation, so the new evaluation just waits for the result before continuing,
but of course this isn’t going to happen because the first evaluation is stopped at a breakpoint. Control-C can interrupt the hung
evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main), stop at a breakpoint, and ask for the
value of the CAF at the prompt again.

• Implicit parameters (see Section 7.12.3) are only available at the scope of a breakpoint if there is an explicit type signature.

2.6 Invoking GHCi

GHCi is invoked with the command ghci or ghc --interactive. One or more modules or filenames can also be specified
on the command line; this instructs GHCi to load the specified modules or filenames (and all the modules they depend on), just
as if you had said :load modules at the GHCi prompt (see Section 2.7). For example, to start GHCi and load the program
whose topmost module is in the file Main.hs, we could say:

$ ghci Main.hs

Most of the command-line options accepted by GHC (see Chapter 4) also make sense in interactive mode. The ones that don’t
make sense are mostly obvious.

2.6.1 Packages

Most packages (see Section 4.9.1) are available without needing to specify any extra flags at all: they will be automatically loaded
the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the -package flag:

$ ghci -package readline
GHCi, version 6.8.1: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude>

The following command works to load new packages into a running GHCi:

Prelude> :set -package name

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be dumped back into the Prelude.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 31 / 37

2.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -llib option. (The term library here refers to libraries
of foreign object code; for using libraries of Haskell source code, see Section 2.2.1.) For example, to load the “m” library:

$ ghci -lm

On systems with .so-style shared libraries, the actual library loaded will the liblib.so. GHCi searches the following places
for libraries, in this order:

• Paths specified using the -Lpath command-line option,

• the standard library search path for your system, which on some systems may be overridden by setting the LD_LIBRARY_P-
ATH environment variable.

On systems with .dll-style shared libraries, the actual library loaded will be lib.dll. Again, GHCi will signal an error if it
can’t find the library.

GHCi can also load plain object files (.o or .obj depending on your platform) from the command-line. Just add the name the
object file to the command line.

Ordering of -l options matters: a library should be mentioned before the libraries it depends on (see Section 4.12.6).

2.7 GHCi commands

GHCi commands all begin with ‘:’ and consist of a single command name followed by zero or more parameters. The command
name may be abbreviated, with ambiguities being resolved in favour of the more commonly used commands.

:abandon Abandons the current evaluation (only available when stopped at a breakpoint).

:add [*]module ... Add module(s) to the current target set, and perform a reload. Normally pre-compiled code for the
module will be loaded if available, or otherwise the module will be compiled to byte-code. Using the * prefix forces the
module to be loaded as byte-code.

:back Travel back one step in the history. See Section 2.5.5. See also: :trace, :history, :forward.

:break [identifier | [module] line [column]] Set a breakpoint on the specified function or line and column.
See Section 2.5.1.1.

:browse[!] [[*]module] ... Displays the identifiers exported by the module module, which must be either loaded into GHCi
or be a member of a package. If module is omitted, the most recently-loaded module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope (Section 2.4.5).

There are two variants of the browse command:

• If the * symbol is placed before the module name, then all the identifiers in scope in module (rather that just its exports)
are shown.
The *-form is only available for modules which are interpreted; for compiled modules (including modules from pack-
ages) only the non-* form of :browse is available.

• Data constructors and class methods are usually displayed in the context of their data type or class declaration. However,
if the ! symbol is appended to the command, thus :browse!, they are listed individually. The !-form also annotates
the listing with comments giving possible imports for each group of entries. Here is an example:

Prelude> :browse! Data.Maybe
-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 32 / 37

Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
-- imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of Prelude), the first group of items
from Data.Maybe are not in scope (althought they are available in fully qualified form in the GHCi session - see Sec-
tion 2.4.5), whereas the second group of items are in scope (via Prelude) and are therefore available either unqualified,
or with a Prelude. qualifier.

:cd dir Changes the current working directory to dir. A ‘~’ symbol at the beginning of dir will be replaced by the contents
of the environment variable HOME.

NOTE: changing directories causes all currently loaded modules to be unloaded. This is because the search path is usually
expressed using relative directories, and changing the search path in the middle of a session is not supported.

:cmd expr Executes expr as a computation of type IO String, and then executes the resulting string as a list of GHCi
commands. Multiple commands are separated by newlines. The :cmd command is useful with :def and :set stop.

:continue Continue the current evaluation, when stopped at a breakpoint.

:ctags [filename] :etags [filename] Generates a “tags” file for Vi-style editors (:ctags) or Emacs-style editors (:-
etags). If no filename is specified, the default tags or TAGS is used, respectively. Tags for all the functions, constructors
and types in the currently loaded modules are created. All modules must be interpreted for these commands to work.

:def[!] [name expr] :def is used to define new commands, or macros, in GHCi. The command :def name expr

defines a new GHCi command :name, implemented by the Haskell expression expr, which must have type String ->
IO String. When :name args is typed at the prompt, GHCi will run the expression (name args), take the resulting
String, and feed it back into GHCi as a new sequence of commands. Separate commands in the result must be separated
by ‘\n’.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi command which doesn’t take any
arguments or produce any results, it just outputs the current date & time:

Prelude> let date _ = Time.getClockTime >>= print >> return ""
Prelude> :def date date
Prelude> :date
Fri Mar 23 15:16:40 GMT 2001

Here’s an example of a command that takes an argument. It’s a re-implementation of :cd:

Prelude> let mycd d = Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

Prelude> :def make (_ -> return ":! ghc --make Main")

We can define a command that reads GHCi input from a file. This might be useful for creating a set of bindings that we
want to repeatedly load into the GHCi session:

Prelude> :def . readFile
Prelude> :. cmds.ghci

Notice that we named the command :., by analogy with the ‘.’ Unix shell command that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an existing command name results in
an error unless the :def! form is used, in which case the old command with that name is silently overwritten.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 33 / 37

:delete * | num ... Delete one or more breakpoints by number (use :show breaks to see the number of each
breakpoint). The * form deletes all the breakpoints.

:edit [file] Opens an editor to edit the file file, or the most recently loaded module if file is omitted. The editor to
invoke is taken from the EDITOR environment variable, or a default editor on your system if EDITOR is not set. You can
change the editor using :set editor.

:etags See :ctags.

:force identifier ... Prints the value of identifier in the same way as :print. Unlike :print, :force
evaluates each thunk that it encounters while traversing the value. This may cause exceptions or infinite loops, or further
breakpoints (which are ignored, but displayed).

:forward Move forward in the history. See Section 2.5.5. See also: :trace, :history, :back.

:help , :? Displays a list of the available commands.

: Repeat the previous command.

:history [num] Display the history of evaluation steps. With a number, displays that many steps (default: 20). For use
with :trace; see Section 2.5.5.

:info name ... Displays information about the given name(s). For example, if name is a class, then the class methods and
their types will be printed; if name is a type constructor, then its definition will be printed; if name is a function, then its
type will be printed. If name has been loaded from a source file, then GHCi will also display the location of its definition
in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid showing irrelevant information, an
instance is shown only if (a) its head mentions name, and (b) all the other things mentioned in the instance are in scope
(either qualified or otherwise) as a result of a :load or :module commands.

:kind[!] type Infers and prints the kind of type. The latter can be an arbitrary type expression, including a partial applica-
tion of a type constructor, such as Either Int. If you specify the optional "!", GHC will in addition normalise the type
by expanding out type synonyms and evaluating type-function applications, and display the normalised result.

:load [*]module ... Recursively loads the specified modules, and all the modules they depend on. Here, each module must
be a module name or filename, but may not be the name of a module in a package.

All previously loaded modules, except package modules, are forgotten. The new set of modules is known as the target set.
Note that :load can be used without any arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the module will be compiled to byte-
code. Using the * prefix forces a module to be loaded as byte-code.

After a :load command, the current context is set to:

• module, if it was loaded successfully, or

• the most recently successfully loaded module, if any other modules were loaded as a result of the current :load, or

• Prelude otherwise.

:main arg1 ... argn When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main function while we are testing
in ghci, as the main function doesn’t take its arguments directly.

Instead, we can use the :main command. This runs whatever main is in scope, with any arguments being treated the
same as command-line arguments, e.g.:

Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]

We can also quote arguments which contains characters like spaces, and they are treated like Haskell strings, or we can
just use Haskell list syntax:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 34 / 37

Prelude> :main foo "bar baz"
["foo","bar baz"]
Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run command:

Prelude> let foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> let bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo
Prelude> :main foo "bar baz"
foo
["foo","bar baz"]
Prelude> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]

:module [+|-] [*]mod1 ... [*]modn , import mod Sets or modifies the current context for statements typed at
the prompt. The form import mod is equivalent to :module +mod. See Section 2.4.5 for more details.

:print names ... Prints a value without forcing its evaluation. :print may be used on values whose types are unknown or
partially known, which might be the case for local variables with polymorphic types at a breakpoint. While inspecting the
runtime value, :print attempts to reconstruct the type of the value, and will elaborate the type in GHCi’s environment
if possible. If any unevaluated components (thunks) are encountered, then :print binds a fresh variable with a name
beginning with _t to each thunk. See Section 2.5.1 for more information. See also the :sprint command, which works
like :print but does not bind new variables.

:quit Quits GHCi. You can also quit by typing control-D at the prompt.

:reload Attempts to reload the current target set (see :load) if any of the modules in the set, or any dependent module, has
changed. Note that this may entail loading new modules, or dropping modules which are no longer indirectly required by
the target.

:run See :main.

:script [n] filename Executes the lines of a file as a series of GHCi commands. This command is compatible with
multiline statements as set by :set +m

:set [option...] Sets various options. See Section 2.8 for a list of available options and Section 4.20.10 for a list of GHCi-
specific flags. The :set command by itself shows which options are currently set. It also lists the current dynamic flag
settings, with GHCi-specific flags listed separately.

:set args arg ... Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor cmd Sets the command used by :edit to cmd.

:set prog prog Sets the string to be returned when the program calls System.getProgName.

:set prompt prompt Sets the string to be used as the prompt in GHCi. Inside prompt, the sequence %s is replaced by the
names of the modules currently in scope, and %% is replaced by %. If prompt starts with " then it is parsed as a Haskell
String; otherwise it is treated as a literal string.

:set stop [num] cmd Set a command to be executed when a breakpoint is hit, or a new item in the history is selected. The
most common use of :set stop is to display the source code at the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified breakpoint (only) is hit. This can
be quite useful: for example, :set stop 1 :continue effectively disables breakpoint 1, by running :continue
whenever it is hit (although GHCi will still emit a message to say the breakpoint was hit). What’s more, with cunning use
of :def and :cmd you can use :set stop to implement conditional breakpoints:

*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else ←↩
return \":continue\"")

*Main> :set stop 0 :cond (x < 3)

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 35 / 37

Ignoring breakpoints for a specified number of iterations is also possible using similar techniques.

:seti [option...] Like :set, but options set with :seti affect only expressions and commands typed at the prompt, and
not modules loaded with :load (in contrast, options set with :set apply everywhere). See Section 2.8.3.

Without any arguments, displays the current set of options that are applied to expressions and commands typed at the
prompt.

:show bindings Show the bindings made at the prompt and their types.

:show breaks List the active breakpoints.

:show context List the active evaluations that are stopped at breakpoints.

:show imports Show the imports that are currently in force, as created by import and :module commands.

:show modules Show the list of modules currently loaded.

:show packages Show the currently active package flags, as well as the list of packages currently loaded.

:show languages Show the currently active language flags.

:show [args|prog|prompt|editor|stop] Displays the specified setting (see :set).

:sprint Prints a value without forcing its evaluation. :sprint is similar to :print, with the difference that unevaluated
subterms are not bound to new variables, they are simply denoted by ‘_’.

:step [expr] Single-step from the last breakpoint. With an expression argument, begins evaluation of the expression with
a single-step.

:trace [expr] Evaluates the given expression (or from the last breakpoint if no expression is given), and additionally logs
the evaluation steps for later inspection using :history. See Section 2.5.5.

:type expression Infers and prints the type of expression, including explicit forall quantifiers for polymorphic types.
The monomorphism restriction is not applied to the expression during type inference.

:undef name Undefines the user-defined command name (see :def above).

:unset option... Unsets certain options. See Section 2.8 for a list of available options.

:! command... Executes the shell command command.

2.8 The :set and :seti commands

The :set command sets two types of options: GHCi options, which begin with ‘+’, and “command-line” options, which begin
with ‘-’.

NOTE: at the moment, the :set command doesn’t support any kind of quoting in its arguments: quotes will not be removed
and cannot be used to group words together. For example, :set -DFOO=’BAR BAZ’ will not do what you expect.

2.8.1 GHCi options

GHCi options may be set using :set and unset using :unset.

The available GHCi options are:

+m Enable parsing of multiline commands. A multiline command is prompted for when the current input line contains open
layout contexts (see Section 2.4.3).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 36 / 37

+r Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant Applicative Forms) in loaded
modules is retained between evaluations. Turning on +r causes all evaluation of top-level expressions to be discarded after
each evaluation (they are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts of space, or if you need repeatable
performance measurements.

+s Display some stats after evaluating each expression, including the elapsed time and number of bytes allocated. NOTE: the
allocation figure is only accurate to the size of the storage manager’s allocation area, because it is calculated at every GC.
Hence, you might see values of zero if no GC has occurred.

+t Display the type of each variable bound after a statement is entered at the prompt. If the statement is a single expression,
then the only variable binding will be for the variable ‘it’.

2.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set. For example, to turn on -fwarn-missing-signatures,
you would say:

Prelude> :set -fwarn-missing-signatures

Any GHC command-line option that is designated as dynamic (see the table in Section 4.20), may be set using :set. To unset
an option, you can set the reverse option:

Prelude> :set -fno-warn-incomplete-patterns -XNoMultiParamTypeClasses

Section 4.20 lists the reverse for each option where applicable.

Certain static options (-package, -I, -i, and -l in particular) will also work, but some may not take effect until the next
reload.

2.8.3 Setting options for interactive evaluation only

GHCi actually maintains two sets of options: one set that applies when loading modules, and another set that applies for expres-
sions and commands typed at the prompt. The :set command modifies both, but there is also a :seti command (for "set
interactive") that affects only the second set.

The two sets of options can be inspected using the :set and :seti commands respectively, with no arguments. For example,
in a clean GHCi session we might see something like this:

Prelude> :seti
base language is: Haskell2010
with the following modifiers:

-XNoDatatypeContexts
-XNondecreasingIndentation
-XExtendedDefaultRules

GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:

-fimplicit-import-qualified
warning settings:

Note that the option -XExtendedDefaultRules is on, because we apply special defaulting rules to expressions typed at the
prompt (see Section 2.4.7).

It is often useful to change the language options for expressions typed at the prompt only, without having that option apply to
loaded modules too. A good example is

:seti -XNoMonomorphismRestriction

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 37 / 37

It would be undesirable if -XNoMonomorphismRestriction were to apply to loaded modules too: that might cause a
compilation error, but more commonly it will cause extra recompilation, because GHC will think that it needs to recompile the
module because the flags have changed.

It is therefore good practice if you are setting language options in your .ghci file, to use :seti rather than :set unless you
really do want them to apply to all modules you load in GHCi.

2.9 The .ghci file

When it starts, unless the -ignore-dot-ghci flag is given, GHCi reads and executes commands from the following files, in
this order, if they exist:

1. ./.ghci

2. appdata/ghc/ghci.conf, where appdata depends on your system, but is usually something like C:/Documents
and Settings/user/Application Data

3. On Unix: $HOME/.ghc/ghci.conf

4. $HOME/.ghci

The ghci.conf file is most useful for turning on favourite options (eg. :set +s), and defining useful macros. Note: when
setting language options in this file it is usually desirable to use :seti rather than :set (see Section 2.8.3).

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-wide options so you don’t have to
type them every time you start GHCi: eg. if your project uses multi-parameter type classes, scoped type variables, and CPP, and
has source files in three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -i flag is a static one, but in fact it works to set it using :set like this. The changes won’t take
effect until the next :load, though.)

Once you have a library of GHCi macros, you may want to source them from separate files, or you may want to source your
.ghci file into your running GHCi session while debugging it

:def source readFile

With this macro defined in your .ghci file, you can use :source file to read GHCi commands from file. You can find
(and contribute!-) other suggestions for .ghci files on this Haskell wiki page: GHC/GHCi

Additionally, any files specified with -ghci-script flags will be read after the standard files, allowing the use of custom .ghci
files.

Two command-line options control whether the startup files files are read:

-ignore-dot-ghci Don’t read either ./.ghci or the other startup files when starting up.

-ghci-script Read a specific file after the usual startup files. Maybe be specified repeatedly for multiple inputs.

2.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the runtime system. GHCi can also compile
Haskell code to object code: to turn on this feature, use the -fobject-code flag either on the command line or with :set
(the option -fbyte-code restores byte-code compilation again). Compiling to object code takes longer, but typically the code
will execute 10-20 times faster than byte-code.

http://haskell.org/haskellwiki/GHC/GHCi

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 38 / 37

Compiling to object code inside GHCi is particularly useful if you are developing a compiled application, because the :reload
command typically runs much faster than restarting GHC with --make from the command-line, because all the interface files
are already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-code modules, for example. Only the
exports of an object-code module will be visible in GHCi, rather than all top-level bindings as in interpreted modules.

2.11 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations! Unfortunately not. We haven’t implemented it yet.
Please compile any offending modules by hand before loading them into GHCi.

-O doesn’t work with GHCi! For technical reasons, the bytecode compiler doesn’t interact well with one of the optimisation
passes, so we have disabled optimisation when using the interpreter. This isn’t a great loss: you’ll get a much bigger win
by compiling the bits of your code that need to go fast, rather than interpreting them with optimisation turned on.

Unboxed tuples don’t work with GHCi That’s right. You can always compile a module that uses unboxed tuples and load it
into GHCi, however. (Incidentally the previous point, namely that -O is incompatible with GHCi, is because the bytecode
compiler can’t deal with unboxed tuples).

Concurrent threads don’t carry on running when GHCi is waiting for input. This should work, as long as your GHCi was
built with the -threaded switch, which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin again until I do :load or :reload. This is the defined behaviour of ge-
tContents: it puts the stdin Handle in a state known as semi-closed, wherein any further I/O operations on it are
forbidden. Because I/O state is retained between computations, the semi-closed state persists until the next :load or
:reload command.

You can make stdin reset itself after every evaluation by giving GHCi the command :set +r. This works because
stdin is just a top-level expression that can be reverted to its unevaluated state in the same way as any other top-level
expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows. See Section 13.2.

The default buffering mode is different in GHCi to GHC. In GHC, the stdout handle is line-buffered by default. However, in
GHCi we turn off the buffering on stdout, because this is normally what you want in an interpreter: output appears as it is
generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

main = do { hSetBuffering stdout LineBuffering; ... }

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 39 / 37

Chapter 3

Using runghc

runghc allows you to run Haskell programs without first having to compile them.

3.1 Flags

The runghc commandline looks like:

runghc [runghc flags] [GHC flags] module [program args]

The runghc flags are -f /path/to/ghc, which tells runghc which GHC to use to run the program, and --help, which
prints usage information. If it is not given then runghc will search for GHC in the directories in the system search path.

runghc will try to work out where the boundaries between [runghc flags] and [GHC flags], and [program args]
and module are, but you can use a -- flag if it doesn’t get it right. For example, runghc -- -fwarn-unused-bindings
Foo means runghc won’t try to use warn-unused-bindings as the path to GHC, but instead will pass the flag to GHC. If
a GHC flag doesn’t start with a dash then you need to prefix it with --ghc-arg= or runghc will think that it is the program to
run, e.g. runghc -package-db --ghc-arg=foo.conf Main.hs.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 40 / 37

Chapter 4

Using GHC

4.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including all 400+ flags. It’s a large and
complex system, and there are lots of details, so it can be quite hard to figure out how to get started. With that in mind, this
introductory section provides a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs containing the Haskell code:

main = putStrLn "Hello, World!"

To compile the program, use GHC like this:

$ ghc hello.hs

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.hs, producing an object file hello.o
and an interface file hello.hi, and then it will link the object file to the libraries that come with GHC to produce an executable
called hello on Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If you want to see in more detail what’s
going on behind the scenes, add -v to the command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the source file containing the Main
module, and GHC will examine the import declarations to find the other modules that make up the program and find their
source files. This means that, with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module Data.Person would be in the file
Data/Person.hs on Unix/Linux/Mac, or Data\Person.hs on Windows.

4.2 Options overview

GHC’s behaviour is controlled by options, which for historical reasons are also sometimes referred to as command-line flags or
arguments. Options can be specified in three ways:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 41 / 37

4.2.1 Command-line arguments

An invocation of GHC takes the following form:

ghc [argument...]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO is different from -v -O. Options need not precede
filenames: e.g., ghc *.o -o foo. All options are processed and then applied to all files; you cannot, for example, invoke
ghc -c -O1 Foo.hs -O2 Bar.hs to apply different optimisation levels to the files Foo.hs and Bar.hs.

4.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line options it requires quite tight. For
instance, if a Haskell source file deliberately uses name shadowing, it should be compiled with the -fno-warn-name-shad-
owing option. Rather than maintaining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS_GHC pragma :

{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
module X where
...

OPTIONS_GHC is a file-header pragma (see Section 7.18).

Only dynamic flags can be used in an OPTIONS_GHC pragma (see Section 4.3).

Note that your command shell does not get to the source file options, they are just included literally in the array of command-line
arguments the compiler maintains internally, so you’ll be desperately disappointed if you try to glob etc. inside OPTIONS_GHC.

NOTE: the contents of OPTIONS_GHC are appended to the command-line options, so options given in the source file override
those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in some circumstances, the OPTION-
S_GHC pragma is the Right Thing. (If you use -keep-hc-file and have OPTION flags in your module, the OPTIONS_GHC
will get put into the generated .hc file).

4.2.3 Setting options in GHCi

Options may also be modified from within GHCi, using the :set command. See Section 2.8 for more details.

4.3 Static, Dynamic, and Mode options

Each of GHC’s command line options is classified as static, dynamic or mode:

Mode flags For example, --make or -E. There may only be a single mode flag on the command line. The available modes are
listed in Section 4.5.

Dynamic Flags Most non-mode flags fall into this category. A dynamic flag may be used on the command line, in a OPTION-
S_GHC pragma in a source file, or set using :set in GHCi.

Static Flags A few flags are "static", which means they can only be used on the command-line, and remain in force over the
entire GHC/GHCi run.

The flag reference tables (Section 4.20) lists the status of each flag.

There are a few flags that are static except that they can also be used with GHCi’s :set command; these are listed as “static/:-
set” in the table.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 42 / 37

4.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., .lhs or .o) cause the “right thing” to happen to those files.

.hs A Haskell module.

.lhs A “literate Haskell” module.

.hi A Haskell interface file, probably compiler-generated.

.hc Intermediate C file produced by the Haskell compiler.

.c A C file not produced by the Haskell compiler.

.ll An llvm-intermediate-language source file, usually produced by the compiler.

.bc An llvm-intermediate-language bitcode file, usually produced by the compiler.

.s An assembly-language source file, usually produced by the compiler.

.o An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

4.5 Modes of operation

GHC’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given, but it does not necessarily need to
be the first option on the command-line.

If no mode flag is present, then GHC will enter make mode (Section 4.5.1) if there are any Haskell source files given on the
command line, or else it will link the objects named on the command line to produce an executable.

The available mode flags are:

ghc --interactive Interactive mode, which is also available as ghci. Interactive mode is described in more detail in
Chapter 2.

ghc --make In this mode, GHC will build a multi-module Haskell program automatically, figuring out dependencies for
itself. If you have a straightforward Haskell program, this is likely to be much easier, and faster, than using make. Make
mode is described in Section 4.5.1.

This mode is the default if there are any Haskell source files mentioned on the command line, and in this case the --make
option can be omitted.

ghc -e expr Expression-evaluation mode. This is very similar to interactive mode, except that there is a single expression
to evaluate (expr) which is given on the command line. See Section 4.5.2 for more details.

ghc -E ghc -c ghc -S ghc -c This is the traditional batch-compiler mode, in which GHC can compile source files
one at a time, or link objects together into an executable. This mode also applies if there is no other mode flag specified on
the command line, in which case it means that the specified files should be compiled and then linked to form a program.
See Section 4.5.3.

ghc -M Dependency-generation mode. In this mode, GHC can be used to generate dependency information suitable for use
in a Makefile. See Section 4.7.11.

ghc --mk-dll DLL-creation mode (Windows only). See Section 13.6.1.

ghc --help ghc -? Cause GHC to spew a long usage message to standard output and then exit.

ghc --show-iface file Read the interface in file and dump it as text to stdout. For example ghc --show-if-
ace M.hi.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 43 / 37

ghc --supported-extensions ghc --supported-languages Print the supported language extensions.

ghc --info Print information about the compiler.

ghc --version ghc -V Print a one-line string including GHC’s version number.

ghc --numeric-version Print GHC’s numeric version number only.

ghc --print-libdir Print the path to GHC’s library directory. This is the top of the directory tree containing GHC’s
libraries, interfaces, and include files (usually something like /usr/local/lib/ghc-5.04 on Unix). This is the
value of $libdir in the package configuration file (see Section 4.9).

4.5.1 Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from one or more root modules
(usually just Main). For example, if your Main module is in a file called Main.hs, you could compile and link the program
like this:

ghc --make Main.hs

In fact, GHC enters make mode automatically if there are any Haskell source files on the command line and no other mode is
specified, so in this case we could just type

ghc Main.hs

Any number of source file names or module names may be specified; GHC will figure out all the modules in the program by
following the imports from these initial modules. It will then attempt to compile each module which is out of date, and finally, if
there is a Main module, the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

• GHC doesn’t have to be restarted for each compilation, which means it can cache information between compilations. Com-
piling a multi-module program with ghc --make can be up to twice as fast as running ghc individually on each source
file.

• You don’t have to write a Makefile.

• GHC re-calculates the dependencies each time it is invoked, so the dependencies never get out of sync with the source.

Any of the command-line options described in the rest of this chapter can be used with --make, but note that any options you
give on the command line will apply to all the source files compiled, so if you want any options to apply to a single source file
only, you’ll need to use an OPTIONS_GHC pragma (see Section 4.2.2).

If the program needs to be linked with additional objects (say, some auxiliary C code), then the object files can be given on the
command line and GHC will include them when linking the executable.

Note that GHC can only follow dependencies if it has the source file available, so if your program includes a module for which
there is no source file, even if you have an object and an interface file for the module, then GHC will complain. The exception to
this rule is for package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -i option can be used to add directories to the
search path (see Section 4.7.3).

4.5.2 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to evaluate which is specified on the
command line as an argument to the -e option:

ghc -e expr

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 44 / 37

Haskell source files may be named on the command line, and they will be loaded exactly as in interactive mode. The expression
is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say

ghc -e Main.main Main.hs

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

4.5.3 Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined by a flag. If no relevant flag is
present, then go all the way through to linking. This table summarises:

Phase of the compilation
system Suffix saying “start here” Flag saying “stop after” (suffix of) output file

literate pre-processor .lhs - .hs
C pre-processor (opt.) .hs (with -cpp) -E .hspp
Haskell compiler .hs -C, -S .hc, .s
C compiler (opt.) .hc or .c -S .s
assembler .s -c .o
linker other - a.out

Thus, a common invocation would be:

ghc -c Foo.hs

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator is used. See Section 4.11 for more
details.

Note: C pre-processing is optional, the -cpp flag turns it on. See Section 4.12.3 for more details.

Note: The option -E runs just the pre-processing passes of the compiler, dumping the result in a file.

4.5.3.1 Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This behaviour can be overridden using
the -x option:

-x suffix Causes all files following this option on the command line to be processed as if they had the suffix suffix. For
example, to compile a Haskell module in the file M.my-hs, use ghc -c -x hs M.my-hs.

4.6 Help and verbosity options

See also the --help, --version, --numeric-version, and --print-libdir modes in Section 4.5.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 45 / 37

-v The -v option makes GHC verbose: it reports its version number and shows (on stderr) exactly how it invokes each phase
of the compilation system. Moreover, it passes the -v flag to most phases; each reports its version number (and possibly
some other information).

Please, oh please, use the -v option when reporting bugs! Knowing that you ran the right bits in the right order is always
the first thing we want to verify.

-vn To provide more control over the compiler’s verbosity, the -v flag takes an optional numeric argument. Specifying -v on
its own is equivalent to -v3, and the other levels have the following meanings:

-v0 Disable all non-essential messages (this is the default).

-v1 Minimal verbosity: print one line per compilation (this is the default when --make or --interactive is on).

-v2 Print the name of each compilation phase as it is executed. (equivalent to -dshow-passes).

-v3 The same as -v2, except that in addition the full command line (if appropriate) for each compilation phase is also
printed.

-v4 The same as -v3 except that the intermediate program representation after each compilation phase is also printed
(excluding preprocessed and C/assembly files).

-ferror-spans Causes GHC to emit the full source span of the syntactic entity relating to an error message. Normally,
GHC emits the source location of the start of the syntactic entity only.

For example:

test.hs:3:6: parse error on input ‘where’

becomes:

test296.hs:3:6-10: parse error on input ‘where’

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for ‘a’
Bound at: test.hs:5:4

test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This choice was made to follow existing
convention (i.e. this is how Emacs does it).

-Hsize Set the minimum size of the heap to size. This option is equivalent to +RTS -Hsize, see Section 4.17.3.

-Rghc-timing Prints a one-line summary of timing statistics for the GHC run. This option is equivalent to +RTS -tstd-
err, see Section 4.17.3.

4.7 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files are stored, and what options affect
this behaviour.

Note that this section is written with hierarchical modules in mind (see Section 7.3.3); hierarchical modules are an extension to
Haskell 98 which extends the lexical syntax of module names to include a dot ‘.’. Non-hierarchical modules are thus a special
case in which none of the module names contain dots.

Pathname conventions vary from system to system. In particular, the directory separator is ‘/’ on Unix systems and ‘\’ on
Windows systems. In the sections that follow, we shall consistently use ‘/’ as the directory separator; substitute this for the
appropriate character for your system.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 46 / 37

4.7.1 Haskell source files

Each Haskell source module should be placed in a file on its own.

Usually, the file should be named after the module name, replacing dots in the module name by directory separators. For example,
on a Unix system, the module A.B.C should be placed in the file A/B/C.hs, relative to some base directory. If the module is
not going to be imported by another module (Main, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encodings are not recognised. However, invalid UTF-8 sequences
will be ignored in comments, so it is possible to use other encodings such as Latin-1, as long as the non-comment source code is
ASCII only.

4.7.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an interface file.

The object file, which normally ends in a .o suffix, contains the compiled code for the module.

The interface file, which normally ends in a .hi suffix, contains the information that GHC needs in order to compile further
modules that depend on this module. It contains things like the types of exported functions, definitions of data types, and so on.
It is stored in a binary format, so don’t try to read one; use the --show-iface option instead (see Section 4.7.7).

You should think of the object file and the interface file as a pair, since the interface file is in a sense a compiler-readable
description of the contents of the object file. If the interface file and object file get out of sync for any reason, then the compiler
may end up making assumptions about the object file that aren’t true; trouble will almost certainly follow. For this reason, we
recommend keeping object files and interface files in the same place (GHC does this by default, but it is possible to override the
defaults as we’ll explain shortly).

Every module has a module name defined in its source code (module A.B.C where ...).

The name of the object file generated by GHC is derived according to the following rules, where osuf is the object-file suffix
(this can be changed with the -osuf option).

• If there is no -odir option (the default), then the object filename is derived from the source filename (ignoring the module
name) by replacing the suffix with osuf.

• If -odir dir has been specified, then the object filename is dir/mod.osuf, where mod is the module name with dots replaced
by slashes. GHC will silently create the necessary directory structure underneath dir, if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is hisuf (.hi by default) instead of osuf,
and the relevant options are -hidir and -hisuf instead of -odir and -osuf respectively.

For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or -hidir flags, the interface
file will be put in src/A/B/C.hi and the object file in src/A/B/C.o.

For any module that is imported, GHC requires that the name of the module in the import statement exactly matches the name
of the module in the interface file (or source file) found using the strategy specified in Section 4.7.3. This means that for most
modules, the source file name should match the module name.

However, note that it is reasonable to have a module Main in a file named foo.hs, but this only works because GHC never
needs to search for the interface for module Main (because it is never imported). It is therefore possible to have several Main
modules in separate source files in the same directory, and GHC will not get confused.

In batch compilation mode, the name of the object file can also be overridden using the -o option, and the name of the interface
file can be specified directly using the -ohi option.

4.7.3 The search path

In your program, you import a module Foo by saying import Foo. In --make mode or GHCi, GHC will look for a source
file for Foo and arrange to compile it first. Without --make, GHC will look for the interface file for Foo, which should have
been created by an earlier compilation of Foo. GHC uses the same strategy in each of these cases for finding the appropriate file.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 47 / 37

This strategy is as follows: GHC keeps a list of directories called the search path. For each of these directories, it tries appending
basename.extension to the directory, and checks whether the file exists. The value of basename is the module name with
dots replaced by the directory separator (’/’ or ’\’, depending on the system), and extension is a source extension (hs, lhs) if
we are in --make mode or GHCi, or hisuf otherwise.

For example, suppose the search path contains directories d1, d2, and d3, and we are in --make mode looking for the source
file for a module A.B.C. GHC will look in d1/A/B/C.hs, d1/A/B/C.lhs, d2/A/B/C.hs, and so on.

The search path by default contains a single directory: ‘.’ (i.e. the current directory). The following options can be used to add
to or change the contents of the search path:

-idirs This flag appends a colon-separated list of dirs to the search path.

-i resets the search path back to nothing.

This isn’t the whole story: GHC also looks for modules in pre-compiled libraries, known as packages. See the section on
packages (Section 4.9) for details.

4.7.4 Redirecting the compilation output(s)

-o file GHC’s compiled output normally goes into a .hc, .o, etc., file, depending on the last-run compilation phase. The
option -o file re-directs the output of that last-run phase to file.

Note: this “feature” can be counterintuitive: ghc -C -o foo.o foo.hs will put the intermediate C code in the file foo.o,
name notwithstanding!

This option is most often used when creating an executable file, to set the filename of the executable. For example:

ghc -o prog --make Main

will compile the program starting with module Main and put the executable in the file prog.

Note: on Windows, if the result is an executable file, the extension ".exe" is added if the specified filename does not
already have an extension. Thus

ghc -o foo Main.hs

will compile and link the module Main.hs, and put the resulting executable in foo.exe (not foo).

If you use ghc --make and you don’t use the -o, the name GHC will choose for the executable will be based on the name
of the file containing the module Main. Note that with GHC the Main module doesn’t have to be put in file Main.hs.
Thus both

ghc --make Prog

and

ghc --make Prog.hs

will produce Prog (or Prog.exe if you are on Windows).

-odir dir Redirects object files to directory dir. For example:

$ ghc -c parse/Foo.hs parse/Bar.hs gurgle/Bumble.hs -odir ‘uname -m‘

The object files, Foo.o, Bar.o, and Bumble.o would be put into a subdirectory named after the architecture of the
executing machine (x86, mips, etc).

Note that the -odir option does not affect where the interface files are put; use the -hidir option for that. In the above
example, they would still be put in parse/Foo.hi, parse/Bar.hi, and gurgle/Bumble.hi.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 48 / 37

-ohi file The interface output may be directed to another file bar2/Wurble.iface with the option -ohi bar2/Wu-
rble.iface (not recommended).

WARNING: if you redirect the interface file somewhere that GHC can’t find it, then the recompilation checker may get
confused (at the least, you won’t get any recompilation avoidance). We recommend using a combination of -hidir and
-hisuf options instead, if possible.

To avoid generating an interface at all, you could use this option to redirect the interface into the bit bucket: -ohi /de-
v/null, for example.

-hidir dir Redirects all generated interface files into dir, instead of the default.

-stubdir dir Redirects all generated FFI stub files into dir. Stub files are generated when the Haskell source contains
a foreign export or foreign import "&wrapper" declaration (see Section 8.2.1). The -stubdir option
behaves in exactly the same way as -odir and -hidir with respect to hierarchical modules.

-dumpdir dir Redirects all dump files into dir. Dump files are generated when -ddump-to-file is used with other
-ddump-* flags.

-outputdir dir The -outputdir option is shorthand for the combination of -odir, -hidir, -stubdir and -du-
mpdir.

-osuf suffix , -hisuf suffix , -hcsuf suffix The -osuf suffix will change the .o file suffix for object files to
whatever you specify. We use this when compiling libraries, so that objects for the profiling versions of the libraries don’t
clobber the normal ones.

Similarly, the -hisuf suffix will change the .hi file suffix for non-system interface files (see Section 4.7.7).

Finally, the option -hcsuf suffix will change the .hc file suffix for compiler-generated intermediate C files.

The -hisuf/-osuf game is particularly useful if you want to compile a program both with and without profiling, in the
same directory. You can say:

ghc ...

to get the ordinary version, and

ghc ... -osuf prof.o -hisuf prof.hi -prof -auto-all

to get the profiled version.

4.7.5 Keeping Intermediate Files

The following options are useful for keeping certain intermediate files around, when normally GHC would throw these away
after compilation:

-keep-hc-file, -keep-hc-files Keep intermediate .hc files when doing .hs-to-.o compilations via C (NOTE:
.hc files are only generated by unregisterised compilers).

-keep-llvm-file, -keep-llvm-files Keep intermediate .ll files when doing .hs-to-.o compilations via LLVM
(NOTE: .ll files aren’t generated when using the native code generator, you may need to use -fllvm to force them to
be produced).

-keep-s-file, -keep-s-files Keep intermediate .s files.

-keep-tmp-files Instructs the GHC driver not to delete any of its temporary files, which it normally keeps in /tmp (or
possibly elsewhere; see Section 4.7.6). Running GHC with -v will show you what temporary files were generated along
the way.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 49 / 37

4.7.6 Redirecting temporary files

-tmpdir If you have trouble because of running out of space in /tmp (or wherever your installation thinks temporary files
should go), you may use the -tmpdir <dir> option to specify an alternate directory. For example, -tmpdir . says
to put temporary files in the current working directory.

Alternatively, use your TMPDIR environment variable. Set it to the name of the directory where temporary files should be
put. GCC and other programs will honour the TMPDIR variable as well.

Even better idea: Set the DEFAULT_TMPDIR make variable when building GHC, and never worry about TMPDIR again.
(see the build documentation).

4.7.7 Other options related to interface files

-ddump-hi Dumps the new interface to standard output.

-ddump-hi-diffs The compiler does not overwrite an existing .hi interface file if the new one is the same as the old one;
this is friendly to make. When an interface does change, it is often enlightening to be informed. The -ddump-hi-diffs
option will make GHC report the differences between the old and new .hi files.

-ddump-minimal-imports Dump to the file "M.imports" (where M is the module being compiled) a "minimal" set of
import declarations. You can safely replace all the import declarations in "M.hs" with those found in "M.imports". Why
would you want to do that? Because the "minimal" imports (a) import everything explicitly, by name, and (b) import
nothing that is not required. It can be quite painful to maintain this property by hand, so this flag is intended to reduce the
labour.

--show-iface file where file is the name of an interface file, dumps the contents of that interface in a human-readable
(ish) format. See Section 4.5.

4.7.8 The recompilation checker

-fforce-recomp Turn off recompilation checking (which is on by default). Recompilation checking normally stops com-
pilation early, leaving an existing .o file in place, if it can be determined that the module does not need to be recompiled.

In the olden days, GHC compared the newly-generated .hi file with the previous version; if they were identical, it left the old
one alone and didn’t change its modification date. In consequence, importers of a module with an unchanged output .hi file
were not recompiled.

This doesn’t work any more. Suppose module C imports module B, and B imports module A. So changes to module A might
require module C to be recompiled, and hence when A.hi changes we should check whether C should be recompiled. However,
the dependencies of C will only list B.hi, not A.hi, and some changes to A (changing the definition of a function that appears
in an inlining of a function exported by B, say) may conceivably not change B.hi one jot. So now. . .

GHC calculates a fingerprint (in fact an MD5 hash) of each interface file, and of each declaration within the interface file. It
also keeps in every interface file a list of the fingerprints of everything it used when it last compiled the file. If the source
file’s modification date is earlier than the .o file’s date (i.e. the source hasn’t changed since the file was last compiled), and
the recompilation checking is on, GHC will be clever. It compares the fingerprints on the things it needs this time with the
fingerprints on the things it needed last time (gleaned from the interface file of the module being compiled); if they are all the
same it stops compiling early in the process saying “Compilation IS NOT required”. What a beautiful sight!

You can read about how all this works in the GHC commentary.

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/RecompilationAvoidance

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 50 / 37

4.7.9 How to compile mutually recursive modules

GHC supports the compilation of mutually recursive modules. This section explains how.

Every cycle in the module import graph must be broken by a hs-boot file. Suppose that modules A.hs and B.hs are Haskell
source files, thus:

module A where
import B(TB(..))

newtype TA = MkTA Int

f :: TB -> TA
f (MkTB x) = MkTA x

module B where
import {-# SOURCE #-} A(TA(..))

data TB = MkTB !Int

g :: TA -> TB
g (MkTA x) = MkTB x

Here A imports B, but B imports A with a {-# SOURCE #-} pragma, which breaks the circular dependency. Every loop in
the module import graph must be broken by a {-# SOURCE #-} import; or, equivalently, the module import graph must be
acyclic if {-# SOURCE #-} imports are ignored.

For every module A.hs that is {-# SOURCE #-}-imported in this way there must exist a source file A.hs-boot. This file
contains an abbreviated version of A.hs, thus:

module A where
newtype TA = MkTA Int

To compile these three files, issue the following commands:

ghc -c A.hs-boot -- Produces A.hi-boot, A.o-boot
ghc -c B.hs -- Consumes A.hi-boot, produces B.hi, B.o
ghc -c A.hs -- Consumes B.hi, produces A.hi, A.o
ghc -o foo A.o B.o -- Linking the program

There are several points to note here:

• The file A.hs-boot is a programmer-written source file. It must live in the same directory as its parent source file A.hs.
Currently, if you use a literate source file A.lhs you must also use a literate boot file, A.lhs-boot; and vice versa.

• A hs-boot file is compiled by GHC, just like a hs file:

ghc -c A.hs-boot

When a hs-boot file A.hs-boot is compiled, it is checked for scope and type errors. When its parent module A.hs is
compiled, the two are compared, and an error is reported if the two are inconsistent.

• Just as compiling A.hs produces an interface file A.hi, and an object file A.o, so compiling A.hs-boot produces an
interface file A.hi-boot, and an pseudo-object file A.o-boot:

– The pseudo-object file A.o-boot is empty (don’t link it!), but it is very useful when using a Makefile, to record when the
A.hi-boot was last brought up to date (see Section 4.7.10).

– The hi-boot generated by compiling a hs-boot file is in the same machine-generated binary format as any other GHC-
generated interface file (e.g. B.hi). You can display its contents with ghc --show-iface. If you specify a directory for
interface files, the -ohidir flag, then that affects hi-boot files too.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 51 / 37

• If hs-boot files are considered distinct from their parent source files, and if a {-# SOURCE #-} import is considered to refer
to the hs-boot file, then the module import graph must have no cycles. The command ghc -M will report an error if a cycle is
found.

• A module M that is {-# SOURCE #-}-imported in a program will usually also be ordinarily imported elsewhere. If not, ghc
--make automatically adds M to the set of modules it tries to compile and link, to ensure that M’s implementation is included in
the final program.

A hs-boot file need only contain the bare minimum of information needed to get the bootstrapping process started. For example,
it doesn’t need to contain declarations for everything that module A exports, only the things required by the module(s) that import
A recursively.

A hs-boot file is written in a subset of Haskell:

• The module header (including the export list), and import statements, are exactly as in Haskell, and so are the scoping rules.
Hence, to mention a non-Prelude type or class, you must import it.

• There must be no value declarations, but there can be type signatures for values. For example:

double :: Int -> Int

• Fixity declarations are exactly as in Haskell.

• Type synonym declarations are exactly as in Haskell.

• A data type declaration can either be given in full, exactly as in Haskell, or it can be given abstractly, by omitting the ’=’ sign
and everything that follows. For example:

data T a b

In a source program this would declare TA to have no constructors (a GHC extension: see Section 7.4.1), but in an hi-boot file
it means "I don’t know or care what the constructors are". This is the most common form of data type declaration, because
it’s easy to get right. You can also write out the constructors but, if you do so, you must write it out precisely as in its real
definition.

If you do not write out the constructors, you may need to give a kind annotation (Section 7.12.4), to tell GHC the kind of the
type variable, if it is not "*". (In source files, this is worked out from the way the type variable is used in the constructors.) For
example:

data R (x :: * -> *) y

You cannot use deriving on a data type declaration; write an instance declaration instead.

• Class declarations is exactly as in Haskell, except that you may not put default method declarations. You can also omit all the
superclasses and class methods entirely; but you must either omit them all or put them all in.

• You can include instance declarations just as in Haskell; but omit the "where" part.

4.7.10 Using make

It is reasonably straightforward to set up a Makefile to use with GHC, assuming you name your source files the same as your
modules. Thus:

HC = ghc
HC_OPTS = -cpp $(EXTRA_HC_OPTS)

SRCS = Main.lhs Foo.lhs Bar.lhs
OBJS = Main.o Foo.o Bar.o

.SUFFIXES : .o .hs .hi .lhs .hc .s

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 52 / 37

cool_pgm : $(OBJS)
rm -f $@
$(HC) -o $@ $(HC_OPTS) $(OBJS)

Standard suffix rules
.o.hi:

@:

.lhs.o:
$(HC) -c $< $(HC_OPTS)

.hs.o:
$(HC) -c $< $(HC_OPTS)

.o-boot.hi-boot:
@:

.lhs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

.hs-boot.o-boot:
$(HC) -c $< $(HC_OPTS)

Inter-module dependencies
Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz
Main.o Main.hc Main.s : Foo.hi Baz.hi # Main imports Foo and Baz

(Sophisticated make variants may achieve some of the above more elegantly. Notably, gmake’s pattern rules let you write the
more comprehensible:

%.o : %.lhs
$(HC) -c $< $(HC_OPTS)

What we’ve shown should work with any make.)

Note the cheesy .o.hi rule: It records the dependency of the interface (.hi) file on the source. The rule says a .hi file can be
made from a .o file by doing. . . nothing. Which is true.

Note that the suffix rules are all repeated twice, once for normal Haskell source files, and once for hs-boot files (see Sec-
tion 4.7.9).

Note also the inter-module dependencies at the end of the Makefile, which take the form

Foo.o Foo.hc Foo.s : Baz.hi # Foo imports Baz

They tell make that if any of Foo.o, Foo.hc or Foo.s have an earlier modification date than Baz.hi, then the out-of-date
file must be brought up to date. To bring it up to date, make looks for a rule to do so; one of the preceding suffix rules does the
job nicely. These dependencies can be generated automatically by ghc; see Section 4.7.11

4.7.11 Dependency generation

Putting inter-dependencies of the form Foo.o : Bar.hi into your Makefile by hand is rather error-prone. Don’t worry,
GHC has support for automatically generating the required dependencies. Add the following to your Makefile:

depend :
ghc -M $(HC_OPTS) $(SRCS)

Now, before you start compiling, and any time you change the imports in your program, do make depend before you do make
cool_pgm. The command ghc -M will append the needed dependencies to your Makefile.

In general, ghc -M Foo does the following. For each module M in the set Foo plus all its imports (transitively), it adds to the
Makefile:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 53 / 37

• A line recording the dependence of the object file on the source file.

M.o : M.hs

(or M.lhs if that is the filename you used).

• For each import declaration import X in M, a line recording the dependence of M on X:

M.o : X.hi

• For each import declaration import {-# SOURCE #-} X in M, a line recording the dependence of M on X:

M.o : X.hi-boot

(See Section 4.7.9 for details of hi-boot style interface files.)

If M imports multiple modules, then there will be multiple lines with M.o as the target.

There is no need to list all of the source files as arguments to the ghc -M command; ghc traces the dependencies, just like ghc
--make (a new feature in GHC 6.4).

Note that ghc -M needs to find a source file for each module in the dependency graph, so that it can parse the import declarations
and follow dependencies. Any pre-compiled modules without source files must therefore belong to a package1.

By default, ghc -M generates all the dependencies, and then concatenates them onto the end of makefile (or Makefile
if makefile doesn’t exist) bracketed by the lines "# DO NOT DELETE: Beginning of Haskell dependencies"
and "# DO NOT DELETE: End of Haskell dependencies". If these lines already exist in the makefile, then the
old dependencies are deleted first.

Don’t forget to use the same -package options on the ghc -M command line as you would when compiling; this enables the
dependency generator to locate any imported modules that come from packages. The package modules won’t be included in the
dependencies generated, though (but see the --include-pkg-deps option below).

The dependency generation phase of GHC can take some additional options, which you may find useful. The options which
affect dependency generation are:

-ddump-mod-cycles Display a list of the cycles in the module graph. This is useful when trying to eliminate such cycles.

-v2 Print a full list of the module dependencies to stdout. (This is the standard verbosity flag, so the list will also be displayed
with -v3 and -v4; Section 4.6.)

-dep-makefile file Use file as the makefile, rather than makefile or Makefile. If file doesn’t exist, mkde-
pendHS creates it. We often use -dep-makefile .depend to put the dependencies in .depend and then include
the file .depend into Makefile.

-dep-suffix <suf> Make extra dependencies that declare that files with suffix .<suf>_<osuf> depend on interface
files with suffix .<suf>_hi, or (for {-# SOURCE #-} imports) on .hi-boot. Multiple -dep-suffix flags are
permitted. For example, -dep-suffix a -dep-suffix b will make dependencies for .hs on .hi, .a_hs on
.a_hi, and .b_hs on .b_hi. (Useful in conjunction with NoFib "ways".)

--exclude-module=<file> Regard <file> as "stable"; i.e., exclude it from having dependencies on it.

--include-pkg-deps Regard modules imported from packages as unstable, i.e., generate dependencies on any imported
package modules (including Prelude, and all other standard Haskell libraries). Dependencies are not traced recursively
into packages; dependencies are only generated for home-package modules on external-package modules directly imported
by the home package module. This option is normally only used by the various system libraries.

1This is a change in behaviour relative to 6.2 and earlier.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 54 / 37

4.7.12 Orphan modules and instance declarations

Haskell specifies that when compiling module M, any instance declaration in any module "below" M is visible. (Module A is
"below" M if A is imported directly by M, or if A is below a module that M imports directly.) In principle, GHC must therefore
read the interface files of every module below M, just in case they contain an instance declaration that matters to M. This would
be a disaster in practice, so GHC tries to be clever.

In particular, if an instance declaration is in the same module as the definition of any type or class mentioned in the head of the
instance declaration (the part after the “=>”; see Section 7.6.3.2), then GHC has to visit that interface file anyway. Example:

module A where
instance C a => D (T a) where ...
data T a = ...

The instance declaration is only relevant if the type T is in use, and if so, GHC will have visited A’s interface file to find T’s
definition.

The only problem comes when a module contains an instance declaration and GHC has no other reason for visiting the module.
Example:

module Orphan where
instance C a => D (T a) where ...
class C a where ...

Here, neither D nor T is declared in module Orphan. We call such modules “orphan modules”. GHC identifies orphan modules,
and visits the interface file of every orphan module below the module being compiled. This is usually wasted work, but there is
no avoiding it. You should therefore do your best to have as few orphan modules as possible.

Functional dependencies complicate matters. Suppose we have:

module B where
instance E T Int where ...
data T = ...

Is this an orphan module? Apparently not, because T is declared in the same module. But suppose class E had a functional
dependency:

module Lib where
class E x y | y -> x where ...

Then in some importing module M, the constraint (E a Int) should be "improved" by setting a = T, even though there is
no explicit mention of T in M. These considerations lead to the following definition of an orphan module:

• An orphan module contains at least one orphan instance or at least one orphan rule.

• An instance declaration in a module M is an orphan instance if

– The class of the instance declaration is not declared in M, and

– Either the class has no functional dependencies, and none of the type constructors in the instance head is declared in M;
or there is a functional dependency for which none of the type constructors mentioned in the non-determined part of the
instance head is defined in M.

Only the instance head counts. In the example above, it is not good enough for C’s declaration to be in module A; it must be
the declaration of D or T.

• A rewrite rule in a module M is an orphan rule if none of the variables, type constructors, or classes that are free in the left
hand side of the rule are declared in M.

If you use the flag -fwarn-orphans, GHC will warn you if you are creating an orphan module. Like any warning, you can
switch the warning off with -fno-warn-orphans, and -Werror will make the compilation fail if the warning is issued.

You can identify an orphan module by looking in its interface file, M.hi, using the --show-iface mode. If there is a [orphan
module] on the first line, GHC considers it an orphan module.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 55 / 37

4.8 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, otherwise known as warnings, can be generated
during compilation. By default, you get a standard set of warnings which are generally likely to indicate bugs in your program.
These are: -fwarn-overlapping-patterns, -fwarn-warnings-deprecations, -fwarn-deprecated-fl-
ags, -fwarn-duplicate-exports, -fwarn-missing-fields, -fwarn-missing-methods, -fwarn-lazy-
-unlifted-bindings, -fwarn-wrong-do-bind, -fwarn-unsupported-calling-conventions, and -fw-
arn-dodgy-foreign-imports. The following flags are simple ways to select standard “packages” of warnings:

-W: Provides the standard warnings plus -fwarn-incomplete-patterns, -fwarn-dodgy-exports, -fwarn-do-
dgy-imports, -fwarn-unused-matches, -fwarn-unused-imports, and -fwarn-unused-binds.

-Wall: Turns on all warning options that indicate potentially suspicious code. The warnings that are not enabled by -W-
all are -fwarn-tabs, -fwarn-incomplete-uni-patterns, -fwarn-incomplete-record-updates,
-fwarn-monomorphism-restriction, -fwarn-auto-orphans, -fwarn-implicit-prelude, -fwa-
rn-missing-local-sigs, -fwarn-missing-import-lists.

-w: Turns off all warnings, including the standard ones and those that -Wall doesn’t enable.

-Werror: Makes any warning into a fatal error. Useful so that you don’t miss warnings when doing batch compilation.

-Wwarn: Warnings are treated only as warnings, not as errors. This is the default, but can be useful to negate a -Werror flag.

The full set of warning options is described below. To turn off any warning, simply give the corresponding -fno-warn-...
option on the command line.

-fdefer-type-errors: Defer as many type errors as possible until runtime. At compile time you get a warning (instead
of an error). At runtime, if you use a value that depends on a type error, you get a runtime error; but you can run any
type-correct parts of your code just fine. See Section 7.13

-fhelpful-errors: When a name or package is not found in scope, make suggestions for the name or package you might
have meant instead.

This option is on by default.

-fwarn-unrecognised-pragmas: Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used.
As well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used by other tools, e.g. OPTIONS-
_HUGS and DERIVE.

This option is on by default.

-fwarn-warnings-deprecations: Causes a warning to be emitted when a module, function or type with a WARNING
or DEPRECATED pragma is used. See Section 7.18.4 for more details on the pragmas.

This option is on by default.

-fwarn-deprecated-flags: Causes a warning to be emitted when a deprecated commandline flag is used.

This option is on by default.

-fwarn-unsupported-calling-conventions: Causes a warning to be emitted for foreign declarations that use un-
supported calling conventions. In particular, if the stdcall calling convention is used on an architecture other than i386
then it will be treated as ccall.

-fwarn-dodgy-foreign-imports: Causes a warning to be emitted for foreign imports of the following form:

foreign import "f" f :: FunPtr t

on the grounds that it probably should be

foreign import "&f" f :: FunPtr t

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 56 / 37

The first form declares that `f` is a (pure) C function that takes no arguments and returns a pointer to a C function with type
`t`, whereas the second form declares that `f` itself is a C function with type `t`. The first declaration is usually a mistake,
and one that is hard to debug because it results in a crash, hence this warning.

-fwarn-dodgy-exports: Causes a warning to be emitted when a datatype T is exported with all constructors, i.e. T(..),
but is it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module exports nothing.

-fwarn-dodgy-imports: Causes a warning to be emitted when a datatype T is imported with all constructors, i.e. T(..),
but has been exported abstractly, i.e. T.

-fwarn-lazy-unlifted-bindings: Causes a warning to be emitted when an unlifted type is bound in a way that looks
lazy, e.g. where (I# x) = Use where !(I# x) = ... instead. This will be an error, rather than a
warning, in GHC 7.2.

-fwarn-duplicate-exports: Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition after you’ve deleted (one) mention
of it in the export list.

This option is on by default.

-fwarn-hi-shadowing: Causes the compiler to emit a warning when a module or interface file in the current directory is
shadowing one with the same module name in a library or other directory.

-fwarn-identities: Causes the compiler to emit a warning when a Prelude numeric conversion converts a type T to the
same type T; such calls are probably no-ops and can be omitted. The functions checked for are: toInteger, toRati-
onal, fromIntegral, and realToFrac.

-fwarn-implicit-prelude: Have the compiler warn if the Prelude is implicitly imported. This happens unless either the
Prelude module is explicitly imported with an import ... Prelude ... line, or this implicit import is disabled
(either by -XNoImplicitPrelude or a LANGUAGE NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if -XNoImplicitPrelude would
change whether it refers to the Prelude. For example, no warning is given when 368 means Prelude.fromInteger
(368::Prelude.Integer) (where Prelude refers to the actual Prelude module, regardless of the imports of the
module being compiled).

This warning is off by default.

-fwarn-incomplete-patterns, -fwarn-incomplete-uni-patterns: The option -fwarn-incomplete--
patterns warns about places where a pattern-match might fail at runtime. The function g below will fail when applied
to non-empty lists, so the compiler will emit a warning about this when -fwarn-incomplete-patterns is enabled.

g [] = 2

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always indicate a bug in the program.
However, it’s generally considered good practice to cover all the cases in your functions, and it is switched on by -W.

The flag -fwarn-incomplete-uni-patterns is similar, except that it applies only to lambda-expressions and
pattern bindings, constructs that only allow a single pattern:

h = \[] -> 2
Just k = f y

-fwarn-incomplete-record-updates: The function f below will fail when applied to Bar, so the compiler will emit
a warning about this when -fwarn-incomplete-record-updates is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x = 6 }

This option isn’t enabled by default because it can be very noisy, and it often doesn’t indicate a bug in the program.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 57 / 37

-fwarn-missing-fields: This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initializers for one or more fields. While not an error (the missing fields are initialised
with bottoms), it is often an indication of a programmer error.

-fwarn-missing-import-lists: This flag warns if you use an unqualified import declaration that does not explic-
itly list the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
p x = f x x

The -fwarn-import-lists flag will warn about the import of Y but not X If module Y is later changed to export (say)
f, then the reference to f in M will become ambiguous. No warning is produced for the import of Z because extending Z’s
exports would be unlikely to produce ambiguity in M.

-fwarn-missing-methods: This option is on by default, and warns you whenever an instance declaration is missing one
or more methods, and the corresponding class declaration has no default declaration for them.

The warning is suppressed if the method name begins with an underscore. Here’s an example where this is useful:

class C a where
_simpleFn :: a -> String
complexFn :: a -> a -> String
complexFn x y = ... _simpleFn ...

The idea is that: (a) users of the class will only call complexFn; never _simpleFn; and (b) instance declarations can
define either complexFn or _simpleFn.

-fwarn-missing-signatures: If you would like GHC to check that every top-level function/value has a type signature,
use the -fwarn-missing-signatures option. As part of the warning GHC also reports the inferred type. The
option is off by default.

-fwarn-missing-local-sigs: If you use the -fwarn-missing-local-sigs flag GHC will warn you about any
polymorphic local bindings. As part of the warning GHC also reports the inferred type. The option is off by default.

-fwarn-name-shadowing: This option causes a warning to be emitted whenever an inner-scope value has the same name
as an outer-scope value, i.e. the inner value shadows the outer one. This can catch typographical errors that turn into
hard-to-find bugs, e.g., in the inadvertent capture of what would be a recursive call in f = ... let f = id in
... f

The warning is suppressed for names beginning with an underscore. For example

f x = do { _ignore <- this; _ignore <- that; return (the other) }

-fwarn-orphans, -fwarn-auto-orphans: These flags cause a warning to be emitted whenever the module contains
an "orphan" instance declaration or rewrite rule. An instance declaration is an orphan if it appears in a module in which
neither the class nor the type being instanced are declared in the same module. A rule is an orphan if it is a rule for a
function declared in another module. A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all orphan modules, just in case their
instances or rules play a role, whether or not the module’s interface would otherwise be of any use. See Section 4.7.12 for
details.

The flag -fwarn-orphans warns about user-written orphan rules or instances. The flag -fwarn-auto-orphans
warns about automatically-generated orphan rules, notably as a result of specialising functions, for type classes (Speci-
alise) or argument values (SpecConstr).

-fwarn-overlapping-patterns: By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

f :: String -> Int
f [] = 0
f (_:xs) = 1
f "2" = 2

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 58 / 37

where the last pattern match in f won’t ever be reached, as the second pattern overlaps it. More often than not, redundant
patterns is a programmer mistake/error, so this option is enabled by default.

-fwarn-tabs: Have the compiler warn if there are tabs in your source file.

This warning is off by default.

-fwarn-type-defaults: Have the compiler warn/inform you where in your source the Haskell defaulting mechanism for
numeric types kicks in. This is useful information when converting code from a context that assumed one default into one
with another, e.g., the ‘default default’ for Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type
Int, whereas Haskell 98 and later defaults it to Integer. This may lead to differences in performance and behaviour,
hence the usefulness of being non-silent about this.

This warning is off by default.

-fwarn-monomorphism-restriction: Have the compiler warn/inform you where in your source the Haskell Monomor-
phism Restriction is applied. If applied silently the MR can give rise to unexpected behaviour, so it can be helpful to have
an explicit warning that it is being applied.

This warning is off by default.

-fwarn-unused-binds: Report any function definitions (and local bindings) which are unused. For top-level functions, the
warning is only given if the binding is not exported.

A definition is regarded as "used" if (a) it is exported, or (b) it is mentioned in the right hand side of another definition that
is used, or (c) the function it defines begins with an underscore. The last case provides a way to suppress unused-binding
warnings selectively.

Notice that a variable is reported as unused even if it appears in the right-hand side of another unused binding.

-fwarn-unused-imports: Report any modules that are explicitly imported but never used. However, the form import
M() is never reported as an unused import, because it is a useful idiom for importing instance declarations, which are
anonymous in Haskell.

-fwarn-unused-matches: Report all unused variables which arise from pattern matches, including patterns consisting of
a single variable. For instance f x y = [] would report x and y as unused. The warning is suppressed if the variable
name begins with an underscore, thus:

f _x = True

-fwarn-unused-do-bind: Report expressions occurring in do and mdo blocks that appear to silently throw information
away. For instance do { mapM popInt xs ; return 10 } would report the first statement in the do block as
suspicious, as it has the type StackM [Int] and not StackM (), but that [Int] value is not bound to anything. The
warning is suppressed by explicitly mentioning in the source code that your program is throwing something away:

do { _ <- mapM popInt xs ; return 10 }

Of course, in this particular situation you can do even better:

do { mapM_ popInt xs ; return 10 }

-fwarn-wrong-do-bind: Report expressions occurring in do and mdo blocks that appear to lack a binding. For instance
do { return (popInt 10) ; return 10 } would report the first statement in the do block as suspicious, as it
has the type StackM (StackM Int) (which consists of two nested applications of the same monad constructor), but
which is not then "unpacked" by binding the result. The warning is suppressed by explicitly mentioning in the source code
that your program is throwing something away:

do { _ <- return (popInt 10) ; return 10 }

For almost all sensible programs this will indicate a bug, and you probably intended to write:

do { popInt 10 ; return 10 }

If you’re feeling really paranoid, the -dcore-lint option is a good choice. It turns on heavyweight intra-pass sanity-checking
within GHC. (It checks GHC’s sanity, not yours.)

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 59 / 37

4.9 Packages

A package is a library of Haskell modules known to the compiler. GHC comes with several packages: see the accompanying
library documentation. More packages to install can be obtained from HackageDB.

Using a package couldn’t be simpler: if you’re using --make or GHCi, then most of the installed packages will be automatically
available to your program without any further options. The exceptions to this rule are covered below in Section 4.9.1.

Building your own packages is also quite straightforward: we provide the Cabal infrastructure which automates the process
of configuring, building, installing and distributing a package. All you need to do is write a simple configuration file, put a
few files in the right places, and you have a package. See the Cabal documentation for details, and also the Cabal libraries
(Distribution.Simple, for example).

4.9.1 Using Packages

GHC only knows about packages that are installed. To see which packages are installed, use the ghc-pkg list command:

$ ghc-pkg list
/usr/lib/ghc-6.12.1/package.conf.d:

Cabal-1.7.4
array-0.2.0.1
base-3.0.3.0
base-4.2.0.0
bin-package-db-0.0.0.0
binary-0.5.0.1
bytestring-0.9.1.4
containers-0.2.0.1
directory-1.0.0.2
(dph-base-0.4.0)
(dph-par-0.4.0)
(dph-prim-interface-0.4.0)
(dph-prim-par-0.4.0)
(dph-prim-seq-0.4.0)
(dph-seq-0.4.0)
extensible-exceptions-0.1.1.0
ffi-1.0
filepath-1.1.0.1
(ghc-6.12.1)
ghc-prim-0.1.0.0
haskeline-0.6.2
haskell98-1.0.1.0
hpc-0.5.0.2
integer-gmp-0.1.0.0
mtl-1.1.0.2
old-locale-1.0.0.1
old-time-1.0.0.1
pretty-1.0.1.0
process-1.0.1.1
random-1.0.0.1
rts-1.0
syb-0.1.0.0
template-haskell-2.4.0.0
terminfo-0.3.1
time-1.1.4
unix-2.3.1.0
utf8-string-0.3.4

An installed package is either exposed or hidden by default. Packages hidden by default are listed in parentheses (eg. (lang-
-1.0)), or possibly in blue if your terminal supports colour, in the output of ghc-pkg list. Command-line flags, described

file:../libraries/index.html
http://hackage.haskell.org/packages/hackage.html
http://www.haskell.org/cabal/
file:../Cabal/index.html
file:../libraries/Cabal-1.16.0/Distribution-Simple.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 60 / 37

below, allow you to expose a hidden package or hide an exposed one. Only modules from exposed packages may be imported
by your Haskell code; if you try to import a module from a hidden package, GHC will emit an error message.

Note: if you’re using Cabal, then the exposed or hidden status of a package is irrelevant: the available packages are instead
determined by the dependencies listed in your .cabal specification. The exposed/hidden status of packages is only relevant
when using ghc or ghci directly.

Similar to a package’s hidden status is a package’s trusted status. A package can be either trusted or not trusted (distrusted). By
default packages are distrusted. This property of a package only plays a role when compiling code using GHC’s Safe Haskell
feature (see Section 7.25) with the -fpackage-trust flag enabled.

To see which modules are provided by a package use the ghc-pkg command (see Section 4.9.6):

$ ghc-pkg field network exposed-modules
exposed-modules: Network.BSD,

Network.CGI,
Network.Socket,
Network.URI,
Network

The GHC command line options that control packages are:

-package P This option causes the installed package P to be exposed. The package P can be specified in full with its version
number (e.g. network-1.0) or the version number can be omitted if there is only one version of the package installed.
If there are multiple versions of P installed, then all other versions will become hidden.

The -package P option also causes package P to be linked into the resulting executable or shared object. Whether a
packages’ library is linked statically or dynamically is controlled by the flag pair -static/-dynamic.

In --make mode and --interactive mode (see Section 4.5), the compiler normally determines which packages are
required by the current Haskell modules, and links only those. In batch mode however, the dependency information isn’t
available, and explicit -package options must be given when linking. The one other time you might need to use -pac-
kage to force linking a package is when the package does not contain any Haskell modules (it might contain a C library
only, for example). In that case, GHC will never discover a dependency on it, so it has to be mentioned explicitly.

For example, to link a program consisting of objects Foo.o and Main.o, where we made use of the network package,
we need to give GHC the -package flag thus:

$ ghc -o myprog Foo.o Main.o -package network

The same flag is necessary even if we compiled the modules from source, because GHC still reckons it’s in batch mode:

$ ghc -o myprog Foo.hs Main.hs -package network

-package-id P Exposes a package like -package, but the package is named by its ID rather than by name. This is a
more robust way to name packages, and can be used to select packages that would otherwise be shadowed. Cabal passes
-package-id flags to GHC.

-hide-all-packages Ignore the exposed flag on installed packages, and hide them all by default. If you use this flag, then
any packages you require (including base) need to be explicitly exposed using -package options.

This is a good way to insulate your program from differences in the globally exposed packages, and being explicit about
package dependencies is a Good Thing. Cabal always passes the -hide-all-packages flag to GHC, for exactly this
reason.

-hide-package P This option does the opposite of -package: it causes the specified package to be hidden, which means
that none of its modules will be available for import by Haskell import directives.

Note that the package might still end up being linked into the final program, if it is a dependency (direct or indirect) of
another exposed package.

-ignore-package P Causes the compiler to behave as if package P, and any packages that depend on P, are not installed at
all.

Saying -ignore-package P is the same as giving -hide-package flags for P and all the packages that depend
on P. Sometimes we don’t know ahead of time which packages will be installed that depend on P, which is when the
-ignore-package flag can be useful.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 61 / 37

-no-auto-link-packages By default, GHC will automatically link in the haskell98 package. This flag disables that
behaviour.

-package-name foo Tells GHC the the module being compiled forms part of package foo. If this flag is omitted (a very
common case) then the default package main is assumed.

Note: the argument to -package-name should be the full package name-version for the package. For example:
-package mypkg-1.2.

-trust P This option causes the install package P to be both exposed and trusted by GHC. This command functions in the
in a very similar way to the -package command but in addition sets the selected packaged to be trusted by GHC,
regardless of the contents of the package database. (see Section 7.25).

-distrust P This option causes the install package P to be both exposed and distrusted by GHC. This command functions
in the in a very similar way to the -package command but in addition sets the selected packaged to be distrusted by
GHC, regardless of the contents of the package database. (see Section 7.25).

-distrust-all Ignore the trusted flag on installed packages, and distrust them by default. If you use this flag and Safe
Haskell then any packages you require to be trusted (including base) need to be explicitly trusted using -trust
options. This option does not change the exposed/hidden status of a package, so it isn’t equivalent to applying -dist-
rust to all packages on the system. (see Section 7.25).

4.9.2 The main package

Every complete Haskell program must define main in module Main in package main. (Omitting the -package-name flag
compiles code for package main.) Failure to do so leads to a somewhat obscure link-time error of the form:

/usr/bin/ld: Undefined symbols:
_ZCMain_main_closure

4.9.3 Consequences of packages for the Haskell language

It is possible that by using packages you might end up with a program that contains two modules with the same name: perhaps
you used a package P that has a hidden module M, and there is also a module M in your program. Or perhaps the dependencies
of packages that you used contain some overlapping modules. Perhaps the program even contains multiple versions of a certain
package, due to dependencies from other packages.

None of these scenarios gives rise to an error on its own2, but they may have some interesting consequences. For instance, if you
have a type M.T from version 1 of package P, then this is not the same as the type M.T from version 2 of package P, and GHC
will report an error if you try to use one where the other is expected.

Formally speaking, in Haskell 98, an entity (function, type or class) in a program is uniquely identified by the pair of the module
name in which it is defined and its name. In GHC, an entity is uniquely defined by a triple: package, module, and name.

4.9.4 Package Databases

A package database is where the details about installed packages are stored. It is a directory, usually called package.conf.d,
that contains a file for each package, together with a binary cache of the package data in the file package.cache. Normally
you won’t need to look at or modify the contents of a package database directly; all management of package databases can be
done through the ghc-pkg tool (see Section 4.9.6).

GHC knows about two package databases in particular:

• The global package database, which comes with your GHC installation, e.g. /usr/lib/ghc-6.12.1/package.conf-
.d.

2it used to in GHC 6.4, but not since 6.6

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 62 / 37

• A package database private to each user. On Unix systems this will be $HOME/.ghc/arch-os-version/package.c-
onf.d, and on Windows it will be something like C:\Documents And Settings\user\ghc\package.conf.d.
The ghc-pkg tool knows where this file should be located, and will create it if it doesn’t exist (see Section 4.9.6).

When GHC starts up, it reads the contents of these two package databases, and builds up a list of the packages it knows about.
You can see GHC’s package table by running GHC with the -v flag.

Package databases may overlap, and they are arranged in a stack structure. Packages closer to the top of the stack will override
(shadow) those below them. By default, the stack contains just the global and the user’s package databases, in that order.

You can control GHC’s package database stack using the following options:

-package-db file Add the package database file on top of the current stack. Packages in additional databases read this
way will override those in the initial stack and those in previously specified databases.

-no-global-package-db Remove the global package database from the package database stack.

-no-user-package-db Prevent loading of the user’s local package database in the initial stack.

-clear-package-db Reset the current package database stack. This option removes every previously specified package
database (including those read from the GHC_PACKAGE_PATH environment variable) from the package database stack.

-global-package-db Add the global package database on top of the current stack. This option can be used after -no--
global-package-db to specify the position in the stack where the global package database should be loaded.

-user-package-db Add the user’s package database on top of the current stack. This option can be used after -no-use-
r-package-db to specify the position in the stack where the user’s package database should be loaded.

4.9.4.1 The GHC_PACKAGE_PATH environment variable

The GHC_PACKAGE_PATH environment variable may be set to a :-separated (;-separated on Windows) list of files containing
package databases. This list of package databases is used by GHC and ghc-pkg, with earlier databases in the list overriding later
ones. This order was chosen to match the behaviour of the PATH environment variable; think of it as a list of package databases
that are searched left-to-right for packages.

If GHC_PACKAGE_PATH ends in a separator, then the default package database stack (i.e. the user and global package databases,
in that order) is appended. For example, to augment the usual set of packages with a database of your own, you could say (on
Unix):

$ export GHC_PACKAGE_PATH=$HOME/.my-ghc-packages.conf:

(use ; instead of : on Windows).

To check whether your GHC_PACKAGE_PATH setting is doing the right thing, ghc-pkg list will list all the databases in
use, in the reverse order they are searched.

4.9.5 Package IDs, dependencies, and broken packages

Each installed package has a unique identifier (the “installed package ID”, or just “package ID” for short) , which distinguishes
it from all other installed packages on the system. To see the package IDs associated with each installed package, use ghc-pkg
list -v:

$ ghc-pkg list -v
using cache: /usr/lib/ghc-6.12.1/package.conf.d/package.cache
/usr/lib/ghc-6.12.1/package.conf.d

Cabal-1.7.4 (Cabal-1.7.4-48f5247e06853af93593883240e11238)
array-0.2.0.1 (array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d)
base-3.0.3.0 (base-3.0.3.0-6cbb157b9ae852096266e113b8fac4a2)
base-4.2.0.0 (base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c)
...

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 63 / 37

The string in parentheses after the package name is the package ID: it normally begins with the package name and version, and
ends in a hash string derived from the compiled package. Dependencies between packages are expressed in terms of package
IDs, rather than just packages and versions. For example, take a look at the dependencies of the haskell98 package:

$ ghc-pkg field haskell98 depends
depends: array-0.2.0.1-9cbf76a576b6ee9c1f880cf171a0928d

base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c
directory-1.0.0.2-f51711bc872c35ce4a453aa19c799008
old-locale-1.0.0.1-d17c9777c8ee53a0d459734e27f2b8e9
old-time-1.0.0.1-1c0d8ea38056e5087ef1e75cb0d139d1
process-1.0.1.1-d8fc6d3baf44678a29b9d59ca0ad5780
random-1.0.0.1-423d08c90f004795fd10e60384ce6561

The purpose of the package ID is to detect problems caused by re-installing a package without also recompiling the packages
that depend on it. Recompiling dependencies is necessary, because the newly compiled package may have a different ABI
(Application Binary Interface) than the previous version, even if both packages were built from the same source code using
the same compiler. With package IDs, a recompiled package will have a different package ID from the previous version, so
packages that depended on the previous version are now orphaned - one of their dependencies is not satisfied. Packages that are
broken in this way are shown in the ghc-pkg list output either in red (if possible) or otherwise surrounded by braces. In
the following example, we have recompiled and reinstalled the filepath package, and this has caused various dependencies
including Cabal to break:

$ ghc-pkg list
WARNING: there are broken packages. Run ’ghc-pkg check’ for more details.
/usr/lib/ghc-6.12.1/package.conf.d:

{Cabal-1.7.4}
array-0.2.0.1
base-3.0.3.0
... etc ...

Additionally, ghc-pkg list reminds you that there are broken packages and suggests ghc-pkg check, which displays
more information about the nature of the failure:

$ ghc-pkg check
There are problems in package ghc-6.12.1:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn’t exist
There are problems in package haskeline-0.6.2:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn’t exist
There are problems in package Cabal-1.7.4:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn’t exist
There are problems in package process-1.0.1.1:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn’t exist
There are problems in package directory-1.0.0.2:

dependency "filepath-1.1.0.1-87511764eb0af2bce4db05e702750e63" doesn’t exist

The following packages are broken, either because they have a problem
listed above, or because they depend on a broken package.
ghc-6.12.1
haskeline-0.6.2
Cabal-1.7.4
process-1.0.1.1
directory-1.0.0.2
bin-package-db-0.0.0.0
hpc-0.5.0.2
haskell98-1.0.1.0

To fix the problem, you need to recompile the broken packages against the new dependencies. The easiest way to do this is to
use cabal-install, or download the packages from HackageDB and build and install them as normal.

Be careful not to recompile any packages that GHC itself depends on, as this may render the ghc package itself broken, and ghc
cannot be simply recompiled. The only way to recover from this would be to re-install GHC.

http://hackage.haskell.org/packages/hackage.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 64 / 37

4.9.6 Package management (the ghc-pkg command)

The ghc-pkg tool is for querying and modifying package databases. To see what package databases are in use, use ghc-p-
kg list. The stack of databases that ghc-pkg knows about can be modified using the GHC_PACKAGE_PATH environment
variable (see Section 4.9.4.1, and using --package-db options on the ghc-pkg command line.

When asked to modify a database, ghc-pkg modifies the global database by default. Specifying --user causes it to act on the
user database, or --package-db can be used to act on another database entirely. When multiple of these options are given,
the rightmost one is used as the database to act upon.

Commands that query the package database (list, latest, describe, field, dot) operate on the list of databases specified by the flags
--user, --global, and --package-db. If none of these flags are given, the default is --global --user.

If the environment variable GHC_PACKAGE_PATH is set, and its value does not end in a separator (: on Unix, ; on Windows),
then the last database is considered to be the global database, and will be modified by default by ghc-pkg. The intention here
is that GHC_PACKAGE_PATH can be used to create a virtual package environment into which Cabal packages can be installed
without setting anything other than GHC_PACKAGE_PATH.

The ghc-pkg program may be run in the ways listed below. Where a package name is required, the package can be named in
full including the version number (e.g. network-1.0), or without the version number. Naming a package without the version
number matches all versions of the package; the specified action will be applied to all the matching packages. A package specifier
that matches all version of the package can also be written pkg-*, to make it clearer that multiple packages are being matched.

ghc-pkg init path Creates a new, empty, package database at path, which must not already exist.

ghc-pkg register file Reads a package specification from file (which may be “-” to indicate standard input), and
adds it to the database of installed packages. The syntax of file is given in Section 4.9.8.

The package specification must be a package that isn’t already installed.

ghc-pkg update file The same as register, except that if a package of the same name is already installed, it is replaced
by the new one.

ghc-pkg unregister P Remove the specified package from the database.

ghc-pkg check Check consistency of dependencies in the package database, and report packages that have missing depen-
dencies.

ghc-pkg expose P Sets the exposed flag for package P to True.

ghc-pkg hide P Sets the exposed flag for package P to False.

ghc-pkg trust P Sets the trusted flag for package P to True.

ghc-pkg distrust P Sets the trusted flag for package P to False.

ghc-pkg list [P] [--simple-output] This option displays the currently installed packages, for each of the databases
known to ghc-pkg. That includes the global database, the user’s local database, and any further files specified using the
-f option on the command line.

Hidden packages (those for which the exposed flag is False) are shown in parentheses in the list of packages.

If an optional package identifier P is given, then only packages matching that identifier are shown.

If the option --simple-output is given, then the packages are listed on a single line separated by spaces, and the
database names are not included. This is intended to make it easier to parse the output of ghc-pkg list using a script.

ghc-pkg find-module M [--simple-output] This option lists registered packages exposing module M . Examples:

$ ghc-pkg find-module Var
c:/fptools/validate/ghc/driver/package.conf.inplace:

(ghc-6.9.20080428)

$ ghc-pkg find-module Data.Sequence
c:/fptools/validate/ghc/driver/package.conf.inplace:

containers-0.1

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 65 / 37

Otherwise, it behaves like ghc-pkg list, including options.

ghc-pkg latest P Prints the latest available version of package P.

ghc-pkg describe P Emit the full description of the specified package. The description is in the form of an Installe-
dPackageInfo, the same as the input file format for ghc-pkg register. See Section 4.9.8 for details.

If the pattern matches multiple packages, the description for each package is emitted, separated by the string --- on a line
by itself.

ghc-pkg field P field[,field]* Show just a single field of the installed package description for P. Multiple fields
can be selected by separating them with commas

ghc-pkg dot Generate a graph of the package dependencies in a form suitable for input for the graphviz tools. For example,
to generate a PDF of the dependency graph:

ghc-pkg dot | tred | dot -Tpdf >pkgs.pdf

ghc-pkg dump Emit the full description of every package, in the form of an InstalledPackageInfo. Multiple package
descriptions are separated by the string --- on a line by itself.

This is almost the same as ghc-pkg describe ’*’, except that ghc-pkg dump is intended for use by tools that
parse the results, so for example where ghc-pkg describe ’*’ will emit an error if it can’t find any packages that
match the pattern, ghc-pkg dump will simply emit nothing.

ghc-pkg recache Re-creates the binary cache file package.cache for the selected database. This may be necessary if
the cache has somehow become out-of-sync with the contents of the database (ghc-pkg will warn you if this might be
the case).

The other time when ghc-pkg recache is useful is for registering packages manually: it is possible to register a
package by simply putting the appropriate file in the package database directory and invoking ghc-pkg recache to
update the cache. This method of registering packages may be more convenient for automated packaging systems.

Substring matching is supported for M in find-module and for P in list, describe, and field, where a ’*’ indicates
open substring ends (prefix*, *suffix, *infix*). Examples (output omitted):

-- list all regex-related packages
ghc-pkg list ’*regex*’ --ignore-case
-- list all string-related packages
ghc-pkg list ’*string*’ --ignore-case
-- list OpenGL-related packages
ghc-pkg list ’*gl*’ --ignore-case
-- list packages exporting modules in the Data hierarchy
ghc-pkg find-module ’Data.*’
-- list packages exporting Monad modules
ghc-pkg find-module ’*Monad*’
-- list names and maintainers for all packages
ghc-pkg field ’*’ name,maintainer
-- list location of haddock htmls for all packages
ghc-pkg field ’*’ haddock-html
-- dump the whole database
ghc-pkg describe ’*’

Additionally, the following flags are accepted by ghc-pkg:

-f file , -package-db file Adds file to the stack of package databases. Additionally, file will also be the database
modified by a register, unregister, expose or hide command, unless it is overridden by a later --package-
-db, --user or --global option.

--force Causes ghc-pkg to ignore missing dependencies, directories and libraries when registering a package, and just go
ahead and add it anyway. This might be useful if your package installation system needs to add the package to GHC before
building and installing the files.

http://www.graphviz.org/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 66 / 37

--global Operate on the global package database (this is the default). This flag affects the register, update, unreg-
ister, expose, and hide commands.

--help , -? Outputs the command-line syntax.

--user Operate on the current user’s local package database. This flag affects the register, update, unregister,
expose, and hide commands.

-v[n] , --verbose[=n] Control verbosity. Verbosity levels range from 0-2, where the default is 1, and -v alone selects level
2.

-V , --version Output the ghc-pkg version number.

4.9.7 Building a package from Haskell source

We don’t recommend building packages the hard way. Instead, use the Cabal infrastructure if possible. If your package is
particularly complicated or requires a lot of configuration, then you might have to fall back to the low-level mechanisms, so a
few hints for those brave souls follow.

You need to build an "installed package info" file for passing to ghc-pkg when installing your package. The contents of this
file are described in Section 4.9.8.

The Haskell code in a package may be built into one or more archive libraries (e.g. libHSfoo.a), or a single shared object
(e.g. libHSfoo.dll/.so/.dylib). The restriction to a single shared object is because the package system is used to tell
the compiler when it should make an inter-shared-object call rather than an intra-shared-object-call call (inter-shared-object calls
require an extra indirection).

• Building a static library is done by using the ar tool, like so:

ar cqs libHSfoo-1.0.a A.o B.o C.o ...

where A.o, B.o and so on are the compiled Haskell modules, and libHSfoo.a is the library you wish to create. The syntax
may differ slightly on your system, so check the documentation if you run into difficulties.

• To load a package foo, GHCi can load its libHSfoo.a library directly, but it can also load a package in the form of a single
HSfoo.o file that has been pre-linked. Loading the .o file is slightly quicker, but at the expense of having another copy of the
compiled package. The rule of thumb is that if the modules of the package were compiled with -split-objs then building
the HSfoo.o is worthwhile because it saves time when loading the package into GHCi. Without -split-objs, there is
not much difference in load time between the .o and .a libraries, so it is better to save the disk space and only keep the .a
around. In a GHC distribution we provide .o files for most packages except the GHC package itself.

The HSfoo.o file is built by Cabal automatically; use --disable-library-for-ghci to disable it. To build one
manually, the following GNU ld command can be used:

ld -r --whole-archive -o HSfoo.o libHSfoo.a

(replace --whole-archive with -all_load on MacOS X)

• When building the package as shared library, GHC can be used to perform the link step. This hides some of the details out the
underlying linker and provides a common interface to all shared object variants that are supported by GHC (DLLs, ELF DSOs,
and Mac OS dylibs). The shared object must be named in specific way for two reasons: (1) the name must contain the GHC
compiler version, so that two library variants don’t collide that are compiled by different versions of GHC and that therefore are
most likely incompatible with respect to calling conventions, (2) it must be different from the static name otherwise we would
not be able to control the linker as precisely as necessary to make the -static/-dynamic flags work, see Section 4.12.6.

ghc -shared libHSfoo-1.0-ghcGHCVersion.so A.o B.o C.o

Using GHC’s version number in the shared object name allows different library versions compiled by different GHC versions
to be installed in standard system locations, e.g. under *nix /usr/lib. To obtain the version number of GHC invoke ghc --n-
umeric-version and use its output in place of GHCVersion. See also Section 4.12.5 on how object files must be prepared
for shared object linking.

file:../Cabal/index.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 67 / 37

To compile a module which is to be part of a new package, use the -package-name option (Section 4.9.1). Failure to use
the -package-name option when compiling a package will probably result in disaster, but you will only discover later when
you attempt to import modules from the package. At this point GHC will complain that the package name it was expecting the
module to come from is not the same as the package name stored in the .hi file.

It is worth noting with shared objects, when each package is built as a single shared object file, since a reference to a shared
object costs an extra indirection, intra-package references are cheaper than inter-package references. Of course, this applies to
the main package as well.

4.9.8 InstalledPackageInfo: a package specification

A package specification is a Haskell record; in particular, it is the record InstalledPackageInfo in the module Distribution.InstalledPackageInfo,
which is part of the Cabal package distributed with GHC.

An InstalledPackageInfo has a human readable/writable syntax. The functions parseInstalledPackageInfo
and showInstalledPackageInfo read and write this syntax respectively. Here’s an example of the InstalledPacka-
geInfo for the unix package:

$ ghc-pkg describe unix
name: unix
version: 2.3.1.0
id: unix-2.3.1.0-de7803f1a8cd88d2161b29b083c94240
license: BSD3
copyright:
maintainer: libraries@haskell.org
stability:
homepage:
package-url:
description: This package gives you access to the set of operating system

services standardised by POSIX 1003.1b (or the IEEE Portable
Operating System Interface for Computing Environments -
IEEE Std. 1003.1).
.
The package is not supported under Windows (except under Cygwin).

category: System
author:
exposed: True
exposed-modules: System.Posix System.Posix.DynamicLinker.Module

System.Posix.DynamicLinker.Prim System.Posix.Directory
System.Posix.DynamicLinker System.Posix.Env System.Posix.Error
System.Posix.Files System.Posix.IO System.Posix.Process
System.Posix.Process.Internals System.Posix.Resource
System.Posix.Temp System.Posix.Terminal System.Posix.Time
System.Posix.Unistd System.Posix.User System.Posix.Signals
System.Posix.Signals.Exts System.Posix.Semaphore
System.Posix.SharedMem

hidden-modules:
trusted: False
import-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
library-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0
hs-libraries: HSunix-2.3.1.0
extra-libraries: rt util dl
extra-ghci-libraries:
include-dirs: /usr/lib/ghc-6.12.1/unix-2.3.1.0/include
includes: HsUnix.h execvpe.h
depends: base-4.2.0.0-247bb20cde37c3ef4093ee124e04bc1c
hugs-options:
cc-options:
ld-options:
framework-dirs:
frameworks:

file:../libraries/Cabal-1.16.0/Distribution-InstalledPackageInfo.html#%tInstalledPackageInfo

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 68 / 37

haddock-interfaces: /usr/share/doc/ghc/html/libraries/unix/unix.haddock
haddock-html: /usr/share/doc/ghc/html/libraries/unix

Here is a brief description of the syntax of this file:

A package description consists of a number of field/value pairs. A field starts with the field name in the left-hand column followed
by a “:”, and the value continues until the next line that begins in the left-hand column, or the end of file.

The syntax of the value depends on the field. The various field types are:

freeform Any arbitrary string, no interpretation or parsing is done.

string A sequence of non-space characters, or a sequence of arbitrary characters surrounded by quotes "....".

string list A sequence of strings, separated by commas. The sequence may be empty.

In addition, there are some fields with special syntax (e.g. package names, version, dependencies).

The allowed fields, with their types, are:

name The package’s name (without the version).

id The package ID. It is up to you to choose a suitable one.

version The package’s version, usually in the form A.B (any number of components are allowed).

license (string) The type of license under which this package is distributed. This field is a value of the License type.

license-file (optional string) The name of a file giving detailed license information for this package.

copyright (optional freeform) The copyright string.

maintainer (optional freeform) The email address of the package’s maintainer.

stability (optional freeform) A string describing the stability of the package (eg. stable, provisional or experimental).

homepage (optional freeform) URL of the package’s home page.

package-url (optional freeform) URL of a downloadable distribution for this package. The distribution should be a Cabal
package.

description (optional freeform) Description of the package.

category (optional freeform) Which category the package belongs to. This field is for use in conjunction with a future
centralised package distribution framework, tentatively titled Hackage.

author (optional freeform) Author of the package.

exposed (bool) Whether the package is exposed or not.

exposed-modules (string list) modules exposed by this package.

hidden-modules (string list) modules provided by this package, but not exposed to the programmer. These modules cannot
be imported, but they are still subject to the overlapping constraint: no other package in the same program may provide a
module of the same name.

trusted (bool) Whether the package is trusted or not.

import-dirs (string list) A list of directories containing interface files (.hi files) for this package.

If the package contains profiling libraries, then the interface files for those library modules should have the suffix .p_hi.
So the package can contain both normal and profiling versions of the same library without conflict (see also library_-
dirs below).

library-dirs (string list) A list of directories containing libraries for this package.

file:../libraries/Cabal-1.16.0/Distribution-License.html#t:License

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 69 / 37

hs-libraries (string list) A list of libraries containing Haskell code for this package, with the .a or .dll suffix omitted.
When packages are built as libraries, the lib prefix is also omitted.

For use with GHCi, each library should have an object file too. The name of the object file does not have a lib prefix, and
has the normal object suffix for your platform.

For example, if we specify a Haskell library as HSfoo in the package spec, then the various flavours of library that GHC
actually uses will be called:

libHSfoo.a The name of the library on Unix and Windows (mingw) systems. Note that we don’t support building
dynamic libraries of Haskell code on Unix systems.

HSfoo.dll The name of the dynamic library on Windows systems (optional).

HSfoo.o, HSfoo.obj The object version of the library used by GHCi.

extra-libraries (string list) A list of extra libraries for this package. The difference between hs-libraries and
extra-libraries is that hs-libraries normally have several versions, to support profiling, parallel and other
build options. The various versions are given different suffixes to distinguish them, for example the profiling version of the
standard prelude library is named libHSbase_p.a, with the _p indicating that this is a profiling version. The suffix is
added automatically by GHC for hs-libraries only, no suffix is added for libraries in extra-libraries.

The libraries listed in extra-libraries may be any libraries supported by your system’s linker, including dynamic
libraries (.so on Unix, .DLL on Windows).

Also, extra-libraries are placed on the linker command line after the hs-libraries for the same package. If
your package has dependencies in the other direction (i.e. extra-libraries depends on hs-libraries), and the
libraries are static, you might need to make two separate packages.

include-dirs (string list) A list of directories containing C includes for this package.

includes (string list) A list of files to include for via-C compilations using this package. Typically the include file(s) will
contain function prototypes for any C functions used in the package, in case they end up being called as a result of Haskell
functions from the package being inlined.

depends (package id list) Packages on which this package depends.

hugs-options (string list) Options to pass to Hugs for this package.

cc-options (string list) Extra arguments to be added to the gcc command line when this package is being used (only for
via-C compilations).

ld-options (string list) Extra arguments to be added to the gcc command line (for linking) when this package is being used.

framework-dirs (string list) On Darwin/MacOS X, a list of directories containing frameworks for this package. This
corresponds to the -framework-path option. It is ignored on all other platforms.

frameworks (string list) On Darwin/MacOS X, a list of frameworks to link to. This corresponds to the -framework
option. Take a look at Apple’s developer documentation to find out what frameworks actually are. This entry is ignored on
all other platforms.

haddock-interfaces (string list) A list of filenames containing Haddock interface files (.haddock files) for this pack-
age.

haddock-html (optional string) The directory containing the Haddock-generated HTML for this package.

4.10 Optimisation (code improvement)

The -O* options specify convenient “packages” of optimisation flags; the -f* options described later on specify individual
optimisations to be turned on/off; the -m* options specify machine-specific optimisations to be turned on/off.

http://www.haskell.org/haddock/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 70 / 37

4.10.1 -O*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only have a general goal, something
like “Compile quickly” or “Make my program run like greased lightning.” The following “packages” of optimisations (or lack
thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed, which can have an impact on how
much of your program needs to be recompiled when you change something. This is one reason to stick to no-optimisation when
developing code.

No -O*-type option specified: This is taken to mean: “Please compile quickly; I’m not over-bothered about compiled-code
quality.” So, for example: ghc -c Foo.hs

-O0: Means “turn off all optimisation”, reverting to the same settings as if no -O options had been specified. Saying -O0 can
be useful if eg. make has inserted a -O on the command line already.

-O or -O1: Means: “Generate good-quality code without taking too long about it.” Thus, for example: ghc -c -O Main.lhs

-O2: Means: “Apply every non-dangerous optimisation, even if it means significantly longer compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse if you’re unlucky. They are
normally turned on or off individually.

At the moment, -O2 is unlikely to produce better code than -O.

We don’t use a -O* flag for day-to-day work. We use -O to get respectable speed; e.g., when we want to measure something.
When we want to go for broke, we tend to use -O2 (and we go for lots of coffee breaks).

The easiest way to see what -O (etc.) “really mean” is to run with -v, then stand back in amazement.

4.10.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. They are normally set via the -O options described above, and as such,
you shouldn’t need to set any of them explicitly (indeed, doing so could lead to unexpected results). A flag -fwombat can be
negated by saying -fno-wombat. The flags below are off by default, except where noted below.

-fcse On by default.. Enables the common-sub-expression elimination optimisation. Switching this off can be useful if you
have some unsafePerformIO expressions that you don’t want commoned-up.

-fstrictness On by default.. Switch on the strictness analyser. There is a very old paper about GHC’s strictness analyser,
Measuring the effectiveness of a simple strictness analyser, but the current one is quite a bit different.

The strictness analyser figures out when arguments and variables in a function can be treated ’strictly’ (that is they are
always evaluated in the function at some point). This allow GHC to apply certain optimisations such as unboxing that
otherwise don’t apply as they change the semantics of the program when applied to lazy arguments.

-funbox-strict-fields: This option causes all constructor fields which are marked strict (i.e. “!”) to be unpacked if
possible. It is equivalent to adding an UNPACK pragma to every strict constructor field (see Section 7.18.10).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selectively unboxing fields by using
UNPACK pragmas might be better. An alternative is to use -funbox-strict-fields to turn on unboxing by default
but disable it for certain constructor fields using the NOUNPACK pragma (see Section 7.18.11).

-fspec-constr Off by default, but enabled by -O2. Turn on call-pattern specialisation; see Call-pattern specialisation for
Haskell programs.

This optimisation specializes recursive functions according to their argument "shapes". This is best explained by example
so consider:

last :: [a] -> a
last [] = error "last"
last (x : []) = x
last (x : xs) = last xs

http://research.microsoft.com/en-us/um/people/simonpj/papers/simple-strictnes-analyser.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/spec-constr/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/spec-constr/index.htm

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 71 / 37

In this code, once we pass the initial check for an empty list we know that in the recursive case this pattern match is
redundant. As such -fspec-constr will transform the above code to:

last :: [a] -> a
last [] = error "last"
last (x : xs) = last’ x xs

where
last’ x [] = x
last’ x (y : ys) = last’ y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation. This applies when a argument is
strict in the recursive call to itself but not on the initial entry. As strict recursive branch of the function is created similar to
the above example.

-fspecialise On by default. Specialise each type-class-overloaded function defined in this module for the types at which
it is called in this module. Also specialise imported functions that have an INLINABLE pragma (Section 7.18.5.2) for the
types at which they are called in this module.

-fstatic-argument-transformation Turn on the static argument transformation, which turns a recursive function
into a non-recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis

-ffloat-in On by default. Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings to give
faster programs (ICFP’96).

This optimisation moves let bindings closer to their use site. The benefit here is that this may avoid unnecessary allocation
if the branch the let is now on is never executed. It also enables other optimisation passes to work more effectively as they
have more information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to decide when to apply it). The details
get complicated but a simple example is that it is often beneficial to move let bindings outwards so that multiple let bindings
can be grouped into a larger single let binding, effectively batching their allocation and helping the garbage collector and
allocator.

-ffull-laziness On by default. Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See Let-floating: moving bindings to
give faster programs (ICFP’96). Full laziness increases sharing, which can lead to increased memory residency.

NOTE: GHC doesn’t implement complete full-laziness. When optimisation in on, and -fno-full-laziness is not
given, some transformations that increase sharing are performed, such as extracting repeated computations from a loop.
These are the same transformations that a fully lazy implementation would do, the difference is that GHC doesn’t consis-
tently apply full-laziness, so don’t rely on it.

-fdo-lambda-eta-expansion On by default. Eta-expand let-bindings to increase their arity.

-fdo-eta-reduction On by default. Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.

-fcase-merge On by default. Merge immediately-nested case expressions that scrutinse the same variable. Example

case x of
Red -> e1
_ -> case x of

Blue -> e2
Green -> e3

==>
case x of

Red -> e1
Blue -> e2
Green -> e2

-fliberate-case Off by default, but enabled by -O2. Turn on the liberate-case transformation. This unrolls recursive
function once in its own RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern specialiser
(-fspec-constr) but for free variables rather than arguments.

-fdicts-cheap A very experimental flag that makes dictionary-valued expressions seem cheap to the optimiser.

http://research.microsoft.com/en-us/um/people/simonpj/papers/santos-thesis.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 72 / 37

-feager-blackholing Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so as soon
as the thunk is entered. See Haskell on a shared-memory multiprocessor.

-fno-state-hack Turn off the "state hack" whereby any lambda with a State# token as argument is considered to be
single-entry, hence it is considered OK to inline things inside it. This can improve performance of IO and ST monad code,
but it runs the risk of reducing sharing.

-fpedantic-bottoms Make GHC be more precise about its treatment of bottom (but see also -fno-state-hack). In
particular, stop GHC eta-expanding through a case expression, which is good for performance, but bad if you are using
seq on partial applications.

-fsimpl-tick-factor=n GHC’s optimiser can diverge if you write rewrite rules (Section 7.19) that don’t terminate, or
(less satisfactorily) if you code up recursion through data types (Section 14.2.1). To avoid making the compiler fall into an
infinite loop, the optimiser carries a "tick count" and stops inlining and applying rewrite rules when this count is exceeded.
The limit is set as a multiple of the program size, so bigger programs get more ticks. The -fsimpl-tick-factor flag
lets you change the multiplier. The default is 100; numbers larger than 100 give more ticks, and numbers smaller than 100
give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use -fddump-simpl-stats to
generate a much more detailed list. Usually that identifies the loop quite accurately, because some numbers are very large.

-funfolding-creation-threshold=n: (Default: 45) Governs the maximum size that GHC will allow a function
unfolding to be. (An unfolding has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining) that
unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences: (a) nothing larger than this will be inlined (unless it has an INLINE pragma); (b) nothing larger than this
will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code. The -funfolding-use-thr-
eshold is more useful.

-funfolding-use-threshold=n (Default: 8) This is the magic cut-off figure for unfolding (aka inlining): below this
size, a function definition will be unfolded at the call-site, any bigger and it won’t. The size computed for a function
depends on two things: the actual size of the expression minus any discounts that apply (see -funfolding-con-di-
scount).

The difference between this and -funfolding-creation-threshold is that this one determines if a function
definition will be inlined at a call site. The other option determines if a function definition will be kept around at all for
potential inlining.

-fexpose-all-unfoldings An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger functions.

-fvectorise Data Parallel Haskell.

TODO: Document optimisation

-favoid-vect Data Parallel Haskell.

TODO: Document optimisation

-fregs-graph Off by default, but enabled by -O2. Only applies in combination with the native code generator. Use the
graph colouring register allocator for register allocation in the native code generator. By default, GHC uses a simpler,
faster linear register allocator. The downside being that the linear register allocator usually generates worse code.

-fregs-iterative Off by default, only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator. This is the same register allocator as
the -freg-graph one but also enables iterative coalescing during register allocation.

-fexcess-precision When this option is given, intermediate floating point values can have a greater precision/range than
the final type. Generally this is a good thing, but some programs may rely on the exact precision/range of Float/Double
values and should not use this option for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode, so neither -fexcess-precision
nor -fno-excess-precision has any effect. This is a known bug, see Section 14.2.1.

http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 73 / 37

-fignore-asserts Causes GHC to ignore uses of the function Exception.assert in source code (in other words,
rewriting Exception.assert p e to e (see Section 7.17). This flag is turned on by -O.

-fignore-interface-pragmas Tells GHC to ignore all inessential information when reading interface files. That is,
even if M.hi contains unfolding or strictness information for a function, GHC will ignore that information.

-fomit-interface-pragmas Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only the types of the functions that M
exports, but not their unfoldings, strictness info, etc. Hence, for example, no function exported by M will be inlined into an
importing module. The benefit is that modules that import M will need to be recompiled less often (only when M’s exports
change their type, not when they change their implementation).

4.11 GHC Backends

GHC supports multiple backend code generators. This is the part of the compiler responsible for taking the last intermediate
representation that GHC uses (a form called Cmm that is a simple, C like language) and compiling it to executable code. The
backends that GHC support are described below.

4.11.1 Native code Generator (-fasm)

The default backend for GHC. It is a native code generator, compiling Cmm all the way to assembly code. It is the fastest backend
and generally produces good performance code. It has the best support for compiling shared libraries. Select it with the -fasm
flag.

4.11.2 LLVM Code Generator (-fllvm)

This is an alternative backend that uses the LLVM compiler to produce executable code. It generally produces code as with
performance as good as the native code generator but for some cases can produce much faster code. This is especially true for
numeric, array heavy code using packages like vector. The penalty is a significant increase in compilation times. Select the
LLVM backend with the -fllvm flag. Currently LLVM 2.8 and later are supported.

You must install and have LLVM available on your PATH for the LLVM code generator to work. Specifically GHC needs to be
able to call the optand llc tools. Secondly, if you are running Mac OS X with LLVM 3.0 or greater then you also need the Clang
c compiler compiler available on your PATH. Clang and LLVM are both included with OS X by default from 10.6 onwards.

To install LLVM and Clang:

• Linux: Use your package management tool.

• Mac OS X: LLVM and Clang are included by default from 10.6 and later. For 10.5 you should install the Homebrew package
manager for OS X. Alternatively you can download binaries for LLVM and Clang from here.

• Windows: You should download binaries for LLVM and clang from here.

4.11.3 C Code Generator (-fvia-C)

This is the oldest code generator in GHC and is generally not included any more having been deprecated around GHC 7.0. Select
it with the -fvia-C flag.

The C code generator is only supported when GHC is built in unregisterised mode, a mode where GHC produces ’portable’ C
code as output to facilitate porting GHC itself to a new platform. This mode produces much slower code though so it’s unlikely
your version of GHC was built this way. If it has then the native code generator probably won’t be available. You can check this
information by calling ghc --info.

http://llvm.org
http://clang.llvm.org
http://clang.llvm.org
http://mxcl.github.com/homebrew/
http://llvm.org/releases/download.html
http://llvm.org/releases/download.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 74 / 37

4.11.4 Unregisterised compilation

The term "unregisterised" really means "compile via vanilla C", disabling some of the platform-specific tricks that GHC normally
uses to make programs go faster. When compiling unregisterised, GHC simply generates a C file which is compiled via gcc.

When GHC is build in unregisterised mode only the LLVM and C code generators will be available. The native code generator
won’t be. LLVM usually offers a substantial performance benefit over the C backend in unregisterised mode.

Unregisterised compilation can be useful when porting GHC to a new machine, since it reduces the prerequisite tools to gcc,
as, and ld and nothing more, and furthermore the amount of platform-specific code that needs to be written in order to get
unregisterised compilation going is usually fairly small.

Unregisterised compilation cannot be selected at compile-time; you have to build GHC with the appropriate options set. Consult
the GHC Building Guide for details.

You can check if your GHC is unregisterised by calling ghc --info.

4.12 Options related to a particular phase

4.12.1 Replacing the program for one or more phases

You may specify that a different program be used for one of the phases of the compilation system, in place of whatever the ghc
has wired into it. For example, you might want to try a different assembler. The following options allow you to change the
external program used for a given compilation phase:

-pgmL cmd Use cmd as the literate pre-processor.

-pgmP cmd Use cmd as the C pre-processor (with -cpp only).

-pgmc cmd Use cmd as the C compiler.

-pgmlo cmd Use cmd as the LLVM optimiser.

-pgmlc cmd Use cmd as the LLVM compiler.

-pgms cmd Use cmd as the splitter.

-pgma cmd Use cmd as the assembler.

-pgml cmd Use cmd as the linker.

-pgmdll cmd Use cmd as the DLL generator.

-pgmF cmd Use cmd as the pre-processor (with -F only).

-pgmwindres cmd Use cmd as the program to use for embedding manifests on Windows. Normally this is the program
windres, which is supplied with a GHC installation. See -fno-embed-manifest in Section 4.12.6.

4.12.2 Forcing options to a particular phase

Options can be forced through to a particular compilation phase, using the following flags:

-optL option Pass option to the literate pre-processor

-optP option Pass option to CPP (makes sense only if -cpp is also on).

-optF option Pass option to the custom pre-processor (see Section 4.12.4).

-optc option Pass option to the C compiler.

-optlo option Pass option to the LLVM optimiser.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 75 / 37

-optlc option Pass option to the LLVM compiler.

-optm option Pass option to the mangler.

-opta option Pass option to the assembler.

-optl option Pass option to the linker.

-optdll option Pass option to the DLL generator.

-optwindres option Pass option to windres when embedding manifests on Windows. See -fno-embed-manife-
st in Section 4.12.6.

So, for example, to force an -Ewurble option to the assembler, you would tell the driver -opta-Ewurble (the dash before
the E is required).

GHC is itself a Haskell program, so if you need to pass options directly to GHC’s runtime system you can enclose them in +RTS
... -RTS (see Section 4.17).

4.12.3 Options affecting the C pre-processor

-cpp The C pre-processor cpp is run over your Haskell code only if the -cpp option is given. Unless you are building a large
system with significant doses of conditional compilation, you really shouldn’t need it.

-Dsymbol[=value] Define macro symbol in the usual way. NB: does not affect -D macros passed to the C compiler when
compiling via C! For those, use the -optc-Dfoo hack. . . (see Section 4.12.2).

-Usymbol Undefine macro symbol in the usual way.

-Idir Specify a directory in which to look for #include files, in the usual C way.

The GHC driver pre-defines several macros when processing Haskell source code (.hs or .lhs files).

The symbols defined by GHC are listed below. To check which symbols are defined by your local GHC installation, the following
trick is useful:

$ ghc -E -optP-dM -cpp foo.hs
$ cat foo.hspp

(you need a file foo.hs, but it isn’t actually used).

__GLASGOW_HASKELL__ For version x.y.z of GHC, the value of __GLASGOW_HASKELL__ is the integer xyy (if y is
a single digit, then a leading zero is added, so for example in version 6.2 of GHC, __GLASGOW_HASKELL__==602).
More information in Section 1.4.

With any luck, __GLASGOW_HASKELL__ will be undefined in all other implementations that support C-style pre-
processing.

(For reference: the comparable symbols for other systems are: __HUGS__ for Hugs, __NHC__ for nhc98, and __HBC__
for hbc.)

NB. This macro is set when pre-processing both Haskell source and C source, including the C source generated from a
Haskell module (i.e. .hs, .lhs, .c and .hc files).

__PARALLEL_HASKELL__ Only defined when -parallel is in use! This symbol is defined when pre-processing Haskell
(input) and pre-processing C (GHC output).

os_HOST_OS=1 This define allows conditional compilation based on the Operating System, whereos is the name of the
current Operating System (eg. linux, mingw32 for Windows, solaris, etc.).

arch_HOST_ARCH=1 This define allows conditional compilation based on the host architecture, wherearch is the name of
the current architecture (eg. i386, x86_64, powerpc, sparc, etc.).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 76 / 37

4.12.3.1 CPP and string gaps

A small word of warning: -cpp is not friendly to “string gaps”.. In other words, strings such as the following:

strmod = "\
\ p \
\ "

don’t work with -cpp; /usr/bin/cpp elides the backslash-newline pairs.

However, it appears that if you add a space at the end of the line, then cpp (at least GNU cpp and possibly other cpps) leaves the
backslash-space pairs alone and the string gap works as expected.

4.12.4 Options affecting a Haskell pre-processor

-F A custom pre-processor is run over your Haskell source file only if the -F option is given.

Running a custom pre-processor at compile-time is in some settings appropriate and useful. The -F option lets you
run a pre-processor as part of the overall GHC compilation pipeline, which has the advantage over running a Haskell
pre-processor separately in that it works in interpreted mode and you can continue to take reap the benefits of GHC’s
recompilation checker.

The pre-processor is run just before the Haskell compiler proper processes the Haskell input, but after the literate markup
has been stripped away and (possibly) the C pre-processor has washed the Haskell input.

Use -pgmF cmd to select the program to use as the preprocessor. When invoked, the cmd pre-processor is given at least
three arguments on its command-line: the first argument is the name of the original source file, the second is the name of
the file holding the input, and the third is the name of the file where cmd should write its output to.

Additional arguments to the pre-processor can be passed in using the -optF option. These are fed to cmd on the command
line after the three standard input and output arguments.

An example of a pre-processor is to convert your source files to the input encoding that GHC expects, i.e. create a script
convert.sh containing the lines:

#!/bin/sh
(echo "{-# LINE 1 \"$2\" #-}" ; iconv -f l1 -t utf-8 $2) > $3

and pass -F -pgmF convert.sh to GHC. The -f l1 option tells iconv to convert your Latin-1 file, supplied in
argument $2, while the "-t utf-8" options tell iconv to return a UTF-8 encoded file. The result is redirected into argument
$3. The echo "{-# LINE 1 \"$2\" #-}" just makes sure that your error positions are reported as in the original
source file.

4.12.5 Options affecting code generation

-fasm Use GHC’s native code generatorrather than compiling via LLVM. -fasm is the default.

-fllvm Compile via LLVMinstead of using the native code generator. This will generally take slightly longer than the native
code generator to compile. Produced code is generally the same speed or faster than the other two code generators.
Compiling via LLVM requires LLVM to be on the path.

-fno-code Omit code generation (and all later phases) altogether. Might be of some use if you just want to see dumps of the
intermediate compilation phases.

-fobject-code Generate object code. This is the default outside of GHCi, and can be used with GHCi to cause object code
to be generated in preference to bytecode.

-fbyte-code Generate byte-code instead of object-code. This is the default in GHCi. Byte-code can currently only be used
in the interactive interpreter, not saved to disk. This option is only useful for reversing the effect of -fobject-code.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 77 / 37

-fPIC Generate position-independent code (code that can be put into shared libraries). This currently works on Linux x86
and x86-64. On Windows, position-independent code is never used so the flag is a no-op on that platform.

-dynamic When generating code, assume that entities imported from a different package will reside in a different shared
library or binary.

Note that using this option when linking causes GHC to link against shared libraries.

4.12.6 Options affecting linking

GHC has to link your code with various libraries, possibly including: user-supplied, GHC-supplied, and system-supplied (-lm
math library, for example).

-llib Link in the lib library. On Unix systems, this will be in a file called liblib.a or liblib.so which resides
somewhere on the library directories path.

Because of the sad state of most UNIX linkers, the order of such options does matter. If library foo requires library bar,
then in general -lfoo should come before -lbar on the command line.

There’s one other gotcha to bear in mind when using external libraries: if the library contains a main() function, then
this will be linked in preference to GHC’s own main() function (eg. libf2c and libl have their own main()s). This
is because GHC’s main() comes from the HSrts library, which is normally included after all the other libraries on the
linker’s command line. To force GHC’s main() to be used in preference to any other main()s from external libraries,
just add the option -lHSrts before any other libraries on the command line.

-c Omits the link step. This option can be used with --make to avoid the automatic linking that takes place if the program
contains a Main module.

-package name If you are using a Haskell “package” (see Section 4.9), don’t forget to add the relevant -package option
when linking the program too: it will cause the appropriate libraries to be linked in with the program. Forgetting the
-package option will likely result in several pages of link errors.

-framework name On Darwin/MacOS X only, link in the framework name. This option corresponds to the -framework
option for Apple’s Linker. Please note that frameworks and packages are two different things - frameworks don’t contain
any haskell code. Rather, they are Apple’s way of packaging shared libraries. To link to Apple’s “Carbon” API, for
example, you’d use -framework Carbon.

-Ldir Where to find user-supplied libraries. . . Prepend the directory dir to the library directories path.

-framework-pathdir On Darwin/MacOS X only, prepend the directory dir to the framework directories path. This
option corresponds to the -F option for Apple’s Linker (-F already means something else for GHC).

-split-objs Tell the linker to split the single object file that would normally be generated into multiple object files, one
per top-level Haskell function or type in the module. This only makes sense for libraries, where it means that executables
linked against the library are smaller as they only link against the object files that they need. However, assembling all the
sections separately is expensive, so this is slower than compiling normally. We use this feature for building GHC’s libraries
(warning: don’t use it unless you know what you’re doing!).

-static Tell the linker to avoid shared Haskell libraries, if possible. This is the default.

-dynamic This flag tells GHC to link against shared Haskell libraries. This flag only affects the selection of dependent
libraries, not the form of the current target (see -shared). See Section 4.13 on how to create them.

Note that this option also has an effect on code generation (see above).

-shared Instead of creating an executable, GHC produces a shared object with this linker flag. Depending on the operating
system target, this might be an ELF DSO, a Windows DLL, or a Mac OS dylib. GHC hides the operating system details
beneath this uniform flag.

The flags -dynamic/-static control whether the resulting shared object links statically or dynamically to Haskell
package libraries given as -package option. Non-Haskell libraries are linked as gcc would regularly link it on your
system, e.g. on most ELF system the linker uses the dynamic libraries when found.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 78 / 37

Object files linked into shared objects must be compiled with -fPIC, see Section 4.12.5

When creating shared objects for Haskell packages, the shared object must be named properly, so that GHC recognizes the
shared object when linked against this package. See shared object name mangling.

-dynload This flag selects one of a number of modes for finding shared libraries at runtime. See Section 4.13.4 for a
description of each mode.

-main-is thing The normal rule in Haskell is that your program must supply a main function in module Main. When
testing, it is often convenient to change which function is the "main" one, and the -main-is flag allows you to do so.
The thing can be one of:

• A lower-case identifier foo. GHC assumes that the main function is Main.foo.

• A module name A. GHC assumes that the main function is A.main.

• A qualified name A.foo. GHC assumes that the main function is A.foo.

Strictly speaking, -main-is is not a link-phase flag at all; it has no effect on the link step. The flag must be specified
when compiling the module containing the specified main function (e.g. module A in the latter two items above). It has
no effect for other modules, and hence can safely be given to ghc --make. However, if all the modules are otherwise
up to date, you may need to force recompilation both of the module where the new "main" is, and of the module where
the "main" function used to be; ghc is not clever enough to figure out that they both need recompiling. You can force
recompilation by removing the object file, or by using the -fforce-recomp flag.

-no-hs-main In the event you want to include ghc-compiled code as part of another (non-Haskell) program, the RTS will
not be supplying its definition of main() at link-time, you will have to. To signal that to the compiler when linking, use
-no-hs-main. See also Section 8.2.1.1.

Notice that since the command-line passed to the linker is rather involved, you probably want to use ghc to do the final
link of your `mixed-language’ application. This is not a requirement though, just try linking once with -v on to see what
options the driver passes through to the linker.

The -no-hs-main flag can also be used to persuade the compiler to do the link step in --make mode when there is no
Haskell Main module present (normally the compiler will not attempt linking when there is no Main).

The flags -rtsopts and -with-rtsopts have no effect when used with -no-hs-main, because they are imple-
mented by changing the definition of main that GHC generates. See Section 8.2.1.1 for how to get the effect of -rtsopts
and -with-rtsopts when using your own main.

-debug Link the program with a debugging version of the runtime system. The debugging runtime turns on numerous
assertions and sanity checks, and provides extra options for producing debugging output at runtime (run the program with
+RTS -? to see a list).

-threaded Link the program with the "threaded" version of the runtime system. The threaded runtime system is so-called
because it manages multiple OS threads, as opposed to the default runtime system which is purely single-threaded.

Note that you do not need -threaded in order to use concurrency; the single-threaded runtime supports concurrency
between Haskell threads just fine.

The threaded runtime system provides the following benefits:

• It enables the -NRTS option to be used, which allows threads to run in parallel on a multiprocessor or multicore machine.
See Section 4.15.

• If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell threads in the program will
continue to run while the foreign call is in progress. Additionally, foreign exported Haskell functions may be
called from multiple OS threads simultaneously. See Section 8.2.4.

-eventlog Link the program with the "eventlog" version of the runtime system. A program linked in this way can generate
a runtime trace of events (such as thread start/stop) to a binary file program.eventlog, which can then be interpreted
later by various tools. See Section 4.17.6 for more information.

-eventlog can be used with -threaded. It is implied by -debug.

-rtsopts This option affects the processing of RTS control options given either on the command line or via the GHCRTS
environment variable. There are three possibilities:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 79 / 37

-rtsopts=none Disable all processing of RTS options. If +RTS appears anywhere on the command line, then the
program will abort with an error message. If the GHCRTS environment variable is set, then the program will emit a
warning message, GHCRTS will be ignored, and the program will run as normal.

-rtsopts=some [this is the default setting] Enable only the "safe" RTS options: (Currently only -? and --info.)
Any other RTS options on the command line or in the GHCRTS environment variable causes the program with to
abort with an error message.

-rtsopts=all, or just -rtsopts Enable all RTS option processing, both on the command line and through the G-
HCRTS environment variable.

In GHC 6.12.3 and earlier, the default was to process all RTS options. However, since RTS options can be used to write
logging data to arbitrary files under the security context of the running program, there is a potential security problem. For
this reason, GHC 7.0.1 and later default to -rtsops=some.

Note that -rtsopts has no effect when used with -no-hs-main; see Section 8.2.1.1 for details.

-with-rtsopts This option allows you to set the default RTS options at link-time. For example, -with-rtsopts="--
H128m" sets the default heap size to 128MB. This will always be the default heap size for this program, unless the user
overrides it. (Depending on the setting of the -rtsopts option, the user might not have the ability to change RTS options
at run-time, in which case -with-rtsopts would be the only way to set them.)

Note that -with-rtsopts has no effect when used with -no-hs-main; see Section 8.2.1.1 for details.

-fno-gen-manifest On Windows, GHC normally generates a manifest file when linking a binary. The manifest is placed
in the file prog.exe.manifest where prog.exe is the name of the executable. The manifest file currently serves just
one purpose: it disables the "installer detection"in Windows Vista that attempts to elevate privileges for executables with
certain names (e.g. names containing "install", "setup" or "patch"). Without the manifest file to turn off installer detection,
attempting to run an executable that Windows deems to be an installer will return a permission error code to the invoker.
Depending on the invoker, the result might be a dialog box asking the user for elevated permissions, or it might simply be
a permission denied error.

Installer detection can be also turned off globally for the system using the security control panel, but GHC by default
generates binaries that don’t depend on the user having disabled installer detection.

The -fno-gen-manifest disables generation of the manifest file. One reason to do this would be if you had a manifest
file of your own, for example.

In the future, GHC might use the manifest file for more things, such as supplying the location of dependent DLLs.

-fno-gen-manifest also implies -fno-embed-manifest, see below.

-fno-embed-manifest The manifest file that GHC generates when linking a binary on Windows is also embedded in the
executable itself, by default. This means that the binary can be distributed without having to supply the manifest file too.
The embedding is done by running windres; to see exactly what GHC does to embed the manifest, use the -v flag. A
GHC installation comes with its own copy of windres for this reason.

See also -pgmwindres (Section 4.12.1) and -optwindres (Section 4.12.2).

-fno-shared-implib DLLs on Windows are typically linked to by linking to a corresponding .lib or .dll.a - the so-
called import library. GHC will typically generate such a file for every DLL you create by compiling in -shared mode.
However, sometimes you don’t want to pay the disk-space cost of creating this import library, which can be substantial - it
might require as much space as the code itself, as Haskell DLLs tend to export lots of symbols.

As long as you are happy to only be able to link to the DLL using GetProcAddress and friends, you can supply the
-fno-shared-implib flag to disable the creation of the import library entirely.

-dylib-install-name path On Darwin/MacOS X, dynamic libraries are stamped at build time with an "install name",
which is the ultimate install path of the library file. Any libraries or executables that subsequently link against it will pick
up that path as their runtime search location for it. By default, ghc sets the install name to the location where the library
is built. This option allows you to override it with the specified file path. (It passes -install_name to Apple’s linker.)
Ignored on other platforms.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 80 / 37

4.13 Using shared libraries

On some platforms GHC supports building Haskell code into shared libraries. Shared libraries are also sometimes known as
dynamic libraries, in particular on Windows they are referred to as dynamic link libraries (DLLs).

Shared libraries allow a single instance of some pre-compiled code to be shared between several programs. In contrast, with static
linking the code is copied into each program. Using shared libraries can thus save disk space. They also allow a single copy of
code to be shared in memory between several programs that use it. Shared libraries are often used as a way of structuring large
projects, especially where different parts are written in different programming languages. Shared libraries are also commonly
used as a plugin mechanism by various applications. This is particularly common on Windows using COM.

In GHC version 6.12 building shared libraries is supported for Linux (on x86 and x86-64 architectures). GHC version 7.0 adds
support on Windows (see Section 13.6), FreeBSD and OpenBSD (x86 and x86-64), Solaris (x86) and Mac OS X (x86 and
PowerPC).

Building and using shared libraries is slightly more complicated than building and using static libraries. When using Cabal much
of the detail is hidden, just use --enable-shared when configuring a package to build it into a shared library, or to link it
against other packages built as shared libraries. The additional complexity when building code is to distinguish whether the code
will be used in a shared library or will use shared library versions of other packages it depends on. There is additional complexity
when installing and distributing shared libraries or programs that use shared libraries, to ensure that all shared libraries that are
required at runtime are present in suitable locations.

4.13.1 Building programs that use shared libraries

To build a simple program and have it use shared libraries for the runtime system and the base libraries use the -dynamic flag:

ghc --make -dynamic Main.hs

This has two effects. The first is to compile the code in such a way that it can be linked against shared library versions of Haskell
packages (such as base). The second is when linking, to link against the shared versions of the packages’ libraries rather than the
static versions. Obviously this requires that the packages were built with shared libraries. On supported platforms GHC comes
with shared libraries for all the core packages, but if you install extra packages (e.g. with Cabal) then they would also have to be
built with shared libraries (--enable-shared for Cabal).

4.13.2 Shared libraries for Haskell packages

You can build Haskell code into a shared library and make a package to be used by other Haskell programs. The easiest way is
using Cabal, simply configure the Cabal package with the --enable-shared flag.

If you want to do the steps manually or are writing your own build system then there are certain conventions that must be
followed. Building a shared library that exports Haskell code, to be used by other Haskell code is a bit more complicated than it
is for one that exports a C API and will be used by C code. If you get it wrong you will usually end up with linker errors.

In particular Haskell shared libraries must be made into packages. You cannot freely assign which modules go in which shared
libraries. The Haskell shared libraries must match the package boundaries. The reason for this is that GHC handles references
to symbols within the same shared library (or main executable binary) differently from references to symbols between different
shared libraries. GHC needs to know for each imported module if that module lives locally in the same shared lib or in a separate
shared lib. The way it does this is by using packages. When using -dynamic, a module from a separate package is assumed to
come from a separate shared lib, while modules from the same package (or the default "main" package) are assumed to be within
the same shared lib (or main executable binary).

Most of the conventions GHC expects when using packages are described in Section 4.9.7. In addition note that GHC expects
the .hi files to use the extension .dyn_hi. The other requirements are the same as for C libraries and are described below, in
particular the use of the flags -dynamic, -fPIC and -shared.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 81 / 37

4.13.3 Shared libraries that export a C API

Building Haskell code into a shared library is a good way to include Haskell code in a larger mixed-language project. While with
static linking it is recommended to use GHC to perform the final link step, with shared libraries a Haskell library can be treated
just like any other shared library. The linking can be done using the normal system C compiler or linker.

It is possible to load shared libraries generated by GHC in other programs not written in Haskell, so they are suitable for using as
plugins. Of course to construct a plugin you will have to use the FFI to export C functions and follow the rules about initialising
the RTS. See Section 8.2.1.2. In particular you will probably want to export a C function from your shared library to initialise
the plugin before any Haskell functions are called.

To build Haskell modules that export a C API into a shared library use the -dynamic, -fPIC and -shared flags:

ghc --make -dynamic -shared -fPIC Foo.hs -o libfoo.so

As before, the -dynamic flag specifies that this library links against the shared library versions of the rts and base package. The
-fPIC flag is required for all code that will end up in a shared library. The -shared flag specifies to make a shared library
rather than a program. To make this clearer we can break this down into separate compilation and link steps:

ghc -dynamic -fPIC -c Foo.hs
ghc -dynamic -shared Foo.o -o libfoo.so

In principle you can use -shared without -dynamic in the link step. That means to statically link the rts all the base libraries
into your new shared library. This would make a very big, but standalone shared library. On most platforms however that would
require all the static libraries to have been built with -fPIC so that the code is suitable to include into a shared library and we
do not do that at the moment.

Warning: if your shared library exports a Haskell API then you cannot directly link it into another Haskell program and use that
Haskell API. You will get linker errors. You must instead make it into a package as described in the section above.

4.13.4 Finding shared libraries at runtime

The primary difficulty with managing shared libraries is arranging things such that programs can find the libraries they need at
runtime. The details of how this works varies between platforms, in particular the three major systems: Unix ELF platforms,
Windows and Mac OS X.

4.13.4.1 Unix

On Unix there are two mechanisms. Shared libraries can be installed into standard locations that the dynamic linker knows about.
For example /usr/lib or /usr/local/lib on most systems. The other mechanism is to use a "runtime path" or "rpath"
embedded into programs and libraries themselves. These paths can either be absolute paths or on at least Linux and Solaris they
can be paths relative to the program or library itself. In principle this makes it possible to construct fully relocatable sets of
programs and libraries.

GHC has a -dynload linking flag to select the method that is used to find shared libraries at runtime. There are currently two
modes:

sysdep A system-dependent mode. This is also the default mode. On Unix ELF systems this embeds RPATH/RUNPATH entries
into the shared library or executable. In particular it uses absolute paths to where the shared libraries for the rts and each
package can be found. This means the program can immediately be run and it will be able to find the libraries it needs.
However it may not be suitable for deployment if the libraries are installed in a different location on another machine.

deploy This does not embed any runtime paths. It relies on the shared libraries being available in a standard location or in a
directory given by the LD_LIBRARY_PATH environment variable.

To use relative paths for dependent libraries on Linux and Solaris you can pass a suitable -rpath flag to the linker:

ghc -dynamic Main.hs -o main -lfoo -L. -optl-Wl,-rpath,’$ORIGIN’

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 82 / 37

This assumes that the library libfoo.so is in the current directory and will be able to be found in the same directory as the
executable main once the program is deployed. Similarly it would be possible to use a subdirectory relative to the executable
e.g. -optl-Wl,-rpath,’$ORIGIN/lib’.

This relative path technique can be used with either of the two -dynload modes, though it makes most sense with the deploy
mode. The difference is that with the deploy mode, the above example will end up with an ELF RUNPATH of just $ORI-
GIN while with the sysdep mode the RUNPATH will be $ORIGIN followed by all the library directories of all the packages
that the program depends on (e.g. base and rts packages etc.) which are typically absolute paths. The unix tool readelf
--dynamic is handy for inspecting the RPATH/RUNPATH entries in ELF shared libraries and executables.

4.13.4.2 Mac OS X

The standard assumption on Darwin/Mac OS X is that dynamic libraries will be stamped at build time with an "install name",
which is the full ultimate install path of the library file. Any libraries or executables that subsequently link against it (even if it
hasn’t been installed yet) will pick up that path as their runtime search location for it. When compiling with ghc directly, the
install name is set by default to the location where it is built. You can override this with the -dylib-install-name option
(which passes -install_name to the Apple linker). Cabal does this for you. It automatically sets the install name for dynamic
libraries to the absolute path of the ultimate install location.

4.14 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries compiled in a certain way. To get
access to the support libraries for Concurrent Haskell, just import Control.Concurrent. More information on Concurrent
Haskell is provided in the documentation for that module.

Optionally, the program may be linked with the -threaded option (see Section 4.12.6. This provides two benefits:

• It enables the -N RTS option to be used, which allows threads to run in parallel on a multiprocessor or multicore machine. See
Section 4.15.

• If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell threads in the program will continue to
run while the foreign call is in progress. Additionally, foreign exported Haskell functions may be called from multiple
OS threads simultaneously. See Section 8.2.4.

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:

-Cs Sets the context switch interval to s seconds. A context switch will occur at the next heap block allocation after the timer
expires (a heap block allocation occurs every 4k of allocation). With -C0 or -C, context switches will occur as often as
possible (at every heap block allocation). By default, context switches occur every 20ms.

4.15 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about making your program run faster by
making use of multiple processors simultaneously. Concurrency, on the other hand, is a means of abstraction: it is a convenient
way to structure a program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible to run concurrent threads in parallel,
and this is exactly what GHC’s SMP parallelism support does. But it is also possible to obtain performance improvements
with parallelism on programs that do not use concurrency. This section describes how to use GHC to compile and run parallel
programs, in Section 7.24 we describe the language features that affect parallelism.

file:../libraries/base-4.6.0.1/Control-Concurrent.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 83 / 37

4.15.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded option (see Section 4.12.6). Addi-
tionally, the following compiler options affect parallelism:

-feager-blackholing Blackholing is the act of marking a thunk (lazy computuation) as being under evaluation. It is
useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the NonTermination exception), secondly
it avoids certain kinds of space leak, and thirdly it avoids repeating a computation in a parallel program, because we can
tell when a computation is already in progress.

The option -feager-blackholing causes each thunk to be blackholed as soon as evaluation begins. The default is
"lazy blackholing", whereby thunks are only marked as being under evaluation when a thread is paused for some reason.
Lazy blackholing is typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed. However,
eager blackholing can avoid more repeated computation in a parallel program, and this often turns out to be important for
parallelism.

We recommend compiling any code that is intended to be run in parallel with the -feager-blackholing flag.

4.15.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Control.Concurrent.setNumCapabilities from
your program, or use the RTS -N option.

-N[x] Use x simultaneous threads when running the program. Normally x should be chosen to match the number of CPU
cores on the machine3. For example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting x, i.e. +RTS -N -RTS, lets the runtime choose the value of x itself based on how many processors are in your
machine.

Be careful when using all the processors in your machine: if some of your processors are in use by other programs, this
can actually harm performance rather than improve it.

Setting -N also has the effect of enabling the parallel garbage collector (see Section 4.17.3).

The current value of the -N option is available to the Haskell program via Control.Concurrent.getNumCapab-
ilities, and it may be changed while the program is running by calling Control.Concurrent.setNumCapab-
ilities.

The following options affect the way the runtime schedules threads on CPUs:

-qa Use the OS’s affinity facilities to try to pin OS threads to CPU cores. This is an experimental feature, and may or may not
be useful. Please let us know whether it helps for you!

-qm Disable automatic migration for load balancing. Normally the runtime will automatically try to schedule threads across the
available CPUs to make use of idle CPUs; this option disables that behaviour. Note that migration only applies to threads;
sparks created by par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule threads onto CPUs with Control-
.Concurrent.forkOn.

4.15.3 Hints for using SMP parallelism

Add the -s RTS option when running the program to see timing stats, which will help to tell you whether your program got
faster by using more CPUs or not. If the user time is greater than the elapsed time, then the program used more than one CPU.
You should also run the program without -N for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the run of the program (see Sec-
tion 4.17.3), which will give you an idea how well your par annotations are working.

GHC’s parallelism support has improved in 6.12.1 as a result of much experimentation and tuning in the runtime system. We’d
still be interested to hear how well it works for you, and we’re also interested in collecting parallel programs to add to our
benchmarking suite.

3Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and let us know what results you find.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 84 / 37

4.16 Platform-specific Flags

Some flags only make sense for particular target platforms.

-msse2: (x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement floating point operations when
using the native code generator. This gives a substantial performance improvement for floating point, but the resulting
compiled code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD Athlon 64 and later).
The LLVM backend will also use SSE2 if your processor supports it but detects this automatically so no flag is required.

SSE2 is unconditionally used on x86-64 platforms.

-msse4.2: (x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating point and bit operations
when using the native code generator. The resulting compiled code will only run on processors that support SSE4.2 (Intel
Core i7 and later). The LLVM backend will also use SSE4.2 if your processor supports it but detects this automatically so
no flag is required.

4.17 Running a compiled program

To make an executable program, the GHC system compiles your code and then links it with a non-trivial runtime system (RTS),
which handles storage management, thread scheduling, profiling, and so on.

The RTS has a lot of options to control its behaviour. For example, you can change the context-switch interval, the default size
of the heap, and enable heap profiling. These options can be passed to the runtime system in a variety of different ways; the next
section (Section 4.17.1) describes the various methods, and the following sections describe the RTS options themselves.

4.17.1 Setting RTS options

There are four ways to set RTS options:

• on the command line between +RTS ... -RTS, when running the program (Section 4.17.1.1)

• at compile-time, using --with-rtsopts (Section 4.17.1.2)

• with the environment variable GHCRTS (Section 4.17.1.3)

• by overriding “hooks” in the runtime system (Section 4.17.1.4)

4.17.1.1 Setting RTS options on the command line

If you set the -rtsopts flag appropriately when linking (see Section 4.12.6), you can give RTS options on the command line
when running your program.

When your Haskell program starts up, the RTS extracts command-line arguments bracketed between +RTS and -RTS as its own.
For example:

$ ghc prog.hs -rtsopts
[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...
$./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be available to your program
if/when it calls System.Environment.getArgs.

No -RTS option is required if the runtime-system options extend to the end of the command line, as in this example:

% hls -ltr /usr/etc +RTS -A5m

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 85 / 37

If you absolutely positively want all the rest of the options in a command line to go to the program (and not the RTS), use a
--RTS.

As always, for RTS options that take sizes: If the last character of size is a K or k, multiply by 1000; if an M or m, by
1,000,000; if a G or G, by 1,000,000,000. (And any wraparound in the counters is your fault!)

Giving a +RTS -? option will print out the RTS options actually available in your program (which vary, depending on how you
compiled).

NOTE: since GHC is itself compiled by GHC, you can change RTS options in the compiler using the normal +RTS ... --
RTS combination. eg. to set the maximum heap size for a compilation to 128M, you would add +RTS -M128m -RTS to the
command line.

4.17.1.2 Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the -with-rtsopts flag (Section 4.12.6).
A common use for this is to give your program a default heap and/or stack size that is greater than the default. For example, to
set -H128m -K64m, link with -with-rtsopts="-H128m -K64m".

4.17.1.3 Setting RTS options with the GHCRTS environment variable

If the -rtsopts flag is set to something other than none when linking, RTS options are also taken from the environment
variable GHCRTS. For example, to set the maximum heap size to 2G for all GHC-compiled programs (using an sh-like shell):

GHCRTS=’-M2G’
export GHCRTS

RTS options taken from the GHCRTS environment variable can be overridden by options given on the command line.

Tip: setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell programs growing beyond the
real memory in your machine, which is easy to do by accident and can cause the machine to slow to a crawl until the OS decides
to kill the process (and you hope it kills the right one).

4.17.1.4 “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program, by compiling in a “hook” that is
called by the run-time system. The RTS contains stub definitions for these hooks, but by writing your own version and linking it
on the GHC command line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the program is built dynamically.

You can change the messages printed when the runtime system “blows up,” e.g., on stack overflow. The hooks for these are as
follows:

void OutOfHeapHook (unsigned long, unsigned long) The heap-overflow message.

void StackOverflowHook (long int) The stack-overflow message.

void MallocFailHook (long int) The message printed if malloc fails.

4.17.2 Miscellaneous RTS options

-Vsecs Sets the interval that the RTS clock ticks at. The runtime uses a single timer signal to count ticks; this timer signal is
used to control the context switch timer (Section 4.14) and the heap profiling timer Section 5.4.1. Also, the time profiler
uses the RTS timer signal directly to record time profiling samples.

Normally, setting the -V option directly is not necessary: the resolution of the RTS timer is adjusted automatically if a
short interval is requested with the -C or -i options. However, setting -V is required in order to increase the resolution of
the time profiler.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 86 / 37

Using a value of zero disables the RTS clock completely, and has the effect of disabling timers that depend on it: the context
switch timer and the heap profiling timer. Context switches will still happen, but deterministically and at a rate much faster
than normal. Disabling the interval timer is useful for debugging, because it eliminates a source of non-determinism at
runtime.

--install-signal-handlers=yes|no If yes (the default), the RTS installs signal handlers to catch things like ctrl-C.
This option is primarily useful for when you are using the Haskell code as a DLL, and want to set your own signal handlers.

Note that even with --install-signal-handlers=no, the RTS interval timer signal is still enabled. The timer
signal is either SIGVTALRM or SIGALRM, depending on the RTS configuration and OS capabilities. To disable the timer
signal, use the -V0 RTS option (see above).

-xmaddress WARNING: this option is for working around memory allocation problems only. Do not use unless GHCi
fails with a message like “failed to mmap() memory below 2Gb”. If you need to use this option to get GHCi
working on your machine, please file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address space. Support for this across
different operating systems is patchy, and sometimes fails. This option is there to give the RTS a hint about where it should
be able to allocate memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS would hint
that the RTS should allocate starting at the 0.5Gb mark. The default is to use the OS’s built-in support for allocating
memory in the low 2Gb if available (e.g. mmap with MAP_32BIT on Linux), or otherwise -xm40000000.

4.17.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you won’t need any of these in normal
operation, but there are several things that can be tweaked for maximum performance.

-Asize [Default: 512k] Set the allocation area size used by the garbage collector. The allocation area (actually generation 0
step 0) is fixed and is never resized (unless you use -H, below).

Increasing the allocation area size may or may not give better performance (a bigger allocation area means worse cache
behaviour but fewer garbage collections and less promotion).

With only 1 generation (-G1) the -A option specifies the minimum allocation area, since the actual size of the allocation
area will be resized according to the amount of data in the heap (see -F, below).

-c Use a compacting algorithm for collecting the oldest generation. By default, the oldest generation is collected using a
copying algorithm; this option causes it to be compacted in-place instead. The compaction algorithm is slower than the
copying algorithm, but the savings in memory use can be considerable.

For a given heap size (using the -H option), compaction can in fact reduce the GC cost by allowing fewer GCs to be
performed. This is more likely when the ratio of live data to heap size is high, say >30%.

NOTE: compaction doesn’t currently work when a single generation is requested using the -G1 option.

-cn [Default: 30] Automatically enable compacting collection when the live data exceeds n% of the maximum heap size (see
the -M option). Note that the maximum heap size is unlimited by default, so this option has no effect unless the maximum
heap size is set with -Msize.

-Ffactor [Default: 2] This option controls the amount of memory reserved for the older generations (and in the case of a
two space collector the size of the allocation area) as a factor of the amount of live data. For example, if there was 2M of
live data in the oldest generation when we last collected it, then by default we’ll wait until it grows to 4M before collecting
it again.

The default seems to work well here. If you have plenty of memory, it is usually better to use -Hsize than to increase
-Ffactor.

The -F setting will be automatically reduced by the garbage collector when the maximum heap size (the -Msize setting)
is approaching.

-Ggenerations [Default: 2] Set the number of generations used by the garbage collector. The default of 2 seems to be good,
but the garbage collector can support any number of generations. Anything larger than about 4 is probably not a good idea
unless your program runs for a long time, because the oldest generation will hardly ever get collected.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 87 / 37

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would expect. In a 2-space collector,
the -A option (see above) specifies the minimum allocation area size, since the allocation area will grow with the amount
of live data in the heap. In a multi-generational collector the allocation area is a fixed size (unless you use the -H option,
see below).

-qg[gen] [New in GHC 6.12.1] [Default: 0] Use parallel GC in generation gen and higher. Omitting gen turns off the
parallel GC completely, reverting to sequential GC.

The default parallel GC settings are usually suitable for parallel programs (i.e. those using par, Strategies, or with
multiple threads). However, it is sometimes beneficial to enable the parallel GC for a single-threaded sequential program
too, especially if the program has a large amount of heap data and GC is a significant fraction of runtime. To use the
parallel GC in a sequential program, enable the parallel runtime with a suitable -N option, and additionally it might be
beneficial to restrict parallel GC to the old generation with -qg1.

-qb[gen] [New in GHC 6.12.1] [Default: 1] Use load-balancing in the parallel GC in generation gen and higher. Omitting
gen disables load-balancing entirely.

Load-balancing shares out the work of GC between the available cores. This is a good idea when the heap is large and
we need to parallelise the GC work, however it is also pessimal for the short young-generation collections in a parallel
program, because it can harm locality by moving data from the cache of the CPU where is it being used to the cache of
another CPU. Hence the default is to do load-balancing only in the old-generation. In fact, for a parallel program it is
sometimes beneficial to disable load-balancing entirely with -qb.

-H[size] [Default: 0] This option provides a “suggested heap size” for the garbage collector. Think of -Hsize as a variable
-A option. It says: I want to use at least size bytes, so use whatever is left over to increase the -A value.

This option does not put a limit on the heap size: the heap may grow beyond the given size as usual.

If size is omitted, then the garbage collector will take the size of the heap at the previous GC as the size. This has the
effect of allowing for a larger -A value but without increasing the overall memory requirements of the program. It can be
useful when the default small -A value is suboptimal, as it can be in programs that create large amounts of long-lived data.

-Iseconds (default: 0.3) In the threaded and SMP versions of the RTS (see -threaded, Section 4.12.6), a major GC is
automatically performed if the runtime has been idle (no Haskell computation has been running) for a period of time. The
amount of idle time which must pass before a GC is performed is set by the -Iseconds option. Specifying -I0 disables
the idle GC.

For an interactive application, it is probably a good idea to use the idle GC, because this will allow finalizers to run and
deadlocked threads to be detected in the idle time when no Haskell computation is happening. Also, it will mean that a
GC is less likely to happen when the application is busy, and so responsiveness may be improved. However, if the amount
of live data in the heap is particularly large, then the idle GC can cause a significant delay, and too small an interval could
adversely affect interactive responsiveness.

This is an experimental feature, please let us know if it causes problems and/or could benefit from further tuning.

-kisize [Default: 1k] Set the initial stack size for new threads. (Note: this flag used to be simply -k, but was renamed
to -ki in GHC 7.2.1. The old name is still accepted for backwards compatibility, but that may be removed in a future
version).

Thread stacks (including the main thread’s stack) live on the heap. As the stack grows, new stack chunks are added as
required; if the stack shrinks again, these extra stack chunks are reclaimed by the garbage collector. The default initial
stack size is deliberately small, in order to keep the time and space overhead for thread creation to a minimum, and to make
it practical to spawn threads for even tiny pieces of work.

-kcsize [Default: 32k] Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack chunk is created
and added to the thread’s stack, until the limit set by -K is reached.

The advantage of smaller stack chunks is that the garbage collector can avoid traversing stack chunks if they are known
to be unmodified since the last collection, so reducing the chunk size means that the garbage collector can identify more
stack as unmodified, and the GC overhead might be reduced. On the other hand, making stack chunks too small adds some
overhead as there will be more overflow/underflow between chunks. The default setting of 32k appears to be a reasonable
compromise in most cases.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 88 / 37

-kbsize [Default: 1k] Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk is created, some
of the data from the previous stack chunk is moved into the new chunk, to avoid an immediate underflow and repeated
overflow/underflow at the boundary. The amount of stack moved is set by the -kb option.

Note that to avoid wasting space, this value should typically be less than 10% of the size of a stack chunk (-kc), because
in a chain of stack chunks, each chunk will have a gap of unused space of this size.

-Ksize [Default: 8M] Set the maximum stack size for an individual thread to size bytes. If the thread attempts to exceed
this limit, it will be send the StackOverflow exception.

This option is there mainly to stop the program eating up all the available memory in the machine if it gets into an infinite
loop.

-mn Minimum % n of heap which must be available for allocation. The default is 3%.

-Msize [Default: unlimited] Set the maximum heap size to size bytes. The heap normally grows and shrinks according
to the memory requirements of the program. The only reason for having this option is to stop the heap growing without
bound and filling up all the available swap space, which at the least will result in the program being summarily killed by
the operating system.

The maximum heap size also affects other garbage collection parameters: when the amount of live data in the heap exceeds
a certain fraction of the maximum heap size, compacting collection will be automatically enabled for the oldest generation,
and the -F parameter will be reduced in order to avoid exceeding the maximum heap size.

-T , -t[file] , -s[file] , -S[file] , --machine-readable These options produce runtime-system statistics, such as
the amount of time spent executing the program and in the garbage collector, the amount of memory allocated, the max-
imum size of the heap, and so on. The three variants give different levels of detail: -T collects the data but produces no
output -t produces a single line of output in the same format as GHC’s -Rghc-timing option, -s produces a more
detailed summary at the end of the program, and -S additionally produces information about each and every garbage
collection.

The output is placed in file. If file is omitted, then the output is sent to stderr.

If you use the -T flag then, you should access the statistics using GHC.Stats.

If you use the -t flag then, when your program finishes, you will see something like this:

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2 samples), 3M ←↩
in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed), 0.07 GC (0.07 elapsed) : ←↩
ghc>>

This tells you:

• The total number of bytes allocated by the program over the whole run.

• The total number of garbage collections performed.

• The average and maximum "residency", which is the amount of live data in bytes. The runtime can only determine the
amount of live data during a major GC, which is why the number of samples corresponds to the number of major GCs
(and is usually relatively small). To get a better picture of the heap profile of your program, use the -hT RTS option
(Section 4.17.5).

• The peak memory the RTS has allocated from the OS.

• The amount of CPU time and elapsed wall clock time while initialising the runtime system (INIT), running the program
itself (MUT, the mutator), and garbage collecting (GC).

You can also get this in a more future-proof, machine readable format, with -t --machine-readable:

[("bytes allocated", "36169392")
,("num_GCs", "69")
,("average_bytes_used", "603392")
,("max_bytes_used", "1065272")
,("num_byte_usage_samples", "2")
,("peak_megabytes_allocated", "3")
,("init_cpu_seconds", "0.00")
,("init_wall_seconds", "0.00")

file:../libraries/base-4.6.0.1/GHC-Stats.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 89 / 37

,("mutator_cpu_seconds", "0.02")
,("mutator_wall_seconds", "0.02")
,("GC_cpu_seconds", "0.07")
,("GC_wall_seconds", "0.07")
]

If you use the -s flag then, when your program finishes, you will see something like this (the exact details will vary
depending on what sort of RTS you have, e.g. you will only see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))

54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 0.01s (0.02s elapsed)
GC time 0.07s (0.07s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.08s (0.09s elapsed)

%GC time 89.5% (75.3% elapsed)

Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

• The "bytes allocated in the heap" is the total bytes allocated by the program over the whole run.

• GHC uses a copying garbage collector by default. "bytes copied during GC" tells you how many bytes it had to copy
during garbage collection.

• The maximum space actually used by your program is the "bytes maximum residency" figure. This is only checked
during major garbage collections, so it is only an approximation; the number of samples tells you how many times it is
checked.

• The "bytes maximum slop" tells you the most space that is ever wasted due to the way GHC allocates memory in blocks.
Slop is memory at the end of a block that was wasted. There’s no way to control this; we just like to see how much
memory is being lost this way.

• The "total memory in use" tells you the peak memory the RTS has allocated from the OS.

• Next there is information about the garbage collections done. For each generation it says how many garbage collections
were done, how many of those collections were done in parallel, the total CPU time used for garbage collecting that
generation, and the total wall clock time elapsed while garbage collecting that generation.

• The SPARKS statistic refers to the use of Control.Parallel.par and related functionality in the program. Each
spark represents a call to par; a spark is "converted" when it is executed in parallel; and a spark is "pruned" when it
is found to be already evaluated and is discarded from the pool by the garbage collector. Any remaining sparks are
discarded at the end of execution, so "converted" plus "pruned" does not necessarily add up to the total.

• Next there is the CPU time and wall clock time elapsed broken down by what the runtime system was doing at the time.
INIT is the runtime system initialisation. MUT is the mutator time, i.e. the time spent actually running your code. GC
is the time spent doing garbage collection. RP is the time spent doing retainer profiling. PROF is the time spent doing
other profiling. EXIT is the runtime system shutdown time. And finally, Total is, of course, the total.
%GC time tells you what percentage GC is of Total. "Alloc rate" tells you the "bytes allocated in the heap" divided by
the MUT CPU time. "Productivity" tells you what percentage of the Total CPU and wall clock elapsed times are spent
in the mutator (MUT).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 90 / 37

The -S flag, as well as giving the same output as the -s flag, prints information about each GC as it happens:

Alloc Copied Live GC GC TOT TOT Page Flts
bytes bytes bytes user elap user elap

528496 47728 141512 0.01 0.02 0.02 0.02 0 0 (Gen: 1)
[...]

524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 (Gen: 0)

For each garbage collection, we print:

• How many bytes we allocated this garbage collection.

• How many bytes we copied this garbage collection.

• How many bytes are currently live.

• How long this garbage collection took (CPU time and elapsed wall clock time).

• How long the program has been running (CPU time and elapsed wall clock time).

• How many page faults occurred this garbage collection.

• How many page faults occurred since the end of the last garbage collection.

• Which generation is being garbage collected.

4.17.4 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Section 4.14, and those for parallelism in Section 4.15.2.

4.17.5 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling (see Section 5.2, and Section 5.4.1
for the runtime options). However, there is one profiling option that is available for ordinary non-profiled executables:

-hT (can be shortened to -h.) Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph, use
hp2ps (see Section 5.5). The basic heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed profile, use the full profiling support
(Chapter 5).

4.17.6 Tracing

When the program is linked with the -eventlog option (Section 4.12.6), runtime events can be logged in two ways:

• In binary format to a file for later analysis by a variety of tools. One such tool is ThreadScope, which interprets the event log
to produce a visual parallel execution profile of the program.

• As text to standard output, for debugging purposes.

-l[flags] Log events in binary format to the file program.eventlog. Without any flags specified, this logs a default
set of events, suitable for use with tools like ThreadScope.

For some special use cases you may want more control over which events are included. The flags is a sequence of zero or
more characters indicating which classes of events to log. Currently these the classes of events that can be enabled/disabled:

s — scheduler events, including Haskell thread creation and start/stop events. Enabled by default.
g — GC events, including GC start/stop. Enabled by default.
p — parallel sparks (sampled). Enabled by default.
f — parallel sparks (fully accurate). Disabled by default.
u — user events. These are events emitted from Haskell code using functions such as Debug.Trace.traceEvent. Enabled by default.

http://www.haskell.org/haskellwiki/ThreadScope

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 91 / 37

You can disable specific classes, or enable/disable all classes at once:

a — enable all event classes listed above
-x — disable the given class of events, for any event class listed above or -a for all classes

For example, -l-ag would disable all event classes (-a) except for GC events (g).

For spark events there are two modes: sampled and fully accurate. There are various events in the life cycle of each spark,
usually just creating and running, but there are some more exceptional possibilities. In the sampled mode the number of
occurrences of each kind of spark event is sampled at frequent intervals. In the fully accurate mode every spark event is
logged individually. The latter has a higher runtime overhead and is not enabled by default.

The format of the log file is described by the header EventLogFormat.h that comes with GHC, and it can be parsed
in Haskell using the ghc-events library. To dump the contents of a .eventlog file as text, use the tool ghc-events
show that comes with the ghc-events package.

-v[flags] Log events as text to standard output, instead of to the .eventlog file. The flags are the same as for -l, with
the additional option t which indicates that the each event printed should be preceded by a timestamp value (in the binary
.eventlog file, all events are automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing framework. By default those events are
dumped as text to stdout (-Dx implies -v), but they may instead be stored in the binary eventlog file by using the -l option.

4.17.7 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”, or (c) because you feel like it.
Not recommended for everyday use!

-B Sound the bell at the start of each (major) garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul Callaghan, writes: “Some people
here use it for a variety of purposes—honestly!—e.g., confirmation that the code/machine is doing something, infinite loop
detection, gauging cost of recently added code. Certain people can even tell what stage [the program] is in by the beep
pattern. But the major use is for annoying others in the same office. . . ”

-Dx An RTS debugging flag; only available if the program was linked with the -debug option. Various values of x are
provided to enable debug messages and additional runtime sanity checks in different subsystems in the RTS, for exam-
ple +RTS -Ds -RTS enables debug messages from the scheduler. Use +RTS -? to find out which debug flags are
supported.

Debug messages will be sent to the binary event log file instead of stdout if the -l option is added. This might be useful
for reducing the overhead of debug tracing.

-rfile Produce “ticky-ticky” statistics at the end of the program run (only available if the program was linked with -debug).
The file business works just like on the -S RTS option, above.

For more information on ticky-ticky profiling, see Section 5.8.

-xc (Only available when the program is compiled for profiling.) When an exception is raised in the program, this option
causes a stack trace to be dumped to stderr.

This can be particularly useful for debugging: if your program is complaining about a head [] error and you haven’t got
a clue which bit of code is causing it, compiling with -prof -fprof-auto and running with +RTS -xc -RTS will
tell you exactly the call stack at the point the error was raised.

The output contains one report for each exception raised in the program (the program might raise and catch several excep-
tions during its execution), where each report looks something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table_search,
called from Main.polynomial.theta_index,
called from Main.polynomial,
called from Main.zonal_pressure,
called from Main.make_pressure.p,

http://hackage.haskell.org/package/ghc-events
http://hackage.haskell.org/package/ghc-events

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 92 / 37

called from Main.make_pressure,
called from Main.compute_initial_state.p,
called from Main.compute_initial_state,
called from Main.CAF
...

The stack trace may often begin with something uninformative like GHC.List.CAF; this is an artifact of GHC’s op-
timiser, which lifts out exceptions to the top-level where the profiling system assigns them to the cost centre "CAF".
However, +RTS -xc doesn’t just print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example above, the next stack (after -->
evaluated by) contains plenty of information about what the program was doing when it evaluated head [].

Implementation details aside, the function names in the stack should hopefully give you enough clues to track down the
bug.

See also the function traceStack in the module Debug.Trace for another way to view call stacks.

-Z Turn off “update-frame squeezing” at garbage-collection time. (There’s no particularly good reason to turn it off, except to
ensure the accuracy of certain data collected regarding thunk entry counts.)

4.17.8 Getting information about the RTS

It is possible to ask the RTS to give some information about itself. To do this, use the --info flag, e.g.

$./a.out +RTS --info
[("GHC RTS", "YES")
,("GHC version", "6.7")
,("RTS way", "rts_p")
,("Host platform", "x86_64-unknown-linux")
,("Host architecture", "x86_64")
,("Host OS", "linux")
,("Host vendor", "unknown")
,("Build platform", "x86_64-unknown-linux")
,("Build architecture", "x86_64")
,("Build OS", "linux")
,("Build vendor", "unknown")
,("Target platform", "x86_64-unknown-linux")
,("Target architecture", "x86_64")
,("Target OS", "linux")
,("Target vendor", "unknown")
,("Word size", "64")
,("Compiler unregisterised", "NO")
,("Tables next to code", "YES")
]

The information is formatted such that it can be read as a of type [(String, String)]. Currently the following fields are
present:

GHC RTS Is this program linked against the GHC RTS? (always "YES").

GHC version The version of GHC used to compile this program.

RTS way The variant (“way”) of the runtime. The most common values are rts (vanilla), rts_thr (threaded runtime, i.e.
linked using the -threaded option) and rts_p (profiling runtime, i.e. linked using the -prof option). Other variants
include debug (linked using -debug), t (ticky-ticky profiling) and dyn (the RTS is linked in dynamically, i.e. a shared
library, rather than statically linked into the executable itself). These can be combined, e.g. you might have rts_thr_-
debug_p.

Target platform, Target architecture, Target OS, Target vendor These are the platform the program is
compiled to run on.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 93 / 37

Build platform, Build architecture, Build OS, Build vendor These are the platform where the program
was built on. (That is, the target platform of GHC itself.) Ordinarily this is identical to the target platform. (It could
potentially be different if cross-compiling.)

Host platform, Host architecture Host OS Host vendor These are the platform where GHC itself was com-
piled. Again, this would normally be identical to the build and target platforms.

Word size Either "32" or "64", reflecting the word size of the target platform.

Compiler unregistered Was this program compiled with an “unregistered” version of GHC? (I.e., a version of GHC that
has no platform-specific optimisations compiled in, usually because this is a currently unsupported platform.) This value
will usually be no, unless you’re using an experimental build of GHC.

Tables next to code Putting info tables directly next to entry code is a useful performance optimisation that is not
available on all platforms. This field tells you whether the program has been compiled with this optimisation. (Usually
yes, except on unusual platforms.)

4.18 Generating and compiling External Core Files

GHC can dump its optimized intermediate code (said to be in “Core” format) to a file as a side-effect of compilation. Non-
GHC back-end tools can read and process Core files; these files have the suffix .hcr. The Core format is described in An
External Representation for the GHC Core Language, and sample tools for manipulating Core files (in Haskell) are available in
the extcore package on Hackage. Note that the format of .hcr files is different from the Core output format that GHC generates
for debugging purposes (Section 4.19), though the two formats appear somewhat similar.

The Core format natively supports notes which you can add to your source code using the CORE pragma (see Section 7.18).

-fext-core Generate .hcr files.

Currently (as of version 6.8.2), GHC does not have the ability to read in External Core files as source. If you would like GHC to
have this ability, please make your wishes known to the GHC Team.

4.19 Debugging the compiler

HACKER TERRITORY. HACKER TERRITORY. (You were warned.)

4.19.1 Dumping out compiler intermediate structures

-ddump-pass Make a debugging dump after pass <pass> (may be common enough to need a short form. . .). You can get
all of these at once (lots of output) by using -v5, or most of them with -v4. You can prevent them from clogging up your
standard output by passing -ddump-to-file. Some of the most useful ones are:

-ddump-parsed: parser output

-ddump-rn: renamer output

-ddump-tc: typechecker output

-ddump-splices: Dump Template Haskell expressions that we splice in, and what Haskell code the expression
evaluates to.

-ddump-types: Dump a type signature for each value defined at the top level of the module. The list is sorted
alphabetically. Using -dppr-debug dumps a type signature for all the imported and system-defined things as well;
useful for debugging the compiler.

-ddump-deriv: derived instances

-ddump-ds: desugarer output

http://hackage.haskell.org/package/extcore
http://hackage.haskell.org/trac/ghc/wiki/MailingListsAndIRC

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 94 / 37

-ddump-spec: output of specialisation pass

-ddump-rules: dumps all rewrite rules specified in this module; see Section 7.19.6.

-ddump-rule-firings: dumps the names of all rules that fired in this module

-ddump-rule-rewrites: dumps detailed information about all rules that fired in this module

-ddump-vect: dumps the output of the vectoriser.

-ddump-simpl: simplifier output (Core-to-Core passes)

-ddump-inlinings: inlining info from the simplifier

-ddump-cpranal: CPR analyser output

-ddump-stranal: strictness analyser output

-ddump-cse: CSE pass output

-ddump-worker-wrapper: worker/wrapper split output

-ddump-occur-anal: `occurrence analysis’ output

-ddump-prep: output of core preparation pass

-ddump-stg: output of STG-to-STG passes

-ddump-flatC: flattened Abstract C

-ddump-cmm: Print the C-- code out.

-ddump-opt-cmm: Dump the results of C-- to C-- optimising passes.

-ddump-asm: assembly language from the native code generator

-ddump-llvm: LLVM code from the LLVM code generator

-ddump-bcos: byte code compiler output

-ddump-foreign: dump foreign export stubs

-ddump-simpl-phases: Show the output of each run of the simplifier. Used when even -dverbose-core2core
doesn’t cut it.

-ddump-simpl-iterations: Show the output of each iteration of the simplifier (each run of the simplifier has a maxi-
mum number of iterations, normally 4). This outputs even more information than -ddump-simpl-phases.

-ddump-simpl-stats Dump statistics about how many of each kind of transformation too place. If you add -dppr-d-
ebug you get more detailed information.

-ddump-if-trace Make the interface loader be *real* chatty about what it is up to.

-ddump-tc-trace Make the type checker be *real* chatty about what it is up to.

-ddump-vt-trace Make the vectoriser be *real* chatty about what it is up to.

-ddump-rn-trace Make the renamer be *real* chatty about what it is up to.

-ddump-rn-stats Print out summary of what kind of information the renamer had to bring in.

-dverbose-core2core , -dverbose-stg2stg Show the output of the intermediate Core-to-Core and STG-to-STG
passes, respectively. (Lots of output!) So: when we’re really desperate:

% ghc -noC -O -ddump-simpl -dverbose-core2core -dcore-lint Foo.hs

-dshow-passes Print out each pass name as it happens.

-ddump-core-stats Print a one-line summary of the size of the Core program at the end of the optimisation pipeline.

-dfaststring-stats Show statistics for the usage of fast strings by the compiler.

-dppr-debug Debugging output is in one of several “styles.” Take the printing of types, for example. In the “user” style (the
default), the compiler’s internal ideas about types are presented in Haskell source-level syntax, insofar as possible. In the
“debug” style (which is the default for debugging output), the types are printed in with explicit foralls, and variables have
their unique-id attached (so you can check for things that look the same but aren’t). This flag makes debugging output
appear in the more verbose debug style.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 95 / 37

4.19.2 Formatting dumps

-dppr-user-length In error messages, expressions are printed to a certain “depth”, with subexpressions beyond the depth
replaced by ellipses. This flag sets the depth. Its default value is 5.

-dppr-colsNNN Set the width of debugging output. Use this if your code is wrapping too much. For example: -dppr-c-
ols200.

-dppr-case-as-let Print single alternative case expressions as though they were strict let expressions. This is helpful
when your code does a lot of unboxing.

-dno-debug-output Suppress any unsolicited debugging output. When GHC has been built with the DEBUG option it
occasionally emits debug output of interest to developers. The extra output can confuse the testing framework and cause
bogus test failures, so this flag is provided to turn it off.

4.19.3 Suppressing unwanted information

Core dumps contain a large amount of information. Depending on what you are doing, not all of it will be useful. Use these flags
to suppress the parts that you are not interested in.

-dsuppress-all Suppress everything that can be suppressed, except for unique ids as this often makes the printout am-
biguous. If you just want to see the overall structure of the code, then start here.

-dsuppress-uniques Suppress the printing of uniques. This may make the printout ambiguous (e.g. unclear where an
occurrence of ’x’ is bound), but it makes the output of two compiler runs have many fewer gratuitous differences, so you
can realistically apply diff. Once diff has shown you where to look, you can try again without -dsuppress-uniques

-dsuppress-idinfo Suppress extended information about identifiers where they are bound. This includes strictness infor-
mation and inliner templates. Using this flag can cut the size of the core dump in half, due to the lack of inliner templates

-dsuppress-module-prefixes Suppress the printing of module qualification prefixes. This is the Data.List in
Data.List.length.

-dsuppress-type-signatures Suppress the printing of type signatures.

-dsuppress-type-applications Suppress the printing of type applications.

-dsuppress-coercions Suppress the printing of type coercions.

4.19.4 Checking for consistency

-dcore-lint Turn on heavyweight intra-pass sanity-checking within GHC, at Core level. (It checks GHC’s sanity, not
yours.)

-dstg-lint: Ditto for STG level. (NOTE: currently doesn’t work).

-dcmm-lint: Ditto for C-- level.

4.19.5 How to read Core syntax (from some -ddump flags)

Let’s do this by commenting an example. It’s from doing -ddump-ds on this code:

skip2 m = m : skip2 (m+2)

Before we jump in, a word about names of things. Within GHC, variables, type constructors, etc., are identified by their
“Uniques.” These are of the form `letter’ plus `number’ (both loosely interpreted). The `letter’ gives some idea of where the
Unique came from; e.g., _ means “built-in type variable”; t means “from the typechecker”; s means “from the simplifier”; and
so on. The `number’ is printed fairly compactly in a `base-62’ format, which everyone hates except me (WDP).

Remember, everything has a “Unique” and it is usually printed out when debugging, in some form or another. So here we go. . .

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 96 / 37

Desugared:
Main.skip2{-r1L6-} :: _forall_ a$_4 =>{{Num a$_4}} -> a$_4 -> [a$_4]

--# ‘r1L6’ is the Unique for Main.skip2;
--# ‘_4’ is the Unique for the type-variable (template) ‘a’
--# ‘{{Num a$_4}}’ is a dictionary argument

NI

--# ‘_NI_’ means "no (pragmatic) information" yet; it will later
--# evolve into the GHC_PRAGMA info that goes into interface files.

Main.skip2{-r1L6-} =
/\ _4 -> \ d.Num.t4Gt ->

let {
{- CoRec -}
+.t4Hg :: _4 -> _4 -> _4
NI
+.t4Hg = (+{-r3JH-} _4) d.Num.t4Gt

fromInt.t4GS :: Int{-2i-} -> _4
NI
fromInt.t4GS = (fromInt{-r3JX-} _4) d.Num.t4Gt

--# The ‘+’ class method (Unique: r3JH) selects the addition code
--# from a ‘Num’ dictionary (now an explicit lambda’d argument).
--# Because Core is 2nd-order lambda-calculus, type applications
--# and lambdas (/\) are explicit. So ‘+’ is first applied to a
--# type (‘_4’), then to a dictionary, yielding the actual addition
--# function that we will use subsequently...

--# We play the exact same game with the (non-standard) class method
--# ‘fromInt’. Unsurprisingly, the type ‘Int’ is wired into the
--# compiler.

lit.t4Hb :: _4
NI
lit.t4Hb =

let {
ds.d4Qz :: Int{-2i-}
NI
ds.d4Qz = I#! 2#

} in fromInt.t4GS ds.d4Qz

--# ‘I# 2#’ is just the literal Int ‘2’; it reflects the fact that
--# GHC defines ‘data Int = I# Int#’, where Int# is the primitive
--# unboxed type. (see relevant info about unboxed types elsewhere...)

--# The ‘!’ after ‘I#’ indicates that this is a *saturated*
--# application of the ‘I#’ data constructor (i.e., not partially
--# applied).

skip2.t3Ja :: _4 -> [_4]
NI
skip2.t3Ja =

\ m.r1H4 ->
let { ds.d4QQ :: [_4]

NI
ds.d4QQ =

let {
ds.d4QY :: _4

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 97 / 37

NI
ds.d4QY = +.t4Hg m.r1H4 lit.t4Hb

} in skip2.t3Ja ds.d4QY
} in
:! _4 m.r1H4 ds.d4QQ

{- end CoRec -}
} in skip2.t3Ja

(“It’s just a simple functional language” is an unregisterised trademark of Peyton Jones Enterprises, plc.)

4.20 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its static/dynamic status (see Sec-
tion 4.3), and the flag’s opposite (if available).

4.20.1 Help and verbosity options

Section 4.6

Flag Description Static/Dynamic Reverse
-? help mode -
-help help mode -

-v
verbose mode (equivalent to
-v3) dynamic -

-vn set verbosity level dynamic -
-V display GHC version mode -
--supported-exten-
sions or
--supported-langu-
ages

display the supported
languages and language
extensions

mode -

--info
display information about
the compiler mode -

--version display GHC version mode -

--numeric-version
display GHC version
(numeric only) mode -

--print-libdir
display GHC library
directory mode -

-ferror-spans
output full span in error
messages static -

-Hsize
Set the minimum heap size
to size

static -

-Rghc-timing
Summarise timing stats for
GHC (same as +RTS
-tstderr)

static -

4.20.2 Which phases to run

Section 4.5.3

Flag Description Static/Dynamic Reverse

-E
Stop after preprocessing
(.hspp file) mode -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 98 / 37

Flag Description Static/Dynamic Reverse

-C
Stop after generating C
(.hc file) mode -

-S
Stop after generating
assembly (.s file) mode -

-c Do not link dynamic -

-x suffix
Override default behaviour
for source files static -

4.20.3 Alternative modes of operation

Section 4.5

Flag Description Static/Dynamic Reverse

--interactive
Interactive mode - normally
used by just running ghci;
see Chapter 2 for details.

mode -

--make

Build a multi-module
Haskell program,
automatically figuring out
dependencies. Likely to be
much easier, and faster,
than using make; see
Section 4.5.1 for details..

mode -

-e expr
Evaluate expr; see
Section 4.5.2 for details. mode -

-M

Generate dependency
information suitable for use
in a Makefile; see
Section 4.7.11 for details.

mode -

4.20.4 Redirecting output

Section 4.7.4

Flag Description Static/Dynamic Reverse

-hcsuf suffix
set the suffix to use for
intermediate C files dynamic -

-hidir dir
set directory for interface
files dynamic -

-hisuf suffix
set the suffix to use for
interface files dynamic -

-o filename set output filename dynamic -
-odir dir set directory for object files dynamic -

-ohi filename
set the filename in which to
put the interface dynamic

-osuf suffix set the output file suffix dynamic -
-stubdir dir redirect FFI stub files dynamic -
-dumpdir dir redirect dump files dynamic -
-outputdir dir set output directory dynamic -

4.20.5 Keeping intermediate files

Section 4.7.5

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 99 / 37

Flag Description Static/Dynamic Reverse
-keep-hc-file or
-keep-hc-files

retain intermediate .hc
files dynamic -

-keep-llvm-file or
-keep-llvm-files

retain intermediate LLVM
.ll files dynamic -

-keep-s-file or
-keep-s-files

retain intermediate .s files dynamic -

-keep-tmp-files
retain all intermediate
temporary files dynamic -

4.20.6 Temporary files

Section 4.7.6

Flag Description Static/Dynamic Reverse

-tmpdir
set the directory for
temporary files dynamic -

4.20.7 Finding imports

Section 4.7.3

Flag Description Static/Dynamic Reverse

-idir1:dir2:... add dir, dir2, etc. to
import path static/:set -

-i
Empty the import directory
list static/:set -

4.20.8 Interface file options

Section 4.7.7

Flag Description Static/Dynamic Reverse

-ddump-hi
Dump the new interface to
stdout dynamic -

-ddump-hi-diffs
Show the differences vs. the
old interface dynamic -

-ddump-minimal-im-
ports

Dump a minimal set of
imports dynamic -

--show-iface file See Section 4.5.

4.20.9 Recompilation checking

Section 4.7.8

Flag Description Static/Dynamic Reverse

-fforce-recomp
Turn off recompilation
checking; implied by any
-ddump-X option

dynamic -fno-force-recomp

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 100 / 37

4.20.10 Interactive-mode options

Section 2.9

Flag Description Static/Dynamic Reverse

-ignore-dot-ghci
Disable reading of .ghci
files dynamic -

-ghci-script
Read additional .ghci
files dynamic -

-fbreak-on-except-
ion

Break on any exception
thrown dynamic -fno-break-on-exc-

eption

-fbreak-on-error
Break on uncaught
exceptions and errors dynamic -fno-break-on-err-

or
-fprint-evld-with-
-show

Enable usage of Show
instances in :print dynamic -fno-print-evld-w-

ith-show
-fprint-bind-resu-
lt

Turn on printing of binding
results in GHCi dynamic -fno-print-bind-r-

esult
-fno-print-bind-c-
ontents

Turn off printing of binding
contents in GHCi dynamic -

-fno-implicit-imp-
ort-qualified

Turn off implicit qualified
import of everything in
GHCi

dynamic -

-interactive-print
Select the function to use
for printing evaluated
expressions in GHCi

dynamic -

4.20.11 Packages

Section 4.9

Flag Description Static/Dynamic Reverse

-package-name P
Compile to be part of
package P static -

-package P Expose package P static/:set -
-hide-all-packages Hide all packages by default static -
-hide-package name Hide package P static/:set -
-ignore-package
name

Ignore package P static/:set -

-package-db file
Add file to the package
db stack. static -

-clear-package-db Clear the package db stack. static -
-no-global-packag-
e-db

Remove the global package
db from the stack. static -

-global-package-db
Add the global package db
to the stack. static -

-no-user-package--
db

Remove the user’s package
db from the stack. static -

-user-package-db
Add the user’s package db
to the stack. static -

-no-auto-link-pac-
kages

Don’t automatically link in
the haskell98 package. dynamic -

-trust P
Expose package P and set it
to be trusted static/:set -

-distrust P
Expose package P and set it
to be distrusted static/:set -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 101 / 37

Flag Description Static/Dynamic Reverse

-distrust-all
Distrust all packages by
default static/:set -

4.20.12 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-# LANGUAGE blah #-} pragma in
the file itself. See Section 7.1

Flag Description Static/Dynamic Reverse

-fglasgow-exts
Enable most language
extensions; see Section 7.1
for exactly which ones.

dynamic -fno-glasgow-exts

-XOverlappingInst-
ances

Enable overlapping
instances dynamic -XNoOverlappingIn-

stances

-XIncoherentInsta-
nces

Enable incoherent
instances. Implies -XOve-
rlappingInstances

dynamic -XNoIncoherentIns-
tances

-XUndecidableInst-
ances

Enable undecidable
instances dynamic -XNoUndecidableIn-

stances

-fcontext-stack=Nn
set the limit for context
reduction. Default is 20. dynamic

-XArrows
Enable arrow notation
extension dynamic -XNoArrows

-XDisambiguateRec-
ordFields

Enable record field
disambiguation dynamic -XNoDisambiguateR-

ecordFields

-XForeignFunction-
Interface

Enable foreign function
interface (implied by
-fglasgow-exts)

dynamic -XNoForeignFuncti-
onInterface

-XGenerics

Deprecated, does nothing.
No longer enables generic
classes. See also GHC’s
support for generic
programming.

dynamic -XNoGenerics

-XImplicitParams
Enable Implicit Parameters.
Implied by
-fglasgow-exts.

dynamic -XNoImplicitParams

-firrefutable-tup-
les

Make tuple pattern
matching irrefutable dynamic -fno-irrefutable--

tuples
-XNoImplicitPrelu-
de

Don’t implicitly import
Prelude

dynamic -XImplicitPrelude

-XRebindableSyntax Employ rebindable syntax dynamic -XNoRebindableSyn-
tax

-XNoMonomorphismR-
estriction

Disable the monomorphism
restriction dynamic -XMonomorphismRre-

striction

-XNoNPlusKPatterns
Disable support for n+k
patterns dynamic -XNPlusKPatterns

-XNoTraditionalRe-
cordSyntax

Disable support for
traditional record syntax (as
supported by Haskell 98) C
{f = x}

dynamic -XTraditionalReco-
rdSyntax

-XNoMonoPatBinds
Make pattern bindings
polymorphic dynamic -XMonoPatBinds

-XRelaxedPolyRec
Relaxed checking for
mutually-recursive
polymorphic functions

dynamic -XNoRelaxedPolyRec

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 102 / 37

Flag Description Static/Dynamic Reverse

-XExtendedDefault-
Rules

Use GHCi’s extended
default rules in a normal
module

dynamic -XNoExtendedDefau-
ltRules

-XOverloadedStrin-
gs

Enable overloaded string
literals. dynamic -XNoOverloadedStr-

ings

-XGADTs
Enable generalised
algebraic data types. dynamic -XNoGADTs

-XGADTSyntax
Enable generalised
algebraic data type syntax. dynamic -XNoGADTSyntax

-XTypeFamilies Enable type families. dynamic -XNoTypeFamilies

-XConstraintKinds
Enable a kind of
constraints. dynamic -XNoConstraintKin-

ds
-XDataKinds Enable datatype promotion. dynamic -XNoDataKinds

-XPolyKinds
Enable kind polymorphism.
Implies
-XKindSignatures.

dynamic -XNoPolyKinds

-XScopedTypeVaria-
bles

Enable lexically-scoped
type variables. Implied by
-fglasgow-exts.

dynamic -XNoScopedTypeVar-
iables

-XMonoLocalBinds
Enable do not generalise
local bindings. dynamic -XNoMonoLocalBinds

-XTemplateHaskell
Enable Template Haskell.
No longer implied by
-fglasgow-exts.

dynamic -XNoTemplateHaske-
ll

-XQuasiQuotes Enable quasiquotation. dynamic -XNoQuasiQuotes
-XBangPatterns Enable bang patterns. dynamic -XNoBangPatterns
-XCPP Enable the C preprocessor. dynamic -XNoCPP
-XPatternGuards Enable pattern guards. dynamic -XNoPatternGuards
-XViewPatterns Enable view patterns. dynamic -XNoViewPatterns
-XUnicodeSyntax Enable unicode syntax. dynamic -XNoUnicodeSyntax

-XMagicHash
Allow "#" as a postfix
modifier on identifiers. dynamic -XNoMagicHash

-XExplicitForAll

Enable explicit universal
quantification. Implied by
-XScopedTypeVaria-
bles,
-XLiberalTypeSyno-
nyms, -XRank2Types,
-XRankNTypes, -XPol-
ymorphicComponents,
-XExistentialQuan-
tification

dynamic -XNoExplicitForAll

-XPolymorphicComp-
onents

Enable polymorphic
components for data
constructors.

dynamic -XNoPolymorphicCo-
mponents

-XRank2Types Enable rank-2 types. dynamic -XNoRank2Types
-XRankNTypes Enable rank-N types. dynamic -XNoRankNTypes
-XImpredicativeTy-
pes

Enable impredicative types. dynamic -XNoImpredicative-
Types

-XExistentialQuan-
tification

Enable existential
quantification. dynamic -XNoExistentialQu-

antification
-XKindSignatures Enable kind signatures. dynamic -XNoKindSignatures

-XEmptyDataDecls
Enable empty data
declarations. dynamic -XNoEmptyDataDecls

-XParallelListComp
Enable parallel list
comprehensions. dynamic -XNoParallelListC-

omp

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 103 / 37

Flag Description Static/Dynamic Reverse
-XTransformListCo-
mp

Enable generalised list
comprehensions. dynamic -XNoTransformList-

Comp
-XMonadComprehens-
ions

Enable monad
comprehensions. dynamic -XNoMonadComprehe-

nsions

-XUnliftedFFITypes Enable unlifted FFI types. dynamic -XNoUnliftedFFITy-
pes

-XInterruptibleFFI Enable interruptible FFI. dynamic -XNoInterruptible-
FFI

-XLiberalTypeSyno-
nyms

Enable liberalised type
synonyms. dynamic -XNoLiberalTypeSy-

nonyms
-XTypeOperators Enable type operators. dynamic -XNoTypeOperators

-XExplicitNamespa-
ces

Enable using the keyword
type to specify the
namespace of entries in
imports and exports.

dynamic -XNoExplicitNames-
paces

-XRecursiveDo
Enable recursive do (mdo)
notation. dynamic -XNoRecursiveDo

-XParallelArrays Enable parallel arrays. dynamic -XNoParallelArrays

-XRecordWildCards Enable record wildcards. dynamic -XNoRecordWildCar-
ds

-XNamedFieldPuns Enable record puns. dynamic -XNoNamedFieldPuns
-XDisambiguateRec-
ordFields

Enable record field
disambiguation. dynamic -XNoDisambiguateR-

ecordFields
-XUnboxedTuples Enable unboxed tuples. dynamic -XNoUnboxedTuples
-XStandaloneDeriv-
ing

Enable standalone deriving. dynamic -XNoStandaloneDer-
iving

-XDeriveDataTypea-
ble

Enable deriving for the
Data and Typeable classes. dynamic -XNoDeriveDataTyp-

eable

-XDeriveGeneric
Enable deriving for the
Generic class. dynamic -XNoDeriveGeneric

-XGeneralizedNewt-
ypeDeriving

Enable newtype deriving. dynamic -XNoGeneralizedNe-
wtypeDeriving

-XTypeSynonymInst-
ances

Enable type synonyms in
instance heads. dynamic -XNoTypeSynonymIn-

stances

-XFlexibleContexts Enable flexible contexts. dynamic -XNoFlexibleConte-
xts

-XFlexibleInstanc-
es

Enable flexible instances.
Implies -XTypeSynony-
mInstances

dynamic -XNoFlexibleInsta-
nces

-XConstrainedClas-
sMethods

Enable constrained class
methods. dynamic -XNoConstrainedCl-

assMethods
-XDefaultSignatur-
es

Enable default signatures. dynamic -XNoDefaultSignat-
ures

-XMultiParamTypeC-
lasses

Enable multi parameter
type classes. dynamic -XNoMultiParamTyp-

eClasses
-XFunctionalDepen-
dencies

Enable functional
dependencies. dynamic -XNoFunctionalDep-

endencies

-XPackageImports
Enable package-qualified
imports. dynamic -XNoPackageImports

-XLambdaCase
Enable lambda-case
expressions. dynamic -XNoLambdaCase

-XMultiWayIf
Enable multi-way
if-expressions. dynamic -XNoMultiWayIf

-XSafe
Enable the Safe Haskell
Safe mode. dynamic -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 104 / 37

Flag Description Static/Dynamic Reverse

-XTrustworthy
Enable the Safe Haskell
Trustworthy mode. dynamic -

-XUnsafe
Enable Safe Haskell Unsafe
mode. dynamic -

-fpackage-trust
Enable Safe Haskell trusted
package requirement for
trustworty modules.

dynamic -

4.20.13 Warnings

Section 4.8

Flag Description Static/Dynamic Reverse
-W enable normal warnings dynamic -w
-w disable all warnings dynamic -

-Wall
enable almost all warnings
(details in Section 4.8) dynamic -w

-Werror make warnings fatal dynamic -Wwarn
-Wwarn make warnings non-fatal dynamic -Werror
-fdefer-type-erro-
rs

Defer as many type errors
as possible until runtime. dynamic -fno-defer-type-e-

rrors

-fhelpful-errors
Make suggestions for
mis-spelled names. dynamic -fno-helpful-erro-

rs

-fwarn-deprecated-
-flags

warn about uses of
commandline flags that are
deprecated

dynamic -fno-warn-depreca-
ted-flags

-fwarn-duplicate--
exports

warn when an entity is
exported multiple times dynamic -fno-warn-duplica-

te-exports

-fwarn-hi-shadowi-
ng

warn when a .hi file in the
current directory shadows a
library

dynamic -fno-warn-hi-shad-
owing

-fwarn-identities

warn about uses of Prelude
numeric conversions that
are probably the identity
(and hence could be
omitted)

dynamic -fno-warn-identit-
ies

-fwarn-implicit-p-
relude

warn when the Prelude is
implicitly imported dynamic -fno-warn-implici-

t-prelude
-fwarn-incomplete-
-patterns

warn when a pattern match
could fail dynamic -fno-warn-incompl-

ete-patterns

-fwarn-incomplete-
-uni-patterns

warn when a pattern match
in a lambda expression or
pattern binding could fail

dynamic -fno-warn-incompl-
ete-uni-patterns

-fwarn-incomplete-
-record-updates

warn when a record update
could fail dynamic -fno-warn-incompl-

ete-record-updates

-fwarn-lazy-unlif-
ted-bindings

warn when a pattern
binding looks lazy but must
be strict

dynamic -fno-warn-lazy-un-
lifted-bindings

-fwarn-missing-fi-
elds

warn when fields of a
record are uninitialised dynamic -fno-warn-missing-

-fields

-fwarn-missing-im-
port-lists

warn when an import
declaration does not
explicitly list all the names
brought into scope

dynamic -fnowarn-missing--
import-lists

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 105 / 37

Flag Description Static/Dynamic Reverse
-fwarn-missing-me-
thods

warn when class methods
are undefined dynamic -fno-warn-missing-

-methods
-fwarn-missing-si-
gnatures

warn about top-level
functions without signatures dynamic -fno-warn-missing-

-signatures

-fwarn-missing-lo-
cal-sigs

warn about polymorphic
local bindings without
signatures

dynamic -fno-warn-missing-
-local-sigs

-fwarn-monomorphi-
sm-restriction

warn when the
Monomorphism Restriction
is applied

dynamic -fno-warn-monomor-
phism-restriction

-fwarn-name-shado-
wing

warn when names are
shadowed dynamic -fno-warn-name-sh-

adowing

-fwarn-orphans, --
fwarn-auto-orphans

warn when the module
contains orphan instance
declarations or rewrite rules

dynamic
-fno-warn-orphans,
-fno-warn-auto-or-
phans

-fwarn-overlappin-
g-patterns

warn about overlapping
patterns dynamic -fno-warn-overlap-

ping-patterns

-fwarn-tabs
warn if there are tabs in the
source file dynamic -fno-warn-tabs

-fwarn-type-defau-
lts

warn when defaulting
happens dynamic -fno-warn-type-de-

faults
-fwarn-unrecognis-
ed-pragmas

warn about uses of pragmas
that GHC doesn’t recognise dynamic -fno-warn-unrecog-

nised-pragmas
-fwarn-unused-bin-
ds

warn about bindings that
are unused dynamic -fno-warn-unused--

binds
-fwarn-unused-imp-
orts

warn about unnecessary
imports dynamic -fno-warn-unused--

imports
-fwarn-unused-mat-
ches

warn about variables in
patterns that aren’t used dynamic -fno-warn-unused--

matches

-fwarn-unused-do--
bind

warn about do bindings that
appear to throw away values
of types other than ()

dynamic -fno-warn-unused--
do-bind

-fwarn-wrong-do-b-
ind

warn about do bindings that
appear to throw away
monadic values that you
should have bound instead

dynamic -fno-warn-wrong-d-
o-bind

-fwarn-unsafe

warn if the module being
compiled is regarded to be
unsafe. Should be used to
check the safety status of
modules when using safe
inference.

dynamic -fno-warn-unsafe

-fwarn-safe

warn if the module being
compiled is regarded to be
safe. Should be used to
check the safety status of
modules when using safe
inference.

dynamic -fno-warn-safe

-fwarn-warnings-d-
eprecations

warn about uses of
functions & types that have
warnings or deprecated
pragmas

dynamic -fno-warn-warning-
s-deprecations

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 106 / 37

4.20.14 Optimisation levels

Section 4.10

Flag Description Static/Dynamic Reverse

-O
Enable default optimisation
(level 1) dynamic -O0

-On Set optimisation level n dynamic -O0

4.20.15 Individual optimisations

Section 4.10.2

Flag Description Static/Dynamic Reverse

-fcase-merge
Enable case-merging.
Implied by -O. dynamic -fno-case-merge

-fcse
Turn on common
sub-expression elimination.
Implied by -O.

dynamic -fno-cse

-fdicts-strict Make dictionaries strict static -fno-dicts-strict

-fdo-eta-reduction
Enable eta-reduction.
Implied by -O. dynamic -fno-do-eta-reduc-

tion
-fdo-lambda-eta-e-
xpansion

Enable lambda
eta-reduction dynamic -fno-do-lambda-et-

a-expansion
-feager-blackholi-
ng

Turn on eager blackholing dynamic -

-fenable-rewrite--
rules

Switch on all rewrite rules
(including rules generated
by automatic specialisation
of overloaded functions).
Implied by -O.

dynamic -fno-enable-rewri-
te-rules

-fvectorise
Enable vectorisation of
nested data parallelism dynamic -fno-vectorise

-favoid-vect
Enable vectorisation
avoidance
(EXPERIMENTAL)

dynamic -fno-avoid-vect

-fexcess-precision
Enable excess intermediate
precision dynamic -fno-excess-preci-

sion

-ffloat-in
Turn on the float-in
transformation. Implied by
-O.

dynamic -fno-float-in

-ffull-laziness
Turn on full laziness
(floating bindings
outwards). Implied by -O.

dynamic -fno-full-laziness

-fignore-asserts
Ignore assertions in the
source dynamic -fno-ignore-asser-

ts
-fignore-interfac-
e-pragmas

Ignore pragmas in interface
files dynamic -fno-ignore-inter-

face-pragmas

-fliberate-case
Turn on the liberate-case
transformation. Implied by
-O2.

dynamic -fno-liberate-case

-fliberate-case-t-
hreshold=n

Set the size threshold for
the liberate-case
transformation to n (default:
200)

static -fno-liberate-cas-
e-threshold

-fmax-simplifier--
iterations

Set the max iterations for
the simplifier dynamic -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 107 / 37

Flag Description Static/Dynamic Reverse

-fmax-worker-args

If a worker has that many
arguments, none will be
unpacked anymore (default:
10)

static -

-fno-opt-coercion
Turn off the coercion
optimiser static -

-fno-pre-inlining Turn off pre-inlining static -

-fno-state-hack

Turn off the "state hack"
whereby any lambda with a
real-world state token as
argument is considered to
be single-entry. Hence OK
to inline things inside it.

static -

-fpedantic-bottoms

Make GHC be more precise
about its treatment of
bottom (but see also
-fno-state-hack). In
particular, GHC will not
eta-expand through a case
expression.

dynamic -fno-pedantic-bot-
toms

-fomit-interface--
pragmas

Don’t generate interface
pragmas dynamic -fno-omit-interfa-

ce-pragmas

-fsimplifier-phas-
es

Set the number of phases
for the simplifier (default
2). Ignored with -O0.

dynamic -

-fsimpl-tick-fact-
or=n

Set the percentage factor for
simplifier ticks (default
100)

dynamic -

-fspec-constr
Turn on the SpecConstr
transformation. Implied by
-O2.

dynamic -fno-spec-constr

-fspec-constr-thr-
eshold=n

Set the size threshold for
the SpecConstr
transformation to n (default:
200)

static -fno-spec-constr--
threshold

-fspec-constr-cou-
nt=n

Set to n (default: 3) the
maximum number of
specialisations that will be
created for any one function
by the SpecConstr
transformation

static -fno-spec-constr--
count

-fspecialise
Turn on specialisation of
overloaded functions.
Implied by -O.

dynamic -fno-specialise

-fstrictness
Turn on strictness analysis.
Implied by -O. dynamic -fno-strictness

-fstrictness=befo-
re=n

Run an additional strictness
analysis before simplifier
phase n

dynamic -

-fstatic-argument-
-transformation

Turn on the static argument
transformation. Implied by
-O2.

dynamic -fno-static-argument-
transformation

-funbox-strict-fi-
elds

Flatten strict constructor
fields dynamic -fno-unbox-strict-

-fields
-funfolding-creat-
ion-threshold

Tweak unfolding settings static -fno-unfolding-cr-
eation-threshold

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 108 / 37

Flag Description Static/Dynamic Reverse
-funfolding-fun-d-
iscount

Tweak unfolding settings static -fno-unfolding-fu-
n-discount

-funfolding-keene-
ss-factor

Tweak unfolding settings static -fno-unfolding-ke-
eness-factor

-funfolding-use-t-
hreshold

Tweak unfolding settings static -fno-unfolding-us-
e-threshold

4.20.16 Profiling options

Chapter 5

Flag Description Static/Dynamic Reverse
-prof Turn on profiling static -

-fprof-auto
Auto-add SCCs to all
bindings not marked
INLINE

dynamic -fno-prof-auto

-fprof-auto-top
Auto-add SCCs to all
top-level bindings not
marked INLINE

dynamic -fno-prof-auto

-fprof-auto-expor-
ted

Auto-add SCCs to all
exported bindings not
marked INLINE

dynamic -fno-prof-auto

-fprof-cafs Auto-add SCCs to all CAFs dynamic -fno-prof-cafs
-fno-prof-count-e-
ntries

Do not collect entry counts dynamic -fprof-count-entr-
ies

-ticky
Turn on ticky-ticky
profiling static -

4.20.17 Program coverage options

Section 5.7

Flag Description Static/Dynamic Reverse

-fhpc
Turn on Haskell program
coverage instrumentation static -

-hpcdir dir
Directory to deposit .mix
files during compilation
(default is .hpc)

dynamic -

4.20.18 Haskell pre-processor options

Section 4.12.4

Flag Description Static/Dynamic Reverse

-F
Enable the use of a
pre-processor (set with
-pgmF)

dynamic -

4.20.19 C pre-processor options

Section 4.12.3

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 109 / 37

Flag Description Static/Dynamic Reverse

-cpp
Run the C pre-processor on
Haskell source files dynamic -

-Dsymbol[=value] Define a symbol in the C
pre-processor dynamic -Usymbol

-Usymbol
Undefine a symbol in the C
pre-processor dynamic -

-Idir
Add dir to the directory
search list for #include
files

dynamic -

4.20.20 Code generation options

Section 4.12.5

Flag Description Static/Dynamic Reverse

-fasm
Use the native code
generator dynamic -fllvm

-fllvm
Compile using the LLVM
code generator dynamic -fasm

-fno-code Omit code generation dynamic -
-fbyte-code Generate byte-code dynamic -
-fobject-code Generate object code dynamic -

4.20.21 Linking options

Section 4.12.6

Flag Description Static/Dynamic Reverse

-shared
Generate a shared library
(as opposed to an
executable)

dynamic -

-fPIC
Generate
position-independent code
(where available)

static -

-dynamic
Use dynamic Haskell
libraries (if available) static -

-dynload
Selects one of a number of
modes for finding shared
libraries at runtime.

static -

-framework name

On Darwin/MacOS X only,
link in the framework name.
This option corresponds to
the -framework option
for Apple’s Linker.

dynamic -

-framework-path
name

On Darwin/MacOS X only,
add dir to the list of
directories searched for
frameworks. This option
corresponds to the -F
option for Apple’s Linker.

dynamic -

-llib Link in library lib dynamic -

-Ldir
Add dir to the list of
directories searched for
libraries

dynamic -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 110 / 37

Flag Description Static/Dynamic Reverse

-main-is
Set main module and
function dynamic -

--mk-dll
DLL-creation mode
(Windows only) dynamic -

-no-hs-main
Don’t assume this program
contains main dynamic -

-rtsopts, -rtsopts=-
{none,some,all}

Control whether the RTS
behaviour can be tweaked
via command-line flags and
the GHCRTS environment
variable. Using none
means no RTS flags can be
given; some means only a
minimum of safe options
can be given (the default),
and all (or no argument at
all) means that all RTS flags
are permitted.

dynamic -

-with-rtsopts=opts
Set the default RTS options
to opts. dynamic -

-no-link Omit linking dynamic -
-split-objs Split objects (for libraries) dynamic -
-static Use static Haskell libraries static -
-threaded Use the threaded runtime static -
-debug Use the debugging runtime static -

-eventlog
Enable runtime event
tracing static -

-fno-gen-manifest
Do not generate a manifest
file (Windows only) dynamic -

-fno-embed-manife-
st

Do not embed the manifest
in the executable (Windows
only)

dynamic -

-fno-shared-implib
Don’t generate an import
library for a DLL (Windows
only)

dynamic -

-dylib-install-na-
me
path

Set the install name (via
-install_name passed
to Apple’s linker),
specifying the full install
path of the library file. Any
libraries or executables that
link with it later will pick
up that path as their runtime
search location for it.
(Darwin/MacOS X only)

dynamic -

4.20.22 Plugin options

Section 9.3

Flag Description Static/Dynamic Reverse

-fplugin=module Load a plugin exported by a
given module static -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 111 / 37

Flag Description Static/Dynamic Reverse

-fplugin-opt=modul-
e:args

Give arguments to a plugin
module; module must be
specified with -fplugin

static -

4.20.23 Replacing phases

Section 4.12.1

Flag Description Static/Dynamic Reverse

-pgmL cmd
Use cmd as the literate
pre-processor dynamic -

-pgmP cmd

Use cmd as the C
pre-processor (with -cpp
only)

dynamic -

-pgmc cmd Use cmd as the C compiler dynamic -
-pgms cmd Use cmd as the splitter dynamic -
-pgma cmd Use cmd as the assembler dynamic -
-pgml cmd Use cmd as the linker dynamic -

-pgmdll cmd
Use cmd as the DLL
generator dynamic -

-pgmF cmd

Use cmd as the
pre-processor (with -F
only)

dynamic -

-pgmwindres cmd

Use cmd as the program for
embedding manifests on
Windows.

dynamic -

4.20.24 Forcing options to particular phases

Section 4.12.2

Flag Description Static/Dynamic Reverse

-optL option
pass option to the literate
pre-processor dynamic -

-optP option
pass option to cpp (with
-cpp only) dynamic -

-optF option
pass option to the custom
pre-processor dynamic -

-optc option
pass option to the C
compiler dynamic -

-optlo option
pass option to the LLVM
optimiser dynamic -

-optlc option
pass option to the LLVM
compiler dynamic -

-optm option pass option to the mangler dynamic -

-opta option
pass option to the
assembler dynamic -

-optl option pass option to the linker dynamic -

-optdll option
pass option to the DLL
generator dynamic -

-optwindres option pass option to windres. dynamic -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 112 / 37

4.20.25 Platform-specific options

Section 4.16

Flag Description Static/Dynamic Reverse

-msse2
(x86 only) Use SSE2 for
floating point dynamic -

-monly-[432]-regs
(x86 only) give some
registers back to the C
compiler

dynamic -

4.20.26 External core file options

Section 4.18

Flag Description Static/Dynamic Reverse

-fext-core
Generate .hcr external
Core files dynamic -

4.20.27 Compiler debugging options

Section 4.19

Flag Description Static/Dynamic Reverse

-dcore-lint
Turn on internal sanity
checking dynamic -

-ddump-to-file
Dump to files instead of
stdout dynamic -

-ddump-asm Dump assembly dynamic -
-ddump-bcos Dump interpreter byte code dynamic -
-ddump-cmm Dump C-- output dynamic -

-ddump-core-stats

Print a one-line summary of
the size of the Core
program at the end of the
optimisation pipeline

dynamic -

-ddump-cpranal
Dump output from CPR
analysis dynamic -

-ddump-cse Dump CSE output dynamic -
-ddump-deriv Dump deriving output dynamic -
-ddump-ds Dump desugarer output dynamic -
-ddump-flatC Dump “flat” C dynamic -

-ddump-foreign
Dump foreign export
stubs dynamic -

-ddump-hpc
Dump after instrumentation
for program coverage dynamic -

-ddump-inlinings Dump inlining info dynamic -

-ddump-llvm
Dump LLVM intermediate
code dynamic -

-ddump-occur-anal
Dump occurrence analysis
output dynamic -

-ddump-opt-cmm
Dump the results of C-- to
C-- optimising passes dynamic -

-ddump-parsed Dump parse tree dynamic -
-ddump-prep Dump prepared core dynamic -
-ddump-rn Dump renamer output dynamic -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 113 / 37

Flag Description Static/Dynamic Reverse
-ddump-rule-firin-
gs

Dump rule firing info dynamic -

-ddump-rule-rewri-
tes

Dump detailed rule firing
info dynamic -

-ddump-rules Dump rules dynamic -

-ddump-vect
Dump vectoriser input and
output dynamic -

-ddump-simpl
Dump final simplifier
output dynamic -

-ddump-simpl-phas-
es

Dump output from each
simplifier phase dynamic -

-ddump-simpl-iter-
ations

Dump output from each
simplifier iteration dynamic -

-ddump-spec Dump specialiser output dynamic -

-ddump-splices
Dump TH spliced
expressions, and what they
evaluate to

dynamic -

-ddump-stg Dump final STG dynamic -

-ddump-stranal
Dump strictness analyser
output dynamic -

-ddump-tc Dump typechecker output dynamic -
-ddump-types Dump type signatures dynamic -
-ddump-worker-wra-
pper

Dump worker-wrapper
output dynamic -

-ddump-if-trace Trace interface files dynamic -
-ddump-tc-trace Trace typechecker dynamic -
-ddump-vt-trace Trace vectoriser dynamic -
-ddump-rn-trace Trace renamer dynamic -
-ddump-rn-stats Renamer stats dynamic -
-ddump-simpl-stats Dump simplifier stats dynamic -

-dno-debug-output
Suppress unsolicited
debugging output static -

-dppr-debug
Turn on debug printing
(more verbose) static -

-dppr-noprags
Don’t output pragma info in
dumps static -

-dppr-user-length
Set the depth for printing
expressions in error msgs dynamic -

-dppr-colsNNN
Set the width of debugging
output. For example
-dppr-cols200

dynamic -

-dppr-case-as-let
Print single alternative case
expressions as strict lets. dynamic -

-dsuppress-all
In core dumps, suppress
everything that is
suppressable.

static -

-dsuppress-uniques
Suppress the printing of
uniques in debug output
(easier to use diff)

static -

-dsuppress-idinfo

Suppress extended
information about
identifiers where they are
bound

static -

-dsuppress-module-
-prefixes

Suppress the printing of
module qualification
prefixes

static -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 114 / 37

Flag Description Static/Dynamic Reverse
-dsuppress-type-s-
ignatures

Suppress type signatures static -

-dsuppress-type-a-
pplications

Suppress type applications static -

-dsuppress-coerci-
ons

Suppress the printing of
coercions in Core dumps to
make them shorter

static -

-dsource-stats Dump haskell source stats dynamic -
-dcmm-lint C-- pass sanity checking dynamic -
-dstg-lint STG pass sanity checking dynamic -
-dstg-stats Dump STG stats dynamic -
-dverbose-core2co-
re

Show output from each
core-to-core pass dynamic -

-dverbose-stg2stg
Show output from each
STG-to-STG pass dynamic -

-dshow-passes
Print out each pass name as
it happens dynamic -

-dfaststring-stats
Show statistics for fast
string usage when finished dynamic -

4.20.28 Misc compiler options

Flag Description Static/Dynamic Reverse
-fno-hi-version-c-
heck

Don’t complain about .hi
file mismatches static -

-dno-black-holing
Turn off black holing
(probably doesn’t work) static -

-fhistory-size
Set simplification history
size static -

-funregisterised
Unregisterised compilation
(use -unreg instead) static -

-fno-ghci-history
Do not use the load/store
the GHCi command history
from/to ghci_history.

dynamic -

-fno-ghci-sandbox

Turn off the GHCi sandbox.
Means computations are
run in the main thread,
rather than a forked thread.

dynamic -

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 115 / 37

Chapter 5

Profiling

GHC comes with a time and space profiling system, so that you can answer questions like "why is my program so slow?", or
"why is my program using so much memory?".

Profiling a program is a three-step process:

1. Re-compile your program for profiling with the -prof option, and probably one of the options for adding automatic
annotations: -fprof-auto is the most common1.

If you are using external packages with cabal, you may need to reinstall these packages with profiling support; typically
this is done with cabal install -p package --reinstall.

2. Having compiled the program for profiling, you now need to run it to generate the profile. For example, a simple time
profile can be generated by running the program with +RTS -p, which generates a file named prog.prof where prog
is the name of your program (without the .exe extension, if you are on Windows).

There are many different kinds of profile that can be generated, selected by different RTS options. We will be describing
the various kinds of profile throughout the rest of this chapter. Some profiles require further processing using additional
tools after running the program.

3. Examine the generated profiling information, use the information to optimise your program, and repeat as necessary.

5.1 Cost centres and cost-centre stacks

GHC’s profiling system assigns costs to cost centres. A cost is simply the time or space (memory) required to evaluate an
expression. Cost centres are program annotations around expressions; all costs incurred by the annotated expression are assigned
to the enclosing cost centre. Furthermore, GHC will remember the stack of enclosing cost centres for any given expression at
run-time and generate a call-tree of cost attributions.

Let’s take a look at an example:

main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as follows:

$ ghc -prof -fprof-auto -rtsopts Main.hs
$./Main +RTS -p
121393
$

When a GHC-compiled program is run with the -p RTS option, it generates a file called prog.prof. In this case, the file will
contain something like this:

1-fprof-auto was known as -auto-all prior to GHC 7.4.1.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 116 / 37

Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)

Main +RTS -p -RTS

total time = 0.68 secs (34 ticks @ 20 ms)
total alloc = 204,677,844 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

fib Main 100.0 100.0

individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
fib Main 205 2692537 100.0 100.0 100.0 100.0

The first part of the file gives the program name and options, and the total time and total memory allocation measured during
the run of the program (note that the total memory allocation figure isn’t the same as the amount of live memory needed by the
program at any one time; the latter can be determined using heap profiling, which we will describe later in Section 5.4).

The second part of the file is a break-down by cost centre of the most costly functions in the program. In this case, there was
only one significant function in the program, namely fib, and it was responsible for 100% of both the time and allocation costs
of the program.

The third and final section of the file gives a profile break-down by cost-centre stack. This is roughly a call-tree profile of the
program. In the example above, it is clear that the costly call to fib came from main.

The time and allocation incurred by a given part of the program is displayed in two ways: “individual”, which are the costs
incurred by the code covered by this cost centre stack alone, and “inherited”, which includes the costs incurred by all the children
of this node.

The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:

main = print (f 30 + g 30)
where
f n = fib n
g n = fib (n ‘div‘ 2)

fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)

Compile and run this program as before, and take a look at the new profiling results:

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
main.g Main 207 1 0.0 0.0 0.0 0.1
fib Main 208 1973 0.0 0.1 0.0 0.1
main.f Main 205 1 0.0 0.0 100.0 99.9
fib Main 206 2692537 100.0 99.9 100.0 99.9

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 117 / 37

Now although we had two calls to fib in the program, it is immediately clear that it was the call from f which took all the time.
The functions f and g which are defined in the where clause in main are given their own cost centres, main.f and main.g
respectively.

The actual meaning of the various columns in the output is:

entries The number of times this particular point in the call tree was entered.

individual %time The percentage of the total run time of the program spent at this point in the call tree.

individual %alloc The percentage of the total memory allocations (excluding profiling overheads) of the program made by this
call.

inherited %time The percentage of the total run time of the program spent below this point in the call tree.

inherited %alloc The percentage of the total memory allocations (excluding profiling overheads) of the program made by this
call and all of its sub-calls.

In addition you can use the -P RTS option to get the following additional information:

ticks The raw number of time “ticks” which were attributed to this cost-centre; from this, we get the %time figure mentioned
above.

bytes Number of bytes allocated in the heap while in this cost-centre; again, this is the raw number from which we get the
%alloc figure mentioned above.

What about recursive functions, and mutually recursive groups of functions? Where are the costs attributed? Well, although GHC
does keep information about which groups of functions called each other recursively, this information isn’t displayed in the basic
time and allocation profile, instead the call-graph is flattened into a tree as follows: a call to a function that occurs elsewhere on
the current stack does not push another entry on the stack, instead the costs for this call are aggregated into the caller2.

5.1.1 Inserting cost centres by hand

Cost centres are just program annotations. When you say -fprof-auto to the compiler, it automatically inserts a cost centre
annotation around every binding not marked INLINE in your program, but you are entirely free to add cost centre annotations
yourself.

The syntax of a cost centre annotation is

{-# SCC "name" #-} <expression>

where "name" is an arbitrary string, that will become the name of your cost centre as it appears in the profiling output, and
<expression> is any Haskell expression. An SCC annotation extends as far to the right as possible when parsing. (SCC
stands for "Set Cost Centre"). The double quotes can be omitted if name is a Haskell identifier, for example:

{-# SCC my_function #-} <expression>

Here is an example of a program with a couple of SCCs:

main :: IO ()
main = do let xs = [1..1000000]

let ys = [1..2000000]
print $ {-# SCC last_xs #-} last xs
print $ {-# SCC last_init_xs #-} last $ init xs
print $ {-# SCC last_ys #-} last ys
print $ {-# SCC last_init_ys #-}last $ init ys

which gives this profile when run:

2Note that this policy has changed slightly in GHC 7.4.1 relative to earlier versions, and may yet change further, feedback is welcome.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 118 / 37

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 130 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 122 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 111 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
last_init_ys Main 210 1 25.0 27.4 25.0 27.4
main.ys Main 209 1 25.0 39.2 25.0 39.2
last_ys Main 208 1 12.5 0.0 12.5 0.0
last_init_xs Main 207 1 12.5 13.7 12.5 13.7
main.xs Main 206 1 18.8 19.6 18.8 19.6
last_xs Main 205 1 6.2 0.0 6.2 0.0

5.1.2 Rules for attributing costs

While running a program with profiling turned on, GHC maintains a cost-centre stack behind the scenes, and attributes any costs
(memory allocation and time) to whatever the current cost-centre stack is at the time the cost is incurred.

The mechanism is simple: whenever the program evaluates an expression with an SCC annotation, {-# SCC c -#} E, the
cost centre c is pushed on the current stack, and the entry count for this stack is incremented by one. The stack also sometimes
has to be saved and restored; in particular when the program creates a thunk (a lazy suspension), the current cost-centre stack
is stored in the thunk, and restored when the thunk is evaluated. In this way, the cost-centre stack is independent of the actual
evaluation order used by GHC at runtime.

At a function call, GHC takes the stack stored in the function being called (which for a top-level function will be empty), and
appends it to the current stack, ignoring any prefix that is identical to a prefix of the current stack.

We mentioned earlier that lazy computations, i.e. thunks, capture the current stack when they are created, and restore this stack
when they are evaluated. What about top-level thunks? They are "created" when the program is compiled, so what stack should
we give them? The technical name for a top-level thunk is a CAF ("Constant Applicative Form"). GHC assigns every CAF in a
module a stack consisting of the single cost centre M.CAF, where M is the name of the module. It is also possible to give each
CAF a different stack, using the option -fprof-cafs.

5.2 Compiler options for profiling

-prof: To make use of the profiling system all modules must be compiled and linked with the -prof option. Any SCC
annotations you’ve put in your source will spring to life.

Without a -prof option, your SCCs are ignored; so you can compile SCC-laden code without changing it.

There are a few other profiling-related compilation options. Use them in addition to -prof. These do not have to be used
consistently for all modules in a program.

-fprof-auto: All bindings not marked INLINE, whether exported or not, top level or nested, will be given automatic SCC
annotations. Functions marked INLINE must be given a cost centre manually.

-fprof-auto-top: GHC will automatically add SCC annotations for all top-level bindings not marked INLINE. If you
want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-exported: GHC will automatically add SCC annotations for all exported functions not marked INLINE.
If you want a cost centre on an INLINE function, you have to add it manually.

-fprof-auto-calls: Adds an automatic SCC annotation to all call sites. This is particularly useful when using profiling
for the purposes of generating stack traces; see the function traceStack in the module Debug.Trace, or the -xc
RTS flag (Section 4.17.7) for more details.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 119 / 37

-fprof-cafs: The costs of all CAFs in a module are usually attributed to one “big” CAF cost-centre. With this option, all
CAFs get their own cost-centre. An “if all else fails” option. . .

-fno-prof-auto: Disables any previous -fprof-auto, -fprof-auto-top, or -fprof-auto-exported op-
tions.

-fno-prof-cafs: Disables any previous -fprof-cafs option.

-fno-prof-count-entries: Tells GHC not to collect information about how often functions are entered at runtime (the
"entries" column of the time profile), for this module. This tends to make the profiled code run faster, and hence closer to
the speed of the unprofiled code, because GHC is able to optimise more aggressively if it doesn’t have to maintain correct
entry counts. This option can be useful if you aren’t interested in the entry counts (for example, if you only intend to do
heap profiling).

5.3 Time and allocation profiling

To generate a time and allocation profile, give one of the following RTS options to the compiled program when you run it (RTS
options should be enclosed between +RTS...-RTS as usual):

-p or -P or -pa: The -p option produces a standard time profile report. It is written into the file program.prof.

The -P option produces a more detailed report containing the actual time and allocation data as well. (Not used much.)

The -pa option produces the most detailed report containing all cost centres in addition to the actual time and allocation
data.

-Vsecs Sets the interval that the RTS clock ticks at, which is also the sampling interval of the time and allocation profile. The
default is 0.02 seconds.

-xc This option causes the runtime to print out the current cost-centre stack whenever an exception is raised. This can be
particularly useful for debugging the location of exceptions, such as the notorious Prelude.head: empty list
error. See Section 4.17.7.

5.4 Profiling memory usage

In addition to profiling the time and allocation behaviour of your program, you can also generate a graph of its memory usage
over time. This is useful for detecting the causes of space leaks, when your program holds on to more memory at run-time that
it needs to. Space leaks lead to slower execution due to heavy garbage collector activity, and may even cause the program to run
out of memory altogether.

To generate a heap profile from your program:

1. Compile the program for profiling (Section 5.2).

2. Run it with one of the heap profiling options described below (eg. -h for a basic producer profile). This generates the file
prog.hp.

3. Run hp2ps to produce a Postscript file, prog.ps. The hp2ps utility is described in detail in Section 5.5.

4. Display the heap profile using a postscript viewer such as Ghostview, or print it out on a Postscript-capable printer.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 120 / 37

For example, here is a heap profile produced for the program given above in Section 5.1.1:
You might also want to take a look at hp2any, a more advanced suite of tools (not distributed with GHC) for displaying heap
profiles.

5.4.1 RTS options for heap profiling

There are several different kinds of heap profile that can be generated. All the different profile types yield a graph of live heap
against time, but they differ in how the live heap is broken down into bands. The following RTS options select which break-down
to use:

-hc (can be shortened to -h). Breaks down the graph by the cost-centre stack which produced the data.

-hm Break down the live heap by the module containing the code which produced the data.

-hd Breaks down the graph by closure description. For actual data, the description is just the constructor name, for other
closures it is a compiler-generated string identifying the closure.

-hy Breaks down the graph by type. For closures which have function type or unknown/polymorphic type, the string will
represent an approximation to the actual type.

-hr Break down the graph by retainer set. Retainer profiling is described in more detail below (Section 5.4.2).

-hb Break down the graph by biography. Biographical profiling is described in more detail below (Section 5.4.3).

http://www.haskell.org/haskellwiki/Hp2any

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 121 / 37

In addition, the profile can be restricted to heap data which satisfies certain criteria - for example, you might want to display a
profile by type but only for data produced by a certain module, or a profile by retainer for a certain type of data. Restrictions are
specified as follows:

-hcname,... Restrict the profile to closures produced by cost-centre stacks with one of the specified cost centres at the top.

-hCname,... Restrict the profile to closures produced by cost-centre stacks with one of the specified cost centres anywhere in
the stack.

-hmmodule,... Restrict the profile to closures produced by the specified modules.

-hddesc,... Restrict the profile to closures with the specified description strings.

-hytype,... Restrict the profile to closures with the specified types.

-hrcc,... Restrict the profile to closures with retainer sets containing cost-centre stacks with one of the specified cost centres
at the top.

-hbbio,... Restrict the profile to closures with one of the specified biographies, where bio is one of lag, drag, void, or
use.

For example, the following options will generate a retainer profile restricted to Branch and Leaf constructors:

prog +RTS -hr -hdBranch,Leaf

There can only be one "break-down" option (eg. -hr in the example above), but there is no limit on the number of further
restrictions that may be applied. All the options may be combined, with one exception: GHC doesn’t currently support mixing
the -hr and -hb options.

There are three more options which relate to heap profiling:

-isecs: Set the profiling (sampling) interval to secs seconds (the default is 0.1 second). Fractions are allowed: for example
-i0.2will get 5 samples per second. This only affects heap profiling; time profiles are always sampled with the frequency
of the RTS clock. See Section 5.3 for changing that.

-xt Include the memory occupied by threads in a heap profile. Each thread takes up a small area for its thread state in addition
to the space allocated for its stack (stacks normally start small and then grow as necessary).

This includes the main thread, so using -xt is a good way to see how much stack space the program is using.

Memory occupied by threads and their stacks is labelled as “TSO” and “STACK” respectively when displaying the profile
by closure description or type description.

-Lnum Sets the maximum length of a cost-centre stack name in a heap profile. Defaults to 25.

5.4.2 Retainer Profiling

Retainer profiling is designed to help answer questions like ‘why is this data being retained?’. We start by defining what we mean
by a retainer:

A retainer is either the system stack, or an unevaluated closure (thunk).

In particular, constructors are not retainers.

An object B retains object A if (i) B is a retainer object and (ii) object A can be reached by recursively following pointers starting
from object B, but not meeting any other retainer objects on the way. Each live object is retained by one or more retainer objects,
collectively called its retainer set, or its retainer set, or its retainers.

When retainer profiling is requested by giving the program the -hr option, a graph is generated which is broken down by retainer
set. A retainer set is displayed as a set of cost-centre stacks; because this is usually too large to fit on the profile graph, each
retainer set is numbered and shown abbreviated on the graph along with its number, and the full list of retainer sets is dumped
into the file prog.prof.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 122 / 37

Retainer profiling requires multiple passes over the live heap in order to discover the full retainer set for each object, which can
be quite slow. So we set a limit on the maximum size of a retainer set, where all retainer sets larger than the maximum retainer
set size are replaced by the special set MANY. The maximum set size defaults to 8 and can be altered with the -R RTS option:

-Rsize Restrict the number of elements in a retainer set to size (default 8).

5.4.2.1 Hints for using retainer profiling

The definition of retainers is designed to reflect a common cause of space leaks: a large structure is retained by an unevaluated
computation, and will be released once the computation is forced. A good example is looking up a value in a finite map, where
unless the lookup is forced in a timely manner the unevaluated lookup will cause the whole mapping to be retained. These kind
of space leaks can often be eliminated by forcing the relevant computations to be performed eagerly, using seq or strictness
annotations on data constructor fields.

Often a particular data structure is being retained by a chain of unevaluated closures, only the nearest of which will be reported
by retainer profiling - for example A retains B, B retains C, and C retains a large structure. There might be a large number of Bs
but only a single A, so A is really the one we’re interested in eliminating. However, retainer profiling will in this case report B as
the retainer of the large structure. To move further up the chain of retainers, we can ask for another retainer profile but this time
restrict the profile to B objects, so we get a profile of the retainers of B:

prog +RTS -hr -hcB

This trick isn’t foolproof, because there might be other B closures in the heap which aren’t the retainers we are interested in, but
we’ve found this to be a useful technique in most cases.

5.4.3 Biographical Profiling

A typical heap object may be in one of the following four states at each point in its lifetime:

• The lag stage, which is the time between creation and the first use of the object,

• the use stage, which lasts from the first use until the last use of the object, and

• The drag stage, which lasts from the final use until the last reference to the object is dropped.

• An object which is never used is said to be in the void state for its whole lifetime.

A biographical heap profile displays the portion of the live heap in each of the four states listed above. Usually the most interesting
states are the void and drag states: live heap in these states is more likely to be wasted space than heap in the lag or use states.

It is also possible to break down the heap in one or more of these states by a different criteria, by restricting a profile by biography.
For example, to show the portion of the heap in the drag or void state by producer:

prog +RTS -hc -hbdrag,void

Once you know the producer or the type of the heap in the drag or void states, the next step is usually to find the retainer(s):

prog +RTS -hr -hccc...

NOTE: this two stage process is required because GHC cannot currently profile using both biographical and retainer information
simultaneously.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 123 / 37

5.4.4 Actual memory residency

How does the heap residency reported by the heap profiler relate to the actual memory residency of your program when you run
it? You might see a large discrepancy between the residency reported by the heap profiler, and the residency reported by tools on
your system (eg. ps or top on Unix, or the Task Manager on Windows). There are several reasons for this:

• There is an overhead of profiling itself, which is subtracted from the residency figures by the profiler. This overhead goes away
when compiling without profiling support, of course. The space overhead is currently 2 extra words per heap object, which
probably results in about a 30% overhead.

• Garbage collection requires more memory than the actual residency. The factor depends on the kind of garbage collection
algorithm in use: a major GC in the standard generation copying collector will usually require 3L bytes of memory, where L is
the amount of live data. This is because by default (see the +RTS -F option) we allow the old generation to grow to twice its
size (2L) before collecting it, and we require additionally L bytes to copy the live data into. When using compacting collection
(see the +RTS -c option), this is reduced to 2L, and can further be reduced by tweaking the -F option. Also add the size of
the allocation area (currently a fixed 512Kb).

• The stack isn’t counted in the heap profile by default. See the +RTS -xt option.

• The program text itself, the C stack, any non-heap data (eg. data allocated by foreign libraries, and data allocated by the RTS),
and mmap()’d memory are not counted in the heap profile.

5.5 hp2ps––heap profile to PostScript

Usage:

hp2ps [flags] [<file>[.hp]]

The program hp2ps converts a heap profile as produced by the -h<break-down> runtime option into a PostScript graph of
the heap profile. By convention, the file to be processed by hp2ps has a .hp extension. The PostScript output is written to
<file>@.ps. If <file> is omitted entirely, then the program behaves as a filter.

hp2ps is distributed in ghc/utils/hp2ps in a GHC source distribution. It was originally developed by Dave Wakeling as
part of the HBC/LML heap profiler.

The flags are:

-d In order to make graphs more readable, hp2ps sorts the shaded bands for each identifier. The default sort ordering is for
the bands with the largest area to be stacked on top of the smaller ones. The -d option causes rougher bands (those
representing series of values with the largest standard deviations) to be stacked on top of smoother ones.

-b Normally, hp2ps puts the title of the graph in a small box at the top of the page. However, if the JOB string is too long to fit
in a small box (more than 35 characters), then hp2ps will choose to use a big box instead. The -b option forces hp2ps to
use a big box.

-e<float>[in|mm|pt] Generate encapsulated PostScript suitable for inclusion in LaTeX documents. Usually, the PostScript
graph is drawn in landscape mode in an area 9 inches wide by 6 inches high, and hp2ps arranges for this area to be ap-
proximately centred on a sheet of a4 paper. This format is convenient of studying the graph in detail, but it is unsuitable
for inclusion in LaTeX documents. The -e option causes the graph to be drawn in portrait mode, with float specifying the
width in inches, millimetres or points (the default). The resulting PostScript file conforms to the Encapsulated PostScript
(EPS) convention, and it can be included in a LaTeX document using Rokicki’s dvi-to-PostScript converter dvips.

-g Create output suitable for the gs PostScript previewer (or similar). In this case the graph is printed in portrait mode without
scaling. The output is unsuitable for a laser printer.

-l Normally a profile is limited to 20 bands with additional identifiers being grouped into an OTHER band. The -l flag removes
this 20 band and limit, producing as many bands as necessary. No key is produced as it won’t fit!. It is useful for creation
time profiles with many bands.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 124 / 37

-m<int> Normally a profile is limited to 20 bands with additional identifiers being grouped into an OTHER band. The -m flag
specifies an alternative band limit (the maximum is 20).

-m0 requests the band limit to be removed. As many bands as necessary are produced. However no key is produced as it
won’t fit! It is useful for displaying creation time profiles with many bands.

-p Use previous parameters. By default, the PostScript graph is automatically scaled both horizontally and vertically so that
it fills the page. However, when preparing a series of graphs for use in a presentation, it is often useful to draw a new
graph using the same scale, shading and ordering as a previous one. The -p flag causes the graph to be drawn using the
parameters determined by a previous run of hp2ps on file. These are extracted from file@.aux.

-s Use a small box for the title.

-t<float> Normally trace elements which sum to a total of less than 1% of the profile are removed from the profile. The -t
option allows this percentage to be modified (maximum 5%).

-t0 requests no trace elements to be removed from the profile, ensuring that all the data will be displayed.

-c Generate colour output.

-y Ignore marks.

-? Print out usage information.

5.5.1 Manipulating the hp file

(Notes kindly offered by Jan-Willem Maessen.)

The FOO.hp file produced when you ask for the heap profile of a program FOO is a text file with a particularly simple structure.
Here’s a representative example, with much of the actual data omitted:

JOB "FOO -hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 15.07

... sample data ...
END_SAMPLE 15.07
BEGIN_SAMPLE 30.23

... sample data ...
END_SAMPLE 30.23
... etc.
BEGIN_SAMPLE 11695.47
END_SAMPLE 11695.47

The first four lines (JOB, DATE, SAMPLE_UNIT, VALUE_UNIT) form a header. Each block of lines starting with BEGIN_S-
AMPLE and ending with END_SAMPLE forms a single sample (you can think of this as a vertical slice of your heap profile). The
hp2ps utility should accept any input with a properly-formatted header followed by a series of *complete* samples.

5.5.2 Zooming in on regions of your profile

You can look at particular regions of your profile simply by loading a copy of the .hp file into a text editor and deleting the
unwanted samples. The resulting .hp file can be run through hp2ps and viewed or printed.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 125 / 37

5.5.3 Viewing the heap profile of a running program

The .hp file is generated incrementally as your program runs. In principle, running hp2ps on the incomplete file should produce
a snapshot of your program’s heap usage. However, the last sample in the file may be incomplete, causing hp2ps to fail. If you
are using a machine with UNIX utilities installed, it’s not too hard to work around this problem (though the resulting command
line looks rather Byzantine):

head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1‘ FOO.hp \
| hp2ps > FOO.ps

The command fgrep -n END_SAMPLE FOO.hp finds the end of every complete sample in FOO.hp, and labels each sample
with its ending line number. We then select the line number of the last complete sample using tail and cut. This is used as a
parameter to head; the result is as if we deleted the final incomplete sample from FOO.hp. This results in a properly-formatted
.hp file which we feed directly to hp2ps.

5.5.4 Viewing a heap profile in real time

The gv and ghostview programs have a "watch file" option can be used to view an up-to-date heap profile of your program as it
runs. Simply generate an incremental heap profile as described in the previous section. Run gv on your profile:

gv -watch -seascape FOO.ps

If you forget the -watch flag you can still select "Watch file" from the "State" menu. Now each time you generate a new profile
FOO.ps the view will update automatically.

This can all be encapsulated in a little script:

#!/bin/sh
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1‘ FOO.hp \
| hp2ps > FOO.ps

gv -watch -seascape FOO.ps &
while [1] ; do
sleep 10 # We generate a new profile every 10 seconds.
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1‘ FOO.hp \

| hp2ps > FOO.ps
done

Occasionally gv will choke as it tries to read an incomplete copy of FOO.ps (because hp2ps is still running as an update occurs).
A slightly more complicated script works around this problem, by using the fact that sending a SIGHUP to gv will cause it to
re-read its input file:

#!/bin/sh
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1‘ FOO.hp \
| hp2ps > FOO.ps

gv FOO.ps &
gvpsnum=$!
while [1] ; do
sleep 10
head -‘fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1‘ FOO.hp \

| hp2ps > FOO.ps
kill -HUP $gvpsnum

done

5.6 Profiling Parallel and Concurrent Programs

Combining -threaded and -prof is perfectly fine, and indeed it is possible to profile a program running on multiple proces-
sors with the +RTS -N option.3

3This feature was added in GHC 7.4.1.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 126 / 37

Some caveats apply, however. In the current implementation, a profiled program is likely to scale much less well than the
unprofiled program, because the profiling implementation uses some shared data structures which require locking in the runtime
system. Furthermore, the memory allocation statistics collected by the profiled program are stored in shared memory but not
locked (for speed), which means that these figures might be inaccurate for parallel programs.

We strongly recommend that you use -fno-prof-count-entries when compiling a program to be profiled on multiple
cores, because the entry counts are also stored in shared memory, and continuously updating them on multiple cores is extremely
slow.

We also recommend using ThreadScope for profiling parallel programs; it offers a GUI for visualising parallel execution, and is
complementary to the time and space profiling features provided with GHC.

5.7 Observing Code Coverage

Code coverage tools allow a programmer to determine what parts of their code have been actually executed, and which parts
have never actually been invoked. GHC has an option for generating instrumented code that records code coverage as part of
the Haskell Program Coverage (HPC) toolkit, which is included with GHC. HPC tools can be used to render the generated code
coverage information into human understandable format.

Correctly instrumented code provides coverage information of two kinds: source coverage and boolean-control coverage. Source
coverage is the extent to which every part of the program was used, measured at three different levels: declarations (both top-
level and local), alternatives (among several equations or case branches) and expressions (at every level). Boolean coverage is the
extent to which each of the values True and False is obtained in every syntactic boolean context (ie. guard, condition, qualifier).

HPC displays both kinds of information in two primary ways: textual reports with summary statistics (hpc report) and
sources with color mark-up (hpc markup). For boolean coverage, there are four possible outcomes for each guard, condition
or qualifier: both True and False values occur; only True; only False; never evaluated. In hpc-markup output, highlighting with
a yellow background indicates a part of the program that was never evaluated; a green background indicates an always-True
expression and a red background indicates an always-False one.

5.7.1 A small example: Reciprocation

For an example we have a program, called Recip.hs, which computes exact decimal representations of reciprocals, with
recurring parts indicated in brackets.

reciprocal :: Int -> (String, Int)
reciprocal n | n > 1 = (’0’ : ’.’ : digits, recur)

| otherwise = error
"attempting to compute reciprocal of number <= 1"

where
(digits, recur) = divide n 1 []

divide :: Int -> Int -> [Int] -> (String, Int)
divide n c cs | c ‘elem‘ cs = ([], position c cs)

| r == 0 = (show q, 0)
| r /= 0 = (show q ++ digits, recur)

where
(q, r) = (c*10) ‘quotRem‘ n
(digits, recur) = divide n r (c:cs)

position :: Int -> [Int] -> Int
position n (x:xs) | n==x = 1

| otherwise = 1 + position n xs

showRecip :: Int -> String
showRecip n =

"1/" ++ show n ++ " = " ++
if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where
p = length d - r

http://www.haskell.org/haskellwiki/ThreadScope

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 127 / 37

(d, r) = reciprocal n

main = do
number <- readLn
putStrLn (showRecip number)
main

HPC instrumentation is enabled with the -fhpc flag:

$ ghc -fhpc Recip.hs

GHC creates a subdirectory .hpc in the current directory, and puts HPC index (.mix) files in there, one for each module
compiled. You don’t need to worry about these files: they contain information needed by the hpc tool to generate the coverage
data for compiled modules after the program is run.

$./Recip
1/3
= 0.(3)

Running the program generates a file with the .tix suffix, in this case Recip.tix, which contains the coverage data for this
run of the program. The program may be run multiple times (e.g. with different test data), and the coverage data from the separate
runs is accumulated in the .tix file. To reset the coverage data and start again, just remove the .tix file.

Having run the program, we can generate a textual summary of coverage:

$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)

14% guards (1/7), 3 always True,
1 always False,
2 unevaluated

0% ’if’ conditions (0/1), 1 always False
100% qualifiers (0/0)

55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)

We can also generate a marked-up version of the source.

$ hpc markup Recip
writing Recip.hs.html

This generates one file per Haskell module, and 4 index files, hpc_index.html, hpc_index_alt.html, hpc_index_exp.html, hpc_index_fun.html.

5.7.2 Options for instrumenting code for coverage

-fhpc Enable code coverage for the current module or modules being compiled.

Modules compiled with this option can be freely mixed with modules compiled without it; indeed, most libraries will
typically be compiled without -fhpc. When the program is run, coverage data will only be generated for those modules
that were compiled with -fhpc, and the hpc tool will only show information about those modules.

5.7.3 The hpc toolkit

The hpc command has several sub-commands:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 128 / 37

$ hpc
Usage: hpc COMMAND ...

Commands:
help Display help for hpc or a single command

Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage

Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file

Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage

Others:
show Show .tix file in readable, verbose format
version Display version for hpc

In general, these options act on a .tix file after an instrumented binary has generated it.

The hpc tool assumes you are in the top-level directory of the location where you built your application, and the .tix file is in
the same top-level directory. You can use the flag --srcdir to use hpc for any other directory, and use --srcdir multiple
times to analyse programs compiled from difference locations, as is typical for packages.

We now explain in more details the major modes of hpc.

5.7.3.1 hpc report

hpc report gives a textual report of coverage. By default, all modules and packages are considered in generating report,
unless include or exclude are used. The report is a summary unless the --per-module flag is used. The --xml-output
option allows for tools to use hpc to glean coverage.

$ hpc help report
Usage: hpc report [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--per-module show module level detail
--decl-list show unused decls
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR sub-directory that contains .mix files

default .hpc [rarely used]
--xml-output show output in XML

5.7.3.2 hpc markup

hpc markup marks up source files into colored html.

$ hpc help markup
Usage: hpc markup [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 129 / 37

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR sub-directory that contains .mix files
default .hpc [rarely used]

--fun-entry-count show top-level function entry counts
--highlight-covered highlight covered code, rather that code gaps
--destdir=DIR path to write output to

5.7.3.3 hpc sum

hpc sum adds together any number of .tix files into a single .tix file. hpc sum does not change the original .tix file; it
generates a new .tix file.

$ hpc help sum
Usage: hpc sum [OPTION] .. <TIX_FILE> [<TIX_FILE> [<TIX_FILE> ..]]
Sum multiple .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--union use the union of the module namespace (default is ←↩

intersection)

5.7.3.4 hpc combine

hpc combine is the swiss army knife of hpc. It can be used to take the difference between .tix files, to subtract one .tix
file from another, or to add two .tix files. hpc combine does not change the original .tix file; it generates a new .tix file.

$ hpc help combine
Usage: hpc combine [OPTION] .. <TIX_FILE> <TIX_FILE>
Combine two .tix files in a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION combine .tix files with join function, default = ADD

FUNCTION = ADD | DIFF | SUB
--union use the union of the module namespace (default is ←↩

intersection)

5.7.3.5 hpc map

hpc map inverts or zeros a .tix file. hpc map does not change the original .tix file; it generates a new .tix file.

$ hpc help map
Usage: hpc map [OPTION] .. <TIX_FILE>
Map a function over a single .tix file

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 130 / 37

--function=FUNCTION apply function to .tix files, default = ID
FUNCTION = ID | INV | ZERO

--union use the union of the module namespace (default is ←↩
intersection)

5.7.3.6 hpc overlay and hpc draft

Overlays are an experimental feature of HPC, a textual description of coverage. hpc draft is used to generate a draft overlay from
a .tix file, and hpc overlay generates a .tix files from an overlay.

% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY_FILE> [<OVERLAY_FILE> [...]]

Options:

--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible

--hpcdir=DIR sub-directory that contains .mix files
default .hpc [rarely used]

--output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX_FILE>

Options:

--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files

multi-use of srcdir possible
--hpcdir=DIR sub-directory that contains .mix files

default .hpc [rarely used]
--output=FILE output FILE

5.7.4 Caveats and Shortcomings of Haskell Program Coverage

HPC does not attempt to lock the .tix file, so multiple concurrently running binaries in the same directory will exhibit a race
condition. There is no way to change the name of the .tix file generated, apart from renaming the binary. HPC does not work
with GHCi.

5.8 Using “ticky-ticky” profiling (for implementors)

(ToDo: document properly.)

It is possible to compile Haskell programs so that they will count lots and lots of interesting things, e.g., number of updates,
number of data constructors entered, etc., etc. We call this “ticky-ticky” profiling, because that’s the sound a CPU makes when it
is running up all those counters (slowly).

Ticky-ticky profiling is mainly intended for implementors; it is quite separate from the main “cost-centre” profiling system,
intended for all users everywhere.

You don’t need to build GHC, the libraries, or the RTS a special way in order to use ticky-ticky profiling. You can decide on
a module-by-module basis which parts of a program have the counters compiled in, using the compile-time -ticky option.
Those modules that were not compiled with -ticky won’t contribute to the ticky-ticky profiling results, and that will normally
include all the pre-compiled packages that your program links with.

To get your compiled program to spit out the ticky-ticky numbers:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 131 / 37

• Link the program with -debug (-ticky is a synonym for -debug at link-time). This links in the debug version of the RTS,
which includes the code for aggregating and reporting the results of ticky-ticky profiling.

• Run the program with the -r RTS option. See Section 4.17.

Here is a sample ticky-ticky statistics file, generated by the invocation foo +RTS -rfoo.ticky.

foo +RTS -rfoo.ticky

ALLOCATIONS: 3964631 (11330900 words total: 3999476 admin, 6098829 goods, 1232595 slop)
total words: 2 3 4 5 6+

69647 (1.8%) function values 50.0 50.0 0.0 0.0 0.0
2382937 (60.1%) thunks 0.0 83.9 16.1 0.0 0.0
1477218 (37.3%) data values 66.8 33.2 0.0 0.0 0.0

0 (0.0%) big tuples
2 (0.0%) black holes 0.0 100.0 0.0 0.0 0.0
0 (0.0%) prim things

34825 (0.9%) partial applications 0.0 0.0 0.0 100.0 0.0
2 (0.0%) thread state objects 0.0 0.0 0.0 0.0 100.0

Total storage-manager allocations: 3647137 (11882004 words)
[551104 words lost to speculative heap-checks]

STACK USAGE:

ENTERS: 9400092 of which 2005772 (21.3%) direct to the entry code
[the rest indirected via Node’s info ptr]

1860318 (19.8%) thunks
3733184 (39.7%) data values
3149544 (33.5%) function values

[of which 1999880 (63.5%) bypassed arg-satisfaction chk]
348140 (3.7%) partial applications
308906 (3.3%) normal indirections

0 (0.0%) permanent indirections

RETURNS: 5870443
2137257 (36.4%) from entering a new constructor

[the rest from entering an existing constructor]
2349219 (40.0%) vectored [the rest unvectored]

RET_NEW: 2137257: 32.5% 46.2% 21.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_OLD: 3733184: 2.8% 67.9% 29.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
RET_UNBOXED_TUP: 2: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

RET_VEC_RETURN : 2349219: 0.0% 0.0%100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

UPDATE FRAMES: 2241725 (0 omitted from thunks)
SEQ FRAMES: 1
CATCH FRAMES: 1
UPDATES: 2241725

0 (0.0%) data values
34827 (1.6%) partial applications

[2 in place, 34825 allocated new space]
2206898 (98.4%) updates to existing heap objects (46 by squeezing)
UPD_CON_IN_NEW: 0: 0 0 0 0 0 0 0 0 0
UPD_PAP_IN_NEW: 34825: 0 0 0 34825 0 0 0 0 0

NEW GEN UPDATES: 2274700 (99.9%)

OLD GEN UPDATES: 1852 (0.1%)

Total bytes copied during GC: 190096

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 132 / 37

**
3647137 ALLOC_HEAP_ctr
11882004 ALLOC_HEAP_tot

69647 ALLOC_FUN_ctr
69647 ALLOC_FUN_adm
69644 ALLOC_FUN_gds
34819 ALLOC_FUN_slp
34831 ALLOC_FUN_hst_0
34816 ALLOC_FUN_hst_1

0 ALLOC_FUN_hst_2
0 ALLOC_FUN_hst_3
0 ALLOC_FUN_hst_4

2382937 ALLOC_UP_THK_ctr
0 ALLOC_SE_THK_ctr

308906 ENT_IND_ctr
0 E!NT_PERM_IND_ctr requires +RTS -Z

[... lots more info omitted ...]
0 GC_SEL_ABANDONED_ctr
0 GC_SEL_MINOR_ctr
0 GC_SEL_MAJOR_ctr
0 GC_FAILED_PROMOTION_ctr

47524 GC_WORDS_COPIED_ctr

The formatting of the information above the row of asterisks is subject to change, but hopefully provides a useful human-readable
summary. Below the asterisks all counters maintained by the ticky-ticky system are dumped, in a format intended to be machine-
readable: zero or more spaces, an integer, a space, the counter name, and a newline.

In fact, not all counters are necessarily dumped; compile- or run-time flags can render certain counters invalid. In this case, either
the counter will simply not appear, or it will appear with a modified counter name, possibly along with an explanation for the
omission (notice ENT_PERM_IND_ctr appears with an inserted ! above). Software analysing this output should always check
that it has the counters it expects. Also, beware: some of the counters can have large values!

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 133 / 37

Chapter 6

Advice on: sooner, faster, smaller, thriftier

Please advise us of other “helpful hints” that should go here!

6.1 Sooner: producing a program more quickly

Don’t use -O or (especially) -O2: By using them, you are telling GHC that you are willing to suffer longer compilation times
for better-quality code.

GHC is surprisingly zippy for normal compilations without -O!

Use more memory: Within reason, more memory for heap space means less garbage collection for GHC, which means less
compilation time. If you use the -Rghc-timing option, you’ll get a garbage-collector report. (Again, you can use the
cheap-and-nasty +RTS -S -RTS option to send the GC stats straight to standard error.)

If it says you’re using more than 20% of total time in garbage collecting, then more memory might help: use the -H-
<size> option. Increasing the default allocation area size used by the compiler’s RTS might also help: use the +RTS
-A<size> -RTS option.

If GHC persists in being a bad memory citizen, please report it as a bug.

Don’t use too much memory! As soon as GHC plus its “fellow citizens” (other processes on your machine) start using more
than the real memory on your machine, and the machine starts “thrashing,” the party is over. Compile times will be worse
than terrible! Use something like the csh-builtin time command to get a report on how many page faults you’re getting.

If you don’t know what virtual memory, thrashing, and page faults are, or you don’t know the memory configuration of
your machine, don’t try to be clever about memory use: you’ll just make your life a misery (and for other people, too,
probably).

Try to use local disks when linking: Because Haskell objects and libraries tend to be large, it can take many real seconds to
slurp the bits to/from a remote filesystem.

It would be quite sensible to compile on a fast machine using remotely-mounted disks; then link on a slow machine that
had your disks directly mounted.

Don’t derive/use Read unnecessarily: It’s ugly and slow.

GHC compiles some program constructs slowly: We’d rather you reported such behaviour as a bug, so that we can try to
correct it.

To figure out which part of the compiler is badly behaved, the -v2 option is your friend.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 134 / 37

6.2 Faster: producing a program that runs quicker

The key tool to use in making your Haskell program run faster are GHC’s profiling facilities, described separately in Chapter 5.
There is no substitute for finding where your program’s time/space is really going, as opposed to where you imagine it is going.

Another point to bear in mind: By far the best way to improve a program’s performance dramatically is to use better algorithms.
Once profiling has thrown the spotlight on the guilty time-consumer(s), it may be better to re-think your program than to try all
the tweaks listed below.

Another extremely efficient way to make your program snappy is to use library code that has been Seriously Tuned By Someone
Else. You might be able to write a better quicksort than the one in Data.List, but it will take you much longer than typing
import Data.List.

Please report any overly-slow GHC-compiled programs. Since GHC doesn’t have any credible competition in the performance
department these days it’s hard to say what overly-slow means, so just use your judgement! Of course, if a GHC compiled
program runs slower than the same program compiled with NHC or Hugs, then it’s definitely a bug.

Optimise, using -O or -O2: This is the most basic way to make your program go faster. Compilation time will be slower,
especially with -O2.

At present, -O2 is nearly indistinguishable from -O.

Compile via LLVM: The LLVM code generator can sometimes do a far better job at producing fast code than the native code
generator. This is not universal and depends on the code. Numeric heavy code seems to show the best improvement when
compiled via LLVM. You can also experiment with passing specific flags to LLVM with the -optlo and -optlc flags.
Be careful though as setting these flags stops GHC from setting its usual flags for the LLVM optimiser and compiler.

Overloaded functions are not your friend: Haskell’s overloading (using type classes) is elegant, neat, etc., etc., but it is death
to performance if left to linger in an inner loop. How can you squash it?

Give explicit type signatures: Signatures are the basic trick; putting them on exported, top-level functions is good software-
engineering practice, anyway. (Tip: using -fwarn-missing-signatures can help enforce good signature-
practice).
The automatic specialisation of overloaded functions (with -O) should take care of overloaded local and/or unex-
ported functions.

Use SPECIALIZE pragmas: Specialize the overloading on key functions in your program. See Section 7.18.8 and Sec-
tion 7.18.9.

“But how do I know where overloading is creeping in?”: A low-tech way: grep (search) your interface files for over-
loaded type signatures. You can view interface files using the --show-iface option (see Section 4.7.7).

% ghc --show-iface Foo.hi | egrep ’^[a-z].*::.*=>’

Strict functions are your dear friends: and, among other things, lazy pattern-matching is your enemy.

(If you don’t know what a “strict function” is, please consult a functional-programming textbook. A sentence or two of
explanation here probably would not do much good.)

Consider these two code fragments:

f (Wibble x y) = ... # strict

f arg = let { (Wibble x y) = arg } in ... # lazy

The former will result in far better code.

A less contrived example shows the use of cases instead of lets to get stricter code (a good thing):

f (Wibble x y) # beautiful but slow
= let

(a1, b1, c1) = unpackFoo x
(a2, b2, c2) = unpackFoo y

in ...

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 135 / 37

f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (a1, b1, c1) ->

case (unpackFoo y) of { (a2, b2, c2) ->
...
}}

GHC loves single-constructor data-types: It’s all the better if a function is strict in a single-constructor type (a type with only
one data-constructor; for example, tuples are single-constructor types).

Newtypes are better than datatypes: If your datatype has a single constructor with a single field, use a newtype declaration
instead of a data declaration. The newtype will be optimised away in most cases.

“How do I find out a function’s strictness?” Don’t guess—look it up.

Look for your function in the interface file, then for the third field in the pragma; it should say Strictness: <st-
ring>. The <string> gives the strictness of the function’s arguments: see the GHC Commentary for a description of
the strictness notation.

For an “unpackable” U(...) argument, the info inside tells the strictness of its components. So, if the argument is a
pair, and it says U(AU(LSS)), that means “the first component of the pair isn’t used; the second component is itself
unpackable, with three components (lazy in the first, strict in the second \& third).”

If the function isn’t exported, just compile with the extra flag -ddump-simpl; next to the signature for any binder, it will
print the self-same pragmatic information as would be put in an interface file. (Besides, Core syntax is fun to look at!)

Force key functions to be INLINEd (esp. monads): Placing INLINE pragmas on certain functions that are used a lot can have
a dramatic effect. See Section 7.18.5.1.

Explicit export list: If you do not have an explicit export list in a module, GHC must assume that everything in that module
will be exported. This has various pessimising effects. For example, if a bit of code is actually unused (perhaps because
of unfolding effects), GHC will not be able to throw it away, because it is exported and some other module may be relying
on its existence.

GHC can be quite a bit more aggressive with pieces of code if it knows they are not exported.

Look at the Core syntax! (The form in which GHC manipulates your code.) Just run your compilation with -ddump-simpl
(don’t forget the -O).

If profiling has pointed the finger at particular functions, look at their Core code. lets are bad, cases are good, dictionar-
ies (d.<Class>.<Unique>) [or anything overloading-ish] are bad, nested lambdas are bad, explicit data constructors
are good, primitive operations (e.g., eqInt#) are good,. . .

Use strictness annotations: Putting a strictness annotation (’!’) on a constructor field helps in two ways: it adds strictness to
the program, which gives the strictness analyser more to work with, and it might help to reduce space leaks.

It can also help in a third way: when used with -funbox-strict-fields (see Section 4.10.2), a strict field can be
unpacked or unboxed in the constructor, and one or more levels of indirection may be removed. Unpacking only happens
for single-constructor datatypes (Int is a good candidate, for example).

Using -funbox-strict-fields is only really a good idea in conjunction with -O, because otherwise the extra
packing and unpacking won’t be optimised away. In fact, it is possible that -funbox-strict-fields may worsen
performance even with -O, but this is unlikely (let us know if it happens to you).

Use unboxed types (a GHC extension): When you are really desperate for speed, and you want to get right down to the “raw
bits.” Please see Section 7.2.1 for some information about using unboxed types.

Before resorting to explicit unboxed types, try using strict constructor fields and -funbox-strict-fields first (see
above). That way, your code stays portable.

Use foreign import (a GHC extension) to plug into fast libraries: This may take real work, but. . . There exist piles of
massively-tuned library code, and the best thing is not to compete with it, but link with it.

Chapter 8 describes the foreign function interface.

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Demand

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 136 / 37

Don’t use Floats: If you’re using Complex, definitely use Complex Double rather than Complex Float (the former
is specialised heavily, but the latter isn’t).

Floats (probably 32-bits) are almost always a bad idea, anyway, unless you Really Know What You Are Doing. Use
Doubles. There’s rarely a speed disadvantage—modern machines will use the same floating-point unit for both. With
Doubles, you are much less likely to hang yourself with numerical errors.

One time when Float might be a good idea is if you have a lot of them, say a giant array of Floats. They take up half
the space in the heap compared to Doubles. However, this isn’t true on a 64-bit machine.

Use unboxed arrays (UArray) GHC supports arrays of unboxed elements, for several basic arithmetic element types including
Int and Char: see the Data.Array.Unboxed library for details. These arrays are likely to be much faster than using
standard Haskell 98 arrays from the Data.Array library.

Use a bigger heap! If your program’s GC stats (-SRTS option) indicate that it’s doing lots of garbage-collection (say, more than
20% of execution time), more memory might help—with the -M<size> or -A<size> RTS options (see Section 4.17.3).

6.3 Smaller: producing a program that is smaller

Decrease the “go-for-it” threshold for unfolding smallish expressions. Give a -funfolding-use-threshold0 option
for the extreme case. (“Only unfoldings with zero cost should proceed.”) Warning: except in certain specialised cases (like
Happy parsers) this is likely to actually increase the size of your program, because unfolding generally enables extra simplifying
optimisations to be performed.

Avoid Read.

Use strip on your executables.

6.4 Thriftier: producing a program that gobbles less heap space

“I think I have a space leak. . . ” Re-run your program with +RTS -S, and remove all doubt! (You’ll see the heap usage get
bigger and bigger. . .) [Hmmm. . . this might be even easier with the -G1 RTS option; so. . . ./a.out +RTS -S -G1...]

Once again, the profiling facilities (Chapter 5) are the basic tool for demystifying the space behaviour of your program.

Strict functions are good for space usage, as they are for time, as discussed in the previous section. Strict functions get right down
to business, rather than filling up the heap with closures (the system’s notes to itself about how to evaluate something, should it
eventually be required).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 137 / 37

Chapter 7

GHC Language Features

As with all known Haskell systems, GHC implements some extensions to the language. They can all be enabled or disabled by
commandline flags or language pragmas. By default GHC understands the most recent Haskell version it supports, plus a handful
of extensions.

Some of the Glasgow extensions serve to give you access to the underlying facilities with which we implement Haskell. Thus,
you can get at the Raw Iron, if you are willing to write some non-portable code at a more primitive level. You need not be “stuck”
on performance because of the implementation costs of Haskell’s “high-level” features—you can always code “under” them. In
an extreme case, you can write all your time-critical code in C, and then just glue it together with Haskell!

Before you get too carried away working at the lowest level (e.g., sloshing MutableByteArray#s around your program), you
may wish to check if there are libraries that provide a “Haskellised veneer” over the features you want. The separate libraries
documentation describes all the libraries that come with GHC.

7.1 Language options

The language option flags control what variation of the language are permitted.

Language options can be controlled in two ways:

• Every language option can switched on by a command-line flag "-X..." (e.g. -XTemplateHaskell), and switched off
by the flag "-XNo..."; (e.g. -XNoTemplateHaskell).

• Language options recognised by Cabal can also be enabled using the LANGUAGE pragma, thus {-# LANGUAGE Templa-
teHaskell #-} (see Section 7.18.1).

The flag -fglasgow-exts is equivalent to enabling the following extensions: -XForeignFunctionInterface, --
XUnliftedFFITypes, -XImplicitParams, -XScopedTypeVariables, -XUnboxedTuples, -XTypeSynony-
mInstances, -XStandaloneDeriving, -XDeriveDataTypeable, -XDeriveFunctor, -XDeriveFoldable,
-XDeriveTraversable, -XDeriveGeneric, -XFlexibleContexts, -XFlexibleInstances, -XConstrai-
nedClassMethods, -XMultiParamTypeClasses, -XFunctionalDependencies, -XMagicHash, -XPolymo-
rphicComponents, -XExistentialQuantification, -XUnicodeSyntax, -XPostfixOperators, -XPatt-
ernGuards, -XLiberalTypeSynonyms, -XRankNTypes, -XTypeOperators, -XExplicitNamespaces, -XR-
ecursiveDo, -XParallelListComp, -XEmptyDataDecls, -XKindSignatures, -XGeneralizedNewtypeD-
eriving. Enabling these options is the only effect of -fglasgow-exts. We are trying to move away from this portmanteau
flag, and towards enabling features individually.

7.2 Unboxed types and primitive operations

GHC is built on a raft of primitive data types and operations; "primitive" in the sense that they cannot be defined in Haskell itself.
While you really can use this stuff to write fast code, we generally find it a lot less painful, and more satisfying in the long run,

file:../libraries/index.html
file:../libraries/index.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 138 / 37

to use higher-level language features and libraries. With any luck, the code you write will be optimised to the efficient unboxed
version in any case. And if it isn’t, we’d like to know about it.

All these primitive data types and operations are exported by the library GHC.Prim, for which there is detailed online documen-
tation. (This documentation is generated from the file compiler/prelude/primops.txt.pp.)

If you want to mention any of the primitive data types or operations in your program, you must first import GHC.Prim to bring
them into scope. Many of them have names ending in "#", and to mention such names you need the -XMagicHash extension
(Section 7.3.2).

The primops make extensive use of unboxed types and unboxed tuples, which we briefly summarise here.

7.2.1 Unboxed types

Most types in GHC are boxed, which means that values of that type are represented by a pointer to a heap object. The represen-
tation of a Haskell Int, for example, is a two-word heap object. An unboxed type, however, is represented by the value itself,
no pointers or heap allocation are involved.

Unboxed types correspond to the “raw machine” types you would use in C: Int# (long int), Double# (double), Addr# (void
*), etc. The primitive operations (PrimOps) on these types are what you might expect; e.g., (+#) is addition on Int#s, and is
the machine-addition that we all know and love—usually one instruction.

Primitive (unboxed) types cannot be defined in Haskell, and are therefore built into the language and compiler. Primitive types
are always unlifted; that is, a value of a primitive type cannot be bottom. We use the convention (but it is only a convention) that
primitive types, values, and operations have a # suffix (see Section 7.3.2). For some primitive types we have special syntax for
literals, also described in the same section.

Primitive values are often represented by a simple bit-pattern, such as Int#, Float#, Double#. But this is not necessarily
the case: a primitive value might be represented by a pointer to a heap-allocated object. Examples include Array#, the type of
primitive arrays. A primitive array is heap-allocated because it is too big a value to fit in a register, and would be too expensive
to copy around; in a sense, it is accidental that it is represented by a pointer. If a pointer represents a primitive value, then it
really does point to that value: no unevaluated thunks, no indirections. . . nothing can be at the other end of the pointer than the
primitive value. A numerically-intensive program using unboxed types can go a lot faster than its “standard” counterpart—we
saw a threefold speedup on one example.

There are some restrictions on the use of primitive types:

• The main restriction is that you can’t pass a primitive value to a polymorphic function or store one in a polymorphic data type.
This rules out things like [Int#] (i.e. lists of primitive integers). The reason for this restriction is that polymorphic arguments
and constructor fields are assumed to be pointers: if an unboxed integer is stored in one of these, the garbage collector would
attempt to follow it, leading to unpredictable space leaks. Or a seq operation on the polymorphic component may attempt to
dereference the pointer, with disastrous results. Even worse, the unboxed value might be larger than a pointer (Double# for
instance).

• You cannot define a newtype whose representation type (the argument type of the data constructor) is an unboxed type. Thus,
this is illegal:

newtype A = MkA Int#

• You cannot bind a variable with an unboxed type in a top-level binding.

• You cannot bind a variable with an unboxed type in a recursive binding.

• You may bind unboxed variables in a (non-recursive, non-top-level) pattern binding, but you must make any such pattern-match
strict. For example, rather than:

data Foo = Foo Int Int#

f x = let (Foo a b, w) = ..rhs.. in ..body..

you must write:

file:../libraries/ghc-prim-0.3.0.0/GHC-Prim.html
file:../libraries/ghc-prim-0.3.0.0/GHC-Prim.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 139 / 37

data Foo = Foo Int Int#

f x = let !(Foo a b, w) = ..rhs.. in ..body..

since b has type Int#.

7.2.2 Unboxed tuples

Unboxed tuples aren’t really exported by GHC.Exts; they are a syntactic extension enabled by the language flag -XUnboxe-
dTuples. An unboxed tuple looks like this:

(# e_1, ..., e_n #)

where e_1..e_n are expressions of any type (primitive or non-primitive). The type of an unboxed tuple looks the same.

Unboxed tuples are used for functions that need to return multiple values, but they avoid the heap allocation normally associated
with using fully-fledged tuples. When an unboxed tuple is returned, the components are put directly into registers or on the stack;
the unboxed tuple itself does not have a composite representation. Many of the primitive operations listed in primops.txt.pp
return unboxed tuples. In particular, the IO and ST monads use unboxed tuples to avoid unnecessary allocation during sequences
of operations.

There are some restrictions on the use of unboxed tuples:

• Values of unboxed tuple types are subject to the same restrictions as other unboxed types; i.e. they may not be stored in
polymorphic data structures or passed to polymorphic functions.

• The typical use of unboxed tuples is simply to return multiple values, binding those multiple results with a case expression,
thus:

f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -> a + b }

You can have an unboxed tuple in a pattern binding, thus

f x = let (# p,q #) = h x in ..body..

If the types of p and q are not unboxed, the resulting binding is lazy like any other Haskell pattern binding. The above example
desugars like this:

f x = let t = case h x o f{ (# p,q #) -> (p,q)
p = fst t
q = snd t

in ..body..

Indeed, the bindings can even be recursive.

7.3 Syntactic extensions

7.3.1 Unicode syntax

The language extension -XUnicodeSyntax enables Unicode characters to be used to stand for certain ASCII character se-
quences. The following alternatives are provided:

ASCII Unicode alternative
:: ::
=> ⇒
forall ∀

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 140 / 37

ASCII Unicode alternative
-> →
<- ←
-< �
>- �
-<<
>>-
* H

7.3.2 The magic hash

The language extension -XMagicHash allows "#" as a postfix modifier to identifiers. Thus, "x#" is a valid variable, and "T#"
is a valid type constructor or data constructor.

The hash sign does not change semantics at all. We tend to use variable names ending in "#" for unboxed values or types (e.g.
Int#), but there is no requirement to do so; they are just plain ordinary variables. Nor does the -XMagicHash extension bring
anything into scope. For example, to bring Int# into scope you must import GHC.Prim (see Section 7.2); the -XMagicHash
extension then allows you to refer to the Int# that is now in scope.

The -XMagicHash also enables some new forms of literals (see Section 7.2.1):

• ’x’# has type Char#

• "foo"# has type Addr#

• 3# has type Int#. In general, any Haskell integer lexeme followed by a # is an Int# literal, e.g. -0x3A# as well as 32# .

• 3## has type Word#. In general, any non-negative Haskell integer lexeme followed by ## is a Word#.

• 3.2# has type Float#.

• 3.2## has type Double#

7.3.3 Hierarchical Modules

GHC supports a small extension to the syntax of module names: a module name is allowed to contain a dot ‘.’. This is also
known as the “hierarchical module namespace” extension, because it extends the normally flat Haskell module namespace into a
more flexible hierarchy of modules.

This extension has very little impact on the language itself; modules names are always fully qualified, so you can just think of
the fully qualified module name as ‘the module name’. In particular, this means that the full module name must be given after
the module keyword at the beginning of the module; for example, the module A.B.C must begin

module A.B.C

It is a common strategy to use the as keyword to save some typing when using qualified names with hierarchical modules. For
example:

import qualified Control.Monad.ST.Strict as ST

For details on how GHC searches for source and interface files in the presence of hierarchical modules, see Section 4.7.3.

GHC comes with a large collection of libraries arranged hierarchically; see the accompanying library documentation. More
libraries to install are available from HackageDB.

file:../libraries/index.html
http://hackage.haskell.org/packages/hackage.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 141 / 37

7.3.4 Pattern guards

The discussion that follows is an abbreviated version of Simon Peyton Jones’s original proposal. (Note that the proposal was
written before pattern guards were implemented, so refers to them as unimplemented.)

Suppose we have an abstract data type of finite maps, with a lookup operation:

lookup :: FiniteMap -> Int -> Maybe Int

The lookup returns Nothing if the supplied key is not in the domain of the mapping, and (Just v) otherwise, where v is the
value that the key maps to. Now consider the following definition:

clunky env var1 var2 | ok1 && ok2 = val1 + val2
| otherwise = var1 + var2
where

m1 = lookup env var1
m2 = lookup env var2
ok1 = maybeToBool m1
ok2 = maybeToBool m2
val1 = expectJust m1
val2 = expectJust m2

The auxiliary functions are

maybeToBool :: Maybe a -> Bool
maybeToBool (Just x) = True
maybeToBool Nothing = False

expectJust :: Maybe a -> a
expectJust (Just x) = x
expectJust Nothing = error "Unexpected Nothing"

What is clunky doing? The guard ok1 && ok2 checks that both lookups succeed, using maybeToBool to convert the M-
aybe types to booleans. The (lazily evaluated) expectJust calls extract the values from the results of the lookups, and binds
the returned values to val1 and val2 respectively. If either lookup fails, then clunky takes the otherwise case and returns
the sum of its arguments.

This is certainly legal Haskell, but it is a tremendously verbose and un-obvious way to achieve the desired effect. Arguably, a
more direct way to write clunky would be to use case expressions:

clunky env var1 var2 = case lookup env var1 of
Nothing -> fail
Just val1 -> case lookup env var2 of
Nothing -> fail
Just val2 -> val1 + val2

where
fail = var1 + var2

This is a bit shorter, but hardly better. Of course, we can rewrite any set of pattern-matching, guarded equations as case expres-
sions; that is precisely what the compiler does when compiling equations! The reason that Haskell provides guarded equations
is because they allow us to write down the cases we want to consider, one at a time, independently of each other. This structure
is hidden in the case version. Two of the right-hand sides are really the same (fail), and the whole expression tends to become
more and more indented.

Here is how I would write clunky:

clunky env var1 var2
| Just val1 <- lookup env var1
, Just val2 <- lookup env var2
= val1 + val2

...other equations for clunky...

http://research.microsoft.com/~simonpj/Haskell/guards.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 142 / 37

The semantics should be clear enough. The qualifiers are matched in order. For a <- qualifier, which I call a pattern guard, the
right hand side is evaluated and matched against the pattern on the left. If the match fails then the whole guard fails and the next
equation is tried. If it succeeds, then the appropriate binding takes place, and the next qualifier is matched, in the augmented
environment. Unlike list comprehensions, however, the type of the expression to the right of the <- is the same as the type of
the pattern to its left. The bindings introduced by pattern guards scope over all the remaining guard qualifiers, and over the right
hand side of the equation.

Just as with list comprehensions, boolean expressions can be freely mixed with among the pattern guards. For example:

f x | [y] <- x
, y > 3
, Just z <- h y
= ...

Haskell’s current guards therefore emerge as a special case, in which the qualifier list has just one element, a boolean expression.

7.3.5 View patterns

View patterns are enabled by the flag -XViewPatterns. More information and examples of view patterns can be found on
the Wiki page.

View patterns are somewhat like pattern guards that can be nested inside of other patterns. They are a convenient way of pattern-
matching against values of abstract types. For example, in a programming language implementation, we might represent the
syntax of the types of the language as follows:

type Typ

data TypView = Unit
| Arrow Typ Typ

view :: Typ -> TypView

-- additional operations for constructing Typ’s ...

The representation of Typ is held abstract, permitting implementations to use a fancy representation (e.g., hash-consing to manage
sharing). Without view patterns, using this signature a little inconvenient:

size :: Typ -> Integer
size t = case view t of

Unit -> 1
Arrow t1 t2 -> size t1 + size t2

It is necessary to iterate the case, rather than using an equational function definition. And the situation is even worse when the
matching against t is buried deep inside another pattern.

View patterns permit calling the view function inside the pattern and matching against the result:

size (view -> Unit) = 1
size (view -> Arrow t1 t2) = size t1 + size t2

That is, we add a new form of pattern, written expression -> pattern that means "apply the expression to whatever we’re
trying to match against, and then match the result of that application against the pattern". The expression can be any Haskell
expression of function type, and view patterns can be used wherever patterns are used.

The semantics of a pattern (exp -> pat) are as follows:

• Scoping: The variables bound by the view pattern are the variables bound by pat.

Any variables in exp are bound occurrences, but variables bound "to the left" in a pattern are in scope. This feature permits,
for example, one argument to a function to be used in the view of another argument. For example, the function clunky from
Section 7.3.4 can be written using view patterns as follows:

http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 143 / 37

clunky env (lookup env -> Just val1) (lookup env -> Just val2) = val1 + val2
...other equations for clunky...

More precisely, the scoping rules are:

– In a single pattern, variables bound by patterns to the left of a view pattern expression are in scope. For example:

example :: Maybe ((String -> Integer,Integer), String) -> Bool
example Just ((f,_), f -> 4) = True

Additionally, in function definitions, variables bound by matching earlier curried arguments may be used in view pattern
expressions in later arguments:

example :: (String -> Integer) -> String -> Bool
example f (f -> 4) = True

That is, the scoping is the same as it would be if the curried arguments were collected into a tuple.

– In mutually recursive bindings, such as let, where, or the top level, view patterns in one declaration may not mention
variables bound by other declarations. That is, each declaration must be self-contained. For example, the following program
is not allowed:

let {(x -> y) = e1 ;
(y -> x) = e2 } in x

(For some amplification on this design choice see Trac #4061.)

• Typing: If exp has type T1 -> T2 and pat matches a T2, then the whole view pattern matches a T1.

• Matching: To the equations in Section 3.17.3 of the Haskell 98 Report, add the following:

case v of { (e -> p) -> e1 ; _ -> e2 }
=

case (e v) of { p -> e1 ; _ -> e2 }

That is, to match a variable v against a pattern (exp -> pat), evaluate (exp v) and match the result against pat.

• Efficiency: When the same view function is applied in multiple branches of a function definition or a case expression (e.g., in
size above), GHC makes an attempt to collect these applications into a single nested case expression, so that the view function
is only applied once. Pattern compilation in GHC follows the matrix algorithm described in Chapter 4 of The Implementation
of Functional Programming Languages. When the top rows of the first column of a matrix are all view patterns with the "same"
expression, these patterns are transformed into a single nested case. This includes, for example, adjacent view patterns that
line up in a tuple, as in

f ((view -> A, p1), p2) = e1
f ((view -> B, p3), p4) = e2

The current notion of when two view pattern expressions are "the same" is very restricted: it is not even full syntactic equality.
However, it does include variables, literals, applications, and tuples; e.g., two instances of view ("hi", "there") will
be collected. However, the current implementation does not compare up to alpha-equivalence, so two instances of (x, view
x -> y) will not be coalesced.

7.3.6 n+k patterns

n+k pattern support is disabled by default. To enable it, you can use the -XNPlusKPatterns flag.

7.3.7 Traditional record syntax

Traditional record syntax, such as C {f = x}, is enabled by default. To disable it, you can use the -XNoTraditionalRe-
cordSyntax flag.

http://hackage.haskell.org/trac/ghc/ticket/4061
http://www.haskell.org/onlinereport/
http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/
http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 144 / 37

7.3.8 The recursive do-notation

The do-notation of Haskell 98 does not allow recursive bindings, that is, the variables bound in a do-expression are visible only
in the textually following code block. Compare this to a let-expression, where bound variables are visible in the entire binding
group.

It turns out that such recursive bindings do indeed make sense for a variety of monads, but not all. In particular, recursion in this
sense requires a fixed-point operator for the underlying monad, captured by the mfix method of the MonadFix class, defined
in Control.Monad.Fix as follows:

class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a

Haskell’s Maybe, [] (list), ST (both strict and lazy versions), IO, and many other monads have MonadFix instances. On the
negative side, the continuation monad, with the signature (a -> r) -> r, does not.

For monads that do belong to the MonadFix class, GHC provides an extended version of the do-notation that allows recursive
bindings. The -XRecursiveDo (language pragma: RecursiveDo) provides the necessary syntactic support, introducing
the keywords mdo and rec for higher and lower levels of the notation respectively. Unlike bindings in a do expression, those
introduced by mdo and rec are recursively defined, much like in an ordinary let-expression. Due to the new keyword mdo, we
also call this notation the mdo-notation.

Here is a simple (albeit contrived) example:

{-# LANGUAGE RecursiveDo #-}
justOnes = mdo { xs <- Just (1:xs)

; return (map negate xs) }

or equivalently

{-# LANGUAGE RecursiveDo #-}
justOnes = do { rec { xs <- Just (1:xs) }

; return (map negate xs) }

As you can guess justOnes will evaluate to Just [-1,-1,-1,....

GHC’s implementation the mdo-notation closely follows the original translation as described in the paper A recursive do for
Haskell, which in turn is based on the work Value Recursion in Monadic Computations. Furthermore, GHC extends the syntax
described in the former paper with a lower level syntax flagged by the rec keyword, as we describe next.

7.3.8.1 Recursive binding groups

The flag -XRecursiveDo also introduces a new keyword rec, which wraps a mutually-recursive group of monadic statements
inside a do expression, producing a single statement. Similar to a let statement inside a do, variables bound in the rec are
visible throughout the rec group, and below it. For example, compare

do { a <- getChar do { a <- getChar
; let { r1 = f a r2 ; rec { r1 <- f a r2
; ; r2 = g r1 } ; ; r2 <- g r1 }
; return (r1 ++ r2) } ; return (r1 ++ r2) }

In both cases, r1 and r2 are available both throughout the let or rec block, and in the statements that follow it. The difference
is that let is non-monadic, while rec is monadic. (In Haskell let is really letrec, of course.)

The semantics of rec is fairly straightforward. Whenever GHC finds a rec group, it will compute its set of bound variables,
and will introduce an appropriate call to the underlying monadic value-recursion operator mfix, belonging to the MonadFix
class. Here is an example:

rec { b <- f a c ===> (b,c) <- mfix (\~(b,c) -> do { b <- f a c
; c <- f b a } ; c <- f b a

; return (b,c) })

https://sites.google.com/site/leventerkok/recdo.pdf
https://sites.google.com/site/leventerkok/recdo.pdf
http://sites.google.com/site/leventerkok/erkok-thesis.pdf

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 145 / 37

As usual, the meta-variables b, c etc., can be arbitrary patterns. In general, the statement rec ss is desugared to the statement

vs <- mfix (\~vs -> do { ss; return vs })

where vs is a tuple of the variables bound by ss.

Note in particular that the translation for a rec block only involves wrapping a call to mfix: it performs no other analysis on
the bindings. The latter is the task for the mdo notation, which is described next.

7.3.8.2 The mdo notation

A rec-block tells the compiler where precisely the recursive knot should be tied. It turns out that the placement of the recursive
knots can be rather delicate: in particular, we would like the knots to be wrapped around as minimal groups as possible. This
process is known as segmentation, and is described in detail in Secton 3.2 of A recursive do for Haskell. Segmentation improves
polymorphism and reduces the size of the recursive knot. Most importantly, it avoids unnecessary interference caused by a
fundamental issue with the so-called right-shrinking axiom for monadic recursion. In brief, most monads of interest (IO, strict
state, etc.) do not have recursion operators that satisfy this axiom, and thus not performing segmentation can cause unnecessary
interference, changing the termination behavior of the resulting translation. (Details can be found in Sections 3.1 and 7.2.2 of
Value Recursion in Monadic Computations.)

The mdo notation removes the burden of placing explicit rec blocks in the code. Unlike an ordinary do expression, in which
variables bound by statements are only in scope for later statements, variables bound in an mdo expression are in scope for all
statements of the expression. The compiler then automatically identifies minimal mutually recursively dependent segments of
statements, treating them as if the user had wrapped a rec qualifier around them.

The definition is syntactic:

• A generator g depends on a textually following generator g’, if

– g’ defines a variable that is used by g, or

– g’ textually appears between g and g’’, where g depends on g’’.

• A segment of a given mdo-expression is a minimal sequence of generators such that no generator of the sequence depends on
an outside generator. As a special case, although it is not a generator, the final expression in an mdo-expression is considered
to form a segment by itself.

Segments in this sense are related to strongly-connected components analysis, with the exception that bindings in a segment
cannot be reordered and must be contiguous.

Here is an example mdo-expression, and its translation to rec blocks:

mdo { a <- getChar ===> do { a <- getChar
; b <- f a c ; rec { b <- f a c
; c <- f b a ; ; c <- f b a }
; z <- h a b ; z <- h a b
; d <- g d e ; rec { d <- g d e
; e <- g a z ; ; e <- g a z }
; putChar c } ; putChar c }

Note that a given mdo expression can cause the creation of multiple rec blocks. If there are no recursive dependencies, mdo will
introduce no rec blocks. In this latter case an mdo expression is precisely the same as a do expression, as one would expect.

In summary, given an mdo expression, GHC first performs segmentation, introducing rec blocks to wrap over minimal recursive
groups. Then, each resulting rec is desugared, using a call to Control.Monad.Fix.mfix as described in the previous
section. The original mdo-expression typechecks exactly when the desugared version would do so.

Here are some other important points in using the recursive-do notation:

• It is enabled with the flag -XRecursiveDo, or the LANGUAGE RecursiveDo pragma. (The same flag enables both
mdo-notation, and the use of rec blocks inside do expressions.)

https://sites.google.com/site/leventerkok/recdo.pdf
http://sites.google.com/site/leventerkok/erkok-thesis.pdf

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 146 / 37

• rec blocks can also be used inside mdo-expressions, which will be treated as a single statement. However, it is good style to
either use mdo or rec blocks in a single expression.

• If recursive bindings are required for a monad, then that monad must be declared an instance of the MonadFix class.

• The following instances of MonadFix are automatically provided: List, Maybe, IO. Furthermore, the Control.Monad.ST
and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class for Haskell’s internal state monad
(strict and lazy, respectively).

• Like let and where bindings, name shadowing is not allowed within an mdo-expression or a rec-block; that is, all the
names bound in a single rec must be distinct. (GHC will complain if this is not the case.)

7.3.9 Parallel List Comprehensions

Parallel list comprehensions are a natural extension to list comprehensions. List comprehensions can be thought of as a nice
syntax for writing maps and filters. Parallel comprehensions extend this to include the zipWith family.

A parallel list comprehension has multiple independent branches of qualifier lists, each separated by a `|’ symbol. For example,
the following zips together two lists:

[(x, y) | x <- xs | y <- ys]

The behaviour of parallel list comprehensions follows that of zip, in that the resulting list will have the same length as the shortest
branch.

We can define parallel list comprehensions by translation to regular comprehensions. Here’s the basic idea:

Given a parallel comprehension of the form:

[e | p1 <- e11, p2 <- e12, ...
| q1 <- e21, q2 <- e22, ...
...

]

This will be translated to:

[e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...]
[(q1,q2) | q1 <- e21, q2 <- e22, ...]
...

]

where `zipN’ is the appropriate zip for the given number of branches.

7.3.10 Generalised (SQL-Like) List Comprehensions

Generalised list comprehensions are a further enhancement to the list comprehension syntactic sugar to allow operations such
as sorting and grouping which are familiar from SQL. They are fully described in the paper Comprehensive comprehensions:
comprehensions with "order by" and "group by", except that the syntax we use differs slightly from the paper.

The extension is enabled with the flag -XTransformListComp.

Here is an example:

employees = [("Simon", "MS", 80)
, ("Erik", "MS", 100)
, ("Phil", "Ed", 40)
, ("Gordon", "Ed", 45)
, ("Paul", "Yale", 60)]

output = [(the dept, sum salary)
| (name, dept, salary) <- employees
, then group by dept using groupWith
, then sortWith by (sum salary)
, then take 5]

http://research.microsoft.com/~simonpj/papers/list-comp
http://research.microsoft.com/~simonpj/papers/list-comp

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 147 / 37

In this example, the list output would take on the value:

[("Yale", 60), ("Ed", 85), ("MS", 180)]

There are three new keywords: group, by, and using. (The functions sortWith and groupWith are not keywords; they
are ordinary functions that are exported by GHC.Exts.)

There are five new forms of comprehension qualifier, all introduced by the (existing) keyword then:

•
then f

This statement requires that f have the type forall a. [a] -> [a]. You can see an example of its use in the
motivating example, as this form is used to apply take 5.

•
then f by e

This form is similar to the previous one, but allows you to create a function which will be passed as the first argument to f.
As a consequence f must have the type forall a. (a -> t) -> [a] -> [a]. As you can see from the type, this
function lets f "project out" some information from the elements of the list it is transforming.

An example is shown in the opening example, where sortWith is supplied with a function that lets it find out the sum
salary for any item in the list comprehension it transforms.

•
then group by e using f

This is the most general of the grouping-type statements. In this form, f is required to have type forall a. (a -> t)
-> [a] -> [[a]]. As with the then f by e case above, the first argument is a function supplied to f by the compiler
which lets it compute e on every element of the list being transformed. However, unlike the non-grouping case, f additionally
partitions the list into a number of sublists: this means that at every point after this statement, binders occurring before it in the
comprehension refer to lists of possible values, not single values. To help understand this, let’s look at an example:

-- This works similarly to groupWith in GHC.Exts, but doesn’t sort its input first
groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
groupRuns f = groupBy (\x y -> f x == f y)

output = [(the x, y)
| x <- ([1..3] ++ [1..2])
, y <- [4..6]
, then group by x using groupRuns]

This results in the variable output taking on the value below:

[(1, [4, 5, 6]), (2, [4, 5, 6]), (3, [4, 5, 6]), (1, [4, 5, 6]), (2, [4, 5, 6])]

Note that we have used the the function to change the type of x from a list to its original numeric type. The variable y, in
contrast, is left unchanged from the list form introduced by the grouping.

•
then group using f

With this form of the group statement, f is required to simply have the type forall a. [a] -> [[a]], which will be
used to group up the comprehension so far directly. An example of this form is as follows:

output = [x
| y <- [1..5]
, x <- "hello"
, then group using inits]

This will yield a list containing every prefix of the word "hello" written out 5 times:

["","h","he","hel","hell","hello","helloh","hellohe","hellohel","hellohell","hellohello"," ←↩
hellohelloh",...]

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 148 / 37

7.3.11 Monad comprehensions

Monad comprehensions generalise the list comprehension notation, including parallel comprehensions (Section 7.3.9) and trans-
form comprehensions (Section 7.3.10) to work for any monad.

Monad comprehensions support:

• Bindings:

[x + y | x <- Just 1, y <- Just 2]

Bindings are translated with the (>>=) and return functions to the usual do-notation:

do x <- Just 1
y <- Just 2
return (x+y)

• Guards:

[x | x <- [1..10], x <= 5]

Guards are translated with the guard function, which requires a MonadPlus instance:

do x <- [1..10]
guard (x <= 5)
return x

• Transform statements (as with -XTransformListComp):

[x+y | x <- [1..10], y <- [1..x], then take 2]

This translates to:

do (x,y) <- take 2 (do x <- [1..10]
y <- [1..x]
return (x,y))

return (x+y)

• Group statements (as with -XTransformListComp):

[x | x <- [1,1,2,2,3], then group by x using GHC.Exts.groupWith]
[x | x <- [1,1,2,2,3], then group using myGroup]

• Parallel statements (as with -XParallelListComp):

[(x+y) | x <- [1..10]
| y <- [11..20]
]

Parallel statements are translated using the mzip function, which requires a MonadZip instance defined in Control.Mo-
nad.Zip:

do (x,y) <- mzip (do x <- [1..10]
return x)

(do y <- [11..20]
return y)

return (x+y)

file:../libraries/base-4.6.0.1/Control-Monad-Zip.html
file:../libraries/base-4.6.0.1/Control-Monad-Zip.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 149 / 37

All these features are enabled by default if the MonadComprehensions extension is enabled. The types and more detailed
examples on how to use comprehensions are explained in the previous chapters Section 7.3.10 and Section 7.3.9. In general you
just have to replace the type [a] with the type Monad m => m a for monad comprehensions.

Note: Even though most of these examples are using the list monad, monad comprehensions work for any monad. The ba-
se package offers all necessary instances for lists, which make MonadComprehensions backward compatible to built-in,
transform and parallel list comprehensions.

More formally, the desugaring is as follows. We write D[e | Q] to mean the desugaring of the monad comprehension [e
| Q]:

Expressions: e
Declarations: d
Lists of qualifiers: Q,R,S

-- Basic forms
D[e |] = return e
D[e | p <- e, Q] = e >>= \p -> D[e | Q]
D[e | e, Q] = guard e >> \p -> D[e | Q]
D[e | let d, Q] = let d in D[e | Q]

-- Parallel comprehensions (iterate for multiple parallel branches)
D[e | (Q | R), S] = mzip D[Qv | Q] D[Rv | R] >>= \(Qv,Rv) -> D[e | S]

-- Transform comprehensions
D[e | Q then f, R] = f D[Qv | Q] >>= \Qv -> D[e | R]

D[e | Q then f by b, R] = f (\Qv -> b) D[Qv | Q] >>= \Qv -> D[e | R]

D[e | Q then group using f, R] = f D[Qv | Q] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of

Qv -> D[e | R]

D[e | Q then group by b using f, R] = f (\Qv -> b) D[Qv | Q] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of

Qv -> D[e | R]

where Qv is the tuple of variables bound by Q (and used subsequently)
selQvi is a selector mapping Qv to the ith component of Qv

Operator Standard binding Expected type
--
return GHC.Base t1 -> m t2
(>>=) GHC.Base m1 t1 -> (t2 -> m2 t3) -> m3 t3
(>>) GHC.Base m1 t1 -> m2 t2 -> m3 t3
guard Control.Monad t1 -> m t2
fmap GHC.Base forall a b. (a->b) -> n a -> n b
mzip Control.Monad.Zip forall a b. m a -> m b -> m (a,b)

The comprehension should typecheck when its desugaring would typecheck.

Monad comprehensions support rebindable syntax (Section 7.3.12). Without rebindable syntax, the operators from the "standard
binding" module are used; with rebindable syntax, the operators are looked up in the current lexical scope. For example, parallel
comprehensions will be typechecked and desugared using whatever "mzip" is in scope.

The rebindable operators must have the "Expected type" given in the table above. These types are surprisingly general. For
example, you can use a bind operator with the type

(>>=) :: T x y a -> (a -> T y z b) -> T x z b

In the case of transform comprehensions, notice that the groups are parameterised over some arbitrary type n (provided it has an
fmap, as well as the comprehension being over an arbitrary monad.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 150 / 37

7.3.12 Rebindable syntax and the implicit Prelude import

GHC normally imports Prelude.hi files for you. If you’d rather it didn’t, then give it a -XNoImplicitPrelude option.
The idea is that you can then import a Prelude of your own. (But don’t call it Prelude; the Haskell module namespace is flat,
and you must not conflict with any Prelude module.)

Suppose you are importing a Prelude of your own in order to define your own numeric class hierarchy. It completely defeats
that purpose if the literal "1" means "Prelude.fromInteger 1", which is what the Haskell Report specifies. So the --
XRebindableSyntax flag causes the following pieces of built-in syntax to refer to whatever is in scope, not the Prelude
versions:

• An integer literal 368 means "fromInteger (368::Integer)", rather than "Prelude.fromInteger (368::-
Integer)".

• Fractional literals are handed in just the same way, except that the translation is fromRational (3.68::Rational).

• The equality test in an overloaded numeric pattern uses whatever (==) is in scope.

• The subtraction operation, and the greater-than-or-equal test, in n+k patterns use whatever (-) and (>=) are in scope.

• Negation (e.g. "- (f x)") means "negate (f x)", both in numeric patterns, and expressions.

• Conditionals (e.g. "if e1 then e2 else e3") means "ifThenElse e1 e2 e3". However case expressions are unaffected.

• "Do" notation is translated using whatever functions (>>=), (>>), and fail, are in scope (not the Prelude versions). List
comprehensions, mdo (Section 7.3.8), and parallel array comprehensions, are unaffected.

• Arrow notation (see Section 7.15) uses whatever arr, (>>>), first, app, (|||) and loop functions are in scope. But
unlike the other constructs, the types of these functions must match the Prelude types very closely. Details are in flux; if you
want to use this, ask!

-XRebindableSyntax implies -XNoImplicitPrelude.

In all cases (apart from arrow notation), the static semantics should be that of the desugared form, even if that is a little unexpected.
For example, the static semantics of the literal 368 is exactly that of fromInteger (368::Integer); it’s fine for from-
Integer to have any of the types:

fromInteger :: Integer -> Integer
fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a -> Integer
fromInteger :: Integer -> Bool -> Bool

Be warned: this is an experimental facility, with fewer checks than usual. Use -dcore-lint to typecheck the desugared
program. If Core Lint is happy you should be all right.

7.3.13 Postfix operators

The -XPostfixOperators flag enables a small extension to the syntax of left operator sections, which allows you to define
postfix operators. The extension is this: the left section

(e !)

is equivalent (from the point of view of both type checking and execution) to the expression

((!) e)

(for any expression e and operator (!). The strict Haskell 98 interpretation is that the section is equivalent to

(\y -> (!) e y)

That is, the operator must be a function of two arguments. GHC allows it to take only one argument, and that in turn allows you
to write the function postfix.

The extension does not extend to the left-hand side of function definitions; you must define such a function in prefix form.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 151 / 37

7.3.14 Tuple sections

The -XTupleSections flag enables Python-style partially applied tuple constructors. For example, the following program

(, True)

is considered to be an alternative notation for the more unwieldy alternative

\x -> (x, True)

You can omit any combination of arguments to the tuple, as in the following

(, "I", , , "Love", , 1337)

which translates to

\a b c d -> (a, "I", b, c, "Love", d, 1337)

If you have unboxed tuples enabled, tuple sections will also be available for them, like so

(# , True #)

Because there is no unboxed unit tuple, the following expression

(# #)

continues to stand for the unboxed singleton tuple data constructor.

7.3.15 Lambda-case

The -XLambdaCase flag enables expressions of the form

\case { p1 -> e1; ...; pN -> eN }

which is equivalent to

\freshName -> case freshName of { p1 -> e1; ...; pN -> eN }

Note that \case starts a layout, so you can write

\case
p1 -> e1
...
pN -> eN

7.3.16 Multi-way if-expressions

With -XMultiWayIf flag GHC accepts conditional expressions with multiple branches:

if | guard1 -> expr1
| ...
| guardN -> exprN

which is roughly equivalent to

case () of
_ | guard1 -> expr1
...
_ | guardN -> exprN

except that multi-way if-expressions do not alter the layout.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 152 / 37

7.3.17 Record field disambiguation

In record construction and record pattern matching it is entirely unambiguous which field is referred to, even if there are two
different data types in scope with a common field name. For example:

module M where
data S = MkS { x :: Int, y :: Bool }

module Foo where
import M

data T = MkT { x :: Int }

ok1 (MkS { x = n }) = n+1 -- Unambiguous
ok2 n = MkT { x = n+1 } -- Unambiguous

bad1 k = k { x = 3 } -- Ambiguous
bad2 k = x k -- Ambiguous

Even though there are two x’s in scope, it is clear that the x in the pattern in the definition of ok1 can only mean the field x from
type S. Similarly for the function ok2. However, in the record update in bad1 and the record selection in bad2 it is not clear
which of the two types is intended.

Haskell 98 regards all four as ambiguous, but with the -XDisambiguateRecordFields flag, GHC will accept the former
two. The rules are precisely the same as those for instance declarations in Haskell 98, where the method names on the left-hand
side of the method bindings in an instance declaration refer unambiguously to the method of that class (provided they are in
scope at all), even if there are other variables in scope with the same name. This reduces the clutter of qualified names when you
import two records from different modules that use the same field name.

Some details:

• Field disambiguation can be combined with punning (see Section 7.3.18). For example:

module Foo where
import M
x=True
ok3 (MkS { x }) = x+1 -- Uses both disambiguation and punning

• With -XDisambiguateRecordFields you can use unqualified field names even if the corresponding selector is only in
scope qualified For example, assuming the same module M as in our earlier example, this is legal:

module Foo where
import qualified M -- Note qualified

ok4 (M.MkS { x = n }) = n+1 -- Unambiguous

Since the constructor MkS is only in scope qualified, you must name it M.MkS, but the field x does not need to be qualified
even though M.x is in scope but x is not. (In effect, it is qualified by the constructor.)

7.3.18 Record puns

Record puns are enabled by the flag -XNamedFieldPuns.

When using records, it is common to write a pattern that binds a variable with the same name as a record field, such as:

data C = C {a :: Int}
f (C {a = a}) = a

Record punning permits the variable name to be elided, so one can simply write

f (C {a}) = a

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 153 / 37

to mean the same pattern as above. That is, in a record pattern, the pattern a expands into the pattern a = a for the same name
a.

Note that:

• Record punning can also be used in an expression, writing, for example,

let a = 1 in C {a}

instead of

let a = 1 in C {a = a}

The expansion is purely syntactic, so the expanded right-hand side expression refers to the nearest enclosing variable that is
spelled the same as the field name.

• Puns and other patterns can be mixed in the same record:

data C = C {a :: Int, b :: Int}
f (C {a, b = 4}) = a

• Puns can be used wherever record patterns occur (e.g. in let bindings or at the top-level).

• A pun on a qualified field name is expanded by stripping off the module qualifier. For example:

f (C {M.a}) = a

means

f (M.C {M.a = a}) = a

(This is useful if the field selector a for constructor M.C is only in scope in qualified form.)

7.3.19 Record wildcards

Record wildcards are enabled by the flag -XRecordWildCards. This flag implies -XDisambiguateRecordFields.

For records with many fields, it can be tiresome to write out each field individually in a record pattern, as in

data C = C {a :: Int, b :: Int, c :: Int, d :: Int}
f (C {a = 1, b = b, c = c, d = d}) = b + c + d

Record wildcard syntax permits a ".." in a record pattern, where each elided field f is replaced by the pattern f = f. For
example, the above pattern can be written as

f (C {a = 1, ..}) = b + c + d

More details:

• Wildcards can be mixed with other patterns, including puns (Section 7.3.18); for example, in a pattern C {a = 1, b, ..-
}). Additionally, record wildcards can be used wherever record patterns occur, including in let bindings and at the top-level.
For example, the top-level binding

C {a = 1, ..} = e

defines b, c, and d.

• Record wildcards can also be used in expressions, writing, for example,

let {a = 1; b = 2; c = 3; d = 4} in C {..}

in place of

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 154 / 37

let {a = 1; b = 2; c = 3; d = 4} in C {a=a, b=b, c=c, d=d}

The expansion is purely syntactic, so the record wildcard expression refers to the nearest enclosing variables that are spelled
the same as the omitted field names.

• The ".." expands to the missing in-scope record fields. Specifically the expansion of "C {..}" includes f if and only if:

– f is a record field of constructor C.
– The record field f is in scope somehow (either qualified or unqualified).
– In the case of expressions (but not patterns), the variable f is in scope unqualified, apart from the binding of the record

selector itself.

For example

module M where
data R = R { a,b,c :: Int }

module X where
import M(R(a,c))
f b = R { .. }

The R{..} expands to R{M.a=a}, omitting b since the record field is not in scope, and omitting c since the variable c is not
in scope (apart from the binding of the record selector c, of course).

7.3.20 Local Fixity Declarations

A careful reading of the Haskell 98 Report reveals that fixity declarations (infix, infixl, and infixr) are permitted to
appear inside local bindings such those introduced by let and where. However, the Haskell Report does not specify the
semantics of such bindings very precisely.

In GHC, a fixity declaration may accompany a local binding:

let f = ...
infixr 3 ‘f‘

in
...

and the fixity declaration applies wherever the binding is in scope. For example, in a let, it applies in the right-hand sides of
other let-bindings and the body of the letC. Or, in recursive do expressions (Section 7.3.8), the local fixity declarations of a
let statement scope over other statements in the group, just as the bound name does.

Moreover, a local fixity declaration *must* accompany a local binding of that name: it is not possible to revise the fixity of name
bound elsewhere, as in

let infixr 9 $ in ...

Because local fixity declarations are technically Haskell 98, no flag is necessary to enable them.

7.3.21 Package-qualified imports

With the -XPackageImports flag, GHC allows import declarations to be qualified by the package name that the module is
intended to be imported from. For example:

import "network" Network.Socket

would import the module Network.Socket from the package network (any version). This may be used to disambiguate an
import when the same module is available from multiple packages, or is present in both the current package being built and an
external package.

The special package name this can be used to refer to the current package being built.

Note: you probably don’t need to use this feature, it was added mainly so that we can build backwards-compatible versions of
packages when APIs change. It can lead to fragile dependencies in the common case: modules occasionally move from one
package to another, rendering any package-qualified imports broken.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 155 / 37

7.3.22 Safe imports

With the -XSafe, -XTrustworthy and -XUnsafe language flags, GHC extends the import declaration syntax to take an
optional safe keyword after the import keyword. This feature is part of the Safe Haskell GHC extension. For example:

import safe qualified Network.Socket as NS

would import the module Network.Socket with compilation only succeeding if Network.Socket can be safely imported. For
a description of when a import is considered safe see Section 7.25

7.3.23 Summary of stolen syntax

Turning on an option that enables special syntax might cause working Haskell 98 code to fail to compile, perhaps because it uses
a variable name which has become a reserved word. This section lists the syntax that is "stolen" by language extensions. We use
notation and nonterminal names from the Haskell 98 lexical syntax (see the Haskell 98 Report). We only list syntax changes here
that might affect existing working programs (i.e. "stolen" syntax). Many of these extensions will also enable new context-free
syntax, but in all cases programs written to use the new syntax would not be compilable without the option enabled.

There are two classes of special syntax:

• New reserved words and symbols: character sequences which are no longer available for use as identifiers in the program.

• Other special syntax: sequences of characters that have a different meaning when this particular option is turned on.

The following syntax is stolen:

forall Stolen (in types) by: -XExplicitForAll, and hence by -XScopedTypeVariables, -XLiberalTypeS-
ynonyms, -XRank2Types, -XRankNTypes, -XPolymorphicComponents, -XExistentialQuantifica-
tion

mdo Stolen by: -XRecursiveDo

foreign Stolen by: -XForeignFunctionInterface

rec, proc, -<, >-, -<<, >>-, and (|, |) brackets Stolen by: -XArrows

?varid, %varid Stolen by: -XImplicitParams

[|, [e|, [p|, [d|, [t|, $(, $varid Stolen by: -XTemplateHaskell

[:varid| Stolen by: -XQuasiQuotes

varid{#}, char#, string#, integer#, float#, float##, (#, #) Stolen by: -XMagicHash

7.4 Extensions to data types and type synonyms

7.4.1 Data types with no constructors

With the -XEmptyDataDecls flag (or equivalent LANGUAGE pragma), GHC lets you declare a data type with no construc-
tors. For example:

data S -- S :: *
data T a -- T :: * -> *

Syntactically, the declaration lacks the "= constrs" part. The type can be parameterised over types of any kind, but if the kind is
not * then an explicit kind annotation must be used (see Section 7.12.4).

Such data types have only one value, namely bottom. Nevertheless, they can be useful when defining "phantom types".

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 156 / 37

7.4.2 Data type contexts

Haskell allows datatypes to be given contexts, e.g.

data Eq a => Set a = NilSet | ConsSet a (Set a)

give constructors with types:

NilSet :: Set a
ConsSet :: Eq a => a -> Set a -> Set a

This is widely considered a misfeature, and is going to be removed from the language. In GHC, it is controlled by the deprecated
extension DatatypeContexts.

7.4.3 Infix type constructors, classes, and type variables

GHC allows type constructors, classes, and type variables to be operators, and to be written infix, very much like expressions.
More specifically:

• A type constructor or class can be an operator, beginning with a colon; e.g. :*:. The lexical syntax is the same as that for data
constructors.

• Data type and type-synonym declarations can be written infix, parenthesised if you want further arguments. E.g.

data a :*: b = Foo a b
type a :+: b = Either a b
class a :=: b where ...

data (a :**: b) x = Baz a b x
type (a :++: b) y = Either (a,b) y

• Types, and class constraints, can be written infix. For example

x :: Int :*: Bool
f :: (a :=: b) => a -> b

• A type variable can be an (unqualified) operator e.g. +. The lexical syntax is the same as that for variable operators, excluding
"(.)", "(!)", and "(*)". In a binding position, the operator must be parenthesised. For example:

type T (+) = Int + Int
f :: T Either
f = Left 3

liftA2 :: Arrow (~>)
=> (a -> b -> c) -> (e ~> a) -> (e ~> b) -> (e ~> c)

liftA2 = ...

• Back-quotes work as for expressions, both for type constructors and type variables; e.g. Int `Either` Bool, or Int
`a` Bool. Similarly, parentheses work the same; e.g. (:*:) Int Bool.

• Fixities may be declared for type constructors, or classes, just as for data constructors. However, one cannot distinguish
between the two in a fixity declaration; a fixity declaration sets the fixity for a data constructor and the corresponding type
constructor. For example:

infixl 7 T, :*:

sets the fixity for both type constructor T and data constructor T, and similarly for :*:. Int `a` Bool.

• Function arrow is infixr with fixity 0. (This might change; I’m not sure what it should be.)

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 157 / 37

7.4.4 Liberalised type synonyms

Type synonyms are like macros at the type level, but Haskell 98 imposes many rules on individual synonym declarations. With
the -XLiberalTypeSynonyms extension, GHC does validity checking on types only after expanding type synonyms. That
means that GHC can be very much more liberal about type synonyms than Haskell 98.

• You can write a forall (including overloading) in a type synonym, thus:

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard a
f x y = (x, show y)

g :: Discard Int -> (Int,String) -- A rank-2 type
g f = f 3 True

• If you also use -XUnboxedTuples, you can write an unboxed tuple in a type synonym:

type Pr = (# Int, Int #)

h :: Int -> Pr
h x = (# x, x #)

• You can apply a type synonym to a forall type:

type Foo a = a -> a -> Bool

f :: Foo (forall b. b->b)

After expanding the synonym, f has the legal (in GHC) type:

f :: (forall b. b->b) -> (forall b. b->b) -> Bool

• You can apply a type synonym to a partially applied type synonym:

type Generic i o = forall x. i x -> o x
type Id x = x

foo :: Generic Id []

After expanding the synonym, foo has the legal (in GHC) type:

foo :: forall x. x -> [x]

GHC currently does kind checking before expanding synonyms (though even that could be changed.)

After expanding type synonyms, GHC does validity checking on types, looking for the following mal-formedness which isn’t
detected simply by kind checking:

• Type constructor applied to a type involving for-alls.

• Unboxed tuple on left of an arrow.

• Partially-applied type synonym.

So, for example, this will be rejected:

type Pr = (# Int, Int #)

h :: Pr -> Int
h x = ...

because GHC does not allow unboxed tuples on the left of a function arrow.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 158 / 37

7.4.5 Existentially quantified data constructors

The idea of using existential quantification in data type declarations was suggested by Perry, and implemented in Hope+ (Nigel
Perry, The Implementation of Practical Functional Programming Languages, PhD Thesis, University of London, 1991). It was
later formalised by Laufer and Odersky (Polymorphic type inference and abstract data types, TOPLAS, 16(5), pp1411-1430,
1994). It’s been in Lennart Augustsson’s hbc Haskell compiler for several years, and proved very useful. Here’s the idea.
Consider the declaration:

data Foo = forall a. MkFoo a (a -> Bool)
| Nil

The data type Foo has two constructors with types:

MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo

Notice that the type variable a in the type of MkFoo does not appear in the data type itself, which is plain Foo. For example, the
following expression is fine:

[MkFoo 3 even, MkFoo ’c’ isUpper] :: [Foo]

Here, (MkFoo 3 even) packages an integer with a function even that maps an integer to Bool; and MkFoo ’c’ isUp-
per packages a character with a compatible function. These two things are each of type Foo and can be put in a list.

What can we do with a value of type Foo?. In particular, what happens when we pattern-match on MkFoo?

f (MkFoo val fn) = ???

Since all we know about val and fn is that they are compatible, the only (useful) thing we can do with them is to apply fn to
val to get a boolean. For example:

f :: Foo -> Bool
f (MkFoo val fn) = fn val

What this allows us to do is to package heterogeneous values together with a bunch of functions that manipulate them, and then
treat that collection of packages in a uniform manner. You can express quite a bit of object-oriented-like programming this way.

7.4.5.1 Why existential?

What has this to do with existential quantification? Simply that MkFoo has the (nearly) isomorphic type

MkFoo :: (exists a . (a, a -> Bool)) -> Foo

But Haskell programmers can safely think of the ordinary universally quantified type given above, thereby avoiding adding a
new existential quantification construct.

7.4.5.2 Existentials and type classes

An easy extension is to allow arbitrary contexts before the constructor. For example:

data Baz = forall a. Eq a => Baz1 a a
| forall b. Show b => Baz2 b (b -> b)

The two constructors have the types you’d expect:

Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz

But when pattern matching on Baz1 the matched values can be compared for equality, and when pattern matching on Baz2 the
first matched value can be converted to a string (as well as applying the function to it). So this program is legal:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 159 / 37

f :: Baz -> String
f (Baz1 p q) | p == q = "Yes"

| otherwise = "No"
f (Baz2 v fn) = show (fn v)

Operationally, in a dictionary-passing implementation, the constructors Baz1 and Baz2 must store the dictionaries for Eq and
Show respectively, and extract it on pattern matching.

7.4.5.3 Record Constructors

GHC allows existentials to be used with records syntax as well. For example:

data Counter a = forall self. NewCounter
{ _this :: self
, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
}

Here tag is a public field, with a well-typed selector function tag :: Counter a -> a. The self type is hidden from
the outside; any attempt to apply _this, _inc or _display as functions will raise a compile-time error. In other words,
GHC defines a record selector function only for fields whose type does not mention the existentially-quantified variables. (This
example used an underscore in the fields for which record selectors will not be defined, but that is only programming style; GHC
ignores them.)

To make use of these hidden fields, we need to create some helper functions:

inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter

{ _this = i x, _inc = i, _display = d, tag = t }

display :: Counter a -> IO ()
display NewCounter{ _this = x, _display = d } = d x

Now we can define counters with different underlying implementations:

counterA :: Counter String
counterA = NewCounter

{ _this = 0, _inc = (1+), _display = print, tag = "A" }

counterB :: Counter String
counterB = NewCounter

{ _this = "", _inc = (’#’:), _display = putStrLn, tag = "B" }

main = do
display (inc counterA) -- prints "1"
display (inc (inc counterB)) -- prints "##"

Record update syntax is supported for existentials (and GADTs):

setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag = t }

The rule for record update is this: the types of the updated fields may mention only the universally-quantified type variables
of the data constructor. For GADTs, the field may mention only types that appear as a simple type-variable argument in the
constructor’s result type. For example:

data T a b where { T1 { f1::a, f2::b, f3::(b,c) } :: T a b } -- c is existential
upd1 t x = t { f1=x } -- OK: upd1 :: T a b -> a’ -> T a’ b
upd2 t x = t { f3=x } -- BAD (f3’s type mentions c, which is

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 160 / 37

-- existentially quantified)

data G a b where { G1 { g1::a, g2::c } :: G a [c] }
upd3 g x = g { g1=x } -- OK: upd3 :: G a b -> c -> G c b
upd4 g x = g { g2=x } -- BAD (f2’s type mentions c, which is not a simple

-- type-variable argument in G1’s result type)

7.4.5.4 Restrictions

There are several restrictions on the ways in which existentially-quantified constructors can be use.

• When pattern matching, each pattern match introduces a new, distinct, type for each existential type variable. These types
cannot be unified with any other type, nor can they escape from the scope of the pattern match. For example, these fragments
are incorrect:

f1 (MkFoo a f) = a

Here, the type bound by MkFoo "escapes", because a is the result of f1. One way to see why this is wrong is to ask what type
f1 has:

f1 :: Foo -> a -- Weird!

What is this "a" in the result type? Clearly we don’t mean this:

f1 :: forall a. Foo -> a -- Wrong!

The original program is just plain wrong. Here’s another sort of error

f2 (Baz1 a b) (Baz1 p q) = a==q

It’s ok to say a==b or p==q, but a==q is wrong because it equates the two distinct types arising from the two Baz1 construc-
tors.

• You can’t pattern-match on an existentially quantified constructor in a let or where group of bindings. So this is illegal:

f3 x = a==b where { Baz1 a b = x }

Instead, use a case expression:

f3 x = case x of Baz1 a b -> a==b

In general, you can only pattern-match on an existentially-quantified constructor in a case expression or in the patterns of a
function definition. The reason for this restriction is really an implementation one. Type-checking binding groups is already
a nightmare without existentials complicating the picture. Also an existential pattern binding at the top level of a module
doesn’t make sense, because it’s not clear how to prevent the existentially-quantified type "escaping". So for now, there’s a
simple-to-state restriction. We’ll see how annoying it is.

• You can’t use existential quantification for newtype declarations. So this is illegal:

newtype T = forall a. Ord a => MkT a

Reason: a value of type T must be represented as a pair of a dictionary for Ord t and a value of type t. That contradicts the
idea that newtype should have no concrete representation. You can get just the same efficiency and effect by using data
instead of newtype. If there is no overloading involved, then there is more of a case for allowing an existentially-quantified
newtype, because the data version does carry an implementation cost, but single-field existentially quantified constructors
aren’t much use. So the simple restriction (no existential stuff on newtype) stands, unless there are convincing reasons to
change it.

• You can’t use deriving to define instances of a data type with existentially quantified data constructors. Reason: in most
cases it would not make sense. For example:;

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 161 / 37

data T = forall a. MkT [a] deriving(Eq)

To derive Eq in the standard way we would need to have equality between the single component of two MkT constructors:

instance Eq T where
(MkT a) == (MkT b) = ???

But a and b have distinct types, and so can’t be compared. It’s just about possible to imagine examples in which the derived
instance would make sense, but it seems altogether simpler simply to prohibit such declarations. Define your own instances!

7.4.6 Declaring data types with explicit constructor signatures

When the GADTSyntax extension is enabled, GHC allows you to declare an algebraic data type by giving the type signatures
of constructors explicitly. For example:

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a

The form is called a "GADT-style declaration" because Generalised Algebraic Data Types, described in Section 7.4.7, can only
be declared using this form.

Notice that GADT-style syntax generalises existential types (Section 7.4.5). For example, these two declarations are equivalent:

data Foo = forall a. MkFoo a (a -> Bool)
data Foo’ where { MKFoo :: a -> (a->Bool) -> Foo’ }

Any data type that can be declared in standard Haskell-98 syntax can also be declared using GADT-style syntax. The choice is
largely stylistic, but GADT-style declarations differ in one important respect: they treat class constraints on the data constructors
differently. Specifically, if the constructor is given a type-class context, that context is made available by pattern matching. For
example:

data Set a where
MkSet :: Eq a => [a] -> Set a

makeSet :: Eq a => [a] -> Set a
makeSet xs = MkSet (nub xs)

insert :: a -> Set a -> Set a
insert a (MkSet as) | a ‘elem‘ as = MkSet as

| otherwise = MkSet (a:as)

A use of MkSet as a constructor (e.g. in the definition of makeSet) gives rise to a (Eq a) constraint, as you would expect.
The new feature is that pattern-matching on MkSet (as in the definition of insert) makes available an (Eq a) context. In
implementation terms, the MkSet constructor has a hidden field that stores the (Eq a) dictionary that is passed to MkSet;
so when pattern-matching that dictionary becomes available for the right-hand side of the match. In the example, the equality
dictionary is used to satisfy the equality constraint generated by the call to elem, so that the type of insert itself has no Eq
constraint.

For example, one possible application is to reify dictionaries:

data NumInst a where
MkNumInst :: Num a => NumInst a

intInst :: NumInst Int
intInst = MkNumInst

plus :: NumInst a -> a -> a -> a
plus MkNumInst p q = p + q

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 162 / 37

Here, a value of type NumInst a is equivalent to an explicit (Num a) dictionary.

All this applies to constructors declared using the syntax of Section 7.4.5.2. For example, the NumInst data type above could
equivalently be declared like this:

data NumInst a
= Num a => MkNumInst (NumInst a)

Notice that, unlike the situation when declaring an existential, there is no forall, because the Num constrains the data type’s
universally quantified type variable a. A constructor may have both universal and existential type variables: for example, the
following two declarations are equivalent:

data T1 a
= forall b. (Num a, Eq b) => MkT1 a b
data T2 a where

MkT2 :: (Num a, Eq b) => a -> b -> T2 a

All this behaviour contrasts with Haskell 98’s peculiar treatment of contexts on a data type declaration (Section 4.2.1 of the
Haskell 98 Report). In Haskell 98 the definition

data Eq a => Set’ a = MkSet’ [a]

gives MkSet’ the same type as MkSet above. But instead of making available an (Eq a) constraint, pattern-matching on
MkSet’ requires an (Eq a) constraint! GHC faithfully implements this behaviour, odd though it is. But for GADT-style
declarations, GHC’s behaviour is much more useful, as well as much more intuitive.

The rest of this section gives further details about GADT-style data type declarations.

• The result type of each data constructor must begin with the type constructor being defined. If the result type of all constructors
has the form T a1 ... an, where a1 ... an are distinct type variables, then the data type is ordinary; otherwise is a
generalised data type (Section 7.4.7).

• As with other type signatures, you can give a single signature for several data constructors. In this example we give a single
signature for T1 and T2:

data T a where
T1,T2 :: a -> T a
T3 :: T a

• The type signature of each constructor is independent, and is implicitly universally quantified as usual. In particular, the
type variable(s) in the "data T a where" header have no scope, and different constructors may have different universally-
quantified type variables:

data T a where -- The ’a’ has no scope
T1,T2 :: b -> T b -- Means forall b. b -> T b
T3 :: T a -- Means forall a. T a

• A constructor signature may mention type class constraints, which can differ for different constructors. For example, this is
fine:

data T a where
T1 :: Eq b => b -> b -> T b
T2 :: (Show c, Ix c) => c -> [c] -> T c

When pattern matching, these constraints are made available to discharge constraints in the body of the match. For example:

f :: T a -> String
f (T1 x y) | x==y = "yes"

| otherwise = "no"
f (T2 a b) = show a

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 163 / 37

Note that f is not overloaded; the Eq constraint arising from the use of == is discharged by the pattern match on T1 and
similarly the Show constraint arising from the use of show.

• Unlike a Haskell-98-style data type declaration, the type variable(s) in the "data Set a where" header have no scope.
Indeed, one can write a kind signature instead:

data Set :: * -> * where ...

or even a mixture of the two:

data Bar a :: (* -> *) -> * where ...

The type variables (if given) may be explicitly kinded, so we could also write the header for Foo like this:

data Bar a (b :: * -> *) where ...

• You can use strictness annotations, in the obvious places in the constructor type:

data Term a where
Lit :: !Int -> Term Int
If :: Term Bool -> !(Term a) -> !(Term a) -> Term a
Pair :: Term a -> Term b -> Term (a,b)

• You can use a deriving clause on a GADT-style data type declaration. For example, these two declarations are equivalent

data Maybe1 a where {
Nothing1 :: Maybe1 a ;
Just1 :: a -> Maybe1 a

} deriving(Eq, Ord)

data Maybe2 a = Nothing2 | Just2 a
deriving(Eq, Ord)

• The type signature may have quantified type variables that do not appear in the result type:

data Foo where
MkFoo :: a -> (a->Bool) -> Foo
Nil :: Foo

Here the type variable a does not appear in the result type of either constructor. Although it is universally quantified in the type
of the constructor, such a type variable is often called "existential". Indeed, the above declaration declares precisely the same
type as the data Foo in Section 7.4.5.

The type may contain a class context too, of course:

data Showable where
MkShowable :: Show a => a -> Showable

• You can use record syntax on a GADT-style data type declaration:

data Person where
Adult :: { name :: String, children :: [Person] } -> Person
Child :: Show a => { name :: !String, funny :: a } -> Person

As usual, for every constructor that has a field f, the type of field f must be the same (modulo alpha conversion). The Child
constructor above shows that the signature may have a context, existentially-quantified variables, and strictness annotations,
just as in the non-record case. (NB: the "type" that follows the double-colon is not really a type, because of the record syntax
and strictness annotations. A "type" of this form can appear only in a constructor signature.)

• Record updates are allowed with GADT-style declarations, only fields that have the following property: the type of the field
mentions no existential type variables.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 164 / 37

• As in the case of existentials declared using the Haskell-98-like record syntax (Section 7.4.5.3), record-selector functions are
generated only for those fields that have well-typed selectors. Here is the example of that section, in GADT-style syntax:

data Counter a where
NewCounter { _this :: self

, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
}

:: Counter a

As before, only one selector function is generated here, that for tag. Nevertheless, you can still use all the field names in
pattern matching and record construction.

• In a GADT-style data type declaration there is no obvious way to specify that a data constructor should be infix, which makes
a difference if you derive Show for the type. (Data constructors declared infix are displayed infix by the derived show.) So
GHC implements the following design: a data constructor declared in a GADT-style data type declaration is displayed infix by
Show iff (a) it is an operator symbol, (b) it has two arguments, (c) it has a programmer-supplied fixity declaration. For example

infix 6 (:--:)
data T a where
(:--:) :: Int -> Bool -> T Int

7.4.7 Generalised Algebraic Data Types (GADTs)

Generalised Algebraic Data Types generalise ordinary algebraic data types by allowing constructors to have richer return types.
Here is an example:

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Notice that the return type of the constructors is not always Term a, as is the case with ordinary data types. This generality
allows us to write a well-typed eval function for these Terms:

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero t) = eval t == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
eval (Pair e1 e2) = (eval e1, eval e2)

The key point about GADTs is that pattern matching causes type refinement. For example, in the right hand side of the equation

eval :: Term a -> a
eval (Lit i) = ...

the type a is refined to Int. That’s the whole point! A precise specification of the type rules is beyond what this user manual
aspires to, but the design closely follows that described in the paper Simple unification-based type inference for GADTs, (ICFP
2006). The general principle is this: type refinement is only carried out based on user-supplied type annotations. So if no
type signature is supplied for eval, no type refinement happens, and lots of obscure error messages will occur. However, the
refinement is quite general. For example, if we had:

eval :: Term a -> a -> a
eval (Lit i) j = i+j

http://research.microsoft.com/%7Esimonpj/papers/gadt/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 165 / 37

the pattern match causes the type a to be refined to Int (because of the type of the constructor Lit), and that refinement also
applies to the type of j, and the result type of the case expression. Hence the addition i+j is legal.

These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. There is a longer introduction on the wiki,
and Ralf Hinze’s Fun with phantom types also has a number of examples. Note that papers may use different notation to that
implemented in GHC.

The rest of this section outlines the extensions to GHC that support GADTs. The extension is enabled with -XGADTs. The
-XGADTs flag also sets -XRelaxedPolyRec.

• A GADT can only be declared using GADT-style syntax (Section 7.4.6); the old Haskell-98 syntax for data declarations always
declares an ordinary data type. The result type of each constructor must begin with the type constructor being defined, but for a
GADT the arguments to the type constructor can be arbitrary monotypes. For example, in the Term data type above, the type
of each constructor must end with Term ty, but the ty need not be a type variable (e.g. the Lit constructor).

• It is permitted to declare an ordinary algebraic data type using GADT-style syntax. What makes a GADT into a GADT is not
the syntax, but rather the presence of data constructors whose result type is not just T a b.

• You cannot use a deriving clause for a GADT; only for an ordinary data type.

• As mentioned in Section 7.4.6, record syntax is supported. For example:

data Term a where
Lit { val :: Int } :: Term Int
Succ { num :: Term Int } :: Term Int
Pred { num :: Term Int } :: Term Int
IsZero { arg :: Term Int } :: Term Bool
Pair { arg1 :: Term a

, arg2 :: Term b
} :: Term (a,b)

If { cnd :: Term Bool
, tru :: Term a
, fls :: Term a
} :: Term a

However, for GADTs there is the following additional constraint: every constructor that has a field f must have the same result
type (modulo alpha conversion) Hence, in the above example, we cannot merge the num and arg fields above into a single
name. Although their field types are both Term Int, their selector functions actually have different types:

num :: Term Int -> Term Int
arg :: Term Bool -> Term Int

• When pattern-matching against data constructors drawn from a GADT, for example in a case expression, the following rules
apply:

– The type of the scrutinee must be rigid.

– The type of the entire case expression must be rigid.

– The type of any free variable mentioned in any of the case alternatives must be rigid.

A type is "rigid" if it is completely known to the compiler at its binding site. The easiest way to ensure that a variable a rigid
type is to give it a type signature. For more precise details see Simple unification-based type inference for GADTs . The
criteria implemented by GHC are given in the Appendix.

7.5 Extensions to the "deriving" mechanism

7.5.1 Inferred context for deriving clauses

The Haskell Report is vague about exactly when a deriving clause is legal. For example:

http://www.haskell.org/haskellwiki/GADT
http://www.informatik.uni-bonn.de/~ralf/publications/With.pdf
http://research.microsoft.com/%7Esimonpj/papers/gadt

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 166 / 37

data T0 f a = MkT0 a deriving(Eq)
data T1 f a = MkT1 (f a) deriving(Eq)
data T2 f a = MkT2 (f (f a)) deriving(Eq)

The natural generated Eq code would result in these instance declarations:

instance Eq a => Eq (T0 f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...

The first of these is obviously fine. The second is still fine, although less obviously. The third is not Haskell 98, and risks losing
termination of instances.

GHC takes a conservative position: it accepts the first two, but not the third. The rule is this: each constraint in the inferred
instance context must consist only of type variables, with no repetitions.

This rule is applied regardless of flags. If you want a more exotic context, you can write it yourself, using the standalone deriving
mechanism.

7.5.2 Stand-alone deriving declarations

GHC now allows stand-alone deriving declarations, enabled by -XStandaloneDeriving:

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo a)

The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword deriving, and (b) the absence of
the where part. Note the following points:

• You must supply an explicit context (in the example the context is (Eq a)), exactly as you would in an ordinary instance
declaration. (In contrast, in a deriving clause attached to a data type declaration, the context is inferred.)

• A deriving instance declaration must obey the same rules concerning form and termination as ordinary instance dec-
larations, controlled by the same flags; see Section 7.6.3.

• Unlike a deriving declaration attached to a data declaration, the instance can be more specific than the data type (assuming
you also use -XFlexibleInstances, Section 7.6.3.2). Consider for example

data Foo a = Bar a | Baz String

deriving instance Eq a => Eq (Foo [a])
deriving instance Eq a => Eq (Foo (Maybe a))

This will generate a derived instance for (Foo [a]) and (Foo (Maybe a)), but other types such as (Foo (Int,Bo-
ol)) will not be an instance of Eq.

• Unlike a deriving declaration attached to a data declaration, GHC does not restrict the form of the data type. Instead,
GHC simply generates the appropriate boilerplate code for the specified class, and typechecks it. If there is a type error, it is
your problem. (GHC will show you the offending code if it has a type error.) The merit of this is that you can derive instances
for GADTs and other exotic data types, providing only that the boilerplate code does indeed typecheck. For example:

data T a where
T1 :: T Int
T2 :: T Bool

deriving instance Show (T a)

In this example, you cannot say ... deriving(Show) on the data type declaration for T, because T is a GADT, but
you can generate the instance declaration using stand-alone deriving.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 167 / 37

• The stand-alone syntax is generalised for newtypes in exactly the same way that ordinary deriving clauses are generalised
(Section 7.5.4). For example:

newtype Foo a = MkFoo (State Int a)

deriving instance MonadState Int Foo

GHC always treats the last parameter of the instance (Foo in this example) as the type whose instance is being derived.

7.5.3 Deriving clause for extra classes (Typeable, Data, etc)

Haskell 98 allows the programmer to add "deriving(Eq, Ord)" to a data type declaration, to generate a standard instance
declaration for classes specified in the deriving clause. In Haskell 98, the only classes that may appear in the deriving
clause are the standard classes Eq, Ord, Enum, Ix, Bounded, Read, and Show.

GHC extends this list with several more classes that may be automatically derived:

• With -XDeriveDataTypeable, you can derive instances of the classes Typeable, and Data, defined in the library
modules Data.Typeable and Data.Generics respectively.

An instance of Typeable can only be derived if the data type has seven or fewer type parameters, all of kind *. The reason
for this is that the Typeable class is derived using the scheme described in Scrap More Boilerplate: Reflection, Zips, and
Generalised Casts . (Section 7.4 of the paper describes the multiple Typeable classes that are used, and only Typeable1
up to Typeable7 are provided in the library.) In other cases, there is nothing to stop the programmer writing a TypeableX
class, whose kind suits that of the data type constructor, and then writing the data type instance by hand.

• With -XDeriveGeneric, you can derive instances of the classes Generic and Generic1, defined in GHC.Generics.
You can use these to define generic functions, as described in Section 7.22.

• With -XDeriveFunctor, you can derive instances of the class Functor, defined in GHC.Base.

• With -XDeriveFoldable, you can derive instances of the class Foldable, defined in Data.Foldable.

• With -XDeriveTraversable, you can derive instances of the class Traversable, defined in Data.Traversable.

In each case the appropriate class must be in scope before it can be mentioned in the deriving clause.

7.5.4 Generalised derived instances for newtypes

When you define an abstract type using newtype, you may want the new type to inherit some instances from its representation.
In Haskell 98, you can inherit instances of Eq, Ord, Enum and Bounded by deriving them, but for any other classes you have
to write an explicit instance declaration. For example, if you define

newtype Dollars = Dollars Int

and you want to use arithmetic on Dollars, you have to explicitly define an instance of Num:

instance Num Dollars where
Dollars a + Dollars b = Dollars (a+b)
...

All the instance does is apply and remove the newtype constructor. It is particularly galling that, since the constructor doesn’t
appear at run-time, this instance declaration defines a dictionary which is wholly equivalent to the Int dictionary, only slower!

http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps
http://research.microsoft.com/%7Esimonpj/papers/hmap/gmap2.ps

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 168 / 37

7.5.4.1 Generalising the deriving clause

GHC now permits such instances to be derived instead, using the flag -XGeneralizedNewtypeDeriving, so one can write

newtype Dollars = Dollars Int deriving (Eq,Show,Num)

and the implementation uses the same Num dictionary for Dollars as for Int. Notionally, the compiler derives an instance
declaration of the form

instance Num Int => Num Dollars

which just adds or removes the newtype constructor according to the type.

We can also derive instances of constructor classes in a similar way. For example, suppose we have implemented state and failure
monad transformers, such that

instance Monad m => Monad (State s m)
instance Monad m => Monad (Failure m)

In Haskell 98, we can define a parsing monad by

type Parser tok m a = State [tok] (Failure m) a

which is automatically a monad thanks to the instance declarations above. With the extension, we can make the parser type
abstract, without needing to write an instance of class Monad, via

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving Monad

In this case the derived instance declaration is of the form

instance Monad (State [tok] (Failure m)) => Monad (Parser tok m)

Notice that, since Monad is a constructor class, the instance is a partial application of the new type, not the entire left hand side.
We can imagine that the type declaration is "eta-converted" to generate the context of the instance declaration.

We can even derive instances of multi-parameter classes, provided the newtype is the last class parameter. In this case, a ``partial
application” of the class appears in the deriving clause. For example, given the class

class StateMonad s m | m -> s where ...
instance Monad m => StateMonad s (State s m) where ...

then we can derive an instance of StateMonad for Parsers by

newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving (Monad, StateMonad [tok])

The derived instance is obtained by completing the application of the class to the new type:

instance StateMonad [tok] (State [tok] (Failure m)) =>
StateMonad [tok] (Parser tok m)

As a result of this extension, all derived instances in newtype declarations are treated uniformly (and implemented just by
reusing the dictionary for the representation type), except Show and Read, which really behave differently for the newtype and
its representation.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 169 / 37

7.5.4.2 A more precise specification

Derived instance declarations are constructed as follows. Consider the declaration (after expansion of any type synonyms)

newtype T v1...vn = T’ (t vk+1...vn) deriving (c1...cm)

where

• The ci are partial applications of classes of the form C t1’...tj’, where the arity of C is exactly j+1. That is, C lacks
exactly one type argument.

• The k is chosen so that ci (T v1...vk) is well-kinded.

• The type t is an arbitrary type.

• The type variables vk+1...vn do not occur in t, nor in the ci, and

• None of the ci is Read, Show, Typeable, or Data. These classes should not "look through" the type or its constructor.
You can still derive these classes for a newtype, but it happens in the usual way, not via this new mechanism.

Then, for each ci, the derived instance declaration is:

instance ci t => ci (T v1...vk)

As an example which does not work, consider

newtype NonMonad m s = NonMonad (State s m s) deriving Monad

Here we cannot derive the instance

instance Monad (State s m) => Monad (NonMonad m)

because the type variable s occurs in State s m, and so cannot be "eta-converted" away. It is a good thing that this deriv-
ing clause is rejected, because NonMonad m is not, in fact, a monad --- for the same reason. Try defining >>= with the correct
type: you won’t be able to.

Notice also that the order of class parameters becomes important, since we can only derive instances for the last one. If the
StateMonad class above were instead defined as

class StateMonad m s | m -> s where ...

then we would not have been able to derive an instance for the Parser type above. We hypothesise that multi-parameter classes
usually have one "main" parameter for which deriving new instances is most interesting.

Lastly, all of this applies only for classes other than Read, Show, Typeable, and Data, for which the built-in derivation
applies (section 4.3.3. of the Haskell Report). (For the standard classes Eq, Ord, Ix, and Bounded it is immaterial whether the
standard method is used or the one described here.)

7.6 Class and instances declarations

7.6.1 Class declarations

This section, and the next one, documents GHC’s type-class extensions. There’s lots of background in the paper Type classes:
exploring the design space (Simon Peyton Jones, Mark Jones, Erik Meijer).

http://research.microsoft.com/~simonpj/Papers/type-class-design-space/
http://research.microsoft.com/~simonpj/Papers/type-class-design-space/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 170 / 37

7.6.1.1 Multi-parameter type classes

Multi-parameter type classes are permitted, with flag -XMultiParamTypeClasses. For example:

class Collection c a where
union :: c a -> c a -> c a
...etc.

7.6.1.2 The superclasses of a class declaration

In Haskell 98 the context of a class declaration (which introduces superclasses) must be simple; that is, each predicate must
consist of a class applied to type variables. The flag -XFlexibleContexts (Section 7.12.2) lifts this restriction, so that the
only restriction on the context in a class declaration is that the class hierarchy must be acyclic. So these class declarations are
OK:

class Functor (m k) => FiniteMap m k where
...

class (Monad m, Monad (t m)) => Transform t m where
lift :: m a -> (t m) a

As in Haskell 98, The class hierarchy must be acyclic. However, the definition of "acyclic" involves only the superclass relation-
ships. For example, this is OK:

class C a where {
op :: D b => a -> b -> b

}

class C a => D a where { ... }

Here, C is a superclass of D, but it’s OK for a class operation op of C to mention D. (It would not be OK for D to be a superclass
of C.)

With the extension that adds a kind of constraints, you can write more exotic superclass definitions. The superclass cycle check
is even more liberal in these case. For example, this is OK:

class A cls c where
meth :: cls c => c -> c

class A B c => B c where

A superclass context for a class C is allowed if, after expanding type synonyms to their right-hand-sides, and uses of classes
(other than C) to their superclasses, C does not occur syntactically in the context.

7.6.1.3 Class method types

Haskell 98 prohibits class method types to mention constraints on the class type variable, thus:

class Seq s a where
fromList :: [a] -> s a
elem :: Eq a => a -> s a -> Bool

The type of elem is illegal in Haskell 98, because it contains the constraint Eq a, constrains only the class type variable (in this
case a). GHC lifts this restriction (flag -XConstrainedClassMethods).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 171 / 37

7.6.1.4 Default method signatures

Haskell 98 allows you to define a default implementation when declaring a class:

class Enum a where
enum :: [a]
enum = []

The type of the enum method is [a], and this is also the type of the default method. You can lift this restriction and give another
type to the default method using the flag -XDefaultSignatures. For instance, if you have written a generic implementation
of enumeration in a class GEnum with method genum in terms of GHC.Generics, you can specify a default method that uses
that generic implementation:

class Enum a where
enum :: [a]
default enum :: (Generic a, GEnum (Rep a)) => [a]
enum = map to genum

We reuse the keyword default to signal that a signature applies to the default method only; when defining instances of the
Enum class, the original type [a] of enum still applies. When giving an empty instance, however, the default implementation
map to genum is filled-in, and type-checked with the type (Generic a, GEnum (Rep a)) => [a].

We use default signatures to simplify generic programming in GHC (Section 7.22).

7.6.2 Functional dependencies

Functional dependencies are implemented as described by Mark Jones in “Type Classes with Functional Dependencies”, Mark P.
Jones, In Proceedings of the 9th European Symposium on Programming, ESOP 2000, Berlin, Germany, March 2000, Springer-
Verlag LNCS 1782, .

Functional dependencies are introduced by a vertical bar in the syntax of a class declaration; e.g.

class (Monad m) => MonadState s m | m -> s where ...

class Foo a b c | a b -> c where ...

There should be more documentation, but there isn’t (yet). Yell if you need it.

7.6.2.1 Rules for functional dependencies

In a class declaration, all of the class type variables must be reachable (in the sense mentioned in Section 7.12.2) from the free
variables of each method type. For example:

class Coll s a where
empty :: s
insert :: s -> a -> s

is not OK, because the type of empty doesn’t mention a. Functional dependencies can make the type variable reachable:

class Coll s a | s -> a where
empty :: s
insert :: s -> a -> s

Alternatively Coll might be rewritten

class Coll s a where
empty :: s a
insert :: s a -> a -> s a

http://citeseer.ist.psu.edu/jones00type.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 172 / 37

which makes the connection between the type of a collection of a’s (namely (s a)) and the element type a. Occasionally this
really doesn’t work, in which case you can split the class like this:

class CollE s where
empty :: s

class CollE s => Coll s a where
insert :: s -> a -> s

7.6.2.2 Background on functional dependencies

The following description of the motivation and use of functional dependencies is taken from the Hugs user manual, reproduced
here (with minor changes) by kind permission of Mark Jones.

Consider the following class, intended as part of a library for collection types:

class Collects e ce where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The type variable e used here represents the element type, while ce is the type of the container itself. Within this framework, we
might want to define instances of this class for lists or characteristic functions (both of which can be used to represent collections
of any equality type), bit sets (which can be used to represent collections of characters), or hash tables (which can be used to
represent any collection whose elements have a hash function). Omitting standard implementation details, this would lead to the
following declarations:

instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects a ce)

=> Collects e (Array Int ce) where ...

All this looks quite promising; we have a class and a range of interesting implementations. Unfortunately, there are some serious
problems with the class declaration. First, the empty function has an ambiguous type:

empty :: Collects e ce => ce

By "ambiguous" we mean that there is a type variable e that appears on the left of the => symbol, but not on the right. The
problem with this is that, according to the theoretical foundations of Haskell overloading, we cannot guarantee a well-defined
semantics for any term with an ambiguous type.

We can sidestep this specific problem by removing the empty member from the class declaration. However, although the remain-
ing members, insert and member, do not have ambiguous types, we still run into problems when we try to use them. For example,
consider the following two functions:

f x y = insert x . insert y
g = f True ’a’

for which GHC infers the following types:

f :: (Collects a c, Collects b c) => a -> b -> c -> c
g :: (Collects Bool c, Collects Char c) => c -> c

Notice that the type for f allows the two parameters x and y to be assigned different types, even though it attempts to insert each
of the two values, one after the other, into the same collection. If we’re trying to model collections that contain only one type
of value, then this is clearly an inaccurate type. Worse still, the definition for g is accepted, without causing a type error. As a
result, the error in this code will not be flagged at the point where it appears. Instead, it will show up only when we try to use g,
which might even be in a different module.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 173 / 37

7.6.2.2.1 An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be tempted to use something like the following
version of the class declaration:

class Collects e c where
empty :: c e
insert :: e -> c e -> c e
member :: e -> c e -> Bool

The key difference here is that we abstract over the type constructor c that is used to form the collection type c e, and not over that
collection type itself, represented by ce in the original class declaration. This avoids the immediate problems that we mentioned
above: empty has type Collects e c => c e, which is not ambiguous.

The function f from the previous section has a more accurate type:

f :: (Collects e c) => e -> e -> c e -> c e

The function g from the previous section is now rejected with a type error as we would hope because the type of f does not allow
the two arguments to have different types. This, then, is an example of a multiple parameter class that does actually work quite
well in practice, without ambiguity problems. There is, however, a catch. This version of the Collects class is nowhere near
as general as the original class seemed to be: only one of the four instances for Collects given above can be used with this
version of Collects because only one of them---the instance for lists---has a collection type that can be written in the form c e, for
some type constructor c, and element type e.

7.6.2.2.2 Adding functional dependencies

To get a more useful version of the Collects class, Hugs provides a mechanism that allows programmers to specify dependencies
between the parameters of a multiple parameter class (For readers with an interest in theoretical foundations and previous work:
The use of dependency information can be seen both as a generalization of the proposal for `parametric type classes’ that was
put forward by Chen, Hudak, and Odersky, or as a special case of Mark Jones’s later framework for "improvement" of qualified
types. The underlying ideas are also discussed in a more theoretical and abstract setting in a manuscript [implparam], where they
are identified as one point in a general design space for systems of implicit parameterization.). To start with an abstract example,
consider a declaration such as:

class C a b where ...

which tells us simply that C can be thought of as a binary relation on types (or type constructors, depending on the kinds of a
and b). Extra clauses can be included in the definition of classes to add information about dependencies between parameters, as
in the following examples:

class D a b | a -> b where ...
class E a b | a -> b, b -> a where ...

The notation a -> b used here between the | and where symbols --- not to be confused with a function type --- indicates that
the a parameter uniquely determines the b parameter, and might be read as "a determines b." Thus D is not just a relation, but
actually a (partial) function. Similarly, from the two dependencies that are included in the definition of E, we can see that E
represents a (partial) one-one mapping between types.

More generally, dependencies take the form x1 ... xn -> y1 ... ym, where x1, ..., xn, and y1, ..., yn are type vari-
ables with n>0 and m>=0, meaning that the y parameters are uniquely determined by the x parameters. Spaces can be used as
separators if more than one variable appears on any single side of a dependency, as in t -> a b. Note that a class may be an-
notated with multiple dependencies using commas as separators, as in the definition of E above. Some dependencies that we can
write in this notation are redundant, and will be rejected because they don’t serve any useful purpose, and may instead indicate an
error in the program. Examples of dependencies like this include a -> a , a -> a a , a -> , etc. There can also be some
redundancy if multiple dependencies are given, as in a->b, b->c , a->c , and in which some subset implies the remaining
dependencies. Examples like this are not treated as errors. Note that dependencies appear only in class declarations, and not
in any other part of the language. In particular, the syntax for instance declarations, class constraints, and types is completely
unchanged.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 174 / 37

By including dependencies in a class declaration, we provide a mechanism for the programmer to specify each multiple parameter
class more precisely. The compiler, on the other hand, is responsible for ensuring that the set of instances that are in scope at any
given point in the program is consistent with any declared dependencies. For example, the following pair of instance declarations
cannot appear together in the same scope because they violate the dependency for D, even though either one on its own would be
acceptable:

instance D Bool Int where ...
instance D Bool Char where ...

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where ...

The problem here is that this instance would allow one particular choice of [a] to be associated with more than one choice for b,
which contradicts the dependency specified in the definition of D. More generally, this means that, in any instance of the form:

instance D t s where ...

for some particular types t and s, the only variables that can appear in s are the ones that appear in t, and hence, if the type t is
known, then s will be uniquely determined.

The benefit of including dependency information is that it allows us to define more general multiple parameter classes, without
ambiguity problems, and with the benefit of more accurate types. To illustrate this, we return to the collection class example, and
annotate the original definition of Collects with a simple dependency:

class Collects e ce | ce -> e where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool

The dependency ce -> e here specifies that the type e of elements is uniquely determined by the type of the collection ce.
Note that both parameters of Collects are of kind *; there are no constructor classes here. Note too that all of the instances of
Collects that we gave earlier can be used together with this new definition.

What about the ambiguity problems that we encountered with the original definition? The empty function still has type Collects
e ce => ce, but it is no longer necessary to regard that as an ambiguous type: Although the variable e does not appear on the right
of the => symbol, the dependency for class Collects tells us that it is uniquely determined by ce, which does appear on the right
of the => symbol. Hence the context in which empty is used can still give enough information to determine types for both ce and
e, without ambiguity. More generally, we need only regard a type as ambiguous if it contains a variable on the left of the => that
is not uniquely determined (either directly or indirectly) by the variables on the right.

Dependencies also help to produce more accurate types for user defined functions, and hence to provide earlier detection of
errors, and less cluttered types for programmers to work with. Recall the previous definition for a function f:

f x y = insert x y = insert x . insert y

for which we originally obtained a type:

f :: (Collects a c, Collects b c) => a -> b -> c -> c

Given the dependency information that we have for Collects, however, we can deduce that a and b must be equal because they
both appear as the second parameter in a Collects constraint with the same first parameter c. Hence we can infer a shorter and
more accurate type for f:

f :: (Collects a c) => a -> a -> c -> c

In a similar way, the earlier definition of g will now be flagged as a type error.

Although we have given only a few examples here, it should be clear that the addition of dependency information can help
to make multiple parameter classes more useful in practice, avoiding ambiguity problems, and allowing more general sets of
instance declarations.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 175 / 37

7.6.3 Instance declarations

An instance declaration has the form

instance (assertion1, ..., assertionn) => class type1 ... typem where ...

The part before the "=>" is the context, while the part after the "=>" is the head of the instance declaration.

7.6.3.1 Relaxed rules for the instance head

In Haskell 98 the head of an instance declaration must be of the form C (T a1 ... an), where C is the class, T is a data
type constructor, and the a1 ... an are distinct type variables. GHC relaxes these rules in two ways.

• With the -XTypeSynonymInstances flag, instance heads may use type synonyms. As always, using a type synonym is
just shorthand for writing the RHS of the type synonym definition. For example:

type Point a = (a,a)
instance C (Point a) where ...

is legal. The instance declaration is equivalent to

instance C (a,a) where ...

As always, type synonyms must be fully applied. You cannot, for example, write:

instance Monad Point where ...

• The -XFlexibleInstances flag allows the head of the instance declaration to mention arbitrary nested types. For exam-
ple, this becomes a legal instance declaration

instance C (Maybe Int) where ...

See also the rules on overlap.

The -XFlexibleInstances flag implies -XTypeSynonymInstances.

7.6.3.2 Relaxed rules for instance contexts

In Haskell 98, the assertions in the context of the instance declaration must be of the form C a where a is a type variable that
occurs in the head.

The -XFlexibleContexts flag relaxes this rule, as well as the corresponding rule for type signatures (see Section 7.12.2).
With this flag the context of the instance declaration can each consist of arbitrary (well-kinded) assertions (C t1 ... tn)
subject only to the following rules:

1. The Paterson Conditions: for each assertion in the context

(a) No type variable has more occurrences in the assertion than in the head

(b) The assertion has fewer constructors and variables (taken together and counting repetitions) than the head

2. The Coverage Condition. For each functional dependency, tvsleft -> tvsright, of the class, every type variable in S(t-
vsright) must appear in S(tvsleft), where S is the substitution mapping each type variable in the class declaration to the
corresponding type in the instance declaration.

These restrictions ensure that context reduction terminates: each reduction step makes the problem smaller by at least one
constructor. Both the Paterson Conditions and the Coverage Condition are lifted if you give the -XUndecidableInstances
flag (Section 7.6.3.3). You can find lots of background material about the reason for these restrictions in the paper Understanding
functional dependencies via Constraint Handling Rules.

For example, these are OK:

http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/
http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 176 / 37

instance C Int [a] -- Multiple parameters
instance Eq (S [a]) -- Structured type in head

-- Repeated type variable in head
instance C4 a a => C4 [a] [a]
instance Stateful (ST s) (MutVar s)

-- Head can consist of type variables only
instance C a
instance (Eq a, Show b) => C2 a b

-- Non-type variables in context
instance Show (s a) => Show (Sized s a)
instance C2 Int a => C3 Bool [a]
instance C2 Int a => C3 [a] b

But these are not:

-- Context assertion no smaller than head
instance C a => C a where ...

-- (C b b) has more occurrences of b than the head
instance C b b => Foo [b] where ...

The same restrictions apply to instances generated by deriving clauses. Thus the following is accepted:

data MinHeap h a = H a (h a)
deriving (Show)

because the derived instance

instance (Show a, Show (h a)) => Show (MinHeap h a)

conforms to the above rules.

A useful idiom permitted by the above rules is as follows. If one allows overlapping instance declarations then it’s quite conve-
nient to have a "default instance" declaration that applies if something more specific does not:

instance C a where
op = ... -- Default

7.6.3.3 Undecidable instances

Sometimes even the rules of Section 7.6.3.2 are too onerous. For example, sometimes you might want to use the following to get
the effect of a "class synonym":

class (C1 a, C2 a, C3 a) => C a where { }

instance (C1 a, C2 a, C3 a) => C a where { }

This allows you to write shorter signatures:

f :: C a => ...

instead of

f :: (C1 a, C2 a, C3 a) => ...

The restrictions on functional dependencies (Section 7.6.2) are particularly troublesome. It is tempting to introduce type variables
in the context that do not appear in the head, something that is excluded by the normal rules. For example:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 177 / 37

class HasConverter a b | a -> b where
convert :: a -> b

data Foo a = MkFoo a

instance (HasConverter a b,Show b) => Show (Foo a) where
show (MkFoo value) = show (convert value)

This is dangerous territory, however. Here, for example, is a program that would make the typechecker loop:

class D a
class F a b | a->b
instance F [a] [[a]]
instance (D c, F a c) => D [a] -- ’c’ is not mentioned in the head

Similarly, it can be tempting to lift the coverage condition:

class Mul a b c | a b -> c where
(.*.) :: a -> b -> c

instance Mul Int Int Int where (.*.) = (*)
instance Mul Int Float Float where x .*. y = fromIntegral x * y
instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v

The third instance declaration does not obey the coverage condition; and indeed the (somewhat strange) definition:

f = \ b x y -> if b then x .*. [y] else y

makes instance inference go into a loop, because it requires the constraint (Mul a [b] b).

Nevertheless, GHC allows you to experiment with more liberal rules. If you use the experimental flag -XUndecidableIn-
stances , both the Paterson Conditions and the Coverage Condition (described in Section 7.6.3.2) are lifted. Termination is
ensured by having a fixed-depth recursion stack. If you exceed the stack depth you get a sort of backtrace, and the opportunity to
increase the stack depth with -fcontext-stack=N.

7.6.3.4 Overlapping instances

In general, GHC requires that that it be unambiguous which instance declaration should be used to resolve a type-class constraint.
This behaviour can be modified by two flags: -XOverlappingInstances and -XIncoherentInstances , as this
section discusses. Both these flags are dynamic flags, and can be set on a per-module basis, using an OPTIONS_GHC pragma if
desired (Section 4.2.2).

When GHC tries to resolve, say, the constraint C Int Bool, it tries to match every instance declaration against the constraint,
by instantiating the head of the instance declaration. For example, consider these declarations:

instance context1 => C Int a where ... -- (A)
instance context2 => C a Bool where ... -- (B)
instance context3 => C Int [a] where ... -- (C)
instance context4 => C Int [Int] where ... -- (D)

The instances (A) and (B) match the constraint C Int Bool, but (C) and (D) do not. When matching, GHC takes no account
of the context of the instance declaration (context1 etc). GHC’s default behaviour is that exactly one instance must match the
constraint it is trying to resolve. It is fine for there to be a potential of overlap (by including both declarations (A) and (B), say);
an error is only reported if a particular constraint matches more than one.

The -XOverlappingInstances flag instructs GHC to allow more than one instance to match, provided there is a most
specific one. For example, the constraint C Int [Int] matches instances (A), (C) and (D), but the last is more specific, and
hence is chosen. If there is no most-specific match, the program is rejected.

However, GHC is conservative about committing to an overlapping instance. For example:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 178 / 37

f :: [b] -> [b]
f x = ...

Suppose that from the RHS of f we get the constraint C Int [b]. But GHC does not commit to instance (C), because in
a particular call of f, b might be instantiate to Int, in which case instance (D) would be more specific still. So GHC rejects
the program. (If you add the flag -XIncoherentInstances, GHC will instead pick (C), without complaining about the
problem of subsequent instantiations.)

Notice that we gave a type signature to f, so GHC had to check that f has the specified type. Suppose instead we do not give a
type signature, asking GHC to infer it instead. In this case, GHC will refrain from simplifying the constraint C Int [b] (for
the same reason as before) but, rather than rejecting the program, it will infer the type

f :: C Int [b] => [b] -> [b]

That postpones the question of which instance to pick to the call site for f by which time more is known about the type b. You
can write this type signature yourself if you use the -XFlexibleContexts flag.

Exactly the same situation can arise in instance declarations themselves. Suppose we have

class Foo a where
f :: a -> a

instance Foo [b] where
f x = ...

and, as before, the constraint C Int [b] arises from f’s right hand side. GHC will reject the instance, complaining as before
that it does not know how to resolve the constraint C Int [b], because it matches more than one instance declaration. The
solution is to postpone the choice by adding the constraint to the context of the instance declaration, thus:

instance C Int [b] => Foo [b] where
f x = ...

(You need -XFlexibleInstances to do this.)

Warning: overlapping instances must be used with care. They can give rise to incoherence (i.e. different instance choices are
made in different parts of the program) even without -XIncoherentInstances. Consider:

{-# LANGUAGE OverlappingInstances #-}
module Help where

class MyShow a where
myshow :: a -> String

instance MyShow a => MyShow [a] where
myshow xs = concatMap myshow xs

showHelp :: MyShow a => [a] -> String
showHelp xs = myshow xs

{-# LANGUAGE FlexibleInstances, OverlappingInstances #-}
module Main where

import Help

data T = MkT

instance MyShow T where
myshow x = "Used generic instance"

instance MyShow [T] where
myshow xs = "Used more specific instance"

main = do { print (myshow [MkT]); print (showHelp [MkT]) }

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 179 / 37

In function showHelp GHC sees no overlapping instances, and so uses the MyShow [a] instance without complaint. In the
call to myshow in main, GHC resolves the MyShow [T] constraint using the overlapping instance declaration in module
Main. As a result, the program prints

"Used more specific instance"
"Used generic instance"

(An alternative possible behaviour, not currently implemented, would be to reject module Help on the grounds that a later
instance declaration might overlap the local one.)

The willingness to be overlapped or incoherent is a property of the instance declaration itself, controlled by the presence or
otherwise of the -XOverlappingInstances and -XIncoherentInstances flags when that module is being defined.
Specifically, during the lookup process:

• If the constraint being looked up matches two instance declarations IA and IB, and

– IB is a substitution instance of IA (but not vice versa); that is, IB is strictly more specific than IA

– either IA or IB was compiled with -XOverlappingInstances

then the less-specific instance IA is ignored.

• Suppose an instance declaration does not match the constraint being looked up, but does unify with it, so that it might match
when the constraint is further instantiated. Usually GHC will regard this as a reason for not committing to some other constraint.
But if the instance declaration was compiled with -XIncoherentInstances, GHC will skip the "does-it-unify?" check
for that declaration.

These rules make it possible for a library author to design a library that relies on overlapping instances without the library client
having to know.

The -XIncoherentInstances flag implies the -XOverlappingInstances flag, but not vice versa.

7.6.3.5 Type signatures in instance declarations

In Haskell, you can’t write a type signature in an instance declaration, but it is sometimes convenient to do so, and the language
extension -XInstanceSigs allows you to do so. For example:

data T a = MkT a a
instance Eq a => Eq (T a) where
(==) :: T a -> T a -> Bool -- The signature
(==) (MkT x1 x2) (MkTy y1 y2) = x1==y1 && x2==y2

The type signature in the instance declaration must be precisely the same as the one in the class declaration, instantiated with the
instance type.

One stylistic reason for wanting to write a type signature is simple documentation. Another is that you may want to bring scoped
type variables into scope. For example:

class C a where
foo :: b -> a -> (a, [b])

instance C a => C (T a) where
foo :: forall b. b -> T a -> (T a, [b])
foo x (T y) = (T y, xs)

where
xs :: [b]
xs = [x,x,x]

Provided that you also specify -XScopedTypeVariables (Section 7.12.7), the forall b scopes over the definition of
foo, and in particular over the type signature for xs.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 180 / 37

7.6.4 Overloaded string literals

GHC supports overloaded string literals. Normally a string literal has type String, but with overloaded string literals enabled
(with -XOverloadedStrings) a string literal has type (IsString a) => a.

This means that the usual string syntax can be used, e.g., for ByteString, Text, and other variations of string like types.
String literals behave very much like integer literals, i.e., they can be used in both expressions and patterns. If used in a pattern
the literal with be replaced by an equality test, in the same way as an integer literal is.

The class IsString is defined as:

class IsString a where
fromString :: String -> a

The only predefined instance is the obvious one to make strings work as usual:

instance IsString [Char] where
fromString cs = cs

The class IsString is not in scope by default. If you want to mention it explicitly (for example, to give an instance declaration
for it), you can import it from module GHC.Exts.

Haskell’s defaulting mechanism is extended to cover string literals, when -XOverloadedStrings is specified. Specifically:

• Each type in a default declaration must be an instance of Num or of IsString.

• The standard defaulting rule (Haskell Report, Section 4.3.4) is extended thus: defaulting applies when all the unresolved
constraints involve standard classes or IsString; and at least one is a numeric class or IsString.

A small example:

module Main where

import GHC.Exts(IsString(..))

newtype MyString = MyString String deriving (Eq, Show)
instance IsString MyString where

fromString = MyString

greet :: MyString -> MyString
greet "hello" = "world"
greet other = other

main = do
print $ greet "hello"
print $ greet "fool"

Note that deriving Eq is necessary for the pattern matching to work since it gets translated into an equality comparison.

7.7 Type families

Indexed type families are a new GHC extension to facilitate type-level programming. Type families are a generalisation of
associated data types (“Associated Types with Class”, M. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. In Proceedings
of “The 32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’05)”, pages 1-13,
ACM Press, 2005) and associated type synonyms (“Type Associated Type Synonyms”. M. Chakravarty, G. Keller, and S. Peyton
Jones. In Proceedings of “The Tenth ACM SIGPLAN International Conference on Functional Programming”, ACM Press, pages
241-253, 2005). Type families themselves are described in the paper “Type Checking with Open Type Functions”, T. Schrijvers,
S. Peyton-Jones, M. Chakravarty, and M. Sulzmann, in Proceedings of “ICFP 2008: The 13th ACM SIGPLAN International
Conference on Functional Programming”, ACM Press, pages 51-62, 2008. Type families essentially provide type-indexed data

http://www.haskell.org/onlinereport/decls.html#sect4.3.4
http://www.cse.unsw.edu.au/~chak/papers/CKPM05.html
http://www.cse.unsw.edu.au/~chak/papers/CKP05.html
http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 181 / 37

types and named functions on types, which are useful for generic programming and highly parameterised library interfaces as
well as interfaces with enhanced static information, much like dependent types. They might also be regarded as an alternative
to functional dependencies, but provide a more functional style of type-level programming than the relational style of functional
dependencies.

Indexed type families, or type families for short, are type constructors that represent sets of types. Set members are denoted
by supplying the type family constructor with type parameters, which are called type indices. The difference between vanilla
parametrised type constructors and family constructors is much like between parametrically polymorphic functions and (ad-hoc
polymorphic) methods of type classes. Parametric polymorphic functions behave the same at all type instances, whereas class
methods can change their behaviour in dependence on the class type parameters. Similarly, vanilla type constructors imply the
same data representation for all type instances, but family constructors can have varying representation types for varying type
indices.

Indexed type families come in two flavours: data families and type synonym families. They are the indexed family variants of
algebraic data types and type synonyms, respectively. The instances of data families can be data types and newtypes.

Type families are enabled by the flag -XTypeFamilies. Additional information on the use of type families in GHC is available
on the Haskell wiki page on type families.

7.7.1 Data families

Data families appear in two flavours: (1) they can be defined on the toplevel or (2) they can appear inside type classes (in which
case they are known as associated types). The former is the more general variant, as it lacks the requirement for the type-indexes
to coincide with the class parameters. However, the latter can lead to more clearly structured code and compiler warnings if some
type instances were - possibly accidentally - omitted. In the following, we always discuss the general toplevel form first and then
cover the additional constraints placed on associated types.

7.7.1.1 Data family declarations

Indexed data families are introduced by a signature, such as

data family GMap k :: * -> *

The special family distinguishes family from standard data declarations. The result kind annotation is optional and, as usual,
defaults to * if omitted. An example is

data family Array e

Named arguments can also be given explicit kind signatures if needed. Just as with [http://www.haskell.org/ghc/docs/latest/html/users_guide/gadt.html
GADT declarations] named arguments are entirely optional, so that we can declare Array alternatively with

data family Array :: * -> *

7.7.1.2 Data instance declarations

Instance declarations of data and newtype families are very similar to standard data and newtype declarations. The only two
differences are that the keyword data or newtype is followed by instance and that some or all of the type arguments can
be non-variable types, but may not contain forall types or type synonym families. However, data families are generally allowed
in type parameters, and type synonyms are allowed as long as they are fully applied and expand to a type that is itself admissible
- exactly as this is required for occurrences of type synonyms in class instance parameters. For example, the Either instance
for GMap is

data instance GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)

In this example, the declaration has only one variant. In general, it can be any number.

Data and newtype instance declarations are only permitted when an appropriate family declaration is in scope - just as a class
instance declaration requires the class declaration to be visible. Moreover, each instance declaration has to conform to the kind

http://www.haskell.org/haskellwiki/GHC/Indexed_types

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 182 / 37

determined by its family declaration. This implies that the number of parameters of an instance declaration matches the arity
determined by the kind of the family.

A data family instance declaration can use the full expressiveness of ordinary data or newtype declarations:

• Although, a data family is introduced with the keyword "data", a data family instance can use either data or newtype. For
example:

data family T a
data instance T Int = T1 Int | T2 Bool
newtype instance T Char = TC Bool

• A data instance can use GADT syntax for the data constructors, and indeed can define a GADT. For example:

data family G a b
data instance G [a] b where

G1 :: c -> G [Int] b
G2 :: G [a] Bool

• You can use a deriving clause on a data instance or newtype instance declaration.

Even if type families are defined as toplevel declarations, functions that perform different computations for different family
instances may still need to be defined as methods of type classes. In particular, the following is not possible:

data family T a
data instance T Int = A
data instance T Char = B
foo :: T a -> Int
foo A = 1 -- WRONG: These two equations together...
foo B = 2 -- ...will produce a type error.

Instead, you would have to write foo as a class operation, thus:

class Foo a where
foo :: T a -> Int

instance Foo Int where
foo A = 1

instance Foo Char where
foo B = 2

(Given the functionality provided by GADTs (Generalised Algebraic Data Types), it might seem as if a definition, such as the
above, should be feasible. However, type families are - in contrast to GADTs - are open; i.e., new instances can always be added,
possibly in other modules. Supporting pattern matching across different data instances would require a form of extensible case
construct.)

7.7.1.3 Overlap of data instances

The instance declarations of a data family used in a single program may not overlap at all, independent of whether they are
associated or not. In contrast to type class instances, this is not only a matter of consistency, but one of type safety.

7.7.2 Synonym families

Type families appear in two flavours: (1) they can be defined on the toplevel or (2) they can appear inside type classes (in which
case they are known as associated type synonyms). The former is the more general variant, as it lacks the requirement for the
type-indexes to coincide with the class parameters. However, the latter can lead to more clearly structured code and compiler
warnings if some type instances were - possibly accidentally - omitted. In the following, we always discuss the general toplevel
form first and then cover the additional constraints placed on associated types.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 183 / 37

7.7.2.1 Type family declarations

Indexed type families are introduced by a signature, such as

type family Elem c :: *

The special family distinguishes family from standard type declarations. The result kind annotation is optional and, as usual,
defaults to * if omitted. An example is

type family Elem c

Parameters can also be given explicit kind signatures if needed. We call the number of parameters in a type family declaration,
the family’s arity, and all applications of a type family must be fully saturated w.r.t. to that arity. This requirement is unlike
ordinary type synonyms and it implies that the kind of a type family is not sufficient to determine a family’s arity, and hence in
general, also insufficient to determine whether a type family application is well formed. As an example, consider the following
declaration:

type family F a b :: * -> * -- F’s arity is 2,
-- although its overall kind is * -> * -> * -> *

Given this declaration the following are examples of well-formed and malformed types:

F Char [Int] -- OK! Kind: * -> *
F Char [Int] Bool -- OK! Kind: *
F IO Bool -- WRONG: kind mismatch in the first argument
F Bool -- WRONG: unsaturated application

7.7.2.2 Type instance declarations

Instance declarations of type families are very similar to standard type synonym declarations. The only two differences are that
the keyword type is followed by instance and that some or all of the type arguments can be non-variable types, but may not
contain forall types or type synonym families. However, data families are generally allowed, and type synonyms are allowed as
long as they are fully applied and expand to a type that is admissible - these are the exact same requirements as for data instances.
For example, the [e] instance for Elem is

type instance Elem [e] = e

Type family instance declarations are only legitimate when an appropriate family declaration is in scope - just like class instances
require the class declaration to be visible. Moreover, each instance declaration has to conform to the kind determined by its
family declaration, and the number of type parameters in an instance declaration must match the number of type parameters in
the family declaration. Finally, the right-hand side of a type instance must be a monotype (i.e., it may not include foralls) and
after the expansion of all saturated vanilla type synonyms, no synonyms, except family synonyms may remain. Here are some
examples of admissible and illegal type instances:

type family F a :: *
type instance F [Int] = Int -- OK!
type instance F String = Char -- OK!
type instance F (F a) = a -- WRONG: type parameter mentions a type ←↩

family
type instance F (forall a. (a, b)) = b -- WRONG: a forall type appears in a type ←↩

parameter
type instance F Float = forall a.a -- WRONG: right-hand side may not be a ←↩

forall type

type family G a b :: * -> *
type instance G Int = (,) -- WRONG: must be two type parameters
type instance G Int Char Float = Double -- WRONG: must be two type parameters

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 184 / 37

7.7.2.3 Overlap of type synonym instances

The instance declarations of a type family used in a single program may only overlap if the right-hand sides of the overlapping
instances coincide for the overlapping types. More formally, two instance declarations overlap if there is a substitution that makes
the left-hand sides of the instances syntactically the same. Whenever that is the case, the right-hand sides of the instances must
also be syntactically equal under the same substitution. This condition is independent of whether the type family is associated or
not, and it is not only a matter of consistency, but one of type safety.

Here are two example to illustrate the condition under which overlap is permitted.

type instance F (a, Int) = [a]
type instance F (Int, b) = [b] -- overlap permitted

type instance G (a, Int) = [a]
type instance G (Char, a) = [a] -- ILLEGAL overlap, as [Char] /= [Int]

7.7.2.4 Decidability of type synonym instances

In order to guarantee that type inference in the presence of type families decidable, we need to place a number of additional
restrictions on the formation of type instance declarations (c.f., Definition 5 (Relaxed Conditions) of “Type Checking with Open
Type Functions”). Instance declarations have the general form

type instance F t1 .. tn = t

where we require that for every type family application (G s1 .. sm) in t,

1. s1 .. sm do not contain any type family constructors,

2. the total number of symbols (data type constructors and type variables) in s1 .. sm is strictly smaller than in t1 ..
tn, and

3. for every type variable a, a occurs in s1 .. sm at most as often as in t1 .. tn.

These restrictions are easily verified and ensure termination of type inference. However, they are not sufficient to guarantee com-
pleteness of type inference in the presence of, so called, ”loopy equalities”, such as a ~ [F a], where a recursive occurrence
of a type variable is underneath a family application and data constructor application - see the above mentioned paper for details.

If the option -XUndecidableInstances is passed to the compiler, the above restrictions are not enforced and it is on the
programmer to ensure termination of the normalisation of type families during type inference.

7.7.3 Associated data and type families

A data or type synonym family can be declared as part of a type class, thus:

class GMapKey k where
data GMap k :: * -> *
...

class Collects ce where
type Elem ce :: *
...

When doing so, we drop the "family" keyword.

The type parameters must all be type variables, of course, and some (but not necessarily all) of then can be the class parameters.
Each class parameter may only be used at most once per associated type, but some may be omitted and they may be in an order
other than in the class head. Hence, the following contrived example is admissible:

class C a b c where
type T c a x :: *

Here c and a are class parameters, but the type is also indexed on a third parameter x.

http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html
http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 185 / 37

7.7.3.1 Associated instances

When an associated data or type synonym family instance is declared within a type class instance, we drop the instance
keyword in the family instance:

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...

instance (Eq (Elem [e])) => Collects ([e]) where
type Elem [e] = e
...

The most important point about associated family instances is that the type indexes corresponding to class parameters must be
identical to the type given in the instance head; here this is the first argument of GMap, namely Either a b, which coincides
with the only class parameter.

Instances for an associated family can only appear as part of instance declarations of the class in which the family was declared
- just as with the equations of the methods of a class. Also in correspondence to how methods are handled, declarations of
associated types can be omitted in class instances. If an associated family instance is omitted, the corresponding instance type is
not inhabited; i.e., only diverging expressions, such as undefined, can assume the type.

Although it is unusual, there can be multiple instances for an associated family in a single instance declaration. For example, this
is legitimate:

instance GMapKey Flob where
data GMap Flob [v] = G1 v
data GMap Flob Int = G2 Int
...

Here we give two data instance declarations, one in which the last parameter is [v], and one for which it is Int. Since you
cannot give any subsequent instances for (GMap Flob ...), this facility is most useful when the free indexed parameter is
of a kind with a finite number of alternatives (unlike *).

7.7.3.2 Associated type synonym defaults

It is possible for the class defining the associated type to specify a default for associated type instances. So for example, this is
OK:

class IsBoolMap v where
type Key v
type Key v = Int

lookupKey :: Key v -> v -> Maybe Bool

instance IsBoolMap [(Int, Bool)] where
lookupKey = lookup

There can also be multiple defaults for a single type, as long as they do not overlap:

class C a where
type F a b
type F a Int = Bool
type F a Bool = Int

A default declaration is not permitted for an associated data type.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 186 / 37

7.7.3.3 Scoping of class parameters

The visibility of class parameters in the right-hand side of associated family instances depends solely on the parameters of the
family. As an example, consider the simple class declaration

class C a b where
data T a

Only one of the two class parameters is a parameter to the data family. Hence, the following instance declaration is invalid:

instance C [c] d where
data T [c] = MkT (c, d) -- WRONG!! ’d’ is not in scope

Here, the right-hand side of the data instance mentions the type variable d that does not occur in its left-hand side. We cannot
admit such data instances as they would compromise type safety.

7.7.4 Import and export

The rules for export lists (Haskell Report Section 5.2) needs adjustment for type families:

• The form T(..), where T is a data family, names the family T and all the in-scope constructors (whether in scope qualified
or unqualified) that are data instances of T.

• The form T(.., ci, .., fj, ..), where T is a data family, names T and the specified constructors ci and fields fj
as usual. The constructors and field names must belong to some data instance of T, but are not required to belong to the same
instance.

• The form C(..), where C is a class, names the class C and all its methods and associated types.

• The form C(.., mi, .., type Tj, ..), where C is a class, names the class C, and the specified methods mi and
associated types Tj. The types need a keyword "type" to distinguish them from data constructors.

7.7.4.1 Examples

Recall our running GMapKey class example:

class GMapKey k where
data GMap k :: * -> *
insert :: GMap k v -> k -> v -> GMap k v
lookup :: GMap k v -> k -> Maybe v
empty :: GMap k v

instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...method declarations...

Here are some export lists and their meaning:

• module GMap(GMapKey): Exports just the class name.

• module GMap(GMapKey(..)): Exports the class, the associated type GMap and the member functions empty, lo-
okup, and insert. The data constructors of GMap (in this case GMapEither) are not exported.

• module GMap(GMapKey(type GMap, empty, lookup, insert)): Same as the previous item. Note the
"type" keyword.

• module GMap(GMapKey(..), GMap(..)): Same as previous item, but also exports all the data constructors for
GMap, namely GMapEither.

http://www.haskell.org/onlinereport/modules.html#sect5.2

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 187 / 37

• module GMap (GMapKey(empty, lookup, insert), GMap(..)): Same as previous item.

• module GMap (GMapKey, empty, lookup, insert, GMap(..)): Same as previous item.

Two things to watch out for:

• You cannot write GMapKey(type GMap(..)) — i.e., sub-component specifications cannot be nested. To specify GMap’s
data constructors, you have to list it separately.

• Consider this example:

module X where
data family D

module Y where
import X
data instance D Int = D1 | D2

Module Y exports all the entities defined in Y, namely the data constructors D1 and D2, but not the data family D. That
(annoyingly) means that you cannot selectively import Y selectively, thus "import Y(D(D1,D2))", because Y does not
export D. Instead you should list the exports explicitly, thus:

module Y(D(..)) where ...
or module Y(module Y, D) where ...

7.7.4.2 Instances

Family instances are implicitly exported, just like class instances. However, this applies only to the heads of instances, not to the
data constructors an instance defines.

7.7.5 Type families and instance declarations

Type families require us to extend the rules for the form of instance heads, which are given in Section 7.6.3.1. Specifically:

• Data type families may appear in an instance head

• Type synonym families may not appear (at all) in an instance head

The reason for the latter restriction is that there is no way to check for instance matching. Consider

type family F a
type instance F Bool = Int

class C a

instance C Int
instance C (F a)

Now a constraint (C (F Bool)) would match both instances. The situation is especially bad because the type instance for F
Bool might be in another module, or even in a module that is not yet written.

However, type class instances of instances of data families can be defined much like any other data type. For example, we can
say

data instance T Int = T1 Int | T2 Bool
instance Eq (T Int) where

(T1 i) == (T1 j) = i==j
(T2 i) == (T2 j) = i==j
_ == _ = False

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 188 / 37

Note that class instances are always for particular instances of a data family and never for an entire family as a whole. This is for
essentially the same reasons that we cannot define a toplevel function that performs pattern matching on the data constructors of
different instances of a single type family. It would require a form of extensible case construct.

Data instance declarations can also have deriving clauses. For example, we can write

data GMap () v = GMapUnit (Maybe v)
deriving Show

which implicitly defines an instance of the form

instance Show v => Show (GMap () v) where ...

7.8 Kind polymorphism

This section describes kind polymorphism, and extension enabled by -XPolyKinds. It is described in more detail in the paper
Giving Haskell a Promotion, which appeared at TLDI 2012.

7.8.1 Overview of kind polymorphism

Currently there is a lot of code duplication in the way Typeable is implemented (Section 7.5.3):

class Typeable (t :: *) where
typeOf :: t -> TypeRep

class Typeable1 (t :: * -> *) where
typeOf1 :: t a -> TypeRep

class Typeable2 (t :: * -> * -> *) where
typeOf2 :: t a b -> TypeRep

Kind polymorphism (with -XPolyKinds) allows us to merge all these classes into one:

data Proxy t = Proxy

class Typeable t where
typeOf :: Proxy t -> TypeRep

instance Typeable Int where typeOf _ = TypeRep
instance Typeable [] where typeOf _ = TypeRep

Note that the datatype Proxy has kind forall k. k -> * (inferred by GHC), and the new Typeable class has kind
forall k. k -> Constraint.

7.8.2 Overview

Generally speaking, with -XPolyKinds, GHC will infer a polymorphic kind for un-decorated whenever possible. For example:

data T m a = MkT (m a)
-- GHC infers kind T :: forall k. (k -> *) -> k -> *

Just as in the world of terms, you can restrict polymorphism using a signature (-XPolyKinds implies -XKindSignatures):

data T m (a :: *) = MkT (m a)
-- GHC now infers kind T :: (* -> *) -> * -> *

There is no "forall" for kind variables. Instead, you can simply mention a kind variable in a kind signature, thus:

data T (m :: k -> *) a = MkT (m a)
-- GHC now infers kind T :: forall k. (k -> *) -> k -> *

http://dreixel.net/research/pdf/ghp.pdf

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 189 / 37

7.8.3 Polymorphic kind recursion and complete kind signatures

Just as in type inference, kind inference for recursive types can only use monomorphic recursion. Consider this (contrived)
example:

data T m a = MkT (m a) (T Maybe (m a))
-- GHC infers kind T :: (* -> *) -> * -> *

The recursive use of T forced the second argument to have kind *. However, just as in type inference, you can achieve polymor-
phic recursion by giving a complete kind signature for T. The way to give a complete kind signature for a data type is to use a
GADT-style declaration with an explicit kind signature thus:

data T :: (k -> *) -> k -> * where
MkT :: m a -> T Maybe (m a) -> T m a

The complete user-supplied kind signature specifies the polymorphic kind for T, and this signature is used for all the calls to T
including the recursive ones. In particular, the recursive use of T is at kind *.

What exactly is considered to be a "complete user-supplied kind signature" for a type constructor? These are the forms:

• A GADT-style data type declaration, with an explicit "::" in the header. For example:

data T1 :: (k -> *) -> k -> * where ... -- Yes T1 :: forall k. (k->*) -> k -> *
data T2 (a :: k -> *) :: k -> * where ... -- Yes T2 :: forall k. (k->*) -> k -> *
data T3 (a :: k -> *) (b :: k) :: * where ... -- Yes T3 :: forall k. (k->*) -> k -> *
data T4 a (b :: k) :: * where ... -- YES T4 :: forall k. * -> k -> *

data T5 a b where ... -- NO kind is inferred
data T4 (a :: k -> *) (b :: k) where ... -- NO kind is inferred

It makes no difference where you put the "::" but it must be there. You cannot give a complete kind signature using a
Haskell-98-style data type declaration; you must use GADT syntax.

• A type or data family declaration always have a complete user-specified kind signature; no "::" is required:

data family D1 a -- D1 :: * -> *
data family D2 (a :: k) -- D2 :: forall k. k -> *
data family D3 (a :: k) :: * -- D3 :: forall k. k -> *
type family S1 a :: k -> * -- S1 :: forall k. * -> k -> *

In a complete user-specified kind signature, any un-decorated type variable to the left of the "::" is considered to have kind "*".
If you want kind polymorphism, specify a kind variable.

7.9 Datatype promotion

This section describes data type promotion, an extension to the kind system that complements kind polymorphism. It is enabled
by -XDataKinds, and described in more detail in the paper Giving Haskell a Promotion, which appeared at TLDI 2012.

7.9.1 Motivation

Standard Haskell has a rich type language. Types classify terms and serve to avoid many common programming mistakes. The
kind language, however, is relatively simple, distinguishing only lifted types (kind *), type constructors (eg. kind * -> * ->

*), and unlifted types (Section 7.2.1). In particular when using advanced type system features, such as type families (Section 7.7)
or GADTs (Section 7.4.7), this simple kind system is insufficient, and fails to prevent simple errors. Consider the example of
type-level natural numbers, and length-indexed vectors:

http://dreixel.net/research/pdf/ghp.pdf

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 190 / 37

data Ze
data Su n

data Vec :: * -> * -> * where
Nil :: Vec a Ze
Cons :: a -> Vec a n -> Vec a (Su n)

The kind of Vec is * -> * -> *. This means that eg. Vec Int Char is a well-kinded type, even though this is not what
we intend when defining length-indexed vectors.

With -XDataKinds, the example above can then be rewritten to:

data Nat = Ze | Su Nat

data Vec :: * -> Nat -> * where
Nil :: Vec a Ze
Cons :: a -> Vec a n -> Vec a (Su n)

With the improved kind of Vec, things like Vec Int Char are now ill-kinded, and GHC will report an error.

7.9.2 Overview

With -XDataKinds, GHC automatically promotes every suitable datatype to be a kind, and its (value) constructors to be type
constructors. The following types

data Nat = Ze | Su Nat

data List a = Nil | Cons a (List a)

data Pair a b = Pair a b

data Sum a b = L a | R b

give rise to the following kinds and type constructors:

Nat :: BOX
Ze :: Nat
Su :: Nat -> Nat

List k :: BOX
Nil :: List k
Cons :: k -> List k -> List k

Pair k1 k2 :: BOX
Pair :: k1 -> k2 -> Pair k1 k2

Sum k1 k2 :: BOX
L :: k1 -> Sum k1 k2
R :: k2 -> Sum k1 k2

where BOX is the (unique) sort that classifies kinds. Note that List, for instance, does not get sort BOX -> BOX, because we
do not further classify kinds; all kinds have sort BOX.

The following restrictions apply to promotion:

• We only promote datatypes whose kinds are of the form * -> ... -> * -> *. In particular, we do not promote higher-
kinded datatypes such as data Fix f = In (f (Fix f)), or datatypes whose kinds involve promoted types such as
Vec :: * -> Nat -> *.

• We do not promote data constructors that are kind polymorphic, involve constraints, mention type or data families, or involve
types that are not promotable.

• We do not promote data family instances (Section 7.7.1).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 191 / 37

7.9.3 Distinguishing between types and constructors

Since constructors and types share the same namespace, with promotion you can get ambiguous type names:

data P -- 1

data Prom = P -- 2

type T = P -- 1 or promoted 2?

In these cases, if you want to refer to the promoted constructor, you should prefix its name with a quote:

type T1 = P -- 1

type T2 = ’P -- promoted 2

Note that promoted datatypes give rise to named kinds. Since these can never be ambiguous, we do not allow quotes in kind
names.

Just as in the case of Template Haskell (Section 7.14.1), there is no way to quote a data constructor or type constructor whose
second character is a single quote.

7.9.4 Promoted lists and tuples types

Haskell’s list and tuple types are natively promoted to kinds, and enjoy the same convenient syntax at the type level, albeit
prefixed with a quote:

data HList :: [*] -> * where
HNil :: HList ’[]
HCons :: a -> HList t -> HList (a ’: t)

data Tuple :: (*,*) -> * where
Tuple :: a -> b -> Tuple ’(a,b)

Note that this requires -XTypeOperators.

7.9.5 Promoted Literals

Numeric and string literals are promoted to the type level, giving convenient access to a large number of predefined type-level
constants. Numeric literals are of kind Nat, while string literals are of kind Symbol. These kinds are defined in the module
GHC.TypeLits.

Here is an exampe of using type-level numeric literals to provide a safe interface to a low-level function:

import GHC.TypeLits
import Data.Word
import Foreign

newtype ArrPtr (n :: Nat) a = ArrPtr (Ptr a)

clearPage :: ArrPtr 4096 Word8 -> IO ()
clearPage (ArrPtr p) = ...

Here is an example of using type-level string literals to simulate simple record operations:

data Label (l :: Symbol) = Get

class Has a l b | a l -> b where
from :: a -> Label l -> b

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 192 / 37

data Point = Point Int Int deriving Show

instance Has Point "x" Int where from (Point x _) _ = x
instance Has Point "y" Int where from (Point _ y) _ = y

example = from (Point 1 2) (Get :: Label "x")

7.9.6 Promoting existential data constructors

Note that we do promote existential data constructors that are otherwise suitable. For example, consider the following:

data Ex :: * where
MkEx :: forall a. a -> Ex

Both the type Ex and the data constructor MkEx get promoted, with the polymorphic kind ’MkEx :: forall k. k ->
Ex. Somewhat surprisingly, you can write a type family to extract the member of a type-level existential:

type family UnEx (ex :: Ex) :: k
type instance UnEx (MkEx x) = x

At first blush, UnEx seems poorly-kinded. The return kind k is not mentioned in the arguments, and thus it would seem that an
instance would have to return a member of k for any k. However, this is not the case. The type family UnEx is a kind-indexed
type family. The return kind k is an implicit parameter to UnEx. The elaborated definitions are as follows:

type family UnEx (k :: BOX) (ex :: Ex) :: k
type instance UnEx k (MkEx k x) = x

Thus, the instance triggers only when the implicit parameter to UnEx matches the implicit parameter to MkEx. Because k is
actually a parameter to UnEx, the kind is not escaping the existential, and the above code is valid.

See also Trac #7347.

7.10 Equality constraints

A type context can include equality constraints of the form t1 ~ t2, which denote that the types t1 and t2 need to be the
same. In the presence of type families, whether two types are equal cannot generally be decided locally. Hence, the contexts of
function signatures may include equality constraints, as in the following example:

sumCollects :: (Collects c1, Collects c2, Elem c1 ~ Elem c2) => c1 -> c2 -> c2

where we require that the element type of c1 and c2 are the same. In general, the types t1 and t2 of an equality constraint
may be arbitrary monotypes; i.e., they may not contain any quantifiers, independent of whether higher-rank types are otherwise
enabled.

Equality constraints can also appear in class and instance contexts. The former enable a simple translation of programs using
functional dependencies into programs using family synonyms instead. The general idea is to rewrite a class declaration of the
form

class C a b | a -> b

to

class (F a ~ b) => C a b where
type F a

That is, we represent every functional dependency (FD) a1 .. an -> b by an FD type family F a1 .. an and a
superclass context equality F a1 .. an ~ b, essentially giving a name to the functional dependency. In class instances, we
define the type instances of FD families in accordance with the class head. Method signatures are not affected by that process.

http://hackage.haskell.org/trac/ghc/ticket/7347

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 193 / 37

7.11 The Constraint kind

Normally, constraints (which appear in types to the left of the => arrow) have a very restricted syntax. They can only be:

• Class constraints, e.g. Show a

• Implicit parameter constraints, e.g. ?x::Int (with the -XImplicitParams flag)

• Equality constraints, e.g. a ~ Int (with the -XTypeFamilies or -XGADTs flag)

With the -XConstraintKinds flag, GHC becomes more liberal in what it accepts as constraints in your program. To be
precise, with this flag any type of the new kind Constraint can be used as a constraint. The following things have kind
Constraint:

• Anything which is already valid as a constraint without the flag: saturated applications to type classes, implicit parameter and
equality constraints.

• Tuples, all of whose component types have kind Constraint. So for example the type (Show a, Ord a) is of kind
Constraint.

• Anything whose form is not yet know, but the user has declared to have kind Constraint. So for example type Foo (f
:: * -> Constraint) = forall b. f b => b -> b is allowed, as well as examples involving type families:

type family Typ a b :: Constraint
type instance Typ Int b = Show b
type instance Typ Bool b = Num b

func :: Typ a b => a -> b -> b
func = ...

Note that because constraints are just handled as types of a particular kind, this extension allows type constraint synonyms:

type Stringy a = (Read a, Show a)
foo :: Stringy a => a -> (String, String -> a)
foo x = (show x, read)

Presently, only standard constraints, tuples and type synonyms for those two sorts of constraint are permitted in instance contexts
and superclasses (without extra flags). The reason is that permitting more general constraints can cause type checking to loop, as
it would with these two programs:

type family Clsish u a
type instance Clsish () a = Cls a
class Clsish () a => Cls a where

class OkCls a where

type family OkClsish u a
type instance OkClsish () a = OkCls a
instance OkClsish () a => OkCls a where

You may write programs that use exotic sorts of constraints in instance contexts and superclasses, but to do so you must use
-XUndecidableInstances to signal that you don’t mind if the type checker fails to terminate.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 194 / 37

7.12 Other type system extensions

7.12.1 Explicit universal quantification (forall)

Haskell type signatures are implicitly quantified. When the language option -XExplicitForAll is used, the keyword for-
all allows us to say exactly what this means. For example:

g :: b -> b

means this:

g :: forall b. (b -> b)

The two are treated identically.

Of course forall becomes a keyword; you can’t use forall as a type variable any more!

7.12.2 The context of a type signature

The -XFlexibleContexts flag lifts the Haskell 98 restriction that the type-class constraints in a type signature must have
the form (class type-variable) or (class (type-variable type-variable ...)). With -XFlexibleContexts these type signatures
are perfectly OK

g :: Eq [a] => ...
g :: Ord (T a ()) => ...

The flag -XFlexibleContexts also lifts the corresponding restriction on class declarations (Section 7.6.1.2) and instance
declarations (Section 7.6.3.2).

GHC imposes the following restrictions on the constraints in a type signature. Consider the type:

forall tv1..tvn (c1, ...,cn) => type

(Here, we write the "foralls" explicitly, although the Haskell source language omits them; in Haskell 98, all the free type variables
of an explicit source-language type signature are universally quantified, except for the class type variables in a class declaration.
However, in GHC, you can give the foralls if you want. See Section 7.12.1).

1. Each universally quantified type variable tvi must be reachable from type. A type variable a is "reachable" if it appears
in the same constraint as either a type variable free in type, or another reachable type variable. A value with a type that
does not obey this reachability restriction cannot be used without introducing ambiguity; that is why the type is rejected.
Here, for example, is an illegal type:

forall a. Eq a => Int

When a value with this type was used, the constraint Eq tv would be introduced where tv is a fresh type variable, and
(in the dictionary-translation implementation) the value would be applied to a dictionary for Eq tv. The difficulty is that
we can never know which instance of Eq to use because we never get any more information about tv.

Note that the reachability condition is weaker than saying that a is functionally dependent on a type variable free in type
(see Section 7.6.2). The reason for this is there might be a "hidden" dependency, in a superclass perhaps. So "reachable"
is a conservative approximation to "functionally dependent". For example, consider:

class C a b | a -> b where ...
class C a b => D a b where ...
f :: forall a b. D a b => a -> a

This is fine, because in fact a does functionally determine b but that is not immediately apparent from f’s type.

2. Every constraint ci must mention at least one of the universally quantified type variables tvi. For example, this type is
OK because C a b mentions the universally quantified type variable b:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 195 / 37

forall a. C a b => burble

The next type is illegal because the constraint Eq b does not mention a:

forall a. Eq b => burble

The reason for this restriction is milder than the other one. The excluded types are never useful or necessary (because the
offending context doesn’t need to be witnessed at this point; it can be floated out). Furthermore, floating them out increases
sharing. Lastly, excluding them is a conservative choice; it leaves a patch of territory free in case we need it later.

7.12.3 Implicit parameters

Implicit parameters are implemented as described in "Implicit parameters: dynamic scoping with static types", J Lewis, MB
Shields, E Meijer, J Launchbury, 27th ACM Symposium on Principles of Programming Languages (POPL’00), Boston, Jan
2000.

(Most of the following, still rather incomplete, documentation is due to Jeff Lewis.)

Implicit parameter support is enabled with the option -XImplicitParams.

A variable is called dynamically bound when it is bound by the calling context of a function and statically bound when bound
by the callee’s context. In Haskell, all variables are statically bound. Dynamic binding of variables is a notion that goes back
to Lisp, but was later discarded in more modern incarnations, such as Scheme. Dynamic binding can be very confusing in an
untyped language, and unfortunately, typed languages, in particular Hindley-Milner typed languages like Haskell, only support
static scoping of variables.

However, by a simple extension to the type class system of Haskell, we can support dynamic binding. Basically, we express the
use of a dynamically bound variable as a constraint on the type. These constraints lead to types of the form (?x::t’) => t,
which says "this function uses a dynamically-bound variable ?x of type t’". For example, the following expresses the type of a
sort function, implicitly parameterized by a comparison function named cmp.

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]

The dynamic binding constraints are just a new form of predicate in the type class system.

An implicit parameter occurs in an expression using the special form ?x, where x is any valid identifier (e.g. ord ?x is a
valid expression). Use of this construct also introduces a new dynamic-binding constraint in the type of the expression. For
example, the following definition shows how we can define an implicitly parameterized sort function in terms of an explicitly
parameterized sortBy function:

sortBy :: (a -> a -> Bool) -> [a] -> [a]

sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp

7.12.3.1 Implicit-parameter type constraints

Dynamic binding constraints behave just like other type class constraints in that they are automatically propagated. Thus, when
a function is used, its implicit parameters are inherited by the function that called it. For example, our sort function might be
used to pick out the least value in a list:

least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = head (sort xs)

Without lifting a finger, the ?cmp parameter is propagated to become a parameter of least as well. With explicit parameters,
the default is that parameters must always be explicit propagated. With implicit parameters, the default is to always propagate
them.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 196 / 37

An implicit-parameter type constraint differs from other type class constraints in the following way: All uses of a particular
implicit parameter must have the same type. This means that the type of (?x, ?x) is (?x::a) => (a,a), and not (?x:-
:a, ?x::b) => (a, b), as would be the case for type class constraints.

You can’t have an implicit parameter in the context of a class or instance declaration. For example, both these declarations are
illegal:

class (?x::Int) => C a where ...
instance (?x::a) => Foo [a] where ...

Reason: exactly which implicit parameter you pick up depends on exactly where you invoke a function. But the ``invocation” of
instance declarations is done behind the scenes by the compiler, so it’s hard to figure out exactly where it is done. Easiest thing
is to outlaw the offending types.

Implicit-parameter constraints do not cause ambiguity. For example, consider:

f :: (?x :: [a]) => Int -> Int
f n = n + length ?x

g :: (Read a, Show a) => String -> String
g s = show (read s)

Here, g has an ambiguous type, and is rejected, but f is fine. The binding for ?x at f’s call site is quite unambiguous, and fixes
the type a.

7.12.3.2 Implicit-parameter bindings

An implicit parameter is bound using the standard let or where binding forms. For example, we define the min function by
binding cmp.

min :: [a] -> a
min = let ?cmp = (<=) in least

A group of implicit-parameter bindings may occur anywhere a normal group of Haskell bindings can occur, except at top level.
That is, they can occur in a let (including in a list comprehension, or do-notation, or pattern guards), or a where clause. Note
the following points:

• An implicit-parameter binding group must be a collection of simple bindings to implicit-style variables (no function-style
bindings, and no type signatures); these bindings are neither polymorphic or recursive.

• You may not mix implicit-parameter bindings with ordinary bindings in a single let expression; use two nested lets instead.
(In the case of where you are stuck, since you can’t nest where clauses.)

• You may put multiple implicit-parameter bindings in a single binding group; but they are not treated as a mutually recursive
group (as ordinary let bindings are). Instead they are treated as a non-recursive group, simultaneously binding all the implicit
parameter. The bindings are not nested, and may be re-ordered without changing the meaning of the program. For example,
consider:

f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y

The use of ?x in the binding for ?y does not "see" the binding for ?x, so the type of f is

f :: (?x::Int) => Int -> Int

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 197 / 37

7.12.3.3 Implicit parameters and polymorphic recursion

Consider these two definitions:

len1 :: [a] -> Int
len1 xs = let ?acc = 0 in len_acc1 xs

len_acc1 [] = ?acc
len_acc1 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc1 xs

len2 :: [a] -> Int
len2 xs = let ?acc = 0 in len_acc2 xs

len_acc2 :: (?acc :: Int) => [a] -> Int
len_acc2 [] = ?acc
len_acc2 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc2 xs

The only difference between the two groups is that in the second group len_acc is given a type signature. In the former case,
len_acc1 is monomorphic in its own right-hand side, so the implicit parameter ?acc is not passed to the recursive call. In the
latter case, because len_acc2 has a type signature, the recursive call is made to the polymorphic version, which takes ?acc as
an implicit parameter. So we get the following results in GHCi:

Prog> len1 "hello"
0
Prog> len2 "hello"
5

Adding a type signature dramatically changes the result! This is a rather counter-intuitive phenomenon, worth watching out for.

7.12.3.4 Implicit parameters and monomorphism

GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the Haskell Report) to implicit parameters. For example,
consider:

f :: Int -> Int
f v = let ?x = 0 in

let y = ?x + v in
let ?x = 5 in
y

Since the binding for y falls under the Monomorphism Restriction it is not generalised, so the type of y is simply Int, not
(?x::Int) => Int. Hence, (f 9) returns result 9. If you add a type signature for y, then y will get type (?x::Int)
=> Int, so the occurrence of y in the body of the let will see the inner binding of ?x, so (f 9) will return 14.

7.12.4 Explicitly-kinded quantification

Haskell infers the kind of each type variable. Sometimes it is nice to be able to give the kind explicitly as (machine-checked)
documentation, just as it is nice to give a type signature for a function. On some occasions, it is essential to do so. For example,
in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999) John Hughes had to define the data type:

data Set cxt a = Set [a]
| Unused (cxt a -> ())

The only use for the Unused constructor was to force the correct kind for the type variable cxt.

GHC now instead allows you to specify the kind of a type variable directly, wherever a type variable is explicitly bound, with the
flag -XKindSignatures.

This flag enables kind signatures in the following places:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 198 / 37

• data declarations:

data Set (cxt :: * -> *) a = Set [a]

• type declarations:

type T (f :: * -> *) = f Int

• class declarations:

class (Eq a) => C (f :: * -> *) a where ...

• forall’s in type signatures:

f :: forall (cxt :: * -> *). Set cxt Int

The parentheses are required. Some of the spaces are required too, to separate the lexemes. If you write (f::*->*) you will
get a parse error, because "::*->*" is a single lexeme in Haskell.

As part of the same extension, you can put kind annotations in types as well. Thus:

f :: (Int :: *) -> Int
g :: forall a. a -> (a :: *)

The syntax is

atype ::= ’(’ ctype ’::’ kind ’)

The parentheses are required.

7.12.5 Arbitrary-rank polymorphism

GHC’s type system supports arbitrary-rank explicit universal quantification in types. For example, all the following types are
legal:

f1 :: forall a b. a -> b -> a
g1 :: forall a b. (Ord a, Eq b) => a -> b -> a

f2 :: (forall a. a->a) -> Int -> Int
g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int

f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool

f4 :: Int -> (forall a. a -> a)

Here, f1 and g1 are rank-1 types, and can be written in standard Haskell (e.g. f1 :: a->b->a). The forall makes
explicit the universal quantification that is implicitly added by Haskell.

The functions f2 and g2 have rank-2 types; the forall is on the left of a function arrow. As g2 shows, the polymorphic type
on the left of the function arrow can be overloaded.

The function f3 has a rank-3 type; it has rank-2 types on the left of a function arrow.

GHC has three flags to control higher-rank types:

• -XPolymorphicComponents: data constructors (only) can have polymorphic argument types.

• -XRank2Types: any function (including data constructors) can have a rank-2 type.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 199 / 37

• -XRankNTypes: any function (including data constructors) can have an arbitrary-rank type. That is, you can nest foralls
arbitrarily deep in function arrows. In particular, a forall-type (also called a "type scheme"), including an operational type class
context, is legal:

– On the left or right (see f4, for example) of a function arrow

– As the argument of a constructor, or type of a field, in a data type declaration. For example, any of the f1,f2,f3,g1,g2
above would be valid field type signatures.

– As the type of an implicit parameter

– In a pattern type signature (see Section 7.12.7)

7.12.5.1 Examples

In a data or newtype declaration one can quantify the types of the constructor arguments. Here are several examples:

data T a = T1 (forall b. b -> b -> b) a

data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b

}

newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])

The constructors have rank-2 types:

T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
MkMonad :: forall m. (forall a. a -> m a)

-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m

MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle

Notice that you don’t need to use a forall if there’s an explicit context. For example in the first argument of the constructor
MkSwizzle, an implicit "forall a." is prefixed to the argument type. The implicit forall quantifies all type variables
that are not already in scope, and are mentioned in the type quantified over.

As for type signatures, implicit quantification happens for non-overloaded types too. So if you write this:

data T a = MkT (Either a b) (b -> b)

it’s just as if you had written this:

data T a = MkT (forall b. Either a b) (forall b. b -> b)

That is, since the type variable b isn’t in scope, it’s implicitly universally quantified. (Arguably, it would be better to require
explicit quantification on constructor arguments where that is what is wanted. Feedback welcomed.)

You construct values of types T1, MonadT, Swizzle by applying the constructor to suitable values, just as usual. For
example,

a1 :: T Int
a1 = T1 (\xy->x) 3

a2, a3 :: Swizzle
a2 = MkSwizzle sort
a3 = MkSwizzle reverse

a4 :: MonadT Maybe
a4 = let r x = Just x

b m k = case m of
Just y -> k y
Nothing -> Nothing

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 200 / 37

in
MkMonad r b

mkTs :: (forall b. b -> b -> b) -> a -> [T a]
mkTs f x y = [T1 f x, T1 f y]

The type of the argument can, as usual, be more general than the type required, as (MkSwizzle reverse) shows. (reve-
rse does not need the Ord constraint.)

When you use pattern matching, the bound variables may now have polymorphic types. For example:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w ’c’ ’d’)

g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
g (MkSwizzle s) xs f = s (map f (s xs))

h :: MonadT m -> [m a] -> m [a]
h m [] = return m []
h m (x:xs) = bind m x $ \y ->

bind m (h m xs) $ \ys ->
return m (y:ys)

In the function h we use the record selectors return and bind to extract the polymorphic bind and return functions from the
MonadT data structure, rather than using pattern matching.

7.12.5.2 Type inference

In general, type inference for arbitrary-rank types is undecidable. GHC uses an algorithm proposed by Odersky and Laufer
("Putting type annotations to work", POPL’96) to get a decidable algorithm by requiring some help from the programmer. We do
not yet have a formal specification of "some help" but the rule is this:

For a lambda-bound or case-bound variable, x, either the programmer provides an explicit polymorphic type for x, or GHC’s
type inference will assume that x’s type has no foralls in it.

What does it mean to "provide" an explicit type for x? You can do that by giving a type signature for x directly, using a pattern
type signature (Section 7.12.7), thus:

\ f :: (forall a. a->a) -> (f True, f ’c’)

Alternatively, you can give a type signature to the enclosing context, which GHC can "push down" to find the type for the
variable:

(\ f -> (f True, f ’c’)) :: (forall a. a->a) -> (Bool,Char)

Here the type signature on the expression can be pushed inwards to give a type signature for f. Similarly, and more commonly,
one can give a type signature for the function itself:

h :: (forall a. a->a) -> (Bool,Char)
h f = (f True, f ’c’)

You don’t need to give a type signature if the lambda bound variable is a constructor argument. Here is an example we saw
earlier:

f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w ’c’ ’d’)

Here we do not need to give a type signature to w, because it is an argument of constructor T1 and that tells GHC all it needs to
know.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 201 / 37

7.12.5.3 Implicit quantification

GHC performs implicit quantification as follows. At the top level (only) of user-written types, if and only if there is no explicit
forall, GHC finds all the type variables mentioned in the type that are not already in scope, and universally quantifies them.
For example, the following pairs are equivalent:

f :: a -> a
f :: forall a. a -> a

g (x::a) = let
h :: a -> b -> b
h x y = y

in ...
g (x::a) = let

h :: forall b. a -> b -> b
h x y = y

in ...

Notice that GHC does not find the innermost possible quantification point. For example:

f :: (a -> a) -> Int
-- MEANS

f :: forall a. (a -> a) -> Int
-- NOT

f :: (forall a. a -> a) -> Int

g :: (Ord a => a -> a) -> Int
-- MEANS the illegal type

g :: forall a. (Ord a => a -> a) -> Int
-- NOT

g :: (forall a. Ord a => a -> a) -> Int

The latter produces an illegal type, which you might think is silly, but at least the rule is simple. If you want the latter type, you
can write your for-alls explicitly. Indeed, doing so is strongly advised for rank-2 types.

7.12.6 Impredicative polymorphism

GHC supports impredicative polymorphism, enabled with -XImpredicativeTypes. This means that you can call a poly-
morphic function at a polymorphic type, and parameterise data structures over polymorphic types. For example:

f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing

Notice here that the Maybe type is parameterised by the polymorphic type (forall a. [a] -> [a]).

The technical details of this extension are described in the paper Boxy types: type inference for higher-rank types and impred-
icativity, which appeared at ICFP 2006.

7.12.7 Lexically scoped type variables

GHC supports lexically scoped type variables, without which some type signatures are simply impossible to write. For example:

f :: forall a. [a] -> [a]
f xs = ys ++ ys

where
ys :: [a]
ys = reverse xs

http://research.microsoft.com/%7Esimonpj/papers/boxy/
http://research.microsoft.com/%7Esimonpj/papers/boxy/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 202 / 37

The type signature for f brings the type variable a into scope, because of the explicit forall (Section 7.12.7.2). The type
variables bound by a forall scope over the entire definition of the accompanying value declaration. In this example, the type
variable a scopes over the whole definition of f, including over the type signature for ys. In Haskell 98 it is not possible to
declare a type for ys; a major benefit of scoped type variables is that it becomes possible to do so.

Lexically-scoped type variables are enabled by -XScopedTypeVariables. This flag implies -XRelaxedPolyRec.

Note: GHC 6.6 contains substantial changes to the way that scoped type variables work, compared to earlier releases. Read this
section carefully!

7.12.7.1 Overview

The design follows the following principles

• A scoped type variable stands for a type variable, and not for a type. (This is a change from GHC’s earlier design.)

• Furthermore, distinct lexical type variables stand for distinct type variables. This means that every programmer-written type
signature (including one that contains free scoped type variables) denotes a rigid type; that is, the type is fully known to the
type checker, and no inference is involved.

• Lexical type variables may be alpha-renamed freely, without changing the program.

A lexically scoped type variable can be bound by:

• A declaration type signature (Section 7.12.7.2)

• An expression type signature (Section 7.12.7.3)

• A pattern type signature (Section 7.12.7.4)

• Class and instance declarations (Section 7.12.7.5)

In Haskell, a programmer-written type signature is implicitly quantified over its free type variables (Section 4.1.2 of the Haskell
Report). Lexically scoped type variables affect this implicit quantification rules as follows: any type variable that is in scope is
not universally quantified. For example, if type variable a is in scope, then

(e :: a -> a) means (e :: a -> a)
(e :: b -> b) means (e :: forall b. b->b)
(e :: a -> b) means (e :: forall b. a->b)

7.12.7.2 Declaration type signatures

A declaration type signature that has explicit quantification (using forall) brings into scope the explicitly-quantified type
variables, in the definition of the named function. For example:

f :: forall a. [a] -> [a]
f (x:xs) = xs ++ [x :: a]

The "forall a" brings "a" into scope in the definition of "f".

This only happens if:

• The quantification in f’s type signature is explicit. For example:

g :: [a] -> [a]
g (x:xs) = xs ++ [x :: a]

This program will be rejected, because "a" does not scope over the definition of "g", so "x::a" means "x::forall a.
a" by Haskell’s usual implicit quantification rules.

http://www.haskell.org/onlinereport/decls.html#sect4.1.2

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 203 / 37

• The signature gives a type for a function binding or a bare variable binding, not a pattern binding. For example:

f1 :: forall a. [a] -> [a]
f1 (x:xs) = xs ++ [x :: a] -- OK

f2 :: forall a. [a] -> [a]
f2 = \(x:xs) -> xs ++ [x :: a] -- OK

f3 :: forall a. [a] -> [a]
Just f3 = Just (\(x:xs) -> xs ++ [x :: a]) -- Not OK!

The binding for f3 is a pattern binding, and so its type signature does not bring a into scope. However f1 is a function
binding, and f2 binds a bare variable; in both cases the type signature brings a into scope.

7.12.7.3 Expression type signatures

An expression type signature that has explicit quantification (using forall) brings into scope the explicitly-quantified type
variables, in the annotated expression. For example:

f = runST ((op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool)

Here, the type signature forall s. ST s Bool brings the type variable s into scope, in the annotated expression (op
>>= \(x :: STRef s Int) -> g x).

7.12.7.4 Pattern type signatures

A type signature may occur in any pattern; this is a pattern type signature. For example:

-- f and g assume that ’a’ is already in scope
f = \(x::Int, y::a) -> x
g (x::a) = x
h ((x,y) :: (Int,Bool)) = (y,x)

In the case where all the type variables in the pattern type signature are already in scope (i.e. bound by the enclosing context),
matters are simple: the signature simply constrains the type of the pattern in the obvious way.

Unlike expression and declaration type signatures, pattern type signatures are not implicitly generalised. The pattern in a pattern
binding may only mention type variables that are already in scope. For example:

f :: forall a. [a] -> (Int, [a])
f xs = (n, zs)
where

(ys::[a], n) = (reverse xs, length xs) -- OK
zs::[a] = xs ++ ys -- OK

Just (v::b) = ... -- Not OK; b is not in scope

Here, the pattern signatures for ys and zs are fine, but the one for v is not because b is not in scope.

However, in all patterns other than pattern bindings, a pattern type signature may mention a type variable that is not in scope; in
this case, the signature brings that type variable into scope. This is particularly important for existential data constructors. For
example:

data T = forall a. MkT [a]

k :: T -> T
k (MkT [t::a]) = MkT t3

where
t3::[a] = [t,t,t]

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 204 / 37

Here, the pattern type signature (t::a) mentions a lexical type variable that is not already in scope. Indeed, it cannot already
be in scope, because it is bound by the pattern match. GHC’s rule is that in this situation (and only then), a pattern type signature
can mention a type variable that is not already in scope; the effect is to bring it into scope, standing for the existentially-bound
type variable.

When a pattern type signature binds a type variable in this way, GHC insists that the type variable is bound to a rigid, or
fully-known, type variable. This means that any user-written type signature always stands for a completely known type.

If all this seems a little odd, we think so too. But we must have some way to bring such type variables into scope, else we could
not name existentially-bound type variables in subsequent type signatures.

This is (now) the only situation in which a pattern type signature is allowed to mention a lexical variable that is not already in
scope. For example, both f and g would be illegal if a was not already in scope.

7.12.7.5 Class and instance declarations

The type variables in the head of a class or instance declaration scope over the methods defined in the where part. For
example:

class C a where
op :: [a] -> a

op xs = let ys::[a]
ys = reverse xs

in
head ys

7.12.8 Generalised typing of mutually recursive bindings

The Haskell Report specifies that a group of bindings (at top level, or in a let or where) should be sorted into strongly-
connected components, and then type-checked in dependency order (Haskell Report, Section 4.5.1). As each group is type-
checked, any binders of the group that have an explicit type signature are put in the type environment with the specified poly-
morphic type, and all others are monomorphic until the group is generalised (Haskell Report, Section 4.5.2).

Following a suggestion of Mark Jones, in his paper Typing Haskell in Haskell, GHC implements a more general scheme. If -XR-
elaxedPolyRec is specified: the dependency analysis ignores references to variables that have an explicit type signature. As
a result of this refined dependency analysis, the dependency groups are smaller, and more bindings will typecheck. For example,
consider:

f :: Eq a => a -> Bool
f x = (x == x) || g True || g "Yes"

g y = (y <= y) || f True

This is rejected by Haskell 98, but under Jones’s scheme the definition for g is typechecked first, separately from that for f,
because the reference to f in g’s right hand side is ignored by the dependency analysis. Then g’s type is generalised, to get

g :: Ord a => a -> Bool

Now, the definition for f is typechecked, with this type for g in the type environment.

The same refined dependency analysis also allows the type signatures of mutually-recursive functions to have different contexts,
something that is illegal in Haskell 98 (Section 4.5.2, last sentence). With -XRelaxedPolyRec GHC only insists that the type
signatures of a refined group have identical type signatures; in practice this means that only variables bound by the same pattern
binding must have the same context. For example, this is fine:

f :: Eq a => a -> Bool
f x = (x == x) || g True

g :: Ord a => a -> Bool
g y = (y <= y) || f True

http://www.haskell.org/onlinereport/decls.html#sect4.5.1
http://www.haskell.org/onlinereport/decls.html#sect4.5.2
http://citeseer.ist.psu.edu/424440.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 205 / 37

7.12.9 Monomorphic local bindings

We are actively thinking of simplifying GHC’s type system, by not generalising local bindings. The rationale is described in the
paper Let should not be generalised.

The experimental new behaviour is enabled by the flag -XMonoLocalBinds. The effect is that local (that is, non-top-level)
bindings without a type signature are not generalised at all. You can think of it as an extreme (but much more predictable) version
of the Monomorphism Restriction. If you supply a type signature, then the flag has no effect.

7.13 Deferring type errors to runtime

While developing, sometimes it is desirable to allow compilation to succeed even if there are type errors in the code. Consider
the following case:

module Main where

a :: Int
a = ’a’

main = print "b"

Even though a is ill-typed, it is not used in the end, so if all that we’re interested in is main it can be useful to be able to ignore
the problems in a.

For more motivation and details please refer to the HaskellWiki page or the original paper.

7.13.1 Enabling deferring of type errors

The flag -fdefer-type-errors controls whether type errors are deferred to runtime. Type errors will still be emitted as
warnings, but will not prevent compilation.

At runtime, whenever a term containing a type error would need to be evaluated, the error is converted into a runtime exception.
Note that type errors are deferred as much as possible during runtime, but invalid coercions are never performed, even when they
would ultimately result in a value of the correct type. For example, given the following code:

x :: Int
x = 0

y :: Char
y = x

z :: Int
z = y

evaluating z will result in a runtime type error.

7.13.2 Deferred type errors in GHCi

The flag -fdefer-type-errors works in GHCi as well, with one exception: for "naked" expressions typed at the prompt,
type errors don’t get delayed, so for example:

Prelude> fst (True, 1 == ’a’)

<interactive>:2:12:
No instance for (Num Char) arising from the literal ‘1’
Possible fix: add an instance declaration for (Num Char)
In the first argument of ‘(==)’, namely ‘1’
In the expression: 1 == ’a’
In the first argument of ‘fst’, namely ‘(True, 1 == ’a’)’

http://research.microsoft.com/~simonpj/papers/constraints/index.htm
http://hackage.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 206 / 37

Otherwise, in the common case of a simple type error such as typing reverse True at the prompt, you would get a warning
and then an immediately-following type error when the expression is evaluated.

This exception doesn’t apply to statements, as the following example demonstrates:

Prelude> let x = (True, 1 == ’a’)

<interactive>:3:16: Warning:
No instance for (Num Char) arising from the literal ‘1’
Possible fix: add an instance declaration for (Num Char)
In the first argument of ‘(==)’, namely ‘1’
In the expression: 1 == ’a’
In the expression: (True, 1 == ’a’)

Prelude> fst x
True

7.14 Template Haskell

Template Haskell allows you to do compile-time meta-programming in Haskell. The background to the main technical innova-
tions is discussed in "Template Meta-programming for Haskell" (Proc Haskell Workshop 2002).

There is a Wiki page about Template Haskell at http://www.haskell.org/haskellwiki/Template_Haskell, and that is the best place
to look for further details. You may also consult the online Haskell library reference material (look for module Language-
.Haskell.TH). Many changes to the original design are described in Notes on Template Haskell version 2. Not all of these
changes are in GHC, however.

The first example from that paper is set out below (Section 7.14.3) as a worked example to help get you started.

The documentation here describes the realisation of Template Haskell in GHC. It is not detailed enough to understand Template
Haskell; see the Wiki page.

7.14.1 Syntax

Template Haskell has the following new syntactic constructions. You need to use the flag -XTemplateHaskell to switch
these syntactic extensions on (-XTemplateHaskell is no longer implied by -fglasgow-exts).

• A splice is written $x, where x is an identifier, or $(...), where the "..." is an arbitrary expression. There must be no space
between the "$" and the identifier or parenthesis. This use of "$" overrides its meaning as an infix operator, just as "M.x"
overrides the meaning of "." as an infix operator. If you want the infix operator, put spaces around it.

A splice can occur in place of

– an expression; the spliced expression must have type Q Exp

– an type; the spliced expression must have type Q Typ

– a list of top-level declarations; the spliced expression must have type Q [Dec]

Note that pattern splices are not supported. Inside a splice you can only call functions defined in imported modules, not
functions defined elsewhere in the same module.

• A expression quotation is written in Oxford brackets, thus:

– [| ... |], or [e| ... |], where the "..." is an expression; the quotation has type Q Exp.

– [d| ... |], where the "..." is a list of top-level declarations; the quotation has type Q [Dec].

– [t| ... |], where the "..." is a type; the quotation has type Q Type.

– [p| ... |], where the "..." is a pattern; the quotation has type Q Pat.

• A quasi-quotation can appear in either a pattern context or an expression context and is also written in Oxford brackets:

http://research.microsoft.com/~simonpj/papers/meta-haskell/
http://www.haskell.org/haskellwiki/Template_Haskell
http://www.haskell.org/ghc/docs/latest/html/libraries/index.html
http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps
http://haskell.org/haskellwiki/Template_Haskell

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 207 / 37

– [varid| ... |], where the "..." is an arbitrary string; a full description of the quasi-quotation facility is given in
Section 7.14.5.

• A name can be quoted with either one or two prefix single quotes:

– ’f has type Name, and names the function f. Similarly ’C has type Name and names the data constructor C. In general
’thing interprets thing in an expression context.
A name whose second character is a single quote (sadly) cannot be quoted in this way, because it will be parsed instead as
a quoted character. For example, if the function is called f’7 (which is a legal Haskell identifier), an attempt to quote it as
’f’7 would be parsed as the character literal ’f’ followed by the numeric literal 7. There is no current escape mechanism
in this (unusual) situation.

– ’’T has type Name, and names the type constructor T. That is, ’’thing interprets thing in a type context.

These Names can be used to construct Template Haskell expressions, patterns, declarations etc. They may also be given as an
argument to the reify function.

• You may omit the $(...) in a top-level declaration splice. Simply writing an expression (rather than a declaration) implies
a splice. For example, you can write

module Foo where
import Bar

f x = x

$(deriveStuff ’f) -- Uses the $(...) notation

g y = y+1

deriveStuff ’g -- Omits the $(...)

h z = z-1

This abbreviation makes top-level declaration slices quieter and less intimidating.

(Compared to the original paper, there are many differences of detail. The syntax for a declaration splice uses "$" not "splice".
The type of the enclosed expression must be Q [Dec], not [Q Dec]. Pattern splices and quotations are not implemented.)

7.14.2 Using Template Haskell

• The data types and monadic constructor functions for Template Haskell are in the library Language.Haskell.THSyntax.

• You can only run a function at compile time if it is imported from another module. That is, you can’t define a function in a
module, and call it from within a splice in the same module. (It would make sense to do so, but it’s hard to implement.)

• You can only run a function at compile time if it is imported from another module that is not part of a mutually-recursive group
of modules that includes the module currently being compiled. Furthermore, all of the modules of the mutually-recursive group
must be reachable by non-SOURCE imports from the module where the splice is to be run.

For example, when compiling module A, you can only run Template Haskell functions imported from B if B does not import
A (directly or indirectly). The reason should be clear: to run B we must compile and run A, but we are currently type-checking
A.

• The flag -ddump-splices shows the expansion of all top-level splices as they happen.

• If you are building GHC from source, you need at least a stage-2 bootstrap compiler to run Template Haskell. A stage-
1 compiler will reject the TH constructs. Reason: TH compiles and runs a program, and then looks at the result. So it’s
important that the program it compiles produces results whose representations are identical to those of the compiler itself.

Template Haskell works in any mode (--make, --interactive, or file-at-a-time). There used to be a restriction to the
former two, but that restriction has been lifted.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 208 / 37

7.14.3 A Template Haskell Worked Example

To help you get over the confidence barrier, try out this skeletal worked example. First cut and paste the two modules below into
"Main.hs" and "Printf.hs":

{- Main.hs -}
module Main where

-- Import our template "pr"
import Printf (pr)

-- The splice operator $ takes the Haskell source code
-- generated at compile time by "pr" and splices it into
-- the argument of "putStrLn".
main = putStrLn ($(pr "Hello"))

{- Printf.hs -}
module Printf where

-- Skeletal printf from the paper.
-- It needs to be in a separate module to the one where
-- you intend to use it.

-- Import some Template Haskell syntax
import Language.Haskell.TH

-- Describe a format string
data Format = D | S | L String

-- Parse a format string. This is left largely to you
-- as we are here interested in building our first ever
-- Template Haskell program and not in building printf.
parse :: String -> [Format]
parse s = [L s]

-- Generate Haskell source code from a parsed representation
-- of the format string. This code will be spliced into
-- the module which calls "pr", at compile time.
gen :: [Format] -> Q Exp
gen [D] = [| \n -> show n |]
gen [S] = [| \s -> s |]
gen [L s] = stringE s

-- Here we generate the Haskell code for the splice
-- from an input format string.
pr :: String -> Q Exp
pr s = gen (parse s)

Now run the compiler (here we are a Cygwin prompt on Windows):

$ ghc --make -XTemplateHaskell main.hs -o main.exe

Run "main.exe" and here is your output:

$./main
Hello

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 209 / 37

7.14.4 Using Template Haskell with Profiling

Template Haskell relies on GHC’s built-in bytecode compiler and interpreter to run the splice expressions. The bytecode inter-
preter runs the compiled expression on top of the same runtime on which GHC itself is running; this means that the compiled
code referred to by the interpreted expression must be compatible with this runtime, and in particular this means that object code
that is compiled for profiling cannot be loaded and used by a splice expression, because profiled object code is only compatible
with the profiling version of the runtime.

This causes difficulties if you have a multi-module program containing Template Haskell code and you need to compile it for
profiling, because GHC cannot load the profiled object code and use it when executing the splices. Fortunately GHC provides a
workaround. The basic idea is to compile the program twice:

1. Compile the program or library first the normal way, without -prof.

2. Then compile it again with -prof, and additionally use -osuf p_o to name the object files differently (you can choose
any suffix that isn’t the normal object suffix here). GHC will automatically load the object files built in the first step when
executing splice expressions. If you omit the -osuf flag when building with -prof and Template Haskell is used, GHC
will emit an error message.

7.14.5 Template Haskell Quasi-quotation

Quasi-quotation allows patterns and expressions to be written using programmer-defined concrete syntax; the motivation behind
the extension and several examples are documented in "Why It’s Nice to be Quoted: Quasiquoting for Haskell" (Proc Haskell
Workshop 2007). The example below shows how to write a quasiquoter for a simple expression language.

Here are the salient features

• A quasi-quote has the form [quoter| string |].

– The quoter must be the (unqualified) name of an imported quoter; it cannot be an arbitrary expression.

– The quoter cannot be "e", "t", "d", or "p", since those overlap with Template Haskell quotations.

– There must be no spaces in the token [quoter|.

– The quoted string can be arbitrary, and may contain newlines.

– The quoted string finishes at the first occurrence of the two-character sequence "|]". Absolutely no escaping is per-
formed. If you want to embed that character sequence in the string, you must invent your own escape convention (such as,
say, using the string "|~]" instead), and make your quoter function interpret "|~]" as "|]". One way to implement
this is to compose your quoter with a pre-processing pass to perform your escape conversion. See the discussion in Trac for
details.

• A quasiquote may appear in place of

– An expression

– A pattern

– A type

– A top-level declaration

(Only the first two are described in the paper.)

• A quoter is a value of type Language.Haskell.TH.Quote.QuasiQuoter, which is defined thus:

data QuasiQuoter = QuasiQuoter { quoteExp :: String -> Q Exp,
quotePat :: String -> Q Pat,
quoteType :: String -> Q Type,
quoteDec :: String -> Q [Dec] }

That is, a quoter is a tuple of four parsers, one for each of the contexts in which a quasi-quote can occur.

http://www.eecs.harvard.edu/~mainland/ghc-quasiquoting/
http://hackage.haskell.org/trac/ghc/ticket/5348

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 210 / 37

• A quasi-quote is expanded by applying the appropriate parser to the string enclosed by the Oxford brackets. The context of the
quasi-quote (expression, pattern, type, declaration) determines which of the parsers is called.

The example below shows quasi-quotation in action. The quoter expr is bound to a value of type QuasiQuoter defined
in module Expr. The example makes use of an antiquoted variable n, indicated by the syntax ’int:n (this syntax for anti-
quotation was defined by the parser’s author, not by GHC). This binds n to the integer value argument of the constructor IntE-
xpr when pattern matching. Please see the referenced paper for further details regarding anti-quotation as well as the description
of a technique that uses SYB to leverage a single parser of type String -> a to generate both an expression parser that returns
a value of type Q Exp and a pattern parser that returns a value of type Q Pat.

Quasiquoters must obey the same stage restrictions as Template Haskell, e.g., in the example, expr cannot be defined in Mai-
n.hs where it is used, but must be imported.

{- ------------- file Main.hs --------------- -}
module Main where

import Expr

main :: IO ()
main = do { print $ eval [expr|1 + 2|]

; case IntExpr 1 of
{ [expr|’int:n|] -> print n
; _ -> return ()
}

}

{- ------------- file Expr.hs --------------- -}
module Expr where

import qualified Language.Haskell.TH as TH
import Language.Haskell.TH.Quote

data Expr = IntExpr Integer
| AntiIntExpr String
| BinopExpr BinOp Expr Expr
| AntiExpr String

deriving(Show, Typeable, Data)

data BinOp = AddOp
| SubOp
| MulOp
| DivOp

deriving(Show, Typeable, Data)

eval :: Expr -> Integer
eval (IntExpr n) = n
eval (BinopExpr op x y) = (opToFun op) (eval x) (eval y)

where
opToFun AddOp = (+)
opToFun SubOp = (-)
opToFun MulOp = (*)
opToFun DivOp = div

expr = QuasiQuoter { quoteExp = parseExprExp, quotePat = parseExprPat }

-- Parse an Expr, returning its representation as
-- either a Q Exp or a Q Pat. See the referenced paper
-- for how to use SYB to do this by writing a single
-- parser of type String -> Expr instead of two
-- separate parsers.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 211 / 37

parseExprExp :: String -> Q Exp
parseExprExp ...

parseExprPat :: String -> Q Pat
parseExprPat ...

Now run the compiler:

$ ghc --make -XQuasiQuotes Main.hs -o main

Run "main" and here is your output:

$./main
3
1

7.15 Arrow notation

Arrows are a generalization of monads introduced by John Hughes. For more details, see

• “Generalising Monads to Arrows”, John Hughes, in Science of Computer Programming 37, pp67–111, May 2000. The paper
that introduced arrows: a friendly introduction, motivated with programming examples.

• “A New Notation for Arrows”, Ross Paterson, in ICFP, Sep 2001. Introduced the notation described here.

• “Arrows and Computation”, Ross Paterson, in The Fun of Programming, Palgrave, 2003.

• “Programming with Arrows”, John Hughes, in 5th International Summer School on Advanced Functional Programming, Lec-
ture Notes in Computer Science vol. 3622, Springer, 2004. This paper includes another introduction to the notation, with
practical examples.

• “Type and Translation Rules for Arrow Notation in GHC”, Ross Paterson and Simon Peyton Jones, September 16, 2004. A
terse enumeration of the formal rules used (extracted from comments in the source code).

• The arrows web page at http://www.haskell.org/arrows/.

With the -XArrows flag, GHC supports the arrow notation described in the second of these papers, translating it using com-
binators from the Control.Arrow module. What follows is a brief introduction to the notation; it won’t make much sense
unless you’ve read Hughes’s paper.

The extension adds a new kind of expression for defining arrows:

exp10 ::= ...
| proc apat -> cmd

where proc is a new keyword. The variables of the pattern are bound in the body of the proc-expression, which is a new sort
of thing called a command. The syntax of commands is as follows:

cmd ::= exp10 -< exp
| exp10 -<< exp
| cmd0

with cmd0 up to cmd9 defined using infix operators as for expressions, and

cmd10 ::= \ apat ... apat -> cmd
| let decls in cmd
| if exp then cmd else cmd
| case exp of { calts }
| do { cstmt ; ... cstmt ; cmd }

http://www.soi.city.ac.uk/~ross/papers/notation.html
http://www.soi.city.ac.uk/~ross/papers/fop.html
http://www.cs.chalmers.se/~rjmh/afp-arrows.pdf
http://www.haskell.org/ghc/docs/papers/arrow-rules.pdf
http://www.haskell.org/arrows/
file:../libraries/base-4.6.0.1/Control-Arrow.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 212 / 37

| fcmd

fcmd ::= fcmd aexp
| (cmd)
| (| aexp cmd ... cmd |)

cstmt ::= let decls
| pat <- cmd
| rec { cstmt ; ... cstmt [;] }
| cmd

where calts are like alts except that the bodies are commands instead of expressions.

Commands produce values, but (like monadic computations) may yield more than one value, or none, and may do other things as
well. For the most part, familiarity with monadic notation is a good guide to using commands. However the values of expressions,
even monadic ones, are determined by the values of the variables they contain; this is not necessarily the case for commands.

A simple example of the new notation is the expression

proc x -> f -< x+1

We call this a procedure or arrow abstraction. As with a lambda expression, the variable x is a new variable bound within the
proc-expression. It refers to the input to the arrow. In the above example, -< is not an identifier but an new reserved symbol
used for building commands from an expression of arrow type and an expression to be fed as input to that arrow. (The weird
look will make more sense later.) It may be read as analogue of application for arrows. The above example is equivalent to the
Haskell expression

arr (\ x -> x+1) >>> f

That would make no sense if the expression to the left of -< involves the bound variable x. More generally, the expression to the
left of -< may not involve any local variable, i.e. a variable bound in the current arrow abstraction. For such a situation there is
a variant -<<, as in

proc x -> f x -<< x+1

which is equivalent to

arr (\ x -> (f x, x+1)) >>> app

so in this case the arrow must belong to the ArrowApply class. Such an arrow is equivalent to a monad, so if you’re using this
form you may find a monadic formulation more convenient.

7.15.1 do-notation for commands

Another form of command is a form of do-notation. For example, you can write

proc x -> do
y <- f -< x+1
g -< 2*y
let z = x+y
t <- h -< x*z
returnA -< t+z

You can read this much like ordinary do-notation, but with commands in place of monadic expressions. The first line sends the
value of x+1 as an input to the arrow f, and matches its output against y. In the next line, the output is discarded. The arrow
returnA is defined in the Control.Arrow module as arr id. The above example is treated as an abbreviation for

arr (\ x -> (x, x)) >>>
first (arr (\ x -> x+1) >>> f) >>>
arr (\ (y, x) -> (y, (x, y))) >>>

file:../libraries/base-4.6.0.1/Control-Arrow.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 213 / 37

first (arr (\ y -> 2*y) >>> g) >>>
arr snd >>>
arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
first (arr (\ (x, z) -> x*z) >>> h) >>>
arr (\ (t, z) -> t+z) >>>
returnA

Note that variables not used later in the composition are projected out. After simplification using rewrite rules (see Section 7.19)
defined in the Control.Arrow module, this reduces to

arr (\ x -> (x+1, x)) >>>
first f >>>
arr (\ (y, x) -> (2*y, (x, y))) >>>
first g >>>
arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
first h >>>
arr (\ (t, z) -> t+z)

which is what you might have written by hand. With arrow notation, GHC keeps track of all those tuples of variables for you.

Note that although the above translation suggests that let-bound variables like z must be monomorphic, the actual translation
produces Core, so polymorphic variables are allowed.

It’s also possible to have mutually recursive bindings, using the new rec keyword, as in the following example:

counter :: ArrowCircuit a => a Bool Int
counter = proc reset -> do

rec output <- returnA -< if reset then 0 else next
next <- delay 0 -< output+1

returnA -< output

The translation of such forms uses the loop combinator, so the arrow concerned must belong to the ArrowLoop class.

7.15.2 Conditional commands

In the previous example, we used a conditional expression to construct the input for an arrow. Sometimes we want to conditionally
execute different commands, as in

proc (x,y) ->
if f x y
then g -< x+1
else h -< y+2

which is translated to

arr (\ (x,y) -> if f x y then Left x else Right y) >>>
(arr (\x -> x+1) >>> f) ||| (arr (\y -> y+2) >>> g)

Since the translation uses |||, the arrow concerned must belong to the ArrowChoice class.

There are also case commands, like

case input of
[] -> f -< ()
[x] -> g -< x+1
x1:x2:xs -> do

y <- h -< (x1, x2)
ys <- k -< xs
returnA -< y:ys

The syntax is the same as for case expressions, except that the bodies of the alternatives are commands rather than expressions.
The translation is similar to that of if commands.

file:../libraries/base-4.6.0.1/Control-Arrow.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 214 / 37

7.15.3 Defining your own control structures

As we’re seen, arrow notation provides constructs, modelled on those for expressions, for sequencing, value recursion and
conditionals. But suitable combinators, which you can define in ordinary Haskell, may also be used to build new commands out
of existing ones. The basic idea is that a command defines an arrow from environments to values. These environments assign
values to the free local variables of the command. Thus combinators that produce arrows from arrows may also be used to build
commands from commands. For example, the ArrowPlus class includes a combinator

ArrowPlus a => (<+>) :: a e c -> a e c -> a e c

so we can use it to build commands:

expr’ = proc x -> do
returnA -< x

<+> do
symbol Plus -< ()
y <- term -< ()
expr’ -< x + y

<+> do
symbol Minus -< ()
y <- term -< ()
expr’ -< x - y

(The do on the first line is needed to prevent the first <+> ... from being interpreted as part of the expression on the previous
line.) This is equivalent to

expr’ = (proc x -> returnA -< x)
<+> (proc x -> do

symbol Plus -< ()
y <- term -< ()
expr’ -< x + y)

<+> (proc x -> do
symbol Minus -< ()
y <- term -< ()
expr’ -< x - y)

It is essential that this operator be polymorphic in e (representing the environment input to the command and thence to its
subcommands) and satisfy the corresponding naturality property

arr k >>> (f <+> g) = (arr k >>> f) <+> (arr k >>> g)

at least for strict k. (This should be automatic if you’re not using seq.) This ensures that environments seen by the subcommands
are environments of the whole command, and also allows the translation to safely trim these environments. The operator must
also not use any variable defined within the current arrow abstraction.

We could define our own operator

untilA :: ArrowChoice a => a e () -> a e Bool -> a e ()
untilA body cond = proc x ->

b <- cond -< x
if b then returnA -< ()
else do

body -< x
untilA body cond -< x

and use it in the same way. Of course this infix syntax only makes sense for binary operators; there is also a more general syntax
involving special brackets:

proc x -> do
y <- f -< x+1
(|untilA (increment -< x+y) (within 0.5 -< x)|)

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 215 / 37

7.15.4 Primitive constructs

Some operators will need to pass additional inputs to their subcommands. For example, in an arrow type supporting exceptions,
the operator that attaches an exception handler will wish to pass the exception that occurred to the handler. Such an operator
might have a type

handleA :: ... => a e c -> a (e,Ex) c -> a e c

where Ex is the type of exceptions handled. You could then use this with arrow notation by writing a command

body ‘handleA‘ \ ex -> handler

so that if an exception is raised in the command body, the variable ex is bound to the value of the exception and the command
handler, which typically refers to ex, is entered. Though the syntax here looks like a functional lambda, we are talking about
commands, and something different is going on. The input to the arrow represented by a command consists of values for the free
local variables in the command, plus a stack of anonymous values. In all the prior examples, this stack was empty. In the second
argument to handleA, this stack consists of one value, the value of the exception. The command form of lambda merely gives
this value a name.

More concretely, the values on the stack are paired to the right of the environment. So operators like handleA that pass extra
inputs to their subcommands can be designed for use with the notation by pairing the values with the environment in this way.
More precisely, the type of each argument of the operator (and its result) should have the form

a (...(e,t1), ... tn) t

where e is a polymorphic variable (representing the environment) and ti are the types of the values on the stack, with t1 being
the ‘top’. The polymorphic variable e must not occur in a, ti or t. However the arrows involved need not be the same. Here are
some more examples of suitable operators:

bracketA :: ... => a e b -> a (e,b) c -> a (e,c) d -> a e d
runReader :: ... => a e c -> a’ (e,State) c
runState :: ... => a e c -> a’ (e,State) (c,State)

We can supply the extra input required by commands built with the last two by applying them to ordinary expressions, as in

proc x -> do
s <- ...
(|runReader (do { ... })|) s

which adds s to the stack of inputs to the command built using runReader.

The command versions of lambda abstraction and application are analogous to the expression versions. In particular, the beta
and eta rules describe equivalences of commands. These three features (operators, lambda abstraction and application) are the
core of the notation; everything else can be built using them, though the results would be somewhat clumsy. For example, we
could simulate do-notation by defining

bind :: Arrow a => a e b -> a (e,b) c -> a e c
u ‘bind‘ f = returnA &&& u >>> f

bind_ :: Arrow a => a e b -> a e c -> a e c
u ‘bind_‘ f = u ‘bind‘ (arr fst >>> f)

We could simulate if by defining

cond :: ArrowChoice a => a e b -> a e b -> a (e,Bool) b
cond f g = arr (\ (e,b) -> if b then Left e else Right e) >>> f ||| g

7.15.5 Differences with the paper

• Instead of a single form of arrow application (arrow tail) with two translations, the implementation provides two forms ‘-<’
(first-order) and ‘-<<’ (higher-order).

• User-defined operators are flagged with banana brackets instead of a new form keyword.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 216 / 37

7.15.6 Portability

Although only GHC implements arrow notation directly, there is also a preprocessor (available from the arrows web page) that
translates arrow notation into Haskell 98 for use with other Haskell systems. You would still want to check arrow programs
with GHC; tracing type errors in the preprocessor output is not easy. Modules intended for both GHC and the preprocessor must
observe some additional restrictions:

• The module must import Control.Arrow.

• The preprocessor cannot cope with other Haskell extensions. These would have to go in separate modules.

• Because the preprocessor targets Haskell (rather than Core), let-bound variables are monomorphic.

7.16 Bang patterns

GHC supports an extension of pattern matching called bang patterns, written !pat. Bang patterns are under consideration for
Haskell Prime. The Haskell prime feature description contains more discussion and examples than the material below.

The key change is the addition of a new rule to the semantics of pattern matching in the Haskell 98 report. Add new bullet 10,
saying: Matching the pattern !pat against a value v behaves as follows:

• if v is bottom, the match diverges

• otherwise, pat is matched against v

Bang patterns are enabled by the flag -XBangPatterns.

7.16.1 Informal description of bang patterns

The main idea is to add a single new production to the syntax of patterns:

pat ::= !pat

Matching an expression e against a pattern !p is done by first evaluating e (to WHNF) and then matching the result against p.
Example:

f1 !x = True

This definition makes f1 is strict in x, whereas without the bang it would be lazy. Bang patterns can be nested of course:

f2 (!x, y) = [x,y]

Here, f2 is strict in x but not in y. A bang only really has an effect if it precedes a variable or wild-card pattern:

f3 !(x,y) = [x,y]
f4 (x,y) = [x,y]

Here, f3 and f4 are identical; putting a bang before a pattern that forces evaluation anyway does nothing.

There is one (apparent) exception to this general rule that a bang only makes a difference when it precedes a variable or wild-
card: a bang at the top level of a let or where binding makes the binding strict, regardless of the pattern. (We say "apparent"
exception because the Right Way to think of it is that the bang at the top of a binding is not part of the pattern; rather it is part of
the syntax of the binding, creating a "bang-pattern binding".) For example:

let ![x,y] = e in b

is a bang-pattern binding. Operationally, it behaves just like a case expression:

http://www.haskell.org/arrows/
file:../libraries/base-4.6.0.1/Control-Arrow.html
http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns
http://haskell.org/onlinereport/exps.html#sect3.17.2

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 217 / 37

case e of [x,y] -> b

Like a case expression, a bang-pattern binding must be non-recursive, and is monomorphic. However, nested bangs in a pattern
binding behave uniformly with all other forms of pattern matching. For example

let (!x,[y]) = e in b

is equivalent to this:

let { t = case e of (x,[y]) -> x ‘seq‘ (x,y)
x = fst t
y = snd t }

in b

The binding is lazy, but when either x or y is evaluated by b the entire pattern is matched, including forcing the evaluation of x.

Bang patterns work in case expressions too, of course:

g5 x = let y = f x in body
g6 x = case f x of { y -> body }
g7 x = case f x of { !y -> body }

The functions g5 and g6 mean exactly the same thing. But g7 evaluates (f x), binds y to the result, and then evaluates body.

7.16.2 Syntax and semantics

We add a single new production to the syntax of patterns:

pat ::= !pat

There is one problem with syntactic ambiguity. Consider:

f !x = 3

Is this a definition of the infix function "(!)", or of the "f" with a bang pattern? GHC resolves this ambiguity in favour of the
latter. If you want to define (!) with bang-patterns enabled, you have to do so using prefix notation:

(!) f x = 3

The semantics of Haskell pattern matching is described in Section 3.17.2 of the Haskell Report. To this description add one extra
item 10, saying:

• Matching the pattern !pat against a value v behaves as follows:

– if v is bottom, the match diverges

– otherwise, pat is matched against v

Similarly, in Figure 4 of Section 3.17.3, add a new case (t):

case v of { !pat -> e; _ -> e’ }
= v ‘seq‘ case v of { pat -> e; _ -> e’ }

That leaves let expressions, whose translation is given in Section 3.12 of the Haskell Report. In the translation box, first apply
the following transformation: for each pattern pi that is of form !qi = ei, transform it to (xi,!qi) = ((),ei), and
replace e0 by (xi `seq` e0). Then, when none of the left-hand-side patterns have a bang at the top, apply the rules in the
existing box.

The effect of the let rule is to force complete matching of the pattern qi before evaluation of the body is begun. The bang is
retained in the translated form in case qi is a variable, thus:

http://www.haskell.org/onlinereport/exps.html#sect3.17.2
http://www.haskell.org/onlinereport/exps.html#sect3.17.3
http://www.haskell.org/onlinereport/exps.html#sect3.12

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 218 / 37

let !y = f x in b

The let-binding can be recursive. However, it is much more common for the let-binding to be non-recursive, in which case the
following law holds: (let !p = rhs in body) is equivalent to (case rhs of !p -> body)

A pattern with a bang at the outermost level is not allowed at the top level of a module.

7.17 Assertions

If you want to make use of assertions in your standard Haskell code, you could define a function like the following:

assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _ x = x

which works, but gives you back a less than useful error message -- an assertion failed, but which and where?

One way out is to define an extended assert function which also takes a descriptive string to include in the error message and
perhaps combine this with the use of a pre-processor which inserts the source location where assert was used.

Ghc offers a helping hand here, doing all of this for you. For every use of assert in the user’s source:

kelvinToC :: Double -> Double
kelvinToC k = assert (k >= 0.0) (k+273.15)

Ghc will rewrite this to also include the source location where the assertion was made,

assert pred val ==> assertError "Main.hs|15" pred val

The rewrite is only performed by the compiler when it spots applications of Control.Exception.assert, so you can still
define and use your own versions of assert, should you so wish. If not, import Control.Exception to make use assert
in your code.

GHC ignores assertions when optimisation is turned on with the -O flag. That is, expressions of the form assert pred e
will be rewritten to e. You can also disable assertions using the -fignore-asserts option.

Assertion failures can be caught, see the documentation for the Control.Exception library for the details.

7.18 Pragmas

GHC supports several pragmas, or instructions to the compiler placed in the source code. Pragmas don’t normally affect the
meaning of the program, but they might affect the efficiency of the generated code.

Pragmas all take the form {-# word ... #-} where word indicates the type of pragma, and is followed optionally by
information specific to that type of pragma. Case is ignored in word. The various values for word that GHC understands are
described in the following sections; any pragma encountered with an unrecognised word is ignored. The layout rule applies in
pragmas, so the closing #-} should start in a column to the right of the opening {-#.

Certain pragmas are file-header pragmas:

• A file-header pragma must precede the module keyword in the file.

• There can be as many file-header pragmas as you please, and they can be preceded or followed by comments.

• File-header pragmas are read once only, before pre-processing the file (e.g. with cpp).

• The file-header pragmas are: {-# LANGUAGE #-}, {-# OPTIONS_GHC #-}, and {-# INCLUDE #-}.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 219 / 37

7.18.1 LANGUAGE pragma

The LANGUAGE pragma allows language extensions to be enabled in a portable way. It is the intention that all Haskell compilers
support the LANGUAGE pragma with the same syntax, although not all extensions are supported by all compilers, of course. The
LANGUAGE pragma should be used instead of OPTIONS_GHC, if possible.

For example, to enable the FFI and preprocessing with CPP:

{-# LANGUAGE ForeignFunctionInterface, CPP #-}

LANGUAGE is a file-header pragma (see Section 7.18).

Every language extension can also be turned into a command-line flag by prefixing it with "-X"; for example -XForeignFu-
nctionInterface. (Similarly, all "-X" flags can be written as LANGUAGE pragmas.

A list of all supported language extensions can be obtained by invoking ghc --supported-extensions (see Section 4.5).

Any extension from the Extension type defined in Language.Haskell.Extension may be used. GHC will report an
error if any of the requested extensions are not supported.

7.18.2 OPTIONS_GHC pragma

The OPTIONS_GHC pragma is used to specify additional options that are given to the compiler when compiling this source file.
See Section 4.2.2 for details.

Previous versions of GHC accepted OPTIONS rather than OPTIONS_GHC, but that is now deprecated.

OPTIONS_GHC is a file-header pragma (see Section 7.18).

7.18.3 INCLUDE pragma

The INCLUDE used to be necessary for specifying header files to be included when using the FFI and compiling via C. It is no
longer required for GHC, but is accepted (and ignored) for compatibility with other compilers.

7.18.4 WARNING and DEPRECATED pragmas

The WARNING pragma allows you to attach an arbitrary warning to a particular function, class, or type. A DEPRECATED
pragma lets you specify that a particular function, class, or type is deprecated. There are two ways of using these pragmas.

• You can work on an entire module thus:

module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
...

Or:

module Wibble {-# WARNING "This is an unstable interface." #-} where
...

When you compile any module that import Wibble, GHC will print the specified message.

• You can attach a warning to a function, class, type, or data constructor, with the following top-level declarations:

{-# DEPRECATED f, C, T "Don’t use these" #-}
{-# WARNING unsafePerformIO "This is unsafe; I hope you know what you’re doing" #-}

When you compile any module that imports and uses any of the specified entities, GHC will print the specified message.

You can only attach to entities declared at top level in the module being compiled, and you can only use unqualified names in
the list of entities. A capitalised name, such as T refers to either the type constructor T or the data constructor T, or both if
both are in scope. If both are in scope, there is currently no way to specify one without the other (c.f. fixities Section 7.4.3).

file:../libraries/Cabal-1.16.0/Language-Haskell-Extension.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 220 / 37

Warnings and deprecations are not reported for (a) uses within the defining module, and (b) uses in an export list. The latter
reduces spurious complaints within a library in which one module gathers together and re-exports the exports of several others.

You can suppress the warnings with the flag -fno-warn-warnings-deprecations.

7.18.5 INLINE and NOINLINE pragmas

These pragmas control the inlining of function definitions.

7.18.5.1 INLINE pragma

GHC (with -O, as always) tries to inline (or “unfold”) functions/values that are “small enough,” thus avoiding the call overhead
and possibly exposing other more-wonderful optimisations. Normally, if GHC decides a function is “too expensive” to inline, it
will not do so, nor will it export that unfolding for other modules to use.

The sledgehammer you can bring to bear is the INLINE pragma, used thusly:

key_function :: Int -> String -> (Bool, Double)
{-# INLINE key_function #-}

The major effect of an INLINE pragma is to declare a function’s “cost” to be very low. The normal unfolding machinery will
then be very keen to inline it. However, an INLINE pragma for a function "f" has a number of other effects:

• While GHC is keen to inline the function, it does not do so blindly. For example, if you write

map key_function xs

there really isn’t any point in inlining key_function to get

map (\x -> body) xs

In general, GHC only inlines the function if there is some reason (no matter how slight) to suppose that it is useful to do so.

• Moreover, GHC will only inline the function if it is fully applied, where "fully applied" means applied to as many arguments
as appear (syntactically) on the LHS of the function definition. For example:

comp1 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp1 #-}
comp1 f g = \x -> f (g x)

comp2 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp2 #-}
comp2 f g x = f (g x)

The two functions comp1 and comp2 have the same semantics, but comp1 will be inlined when applied to two arguments,
while comp2 requires three. This might make a big difference if you say

map (not ‘comp1‘ not) xs

which will optimise better than the corresponding use of `comp2`.

• It is useful for GHC to optimise the definition of an INLINE function f just like any other non-INLINE function, in case the
non-inlined version of f is ultimately called. But we don’t want to inline the optimised version of f; a major reason for INLINE
pragmas is to expose functions in f’s RHS that have rewrite rules, and it’s no good if those functions have been optimised away.

So GHC guarantees to inline precisely the code that you wrote, no more and no less. It does this by capturing a copy of the
definition of the function to use for inlining (we call this the "inline-RHS"), which it leaves untouched, while optimising the
ordinarily RHS as usual. For externally-visible functions the inline-RHS (not the optimised RHS) is recorded in the interface
file.

• An INLINE function is not worker/wrappered by strictness analysis. It’s going to be inlined wholesale instead.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 221 / 37

GHC ensures that inlining cannot go on forever: every mutually-recursive group is cut by one or more loop breakers that is
never inlined (see Secrets of the GHC inliner, JFP 12(4) July 2002). GHC tries not to select a function with an INLINE pragma
as a loop breaker, but when there is no choice even an INLINE function can be selected, in which case the INLINE pragma is
ignored. For example, for a self-recursive function, the loop breaker can only be the function itself, so an INLINE pragma is
always ignored.

Syntactically, an INLINE pragma for a function can be put anywhere its type signature could be put.

INLINE pragmas are a particularly good idea for the then/return (or bind/unit) functions in a monad. For example, in
GHC’s own UniqueSupply monad code, we have:

{-# INLINE thenUs #-}
{-# INLINE returnUs #-}

See also the NOINLINE (Section 7.18.5.3) and INLINABLE (Section 7.18.5.2) pragmas.

Note: the HBC compiler doesn’t like INLINE pragmas, so if you want your code to be HBC-compatible you’ll have to surround
the pragma with C pre-processor directives #ifdef __GLASGOW_HASKELL__...#endif.

7.18.5.2 INLINABLE pragma

An {-# INLINABLE f #-} pragma on a function f has the following behaviour:

• While INLINE says "please inline me", the INLINABLE says "feel free to inline me; use your discretion". In other words the
choice is left to GHC, which uses the same rules as for pragma-free functions. Unlike INLINE, that decision is made at the
call site, and will therefore be affected by the inlining threshold, optimisation level etc.

• Like INLINE, the INLINABLE pragma retains a copy of the original RHS for inlining purposes, and persists it in the interface
file, regardless of the size of the RHS.

• One way to use INLINABLE is in conjunction with the special function inline (Section 7.20). The call inline f tries
very hard to inline f. To make sure that f can be inlined, it is a good idea to mark the definition of f as INLINABLE, so that
GHC guarantees to expose an unfolding regardless of how big it is. Moreover, by annotating f as INLINABLE, you ensure
that f’s original RHS is inlined, rather than whatever random optimised version of f GHC’s optimiser has produced.

• The INLINABLE pragma also works with SPECIALISE: if you mark function f as INLINABLE, then you can subsequently
SPECIALISE in another module (see Section 7.18.8).

• Unlike INLINE, it is OK to use an INLINABLE pragma on a recursive function. The principal reason do to so to allow later
use of SPECIALISE

7.18.5.3 NOINLINE pragma

The NOINLINE pragma does exactly what you’d expect: it stops the named function from being inlined by the compiler. You
shouldn’t ever need to do this, unless you’re very cautious about code size.

NOTINLINE is a synonym for NOINLINE (NOINLINE is specified by Haskell 98 as the standard way to disable inlining, so it
should be used if you want your code to be portable).

7.18.5.4 CONLIKE modifier

An INLINE or NOINLINE pragma may have a CONLIKE modifier, which affects matching in RULEs (only). See Section 7.19.3.

http://research.microsoft.com/%7Esimonpj/Papers/inlining/index.htm

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 222 / 37

7.18.5.5 Phase control

Sometimes you want to control exactly when in GHC’s pipeline the INLINE pragma is switched on. Inlining happens only during
runs of the simplifier. Each run of the simplifier has a different phase number; the phase number decreases towards zero. If you
use -dverbose-core2core you’ll see the sequence of phase numbers for successive runs of the simplifier. In an INLINE
pragma you can optionally specify a phase number, thus:

• "INLINE[k] f" means: do not inline f until phase k, but from phase k onwards be very keen to inline it.

• "INLINE[~k] f" means: be very keen to inline f until phase k, but from phase k onwards do not inline it.

• "NOINLINE[k] f" means: do not inline f until phase k, but from phase k onwards be willing to inline it (as if there was no
pragma).

• "NOINLINE[~k] f" means: be willing to inline f until phase k, but from phase k onwards do not inline it.

The same information is summarised here:

-- Before phase 2 Phase 2 and later
{-# INLINE [2] f #-} -- No Yes
{-# INLINE [~2] f #-} -- Yes No
{-# NOINLINE [2] f #-} -- No Maybe
{-# NOINLINE [~2] f #-} -- Maybe No

{-# INLINE f #-} -- Yes Yes
{-# NOINLINE f #-} -- No No

By "Maybe" we mean that the usual heuristic inlining rules apply (if the function body is small, or it is applied to interesting-
looking arguments etc). Another way to understand the semantics is this:

• For both INLINE and NOINLINE, the phase number says when inlining is allowed at all.

• The INLINE pragma has the additional effect of making the function body look small, so that when inlining is allowed it is
very likely to happen.

The same phase-numbering control is available for RULES (Section 7.19).

7.18.6 LINE pragma

This pragma is similar to C’s #line pragma, and is mainly for use in automatically generated Haskell code. It lets you specify
the line number and filename of the original code; for example

{-# LINE 42 "Foo.vhs" #-}

if you’d generated the current file from something called Foo.vhs and this line corresponds to line 42 in the original. GHC will
adjust its error messages to refer to the line/file named in the LINE pragma.

7.18.7 RULES pragma

The RULES pragma lets you specify rewrite rules. It is described in Section 7.19.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 223 / 37

7.18.8 SPECIALIZE pragma

(UK spelling also accepted.) For key overloaded functions, you can create extra versions (NB: more code space) specialised to
particular types. Thus, if you have an overloaded function:

hammeredLookup :: Ord key => [(key, value)] -> key -> value

If it is heavily used on lists with Widget keys, you could specialise it as follows:

{-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

• A SPECIALIZE pragma for a function can be put anywhere its type signature could be put. Moreover, you can also SPECI-
ALIZE an imported function provided it was given an INLINABLE pragma at its definition site (Section 7.18.5.2).

• A SPECIALIZE has the effect of generating (a) a specialised version of the function and (b) a rewrite rule (see Section 7.19)
that rewrites a call to the un-specialised function into a call to the specialised one. Moreover, given a SPECIALIZE pragma
for a function f, GHC will automatically create specialisations for any type-class-overloaded functions called by f, if they are
in the same module as the SPECIALIZE pragma, or if they are INLINABLE; and so on, transitively.

• You can add phase control (Section 7.18.5.5) to the RULE generated by a SPECIALIZE pragma, just as you can if you write
a RULE directly. For example:

{-# SPECIALIZE [0] hammeredLookup :: [(Widget, value)] -> Widget -> value #-}

generates a specialisation rule that only fires in Phase 0 (the final phase). If you do not specify any phase control in the
SPECIALIZE pragma, the phase control is inherited from the inline pragma (if any) of the function. For example:

foo :: Num a => a -> a
foo = ...blah...
{-# NOINLINE [0] foo #-}
{-# SPECIALIZE foo :: Int -> Int #-}

The NOINLINE pragma tells GHC not to inline foo until Phase 0; and this property is inherited by the specialisation RULE,
which will therefore only fire in Phase 0.

The main reason for using phase control on specialisations is so that you can write optimisation RULES that fire early in the
compilation pipeline, and only then specialise the calls to the function. If specialisation is done too early, the optimisation rules
might fail to fire.

• The type in a SPECIALIZE pragma can be any type that is less polymorphic than the type of the original function. In concrete
terms, if the original function is f then the pragma

{-# SPECIALIZE f :: <type> #-}

is valid if and only if the definition

f_spec :: <type>
f_spec = f

is valid. Here are some examples (where we only give the type signature for the original function, not its code):

f :: Eq a => a -> b -> b
{-# SPECIALISE f :: Int -> b -> b #-}

g :: (Eq a, Ix b) => a -> b -> b
{-# SPECIALISE g :: (Eq a) => a -> Int -> Int #-}

h :: Eq a => a -> a -> a
{-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}

The last of these examples will generate a RULE with a somewhat-complex left-hand side (try it yourself), so it might not fire
very well. If you use this kind of specialisation, let us know how well it works.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 224 / 37

7.18.8.1 SPECIALIZE INLINE

A SPECIALIZE pragma can optionally be followed with a INLINE or NOINLINE pragma, optionally followed by a phase, as
described in Section 7.18.5. The INLINE pragma affects the specialised version of the function (only), and applies even if the
function is recursive. The motivating example is this:

-- A GADT for arrays with type-indexed representation
data Arr e where

ArrInt :: !Int -> ByteArray# -> Arr Int
ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2)

(!:) :: Arr e -> Int -> e
{-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-}
{-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-}
(ArrInt _ ba) !: (I# i) = I# (indexIntArray# ba i)
(ArrPair _ a1 a2) !: i = (a1 !: i, a2 !: i)

Here, (!:) is a recursive function that indexes arrays of type Arr e. Consider a call to (!:) at type (Int,Int). The
second specialisation will fire, and the specialised function will be inlined. It has two calls to (!:), both at type Int. Both
these calls fire the first specialisation, whose body is also inlined. The result is a type-based unrolling of the indexing function.

You can add explicit phase control (Section 7.18.5.5) to SPECIALISE INLINE pragma, just like on an INLINE pragma; if
you do so, the same phase is used for the rewrite rule and the INLINE control of the specialised function.

Warning: you can make GHC diverge by using SPECIALISE INLINE on an ordinarily-recursive function.

7.18.8.2 SPECIALIZE for imported functions

Generally, you can only give a SPECIALIZE pragma for a function defined in the same module. However if a function f is given
an INLINABLE pragma at its definition site, then it can subsequently be specialised by importing modules (see Section 7.18.5.2).
For example

module Map(lookup, blah blah) where
lookup :: Ord key => [(key,a)] -> key -> Maybe a
lookup = ...
{-# INLINABLE lookup #-}

module Client where
import Map(lookup)

data T = T1 | T2 deriving(Eq, Ord)
{-# SPECIALISE lookup :: [(T,a)] -> T -> Maybe a

Here, lookup is declared INLINABLE, but it cannot be specialised for type T at its definition site, because that type does not
exist yet. Instead a client module can define T and then specialise lookup at that type.

Moreover, every module that imports Client (or imports a module that imports Client, transitively) will "see", and make use
of, the specialised version of lookup. You don’t need to put a SPECIALIZE pragma in every module.

Moreover you often don’t even need the SPECIALIZE pragma in the first place. When compiling a module M, GHC’s optimiser
(with -O) automatically considers each top-level overloaded function declared in M, and specialises it for the different types at
which it is called in M. The optimiser also considers each imported INLINABLE overloaded function, and specialises it for the
different types at which it is called in M. So in our example, it would be enough for lookup to be called at type T:

module Client where
import Map(lookup)

data T = T1 | T2 deriving(Eq, Ord)

findT1 :: [(T,a)] -> Maybe a
findT1 m = lookup m T1 -- A call of lookup at type T

However, sometimes there are no such calls, in which case the pragma can be useful.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 225 / 37

7.18.8.3 Obsolete SPECIALIZE syntax

Note: In earlier versions of GHC, it was possible to provide your own specialised function for a given type:

{-# SPECIALIZE hammeredLookup :: [(Int, value)] -> Int -> value = intLookup #-}

This feature has been removed, as it is now subsumed by the RULES pragma (see Section 7.19.5).

7.18.9 SPECIALIZE instance pragma

Same idea, except for instance declarations. For example:

instance (Eq a) => Eq (Foo a) where {
{-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
... usual stuff ...

}

The pragma must occur inside the where part of the instance declaration.

Compatible with HBC, by the way, except perhaps in the placement of the pragma.

7.18.10 UNPACK pragma

The UNPACK indicates to the compiler that it should unpack the contents of a constructor field into the constructor itself, removing
a level of indirection. For example:

data T = T {-# UNPACK #-} !Float
{-# UNPACK #-} !Float

will create a constructor T containing two unboxed floats. This may not always be an optimisation: if the T constructor is
scrutinised and the floats passed to a non-strict function for example, they will have to be reboxed (this is done automatically by
the compiler).

Unpacking constructor fields should only be used in conjunction with -O1, in order to expose unfoldings to the compiler so the
reboxing can be removed as often as possible. For example:

f :: T -> Float
f (T f1 f2) = f1 + f2

The compiler will avoid reboxing f1 and f2 by inlining + on floats, but only when -O is on.

Any single-constructor data is eligible for unpacking; for example

data T = T {-# UNPACK #-} !(Int,Int)

will store the two Ints directly in the T constructor, by flattening the pair. Multi-level unpacking is also supported:

data T = T {-# UNPACK #-} !S
data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int

will store two unboxed Int#s directly in the T constructor. The unpacker can see through newtypes, too.

See also the -funbox-strict-fields flag, which essentially has the effect of adding {-# UNPACK #-} to every strict
constructor field.

1in fact, UNPACK has no effect without -O, for technical reasons (see tick 5252)

http://hackage.haskell.org/trac/ghc/ticket/5252

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 226 / 37

7.18.11 NOUNPACK pragma

The NOUNPACK pragma indicates to the compiler that it should not unpack the contents of a constructor field. Example:

data T = T {-# NOUNPACK #-} !(Int,Int)

Even with the flags -funbox-strict-fields and -O, the field of the constructor T is not unpacked.

7.18.12 SOURCE pragma

The {-# SOURCE #-} pragma is used only in import declarations, to break a module loop. It is described in detail in
Section 4.7.9.

7.19 Rewrite rules

The programmer can specify rewrite rules as part of the source program (in a pragma). Here is an example:

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs
#-}

Use the debug flag -ddump-simpl-stats to see what rules fired. If you need more information, then -ddump-rule-fi-
rings shows you each individual rule firing and -ddump-rule-rewrites also shows what the code looks like before and
after the rewrite.

7.19.1 Syntax

From a syntactic point of view:

• There may be zero or more rules in a RULES pragma, separated by semicolons (which may be generated by the layout rule).

• The layout rule applies in a pragma. Currently no new indentation level is set, so if you put several rules in single RULES
pragma and wish to use layout to separate them, you must lay out the starting in the same column as the enclosing definitions.

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs
"map/append" forall f xs ys. map f (xs ++ ys) = map f xs ++ map f ys

#-}

Furthermore, the closing #-} should start in a column to the right of the opening {-#.

• Each rule has a name, enclosed in double quotes. The name itself has no significance at all. It is only used when reporting how
many times the rule fired.

• A rule may optionally have a phase-control number (see Section 7.18.5.5), immediately after the name of the rule. Thus:

{-# RULES
"map/map" [2] forall f g xs. map f (map g xs) = map (f.g) xs

#-}

The "[2]" means that the rule is active in Phase 2 and subsequent phases. The inverse notation "[~2]" is also accepted, meaning
that the rule is active up to, but not including, Phase 2.

• Each variable mentioned in a rule must either be in scope (e.g. map), or bound by the forall (e.g. f, g, xs). The variables
bound by the forall are called the pattern variables. They are separated by spaces, just like in a type forall.

• A pattern variable may optionally have a type signature. If the type of the pattern variable is polymorphic, it must have a type
signature. For example, here is the foldr/build rule:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 227 / 37

"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z

Since g has a polymorphic type, it must have a type signature.

• The left hand side of a rule must consist of a top-level variable applied to arbitrary expressions. For example, this is not OK:

"wrong1" forall e1 e2. case True of { True -> e1; False -> e2 } = e1
"wrong2" forall f. f True = True

In "wrong1", the LHS is not an application; in "wrong2", the LHS has a pattern variable in the head.

• A rule does not need to be in the same module as (any of) the variables it mentions, though of course they need to be in scope.

• All rules are implicitly exported from the module, and are therefore in force in any module that imports the module that defined
the rule, directly or indirectly. (That is, if A imports B, which imports C, then C’s rules are in force when compiling A.) The
situation is very similar to that for instance declarations.

• Inside a RULE "forall" is treated as a keyword, regardless of any other flag settings. Furthermore, inside a RULE, the
language extension -XScopedTypeVariables is automatically enabled; see Section 7.12.7.

• Like other pragmas, RULE pragmas are always checked for scope errors, and are typechecked. Typechecking means that the
LHS and RHS of a rule are typechecked, and must have the same type. However, rules are only enabled if the -fenable--
rewrite-rules flag is on (see Section 7.19.2).

7.19.2 Semantics

From a semantic point of view:

• Rules are enabled (that is, used during optimisation) by the -fenable-rewrite-rules flag. This flag is implied by
-O, and may be switched off (as usual) by -fno-enable-rewrite-rules. (NB: enabling -fenable-rewrite--
rules without -O may not do what you expect, though, because without -O GHC ignores all optimisation information in
interface files; see -fignore-interface-pragmas, Section 4.10.2.) Note that -fenable-rewrite-rules is an
optimisation flag, and has no effect on parsing or typechecking.

• Rules are regarded as left-to-right rewrite rules. When GHC finds an expression that is a substitution instance of the LHS of a
rule, it replaces the expression by the (appropriately-substituted) RHS. By "a substitution instance" we mean that the LHS can
be made equal to the expression by substituting for the pattern variables.

• GHC makes absolutely no attempt to verify that the LHS and RHS of a rule have the same meaning. That is undecidable in
general, and infeasible in most interesting cases. The responsibility is entirely the programmer’s!

• GHC makes no attempt to make sure that the rules are confluent or terminating. For example:

"loop" forall x y. f x y = f y x

This rule will cause the compiler to go into an infinite loop.

• If more than one rule matches a call, GHC will choose one arbitrarily to apply.

• GHC currently uses a very simple, syntactic, matching algorithm for matching a rule LHS with an expression. It seeks a
substitution which makes the LHS and expression syntactically equal modulo alpha conversion. The pattern (rule), but not the
expression, is eta-expanded if necessary. (Eta-expanding the expression can lead to laziness bugs.) But not beta conversion
(that’s called higher-order matching).

Matching is carried out on GHC’s intermediate language, which includes type abstractions and applications. So a rule only
matches if the types match too. See Section 7.19.5 below.

• GHC keeps trying to apply the rules as it optimises the program. For example, consider:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 228 / 37

let s = map f
t = map g

in
s (t xs)

The expression s (t xs) does not match the rule "map/map", but GHC will substitute for s and t, giving an expression
which does match. If s or t was (a) used more than once, and (b) large or a redex, then it would not be substituted, and the
rule would not fire.

7.19.3 How rules interact with INLINE/NOINLINE and CONLIKE pragmas

Ordinary inlining happens at the same time as rule rewriting, which may lead to unexpected results. Consider this (artificial)
example

f x = x
g y = f y
h z = g True

{-# RULES "f" f True = False #-}

Since f’s right-hand side is small, it is inlined into g, to give

g y = y

Now g is inlined into h, but f’s RULE has no chance to fire. If instead GHC had first inlined g into h then there would have
been a better chance that f’s RULE might fire.

The way to get predictable behaviour is to use a NOINLINE pragma, or an INLINE[phase] pragma, on f, to ensure that it is not
inlined until its RULEs have had a chance to fire.

GHC is very cautious about duplicating work. For example, consider

f k z xs = let xs = build g
in ...(foldr k z xs)...sum xs...

{-# RULES "foldr/build" forall k z g. foldr k z (build g) = g k z #-}

Since xs is used twice, GHC does not fire the foldr/build rule. Rightly so, because it might take a lot of work to compute xs,
which would be duplicated if the rule fired.

Sometimes, however, this approach is over-cautious, and we do want the rule to fire, even though doing so would duplicate redex.
There is no way that GHC can work out when this is a good idea, so we provide the CONLIKE pragma to declare it, thus:

{-# INLINE CONLIKE [1] f #-}
f x = blah

CONLIKE is a modifier to an INLINE or NOINLINE pragma. It specifies that an application of f to one argument (in general,
the number of arguments to the left of the ’=’ sign) should be considered cheap enough to duplicate, if such a duplication would
make rule fire. (The name "CONLIKE" is short for "constructor-like", because constructors certainly have such a property.) The
CONLIKE pragma is a modifier to INLINE/NOINLINE because it really only makes sense to match f on the LHS of a rule if
you are sure that f is not going to be inlined before the rule has a chance to fire.

7.19.4 List fusion

The RULES mechanism is used to implement fusion (deforestation) of common list functions. If a "good consumer" consumes
an intermediate list constructed by a "good producer", the intermediate list should be eliminated entirely.

The following are good producers:

• List comprehensions

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 229 / 37

• Enumerations of Int, Integer and Char (e.g. [’a’..’z’]).

• Explicit lists (e.g. [True, False])

• The cons constructor (e.g 3:4:[])

• ++

• map

• take, filter

• iterate, repeat

• zip, zipWith

The following are good consumers:

• List comprehensions

• array (on its second argument)

• ++ (on its first argument)

• foldr

• map

• take, filter

• concat

• unzip, unzip2, unzip3, unzip4

• zip, zipWith (but on one argument only; if both are good producers, zip will fuse with one but not the other)

• partition

• head

• and, or, any, all

• sequence_

• msum

So, for example, the following should generate no intermediate lists:

array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]

This list could readily be extended; if there are Prelude functions that you use a lot which are not included, please tell us.

If you want to write your own good consumers or producers, look at the Prelude definitions of the above functions to see how to
do so.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 230 / 37

7.19.5 Specialisation

Rewrite rules can be used to get the same effect as a feature present in earlier versions of GHC. For example, suppose that:

genericLookup :: Ord a => Table a b -> a -> b
intLookup :: Table Int b -> Int -> b

where intLookup is an implementation of genericLookup that works very fast for keys of type Int. You might wish to
tell GHC to use intLookup instead of genericLookup whenever the latter was called with type Table Int b -> Int
-> b. It used to be possible to write

{-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}

This feature is no longer in GHC, but rewrite rules let you do the same thing:

{-# RULES "genericLookup/Int" genericLookup = intLookup #-}

This slightly odd-looking rule instructs GHC to replace genericLookup by intLookup whenever the types match. What is
more, this rule does not need to be in the same file as genericLookup, unlike the SPECIALIZE pragmas which currently do
(so that they have an original definition available to specialise).

It is Your Responsibility to make sure that intLookup really behaves as a specialised version of genericLookup!!!

An example in which using RULES for specialisation will Win Big:

toDouble :: Real a => a -> Double
toDouble = fromRational . toRational

{-# RULES "toDouble/Int" toDouble = i2d #-}
i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly

The i2d function is virtually one machine instruction; the default conversion—via an intermediate Rational—is obscenely
expensive by comparison.

7.19.6 Controlling what’s going on in rewrite rules

• Use -ddump-rules to see the rules that are defined in this module. This includes rules generated by the specialisation pass,
but excludes rules imported from other modules.

• Use -ddump-simpl-stats to see what rules are being fired. If you add -dppr-debug you get a more detailed listing.

• Use -ddump-rule-firings or -ddump-rule-rewrites to see in great detail what rules are being fired. If you add
-dppr-debug you get a still more detailed listing.

• The definition of (say) build in GHC/Base.lhs looks like this:

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE build #-}
build g = g (:) []

Notice the INLINE! That prevents (:) from being inlined when compiling PrelBase, so that an importing module will
“see” the (:), and can match it on the LHS of a rule. INLINE prevents any inlining happening in the RHS of the INLINE
thing. I regret the delicacy of this.

• In libraries/base/GHC/Base.lhs look at the rules for map to see how to write rules that will do fusion and yet give
an efficient program even if fusion doesn’t happen. More rules in GHC/List.lhs.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 231 / 37

7.19.7 CORE pragma

The external core format supports ‘Note’ annotations; the CORE pragma gives a way to specify what these should be in your
Haskell source code. Syntactically, core annotations are attached to expressions and take a Haskell string literal as an argument.
The following function definition shows an example:

f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)

Semantically, this is equivalent to:

g x = show x

However, when external core is generated (via -fext-core), there will be Notes attached to the expressions show and x. The
core function declaration for f is:

f :: %forall a . GHCziShow.ZCTShow a ->
a -> GHCziBase.ZMZN GHCziBase.Char =

\ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
(%note "foo"
%case zddShow %of (tpl::GHCziShow.ZCTShow a)

{GHCziShow.ZCDShow
(tpl1::GHCziBase.Int ->

a ->
GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha

r)
(tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
(tpl3::GHCziBase.ZMZN a ->

GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
r) ->

tpl2})
(%note "bar"
eta);

Here, we can see that the function show (which has been expanded out to a case expression over the Show dictionary) has a
%note attached to it, as does the expression eta (which used to be called x).

7.20 Special built-in functions

GHC has a few built-in functions with special behaviour. These are now described in the module GHC.Prim in the library
documentation. In particular:

• inline allows control over inlining on a per-call-site basis.

• lazy restrains the strictness analyser.

• unsafeCoerce# allows you to fool the type checker.

7.21 Generic classes

GHC used to have an implementation of generic classes as defined in the paper "Derivable type classes", Ralf Hinze and Simon
Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105. These have been removed and replaced by the more general
support for generic programming.

file:../libraries/ghc-prim-0.3.0.0/GHC-Prim.html
file:../libraries/ghc-prim-0.3.0.0/GHC-Prim.html#v%3Ainline
file:../libraries/ghc-prim-0.3.0.0/GHC-Prim.html#v%3Alazy
file:../libraries/ghc-prim-0.3.0.0/GHC-Prim.html#v%3AunsafeCoerce%23

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 232 / 37

7.22 Generic programming

Using a combination of -XDeriveGeneric (Section 7.5.3) and -XDefaultSignatures (Section 7.6.1.4), you can easily
do datatype-generic programming using the GHC.Generics framework. This section gives a very brief overview of how to do
it.

Generic programming support in GHC allows defining classes with methods that do not need a user specification when instanti-
ating: the method body is automatically derived by GHC. This is similar to what happens for standard classes such as Read and
Show, for instance, but now for user-defined classes.

7.22.1 Deriving representations

The first thing we need is generic representations. The GHC.Generics module defines a couple of primitive types that are used
to represent Haskell datatypes:

-- | Unit: used for constructors without arguments
data U1 p = U1

-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }

-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)

-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p

The Generic and Generic1 classes mediate between user-defined datatypes and their internal representation as a sum-of-
products:

class Generic a where
-- Encode the representation of a user datatype
type Rep a :: * -> *
-- Convert from the datatype to its representation
from :: a -> (Rep a) x
-- Convert from the representation to the datatype
to :: (Rep a) x -> a

class Generic1 f where
type Rep1 f :: * -> *

from1 :: f a -> Rep1 f a
to1 :: Rep1 f a -> f a

Generic1 is used for functions that can only be defined over type containers, such as map. Instances of these classes can
be derived by GHC with the -XDeriveGeneric (Section 7.5.3), and are necessary to be able to define generic instances
automatically.

For example, a user-defined datatype of trees data UserTree a = Node a (UserTree a) (UserTree a) | L-
eaf gets the following representation:

instance Generic (UserTree a) where
-- Representation type
type Rep (UserTree a) =
M1 D D1UserTree (

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 233 / 37

M1 C C1_0UserTree (
M1 S NoSelector (K1 R a)

:*: M1 S NoSelector (K1 R (UserTree a))
:*: M1 S NoSelector (K1 R (UserTree a)))

:+: M1 C C1_1UserTree U1)

-- Conversion functions
from (Node x l r) = M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))
from Leaf = M1 (R1 (M1 U1))
to (M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))) = Node x l r
to (M1 (R1 (M1 U1))) = Leaf

-- Meta-information
data D1UserTree
data C1_0UserTree
data C1_1UserTree

instance Datatype D1UserTree where
datatypeName _ = "UserTree"
moduleName _ = "Main"

instance Constructor C1_0UserTree where
conName _ = "Node"

instance Constructor C1_1UserTree where
conName _ = "Leaf"

This representation is generated automatically if a deriving Generic clause is attached to the datatype. Standalone deriving
can also be used.

7.22.2 Writing generic functions

A generic function is defined by creating a class and giving instances for each of the representation types of GHC.Generics.
As an example we show generic serialization:

data Bin = O | I

class GSerialize f where
gput :: f a -> [Bin]

instance GSerialize U1 where
gput U1 = []

instance (GSerialize a, GSerialize b) => GSerialize (a :*: b) where
gput (x :*: y) = gput x ++ gput y

instance (GSerialize a, GSerialize b) => GSerialize (a :+: b) where
gput (L1 x) = O : gput x
gput (R1 x) = I : gput x

instance (GSerialize a) => GSerialize (M1 i c a) where
gput (M1 x) = gput x

instance (Serialize a) => GSerialize (K1 i a) where
gput (K1 x) = put x

Typically this class will not be exported, as it only makes sense to have instances for the representation types.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 234 / 37

7.22.3 Generic defaults

The only thing left to do now is to define a "front-end" class, which is exposed to the user:

class Serialize a where
put :: a -> [Bin]

default put :: (Generic a, GSerialize (Rep a)) => a -> [Bit]
put = gput . from

Here we use a default signature to specify that the user does not have to provide an implementation for put, as long as there is a
Generic instance for the type to instantiate. For the UserTree type, for instance, the user can just write:

instance (Serialize a) => Serialize (UserTree a)

The default method for put is then used, corresponding to the generic implementation of serialization. For more examples of
generic functions please refer to the generic-deriving package on Hackage.

7.22.4 More information

For more details please refer to the HaskellWiki page or the original paper:

• Jose Pedro Magalhaes, Atze Dijkstra, Johan Jeuring, and Andres Loeh. A generic deriving mechanism for Haskell. Proceed-
ings of the third ACM Haskell symposium on Haskell (Haskell’2010), pp. 37-48, ACM, 2010.

7.23 Control over monomorphism

GHC supports two flags that control the way in which generalisation is carried out at let and where bindings.

7.23.1 Switching off the dreaded Monomorphism Restriction

Haskell’s monomorphism restriction (see Section 4.5.5 of the Haskell Report) can be completely switched off by -XNoMonom-
orphismRestriction.

7.23.2 Monomorphic pattern bindings

As an experimental change, we are exploring the possibility of making pattern bindings monomorphic; that is, not generalised at
all. A pattern binding is a binding whose LHS has no function arguments, and is not a simple variable. For example:

f x = x -- Not a pattern binding
f = \x -> x -- Not a pattern binding
f :: Int -> Int = \x -> x -- Not a pattern binding

(g,h) = e -- A pattern binding
(f) = e -- A pattern binding
[x] = e -- A pattern binding

Experimentally, GHC now makes pattern bindings monomorphic by default. Use -XNoMonoPatBinds to recover the standard
behaviour.

http://hackage.haskell.org/package/generic-deriving
http://www.haskell.org/haskellwiki/GHC.Generics
http://dreixel.net/research/pdf/gdmh.pdf
http://www.haskell.org/onlinereport/decls.html#sect4.5.5

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 235 / 37

7.24 Concurrent and Parallel Haskell

GHC implements some major extensions to Haskell to support concurrent and parallel programming. Let us first establish
terminology:

• Parallelism means running a Haskell program on multiple processors, with the goal of improving performance. Ideally, this
should be done invisibly, and with no semantic changes.

• Concurrency means implementing a program by using multiple I/O-performing threads. While a concurrent Haskell program
can run on a parallel machine, the primary goal of using concurrency is not to gain performance, but rather because that is the
simplest and most direct way to write the program. Since the threads perform I/O, the semantics of the program is necessarily
non-deterministic.

GHC supports both concurrency and parallelism.

7.24.1 Concurrent Haskell

Concurrent Haskell is the name given to GHC’s concurrency extension. It is enabled by default, so no special flags are required.
The Concurrent Haskell paper is still an excellent resource, as is Tackling the awkward squad.

To the programmer, Concurrent Haskell introduces no new language constructs; rather, it appears simply as a library, Con-
trol.Concurrent. The functions exported by this library include:

• Forking and killing threads.

• Sleeping.

• Synchronised mutable variables, called MVars

• Support for bound threads; see the paper Extending the FFI with concurrency.

7.24.2 Software Transactional Memory

GHC now supports a new way to coordinate the activities of Concurrent Haskell threads, called Software Transactional Memory
(STM). The STM papers are an excellent introduction to what STM is, and how to use it.

The main library you need to use is the stm library. The main features supported are these:

• Atomic blocks.

• Transactional variables.

• Operations for composing transactions: retry, and orElse.

• Data invariants.

All these features are described in the papers mentioned earlier.

7.24.3 Parallel Haskell

GHC includes support for running Haskell programs in parallel on symmetric, shared-memory multi-processor (SMP). By default
GHC runs your program on one processor; if you want it to run in parallel you must link your program with the -threaded,
and run it with the RTS -N option; see Section 4.15). The runtime will schedule the running Haskell threads among the available
OS threads, running as many in parallel as you specified with the -N RTS option.

GHC only supports parallelism on a shared-memory multiprocessor. Glasgow Parallel Haskell (GPH) supports running Parallel
Haskell programs on both clusters of machines, and single multiprocessors. GPH is developed and distributed separately from
GHC (see The GPH Page). However, the current version of GPH is based on a much older version of GHC (4.06).

http://research.microsoft.com/copyright/accept.asp?path=/users/simonpj/papers/concurrent-haskell.ps.gz
http://research.microsoft.com/%7Esimonpj/papers/marktoberdorf/
file:../libraries/base-4.6.0.1/Control-Concurrent.html
file:../libraries/base-4.6.0.1/Control-Concurrent.html
http://research.microsoft.com/%7Esimonpj/Papers/conc-ffi/index.htm
http://research.microsoft.com/%7Esimonpj/papers/stm/index.htm
http://hackage.haskell.org/package/stm
http://www.cee.hw.ac.uk/~dsg/gph/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 236 / 37

7.24.4 Annotating pure code for parallelism

Ordinary single-threaded Haskell programs will not benefit from enabling SMP parallelism alone: you must expose parallelism
to the compiler. One way to do so is forking threads using Concurrent Haskell (Section 7.24.1), but the simplest mechanism for
extracting parallelism from pure code is to use the par combinator, which is closely related to (and often used with) seq. Both
of these are available from the parallel library:

infixr 0 ‘par‘
infixr 1 ‘pseq‘

par :: a -> b -> b
pseq :: a -> b -> b

The expression (x `par` y) sparks the evaluation of x (to weak head normal form) and returns y. Sparks are queued for
execution in FIFO order, but are not executed immediately. If the runtime detects that there is an idle CPU, then it may convert a
spark into a real thread, and run the new thread on the idle CPU. In this way the available parallelism is spread amongst the real
CPUs.

For example, consider the following parallel version of our old nemesis, nfib:

import Control.Parallel

nfib :: Int -> Int
nfib n | n <= 1 = 1

| otherwise = par n1 (pseq n2 (n1 + n2 + 1))
where n1 = nfib (n-1)

n2 = nfib (n-2)

For values of n greater than 1, we use par to spark a thread to evaluate nfib (n-1), and then we use pseq to force the
parent thread to evaluate nfib (n-2) before going on to add together these two subexpressions. In this divide-and-conquer
approach, we only spark a new thread for one branch of the computation (leaving the parent to evaluate the other branch). Also,
we must use pseq to ensure that the parent will evaluate n2 before n1 in the expression (n1 + n2 + 1). It is not sufficient
to reorder the expression as (n2 + n1 + 1), because the compiler may not generate code to evaluate the addends from left
to right.

Note that we use pseq rather than seq. The two are almost equivalent, but differ in their runtime behaviour in a subtle way:
seq can evaluate its arguments in either order, but pseq is required to evaluate its first argument before its second, which makes
it more suitable for controlling the evaluation order in conjunction with par.

When using par, the general rule of thumb is that the sparked computation should be required at a later time, but not too soon.
Also, the sparked computation should not be too small, otherwise the cost of forking it in parallel will be too large relative to the
amount of parallelism gained. Getting these factors right is tricky in practice.

It is possible to glean a little information about how well par is working from the runtime statistics; see Section 4.17.3.

More sophisticated combinators for expressing parallelism are available from the Control.Parallel.Strategies mod-
ule in the parallel package. This module builds functionality around par, expressing more elaborate patterns of parallel compu-
tation, such as parallel map.

7.24.5 Data Parallel Haskell

GHC includes experimental support for Data Parallel Haskell (DPH). This code is highly unstable and is only provided as a
technology preview. More information can be found on the corresponding DPH wiki page.

7.25 Safe Haskell

Safe Haskell is an extension to the Haskell language that is implemented in GHC as of version 7.2. It allows for unsafe code to
be securely included in a trusted code base by restricting the features of GHC Haskell the code is allowed to use. Put simply, it

http://hackage.haskell.org/package/parallel
http://hackage.haskell.org/package/parallel
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 237 / 37

makes the types of programs trustable. Safe Haskell is aimed to be as minimal as possible while still providing strong enough
guarantees about compiled Haskell code for more advance secure systems to be built on top of it.

While this is the use case that Safe Haskell was motivated by it is important to understand that what Safe Haskell is tracking
and enforcing is a stricter form of type safety than is usually guaranteed in Haskell. As part of this, Safe Haskell is run during
every compilation of GHC, tracking safety and inferring it even for modules that don’t explicitly use Safe Haskell. Please refer
to section Section 7.25.5 for more details of this. This also means that there are some design choices that from a security point
of view may seem strange but when thought of from the angle of tracking type safety are logical. Feedback on the current design
and this tension between the security and type safety view points is welcome.

The design of Safe Haskell covers the following aspects:

• A safe language dialect of Haskell that provides guarantees about the code. It allows types and module boundaries to be trusted.

• A safe import extension that specifies that the module being imported must be trusted.

• A definition of trust (or safety) and how it operates, along with ways of defining and changing the trust of modules and
packages.

7.25.1 Uses of Safe Haskell

Safe Haskell has been designed with two use cases in mind:

• Enforcing strict type safety at compile time

• Compiling and executing untrusted code

7.25.1.1 Strict type-safety (good style)

Haskell offers a powerful type system and separation of pure and effectual functions through the IO monad. There are several
loop holes in the type system though, the most obvious offender being the unsafePerformIO :: IO a -> a function.
The safe language dialect of Safe Haskell disallows the use of such functions. This can be useful for a variety of purposes as it
makes Haskell code easier to analyze and reason about. It also codifies an existing culture in the Haskell community of trying to
avoid using such unsafe functions unless absolutely necessary. As such using the safe language (through the -XSafe flag) can
be thought of as a way of enforcing good style, similar to the function of -Wall.

7.25.1.2 Building secure systems (restricted IO Monads)

Systems such as information flow control security, capability based security systems and DSLs for working with encrypted data..
etc can be built in the Haskell language simply as a library. However they require guarantees about the properties of the Haskell
language that aren’t true in the general case where uses of functions like unsafePerformIO are allowed. Safe Haskell is
designed to give users enough guarantees about the safety properties of compiled code so that such secure systems can be built.

As an example lets define an interface for a plugin system where the plugin authors are untrusted, possibly malicious third-parties.
We do this by restricting the plugin interface to pure functions or to a restricted IO monad that we have defined that only allows
a safe subset of IO actions to be executed. We define the plugin interface here so that it requires the plugin module, Danger, to
export a single computation, Danger.runMe, of type RIO (), where RIO is a new monad defined as follows:

-- Either of the following Safe Haskell pragmas would do
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE Safe #-}

module RIO (RIO(), runRIO, rioReadFile, rioWriteFile) where

-- Notice that symbol UnsafeRIO is not exported from this module!
newtype RIO a = UnsafeRIO { runRIO :: IO a }

instance Monad RIO where

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 238 / 37

return = UnsafeRIO . return
(UnsafeRIO m) >>= k = UnsafeRIO $ m >>= runRIO . k

-- Returns True iff access is allowed to file name
pathOK :: FilePath -> IO Bool
pathOK file = {- Implement some policy based on file name -}

rioReadFile :: FilePath -> RIO String
rioReadFile file = UnsafeRIO $ do
ok <- pathOK file
if ok then readFile file else return ""

rioWriteFile :: FilePath -> String -> RIO ()
rioWriteFile file contents = UnsafeRIO $ do
ok <- pathOK file
if ok then writeFile file contents else return ()

We compile Danger using the new Safe Haskell -XSafe flag:

{-# LANGUAGE Safe #-}
module Danger (runMe) where

runMe :: RIO ()
runMe = ...

Before going into the Safe Haskell details, lets point out some of the reasons this design would fail without Safe Haskell:

• The design attempts to restrict the operations that Danger can perform by using types, specifically the RIO type wrapper around
IO. The author of Danger can subvert this though by simply writing arbitrary IO actions and using unsafePerformIO ::
IO a -> a to execute them as pure functions.

• The design also relies on the Danger module not being able to access the UnsafeRIO constructor. Unfortunately Template
Haskell can be used to subvert module boundaries and so could be used to gain access to this constructor.

• There is no way to place restrictions on the modules that the untrusted Danger module can import. This gives the author of
Danger a very large attack surface, essentially any package currently installed on the system. Should any of these packages
have a vulnerability then the Danger module can exploit this. The only way to stop this would be to patch or remove packages
with known vulnerabilities even if they should only be used by trusted code such as the RIO module.

To stop these attacks Safe Haskell can be used. This is done by compiling the RIO module with the -XTrustworthy flag and
compiling the Danger module with the -XSafe flag.

The use of the -XSafe flag to compile the Danger module restricts the features of Haskell that can be used to a safe subset. This
includes disallowing unsafePerfromIO, Template Haskell, pure FFI functions, Generalized Newtype Deriving, RULES and
restricting the operation of Overlapping Instances. The -XSafe flag also restricts the modules can be imported by Danger to
only those that are considered trusted. Trusted modules are those compiled with -XSafe, where GHC provides a mechanical
guarantee that the code is safe. Or those modules compiled with -XTrustworthy, where the module author claims that the
module is Safe.

This is why the RIO module is compiled with -XTrustworthy, to allow the Danger module to import it. The -XTrustw-
orthy flag doesn’t place any restrictions on the module like -XSafe does. Instead the module author claims that while code
may use unsafe features internally, it only exposes an API that can used in a safe manner. The use of -XTrustworthy by
itself marks the module as trusted. There is an issue here as -XTrustworthy may be used by an arbitrary module and module
author. To control the use of trustworthy modules it is recommended to use the -fpackage-trust flag. This flag adds an
extra requirement to the trust check for trustworthy modules, such that for trustworthy modules to be considered trusted, and
allowed to be used in -XSafe compiled code, the client C compiling the code must tell GHC that they trust the package the
trustworthy module resides in. This is essentially a way of for C to say, while this package contains trustworthy modules that can
be used by untrusted modules compiled with -XSafe , I trust the author(s) of this package and trust the modules only expose a
safe API. The trust of a package can be changed at any time, so if a vulnerability found in a package, C can declare that package

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 239 / 37

untrusted so that any future compilation against that package would fail. For a more detailed overview of this mechanism see
Section 7.25.4.

In the example, Danger can import module RIO because RIO is marked trustworthy. Thus, Danger can make use of the rioRead-
File and rioWriteFile functions to access permitted file names. The main application then imports both RIO and Danger. To run
the plugin, it calls RIO.runRIO Danger.runMe within the IO monad. The application is safe in the knowledge that the only IO to
ensue will be to files whose paths were approved by the pathOK test.

7.25.2 Safe Language

The Safe Haskell safe language guarantees the following properties:

• Referential transparency — Functions in the safe language are deterministic, evaluating them will not cause any side effects.
Functions in the IO monad are still allowed and behave as usual. Any pure function though, as according to its type, is
guaranteed to indeed be pure. This property allows a user of the safe language to trust the types. This means, for example, that
the unsafePerformIO :: IO a -> a function is disallowed in the safe language.

• Module boundary control — Haskell code compiled using the safe language is guaranteed to only access symbols that are
publicly available to it through other modules export lists. An important part of this is that safe compiled code is not able to
examine or create data values using data constructors that it cannot import. If a module M establishes some invariants through
careful use of its export list then code compiled using the safe language that imports M is guaranteed to respect those invariants.
Because of this, Template Haskell and GeneralizedNewtypeDeriving are disabled in the safe language as they can be used to
violate this property.

• Semantic consistency — The safe language is strictly a subset of Haskell as implemented by GHC. Any expression that
compiles in the safe language has the same meaning as it does when compiled in normal Haskell. In addition, in any module
that imports a safe language module, expressions that compile both with and without the safe import have the same meaning
in both cases. That is, importing a module using the safe language cannot change the meaning of existing code that isn’t
dependent on that module. So for example, there are some restrictions placed on the Overlapping Instances extension as it
can violate this property.

These three properties guarantee that in the safe language you can trust the types, can trust that module export lists are respected
and can trust that code that successfully compiles has the same meaning as it normally would.

Lets now look at the details of the safe language. In the safe language dialect (enabled by -XSafe) we disable completely the
following features:

• GeneralizedNewtypeDeriving — It can be used to violate constructor access control, by allowing untrusted code to manipulate
protected data types in ways the data type author did not intend, breaking invariants they have established.

• TemplateHaskell — Is particularly dangerous, as it can cause side effects even at compilation time and can be used to access
constructors of abstract data types.

In the safe language dialect we restrict the following features:

• ForeignFunctionInterface — This is mostly safe, but foreign import declarations that import a function with a non-IO type are
disallowed. All FFI imports must reside in the IO Monad.

• RULES — As they can change the behaviour of trusted code in unanticipated ways, violating semantic consistency, they are
restricted in function. Specifically any RULES defined in a module M compiled with -XSafe are dropped. RULES defined
in trustworthy modules that M imports are still valid and will fire as usual.

• OverlappingInstances — This extension can be used to violate semantic consistency, because malicious code could redefine
a type instance (by containing a more specific instance definition) in a way that changes the behaviour of code importing the
untrusted module. The extension is not disabled for a module M compiled with -XSafe but restricted. While M can define
overlapping instance declarations, they can only overlap other instance declaration defined in M. If in a module N that imports
M, at a call site that uses a type-class function there is a choice of which instance to use (i.e. an overlap) and the most specific
instances is from M, then all the other choices must also be from M. If not, a compilation error will occur. A simple way to
think of this is a same origin policy for overlapping instances defined in Safe compiled modules.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 240 / 37

• Data.Typeable — We restrict Typeable instances to only derived ones (offered by GHC through the -XDeriveDataTypeable
extension). Hand crafted instances of the Typeable type class are not allowed in Safe Haskell as this can easily be abused to
unsafely coerce between types.

7.25.3 Safe Imports

Safe Haskell enables a small extension to the usual import syntax of Haskell, adding a safe keyword:

impdecl -> import [safe] [qualified] modid [as modid] [impspec]

When used, the module being imported with the safe keyword must be a trusted module, otherwise a compilation error will occur.
The safe import extension is enabled by either of the -XSafe, -XTrustworthy, or -XUnsafe flags and corresponding
PRAGMA’s. When the -XSafe flag is used, the safe keyword is allowed but meaningless, every import is required to be safe
regardless.

7.25.4 Trust and Safe Haskell Modes

The Safe Haskell extension introduces the following three language flags:

• -XSafe — Enables the safe language dialect, asking GHC to guarantee trust. The safe language dialect requires that all imports
be trusted or a compilation error will occur.

• -XTrustworthy — Means that while this module may invoke unsafe functions internally, the module’s author claims that it
exports an API that can’t be used in an unsafe way. This doesn’t enable the safe language or place any restrictions on the
allowed Haskell code. The trust guarantee is provided by the module author, not GHC. An import statement with the safe
keyword results in a compilation error if the imported module is not trusted. An import statement without the keyword behaves
as usual and can import any module whether trusted or not.

• -XUnsafe — Marks the module being compiled as unsafe so that modules compiled using -XSafe can’t import it.

The procedure to check if a module is trusted or not depends on if the -fpackage-trust flag is present. The check is very
similar in both cases with the presence of the -fpackage-trust flag simply enabling an extra requirement for trustworthy
modules to be regarded as trusted.

7.25.4.1 Trust check (-fpackage-trust disabled)

A module M in a package P is trusted by a client C if and only if:

• Both of these hold:

– The module was compiled with -XSafe

– All of M’s direct imports are trusted by C

• OR all of these hold:

– The module was compiled with -XTrustworthy

– All of M’s direct safe imports are trusted by C

The above definition of trust has an issue. Any module can be compiled with -XTrustworthy and it will be trusted regardless of
what it does. To control this there is an additional definition of package trust (enabled with the -fpackage-trust flag). The
point of package trusts is to require that the client C explicitly say which packages are allowed to contain trustworthy modules.
That is, C establishes that it trusts a package P and its author and so trust the modules in P that use -XTrustworthy. When
package trust is enabled, any modules that are considered trustworthy but reside in a package that isn’t trusted are not considered
trusted. A more formal definition is given in the next section.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 241 / 37

7.25.4.2 Trust check (-fpackage-trust enabled)

When the -fpackage-trust flag is enabled, whether or not a module is trusted depends on a notion of trust for packages,
which is determined by the client C invoking GHC (i.e. you). A package P is trusted when one of these hold:

• C’s package database records that P is trusted (and no command-line arguments override this)

• C’s command-line flags say to trust P regardless of what is recorded in the package database.

In either case, C is the only authority on package trust. It is up to the client to decide which packages they trust.

When the -fpackage-trust flag is used a module M from package P is trusted by a client C if and only if:

• Both of these hold:

– The module was compiled with -XSafe

– All of M’s direct imports are trusted by C

• OR all of these hold:

– The module was compiled with -XTrustworthy

– All of M’s direct safe imports are trusted by C

– Package P is trusted by C

For the first trust definition the trust guarantee is provided by GHC through the restrictions imposed by the safe language. For
the second definition of trust, the guarantee is provided initially by the module author. The client C then establishes that they
trust the module author by indicating they trust the package the module resides in. This trust chain is required as GHC provides
no guarantee for -XTrustworthy compiled modules.

The reason there are two modes of checking trust is that the extra requirement enabled by -fpackage-trust causes the
design of Safe Haskell to be invasive. Packages using Safe Haskell when the flag is enabled may or may not compile depending
on the state of trusted packages on a users machine. A maintainer of a package foo that uses Safe Haskell so that security
conscious Haskellers can use foo now may have other users of foo who don’t know or care about Safe Haskell complaining
about compilation problems they are having with foobecause a package barthat foo requires, isn’t trusted on their machine.
In this sense, the -fpackage-trust flag can be thought of as a flag to properly turn on Safe Haskell while without it, it’s
operating in a covert fashion.

Having the -fpackage-trust flag also nicely unifies the semantics of how Safe Haskell works when used explicitly and how
modules are inferred as safe.

7.25.4.3 Example

Package Wuggle:
{-# LANGUAGE Safe #-}
module Buggle where
import Prelude
f x = ...blah...

Package P:
{-# LANGUAGE Trustworthy #-}
module M where
import System.IO.Unsafe
import safe Buggle

Suppose a client C decides to trust package P. Then does C trust module M? To decide, GHC must check M’s imports — M
imports System.IO.Unsafe. M was compiled with -XTrustworthy, so P’s author takes responsibility for that import. C trusts
P’s author, so C trusts M to only use its unsafe imports in a safe and consistent manner with respect to the API M exposes. M
also has a safe import of Buggle, so for this import P’s author takes no responsibility for the safety, so GHC must check whether

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 242 / 37

Buggle is trusted by C. Is it? Well, it is compiled with -XSafe, so the code in Buggle itself is machine-checked to be OK,
but again under the assumption that all of Buggle’s imports are trusted by C. Prelude comes from base, which C trusts, and is
compiled with -XTrustworthy (While Prelude is typically imported implicitly, it still obeys the same rules outlined here). So
Buggle is considered trusted.

Notice that C didn’t need to trust package Wuggle; the machine checking is enough. C only needs to trust packages that contain
-XTrustworthy modules.

7.25.4.4 Trustworthy Requirements

Module authors using the -XTrustworthy language extension for a module M should ensure that M’s public API (the symbols
exposed by its export list) can’t be used in an unsafe manner. This mean that symbols exported should respect type safety and
referential transparency.

7.25.4.5 Package Trust

Safe Haskell gives packages a new Boolean property, that of trust. Several new options are available at the GHC command-line
to specify the trust property of packages:

• -trust P — Exposes package P if it was hidden and considers it a trusted package regardless of the package database.

• -distrust P — Exposes package P if it was hidden and considers it an untrusted package regardless of the package database.

• -distrust-all-packages — Considers all packages distrusted unless they are explicitly set to be trusted by subsequent command-
line options.

To set a package’s trust property in the package database please refer to Section 4.9.

7.25.5 Safe Haskell Inference

In the case where a module is compiled without one of -XSafe, -XTrustworthy or -XUnsafe being used, GHC will try
to figure out itself if the module can be considered safe. This safety inference will never mark a module as trustworthy, only as
either unsafe or as safe. GHC uses a simple method to determine this for a module M: If M would compile without error under
the -XSafe flag, then M is marked as safe. If M would fail to compile under the -XSafe flag, then it is marked as unsafe.

When should you use Safe Haskell inference and when should you use an explicit -XSafe flag? The later case should be used
when you have a hard requirement that the module be safe. That is, the use cases outlined and the purpose for which Safe Haskell
is intended: compiling untrusted code. Safe inference is meant to be used by ordinary Haskell programmers. Users who probably
don’t care about Safe Haskell.

Say you are writing a Haskell library. Then you probably just want to use Safe inference. Assuming you avoid any unsafe
features of the language then your modules will be marked safe. This is a benefit as now a user of your library who may want to
use it as part of an API exposed to untrusted code can use the library without change. If there wasn’t safety inference then either
the writer of the library would have to explicitly use Safe Haskell, which is an unreasonable expectation of the whole Haskell
community. Or the user of the library would have to wrap it in a shim that simply re-exported your API through a trustworthy
module, an annoying practice.

7.25.6 Safe Haskell Flag Summary

In summary, Safe Haskell consists of the following three language flags:

-XSafe To be trusted, all of the module’s direct imports must be trusted, but the module itself need not reside in a trusted
package, because the compiler vouches for its trustworthiness. The "safe" keyword is allowed but meaningless in import
statements, every import is required to be safe regardless.

• Module Trusted — Yes

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 243 / 37

• Haskell Language — Restricted to Safe Language

• Imported Modules — All forced to be safe imports, all must be trusted.

-XTrustworthy This establishes that the module is trusted, but the guarantee is provided by the module’s author. A client of
this module then specifies that they trust the module author by specifying they trust the package containing the module.
-XTrustworthy has no effect on the accepted range of Haskell programs or their semantics, except that they allow the
safe import keyword.

• Module Trusted — Yes.

• Module Trusted (-fpackage-trust enabled) — Yes but only if the package the module resides in is also trusted.

• Haskell Language — Unrestricted

• Imported Modules — Under control of module author which ones must be trusted.

-XUnsafe Mark a module as unsafe so that it can’t be imported by code compiled with -XSafe. Also enable the Safe Import
extension so that a module can require a dependency to be trusted.

• Module Trusted — No

• Haskell Language — Unrestricted

• Imported Modules — Under control of module author which ones must be trusted.

And one general flag:

-fpackage-trust When enabled turn on an extra check for a trustworthy module M, requiring that the package M resides in is
considered trusted for the M to be considered trusted.

And two warning flags:

-fwarn-unsafe Issue a warning if the module being compiled is regarded to be unsafe. Should be used to check the safety status
of modules when using safe inference.

-fwarn-safe Issue a warning if the module being compiled is regarded to be safe. Should be used to check the safety status of
modules when using safe inference.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 244 / 37

Chapter 8

Foreign function interface (FFI)

GHC (mostly) conforms to the Haskell Foreign Function Interface, whose definition is part of the Haskell Report on htt-
p://www.haskell.org/.

FFI support is enabled by default, but can be enabled or disabled explicitly with the -XForeignFunctionInterface flag.

GHC implements a number of GHC-specific extensions to the FFI Addendum. These extensions are described in Section 8.1,
but please note that programs using these features are not portable. Hence, these features should be avoided where possible.

The FFI libraries are documented in the accompanying library documentation; see for example the Foreign module.

8.1 GHC extensions to the FFI Addendum

The FFI features that are described in this section are specific to GHC. Your code will not be portable to other compilers if you
use them.

8.1.1 Unboxed types

The following unboxed types may be used as basic foreign types (see FFI Addendum, Section 3.2): Int#, Word#, Char#,
Float#, Double#, Addr#, StablePtr# a, MutableByteArray#, ForeignObj#, and ByteArray#.

8.1.2 Newtype wrapping of the IO monad

The FFI spec requires the IO monad to appear in various places, but it can sometimes be convenient to wrap the IO monad in a
newtype, thus:

newtype MyIO a = MIO (IO a)

(A reason for doing so might be to prevent the programmer from calling arbitrary IO procedures in some part of the program.)

The Haskell FFI already specifies that arguments and results of foreign imports and exports will be automatically unwrapped if
they are newtypes (Section 3.2 of the FFI addendum). GHC extends the FFI by automatically unwrapping any newtypes that wrap
the IO monad itself. More precisely, wherever the FFI specification requires an IO type, GHC will accept any newtype-wrapping
of an IO type. For example, these declarations are OK:

foreign import foo :: Int -> MyIO Int
foreign import "dynamic" baz :: (Int -> MyIO Int) -> CInt -> MyIO Int

http://www.haskell.org/
http://www.haskell.org/
file:../libraries/base-4.6.0.1/Control-Concurrent.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 245 / 37

8.1.3 Primitive imports

GHC extends the FFI with an additional calling convention prim, e.g.:

foreign import prim "foo" foo :: ByteArray# -> (# Int#, Int# #)

This is used to import functions written in Cmm code that follow an internal GHC calling convention. This feature is not intended
for use outside of the core libraries that come with GHC. For more details see the GHC developer wiki.

8.1.4 Interruptible foreign calls

This concerns the interaction of foreign calls with Control.Concurrent.throwTo. Normally when the target of a th-
rowTo is involved in a foreign call, the exception is not raised until the call returns, and in the meantime the caller is blocked.
This can result in unresponsiveness, which is particularly undesirable in the case of user interrupt (e.g. Control-C). The default
behaviour when a Control-C signal is received (SIGINT on Unix) is to raise the UserInterrupt exception in the main thread;
if the main thread is blocked in a foreign call at the time, then the program will not respond to the user interrupt.

The problem is that it is not possible in general to interrupt a foreign call safely. However, GHC does provide a way to inter-
rupt blocking system calls which works for most system calls on both Unix and Windows. When the InterruptibleFFI
extension is enabled, a foreign call can be annotated with interruptible instead of safe or unsafe:

foreign import ccall interruptible
"sleep" :: CUint -> IO CUint

interruptible behaves exactly as safe, except that when a throwTo is directed at a thread in an interruptible foreign
call, an OS-specific mechanism will be used to attempt to cause the foreign call to return:

Unix systems The thread making the foreign call is sent a SIGPIPE signal using pthread_kill(). This is usually enough
to cause a blocking system call to return with EINTR (GHC by default installs an empty signal handler for SIGPIPE, to
override the default behaviour which is to terminate the process immediately).

Windows systems [Vista and later only] The RTS calls the Win32 function CancelSynchronousIO, which will cause a
blocking I/O operation to return with the error ERROR_OPERATION_ABORTED.

If the system call is successfully interrupted, it will return to Haskell whereupon the exception can be raised. Be especially
careful when using interruptible that the caller of the foreign function is prepared to deal with the consequences of the call
being interrupted; on Unix it is good practice to check for EINTR always, but on Windows it is not typically necessary to handle
ERROR_OPERATION_ABORTED.

8.1.5 The CAPI calling convention

The CApiFFI extension allows a calling convention of capi to be used in foreign declarations, e.g.

foreign import capi "header.h f" f :: CInt -> IO CInt

Rather than generating code to call f according to the platform’s ABI, we instead call f using the C API defined in the header
header.h. Thus f can be called even if it may be defined as a CPP #define rather than a proper function.

When using capi, it is also possible to import values, rather than functions. For example,

foreign import capi "pi.h value pi" c_pi :: CDouble

will work regardless of whether pi is defined as

const double pi = 3.14;

or with

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 246 / 37

#define pi 3.14

In order to tell GHC the C type that a Haskell type corresponds to when it is used with the CAPI, a CTYPE pragma can be used
on the type definition. The header which defines the type can optionally also be specified. The syntax looks like:

data {-# CTYPE "unistd.h" "useconds_t" #-} T = ...
newtype {-# CTYPE "useconds_t" #-} T = ...

8.2 Using the FFI with GHC

The following sections also give some hints and tips on the use of the foreign function interface in GHC.

8.2.1 Using foreign export and foreign import ccall "wrapper" with GHC

When GHC compiles a module (say M.hs) which uses foreign export or foreign import "wrapper", it generates
two additional files, M_stub.c and M_stub.h. GHC will automatically compile M_stub.c to generate M_stub.o at the
same time.

For a plain foreign export, the file M_stub.h contains a C prototype for the foreign exported function, and M_stub.c
contains its definition. For example, if we compile the following module:

module Foo where

foreign export ccall foo :: Int -> IO Int

foo :: Int -> IO Int
foo n = return (length (f n))

f :: Int -> [Int]
f 0 = []
f n = n:(f (n-1))

Then Foo_stub.h will contain something like this:

#include "HsFFI.h"
extern HsInt foo(HsInt a0);

and Foo_stub.c contains the compiler-generated definition of foo(). To invoke foo() from C, just #include "Foo_-
stub.h" and call foo().

The foo_stub.c and foo_stub.h files can be redirected using the -stubdir option; see Section 4.7.4.

When linking the program, remember to include M_stub.o in the final link command line, or you’ll get link errors for the
missing function(s) (this isn’t necessary when building your program with ghc --make, as GHC will automatically link in the
correct bits).

8.2.1.1 Using your own main()

Normally, GHC’s runtime system provides a main(), which arranges to invoke Main.main in the Haskell program. However,
you might want to link some Haskell code into a program which has a main function written in another language, say C. In order
to do this, you have to initialize the Haskell runtime system explicitly.

Let’s take the example from above, and invoke it from a standalone C program. Here’s the C code:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 247 / 37

#include <stdio.h>
#include "HsFFI.h"

#ifdef __GLASGOW_HASKELL__
#include "foo_stub.h"
#endif

int main(int argc, char *argv[])
{

int i;

hs_init(&argc, &argv);

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

hs_exit();
return 0;

}

We’ve surrounded the GHC-specific bits with #ifdef __GLASGOW_HASKELL__; the rest of the code should be portable
across Haskell implementations that support the FFI standard.

The call to hs_init() initializes GHC’s runtime system. Do NOT try to invoke any Haskell functions before calling hs_in-
it(): bad things will undoubtedly happen.

We pass references to argc and argv to hs_init() so that it can separate out any arguments for the RTS (i.e. those arguments
between +RTS...-RTS).

After we’ve finished invoking our Haskell functions, we can call hs_exit(), which terminates the RTS.

There can be multiple calls to hs_init(), but each one should be matched by one (and only one) call to hs_exit()1.

NOTE: when linking the final program, it is normally easiest to do the link using GHC, although this isn’t essential. If you do
use GHC, then don’t forget the flag -no-hs-main, otherwise GHC will try to link to the Main Haskell module.

To use +RTS flags with hs_init(), we have to modify the example slightly. By default, GHC’s RTS will only accept "safe"
+RTS flags (see Section 4.12.6), and the -rtsopts link-time flag overrides this. However, -rtsopts has no effect when
-no-hs-main is in use (and the same goes for -with-rtsopts). To set these options we have to call a GHC-specific API
instead of hs_init():

#include <stdio.h>
#include "HsFFI.h"

#ifdef __GLASGOW_HASKELL__
#include "foo_stub.h"
#include "Rts.h"
#endif

int main(int argc, char *argv[])
{

int i;

#if __GLASGOW_HASKELL__ >= 703
{

RtsConfig conf = defaultRtsConfig;
conf.rts_opts_enabled = RtsOptsAll;
hs_init_ghc(&argc, &argv, conf);

}

1The outermost hs_exit() will actually de-initialise the system. NOTE that currently GHC’s runtime cannot reliably re-initialise after this has happened,
see Section 14.1.1.8.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 248 / 37

#else
hs_init(&argc, &argv);

#endif

for (i = 0; i < 5; i++) {
printf("%d\n", foo(2500));

}

hs_exit();
return 0;

}

Note two changes: we included Rts.h, which defines the GHC-specific external RTS interface, and we called hs_init_gh-
c() instead of hs_init(), passing an argument of type RtsConfig. RtsConfig is a struct with various fields that affect
the behaviour of the runtime system. Its definition is:

typedef struct {
RtsOptsEnabledEnum rts_opts_enabled;
const char *rts_opts;

} RtsConfig;

extern const RtsConfig defaultRtsConfig;

typedef enum {
RtsOptsNone, // +RTS causes an error
RtsOptsSafeOnly, // safe RTS options allowed; others cause an error
RtsOptsAll // all RTS options allowed

} RtsOptsEnabledEnum;

There is a default value defaultRtsConfig that should be used to initialise variables of type RtsConfig. More fields will
undoubtedly be added to RtsConfig in the future, so in order to keep your code forwards-compatible it is best to initialise with
defaultRtsConfig and then modify the required fields, as in the code sample above.

8.2.1.2 Making a Haskell library that can be called from foreign code

The scenario here is much like in Section 8.2.1.1, except that the aim is not to link a complete program, but to make a library
from Haskell code that can be deployed in the same way that you would deploy a library of C code.

The main requirement here is that the runtime needs to be initialized before any Haskell code can be called, so your library should
provide initialisation and deinitialisation entry points, implemented in C or C++. For example:

#include <stdlib.h>
#include "HsFFI.h"

HsBool mylib_init(void){
int argc = 2;
char *argv[] = { "+RTS", "-A32m", NULL };
char **pargv = argv;

// Initialize Haskell runtime
hs_init(&argc, &pargv);

// do any other initialization here and
// return false if there was a problem
return HS_BOOL_TRUE;

}

void mylib_end(void){
hs_exit();

}

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 249 / 37

The initialisation routine, mylib_init, calls hs_init() as normal to initialise the Haskell runtime, and the corresponding
deinitialisation function mylib_end() calls hs_exit() to shut down the runtime.

8.2.2 Using header files

C functions are normally declared using prototypes in a C header file. Earlier versions of GHC (6.8.3 and earlier) #included
the header file in the C source file generated from the Haskell code, and the C compiler could therefore check that the C function
being called via the FFI was being called at the right type.

GHC no longer includes external header files when compiling via C, so this checking is not performed. The change was made
for compatibility with the native code generator (-fasm) and to comply strictly with the FFI specification, which requires that
FFI calls are not subject to macro expansion and other CPP conversions that may be applied when using C header files. This
approach also simplifies the inlining of foreign calls across module and package boundaries: there’s no need for the header file
to be available when compiling an inlined version of a foreign call, so the compiler is free to inline foreign calls in any context.

The -#include option is now deprecated, and the include-files field in a Cabal package specification is ignored.

8.2.3 Memory Allocation

The FFI libraries provide several ways to allocate memory for use with the FFI, and it isn’t always clear which way is the best.
This decision may be affected by how efficient a particular kind of allocation is on a given compiler/platform, so this section
aims to shed some light on how the different kinds of allocation perform with GHC.

alloca and friends Useful for short-term allocation when the allocation is intended to scope over a given IO computation.
This kind of allocation is commonly used when marshalling data to and from FFI functions.

In GHC, alloca is implemented using MutableByteArray#, so allocation and deallocation are fast: much faster
than C’s malloc/free, but not quite as fast as stack allocation in C. Use alloca whenever you can.

mallocForeignPtr Useful for longer-term allocation which requires garbage collection. If you intend to store the pointer
to the memory in a foreign data structure, then mallocForeignPtr is not a good choice, however.

In GHC, mallocForeignPtr is also implemented using MutableByteArray#. Although the memory is pointed
to by a ForeignPtr, there are no actual finalizers involved (unless you add one with addForeignPtrFinalizer),
and the deallocation is done using GC, so mallocForeignPtr is normally very cheap.

malloc/free If all else fails, then you need to resort to Foreign.malloc and Foreign.free. These are just wrappers
around the C functions of the same name, and their efficiency will depend ultimately on the implementations of these
functions in your platform’s C library. We usually find malloc and free to be significantly slower than the other forms
of allocation above.

Foreign.Marshal.Pool Pools are currently implemented using malloc/free, so while they might be a more convenient
way to structure your memory allocation than using one of the other forms of allocation, they won’t be any more efficient.
We do plan to provide an improved-performance implementation of Pools in the future, however.

8.2.4 Multi-threading and the FFI

In order to use the FFI in a multi-threaded setting, you must use the -threaded option (see Section 4.12.6).

8.2.4.1 Foreign imports and multi-threading

When you call a foreign imported function that is annotated as safe (the default), and the program was linked using -th-
readed, then the call will run concurrently with other running Haskell threads. If the program was linked without -threaded,
then the other Haskell threads will be blocked until the call returns.

This means that if you need to make a foreign call to a function that takes a long time or blocks indefinitely, then you should mark
it safe and use -threaded. Some library functions make such calls internally; their documentation should indicate when this
is the case.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 250 / 37

If you are making foreign calls from multiple Haskell threads and using -threaded, make sure that the foreign code you are
calling is thread-safe. In particularly, some GUI libraries are not thread-safe and require that the caller only invokes GUI methods
from a single thread. If this is the case, you may need to restrict your GUI operations to a single Haskell thread, and possibly
also use a bound thread (see Section 8.2.4.2).

Note that foreign calls made by different Haskell threads may execute in parallel, even when the +RTS -N flag is not being
used (Section 4.15.2). The +RTS -N flag controls parallel execution of Haskell threads, but there may be an arbitrary number
of foreign calls in progress at any one time, regardless of the +RTS -N value.

If a call is annotated as interruptible and the program was multithreaded, the call may be interrupted in the event that the
Haskell thread receives an exception. The mechanism by which the interrupt occurs is platform dependent, but is intended to
cause blocking system calls to return immediately with an interrupted error code. The underlying operating system thread is not
to be destroyed. See Section 8.1.4 for more details.

8.2.4.2 The relationship between Haskell threads and OS threads

Normally there is no fixed relationship between Haskell threads and OS threads. This means that when you make a foreign call,
that call may take place in an unspecified OS thread. Furthermore, there is no guarantee that multiple calls made by one Haskell
thread will be made by the same OS thread.

This usually isn’t a problem, and it allows the GHC runtime system to make efficient use of OS thread resources. However, there
are cases where it is useful to have more control over which OS thread is used, for example when calling foreign code that makes
use of thread-local state. For cases like this, we provide bound threads, which are Haskell threads tied to a particular OS thread.
For information on bound threads, see the documentation for the Control.Concurrent module.

8.2.4.3 Foreign exports and multi-threading

When the program is linked with -threaded, then you may invoke foreign exported functions from multiple OS threads
concurrently. The runtime system must be initialised as usual by calling hs_init(), and this call must complete before
invoking any foreign exported functions.

8.2.4.4 On the use of hs_exit()

hs_exit() normally causes the termination of any running Haskell threads in the system, and when hs_exit() returns,
there will be no more Haskell threads running. The runtime will then shut down the system in an orderly way, generating
profiling output and statistics if necessary, and freeing all the memory it owns.

It isn’t always possible to terminate a Haskell thread forcibly: for example, the thread might be currently executing a foreign
call, and we have no way to force the foreign call to complete. What’s more, the runtime must assume that in the worst case the
Haskell code and runtime are about to be removed from memory (e.g. if this is a Windows DLL, hs_exit() is normally called
before unloading the DLL). So hs_exit() must wait until all outstanding foreign calls return before it can return itself.

The upshot of this is that if you have Haskell threads that are blocked in foreign calls, then hs_exit() may hang (or possibly
busy-wait) until the calls return. Therefore it’s a good idea to make sure you don’t have any such threads in the system when
calling hs_exit(). This includes any threads doing I/O, because I/O may (or may not, depending on the type of I/O and the
platform) be implemented using blocking foreign calls.

The GHC runtime treats program exit as a special case, to avoid the need to wait for blocked threads when a standalone executable
exits. Since the program and all its threads are about to terminate at the same time that the code is removed from memory, it isn’t
necessary to ensure that the threads have exited first. (Unofficially, if you want to use this fast and loose version of hs_exit(),
then call shutdownHaskellAndExit() instead).

8.2.5 Floating point and the FFI

The standard C99 fenv.h header provides operations for inspecting and modifying the state of the floating point unit. In
particular, the rounding mode used by floating point operations can be changed, and the exception flags can be tested.

file:../libraries/base-4.6.0.1/Control-Concurrent.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 251 / 37

In Haskell, floating-point operations have pure types, and the evaluation order is unspecified. So strictly speaking, since the
fenv.h functions let you change the results of, or observe the effects of floating point operations, use of fenv.h renders the
behaviour of floating-point operations anywhere in the program undefined.

Having said that, we can document exactly what GHC does with respect to the floating point state, so that if you really need to
use fenv.h then you can do so with full knowledge of the pitfalls:

• GHC completely ignores the floating-point environment, the runtime neither modifies nor reads it.

• The floating-point environment is not saved over a normal thread context-switch. So if you modify the floating-point state in
one thread, those changes may be visible in other threads. Furthermore, testing the exception state is not reliable, because a
context switch may change it. If you need to modify or test the floating point state and use threads, then you must use bound
threads (Control.Concurrent.forkOS), because a bound thread has its own OS thread, and OS threads do save and
restore the floating-point state.

• It is safe to modify the floating-point unit state temporarily during a foreign call, because foreign calls are never pre-empted by
GHC.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 252 / 37

Chapter 9

Extending and using GHC as a Library

GHC exposes its internal APIs to users through the built-in ghc package. It allows you to write programs that leverage GHC’s
entire compilation driver, in order to analyze or compile Haskell code programmatically. Furthermore, GHC gives users the
ability to load compiler plugins during compilation - modules which are allowed to view and change GHC’s internal intermediate
representation, Core. Plugins are suitable for things like experimental optimizations or analysis, and offer a lower barrier of entry
to compiler development for many common cases.

Furthermore, GHC offers a lightweight annotation mechanism that you can use to annotate your source code with metadata,
which you can later inspect with either the compiler API or a compiler plugin.

9.1 Source annotations

Annotations are small pragmas that allow you to attach data to identifiers in source code, which are persisted when compiled.
These pieces of data can then inspected and utilized when using GHC as a library or writing a compiler plugin.

9.1.1 Annotating values

Any expression that has both Typeable and Data instances may be attached to a top-level value binding using an ANN pragma.
In particular, this means you can use ANN to annotate data constructors (e.g. Just) as well as normal values (e.g. take). By
way of example, to annotate the function foo with the annotation Just "Hello" you would do this:

{-# ANN foo (Just "Hello") #-}
foo = ...

A number of restrictions apply to use of annotations:

• The binder being annotated must be at the top level (i.e. no nested binders)

• The binder being annotated must be declared in the current module

• The expression you are annotating with must have a type with Typeable and Data instances

• The Template Haskell staging restrictions apply to the expression being annotated with, so for example you cannot run a
function from the module being compiled.

To be precise, the annotation {-# ANN x e #-} is well staged if and only if $(e) would be (disregarding the usual type
restrictions of the splice syntax, and the usual restriction on splicing inside a splice - $([|1|]) is fine as an annotation, albeit
redundant).

If you feel strongly that any of these restrictions are too onerous, please give the GHC team a shout.

However, apart from these restrictions, many things are allowed, including expressions which are not fully evaluated! Annotation
expressions will be evaluated by the compiler just like Template Haskell splices are. So, this annotation is fine:

http://hackage.haskell.org/trac/ghc/wiki/MailingListsAndIRC

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 253 / 37

{-# ANN f SillyAnnotation { foo = (id 10) + $([| 20 |]), bar = ’f } #-}
f = ...

9.1.2 Annotating types

You can annotate types with the ANN pragma by using the type keyword. For example:

{-# ANN type Foo (Just "A ‘Maybe String’ annotation") #-}
data Foo = ...

9.1.3 Annotating modules

You can annotate modules with the ANN pragma by using the module keyword. For example:

{-# ANN module (Just "A ‘Maybe String’ annotation") #-}

9.2 Using GHC as a Library

The ghc package exposes most of GHC’s frontend to users, and thus allows you to write programs that leverage it. This
library is actually the same library used by GHC’s internal, frontend compilation driver, and thus allows you to write tools that
programmatically compile source code and inspect it. Such functionality is useful in order to write things like IDE or refactoring
tools. As a simple example, here’s a program which compiles a module, much like ghc itself does by default when invoked:

import GHC
import GHC.Paths (libdir)
import DynFlags (defaultDynFlags)

main =
defaultErrorHandler defaultDynFlags $ do

runGhc (Just libdir) $ do
dflags <- getSessionDynFlags
setSessionDynFlags dflags
target <- guessTarget "test_main.hs" Nothing
setTargets [target]
load LoadAllTargets

The argument to runGhc is a bit tricky. GHC needs this to find its libraries, so the argument must refer to the directory that is
printed by ghc --print-libdir for the same version of GHC that the program is being compiled with. Above we therefore
use the ghc-paths package which provides this for us.

Compiling it results in:

$ cat test_main.hs
main = putStrLn "hi"
$ ghc -package ghc simple_ghc_api.hs
[1 of 1] Compiling Main (simple_ghc_api.hs, simple_ghc_api.o)
Linking simple_ghc_api ...
$./simple_ghc_api
$./test_main
hi
$

For more information on using the API, as well as more samples and references, please see this Haskell.org wiki page.

http://haskell.org/haskellwiki/GHC/As_a_library

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 254 / 37

9.3 Compiler Plugins

GHC has the ability to load compiler plugins at compile time. The feature is similar to the one provided by GCC, and allows
users to write plugins that can inspect and modify the compilation pipeline, as well as transform and inspect GHC’s intermediate
language, Core. Plugins are suitable for experimental analysis or optimization, and require no changes to GHC’s source code to
use.

Plugins cannot optimize/inspect C--, nor can they implement things like parser/front-end modifications like GCC. If you feel
strongly that any of these restrictions are too onerous, please give the GHC team a shout.

9.3.1 Using compiler plugins

Plugins can be specified on the command line with the option -fplugin=module where module is a module in a registered
package that exports a plugin. Arguments can be given to plugins with the command line option -fplugin-opt=module:a-
rgs, where args are arguments interpreted by the plugin provided by module.

As an example, in order to load the plugin exported by Foo.Plugin in the package foo-ghc-plugin, and give it the
parameter "baz", we would invoke GHC like this:

$ ghc -fplugin Foo.Plugin -fplugin-opt Foo.Plugin:baz Test.hs
[1 of 1] Compiling Main (Test.hs, Test.o)
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Loading package ffi-1.0 ... linking ... done.
Loading package foo-ghc-plugin-0.1 ... linking ... done.
...
Linking Test ...
$

Since plugins are exported by registered packages, it’s safe to put dependencies on them in cabal for example, and specify plugin
arguments to GHC through the ghc-options field.

9.3.2 Writing compiler plugins

Plugins are modules that export at least a single identifier, plugin, of type GhcPlugins.Plugin. All plugins should
import GhcPlugins as it defines the interface to the compilation pipeline.

A Plugin effectively holds a function which installs a compilation pass into the compiler pipeline. By default there is the empty
plugin which does nothing, GhcPlugins.defaultPlugin, which you should override with record syntax to specify your
installation function. Since the exact fields of the Plugin type are open to change, this is the best way to ensure your plugins
will continue to work in the future with minimal interface impact.

Plugin exports a field, installCoreToDos which is a function of type [CommandLineOption] -> [CoreToDo]
-> CoreM [CoreToDo]. A CommandLineOption is effectively just String, and a CoreToDo is basically a function
of type Core -> Core. A CoreToDo gives your pass a name and runs it over every compiled module when you invoke GHC.

As a quick example, here is a simple plugin that just does nothing and just returns the original compilation pipeline, unmodified,
and says ’Hello’:

module DoNothing.Plugin (plugin) where
import GhcPlugins

plugin :: Plugin
plugin = defaultPlugin {

installCoreToDos = install
}

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]

http://gcc.gnu.org/wiki/plugins
http://hackage.haskell.org/trac/ghc/wiki/MailingListsAndIRC

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 255 / 37

install _ todo = do
reinitializeGlobals
putMsgS "Hello!"
return todo

Provided you compiled this plugin and registered it in a package (with cabal for instance,) you can then use it by just specifying
-fplugin=DoNothing.Plugin on the command line, and during the compilation you should see GHC say ’Hello’.

Note carefully the reinitializeGlobals call at the beginning of the installation function. Due to bugs in the windows
linker dealing with libghc, this call is necessary to properly ensure compiler plugins have the same global state as GHC at the
time of invocation. Without reinitializeGlobals, compiler plugins can crash at runtime because they may require state
that hasn’t otherwise been initialized.

In the future, when the linking bugs are fixed, reinitializeGlobals will be deprecated with a warning, and changed to do
nothing.

9.3.2.1 CoreToDo in more detail

CoreToDo is effectively a data type that describes all the kinds of optimization passes GHC does on Core. There are passes
for simplification, CSE, vectorisation, etc. There is a specific case for plugins, CoreDoPluginPass :: String -> P-
luginPass -> CoreToDo which should be what you always use when inserting your own pass into the pipeline. The first
parameter is the name of the plugin, and the second is the pass you wish to insert.

CoreM is a monad that all of the Core optimizations live and operate inside of.

A plugin’s installation function (install in the above example) takes a list of CoreToDos and returns a list of CoreToDo.
Before GHC begins compiling modules, it enumerates all the needed plugins you tell it to load, and runs all of their installation
functions, initially on a list of passes that GHC specifies itself. After doing this for every plugin, the final list of passes is given
to the optimizer, and are run by simply going over the list in order.

You should be careful with your installation function, because the list of passes you give back isn’t questioned or double checked
by GHC at the time of this writing. An installation function like the following:

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ _ = return []

is certainly valid, but also certainly not what anyone really wants.

9.3.2.2 Manipulating bindings

In the last section we saw that besides a name, a CoreDoPluginPass takes a pass of type PluginPass. A PluginPass
is a synonym for (ModGuts -> CoreM ModGuts). ModGuts is a type that represents the one module being compiled by
GHC at any given time.

A ModGuts holds all of the module’s top level bindings which we can examine. These bindings are of type CoreBind and
effectively represent the binding of a name to body of code. Top-level module bindings are part of a ModGuts in the field
mg_binds. Implementing a pass that manipulates the top level bindings merely needs to iterate over this field, and return a new
ModGuts with an updated mg_binds field. Because this is such a common case, there is a function provided named bin-
dsOnlyPass which lifts a function of type ([CoreBind] -> CoreM [CoreBind]) to type (ModGuts -> CoreM
ModGuts).

Continuing with our example from the last section, we can write a simple plugin that just prints out the name of all the non-
recursive bindings in a module it compiles:

module SayNames.Plugin (plugin) where
import GhcPlugins

plugin :: Plugin
plugin = defaultPlugin {

installCoreToDos = install
}

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 256 / 37

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do

reinitializeGlobals
return (CoreDoPluginPass "Say name" pass : todo)

pass :: ModGuts -> CoreM ModGuts
pass = bindsOnlyPass (mapM printBind)

where printBind :: CoreBind -> CoreM CoreBind
printBind bndr@(NonRec b _) = do
putMsgS $ "Non-recursive binding named " ++ showSDoc (ppr b)
return bndr

printBind bndr = return bndr

9.3.2.3 Using Annotations

Previously we discussed annotation pragmas (Section 9.1), which we mentioned could be used to give compiler plugins extra
guidance or information. Annotations for a module can be retrieved by a plugin, but you must go through the modules ModGuts
in order to get it. Because annotations can be arbitrary instances of Data and Typeable, you need to give a type annotation
specifying the proper type of data to retrieve from the interface file, and you need to make sure the annotation type used by your
users is the same one your plugin uses. For this reason, we advise distributing annotations as part of the package which also
provides compiler plugins if possible.

To get the annotations of a single binder, you can use `getAnnotations` and specify the proper type. Here’s an example that will
print out the name of any top-level non-recursive binding with the SomeAnn annotation:

{-# LANGUAGE DeriveDataTypeable #-}
module SayAnnNames.Plugin (plugin, SomeAnn) where
import GhcPlugins
import Control.Monad (when)
import Data.Data
import Data.Typeable

data SomeAnn = SomeAnn deriving (Data, Typeable)

plugin :: Plugin
plugin = defaultPlugin {

installCoreToDos = install
}

install :: [CommandLineOption] -> [CoreToDo] -> CoreM [CoreToDo]
install _ todo = do

reinitializeGlobals
return (CoreDoPluginPass "Say name" pass : todo)

pass :: ModGuts -> CoreM ModGuts
pass g = mapM_ (printAnn g) (mg_binds g) >> return g

where printAnn :: ModGuts -> CoreBind -> CoreM CoreBind
printAnn guts bndr@(NonRec b _) = do
anns <- annotationsOn guts b :: CoreM [SomeAnn]
when (not $ null anns) $ putMsgS $ "Annotated binding found: " ++ showSDoc (ppr ←↩

b)
return bndr

printAnn _ bndr = return bndr

annotationsOn :: Data a => ModGuts -> CoreBndr -> CoreM [a]
annotationsOn guts bndr = do

anns <- getAnnotations deserializeWithData guts
return $ lookupWithDefaultUFM anns [] (varUnique bndr)

Please see the GHC API documentation for more about how to use internal APIs, etc.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 257 / 37

Chapter 10

An External Representation for the GHC Core Lan-
guage (For GHC 6.10)

Andrew Tolmach, Tim Chevalier ({apt,tjc}@cs.pdx.edu) and The GHC Team

Abstract

This document provides a precise definition for the GHC Core language, so that it can be used to communicate between GHC and
new stand-alone compilation tools such as back-ends or optimizers.1 The definition includes a formal grammar and an informal
semantics. An executable typechecker and interpreter (in Haskell), which formally embody the static and dynamic semantics,
are available separately.

1This is a draft document, which attempts to describe GHC’s current behavior as precisely as possible. Working notes scattered throughout indicate areas
where further work is needed. Constructive comments are very welcome, both on the presentation, and on ways in which GHC could be improved in order to
simplify the Core story.

Support for generating external Core (post-optimization) was originally introduced in GHC 5.02. The definition of external Core in this document reflects the
version of external Core generated by the HEAD (unstable) branch of GHC as of May 3, 2008 (version 6.9), using the compiler flag -fext-core. We expect
that GHC 6.10 will be consistent with this definition.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 1 / 37

10.1 Introduction

The Glasgow Haskell Compiler (GHC) uses an intermediate language, called ‘Core,’ as its internal program representation
within the compiler’s simplification phase. Core resembles a subset of Haskell, but with explicit type annotations in the style of
the polymorphic lambda calculus (Fω).

GHC’s front-end translates full Haskell 98 (plus some extensions) into Core. The GHC optimizer then repeatedly transforms Core
programs while preserving their meaning. A ‘Core Lint’ pass in GHC typechecks Core in between transformation passes (at least
when the user enables linting by setting a compiler flag), verifying that transformations preserve type-correctness. Finally, GHC’s
back-end translates Core into STG-machine code [stg-machine] and then into C or native code.

Two existing papers discuss the original rationale for the design and use of Core [ghc-inliner, comp-by-trans-scp], although the
(two different) idealized versions of Core described therein differ in significant ways from the actual Core language in current
GHC. In particular, with the advent of GHC support for generalized algebraic datatypes (GADTs) [gadts] Core was extended
beyond its previous Fω -style incarnation to support type equality constraints and safe coercions, and is now based on a system
known as FC [system-fc].

Researchers interested in writing just part of a Haskell compiler, such as a new back-end or a new optimizer pass, might like to
use GHC to provide the other parts of the compiler. For example, they might like to use GHC’s front-end to parse, desugar, and
type-check source Haskell, then feeding the resulting code to their own back-end tool. As another example, they might like to
use Core as the target language for a front-end compiler of their own design, feeding externally synthesized Core into GHC in
order to take advantage of GHC’s optimizer, code generator, and run-time system. Without external Core, there are two ways for
compiler writers to do this: they can link their code into the GHC executable, which is an arduous process, or they can use the
GHC API [ghc-api] to do the same task more cleanly. Both ways require new code to be written in Haskell.

We present a precisely specified external format for Core files. The external format is text-based and human-readable, to promote
interoperability and ease of use. We hope this format will make it easier for external developers to use GHC in a modular way.

It has long been true that GHC prints an ad-hoc textual representation of Core if you set certain compiler flags. But this rep-
resentation is intended to be read by people who are debugging the compiler, not by other programs. Making Core into a
machine-readable, bi-directional communication format requires:

1. precisely specifying the external format of Core;

2. modifying GHC to generate external Core files (post-simplification; as always, users can control the exact transformations
GHC does with command-line flags);

3. modifying GHC to accept external Core files in place of Haskell source files (users will also be able to control what GHC
does to those files with command-line flags).

The first two facilities will let developers couple GHC’s front-end (parser, type-checker, desugarer), and optionally its optimizer,
with new back-end tools. The last facility will let developers write new Core-to-Core transformations as an external tool and
integrate them into GHC. It will also allow new front-ends to generate Core that can be fed into GHC’s optimizer or back-end.

However, because there are many (undocumented) idiosyncracies in the way GHC produces Core from source Haskell, it will be
hard for an external tool to produce Core that can be integrated with GHC-produced Core (e.g., for the Prelude), and we don’t
aim to support this. Indeed, for the time being, we aim to support only the first two facilities and not the third: we define and
implement Core as an external format that GHC can use to communicate with external back-end tools, and defer the larger task
of extending GHC to support reading this external format back in.

This document addresses the first requirement, a formal Core definition, by proposing a formal grammar for an external repre-
sentation of Core, and an informal semantics.

GHC supports many type system extensions; the External Core printer built into GHC only supports some of them. However,
External Core should be capable of representing any Haskell 98 program, and may be able to represent programs that require
certain type system extensions as well. If a program uses unsupported features, GHC may fail to compile it to Core when the
-fext-core flag is set, or GHC may successfully compile it to Core, but the external tools will not be able to typecheck or interpret
it.

Formal static and dynamic semantics in the form of an executable typechecker and interpreter are available separately in the GHC
source tree 2 under utils/ext-core.

2http://darcs.haskell.org/ghc

http://darcs.haskell.org/ghc

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 2 / 37

10.2 External Grammar of Core

In designing the external grammar, we have tried to strike a balance among a number of competing goals, including easy
parseability by machines, easy readability by humans, and adequate structural simplicity to allow straightforward presentations
of the semantics. Thus, we had to make some compromises. Specifically:

• In order to avoid explosion of parentheses, we support standard precedences and short-cuts for expressions, types, and kinds.
Thus we had to introduce multiple non-terminals for each of these syntactic categories, and as a result, the concrete grammar
is longer and more complex than the underlying abstract syntax.

• On the other hand, we have kept the grammar simpler by avoiding special syntax for tuple types and terms. Tuples (both boxed
and unboxed) are treated as ordinary constructors.

• All type abstractions and applications are given in full, even though some of them (e.g., for tuples) could be reconstructed; this
means a parser for Core does not have to reconstruct types.3

• The syntax of identifiers is heavily restricted (to just alphanumerics and underscores); this again makes Core easier to parse
but harder to read.

We use the following notational conventions for syntax:

[pat] optional
{ pat } zero or more repetitions
{ pat }+ one or more repetitions
pat1 | pat2 choice
fibonacci terminal syntax in typewriter font

Module module → %module mident { tdef ; }{ vdefg ; }
Type defn. tdef → %data qtycon { tbind } = { [cdef {; cdef }] } algebraic type

| %newtype qtycon qtycon { tbind } = ty newtype
Constr. defn. cdef → qdcon { @ tbind }{ aty }+

Value defn. vdefg → %rec { vdef { ; vdef } } recursive
| vdef non-recursive

vdef → qvar :: ty = exp
Atomic expr. aexp → qvar variable

| qdcon data constructor
| lit literal
| (exp) nested expr.

Expression exp → aexp atomic expresion
| aexp { arg }+ application
| \ { binder }+ -> exp abstraction
| %let vdefg %in exp local definition
| %case (aty) exp %of vbind { alt { ; alt } } case expression
| %cast exp aty type coercion
| %note " { char } " exp expression note
| %external ccall " { char } " aty external reference
| %dynexternal ccall aty external reference (dynamic)
| %label " { char } " external label

Argument arg → @ aty type argument
| aexp value argument

Case alt. alt → qdcon { @ tbind }{ vbind } -> exp constructor alternative
| lit -> exp literal alternative
| %_ -> exp default alternative

3These choices are certainly debatable. In particular, keeping type applications on tuples and case arms considerably increases the size of Core files and
makes them less human-readable, though it allows a Core parser to be simpler.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 3 / 37

Binder binder → @ tbind type binder
| vbind value binder

Type binder tbind → tyvar implicitly of kind *
| (tyvar :: kind) explicitly kinded

Value binder vbind → (var :: ty)
Literal lit → ([-] { digit }+ :: ty) integer

| ([-] { digit }+ % { digit }+ :: ty) rational
| (’ char ’ :: ty) character
| (" { char } " :: ty) string

Character char → any ASCII character in range 0x20-0x7E except 0x22,0x27,0x5c
| \x hex hex ASCII code escape sequence

hex → 0|. . . |9 |a |. . . |f
Atomic type aty → tyvar type variable

| qtycon type constructor
| (ty) nested type

Basic type bty → aty atomic type
| bty aty type application
| %trans aty aty transitive coercion
| %sym aty symmetric coercion
| %unsafe aty aty unsafe coercion
| %left aty left coercion
| %right aty right coercion
| %inst aty aty instantiation coercion

Type ty → bty basic type
| %forall { tbind }+ . ty type abstraction
| bty -> ty arrow type construction

Atomic kind akind → * lifted kind
| # unlifted kind
| ? open kind
| bty :=: bty equality kind
| (kind) nested kind

Kind kind → akind atomic kind
| akind -> kind arrow kind

Identifier mident → pname : uname module
tycon → uname type constr.

qtycon → mident . tycon qualified type constr.
tyvar → lname type variable
dcon → uname data constr.

qdcon → mident . dcon qualified data constr.
var → lname variable

qvar → [mident .] var optionally qualified variable
Name lname → lower { namechar }

uname → upper { namechar }
pname → { namechar }+

namechar → lower | upper | digit
lower → a | b | . . . | z | _
upper → A | B | . . . | Z
digit → 0 | 1 | . . . | 9

10.3 Informal Semantics

At the term level, Core resembles a explicitly-typed polymorphic lambda calculus (Fω), with the addition of local let bindings,
algebraic type definitions, constructors, and case expressions, and primitive types, literals and operators. Its type system is
richer than that of System F, supporting explicit type equality coercions and type functions.[system-fc]

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 4 / 37

In this section we concentrate on the less obvious points about Core.

10.3.1 Program Organization and Modules

Core programs are organized into modules, corresponding directly to source-level Haskell modules. Each module has a identi-
fying name mident. A module identifier consists of a package name followed by a module name, which may be hierarchical:
for example, base:GHC.Base is the module identifier for GHC’s Base module. Its name is Base, and it lives in the GHC
hierarchy within the base package. Section 5.8 of the GHC users’ guide explains package names [ghc-user-guide]. In particular,
note that a Core program may contain multiple modules with the same (possibly hierarchical) module name that differ in their
package names. In some of the code examples that follow, we will omit package names and possibly full hierarchical module
names from identifiers for brevity, but be aware that they are always required.4

Each module may contain the following kinds of top-level declarations:

• Algebraic data type declarations, each defining a type constructor and one or more data constructors;

• Newtype declarations, corresponding to Haskell newtype declarations, each defining a type constructor and a coercion name;
and

• Value declarations, defining the types and values of top-level variables.

No type constructor, data constructor, or top-level value may be declared more than once within a given module. All the type
declarations are (potentially) mutually recursive. Value declarations must be in dependency order, with explicit grouping of
potentially mutually recursive declarations.

Identifiers defined in top-level declarations may be external or internal. External identifiers can be referenced from any other
module in the program, using conventional dot notation (e.g., base:GHC.Base.Bool, base:GHC.Base.True). Internal
identifiers are visible only within the defining module. All type and data constructors are external, and are always defined and
referenced using fully qualified names (with dots).

A top-level value is external if it is defined and referenced using a fully qualified name with a dot (e.g., main:MyModule.foo
= ...); otherwise, it is internal (e.g., bar = ...). Note that Core’s notion of an external identifier does not necessarily
coincide with that of ‘exported’ identifier in a Haskell source module. An identifier can be an external identifier in Core, but not
be exported by the original Haskell source module.5 However, if an identifier was exported by the Haskell source module, it will
appear as an external name in Core.

Core modules have no explicit import or export lists. Modules may be mutually recursive. Note that because of the latter fact,
GHC currently prints out the top-level bindings for every module as a single recursive group, in order to avoid keeping track of
dependencies between top-level values within a module. An external Core tool could reconstruct dependencies later, of course.

There is also an implicitly-defined module ghc-prim:GHC.Prim, which exports the ‘built-in’ types and values that must be
provided by any implementation of Core (including GHC). Details of this module are in the Primitive Module section.

A Core program is a collection of distinctly-named modules that includes a module called main:Main having an exported value
called main:ZCMain.main of type base:GHC.IOBase.IO a (for some type a). (Note that the strangely named wrapper
for main is the one exception to the rule that qualified names defined within a module m must have module name m.)

Many Core programs will contain library modules, such as base:GHC.Base, which implement parts of the Haskell standard
library. In principle, these modules are ordinary Haskell modules, with no special status. In practice, the requirement on the type
of main:Main.main implies that every program will contain a large subset of the standard library modules.

10.3.2 Namespaces

There are five distinct namespaces:

4A possible improvement to the Core syntax would be to add explicit import lists to Core modules, which could be used to specify abbrevations for long
qualified names. This would make the code more human-readable.

5Two examples of such identifiers are: data constructors, and values that potentially appear in an unfolding. For an example of the latter, consider Main.-
foo = ... Main.bar ..., where Main.foo is inlineable. Since bar appears in foo’s unfolding, it is defined and referenced with an external name,
even if bar was not exported by the original source module.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 5 / 37

1. module identifiers (mident),

2. type constructors (tycon),

3. type variables (tyvar),

4. data constructors (dcon),

5. term variables (var).

Spaces (1), (2+3), and (4+5) can be distinguished from each other by context. To distinguish (2) from (3) and (4) from (5),
we require that data and type constructors begin with an upper-case character, and that term and type variables begin with a
lower-case character.

Primitive types and operators are not syntactically distinguished.

Primitive coercion operators, of which there are six, are syntactically distinguished in the grammar. This is because these
coercions must be fully applied, and because distinguishing their applications in the syntax makes typechecking easier.

A given variable (type or term) may have multiple definitions within a module. However, definitions of term variables never
‘shadow’ one another: the scope of the definition of a given variable never contains a redefinition of the same variable. Type
variables may be shadowed. Thus, if a term variable has multiple definitions within a module, all those definitions must be local
(let-bound). The only exception to this rule is that (necessarily closed) types labelling %external expressions may contain
tyvar bindings that shadow outer bindings.

Core generated by GHC makes heavy use of encoded names, in which the characters Z and z are used to introduce escape
sequences for non-alphabetic characters such as dollar sign $ (zd), hash # (zh), plus + (zp), etc. This is the same encoding
used in .hi files and in the back-end of GHC itself, except that we sometimes change an initial z to Z, or vice-versa, in order to
maintain case distinctions.

Finally, note that hierarchical module names are z-encoded in Core: for example, base:GHC.Base.foo is rendered as bas-
e:GHCziBase.foo. A parser may reconstruct the module hierarchy, or regard GHCziBase as a flat name.

10.3.3 Types and Kinds

In Core, all type abstractions and applications are explicit. This make it easy to typecheck any (closed) fragment of Core code.
An full executable typechecker is available separately.

10.3.3.1 Types

Types are described by type expressions, which are built from named type constructors and type variables using type application
and universal quantification. Each type constructor has a fixed arity ≥ 0. Because it is so widely used, there is special infix
syntax for the fully-applied function type constructor (->). (The prefix identifier for this constructor is ghc-prim:GHC.Pr-
im.ZLzmzgZR; this should only appear in unapplied or partially applied form.)

There are also a number of other primitive type constructors (e.g., Intzh) that are predefined in the GHC.Prim module, but
have no special syntax. %data and %newtype declarations introduce additional type constructors, as described below. Type
constructors are distinguished solely by name.

10.3.3.2 Coercions

A type may also be built using one of the primitive coercion operators, as described in the Namespaces section. For details on
the meanings of these operators, see the System FC paper [system-fc]. Also see the Newtypes section for examples of how GHC
uses coercions in Core code.

10.3.3.3 Kinds

As described in the Haskell definition, it is necessary to distinguish well-formed type-expressions by classifying them into
different kinds [haskell98, ?]. In particular, Core explicitly records the kind of every bound type variable.

In addition, Core’s kind system includes equality kinds, as in System FC [system-fc]. An application of a built-in coercion, or of
a user-defined coercion as introduced by a newtype declaration, has an equality kind.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 6 / 37

10.3.3.4 Lifted and Unlifted Types

Semantically, a type is lifted if and only if it has bottom as an element. We need to distinguish them because operationally, terms
with lifted types may be represented by closures; terms with unlifted types must not be represented by closures, which implies
that any unboxed value is necessarily unlifted. We distinguish between lifted and unlifted types by ascribing them different kinds.

Currently, all the primitive types are unlifted (including a few boxed primitive types such as ByteArrayzh). Peyton-Jones and
Launchbury [pj:unboxed] described the ideas behind unboxed and unlifted types.

10.3.3.5 Type Constructors; Base Kinds and Higher Kinds

Every type constructor has a kind, depending on its arity and whether it or its arguments are lifted.

Term variables can only be assigned types that have base kinds: the base kinds are *, #, and ?. The three base kinds distinguish the
liftedness of the types they classify: * represents lifted types; # represents unlifted types; and ? is the ‘open’ kind, representing
a type that may be either lifted or unlifted. Of these, only * ever appears in Core type declarations generated from user code; the
other two are needed to describe certain types in primitive (or otherwise specially-generated) code (which, after optimization,
could potentially appear anywhere).

In particular, no top-level identifier (except in ghc-prim:GHC.Prim) has a type of kind # or ?.

Nullary type constructors have base kinds: for example, the type Int has kind *, and Int# has kind #.

Non-nullary type constructors have higher kinds: kinds that have the form k1->k2, where k1 and k2 are kinds. For example,
the function type constructor -> has kind * -> (* -> *). Since Haskell allows abstracting over type constructors, type
variables may have higher kinds; however, much more commonly they have kind *, so that is the default if a type binder omits a
kind.

10.3.3.6 Type Synonyms and Type Equivalence

There is no mechanism for defining type synonyms (corresponding to Haskell type declarations).

Type equivalence is just syntactic equivalence on type expressions (of base kinds) modulo:

• alpha-renaming of variables bound in %forall types;

• the identity a -> b ≡ ghc-prim:GHC.Prim.ZLzmzgZR a b

10.3.4 Algebraic data types

Each data declaration introduces a new type constructor and a set of one or more data constructors, normally corresponding
directly to a source Haskell data declaration. For example, the source declaration

data Bintree a =
Fork (Bintree a) (Bintree a)

| Leaf a

might induce the following Core declaration

%data Bintree a = {
Fork (Bintree a) (Bintree a);
Leaf a)}

which introduces the unary type constructor Bintree of kind *->* and two data constructors with types

Fork :: %forall a . Bintree a -> Bintree a -> Bintree a
Leaf :: %forall a . a -> Bintree a

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 7 / 37

We define the arity of each data constructor to be the number of value arguments it takes; e.g. Fork has arity 2 and Leaf has
arity 1.

For a less conventional example illustrating the possibility of higher-order kinds, the Haskell source declaration

data A f a = MkA (f a)

might induce the Core declaration

%data A (f::*->*) a = { MkA (f a) }

which introduces the constructor

MkA :: %forall (f::*->*) a . (f a) -> (A f) a

GHC (like some other Haskell implementations) supports an extension to Haskell98 for existential types such as

data T = forall a . MkT a (a -> Bool)

This is represented by the Core declaration

%data T = {MkT @a a (a -> Bool)}

which introduces the nullary type constructor T and the data constructor

MkT :: %forall a . a -> (a -> Bool) -> T

In general, existentially quantified variables appear as extra universally quantified variables in the data contructor types. An
example of how to construct and deconstruct values of type T is shown in the Expression Forms section.

10.3.5 Newtypes

Each Core %newtype declaration introduces a new type constructor and an associated representation type, corresponding to a
source Haskell newtype declaration. However, unlike in source Haskell, a %newtype declaration does not introduce any data
constructors.

Each %newtype declaration also introduces a new coercion (syntactically, just another type constructor) that implies an axiom
equating the type constructor, applied to any type variables bound by the %newtype, to the representation type.

For example, the Haskell fragment

newtype U = MkU Bool
u = MkU True
v = case u of

MkU b -> not b

might induce the Core fragment

%newtype U ZCCoU = Bool;
u :: U = %cast (True)

((%sym ZCCoU));
v :: Bool = not (%cast (u) ZCCoU);

The newtype declaration implies that the types U and Bool have equivalent representations, and the coercion axiom ZCCoU
provides evidence that U is equivalent to Bool. Notice that in the body of u, the boolean value True is cast to type U using the
primitive symmetry rule applied to ZCCoU: that is, using a coercion of kind Bool :=: U. And in the body of v, u is cast
back to type Bool using the axiom ZCCoU.

Notice that the case in the Haskell source code above translates to a cast in the corresponding Core code. That is because
operationally, a case on a value whose type is declared by a newtype declaration is a no-op. Unlike a case on any other
value, such a case does no evaluation: its only function is to coerce its scrutinee’s type.

Also notice that unlike in a previous draft version of External Core, there is no need to handle recursive newtypes specially.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 8 / 37

10.3.6 Expression Forms

Variables and data constructors are straightforward.

Literal (lit) expressions consist of a literal value, in one of four different formats, and a (primitive) type annotation. Only certain
combinations of format and type are permitted; see the Primitive Module section. The character and string formats can describe
only 8-bit ASCII characters.

Moreover, because the operational semantics for Core interprets strings as C-style null-terminated strings, strings should not
contain embedded nulls.

In Core, value applications, type applications, value abstractions, and type abstractions are all explicit. To tell them apart, type
arguments in applications and formal type arguments in abstractions are preceded by an @ symbol. (In abstractions, the @ plays
essentially the same role as the more usual Λ symbol.) For example, the Haskell source declaration

f x = Leaf (Leaf x)

might induce the Core declaration

f :: %forall a . a -> BinTree (BinTree a) =
\ @a (x::a) -> Leaf @(Bintree a) (Leaf @a x)

Value applications may be of user-defined functions, data constructors, or primitives. None of these sorts of applications are
necessarily saturated.

Note that the arguments of type applications are not always of kind *. For example, given our previous definition of type A:

data A f a = MkA (f a)

the source code

MkA (Leaf True)

becomes

(MkA @Bintree @Bool) (Leaf @Bool True)

Local bindings, of a single variable or of a set of mutually recursive variables, are represented by %let expressions in the usual
way.

By far the most complicated expression form is %case. %case expressions are permitted over values of any type, although they
will normally be algebraic or primitive types (with literal values). Evaluating a %case forces the evaluation of the expression
being tested (the ‘scrutinee’). The value of the scrutinee is bound to the variable following the %of keyword, which is in scope
in all alternatives; this is useful when the scrutinee is a non-atomic expression (see next example). The scrutinee is preceded by
the type of the entire %case expression: that is, the result type that all of the %case alternatives have (this is intended to make
type reconstruction easier in the presence of type equality coercions).

In an algebraic %case, all the case alternatives must be labeled with distinct data constructors from the algebraic type, followed
by any existential type variable bindings (see below), and typed term variable bindings corresponding to the data constructor’s
arguments. The number of variables must match the data constructor’s arity.

For example, the following Haskell source expression

case g x of
Fork l r -> Fork r l
t@(Leaf v) -> Fork t t

might induce the Core expression

%case ((Bintree a)) g x %of (t::Bintree a)
Fork (l::Bintree a) (r::Bintree a) ->
Fork @a r l

Leaf (v::a) ->
Fork @a t t

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 9 / 37

When performing a %case over a value of an existentially-quantified algebraic type, the alternative must include extra local type
bindings for the existentially-quantified variables. For example, given

data T = forall a . MkT a (a -> Bool)

the source

case x of
MkT w g -> g w

becomes

%case x %of (x’::T)
MkT @b (w::b) (g::b->Bool) -> g w

In a %case over literal alternatives, all the case alternatives must be distinct literals of the same primitive type.

The list of alternatives may begin with a default alternative labeled with an underscore (%_), whose right-hand side will be
evaluated if none of the other alternatives match. The default is optional except for in a case over a primitive type, or when there
are no other alternatives. If the case is over neither an algebraic type nor a primitive type, then the list of alternatives must contain
a default alternative and nothing else. For algebraic cases, the set of alternatives need not be exhaustive, even if no default is
given; if alternatives are missing, this implies that GHC has deduced that they cannot occur.

%cast is used to manipulate newtypes, as described in the Newtype section. The %cast expression takes an expression and a
coercion: syntactically, the coercion is an arbitrary type, but it must have an equality kind. In an expression (cast e co), if e
:: T and co has kind T :=: U, then the overall expression has type U [ghc-fc-commentary]. Here, co must be a coercion
whose left-hand side is T.

Note that unlike the %coerce expression that existed in previous versions of Core, this means that %cast is (almost) type-safe:
the coercion argument provides evidence that can be verified by a typechecker. There are still unsafe %casts, corresponding to
the unsafe %coerce construct that existed in old versions of Core, because there is a primitive unsafe coercion type that can
be used to cast arbitrary types to each other. GHC uses this for such purposes as coercing the return type of a function (such as
error) which is guaranteed to never return:

case (error "") of
True -> 1
False -> 2

becomes:

%cast (error @ Bool (ZMZN @ Char))
(%unsafe Bool Integer);

%cast has no operational meaning and is only used in typechecking.

A %note expression carries arbitrary internal information that GHC finds interesting. The information is encoded as a string.
Expression notes currently generated by GHC include the inlining pragma (InlineMe) and cost-center labels for profiling.

A %external expression denotes an external identifier, which has the indicated type (always expressed in terms of Haskell
primitive types). External Core supports two kinds of external calls: %external and %dynexternal. Only the former is
supported by the current set of stand-alone Core tools. In addition, there is a %label construct which GHC may generate but
which the Core tools do not support.

The present syntax for externals is sufficient for describing C functions and labels. Interfacing to other languages may require
additional information or a different interpretation of the name string.

10.3.7 Expression Evaluation

The dynamic semantics of Core are defined on the type-erasure of the program: for example, we ignore all type abstractions and
applications. The denotational semantics of the resulting type-free program are just the conventional ones for a call-by-name
language, in which expressions are only evaluated on demand. But Core is intended to be a call-by-need language, in which

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 10 / 37

expressions are only evaluated once. To express the sharing behavior of call-by-need, we give an operational model in the style
of Launchbury [launchbury93natural].

This section describes the model informally; a more formal semantics is separately available as an executable interpreter.

To simplify the semantics, we consider only ‘well-behaved’ Core programs in which constructor and primitive applications are
fully saturated, and in which non-trivial expresssions of unlifted kind (#) appear only as scrutinees in %case expressions. Any
program can easily be put into this form; a separately available preprocessor illustrates how. In the remainder of this section, we
use ‘Core’ to mean ‘well-behaved’ Core.

Evaluating a Core expression means reducing it to weak-head normal form (WHNF), i.e., a primitive value, lambda abstraction,
or fully-applied data constructor. Evaluating a program means evaluating the expression main:ZCMain.main.

To make sure that expression evaluation is shared, we make use of a heap, which contains heap entries. A heap entry can be:

• A thunk, representing an unevaluated expression, also known as a suspension.

• A WHNF, representing an evaluated expression. The result of evaluating a thunk is a WHNF. A WHNF is always a closure
(corresponding to a lambda abstraction in the source program) or a data constructor application: computations over primitive
types are never suspended.

Heap pointers point to heap entries: at different times, the same heap pointer can point to either a thunk or a WHNF, because the
run-time system overwrites thunks with WHNFs as computation proceeds.

The suspended computation that a thunk represents might represent evaluating one of three different kinds of expression. The
run-time system allocates a different kind of thunk depending on what kind of expression it is:

• A thunk for a value definition has a group of suspended defining expressions, along with a list of bindings between defined
names and heap pointers to those suspensions. (A value definition may be a recursive group of definitions or a single non-
recursive definition, and it may be top-level (global) or let-bound (local)).

• A thunk for a function application (where the function is user-defined) has a suspended actual argument expression, and a
binding between the formal argument and a heap pointer to that suspension.

• A thunk for a constructor application has a suspended actual argument expression; the entire constructed value has a heap
pointer to that suspension embedded in it.

As computation proceeds, copies of the heap pointer for a given thunk propagate through the executing program. When another
computation demands the result of that thunk, the thunk is forced: the run-time system computes the thunk’s result, yielding a
WHNF, and overwrites the heap entry for the thunk with the WHNF. Now, all copies of the heap pointer point to the new heap
entry: a WHNF. Forcing occurs only in the context of

• evaluating the operator expression of an application;

• evaluating the scrutinee of a case expression; or

• evaluating an argument to a primitive or external function application

When no pointers to a heap entry (whether it is a thunk or WHNF) remain, the garbage collector can reclaim the space it uses.
We assume this happens implicitly.

With the exception of functions, arrays, and mutable variables, we intend that values of all primitive types should be held
unboxed: they should not be heap-allocated. This does not violate call-by-need semantics: all primitive types are unlifted, which
means that values of those types must be evaluated strictly. Unboxed tuple types are not heap-allocated either.

Certain primitives and %external functions cause side-effects to state threads or to the real world. Where the ordering of these
side-effects matters, Core already forces this order with data dependencies on the pseudo-values representing the threads.

An implementation must specially support the raisezh and handlezh primitives: for example, by using a handler stack.
Again, real-world threading guarantees that they will execute in the correct order.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 11 / 37

10.4 Primitive Module

The semantics of External Core rely on the contents and informal semantics of the primitive module ghc-prim:GHC.Pri-
m. Nearly all the primitives are required in order to cover GHC’s implementation of the Haskell98 standard prelude; the only
operators that can be completely omitted are those supporting the byte-code interpreter, parallelism, and foreign objects. Some
of the concurrency primitives are needed, but can be given degenerate implementations if it desired to target a purely sequential
backend (see Section the Non-concurrent Back End section).

In addition to these primitives, a large number of C library functions are required to implement the full standard Prelude, partic-
ularly to handle I/O and arithmetic on less usual types.

For a full listing of the names and types of the primitive operators, see the GHC library documentation [ghcprim].

10.4.1 Non-concurrent Back End

The Haskell98 standard prelude doesn’t include any concurrency support, but GHC’s implementation of it relies on the existence
of some concurrency primitives. However, it never actually forks multiple threads. Hence, the concurrency primitives can be
given degenerate implementations that will work in a non-concurrent setting, as follows:

• ThreadIdzh can be represented by a singleton type, whose (unique) value is returned by myThreadIdzh.

• forkzh can just die with an ‘unimplemented’ message.

• killThreadzh and yieldzh can also just die ‘unimplemented’ since in a one-thread world, the only thread a thread can
kill is itself, and if a thread yields the program hangs.

• MVarzh a can be represented by MutVarzh (Maybe a); where a concurrent implementation would block, the sequential
implementation can just die with a suitable message (since no other thread exists to unblock it).

• waitReadzh and waitWritezh can be implemented using a select with no timeout.

10.4.2 Literals

Only the following combination of literal forms and types are permitted:

Literal form Type Description
integer Intzh Int

Wordzh Word
Addrzh Address
Charzh Unicode character code

rational Floatzh Float
Doublezh Double

character Charzh Unicode character specified by ASCII character
string Addrzh Address of specified C-format string

[Launchbury94] John Launchbury and Simon L. Peyton-Jones, 1994.

[comp-by-trans-scp] Simon L. Peyton-Jones and A. L. M. Santos, 32, 1998.

[gadts] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn, ACM, New York NY
USA , 2006.

[ghc-api] Haskell Wiki, 2007.

[ghc-fc-commentary] GHC Wiki, 2006.

[ghc-inliner] Simon Peyton-Jones and Simon Marlow, 1999, Paris France .

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 12 / 37

[ghc-user-guide] The GHC Team, 2008.

[ghcprim] The GHC Team, 2008.

[haskell98] Simon Peyton-Jones, Cambridge University Press, Cambridge> UK , 2003.

[launchbury93natural] John Launchbury, Charleston South Carolina , 1993.

[pj:unboxed] Simon L. Peyton-Jones, John Launchbury, and J. Hughes, Springer-Verlag LNCS523, Cambridge Massachus-
setts USA , 1991, August 26-28.

[stg-machine] Simon L. Peyton-Jones, 2, 1992.

[system-fc] Martin Sulzmann, Manuel M.T. Chakravarty, Simon Peyton-Jones, and Kevin Donnelly, ACM, New York NY
USA , 2007.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 13 / 37

Chapter 11

What to do when something goes wrong

If you still have a problem after consulting this section, then you may have found a bug—please report it! See Section 1.3 for
details on how to report a bug and a list of things we’d like to know about your bug. If in doubt, send a report—we love mail
from irate users :-!

(Section 14.1, which describes Glasgow Haskell’s shortcomings vs. the Haskell language definition, may also be of interest.)

11.1 When the compiler “does the wrong thing”

“Help! The compiler crashed (or `panic’d)!” These events are always bugs in the GHC system—please report them.

“This is a terrible error message.” If you think that GHC could have produced a better error message, please report it as a bug.

“What about this warning from the C compiler?” For example: “. . . warning: `Foo’ declared `static’ but never defined.” Un-
sightly, but shouldn’t be a problem.

Sensitivity to .hi interface files: GHC is very sensitive about interface files. For example, if it picks up a non-standard Pr-
elude.hi file, pretty terrible things will happen. If you turn on -XNoImplicitPrelude, the compiler will almost
surely die, unless you know what you are doing.

Furthermore, as sketched below, you may have big problems running programs compiled using unstable interfaces.

“I think GHC is producing incorrect code”: Unlikely :-) A useful be-more-paranoid option to give to GHC is -dcore-li-
nt; this causes a “lint” pass to check for errors (notably type errors) after each Core-to-Core transformation pass. We run
with -dcore-lint on all the time; it costs about 5% in compile time.

“Why did I get a link error?” If the linker complains about not finding _<something>_fast, then something is inconsis-
tent: you probably didn’t compile modules in the proper dependency order.

“Is this line number right?” On this score, GHC usually does pretty well, especially if you “allow” it to be off by one or two.
In the case of an instance or class declaration, the line number may only point you to the declaration, not to a specific
method.

Please report line-number errors that you find particularly unhelpful.

11.2 When your program “does the wrong thing”

(For advice about overly slow or memory-hungry Haskell programs, please see Chapter 6).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 14 / 37

“Help! My program crashed!” (e.g., a `segmentation fault’ or `core dumped’)

If your program has no foreign calls in it, and no calls to known-unsafe functions (such as unsafePerformIO) then a
crash is always a BUG in the GHC system, except in one case: If your program is made of several modules, each module
must have been compiled after any modules on which it depends (unless you use .hi-boot files, in which case these
must be correct with respect to the module source).

For example, if an interface is lying about the type of an imported value then GHC may well generate duff code for the
importing module. This applies to pragmas inside interfaces too! If the pragma is lying (e.g., about the “arity” of a value),
then duff code may result. Furthermore, arities may change even if types do not.

In short, if you compile a module and its interface changes, then all the modules that import that interface must be re-
compiled.

A useful option to alert you when interfaces change is -hi-diffs. It will run diff on the changed interface file, before
and after, when applicable.

If you are using make, GHC can automatically generate the dependencies required in order to make sure that every module
is up-to-date with respect to its imported interfaces. Please see Section 4.7.11.

If you are down to your last-compile-before-a-bug-report, we would recommend that you add a -dcore-lint option
(for extra checking) to your compilation options.

So, before you report a bug because of a core dump, you should probably:

% rm *.o # scrub your object files
% make my_prog # re-make your program; use -hi-diffs to highlight changes;

as mentioned above, use -dcore-lint to be more paranoid
% ./my_prog ... # retry...

Of course, if you have foreign calls in your program then all bets are off, because you can trash the heap, the stack, or
whatever.

“My program entered an `absent’ argument.” This is definitely caused by a bug in GHC. Please report it (see Section 1.3).

“What’s with this `arithmetic (or `floating’) exception’ ”? Int, Float, and Double arithmetic is unchecked. Overflows,
underflows and loss of precision are either silent or reported as an exception by the operating system (depending on the
platform). Divide-by-zero may cause an untrapped exception (please report it if it does).

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 15 / 37

Chapter 12

Other Haskell utility programs

This section describes other program(s) which we distribute, that help with the Great Haskell Programming Task.

12.1 “Yacc for Haskell”: happy

Andy Gill and Simon Marlow have written a parser-generator for Haskell, called happy. Happy is to Haskell what Yacc is to C.

You can get happy from the Happy Homepage.

Happy is at its shining best when compiled by GHC.

12.2 Writing Haskell interfaces to C code: hsc2hs

The hsc2hs command can be used to automate some parts of the process of writing Haskell bindings to C code. It reads an
almost-Haskell source with embedded special constructs, and outputs a real Haskell file with these constructs processed, based
on information taken from some C headers. The extra constructs deal with accessing C data from Haskell.

It may also output a C file which contains additional C functions to be linked into the program, together with a C header that gets
included into the C code to which the Haskell module will be compiled (when compiled via C) and into the C file. These two
files are created when the #def construct is used (see below).

Actually hsc2hs does not output the Haskell file directly. It creates a C program that includes the headers, gets automatically
compiled and run. That program outputs the Haskell code.

In the following, “Haskell file” is the main output (usually a .hs file), “compiled Haskell file” is the Haskell file after ghc has
compiled it to C (i.e. a .hc file), “C program” is the program that outputs the Haskell file, “C file” is the optionally generated C
file, and “C header” is its header file.

12.2.1 command line syntax

hsc2hs takes input files as arguments, and flags that modify its behavior:

-o FILE or --output=FILE Name of the Haskell file.

-t FILE or --template=FILE The template file (see below).

-c PROG or --cc=PROG The C compiler to use (default: gcc)

-l PROG or --ld=PROG The linker to use (default: gcc).

-C FLAG or --cflag=FLAG An extra flag to pass to the C compiler.

http://www.haskell.org/happy/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 16 / 37

-I DIR Passed to the C compiler.

-L FLAG or --lflag=FLAG An extra flag to pass to the linker.

-i FILE or --include=FILE As if the appropriate #include directive was placed in the source.

-D NAME[=VALUE] or --define=NAME[=VALUE] As if the appropriate #define directive was placed in the source.

--no-compile Stop after writing out the intermediate C program to disk. The file name for the intermediate C program is
the input file name with .hsc replaced with _hsc_make.c.

-k or --keep-files Proceed as normal, but do not delete any intermediate files.

-x or --cross-compile Activate cross-compilation mode (see Section 12.2.4).

--cross-safe Restrict the .hsc directives to those supported by the --cross-compile mode (see Section 12.2.4). This
should be useful if your .hsc files must be safely cross-compiled and you wish to keep non-cross-compilable constructs
from creeping into them.

-? or --help Display a summary of the available flags and exit successfully.

-V or --version Output version information and exit successfully.

The input file should end with .hsc (it should be plain Haskell source only; literate Haskell is not supported at the moment).
Output files by default get names with the .hsc suffix replaced:

.hs Haskell file
_hsc.h C header
_hsc.c C file

The C program is compiled using the Haskell compiler. This provides the include path to HsFFI.h which is automatically
included into the C program.

12.2.2 Input syntax

All special processing is triggered by the # operator. To output a literal #, write it twice: ##. Inside string literals and comments
characters are not processed.

A # is followed by optional spaces and tabs, an alphanumeric keyword that describes the kind of processing, and its arguments.
Arguments look like C expressions separated by commas (they are not written inside parens). They extend up to the nearest
unmatched),] or }, or to the end of line if it occurs outside any () [] {} ’’ "" /**/ and is not preceded by a backslash.
Backslash-newline pairs are stripped.

In addition #{stuff} is equivalent to #stuff except that it’s self-delimited and thus needs not to be placed at the end of line
or in some brackets.

Meanings of specific keywords:

#include <file.h>, #include "file.h" The specified file gets included into the C program, the compiled Haskell
file, and the C header. <HsFFI.h> is included automatically.

#define name, #define name value, #undef name Similar to #include. Note that #includes and #defin-
es may be put in the same file twice so they should not assume otherwise.

#let name parameters = "definition" Defines a macro to be applied to the Haskell source. Parameter names are
comma-separated, not inside parens. Such macro is invoked as other #-constructs, starting with #name. The definition
will be put in the C program inside parens as arguments of printf. To refer to a parameter, close the quote, put a
parameter name and open the quote again, to let C string literals concatenate. Or use printf’s format directives. Values
of arguments must be given as strings, unless the macro stringifies them itself using the C preprocessor’s #parameter
syntax.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 17 / 37

#def C_definition The definition (of a function, variable, struct or typedef) is written to the C file, and its prototype or
extern declaration to the C header. Inline functions are handled correctly. struct definitions and typedefs are written to the
C program too. The inline, struct or typedef keyword must come just after def.

#if condition, #ifdef name, #ifndef name, #elif condition, #else, #endif, #error message, #warning message
Conditional compilation directives are passed unmodified to the C program, C file, and C header. Putting them in the C
program means that appropriate parts of the Haskell file will be skipped.

#const C_expression The expression must be convertible to long or unsigned long. Its value (literal or negated
literal) will be output.

#const_str C_expression The expression must be convertible to const char pointer. Its value (string literal) will be
output.

#type C_type A Haskell equivalent of the C numeric type will be output. It will be one of {Int,Word}{8,16,32,64},
Float, Double, LDouble.

#peek struct_type, field A function that peeks a field of a C struct will be output. It will have the type Storable
b => Ptr a -> IO b. The intention is that #peek and #poke can be used for implementing the operations of class
Storable for a given C struct (see the Foreign.Storable module in the library documentation).

#poke struct_type, field Similarly for poke. It will have the type Storable b => Ptr a -> b -> IO ().

#ptr struct_type, field Makes a pointer to a field struct. It will have the type Ptr a -> Ptr b.

#offset struct_type, field Computes the offset, in bytes, of field in struct_type. It will have type Int.

#size struct_type Computes the size, in bytes, of struct_type. It will have type Int.

#enum type, constructor, value, value, ... A shortcut for multiple definitions which use #const. Each
value is a name of a C integer constant, e.g. enumeration value. The name will be translated to Haskell by making
each letter following an underscore uppercase, making all the rest lowercase, and removing underscores. You can supply a
different translation by writing hs_name = c_value instead of a value, in which case c_value may be an arbitrary
expression. The hs_name will be defined as having the specified type. Its definition is the specified constructor
(which in fact may be an expression or be empty) applied to the appropriate integer value. You can have multiple #enum
definitions with the same type; this construct does not emit the type definition itself.

12.2.3 Custom constructs

#const, #type, #peek, #poke and #ptr are not hardwired into the hsc2hs, but are defined in a C template that is included
in the C program: template-hsc.h. Custom constructs and templates can be used too. Any #-construct with unknown key
is expected to be handled by a C template.

A C template should define a macro or function with name prefixed by hsc_ that handles the construct by emitting the expansion
to stdout. See template-hsc.h for examples.

Such macros can also be defined directly in the source. They are useful for making a #let-like macro whose expansion uses
other #let macros. Plain #let prepends hsc_ to the macro name and wraps the definition in a printf call.

12.2.4 Cross-compilation

hsc2hs normally operates by creating, compiling, and running a C program. That approach doesn’t work when cross-compiling --
in this case, the C compiler’s generates code for the target machine, not the host machine. For this situation, there’s a special mode
hsc2hs --cross-compile which can generate the .hs by extracting information from compilations only -- specifically, whether or
not compilation fails.

Only a subset of .hsc syntax is supported by --cross-compile. The following are unsupported:

• #{const_str}

• #{let}

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 18 / 37

• #{def}

• Custom constructs

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 19 / 37

Chapter 13

Running GHC on Win32 systems

13.1 Starting GHC on Windows platforms

The installer that installs GHC on Win32 also sets up the file-suffix associations for ".hs" and ".lhs" files so that double-clicking
them starts ghci.

Be aware of that ghc and ghci do require filenames containing spaces to be escaped using quotes:

c:\ghc\bin\ghci "c:\\Program Files\\Haskell\\Project.hs"

If the quotes are left off in the above command, ghci will interpret the filename as two, "c:\\Program" and "Files\\Haskell\\Project.hs".

13.2 Running GHCi on Windows

We recommend running GHCi in a standard Windows console: select the GHCi option from the start menu item added by the
GHC installer, or use Start->Run->cmd to get a Windows console and invoke ghci from there (as long as it’s in your
PATH).

If you run GHCi in a Cygwin or MSYS shell, then the Control-C behaviour is adversely affected. In one of these environments
you should use the ghcii.sh script to start GHCi, otherwise when you hit Control-C you’ll be returned to the shell prompt but
the GHCi process will still be running. However, even using the ghcii.sh script, if you hit Control-C then the GHCi process
will be killed immediately, rather than letting you interrupt a running program inside GHCi as it should. This problem is caused
by the fact that the Cygwin and MSYS shell environments don’t pass Control-C events to non-Cygwin child processes, because
in order to do that there needs to be a Windows console.

There’s an exception: you can use a Cygwin shell if the CYGWIN environment variable does not contain tty. In this mode, the
Cygwin shell behaves like a Windows console shell and console events are propagated to child processes. Note that the CYGWIN
environment variable must be set before starting the Cygwin shell; changing it afterwards has no effect on the shell.

This problem doesn’t just affect GHCi, it affects any GHC-compiled program that wants to catch console events. See the
GHC.ConsoleHandler module.

13.3 Interacting with the terminal

By default GHC builds applications that open a console window when they start. If you want to build a GUI-only application,
with no console window, use the flag -optl-mwindows in the link step.

Warning: Windows GUI-only programs have no stdin, stdout or stderr so using the ordinary Haskell input/output functions will
cause your program to fail with an IO exception, such as:

Fail: <stdout>: hPutChar: failed (Bad file descriptor)

file:../libraries/base-4.6.0.1/GHC-ConsoleHandler.html

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 20 / 37

However using Debug.Trace.trace is alright because it uses Windows debugging output support rather than stderr.

For some reason, Mingw ships with the readline library, but not with the readline headers. As a result, GHC (like Hugs)
does not use readline for interactive input on Windows. You can get a close simulation by using an emacs shell buffer!

13.4 Differences in library behaviour

Some of the standard Haskell libraries behave slightly differently on Windows.

• On Windows, the ’ˆZ’ character is interpreted as an end-of-file character, so if you read a file containing this character the file
will appear to end just before it. To avoid this, use IOExts.openFileEx to open a file in binary (untranslated) mode or
change an already opened file handle into binary mode using IOExts.hSetBinaryMode. The IOExts module is part of
the lang package.

13.5 Using GHC (and other GHC-compiled executables) with cygwin

13.5.1 Background

The cygwin tools aim to provide a unix-style API on top of the windows libraries, to facilitate ports of unix software to windows.
To this end, they introduce a unix-style directory hierarchy under some root directory (typically / is C:\cygwin\). Moreover,
everything built against the cygwin API (including the cygwin tools and programs compiled with cygwin’s ghc) will see / as the
root of their file system, happily pretending to work in a typical unix environment, and finding things like /bin and /usr/i-
nclude without ever explicitly bothering with their actual location on the windows system (probably C:\cygwin\bin and
C:\cygwin\usr\include).

13.5.2 The problem

GHC, by default, no longer depends on cygwin, but is a native windows program. It is built using mingw, and it uses mingw’s ghc
while compiling your Haskell sources (even if you call it from cygwin’s bash), but what matters here is that - just like any other
normal windows program - neither GHC nor the executables it produces are aware of cygwin’s pretended unix hierarchy. GHC
will happily accept either ’/’ or ’\’ as path separators, but it won’t know where to find /home/joe/Main.hs or /bin/bash
or the like. This causes all kinds of fun when GHC is used from within cygwin’s bash, or in make-sessions running under cygwin.

13.5.3 Things to do

• Don’t use absolute paths in make, configure & co if there is any chance that those might be passed to GHC (or to GHC-
compiled programs). Relative paths are fine because cygwin tools are happy with them and GHC accepts ’/’ as path-separator.
And relative paths don’t depend on where cygwin’s root directory is located, or on which partition or network drive your source
tree happens to reside, as long as you ’cd’ there first.

• If you have to use absolute paths (beware of the innocent-looking ROOT=`pwd` in makefile hierarchies or configure scripts),
cygwin provides a tool called cygpath that can convert cygwin’s unix-style paths to their actual windows-style counterparts.
Many cygwin tools actually accept absolute windows-style paths (remember, though, that you either need to escape ’\’ or
convert ’\’ to ’/’), so you should be fine just using those everywhere. If you need to use tools that do some kind of path-
mangling that depends on unix-style paths (one fun example is trying to interpret ’:’ as a separator in path lists..), you can still
try to convert paths using cygpath just before they are passed to GHC and friends.

• If you don’t have cygpath, you probably don’t have cygwin and hence no problems with it... unless you want to write one build
process for several platforms. Again, relative paths are your friend, but if you have to use absolute paths, and don’t want to use
different tools on different platforms, you can simply write a short Haskell program to print the current directory (thanks to
George Russell for this idea): compiled with GHC, this will give you the view of the file system that GHC depends on (which
will differ depending on whether GHC is compiled with cygwin’s gcc or mingw’s gcc or on a real unix system..) - that little
program can also deal with escaping ’\’ in paths. Apart from the banner and the startup time, something like this would also
do:

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 21 / 37

$ echo "Directory.getCurrentDirectory >>= putStrLn . init . tail . show " | ghci

13.6 Building and using Win32 DLLs

On Win32 platforms, the compiler is capable of both producing and using dynamic link libraries (DLLs) containing ghc-compiled
code. This section shows you how to make use of this facility.

There are two distinct ways in which DLLs can be used:

• You can turn each Haskell package into a DLL, so that multiple Haskell executables using the same packages can share the
DLL files. (As opposed to linking the libraries statically, which in effect creates a new copy of the RTS and all libraries for
each executable produced.)

That is the same as the dynamic linking on other platforms, and it is described in Section 4.13.

• You can package up a complete Haskell program as a DLL, to be called by some external (usually non-Haskell) program. This
is usually used to implement plugins and the like, and is described below.

13.6.1 Creating a DLL

Sealing up your Haskell library inside a DLL is straightforward; compile up the object files that make up the library, and then
build the DLL by issuing a command of the form:

ghc -shared -o foo.dll bar.o baz.o wibble.a -lfooble

By feeding the ghc compiler driver the option -shared, it will build a DLL rather than produce an executable. The DLL will
consist of all the object files and archives given on the command line.

A couple of things to notice:

• By default, the entry points of all the object files will be exported from the DLL when using -shared. Should you want to
constrain this, you can specify the module definition file to use on the command line as follows:

ghc -shared -o MyDef.def

See Microsoft documentation for details, but a module definition file simply lists what entry points you want to export. Here’s
one that’s suitable when building a Haskell COM server DLL:

EXPORTS
DllCanUnloadNow = DllCanUnloadNow@0
DllGetClassObject = DllGetClassObject@12
DllRegisterServer = DllRegisterServer@0
DllUnregisterServer = DllUnregisterServer@0

• In addition to creating a DLL, the -shared option also creates an import library. The import library name is derived from the
name of the DLL, as follows:

DLL: HScool.dll ==> import lib: libHScool.dll.a

The naming scheme may look a bit weird, but it has the purpose of allowing the co-existence of import libraries with ordinary
static libraries (e.g., libHSfoo.a and libHSfoo.dll.a. Additionally, when the compiler driver is linking in non-static
mode, it will rewrite occurrence of -lHSfoo on the command line to -lHSfoo.dll. By doing this for you, switching from
non-static to static linking is simply a question of adding -static to your command line.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 22 / 37

13.6.2 Making DLLs to be called from other languages

This section describes how to create DLLs to be called from other languages, such as Visual Basic or C++. This is a special case
of Section 8.2.1.2; we’ll deal with the DLL-specific issues that arise below. Here’s an example:

Use foreign export declarations to export the Haskell functions you want to call from the outside. For example:

-- Adder.hs
{-# LANGUAGE ForeignFunctionInterface #-}
module Adder where

adder :: Int -> Int -> IO Int -- gratuitous use of IO
adder x y = return (x+y)

foreign export stdcall adder :: Int -> Int -> IO Int

Add some helper code that starts up and shuts down the Haskell RTS:

// StartEnd.c
#include <Rts.h>

void HsStart()
{

int argc = 1;
char* argv[] = {"ghcDll", NULL}; // argv must end with NULL

// Initialize Haskell runtime
char** args = argv;
hs_init(&argc, &args);

}

void HsEnd()
{

hs_exit();
}

Here, Adder is the name of the root module in the module tree (as mentioned above, there must be a single root module, and
hence a single module tree in the DLL). Compile everything up:

ghc -c Adder.hs
ghc -c StartEnd.c
ghc -shared -o Adder.dll Adder.o Adder_stub.o StartEnd.o

Now the file Adder.dll can be used from other programming languages. Before calling any functions in Adder it is necessary
to call HsStart, and at the very end call HsEnd.

Warning: It may appear tempting to use DllMain to call hs_init/hs_exit, but this won’t work (particularly if you compile
with -threaded). There are severe restrictions on which actions can be performed during DllMain, and hs_init violates
these restrictions, which can lead to your dll freezing during startup (see bug #3605).

13.6.2.1 Using from VBA

An example of using Adder.dll from VBA is:

Private Declare Function Adder Lib "Adder.dll" Alias "adder@8" _
(ByVal x As Long, ByVal y As Long) As Long

Private Declare Sub HsStart Lib "Adder.dll" ()
Private Declare Sub HsEnd Lib "Adder.dll" ()

Private Sub Document_Close()

http://hackage.haskell.org/trac/ghc/ticket/3605

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 23 / 37

HsEnd
End Sub

Private Sub Document_Open()
HsStart
End Sub

Public Sub Test()
MsgBox "12 + 5 = " & Adder(12, 5)
End Sub

This example uses the Document_Open/Close functions of Microsoft Word, but provided HsStart is called before the first
function, and HsEnd after the last, then it will work fine.

13.6.2.2 Using from C++

An example of using Adder.dll from C++ is:

// Tester.cpp
#include "HsFFI.h"
#include "Adder_stub.h"
#include <stdio.h>

extern "C" {
void HsStart();
void HsEnd();

}

int main()
{

HsStart();
// can now safely call functions from the DLL
printf("12 + 5 = %i\n", adder(12,5)) ;
HsEnd();
return 0;

}

This can be compiled and run with:

$ ghc -o tester Tester.cpp Adder.dll.a
$ tester
12 + 5 = 17

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 24 / 37

Chapter 14

Known bugs and infelicities

14.1 Haskell standards vs. Glasgow Haskell: language non-compliance

This section lists Glasgow Haskell infelicities in its implementation of Haskell 98 and Haskell 2010. See also the “when things
go wrong” section (Chapter 11) for information about crashes, space leaks, and other undesirable phenomena.

The limitations here are listed in Haskell Report order (roughly).

14.1.1 Divergence from Haskell 98 and Haskell 2010

By default, GHC mainly aims to behave (mostly) like a Haskell 2010 compiler, although you can tell it to try to behave like
a particular version of the langauge with the -XHaskell98 and -XHaskell2010 flags. The known deviations from the
standards are described below. Unless otherwise stated, the deviation applies in Haskell 98, Haskell 2010 and the default modes.

14.1.1.1 Lexical syntax

• Certain lexical rules regarding qualified identifiers are slightly different in GHC compared to the Haskell report. When you
have module.reservedop, such as M.\, GHC will interpret it as a single qualified operator rather than the two lexemes M
and .\.

14.1.1.2 Context-free syntax

• In Haskell 98 mode and by default (but not in Haskell 2010 mode), GHC is a little less strict about the layout rule when used
in do expressions. Specifically, the restriction that "a nested context must be indented further to the right than the enclosing
context" is relaxed to allow the nested context to be at the same level as the enclosing context, if the enclosing context is a do
expression.

For example, the following code is accepted by GHC:

main = do args <- getArgs
if null args then return [] else do

ps <- mapM process args
mapM print ps

This behaviour is controlled by the NondecreasingIndentation extension.

• GHC doesn’t do the fixity resolution in expressions during parsing as required by Haskell 98 (but not by Haskell 2010). For
example, according to the Haskell 98 report, the following expression is legal:

let x = 42 in x == 42 == True

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 25 / 37

and parses as:

(let x = 42 in x == 42) == True

because according to the report, the let expression ‘extends as far to the right as possible’. Since it can’t extend past the
second equals sign without causing a parse error (== is non-fix), the let-expression must terminate there. GHC simply
gobbles up the whole expression, parsing like this:

(let x = 42 in x == 42 == True)

14.1.1.3 Expressions and patterns

In its default mode, GHC makes some programs sligtly more defined than they should be. For example, consider

f :: [a] -> b -> b
f [] = error "urk"
f (x:xs) = \v -> v

main = print (f [] ‘seq‘ True)

This should call error but actually prints True. Reason: GHC eta-expands f to

f :: [a] -> b -> b
f [] v = error "urk"
f (x:xs) v = v

This improves efficiency slightly but significantly for most programs, and is bad for only a few. To suppress this bogus "optimi-
sation" use -fpedantic-bottoms.

14.1.1.4 Declarations and bindings

In its default mode, GHC does not accept datatype contexts, as it has been decided to remove them from the next version of the
language standard. This behaviour can be controlled with the DatatypeContexts extension. See Section 7.4.2.

14.1.1.5 Module system and interface files

GHC requires the use of hs-boot files to cut the recursive loops among mutually recursive modules as described in Sec-
tion 4.7.9. This more of an infelicity than a bug: the Haskell Report says (Section 5.7) "Depending on the Haskell implementation
used, separate compilation of mutually recursive modules may require that imported modules contain additional information so
that they may be referenced before they are compiled. Explicit type signatures for all exported values may be necessary to deal
with mutual recursion. The precise details of separate compilation are not defined by this Report."

14.1.1.6 Numbers, basic types, and built-in classes

Num superclasses The Num class does not have Show or Eq superclasses.

You can make code that works with both Haskell98/Haskell2010 and GHC by:

• Whenever you make a Num instance of a type, also make Show and Eq instances, and

• Whenever you give a function, instance or class a Num t constraint, also give it Show t and Eq t constraints.

Bits superclasses The Bits class does not have a Num superclasses. It therefore does not have default methods for the bit,
testBit and popCount methods.

You can make code that works with both Haskell2010 and GHC by:

• Whenever you make a Bits instance of a type, also make a Num instance, and

http://haskell.org/onlinereport/modules.html#sect5.7

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 26 / 37

• Whenever you give a function, instance or class a Bits t constraint, also give it a Num t constraint, and

• Always define the bit, testBit and popCount methods in Bits instances.

Extra instances The following extra instances are defined:

instance Functor ((->) r)
instance Monad ((->) r)
instance Functor ((,) a)
instance Functor (Either a)
instance Monad (Either e)

Multiply-defined array elements—not checked: This code fragment should elicit a fatal error, but it does not:

main = print (array (1,1) [(1,2), (1,3)])

GHC’s implementation of array takes the value of an array slot from the last (index,value) pair in the list, and does no
checking for duplicates. The reason for this is efficiency, pure and simple.

14.1.1.7 In Prelude support

Arbitrary-sized tuples Tuples are currently limited to size 100. HOWEVER: standard instances for tuples (Eq, Ord, Bound-
ed, Ix Read, and Show) are available only up to 16-tuples.

This limitation is easily subvertible, so please ask if you get stuck on it.

Reading integers GHC’s implementation of the Read class for integral types accepts hexadecimal and octal literals (the code
in the Haskell 98 report doesn’t). So, for example,

read "0xf00" :: Int

works in GHC.

A possible reason for this is that readLitChar accepts hex and octal escapes, so it seems inconsistent not to do so for
integers too.

isAlpha The Haskell 98 definition of isAlpha is:

isAlpha c = isUpper c || isLower c

GHC’s implementation diverges from the Haskell 98 definition in the sense that Unicode alphabetic characters which are
neither upper nor lower case will still be identified as alphabetic by isAlpha.

hGetContents Lazy I/O throws an exception if an error is encountered, in contrast to the Haskell 98 spec which requires
that errors are discarded (see Section 21.2.2 of the Haskell 98 report). The exception thrown is the usual IO exception that
would be thrown if the failing IO operation was performed in the IO monad, and can be caught by System.IO.Erro-
r.catch or Control.Exception.catch.

14.1.1.8 The Foreign Function Interface

hs_init() not allowed after hs_exit() The FFI spec requires the implementation to support re-initialising itself after
being shut down with hs_exit(), but GHC does not currently support that.

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 27 / 37

14.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and Haskell 2010

This section documents GHC’s take on various issues that are left undefined or implementation specific in Haskell 98.

The Char type Following the ISO-10646 standard, maxBound :: Char in GHC is 0x10FFFF.

Sized integral types In GHC the Int type follows the size of an address on the host architecture; in other words it holds 32
bits on a 32-bit machine, and 64-bits on a 64-bit machine.

Arithmetic on Int is unchecked for overflow, so all operations on Int happen modulo 2n where n is the size in bits of
the Int type.

The fromInteger function (and hence also fromIntegral) is a special case when converting to Int. The value
of fromIntegral x :: Int is given by taking the lower n bits of (abs x), multiplied by the sign of x (in 2’s
complement n-bit arithmetic). This behaviour was chosen so that for example writing 0xffffffff :: Int preserves
the bit-pattern in the resulting Int.

Negative literals, such as -3, are specified by (a careful reading of) the Haskell Report as meaning Prelude.negate
(Prelude.fromInteger 3). So -2147483648 means negate (fromInteger 2147483648). Since f-
romInteger takes the lower 32 bits of the representation, fromInteger (2147483648::Integer), computed
at type Int is -2147483648::Int. The negate operation then overflows, but it is unchecked, so negate (-2-
147483648::Int) is just -2147483648. In short, one can write minBound::Int as a literal with the expected
meaning (but that is not in general guaranteed).

The fromIntegral function also preserves bit-patterns when converting between the sized integral types (Int8, I-
nt16, Int32, Int64 and the unsigned Word variants), see the modules Data.Int and Data.Word in the library
documentation.

Unchecked float arithmetic Operations on Float and Double numbers are unchecked for overflow, underflow, and other
sad occurrences. (note, however, that some architectures trap floating-point overflow and loss-of-precision and report a
floating-point exception, probably terminating the program).

14.2 Known bugs or infelicities

The bug tracker lists bugs that have been reported in GHC but not yet fixed: see the GHC Trac. In addition to those, GHC also
has the following known bugs or infelicities. These bugs are more permanent; it is unlikely that any of them will be fixed in the
short term.

14.2.1 Bugs in GHC

• GHC can warn about non-exhaustive or overlapping patterns (see Section 4.8), and usually does so correctly. But not always.
It gets confused by string patterns, and by guards, and can then emit bogus warnings. The entire overlap-check code needs an
overhaul really.

• GHC does not allow you to have a data type with a context that mentions type variables that are not data type parameters. For
example:

data C a b => T a = MkT a

so that MkT’s type is

MkT :: forall a b. C a b => a -> T a

In principle, with a suitable class declaration with a functional dependency, it’s possible that this type is not ambiguous; but
GHC nevertheless rejects it. The type variables mentioned in the context of the data type declaration must be among the type
parameters of the data type.

• GHC’s inliner can be persuaded into non-termination using the standard way to encode recursion via a data type:

http://hackage.haskell.org/trac/ghc/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 28 / 37

data U = MkU (U -> Bool)

russel :: U -> Bool
russel u@(MkU p) = not $ p u

x :: Bool
x = russel (MkU russel)

We have never found another class of programs, other than this contrived one, that makes GHC diverge, and fixing the problem
would impose an extra overhead on every compilation. So the bug remains un-fixed. There is more background in Secrets of
the GHC inliner.

• GHC does not keep careful track of what instance declarations are ’in scope’ if they come from other packages. Instead, all
instance declarations that GHC has seen in other packages are all in scope everywhere, whether or not the module from that
package is used by the command-line expression. This bug affects only the --make mode and GHCi.

• On 32-bit x86 platforms when using the native code generator, the -fexcess-precision option is always on. This
means that floating-point calculations are non-deterministic, because depending on how the program is compiled (optimisation
settings, for example), certain calculations might be done at 80-bit precision instead of the intended 32-bit or 64-bit precision.
Floating-point results may differ when optimisation is turned on. In the worst case, referential transparency is violated, because
for example let x = E1 in E2 can evaluate to a different value than E2[E1/x].

One workaround is to use the -msse2 option (see Section 4.16, which generates code to use the SSE2 instruction set instead
of the x87 instruction set. SSE2 code uses the correct precision for all floating-point operations, and so gives deterministic
results. However, note that this only works with processors that support SSE2 (Intel Pentium 4 or AMD Athlon 64 and later),
which is why the option is not enabled by default. The libraries that come with GHC are probably built without this option,
unless you built GHC yourself.

14.2.2 Bugs in GHCi (the interactive GHC)

• GHCi does not respect the default declaration in the module whose scope you are in. Instead, for expressions typed at the
command line, you always get the default default-type behaviour; that is, default(Int,Double).

It would be better for GHCi to record what the default settings in each module are, and use those of the ’current’ module
(whatever that is).

• On Windows, there’s a GNU ld/BFD bug whereby it emits bogus PE object files that have more than 0xffff relocations. When
GHCi tries to load a package affected by this bug, you get an error message of the form

Loading package javavm ... linking ... WARNING: Overflown relocation field (# relocs found ←↩
: 30765)

The last time we looked, this bug still wasn’t fixed in the BFD codebase, and there wasn’t any noticeable interest in fixing it
when we reported the bug back in 2001 or so.

The workaround is to split up the .o files that make up your package into two or more .o’s, along the lines of how the "base"
package does it.

http://research.microsoft.com/~simonpj/Papers/inlining/
http://research.microsoft.com/~simonpj/Papers/inlining/

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 29 / 37

Chapter 15

Index

_
+RTS, 84
+m, 35
+r, 36
+s, 36
+t, 16, 36
--RTS, 85
--install-signal-handlers

RTS option, 86
--machine-readable

RTS option, 88
--show-iface, 49
--verbose

ghc-pkg option, 66
-?, 66

RTS option, 85
-A

RTS option, 86
-A<size> RTS option, 133, 136
-B

RTS option, 91
-C, 42, 44
-Cs

RTS option, 82
-D, 75

RTS option, 91
-E, 42, 44
-E option, 44
-F, 76

RTS option, 86
-G

RTS option, 86
-G RTS option, 136
-H, 45, 133

RTS option, 87
-I, 75

RTS option, 87
-K

RTS option, 88
-L, 77

RTS option, 121
-M

RTS option, 88

-M<size> RTS option, 136
-Nx

RTS option, 78, 82, 83
-O, 38, 218
-O option, 70
-O* not specified, 70
-O0, 70
-O1 option, 70
-O2 option, 70
-P, 117, 119
-RTS, 84
-Rghc-timing, 45
-S, 42, 44

RTS option, 88
-S RTS option, 136
-T

RTS option, 88
-U, 75
-V, 43, 66

RTS option, 85, 119
-W option, 55
-Wall, 55
-Werror, 55
-Wwarn, 55
-XForeignFunctionInterface, 244
-XIncoherentInstances, 177
-XMonoPatBinds, 234
-XNPlusKPatterns, 143
-XNoImplicitPrelude option, 13, 150
-XNoMonoPatBinds, 234
-XNoMonomorphismRestriction, 234
-XNoTraditionalRecordSyntax, 143
-XOverlappingInstances, 177
-XTemplateHaskell, 206
-XUndecidableInstances, 177
-XUnicodeSyntax, 139
-Z

RTS option, 92
-auto-all, 115
-c, 42, 44, 77

RTS option, 86
-clear-package-db, 62
-cpp, 44, 75

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 30 / 37

-cpp option, 75
-cpp vs string gaps, 76
-dcmm-lint, 95
-dcore-lint, 58, 95
-dcore-lint option, 13
-ddump options, 93
-ddump-asm, 94
-ddump-bcos, 94
-ddump-cmm, 94
-ddump-core-stats, 94
-ddump-cpranal, 94
-ddump-cse, 94
-ddump-deriv, 93
-ddump-ds, 93
-ddump-flatC, 94
-ddump-foreign, 94
-ddump-hi, 49
-ddump-hi-diffs, 49
-ddump-if-trace, 94
-ddump-inlinings, 94
-ddump-llvm, 94
-ddump-minimal-imports, 49
-ddump-occur-anal, 94
-ddump-opt-cmm, 94
-ddump-parsed, 93
-ddump-prep, 94
-ddump-rn, 93
-ddump-rn-trace, 94
-ddump-rule-firings, 94
-ddump-rule-rewrites, 94
-ddump-rules, 94
-ddump-simpl, 94
-ddump-simpl-iterations, 94
-ddump-simpl-phases, 94
-ddump-simpl-stats option, 94
-ddump-spec, 94
-ddump-splices, 93
-ddump-stg, 94
-ddump-stranal, 94
-ddump-tc, 93
-ddump-tc-trace, 94
-ddump-tv-trace, 94
-ddump-types, 93
-ddump-vect, 94
-ddump-worker-wrapper, 94
-debug, 78
-dfaststring-stats, 94
-distrust, 61
-distrust-all, 61
-dno-debug-output, 95
-dppr-case-as-let, 95
-dppr-colsNNN, 95
-dppr-debug, 94
-dppr-user-length, 95
-dshow-passes, 94
-dshow-rn-stats, 94
-dstg-lint, 95

-dsuppress-all, 95
-dsuppress-coercions, 95
-dsuppress-idinfo, 95
-dsuppress-module-prefixes, 95
-dsuppress-type-applications, 95
-dsuppress-type-signatures, 95
-dsuppress-uniques, 95
-dumpdir, 48
-dverbose-core2core, 94
-dverbose-stg2stg, 94
-dylib-install-name, 79
-dynamic, 77
-dynload, 78
-eventlog, 78
-f, 65
-f* options (GHC), 70
-fPIC, 77
-fasm, 76
-fbyte-code, 76
-fcse, 70
-fdefer-type-errors, 55
-ferror-spans, 45
-fexcess-precision, 28, 72
-fext-core, 93
-fforce-recomp, 49
-ffull-laziness, 71
-fglasgow-exts, 137
-fhelpful-errors, 55
-fignore-asserts, 73, 218
-fignore-interface-pragmas, 73
-fliberate-case, 71
-fllvm, 76
-fno-* options (GHC), 70
-fno-code, 76
-fno-embed-manifest, 79
-fno-force-recomp, 49
-fno-gen-manifest, 79
-fno-implicit-import-qualified, 19
-fno-print-bind-result, 15
-fno-prof-cafs, 119
-fno-prof-count-entries, 119
-fno-shared-implib, 79
-fno-state-hack, 72
-fobject-code, 76
-fomit-interface-pragmas, 73
-fpackage-trust, 241
-fpedantic-bottoms, 72
-fprint-bind-result, 15
-fprof-auto, 115, 118
-fprof-auto-calls, 118
-fprof-auto-top, 118
-fprof-cafs, 118, 119
-framework, 77
-framework-path, 77
-fsimpl-tick-factor, 72
-fspec-constr, 70
-fspecialise, 71

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 31 / 37

-fstatic-argument-transformation, 71
-funbox-strict-fields, 70
-funfolding-creation-threshold, 72
-funfolding-use-threshold, 72
-funfolding-use-threshold0 option, 136
-fvia-C, 73
-fwarn-auto-orphans, 57
-fwarn-deprecated-flags, 55
-fwarn-dodgy-exports, 56
-fwarn-dodgy-foreign-imports, 55
-fwarn-dodgy-imports, 56
-fwarn-duplicate-exports, 56
-fwarn-hi-shadowing, 56
-fwarn-identities, 56
-fwarn-implicit-prelude, 56
-fwarn-import-lists, 57
-fwarn-incomplete-patterns, 56
-fwarn-incomplete-record-updates, 56
-fwarn-incomplete-uni-patterns, 56
-fwarn-lazy-unlifted-bindings, 56
-fwarn-missing-fields, 57
-fwarn-missing-local-sigs, 57
-fwarn-missing-methods, 57
-fwarn-missing-signatures, 57
-fwarn-missing-signatures option, 134
-fwarn-monomorphism-restriction, 58
-fwarn-name-shadowing, 57
-fwarn-orphans, 57
-fwarn-overlapping-patterns, 57
-fwarn-tabs, 58
-fwarn-type-defaults, 58
-fwarn-unrecognised-pragmas, 55
-fwarn-unsupported-calling-conventions, 55
-fwarn-unused-binds, 58
-fwarn-unused-do-bind, 58
-fwarn-unused-imports, 58
-fwarn-unused-matches, 58
-fwarn-warnings-deprecations, 55
-fwarn-wrong-do-bind, 58
-ghci-script, 37
-global-package-db, 62
-h<break-down>, 123
-hC

RTS option, 121
-hT

RTS option, 90
-hb

RTS option, 120, 121
-hc

RTS option, 120, 121
-hcsuf, 48
-hd

RTS option, 120, 121
-hi-diffs option, 14
-hide-package, 60
-hidir, 48
-hisuf, 48

-hm
RTS option, 120, 121

-hr
RTS option, 120, 121

-hy
RTS option, 120, 121

-i, 121
-idirs, 47
-ignore-dot-ghci, 37
-ignore-package, 60
-k

RTS option, 87
-kc

RTS option, 87, 88
-keep-hc-file, 48
-keep-hc-files, 48
-keep-llvm-file, 48
-keep-llvm-files, 48
-keep-s-file, 48
-keep-s-files, 48
-keep-tmp-files, 48
-l, 77

RTS option, 90
-m

RTS option, 88
-m* options, 84
-main-is, 78
-msse2, 28
-no-auto-link-packages, 61
-no-fprof-auto, 119
-no-global-package-db, 62
-no-hs-main, 78, 247
-no-user-package-db, 62
-o, 47
-odir, 47
-ohi, 48
-optF, 74
-optL, 74
-optP, 74
-opta, 75
-optc, 74
-optdll, 75
-optl, 75
-optlc, 75
-optlo, 74
-optm, 75
-optwindres, 75
-osuf, 48, 209
-outputdir, 48
-p, 119

RTS option, 115
-pa, 119
-package, 60, 77
-package-db, 62, 65
-package-id, 60
-package-name, 61
-pgmF, 74, 111

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 32 / 37

-pgmL, 74, 111
-pgmP, 74, 111
-pgma, 74, 111
-pgmc, 74, 111
-pgmdll, 74, 111
-pgml, 74, 111
-pgmlc, 74, 111
-pgmlo, 74, 111
-pgms, 74
-pgmwindres, 74
-prof, 118, 209
-qbRTS option, 87
-qgRTS option, 87
-r

RTS option, 91
-r RTS option, 131
-rtsopts, 78, 247
-s

RTS option, 88
-shared, 77
-split-objs, 77
-static, 77
-stubdir, 48
-t

RTS option, 88
-threaded, 78
-tmpdir, 49
-tmpdir <dir> option, 49
-trust, 61
-user-package-db, 62
-v, 45, 133

ghc-pkg option, 66
RTS option, 91

-w, 55
-with-rtsopts, 79
-x, 44
-xc

RTS option, 91, 119
-xm

RTS option, 86
-xt

RTS option, 121
.ghci

file, 37
.hc files, saving, 48
.hi files, 46
.ll files, saving, 48
.o files, 46
.s files, saving, 48
:, 33
:!, 35
:?, 33
:abandon, 31
:add, 31
:back, 31
:browse, 31
:cd, 32

:cmd, 32
:continue, 32
:def, 32
:delete, 33
:edit, 33
:etags, 32
:force, 33
:forward, 33
:help, 33
:history, 33
:info, 33
:kind, 33
:load, 12, 33
:main, 33
:module, 34
:print, 34
:quit, 34
:reload, 12, 34
:run, 34
:script, 34
:set, 34, 35
:set +m, 16
:set args, 34
:set prog, 34
:seti, 35
:show, 35
:show bindings, 35
:show breaks, 35
:show context, 35
:show imports, 35
:show languages, 35
:show modules, 35
:show packages, 35
:sprint, 35
:step, 35
:trace, 35
:type, 35
:undef, 35
:unset, 35
__GLASGOW_HASKELL__, 2, 3, 75
__PARALLEL_HASKELL__, 75
––--show-iface, 42
––force, 65
––global, 66
––help, 42, 66
––info, 43
––make, 42
––numeric-version, 43
––print-libdir, 43
––supported-extensions, 43
––user, 66
––version, 43, 66
––interactive, 30
––make, 43
–shared, 21

A

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 33 / 37

allocation area, size, 86
ANN, 252, 253
ANN module, 253
ANN type, 253
apparently erroneous do binding, warning, 58
arguments

command-line, 41
ASCII, 46
Assertions, 218
author

package specification, 68
auto

package specification, 68

B
Bang patterns, 216
binds, unused, 58
bugs

reporting, 2

C
C calls, function headers, 249
C code generator, 73
C pre-processor options, 75
CAFs

in GHCi, 36
category

package specification, 68
cc-options

package specification, 69
Char

size of, 27
code coverage, 126
command-line

arguments, 41
compacting garbage collection, 86
compiled code

in GHCi, 13
compiler problems, 13
compiling faster, 133
Concurrent Haskell

using, 82
CONLIKE, 221
consistency checks, 95
Constant Applicative Form, see CAFs
constructor fields, strict, 70
copyright

package specification, 68
CORE pragma, 231
Core syntax, how to read, 95
core, annotation, 231
cost centres

automatically inserting, 118
cost-centre profiling, 115
cpp, pre-processing with, 75
Creating a Win32 DLL, 21

D

debugger
in GHCi, 22

debugging options (for GHC), 93
defaulting mechanism, warning, 58
dependencies in Makefiles, 52
dependency-generation mode, 42
depends

package specification, 69
DEPRECATED, 219
deprecated-flags, 55
deprecations, 55
description

package specification, 68
DLL-creation mode, 42
DLLs, Win32, 21
do binding, apparently erroneous, 58
do binding, unused, 58
do-notation

in GHCi, 15
dumping GHC intermediates, 93
duplicate exports, warning, 56
dynamic

options, 36, 41
Dynamic libraries

using, 80
Dynamic link libraries, Win32, 21

E
encoding, 46
Environment variable

GHC_PACKAGE_PATH, 62
environment variable

for setting RTS options, 85
eval mode, 42
eventlog files, 90
events, 90
export lists, duplicates, 56
exposed

package specification, 68
exposed-modules

package specification, 68
extended list comprehensions, 146
extensions

options controlling, 137
extensions, GHC, 137
extra-libraries

package specification, 69

F
faster compiling, 133
faster programs, how to produce, 134
FFI

GHCi support, 11
fields, missing, 57
file suffixes for GHC, 42
filenames, 46

of modules, 12

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 34 / 37

finding interface files, 46
floating-point exceptions, 27
forall, 155
forcing GHC-phase options, 74
foreign, 155
foreign export

with GHC, 246
Foreign Function Interface

GHCi support, 11
formatting dumps, 95
framework-dirs

package specification, 69
frameworks

package specification, 69
fromInteger, 27
fromIntegral, 27

G
garbage collection

compacting, 86
garbage collector

options, 86
generations, number of, 86
getArgs, 34
getProgName, 34
ghc backends, 73
ghc code generators, 73
GHC vs the Haskell standards, 24
GHC, using, 40
GHC_PACKAGE_PATH, 62
GHCi, 11
ghci, 42
GHCRTS, 85
Glasgow Haskell mailing lists, 1
Glasgow Parallel Haskell, 235
group, 146

H
haddock-html

package specification, 69
haddock-interfaces

package specification, 69
Happy, 15
happy parser generator, 15
Haskell Program Coverage, 126
Haskell standards vs GHC, 24
heap profiles, 123
heap size, factor, 86
heap size, maximum, 88
heap size, suggested, 87
heap space, using less, 136
heap, minimum free, 88
help options, 44
hidden-modules

package specification, 68
homepage

package specification, 68

hooks
RTS, 85

hp2ps, 123
hp2ps program, 123
hpc, 126
hs-boot files, 50
hs-libraries

package specification, 69
hsc2hs, 15
Hugs, 11
hugs-options

package specification, 69

I
id

package specification, 68
idle GC, 87
implicit parameters, 155
implicit prelude, warning, 56
import lists, missing, 57
import-dirs

package specification, 68
importing, hi-boot files, 50
imports, unused, 58
improvement, code, 69
include-dirs

package specification, 69
includes

package specification, 69
incomplete patterns, warning, 56
incomplete record updates, warning, 56
INLINE, 220
INLINE pragma, 220
inlining, controlling, 72
installer detection, 79
Int

size of, 27
interactive, see GHCi
interactive mode, 42
interface files, 46
interface files, finding them, 46
interface files, options, 49
intermediate code generation, 93
intermediate files, saving, 48
intermediate passes, output, 93
interpreter, see GHCi
invoking

GHCi, 30
it, 20

L
LANGUAGE

pragma, 219
language

option, 137
language, GHC, 137
Latin-1, 46

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 35 / 37

ld options, 77
ld-options

package specification, 69
lhs suffix, 42
libdir, 43
libraries

with GHCi, 31
library-dirs

package specification, 68
license-file

package specification, 68
LINE

pragma, 222
linker options, 77
linking Haskell libraries with foreign code, 78
lint, 95
list comprehensions

generalised, 146
parallel, 146

LLVM code generator, 73

M
machine-specific options, 84
mailing lists, Glasgow Haskell, 1
maintainer

package specification, 68
make, 51
make and recompilation, 45
make mode, 42
Makefile dependencies, 52
Makefiles

avoiding, 43
MallocFailHook, 85
manifest, 79
matches, unused, 58
mdo, 155
memory, using less heap, 136
methods, missing, 57
missing fields, warning, 57
missing import lists, warning, 57
missing methods, warning, 57
mode

options, 41
module system, recursion, 50
modules

and filenames, 12
monad comprehensions, 148
monomorphism restriction, warning, 58
multicore, 78, 82
multiprocessor, 78, 82

N
name

package specification, 68
native code generator, 73
NOINLINE, 221
NOTINLINE, 221

NOUNPACK, 226

O
object files, 46
optimisation, 69
optimise

aggressively, 70
normally, 70

options
for profiling, 118
GHCi, 35
language, 137

OPTIONS_GHC, 219
OPTIONS_GHC pragma, 41
orphan instance, 54
orphan instances, warning, 57
orphan module, 54
orphan rule, 54
orphan rules, warning, 57
OutOfHeapHook, 85
output-directing options, 47
overflow

Int, 27
overlapping patterns, warning, 57
overloading, death to, 134, 223, 225

P
package trust, 242
package-url

package specification, 68
packages, 59

building, 66
management, 64
using, 59
with GHCi, 30

parallel list comprehensions, 146
parallelism, 78, 82, 235
parser generator for Haskell, 15
Pattern guards (Glasgow extension), 141
patterns, incomplete, 56
patterns, overlapping, 57
phases, changing, 74
platform-specific options, 84
postscript, from heap profiles, 123
pragma, 218

LANGUAGE, 219
LINE, 222
OPTIONS_GHC, 219

pragma, CORE, 231
pragma, RULES, 226
pragma, SPECIALIZE, 223
pragmas, 55
pre-processing: cpp, 75
pre-processing: custom, 76
Pre-processor options, 76
problems, 13
problems running your program, 13

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 36 / 37

problems with the compiler, 13
proc, 155
profiling, 115

options, 118
ticky ticky, 91
with Template Haskell, 209

profiling, ticky-ticky, 130
prompt

GHCi, 11

Q
quasi-quotation, 155

R
reading Core syntax, 95
recompilation checker, 45, 49
record updates, incomplete, 56
recursion, between modules, 50
redirecting compilation output, 47
reporting bugs, 2
rewrite rules, 226
RTS, 92
RTS behaviour, changing, 85
RTS hooks, 85
RTS options, 84

from the environment, 85
garbage collection, 86

RTS options, concurrent, 82
RTS options, hacking/debugging, 91
RTS options, setting, 84
RULES pragma, 226
runghc, 39
running, compiled program, 84
runtime control of Haskell programs, 84

S
safe haskell, 236
safe haskell flags, 242
safe haskell trust, 240
safe haskell uses, 237
safe imports, 240
safe inference, 242
safe language, 239
sanity-checking options, 55
search path, 46
secure haskell, 237
segmentation fault, 14
separate compilation, 43, 45
shadowing

interface files, 56
shadowing, warning, 57
Shared libraries

using, 80
shell commands

in GHCi, 35
Show class, 21
smaller programs, how to produce, 136

SMP, 78, 82, 235
SOURCE, 226
source-file options, 41
space-leaks, avoiding, 136
SPECIALIZE pragma, 134, 223, 225
specifying your own main function, 78
sql, 146
stability

package specification, 68
stack

chunk buffer size, 88
chunk size, 87

stack, initial size, 87
stack, maximum size, 88
StackOverflowHook, 85
startup

files, GHCi, 37
statements

in GHCi, 15
static

options, 36, 41
strict constructor fields, 70
string gaps vs -cpp, 76
structure, command-line, 41
suffixes, file, 42
suppression, 95

T
tabs, warning, 58
Template Haskell, 155
temporary files

keeping, 48
redirecting, 49

ThreadScope, 90
ticky ticky profiling, 91
ticky-ticky profiling, 130
time profile, 119
TMPDIR environment variable, 49
tracing, 90
trust, 240
trust check, 240, 241
trusted

package specification, 68
trustworthy, 242
Type default, 21
type signatures, missing, 57

U
Unboxed types (Glasgow extension), 138
unfolding, controlling, 72
unicode, 46
UNPACK, 225
unregisterised compilation, 74
unused binds, warning, 58
unused do binding, warning, 58
unused imports, warning, 58
unused matches, warning, 58

The Glorious Glasgow Haskell
Compilation System User’s Guide,
Version 7.6.2 37 / 37

using GHC, 40
UTF-8, 46
utilities, Haskell, 15

V
verbosity options, 44
version

package specification, 68
version, of ghc, 2

W
WARNING, 219
warnings, 55
windres, 79

Y
Yacc for Haskell, 15

	Introduction to GHC
	Obtaining GHC
	Meta-information: Web sites, mailing lists, etc.
	Reporting bugs in GHC
	GHC version numbering policy
	Release notes for version 7.6.1
	Highlights
	Full details
	Language
	Compiler
	GHCi
	Template Haskell
	Runtime system
	Build system

	Libraries
	array
	base
	bin-package-db
	binary
	bytestring
	Cabal
	containers
	deepseq
	directory
	filepath
	ghc-prim
	haskell98
	haskell2010
	hoopl
	hpc
	integer-gmp
	old-locale
	old-time
	process
	template-haskell
	time
	unix
	Win32

	Release notes for version 7.6.2
	GHC
	Haddock
	Hsc2hs
	Libraries
	base
	bytestring
	directory
	unix

	Using GHCi
	Introduction to GHCi
	Loading source files
	Modules vs. filenames
	Making changes and recompilation

	Loading compiled code
	Interactive evaluation at the prompt
	I/O actions at the prompt
	Using do-notation at the prompt
	Multiline input
	Type, class and other declarations
	What's really in scope at the prompt?
	:module and :load
	Qualified names
	The :main and :run commands

	The it variable
	Type defaulting in GHCi
	Using a custom interactive printing function

	The GHCi Debugger
	Breakpoints and inspecting variables
	Setting breakpoints
	Listing and deleting breakpoints

	Single-stepping
	Nested breakpoints
	The _result variable
	Tracing and history
	Debugging exceptions
	Example: inspecting functions
	Limitations

	Invoking GHCi
	Packages
	Extra libraries

	GHCi commands
	The :set and :seti commands
	GHCi options
	Setting GHC command-line options in GHCi
	Setting options for interactive evaluation only

	The .ghci file
	Compiling to object code inside GHCi
	FAQ and Things To Watch Out For

	Using runghc
	Flags

	Using GHC
	Getting started: compiling programs
	Options overview
	Command-line arguments
	Command line options in source files
	Setting options in GHCi

	Static, Dynamic, and Mode options
	Meaningful file suffixes
	Modes of operation
	Using ghc ––make
	Expression evaluation mode
	Batch compiler mode
	Overriding the default behaviour for a file

	Help and verbosity options
	Filenames and separate compilation
	Haskell source files
	Output files
	The search path
	Redirecting the compilation output(s)
	Keeping Intermediate Files
	Redirecting temporary files
	Other options related to interface files
	The recompilation checker
	How to compile mutually recursive modules
	Using make
	Dependency generation
	Orphan modules and instance declarations

	Warnings and sanity-checking
	 Packages
	Using Packages
	The main package
	Consequences of packages for the Haskell language
	Package Databases
	The GHC_PACKAGE_PATH environment variable

	Package IDs, dependencies, and broken packages
	Package management (the ghc-pkg command)
	Building a package from Haskell source
	 InstalledPackageInfo: a package specification

	Optimisation (code improvement)
	-O*: convenient “packages” of optimisation flags.
	-f*: platform-independent flags

	GHC Backends
	Native code Generator (-fasm)
	LLVM Code Generator (-fllvm)
	C Code Generator (-fvia-C)
	Unregisterised compilation

	Options related to a particular phase
	Replacing the program for one or more phases
	Forcing options to a particular phase
	Options affecting the C pre-processor
	CPP and string gaps

	Options affecting a Haskell pre-processor
	Options affecting code generation
	Options affecting linking

	Using shared libraries
	Building programs that use shared libraries
	Shared libraries for Haskell packages
	Shared libraries that export a C API
	Finding shared libraries at runtime
	Unix
	Mac OS X

	Using Concurrent Haskell
	Using SMP parallelism
	Compile-time options for SMP parallelism
	RTS options for SMP parallelism
	Hints for using SMP parallelism

	Platform-specific Flags
	Running a compiled program
	Setting RTS options
	Setting RTS options on the command line
	Setting RTS options at compile time
	Setting RTS options with the GHCRTS environment variable
	“Hooks” to change RTS behaviour

	Miscellaneous RTS options
	RTS options to control the garbage collector
	RTS options for concurrency and parallelism
	RTS options for profiling
	Tracing
	RTS options for hackers, debuggers, and over-interested souls
	Getting information about the RTS

	Generating and compiling External Core Files
	Debugging the compiler
	Dumping out compiler intermediate structures
	Formatting dumps
	Suppressing unwanted information
	Checking for consistency
	How to read Core syntax (from some -ddump flags)

	Flag reference
	Help and verbosity options
	Which phases to run
	Alternative modes of operation
	Redirecting output
	Keeping intermediate files
	Temporary files
	Finding imports
	Interface file options
	Recompilation checking
	Interactive-mode options
	Packages
	Language options
	Warnings
	Optimisation levels
	Individual optimisations
	Profiling options
	Program coverage options
	Haskell pre-processor options
	C pre-processor options
	Code generation options
	Linking options
	Plugin options
	Replacing phases
	Forcing options to particular phases
	Platform-specific options
	External core file options
	Compiler debugging options
	Misc compiler options

	Profiling
	Cost centres and cost-centre stacks
	Inserting cost centres by hand
	Rules for attributing costs

	Compiler options for profiling
	Time and allocation profiling
	Profiling memory usage
	RTS options for heap profiling
	Retainer Profiling
	Hints for using retainer profiling

	Biographical Profiling
	Actual memory residency

	hp2ps––heap profile to PostScript
	Manipulating the hp file
	Zooming in on regions of your profile
	Viewing the heap profile of a running program
	Viewing a heap profile in real time

	Profiling Parallel and Concurrent Programs
	Observing Code Coverage
	A small example: Reciprocation
	Options for instrumenting code for coverage
	The hpc toolkit
	hpc report
	hpc markup
	hpc sum
	hpc combine
	hpc map
	hpc overlay and hpc draft

	Caveats and Shortcomings of Haskell Program Coverage

	Using “ticky-ticky” profiling (for implementors)

	Advice on: sooner, faster, smaller, thriftier
	Sooner: producing a program more quickly
	Faster: producing a program that runs quicker
	Smaller: producing a program that is smaller
	Thriftier: producing a program that gobbles less heap space

	GHC Language Features
	Language options
	Unboxed types and primitive operations
	Unboxed types
	Unboxed tuples

	Syntactic extensions
	Unicode syntax
	The magic hash
	Hierarchical Modules
	Pattern guards
	View patterns
	n+k patterns
	Traditional record syntax
	The recursive do-notation
	Recursive binding groups
	The mdo notation

	Parallel List Comprehensions
	Generalised (SQL-Like) List Comprehensions
	Monad comprehensions
	Rebindable syntax and the implicit Prelude import
	Postfix operators
	Tuple sections
	Lambda-case
	Multi-way if-expressions
	Record field disambiguation
	Record puns
	Record wildcards
	Local Fixity Declarations
	Package-qualified imports
	Safe imports
	Summary of stolen syntax

	Extensions to data types and type synonyms
	Data types with no constructors
	Data type contexts
	Infix type constructors, classes, and type variables
	Liberalised type synonyms
	Existentially quantified data constructors
	Why existential?
	Existentials and type classes
	Record Constructors
	Restrictions

	Declaring data types with explicit constructor signatures
	Generalised Algebraic Data Types (GADTs)

	Extensions to the "deriving" mechanism
	Inferred context for deriving clauses
	Stand-alone deriving declarations
	Deriving clause for extra classes (Typeable, Data, etc)
	Generalised derived instances for newtypes
	 Generalising the deriving clause
	 A more precise specification

	Class and instances declarations
	Class declarations
	Multi-parameter type classes
	The superclasses of a class declaration
	Class method types
	Default method signatures

	Functional dependencies
	Rules for functional dependencies
	Background on functional dependencies
	An attempt to use constructor classes
	Adding functional dependencies

	Instance declarations
	Relaxed rules for the instance head
	Relaxed rules for instance contexts
	Undecidable instances
	Overlapping instances
	Type signatures in instance declarations

	Overloaded string literals

	Type families
	Data families
	Data family declarations
	Data instance declarations
	Overlap of data instances

	Synonym families
	Type family declarations
	Type instance declarations
	Overlap of type synonym instances
	Decidability of type synonym instances

	Associated data and type families
	Associated instances
	Associated type synonym defaults
	Scoping of class parameters

	Import and export
	Examples
	Instances

	Type families and instance declarations

	Kind polymorphism
	Overview of kind polymorphism
	Overview
	Polymorphic kind recursion and complete kind signatures

	Datatype promotion
	Motivation
	Overview
	Distinguishing between types and constructors
	Promoted lists and tuples types
	Promoted Literals
	Promoting existential data constructors

	Equality constraints
	The Constraint kind
	Other type system extensions
	Explicit universal quantification (forall)
	The context of a type signature
	Implicit parameters
	Implicit-parameter type constraints
	Implicit-parameter bindings
	Implicit parameters and polymorphic recursion
	Implicit parameters and monomorphism

	Explicitly-kinded quantification
	Arbitrary-rank polymorphism
	Examples
	Type inference
	Implicit quantification

	Impredicative polymorphism
	Lexically scoped type variables
	Overview
	Declaration type signatures
	Expression type signatures
	Pattern type signatures
	Class and instance declarations

	Generalised typing of mutually recursive bindings
	Monomorphic local bindings

	Deferring type errors to runtime
	Enabling deferring of type errors
	Deferred type errors in GHCi

	Template Haskell
	Syntax
	 Using Template Haskell
	 A Template Haskell Worked Example
	Using Template Haskell with Profiling
	 Template Haskell Quasi-quotation

	Arrow notation
	do-notation for commands
	Conditional commands
	Defining your own control structures
	Primitive constructs
	Differences with the paper
	Portability

	Bang patterns
	Informal description of bang patterns
	Syntax and semantics

	Assertions
	Pragmas
	LANGUAGE pragma
	OPTIONS_GHC pragma
	INCLUDE pragma
	WARNING and DEPRECATED pragmas
	INLINE and NOINLINE pragmas
	INLINE pragma
	INLINABLE pragma
	NOINLINE pragma
	CONLIKE modifier
	Phase control

	LINE pragma
	RULES pragma
	SPECIALIZE pragma
	SPECIALIZE INLINE
	SPECIALIZE for imported functions
	Obsolete SPECIALIZE syntax

	SPECIALIZE instance pragma
	UNPACK pragma
	NOUNPACK pragma
	SOURCE pragma

	Rewrite rules
	Syntax
	Semantics
	How rules interact with INLINE/NOINLINE and CONLIKE pragmas
	List fusion
	Specialisation
	Controlling what's going on in rewrite rules
	CORE pragma

	Special built-in functions
	Generic classes
	Generic programming
	Deriving representations
	Writing generic functions
	Generic defaults
	More information

	Control over monomorphism
	Switching off the dreaded Monomorphism Restriction
	Monomorphic pattern bindings

	Concurrent and Parallel Haskell
	Concurrent Haskell
	Software Transactional Memory
	Parallel Haskell
	Annotating pure code for parallelism
	Data Parallel Haskell

	Safe Haskell
	Uses of Safe Haskell
	Strict type-safety (good style)
	Building secure systems (restricted IO Monads)

	Safe Language
	Safe Imports
	Trust and Safe Haskell Modes
	Trust check (-fpackage-trust disabled)
	Trust check (-fpackage-trust enabled)
	Example
	Trustworthy Requirements
	Package Trust

	Safe Haskell Inference
	Safe Haskell Flag Summary

	 Foreign function interface (FFI)
	GHC extensions to the FFI Addendum
	Unboxed types
	Newtype wrapping of the IO monad
	Primitive imports
	Interruptible foreign calls
	The CAPI calling convention

	Using the FFI with GHC
	Using foreign export and foreign import ccall "wrapper" with GHC
	Using your own main()
	Making a Haskell library that can be called from foreign code

	Using header files
	Memory Allocation
	Multi-threading and the FFI
	Foreign imports and multi-threading
	The relationship between Haskell threads and OS threads
	Foreign exports and multi-threading
	On the use of hs_exit()

	Floating point and the FFI

	Extending and using GHC as a Library
	Source annotations
	Annotating values
	Annotating types
	Annotating modules

	Using GHC as a Library
	Compiler Plugins
	Using compiler plugins
	Writing compiler plugins
	CoreToDo in more detail
	Manipulating bindings
	Using Annotations

	An External Representation for the GHC Core Language (For GHC 6.10)
	Introduction
	External Grammar of Core
	Informal Semantics
	Program Organization and Modules
	Namespaces
	Types and Kinds
	Types
	Coercions
	Kinds
	Lifted and Unlifted Types
	Type Constructors; Base Kinds and Higher Kinds
	Type Synonyms and Type Equivalence

	Algebraic data types
	Newtypes
	Expression Forms
	Expression Evaluation

	Primitive Module
	Non-concurrent Back End
	Literals

	What to do when something goes wrong
	When the compiler “does the wrong thing”
	When your program “does the wrong thing”

	Other Haskell utility programs
	“Yacc for Haskell”: happy
	Writing Haskell interfaces to C code: hsc2hs
	command line syntax
	Input syntax
	Custom constructs
	Cross-compilation

	Running GHC on Win32 systems
	 Starting GHC on Windows platforms
	Running GHCi on Windows
	 Interacting with the terminal
	 Differences in library behaviour
	 Using GHC (and other GHC-compiled executables) with cygwin
	Background
	The problem
	Things to do

	Building and using Win32 DLLs
	Creating a DLL
	Making DLLs to be called from other languages
	Using from VBA
	Using from C++

	Known bugs and infelicities
	Haskell standards vs. Glasgow Haskell: language non-compliance
	Divergence from Haskell 98 and Haskell 2010
	Lexical syntax
	Context-free syntax
	Expressions and patterns
	Declarations and bindings
	Module system and interface files
	Numbers, basic types, and built-in classes
	In Prelude support
	The Foreign Function Interface

	GHC's interpretation of undefined behaviour in Haskell 98 and Haskell 2010

	Known bugs or infelicities
	Bugs in GHC
	Bugs in GHCi (the interactive GHC)

	Index

