{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE NoImplicitPrelude, MagicHash, StandaloneDeriving, BangPatterns #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
-- XXX -fno-warn-unused-imports needed for the GHC.Tuple import below. Sigh.
{-# OPTIONS_HADDOCK hide #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  GHC.Classes
-- Copyright   :  (c) The University of Glasgow, 1992-2002
-- License     :  see libraries/base/LICENSE
--
-- Maintainer  :  [email protected]
-- Stability   :  internal
-- Portability :  non-portable (GHC extensions)
--
-- Basic classes.
--
-----------------------------------------------------------------------------

-- #hide
module GHC.Classes where

-- GHC.Magic is used in some derived instances
import GHC.Magic ()
import GHC.Prim
import GHC.Tuple
import GHC.Types


infix  4  ==, /=, <, <=, >=, >
infixr 3  &&
infixr 2  ||

default ()              -- Double isn't available yet

-- | The 'Eq' class defines equality ('==') and inequality ('/=').
-- All the basic datatypes exported by the "Prelude" are instances of 'Eq',
-- and 'Eq' may be derived for any datatype whose constituents are also
-- instances of 'Eq'.
--
-- Minimal complete definition: either '==' or '/='.
--
class  Eq a  where
    (==), (/=)           :: a -> a -> Bool

    {-# INLINE (/=) #-}
    {-# INLINE (==) #-}
    x /= y               = not (x == y)
    x == y               = not (x /= y)
    {-# MINIMAL (==) | (/=) #-}

deriving instance Eq ()
deriving instance (Eq  a, Eq  b) => Eq  (a, b)
deriving instance (Eq  a, Eq  b, Eq  c) => Eq  (a, b, c)
deriving instance (Eq  a, Eq  b, Eq  c, Eq  d) => Eq  (a, b, c, d)
deriving instance (Eq  a, Eq  b, Eq  c, Eq  d, Eq  e) => Eq  (a, b, c, d, e)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f)
               => Eq (a, b, c, d, e, f)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g)
               => Eq (a, b, c, d, e, f, g)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h)
               => Eq (a, b, c, d, e, f, g, h)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h, Eq i)
               => Eq (a, b, c, d, e, f, g, h, i)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h, Eq i, Eq j)
               => Eq (a, b, c, d, e, f, g, h, i, j)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h, Eq i, Eq j, Eq k)
               => Eq (a, b, c, d, e, f, g, h, i, j, k)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h, Eq i, Eq j, Eq k, Eq l)
               => Eq (a, b, c, d, e, f, g, h, i, j, k, l)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h, Eq i, Eq j, Eq k, Eq l, Eq m)
               => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n)
               => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
deriving instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g,
                   Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o)
               => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

instance (Eq a) => Eq [a] where
    {-# SPECIALISE instance Eq [Char] #-}
    []     == []     = True
    (x:xs) == (y:ys) = x == y && xs == ys
    _xs    == _ys    = False

deriving instance Eq Bool
deriving instance Eq Ordering
deriving instance Eq Word

instance Eq Char where
    (C# c1) == (C# c2) = isTrue# (c1 `eqChar#` c2)
    (C# c1) /= (C# c2) = isTrue# (c1 `neChar#` c2)

instance Eq Float where
    (F# x) == (F# y) = isTrue# (x `eqFloat#` y)

instance Eq Double where
    (D# x) == (D# y) = isTrue# (x ==## y)

instance Eq Int where
    (==) = eqInt
    (/=) = neInt

{-# INLINE eqInt #-}
{-# INLINE neInt #-}
eqInt, neInt :: Int -> Int -> Bool
(I# x) `eqInt` (I# y) = isTrue# (x ==# y)
(I# x) `neInt` (I# y) = isTrue# (x /=# y)

-- | The 'Ord' class is used for totally ordered datatypes.
--
-- Instances of 'Ord' can be derived for any user-defined
-- datatype whose constituent types are in 'Ord'.  The declared order
-- of the constructors in the data declaration determines the ordering
-- in derived 'Ord' instances.  The 'Ordering' datatype allows a single
-- comparison to determine the precise ordering of two objects.
--
-- Minimal complete definition: either 'compare' or '<='.
-- Using 'compare' can be more efficient for complex types.
--
class  (Eq a) => Ord a  where
    compare              :: a -> a -> Ordering
    (<), (<=), (>), (>=) :: a -> a -> Bool
    max, min             :: a -> a -> a

    compare x y = if x == y then EQ
                  -- NB: must be '<=' not '<' to validate the
                  -- above claim about the minimal things that
                  -- can be defined for an instance of Ord:
                  else if x <= y then LT
                  else GT

    x <  y = case compare x y of { LT -> True;  _ -> False }
    x <= y = case compare x y of { GT -> False; _ -> True }
    x >  y = case compare x y of { GT -> True;  _ -> False }
    x >= y = case compare x y of { LT -> False; _ -> True }

        -- These two default methods use '<=' rather than 'compare'
        -- because the latter is often more expensive
    max x y = if x <= y then y else x
    min x y = if x <= y then x else y
    {-# MINIMAL compare | (<=) #-}

deriving instance Ord ()
deriving instance (Ord a, Ord b) => Ord (a, b)
deriving instance (Ord a, Ord b, Ord c) => Ord (a, b, c)
deriving instance (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f)
               => Ord (a, b, c, d, e, f)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g)
               => Ord (a, b, c, d, e, f, g)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h)
               => Ord (a, b, c, d, e, f, g, h)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h, Ord i)
               => Ord (a, b, c, d, e, f, g, h, i)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h, Ord i, Ord j)
               => Ord (a, b, c, d, e, f, g, h, i, j)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h, Ord i, Ord j, Ord k)
               => Ord (a, b, c, d, e, f, g, h, i, j, k)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h, Ord i, Ord j, Ord k, Ord l)
               => Ord (a, b, c, d, e, f, g, h, i, j, k, l)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h, Ord i, Ord j, Ord k, Ord l, Ord m)
               => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n)
               => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
deriving instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g,
                   Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o)
               => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

instance (Ord a) => Ord [a] where
    {-# SPECIALISE instance Ord [Char] #-}
    compare []     []     = EQ
    compare []     (_:_)  = LT
    compare (_:_)  []     = GT
    compare (x:xs) (y:ys) = case compare x y of
                                EQ    -> compare xs ys
                                other -> other

deriving instance Ord Bool
deriving instance Ord Ordering
deriving instance Ord Word

-- We don't use deriving for Ord Char, because for Ord the derived
-- instance defines only compare, which takes two primops.  Then
-- '>' uses compare, and therefore takes two primops instead of one.
instance Ord Char where
    (C# c1) >  (C# c2) = isTrue# (c1 `gtChar#` c2)
    (C# c1) >= (C# c2) = isTrue# (c1 `geChar#` c2)
    (C# c1) <= (C# c2) = isTrue# (c1 `leChar#` c2)
    (C# c1) <  (C# c2) = isTrue# (c1 `ltChar#` c2)

instance Ord Float where
    (F# x) `compare` (F# y)
        = if      isTrue# (x `ltFloat#` y) then LT
          else if isTrue# (x `eqFloat#` y) then EQ
          else                                  GT

    (F# x) <  (F# y) = isTrue# (x `ltFloat#` y)
    (F# x) <= (F# y) = isTrue# (x `leFloat#` y)
    (F# x) >= (F# y) = isTrue# (x `geFloat#` y)
    (F# x) >  (F# y) = isTrue# (x `gtFloat#` y)

instance Ord Double where
    (D# x) `compare` (D# y)
        = if      isTrue# (x <##  y) then LT
          else if isTrue# (x ==## y) then EQ
          else                            GT

    (D# x) <  (D# y) = isTrue# (x <##  y)
    (D# x) <= (D# y) = isTrue# (x <=## y)
    (D# x) >= (D# y) = isTrue# (x >=## y)
    (D# x) >  (D# y) = isTrue# (x >##  y)

instance Ord Int where
    compare = compareInt
    (<)     = ltInt
    (<=)    = leInt
    (>=)    = geInt
    (>)     = gtInt

{-# INLINE gtInt #-}
{-# INLINE geInt #-}
{-# INLINE ltInt #-}
{-# INLINE leInt #-}
gtInt, geInt, ltInt, leInt :: Int -> Int -> Bool
(I# x) `gtInt` (I# y) = isTrue# (x >#  y)
(I# x) `geInt` (I# y) = isTrue# (x >=# y)
(I# x) `ltInt` (I# y) = isTrue# (x <#  y)
(I# x) `leInt` (I# y) = isTrue# (x <=# y)

compareInt :: Int -> Int -> Ordering
(I# x#) `compareInt` (I# y#) = compareInt# x# y#

compareInt# :: Int# -> Int# -> Ordering
compareInt# x# y#
    | isTrue# (x# <#  y#) = LT
    | isTrue# (x# ==# y#) = EQ
    | True                = GT

-- OK, so they're technically not part of a class...:

-- Boolean functions

-- | Boolean \"and\"
(&&)                    :: Bool -> Bool -> Bool
True  && x              =  x
False && _              =  False

-- | Boolean \"or\"
(||)                    :: Bool -> Bool -> Bool
True  || _              =  True
False || x              =  x

-- | Boolean \"not\"
not                     :: Bool -> Bool
not True                =  False
not False               =  True


------------------------------------------------------------------------
-- These don't really belong here, but we don't have a better place to
-- put them

divInt# :: Int# -> Int# -> Int#
x# `divInt#` y#
        -- Be careful NOT to overflow if we do any additional arithmetic
        -- on the arguments...  the following  previous version of this
        -- code has problems with overflow:
--    | (x# ># 0#) && (y# <# 0#) = ((x# -# y#) -# 1#) `quotInt#` y#
--    | (x# <# 0#) && (y# ># 0#) = ((x# -# y#) +# 1#) `quotInt#` y#
    =      if isTrue# (x# ># 0#) && isTrue# (y# <# 0#) then ((x# -# 1#) `quotInt#` y#) -# 1#
      else if isTrue# (x# <# 0#) && isTrue# (y# ># 0#) then ((x# +# 1#) `quotInt#` y#) -# 1#
      else x# `quotInt#` y#

modInt# :: Int# -> Int# -> Int#
x# `modInt#` y#
    = if isTrue# (x# ># 0#) && isTrue# (y# <# 0#) ||
         isTrue# (x# <# 0#) && isTrue# (y# ># 0#)
      then if isTrue# (r# /=# 0#) then r# +# y# else 0#
      else r#
    where
    !r# = x# `remInt#` y#