
Demo Proposal: GHCJS, Concurrent Haskell in the Browser

Luite Stegeman

stegeman@gmail.com

Abstract
This is a demonstration proposal for GHCJS, a Haskell to JavaScript
compiler that uses the GHC API. GHCJS implements many mod-
ern Haskell features, including lightweight threading, STM and
asynchronous exceptions. The GHCJS runtime has specific provi-
sions to deal with multithreaded Haskell code in the singlethreaded
JavaScript runtime.

Keywords Haskell, GHC, GHCJS, JavaScript, web, browser

1. Introduction
The JavaScript problem [1] is well-known in the Haskell world:
JavaScript lacks the safety guarantees offered by the Haskell type
system, but unfortunately we are stuck with it, since it’s the only
language that all web browsers support.

Compiling Haskell to JavaScript is an attractive proposition, not
only can we rely on Haskell’s type system on the client, it also
makes it possible to share code between the client and the server.

GHCJS has existed since 2010, created by Victor Nazarov, but
it’s far from the only solution. A well-known compiler is UHC-JS
[2], based on UHC. Alternatives based on GHC are Fay [3] (type
checking only) and Haste [4].

GHCJS is the only Haskell to JavaScript compiler with a run-
time that fully supports lightweight threads, including black holes,
asynchronous exceptions and synchronization through MVar and
STM. Additionally, GHCJS supports unboxed arrays, weak ref-
erences, StableName and a limited form of pointer emulation. A
Cabal patch to add GHCJS as a compiler flavor is in the works.

1.1 Haskell to JavaScript
GHCJS uses the GHC API to translate Haskell to JavaScript. It
uses STG as its source language, which is translated to JMacro [5].
The translated code is tail call optimized (through a trampoline,
since JavaScript does not yet support tail calls natively) and uses a
dynamically growing JavaScript array as stack.

Inspired by UHC-JS and Fay, GHCJS supports a convenient
foreign import javascript syntax:

1 foreign import javascript unsafe
2 "$1 + $2"
3 plus :: Int -> Int -> Int

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Haskell Symposium 2013 23-24 September 2013, Boston
Copyright c© 2013 ACM [to be supplied]. . . $15.00

Placeholders $1 and $2 are replaced by the actual parameters.
Thanks to JMacro, it is possible to use complex JavaScript state-
ments, including local variable declarations and loops, in the import
declarations. The local variables are converted to hygienic names,
and the foreign import is spliced into the rest of the JMacro AST.

The combined compiled code is then run through a dataflow an-
alyzer to reduce code size by eliminating dead code and redundant
assignments. Finally, the GHCJS linker collects all functions reach-
able by the program and bundles them in a single JavaScript file.
Non-Haskell code, for example the RTS and third party libraries, is
collected in another file.

1.2 Memory management
Older versions of GHCJS, and also Fay and Haste, use JavaScript
closures to represent Haskell heap objects. These have the ad-
vantage of being easy to implement. Unfortunately, closures are
opaque, it is impossible to see from the outside which variables
they contain. This makes it very hard to support some Haskell fea-
tures, for example weak references with finalizers, CAF dealloca-
tion and deadlock detection.

Therefore the current GHCJS version does away with JavaScript
closures altogether, representing every Haskell heap object 1 as a
plain JavaScript object. For example:

1 var listElement = { f: Data_List_cons
2 , d1: value
3 , d2: nextElement
4 };
5

6 var someThunk = { f: entryFunction
7 , d1: someData
8 };
9

10 var someFunction = { f: theFunction
11 , d1: freeVariable1
12 , d2: freeVariable2
13 };

Every heap object has an entry function f. For thunks, f returns
the object reduced to WHNF, for functions, f is the function itself.
All data specific to a single heap object is contained in the data
fields d1, d2, Analogous to the info table in GHC, f contains
some metadata about the object, stored in properties of the function
object, for example the constructor tag or the arity of the function.

When a shared thunk is entered, f immediately overwrites its
data by a black hole (eager blackholing) and pushes an update
frame on the stack. Since we don’t have control over the JavaScript
garbage collector, this is the best way to prevent references from
lingering around, leaking memory.

Using JavaScript objects as Haskell heap objects means that the
JavaScript garbage collector can do most of the memory manage-

1 There are some exceptions: Types like Int, Char and Double are repre-
sented as primitive JS numbers, the first two constructors in enumeration
ADTs are represented as the boolean values false and true

ment work for us. Some Haskell features however, like weak ref-
erences, require us to know exactly which values are still being
referenced. Unfortunately JavaScript does not have built-in func-
tionality for this: WeakMap[6] has been designed to disallow this
kind of checks. To support these features, we have a heap scanner
that marks all heap objects reachable from running Haskell threads.
Since all Haskell heap objects are just regular JavaScript objects,
it’s easy to inspect all values. Scanning the heap is an expensive
operation, but fortunately does not need to be done very often, and
can be temporarily disabled.

1.3 Concurrency in the browser
JavaScript does not have shared-memory multithreading. While
it is possible to have true parallellism in JavaScript with Web
Workers, their memory isolation makes them very inconvenient for
implementing Haskell lightweight threads.

Therefore, GHCJS implements it own scheduler that runs in a
single JavaScript thread. Since we share this thread with the user
interface, which becomes unresponsive while our code is running,
we have to be careful with long-running code and blocking opera-
tions.

A common pattern in JavaScript is to use callbacks, or contin-
uations, for operations that produce a result later. This pattern is
supported by the JavaScript runtime for some operations, for ex-
ample:

1 jQuery.ajax(’http://haskell.org/’).done(f);

This code does an HTTP request (using the popular jQuery
library) that retrieves the haskell.org page and calls f with the
result. Another example is the setTimeout function, used below to
let JavaScript call g after 100 milliseconds:

1 setTimeout(g, 100);

Both calls are asynchronous: The functions return immediately,
the JavaScript runtime make sure that the continuation is called.
The GHCJS runtime makes heavy use of this pattern, mostly im-
plicitly, letting the scheduler yield to the browser, in order to let
other code run and keep the user interface responsive. There is also
direct support, through the foreign function interface:

1 foreign import javascript safe
2 "jQuery.ajax($1).done($c)"
3 ajax :: JSString -> IO JSString

This is an asynchronous foreign import. The current Haskell
thread is suspended until $c is called from the foreign code. The
GHCJS runtime continues to run other threads.

Whereas JavaScript code depending on jQuery.ajax results al-
ways has to be written in continuation passing style, Haskell code
using the ajax FFI call does not look different from any other
IO action. This makes exception handling much more convenient.
We could use System.Timeout.timeout to deal with unresponsive
servers for example:

1 main = timeout 500 (ajax "http://haskell.org")
2 >>= \case
3 Nothing -> putStrLn "no reponse"
4 Just x -> print x

On top of the scheduler, synchronization primitives like MVar
and STM have been implemented.

1.4 Synchronous threads
While automatic handling of asynchronous actions in the GHCJS
runtime is convenient most of the time, there are some situations
where it gets in the way. A good example is event handling. Con-
sider the following scenario:

1 myButton.on(’click’, function(event) {
2 if(someCondition(event)) {
3 event.stopPropagation();
4 }
5 });

The code registers an event listener that fires when the button is
clicked. Depending on someCondition(event), further propagation
of the event is stopped by calling event.stopPropagation before the
listener returns.

If we wanted to convert the handler to a Haskell, we would
have a problem: Any Haskell code might block, even pure code,
for example when encountering a black hole from another thread.
This makes it impossible to predict whether event.stopPropagation
is called in time!

GHCJS has an alternative kind of thread: Synchronous threads,
for which the runtime tries to run as much code as possible before
returning, including temporarily switching to other threads to clear
black holes. If it turns out to be impossible to run the thread to
completion without blocking, a JavaScript exception is thrown.
The thread is then either aborted, or continued asynchronously
afterwards.

The example below creates a synchronous callback using
syncCallback1. This callback, which is a JavaScript function that
runs an IO action in a synchronous GHCJS thread, is then installed
as an event handler for the HTML element myButton.

1 foreign import javascript unsafe
2 "jQuery(’#myButton’).on(’click’, $1)"
3 installMyButtonHandler :: JSFun (JSEvent -> IO ()) -> IO ()
4

5 handler :: JSEvent -> IO ()
6 handler _ = putStrLn "myButton clicked"
7

8 main = installByMuttonHandler =<<
9 syncCallback1 False False handler

Asynchronous FFI and things like threadDelay are unsupported
in synchronous threads.

2. Demonstration
The demonstration will explain the basics of the GHCJS runtime
system, as described above, with examples of interaction with
JavaScript through the FFI and running code in the browser.

References
[1] Haskell Wiki: The JavaScript Problem (http://www.haskell.org/

haskellwiki/The_JavaScript_Problem)
[2] Jurriën Stutterheim - Improving the UHC JavaScript Backend, Utrecht

2012
[3] Fay: A proper subset of Haskell that compiles to JavaScript (http:

//fay-lang.org)
[4] Anton Ekblad - Towards a Declarative Web. MSc Thesis, Gothenburg,

Sweden 2012
[5] Haskell Wiki: JMacro (http://www.haskell.org/haskellwiki/

Jmacro)
[6] ECMAScript 6 specification draft (http://wiki.ecmascript.org/

doku.php?id=harmony:specification_drafts)

http://www.haskell.org/haskellwiki/The_JavaScript_Problem
http://www.haskell.org/haskellwiki/The_JavaScript_Problem
http://fay-lang.org
http://fay-lang.org
http://www.haskell.org/haskellwiki/Jmacro
http://www.haskell.org/haskellwiki/Jmacro
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

	Introduction
	Haskell to JavaScript
	Memory management
	Concurrency in the browser
	Synchronous threads

	Demonstration

