Difference between revisions of "AMI Tool"

From HaskellWiki
Jump to navigation Jump to search
(→‎Community: Initial revision)
(→‎Usage: Added disclaimer, re: prematurity.)
Line 4: Line 4:
   
 
== Usage ==
 
== Usage ==
  +
  +
NOTE) This package is, currently, in a VERY premature and incomplete state. I only set up this Wiki page so that those interested in participating in this project's development would have a central focal point for documentation, communication, etc. This package is really NOT ready for prime time, yet.
  +
 
=== Installation ===
 
=== Installation ===
   

Revision as of 21:18, 12 September 2011

AMITool is a Haskell package, which provides the essential tools necessary, in order to create IBIS-AMI models using Haskell.

Authors: David Banas

Usage

NOTE) This package is, currently, in a VERY premature and incomplete state. I only set up this Wiki page so that those interested in participating in this project's development would have a central focal point for documentation, communication, etc. This package is really NOT ready for prime time, yet.

Installation

NOTE) This package is currently only supported on Linux.

If you haven't already, install the Haskell Platform on your system.

(This is necessary, because the shared object library produced by this package needs to dynamically link to certain standard Haskell libraries, at run time. I'm working on a statically linked version of this package, which won't require this step. Please, stay tuned.)

Download the [source tarball] and extract it:

$ tar xzf amitool-v0.1.tgz

Move into the newly created directory, and build the project:

$ cd amitool-v0.1
$ make

If the make succeeds, you'll find the following output files in the directory:

  • libami.so - This is the shared object library plug-in, which contains your AMI model. It will be dynamically loaded, at run time, by your EDA tool when simulating.
  • ami_test - This is an example C program, which will attempt to load libami.so and call its AMI_Init and AMI_Close functions, as a check on correct compilation. That is, for this simple test, it functions as a stand-in for the EDA tool.

You can quickly verify correct compilation and/or system infrastructural integrity by executing the following command:

$ ./ami_test test.ami

Customization

The source code of this package has been arranged such that, presumably, all you have to do, in order to model your own device, is edit the following section of the ExmplUsrModel.hs file, and re-run make:

-- Change the line, below, as follows:
--  - Change "testAMI" to the root name of your AMI parameter tree.
--  - Change "Mode" to the name you've given to the filter mode selection parameter.
= case getAmiExp amiTree ["testAMI", "Mode"] of
    -- Change the `Vals' lines, below, to reflect your possible values of filter
    -- mode, and the corresponding action to be taken in that mode, adding/deleting
    -- lines as necessary.
    Just (Vals ["0"]) -> impulse                 -- Bypassed.
    Just (Vals ["1"]) -> fir (lpf 0.5 2) impulse -- 2nd order FIR LPF w/ cutoff at 1/2 Nyquist
    -- That's it; no more changes are required.

Description

Source Files

  • AMIParse.hs - Haskell source code for parsing an AMI parameter string
  • AMIModel.hs - Haskell source code for generic implementation of AMI functions
  • ExmplUsrModel.hs - Haskell source code for model specific behavior
  • ami_model.c - C source code for implementation of dynamic loading interface, as well as setup/tear-down of Haskell run-time system
  • ami_test.c - example C source code showing how to dynamically load a shared object library and call the AMI functions

Public interface

New data types

The AMIParse module defines a new type alias, AmiToken, and a new abstract data type, AmiExp, as follows:

type AmiToken = (String, AmiExp)
data AmiExp   = Vals [String]
              | Tokens [AmiToken]

Note that, taken together, the two new data items, above, form a recursive structure. This helps shorten the code that parses an AMI parameter string, which itself is recursive in nature.

Supporting functions

The AMIParse module exposes the following public functions:

amiToken
: Parser AmiToken
Parses an AMI parameter string, returning an AmiToken.
getAmiExp
: AmiToken -> [String] -> Maybe AmiExp
Scans through an AmiToken (presumably, returned by amiToken) for a particular requested value. For example:
getAmiExp (amiToken "(rootName (Mode 2))") ["rootName", "Mode"] = Just (Vals "2")

Extended Testing

In order to perform more extensive testing on either the default libami.so or your own customized version of this file, you can use the AMI Toolkit from SiSoft, Inc.

You'll find example input to thier IBIS_AMI_test program in the test.ami.csv file, included in this package.

Output from the program is written to test_out.ami.csv.

See the documentation, which comes with their tool kit, for more details.

The command to invoke is:

IBIS_AMI_test -i test.ami.csv -f libami.so

Documentation

This page serves as the primary documentation for this package.

Related work

IBIS Advanced Technology Modeling Workgroup
In particular, see the Tools and Work Archive sections.

Community

In progress. Meanwhile, I will serve as e-mail reflectron for all interested parties. Send me your comments, and I will disseminate them to the group.