Personal tools

Blow your mind

From HaskellWiki

(Difference between revisions)
Jump to: navigation, search
(added sieve of eratosthenes... may not be appropriate)
(Add case)
(45 intermediate revisions by 25 users not shown)
Line 6: Line 6:
   
   
== List/String Operations ==
+
== List/String operations ==
   
   
Line 14: Line 14:
 
words
 
words
   
takeWhile (not . null) . unfoldr (Just . (second $ drop 1) . break (==' '))
+
unfoldr (\b -> fmap (const . (second $ drop 1) . break (==' ') $ b) . listToMaybe $ b)
  +
  +
takeWhile (not . null) . evalState (repeatM $ modify (drop 1) >> State (break (== ' '))) . (' ' :)
  +
where repeatM = sequence . repeat
   
 
fix (\f l -> if null l then [] else let (s,e) = break (==' ') l in s:f (drop 1 e))
 
fix (\f l -> if null l then [] else let (s,e) = break (==' ') l in s:f (drop 1 e))
Line 21: Line 21:
 
-- splitting in two (alternating)
 
-- splitting in two (alternating)
 
-- "1234567" -> ("1357", "246")
 
-- "1234567" -> ("1357", "246")
foldr (\a (x,y) -> (a:y,x)) ([],[])
+
-- the lazy match with ~ is necessary for efficiency, especially enabling processing of infinite lists
  +
foldr (\a ~(x,y) -> (a:y,x)) ([],[])
   
 
(map snd *** map snd) . partition (even . fst) . zip [0..]
 
(map snd *** map snd) . partition (even . fst) . zip [0..]
   
transpose . unfoldr (\a -> if null a then Nothing else Just $ splitAt 2 a)
+
transpose . unfoldr (\a -> toMaybe (null a) (splitAt 2 a))
 
-- this one uses the solution to the next problem in a nice way :)
 
-- this one uses the solution to the next problem in a nice way :)
 
 
  +
toMaybe b x = if b then Just x else Nothing
  +
-- or generalize it:
  +
-- toMaybe = (toMonadPlus :: Bool -> a -> Maybe a)
  +
toMonadPlus b x = guard b >> return x
   
 
-- splitting into lists of length N
 
-- splitting into lists of length N
 
-- "1234567" -> ["12", "34", "56", "7"]
 
-- "1234567" -> ["12", "34", "56", "7"]
unfoldr (\a -> if null a then Nothing else Just $ splitAt 2 a)
+
unfoldr (\a -> toMaybe (not $ null a) (splitAt 2 a))
   
 
takeWhile (not . null) . unfoldr (Just . splitAt 2)
 
takeWhile (not . null) . unfoldr (Just . splitAt 2)
  +
  +
ensure :: MonadPlus m => (a -> Bool) -> a -> m a
  +
ensure p x = guard (p x) >> return x
  +
unfoldr (ensure (not . null . fst) . splitAt 2)
 
 
   
 
-- sorting by a custom function
 
-- sorting by a custom function
 
-- length -> ["abc", "ab", "a"] -> ["a", "ab", "abc"]
 
-- length -> ["abc", "ab", "a"] -> ["a", "ab", "abc"]
comparing f x y = compare (f x) (f y)
+
comparing f = compare `on` f -- "comparing" is already defined in Data.Ord
 
sortBy (comparing length)
 
sortBy (comparing length)
   
Line 46: Line 54:
   
 
-- comparing adjacent elements
 
-- comparing adjacent elements
rises xs = zipWith (<) xs (drop 1 xs)
+
rises xs = zipWith (<) xs (tail xs)
 
 
 
-- lazy substring search
 
-- lazy substring search
 
-- "ell" -> "hello" -> True
 
-- "ell" -> "hello" -> True
 
substr a b = any (a `isPrefixOf`) $ tails b
 
substr a b = any (a `isPrefixOf`) $ tails b
  +
  +
-- multiple splitAt's:
  +
-- splitAts [2,5,0,3] [1..15] == [[1,2],[3,4,5,6,7],[],[8,9,10],[11,12,13,14,15]]
  +
splitAts = foldr (\n r -> splitAt n >>> second r >>> uncurry (:)) return
  +
  +
-- frequency distribution
  +
-- "abracadabra" -> fromList [('a',5),('b',2),('c',1),('d',1),('r',2)]
  +
import Data.Map
  +
histogram = fromListWith (+) . (`zip` repeat 1)
  +
  +
-- using arrows and sort
  +
histogramArr = map (head&&&length) . group . sort
  +
  +
-- multidimensional zipWith
  +
zip2DWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]]
  +
zip2DWith = zipWith . zipWith
  +
zip3DWith :: (a -> b -> c) -> [[[a]]] -> [[[b]]] -> [[[c]]]
  +
zip3DWith = zipWith . zipWith . zipWith
  +
-- etc.
 
</haskell>
 
</haskell>
   
== Mathematical Series, etc ==
+
== Mathematical sequences, etc ==
   
   
Line 61: Line 88:
 
product [1..6]
 
product [1..6]
   
foldl1 (*) [1..6]
+
foldl1 (*) [1..6] -- this won't work for 0; use "foldl (*) 1 [1..n]" instead
   
 
(!!6) $ scanl (*) 1 [1..]
 
(!!6) $ scanl (*) 1 [1..]
Line 68: Line 95:
   
   
-- powers of two series
+
-- powers of two sequence
 
iterate (*2) 1
 
iterate (*2) 1
   
Line 74: Line 101:
   
   
-- fibonacci series
+
-- fibonacci sequence
 
unfoldr (\(f1,f2) -> Just (f1,(f2,f1+f2))) (0,1)
 
unfoldr (\(f1,f2) -> Just (f1,(f2,f1+f2))) (0,1)
   
 
fibs = 0:1:zipWith (+) fibs (tail fibs)
 
fibs = 0:1:zipWith (+) fibs (tail fibs)
   
fib = 0:scanl (+) 1 fib
+
fib = 0:scanl (+) 1 fib -- also seen as: fibs = fix ((0:) . scanl (+) 1)
   
   
Line 93: Line 120:
 
unfoldr sieve [2..] where
 
unfoldr sieve [2..] where
 
sieve (p:x) = Just(p, [ n | n <- x, n `mod` p > 0 ])
 
sieve (p:x) = Just(p, [ n | n <- x, n `mod` p > 0 ])
  +
  +
otherPrimes = nubBy (((>1).).gcd) [2..]
   
 
-- or if you want to use the Sieve of Eratosthenes..
 
-- or if you want to use the Sieve of Eratosthenes..
Line 108: Line 137:
 
rats = iterate next 1 where
 
rats = iterate next 1 where
 
next x = recip (fromInteger n+1-y) where (n,y) = properFraction x
 
next x = recip (fromInteger n+1-y) where (n,y) = properFraction x
  +
  +
-- another way
  +
rats2 = fix ((1:) . (>>= \x -> [1+x, 1/(1+x)])) :: [Rational]
 
</haskell>
 
</haskell>
   
 
[1] [http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/index.html#rationals Gibbons, Lest, Bird - Enumerating the Rationals]
 
[1] [http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/index.html#rationals Gibbons, Lest, Bird - Enumerating the Rationals]
   
== Monad Magic ==
+
== Monad magic ==
   
  +
The list monad can be used for some amazing Prolog-ish search problems.
   
 
<haskell>
 
<haskell>
Line 128: Line 161:
   
 
"12" >>= \a -> "45" >>= \b -> return [a,b]
 
"12" >>= \a -> "45" >>= \b -> return [a,b]
 
   
 
-- all combinations of letters
 
-- all combinations of letters
 
(inits . repeat) ['a'..'z'] >>= sequence
 
(inits . repeat) ['a'..'z'] >>= sequence
   
 
 
-- apply a list of functions to an argument
 
-- apply a list of functions to an argument
 
-- even -> odd -> 4 -> [True,False]
 
-- even -> odd -> 4 -> [True,False]
Line 139: Line 170:
   
 
sequence [even,odd] 4
 
sequence [even,odd] 4
+
  +
-- all subsequences of a sequence/ aka powerset.
  +
filterM (const [True, False])
   
 
-- apply a function to two other function the same argument
 
-- apply a function to two other function the same argument
Line 148: Line 179:
 
liftM2 (>>) putStrLn return "hello"
 
liftM2 (>>) putStrLn return "hello"
   
  +
fix ((1:) . (>>= \x -> [x+1, 1/(x+1)])) :: [Rational]
  +
[1%1,2%1,1%2,3%1,1%3,3%2,2%3,4%1,1%4,4%3,3%4,5%2,2%5,5%3,3%5,5%1,1%5,5%4,4%5...
 
 
 
-- forward function concatenation
 
-- forward function concatenation
Line 162: Line 195:
   
 
-- [still to categorize]
 
-- [still to categorize]
(id >>= (+) >>= (+) >>= (+)) 3 -- (3+3)+(3+3) = 12
+
(id >>= (+) >>= (+) >>= (+)) 3 -- 3+3+3+3 = 12
  +
-- Note: need to import Control.Monad.Instances
   
(join . liftM2) (*) (+3) 5 -- 64
+
  +
-- Galloping horsemen
  +
-- A large circular track has only one place where horsemen can pass;
  +
-- many can pass at once there. Is it possible for nine horsemen to
  +
-- gallop around it continuously, all at different constant speeds?
  +
-- the following prints out possible speeds for 2 or more horsemen.
  +
spd s = ' ': show s ++ '/': show (s+1)
  +
ext (c,l) = [(tails.filter(\b->a*(a+1)`mod`(b-a)==0)$r,a:l) | (a:r)<-c]
  +
put = putStrLn . ('1':) . concatMap spd . reverse . snd . head
  +
main = mapM_ put . iterate (>>= ext) $ [(map reverse $ inits [1..],[])]
  +
  +
-- output:
  +
1 1/2
  +
1 2/3 1/2
  +
1 3/4 2/3 1/2
  +
1 5/6 4/5 3/4 2/3
  +
1 12/13 11/12 10/11 9/10 8/9
  +
1 27/28 26/27 25/26 24/25 23/24 20/21
  +
1 63/64 60/61 59/60 57/58 56/57 55/56 54/55
  +
1 755/756 741/742 740/741 735/736 734/735 728/729 727/728 720/721
  +
1 126224/126225 122759/122760 122549/122550 122528/122529 122451/122452
  +
122444/122445 122374/122375 122304/122305 122264/122265
  +
  +
  +
double = join (+)
  +
  +
(join . liftM2) (*) (+3) 5 -- (5+3)*(5+3) = 64
  +
-- Note: need to import Control.Monad.Instances
   
 
mapAccumL (\acc n -> (acc+n,acc+n)) 0 [1..10] -- interesting for fac, fib, ...
 
mapAccumL (\acc n -> (acc+n,acc+n)) 0 [1..10] -- interesting for fac, fib, ...
Line 172: Line 205:
 
do { Just x <- [Nothing, Just 5, Nothing, Just 6, Just 7, Nothing]; return x }
 
do { Just x <- [Nothing, Just 5, Nothing, Just 6, Just 7, Nothing]; return x }
 
</haskell>
 
</haskell>
 
   
 
== Other ==
 
== Other ==
Line 183: Line 215:
 
| otherwise -> True
 
| otherwise -> True
   
  +
--or:
  +
cond = foldr (uncurry if') -- see [1] below
   
 
-- match a constructor
 
-- match a constructor
Line 189: Line 223:
 
case a of Just{} -> True
 
case a of Just{} -> True
 
_ -> False
 
_ -> False
  +
  +
  +
-- spreadsheet magic
  +
-- requires import Control.Monad.Instances
  +
let loeb x = fmap ($ loeb x) x in
  +
loeb [ (!!5), const 3, liftM2 (+) (!!0) (!!1), (*2) . (!!2), length, const 17]
   
   
Line 204: Line 244:
 
-}
 
-}
 
</haskell>
 
</haskell>
  +
  +
[1]: see [[Case]] and [[If-then-else]].
  +
  +
=== Polynomials ===
  +
In abstract algebra you learn that polynomials can be used the same way integers are used given the right assumptions about their coefficients and roots. Specifically, polynomials support addition, subtraction, multiplication and sometimes division. It also turns out that one way to think of polynomials is that they are just lists of numbers (their coefficients).
  +
  +
instance Num a => Num [a] where -- (1)
  +
  +
(f:fs) + (g:gs) = f+g : fs+gs -- (2)
  +
fs + [] = fs -- (3a)
  +
[] + gs = gs -- (3b)
  +
  +
(f:fs) * (g:gs) = f*g : [f]*gs + fs*(g:gs) -- (4)
  +
_ * _ = [] -- (5)
  +
  +
abs = undefined -- I can't think of a sensible definition
  +
signum = map signum
  +
fromInteger n = [fromInteger n]
  +
negate = map (\x -> -x)
  +
  +
====Explanation====
  +
(1) puts lists into type class Num, the class to which operators + and * belong, provided the list elements are in class Num.
  +
  +
Lists are ordered by increasing powers. Thus <tt>f:fs</tt> means <tt>f+x*fs</tt> in algebraic notation. (2) and (4) follow from these algebraic identities:
  +
  +
(f+x*fs) + (g+x*gs) = f+g + x*(fs+gs)
  +
(f+x*fs) * (g+x*gs) = f*g + x*(f*gs + fs*(g+x*gs))
  +
  +
(3) and (5) handle list ends.
  +
  +
The bracketed <tt>[f]</tt> in (4) avoids mixed arithmetic, which Haskell doesn't support.
  +
  +
====Comments====
  +
  +
The methods are qualitatively different from ordinary array-based methods; there is no vestige of subscripting or counting of terms.
  +
  +
The methods are suitable for on-line computation. Only
  +
<i>n</i> terms of each input must be seen before the <i>n</i>-th term
  +
of output is produced.
  +
  +
Thus the methods work on infinite series as well as polynomials.
  +
  +
Integer power comes for free. This example tests the cubing of (1+x):
  +
  +
[1, 1]^3 == [1, 3, 3, 1]
  +
  +
  +
This gives us the infinite list of rows of Pascal's triangle:
  +
  +
pascal = map ([1,1]^) [0..]
  +
  +
For example,
  +
  +
take 5 pascal -- [[1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1]]
  +
  +
See also
  +
* [[Pointfree]]
  +
* [http://darcs.haskell.org/numericprelude/src/MathObj/Polynomial.hs NumericPrelude: Polynomials]
  +
* [[Add polynomials]]
  +
* Solve differential equations in terms of [http://www.haskell.org/pipermail/haskell-cafe/2004-May/006192.html power series].
   
 
[[Category:Idioms]]
 
[[Category:Idioms]]
  +
[[Category:Mathematics]]

Revision as of 01:24, 7 October 2011

Useful Idioms that will blow your mind (unless you already know them :)

This collection is supposed to be comprised of short, useful, cool, magical examples, which should incite the reader's curiosity and (hopefully) lead him to a deeper understanding of advanced Haskell concepts. At a later time I might add explanations to the more obscure solutions. I've also started providing several alternatives to give more insight into the interrelations of solutions.

More examples are always welcome, especially "obscure" monadic ones.


Contents

1 List/String operations

  -- split at whitespace
  -- "hello world" -> ["hello","world"]
  words
 
  unfoldr (\b -> fmap (const . (second $ drop 1) . break (==' ') $ b) . listToMaybe $ b)
 
  takeWhile (not . null) . evalState (repeatM $ modify (drop 1) >> State (break (== ' '))) . (' ' :)
    where repeatM = sequence . repeat
 
  fix (\f l -> if null l then [] else let (s,e) = break (==' ') l in s:f (drop 1 e))
 
 
  -- splitting in two (alternating)
  -- "1234567" -> ("1357", "246")
  -- the lazy match with ~ is necessary for efficiency, especially enabling processing of infinite lists
  foldr (\a ~(x,y) -> (a:y,x)) ([],[])
 
  (map snd *** map snd) . partition (even . fst) . zip [0..]
 
  transpose . unfoldr (\a -> toMaybe (null a) (splitAt 2 a))
  -- this one uses the solution to the next problem in a nice way :)
 
  toMaybe b x = if b then Just x else Nothing
  -- or generalize it:
  -- toMaybe = (toMonadPlus :: Bool -> a -> Maybe a)
  toMonadPlus b x = guard b >> return x
 
  -- splitting into lists of length N
  -- "1234567" -> ["12", "34", "56", "7"]
  unfoldr (\a -> toMaybe (not $ null a) (splitAt 2 a))
 
  takeWhile (not . null) . unfoldr (Just . splitAt 2)
 
  ensure :: MonadPlus m => (a -> Bool) -> a -> m a
  ensure p x = guard (p x) >> return x
  unfoldr (ensure (not . null . fst) . splitAt 2)
 
 
  -- sorting by a custom function
  -- length -> ["abc", "ab", "a"] -> ["a", "ab", "abc"]
  comparing f = compare `on` f -- "comparing" is already defined in Data.Ord
  sortBy (comparing length)
 
  map snd . sortBy (comparing fst) . map (length &&& id) 
  -- the so called "Schwartzian Transform" for computationally more expensive 
  -- functions.
 
  -- comparing adjacent elements
  rises xs = zipWith (<) xs (tail xs)
 
  -- lazy substring search
  -- "ell" -> "hello" -> True
  substr a b = any (a `isPrefixOf`) $ tails b
 
  -- multiple splitAt's:
  -- splitAts [2,5,0,3] [1..15] == [[1,2],[3,4,5,6,7],[],[8,9,10],[11,12,13,14,15]]
  splitAts = foldr (\n r -> splitAt n >>> second r >>> uncurry (:)) return
 
  -- frequency distribution
  -- "abracadabra" -> fromList [('a',5),('b',2),('c',1),('d',1),('r',2)]
  import Data.Map
  histogram = fromListWith (+) . (`zip` repeat 1)
 
  -- using arrows and sort
  histogramArr = map (head&&&length) . group . sort
 
  -- multidimensional zipWith
  zip2DWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]]
  zip2DWith = zipWith . zipWith
  zip3DWith :: (a -> b -> c) -> [[[a]]] -> [[[b]]] -> [[[c]]]
  zip3DWith = zipWith . zipWith . zipWith
  -- etc.

2 Mathematical sequences, etc

  -- factorial
  -- 6 -> 720
  product [1..6]
 
  foldl1 (*) [1..6]   -- this won't work for 0; use "foldl (*) 1 [1..n]" instead
 
  (!!6) $ scanl (*) 1 [1..]
 
  fix (\f n -> if n <= 0 then 1 else n * f (n-1))
 
 
  -- powers of two sequence
  iterate (*2) 1
 
  unfoldr (\z -> Just (z,2*z)) 1
 
 
  -- fibonacci sequence
  unfoldr (\(f1,f2) -> Just (f1,(f2,f1+f2))) (0,1)
 
  fibs = 0:1:zipWith (+) fibs (tail fibs)
 
  fib = 0:scanl (+) 1 fib -- also seen as: fibs = fix ((0:) . scanl (+) 1)
 
 
  -- pascal triangle
  pascal = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1]
 
 
  -- prime numbers
  -- example of a memoising caf (??)
  primes = sieve [2..] where
           sieve (p:x) = p : sieve [ n | n <- x, n `mod` p > 0 ]
 
  unfoldr  sieve [2..] where 
           sieve (p:x) = Just(p,   [ n | n <- x, n `mod` p > 0 ])
 
  otherPrimes = nubBy (((>1).).gcd) [2..]
 
  -- or if you want to use the Sieve of Eratosthenes..
  diff [] l = l
  diff l [] = l
  diff xl@(x:xs) yl@(y:ys) | x < y     = x:diff xs yl
                           | x > y     = diff xl ys
                           | otherwise = diff xs ys 
  esieve [] = []
  esieve (p:ps) = p:esieve (diff ps (iterate (+p) p))
  eprimes = esieve [2..]
 
  -- enumerating the rationals (see [1])
  rats :: [Rational]
  rats = iterate next 1 where
       next x = recip (fromInteger n+1-y) where (n,y) = properFraction x
 
  -- another way
  rats2 = fix ((1:) . (>>= \x -> [1+x, 1/(1+x)])) :: [Rational]

[1] Gibbons, Lest, Bird - Enumerating the Rationals

3 Monad magic

The list monad can be used for some amazing Prolog-ish search problems.

  -- all combinations of a list of lists.
  -- these solutions are all pretty much equivalent in that they run
  -- in the List Monad. the "sequence" solution has the advantage of
  -- scaling to N sublists.
  -- "12" -> "45" -> ["14", "15", "24", "25"]
  sequence ["12", "45"]
 
  [[x,y] | x <- "12", y <- "45"]
 
  do { x <- "12"; y <- "45"; return [x,y] }
 
  "12" >>= \a -> "45" >>= \b -> return [a,b]
 
  -- all combinations of letters
  (inits . repeat) ['a'..'z'] >>= sequence
 
  -- apply a list of functions to an argument
  -- even -> odd -> 4 -> [True,False]
  map ($4) [even,odd]
 
  sequence [even,odd] 4
 
  -- all subsequences of a sequence/ aka powerset.
  filterM (const [True, False])
 
  -- apply a function to two other function the same argument
  --   (lifting to the Function Monad (->))
  -- even 4 && odd 4 -> False
  liftM2 (&&) even odd 4
 
  liftM2 (>>) putStrLn return "hello"
 
  fix ((1:) . (>>= \x -> [x+1, 1/(x+1)])) :: [Rational]
  [1%1,2%1,1%2,3%1,1%3,3%2,2%3,4%1,1%4,4%3,3%4,5%2,2%5,5%3,3%5,5%1,1%5,5%4,4%5...
 
  -- forward function concatenation
  (*3) >>> (+1) $ 2
 
  foldl1 (flip (.)) [(+1),(*2)] 500
 
 
  -- perform functions in/on a monad, lifting
  fmap (+2) (Just 2)
 
  liftM2 (+) (Just 4) (Just 2)
 
 
  -- [still to categorize]
  (id >>= (+) >>= (+) >>= (+)) 3        -- 3+3+3+3 = 12
                                        -- Note: need to import Control.Monad.Instances
 
 
  -- Galloping horsemen
  -- A large circular track has only one place where horsemen can pass;
  -- many can pass at once there.  Is it possible for nine horsemen to
  -- gallop around it continuously, all at different constant speeds?
  -- the following prints out possible speeds for 2 or more horsemen.
  spd s = ' ': show s ++ '/': show (s+1)
  ext (c,l) = [(tails.filter(\b->a*(a+1)`mod`(b-a)==0)$r,a:l) | (a:r)<-c]
  put = putStrLn . ('1':) . concatMap spd . reverse . snd . head
  main = mapM_ put . iterate (>>= ext) $ [(map reverse $ inits [1..],[])]
 
  -- output:
  1 1/2
  1 2/3 1/2
  1 3/4 2/3 1/2
  1 5/6 4/5 3/4 2/3
  1 12/13 11/12 10/11 9/10 8/9
  1 27/28 26/27 25/26 24/25 23/24 20/21
  1 63/64 60/61 59/60 57/58 56/57 55/56 54/55
  1 755/756 741/742 740/741 735/736 734/735 728/729 727/728 720/721
  1 126224/126225 122759/122760 122549/122550 122528/122529 122451/122452
    122444/122445 122374/122375 122304/122305 122264/122265
 
 
  double = join (+)
 
  (join . liftM2) (*) (+3) 5            -- (5+3)*(5+3) = 64
                                        -- Note: need to import Control.Monad.Instances
 
  mapAccumL (\acc n -> (acc+n,acc+n)) 0 [1..10] -- interesting for fac, fib, ...
 
  do f <- [not, not]; d <- [True, False]; return (f d) -- [False,True,False,True]
 
  do { Just x <- [Nothing, Just 5, Nothing, Just 6, Just 7, Nothing]; return x }

4 Other

  -- simulating lisp's cond
  case () of () | 1 > 2     -> True
                | 3 < 4     -> False
                | otherwise -> True
 
  --or:
  cond = foldr (uncurry if')     -- see [1] below
 
  -- match a constructor
  -- this is better than applying all the arguments, because this way the
  -- data type can be changed without touching the code (ideally).
  case a of Just{} -> True
            _      -> False
 
 
  -- spreadsheet magic
  -- requires import Control.Monad.Instances
  let loeb x = fmap ($ loeb x) x in 
  loeb [ (!!5), const 3, liftM2 (+) (!!0) (!!1), (*2) . (!!2), length, const 17]
 
 
  {- 
  TODO, IDEAS:
    more fun with monad, monadPlus (liftM, ap, guard, when)
    fun with arrows (second, first, &&&, ***)
    liftM, ap
    lazy search (searching as traversal of lazy structures)
    innovative data types (i.e. having fun with Maybe sequencing)
 
  LINKS:
    bananas, envelopes, ...   (generic traversal)
    why functional fp matters (lazy search, ...)
  -}

[1]: see Case and If-then-else.

4.1 Polynomials

In abstract algebra you learn that polynomials can be used the same way integers are used given the right assumptions about their coefficients and roots. Specifically, polynomials support addition, subtraction, multiplication and sometimes division. It also turns out that one way to think of polynomials is that they are just lists of numbers (their coefficients).

 instance Num a => Num [a] where               -- (1)
   (f:fs) + (g:gs) = f+g : fs+gs               -- (2)
   fs + [] = fs                                -- (3a)
   [] + gs = gs                                -- (3b)
   (f:fs) * (g:gs) = f*g : [f]*gs + fs*(g:gs)  -- (4)
   _ * _ = []                                  -- (5)
   abs           = undefined   -- I can't think of a sensible definition
   signum        = map signum
   fromInteger n = [fromInteger n]
   negate        = map (\x -> -x)

4.1.1 Explanation

(1) puts lists into type class Num, the class to which operators + and * belong, provided the list elements are in class Num.

Lists are ordered by increasing powers. Thus f:fs means f+x*fs in algebraic notation. (2) and (4) follow from these algebraic identities:

 (f+x*fs) + (g+x*gs) = f+g + x*(fs+gs)
 (f+x*fs) * (g+x*gs) = f*g + x*(f*gs + fs*(g+x*gs))

(3) and (5) handle list ends.

The bracketed [f] in (4) avoids mixed arithmetic, which Haskell doesn't support.

4.1.2 Comments

The methods are qualitatively different from ordinary array-based methods; there is no vestige of subscripting or counting of terms.

The methods are suitable for on-line computation. Only n terms of each input must be seen before the n-th term of output is produced.

Thus the methods work on infinite series as well as polynomials.

Integer power comes for free. This example tests the cubing of (1+x):

  [1, 1]^3 == [1, 3, 3, 1]


This gives us the infinite list of rows of Pascal's triangle:

   pascal = map ([1,1]^) [0..]

For example,

   take 5 pascal -- [[1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1]]

See also