# Euler problems/111 to 120

### From HaskellWiki

BrettGiles (Talk | contribs) m |
m |
||

(21 intermediate revisions by 10 users not shown) | |||

Line 1: | Line 1: | ||

− | [[Category:Programming exercise spoilers]] |
||

== [http://projecteuler.net/index.php?section=problems&id=111 Problem 111] == |
== [http://projecteuler.net/index.php?section=problems&id=111 Problem 111] == |
||

Search for 10-digit primes containing the maximum number of repeated digits. |
Search for 10-digit primes containing the maximum number of repeated digits. |
||

Line 5: | Line 4: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_111 = undefined |
+ | import Control.Monad (replicateM) |

+ | |||

+ | -- All ways of interspersing n copies of x into a list |
||

+ | intr :: Int -> a -> [a] -> [[a]] |
||

+ | intr 0 _ y = [y] |
||

+ | intr n x (y:ys) = concat |
||

+ | [map ((replicate i x ++) . (y :)) $ intr (n-i) x ys |
||

+ | | i <- [0..n]] |
||

+ | intr n x _ = [replicate n x] |
||

+ | |||

+ | -- All 10-digit primes containing the maximal number of the digit d |
||

+ | maxDigits :: Char -> [Integer] |
||

+ | maxDigits d = head $ dropWhile null |
||

+ | [filter isPrime $ map read $ filter ((/='0') . head) $ |
||

+ | concatMap (intr (10-n) d) $ |
||

+ | replicateM n $ delete d "0123456789" |
||

+ | | n <- [1..9]] |
||

+ | |||

+ | problem_111 = sum $ concatMap maxDigits "0123456789" |
||

</haskell> |
</haskell> |
||

Line 13: | Line 12: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_112 = undefined |
+ | import Data.List |

+ | |||

+ | isIncreasing x = show x == sort (show x) |
||

+ | isDecreasing x = reverse (show x) == sort (show x) |
||

+ | isBouncy x = not (isIncreasing x) && not (isDecreasing x) |
||

+ | |||

+ | findProportion prop = snd . head . filter condition . zip [1..] |
||

+ | where condition (a,b) = a >= prop * fromIntegral b |
||

+ | |||

+ | problem_112 = findProportion 0.99 $ filter isBouncy [1..] |
||

</haskell> |
</haskell> |
||

Line 21: | Line 20: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_113 = undefined |
+ | import Array |

+ | |||

+ | mkArray b f = listArray b $ map f (range b) |
||

+ | |||

+ | digits = 100 |
||

+ | |||

+ | inc = mkArray ((1, 0), (digits, 9)) ninc |
||

+ | dec = mkArray ((1, 0), (digits, 9)) ndec |
||

+ | |||

+ | ninc (1, _) = 1 |
||

+ | ninc (l, d) = sum [inc ! (l-1, i) | i <- [d..9]] |
||

+ | |||

+ | ndec (1, _) = 1 |
||

+ | ndec (l, d) = sum [dec ! (l-1, i) | i <- [0..d]] |
||

+ | |||

+ | problem_113 = sum [inc ! i | i <- range ((digits, 0), (digits, 9))] |
||

+ | + sum [dec ! i | i <- range ((1, 1), (digits, 9))] |
||

+ | - digits*9 -- numbers like 11111 are counted in both inc and dec |
||

+ | - 1 -- 0 is included in the increasing numbers |
||

</haskell> |
</haskell> |
||

+ | Note: inc and dec contain the same data, but it seems clearer to duplicate them. |
||

+ | it is another way to solution this problem: |
||

+ | <haskell> |
||

+ | binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y)) |
||

+ | prodxy x y=product[x..y] |
||

+ | problem_113=sum[binomial (8+a) a+binomial (9+a) a-10|a<-[1..100]] |
||

+ | </haskell> |
||

== [http://projecteuler.net/index.php?section=problems&id=114 Problem 114] == |
== [http://projecteuler.net/index.php?section=problems&id=114 Problem 114] == |
||

Investigating the number of ways to fill a row with separated blocks that are at least three units long. |
Investigating the number of ways to fill a row with separated blocks that are at least three units long. |
||

Line 29: | Line 35: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_114 = undefined |
+ | -- fun in p115 |

+ | problem_114=fun 3 50 |
||

</haskell> |
</haskell> |
||

Line 37: | Line 43: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_115 = undefined |
+ | binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y)) |

+ | prodxy x y=product[x..y] |
||

+ | fun m n=sum[binomial (k+a) (k-a)|a<-[0..div (n+1) (m+1)],let k=1-a*m+n] |
||

+ | problem_115 = (+1)$length$takeWhile (<10^6) [fun 50 i|i<-[1..]] |
||

</haskell> |
</haskell> |
||

Line 45: | Line 51: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_116 = undefined |
+ | binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y)) |

+ | prodxy x y=product[x..y] |
||

+ | f116 n x=sum[binomial (a+b) a|a<-[1..div n x],let b=n-a*x] |
||

+ | p116 x=sum[f116 x a|a<-[2..4]] |
||

+ | problem_116 = p116 50 |
||

</haskell> |
</haskell> |
||

Line 53: | Line 59: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_117 = undefined |
+ | fibs5 = 0 : 0 :1: 1:zipWith4 (\a b c d->a+b+c+d) fibs5 a1 a2 a3 |

+ | where |
||

+ | a1=tail fibs5 |
||

+ | a2=tail a1 |
||

+ | a3=tail a2 |
||

+ | p117 x=fibs5!!(x+2) |
||

+ | problem_117 = p117 50 |
||

</haskell> |
</haskell> |
||

Line 61: | Line 67: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_118 = undefined |
+ | digits = ['1'..'9'] |

+ | |||

+ | -- possible partitions voor prime number sets |
||

+ | -- leave out patitions with more than 4 1's |
||

+ | -- because only {2,3,5,7,..} is possible |
||

+ | -- and the [9]-partition because every permutation of all |
||

+ | -- nine digits is divisable by 3 |
||

+ | test xs |
||

+ | |len>4=False |
||

+ | |xs==[9]=False |
||

+ | |otherwise=True |
||

+ | where |
||

+ | len=length $filter (==1) xs |
||

+ | parts = filter test $partitions 9 |
||

+ | permutationsOf [] = [[]] |
||

+ | permutationsOf xs = [x:xs' | x <- xs, xs' <- permutationsOf (delete x xs)] |
||

+ | combinationsOf 0 _ = [[]] |
||

+ | combinationsOf _ [] = [] |
||

+ | combinationsOf k (x:xs) = |
||

+ | map (x:) (combinationsOf (k-1) xs) ++ combinationsOf k xs |
||

+ | |||

+ | priemPerms [] = 0 |
||

+ | priemPerms ds = |
||

+ | fromIntegral . length . filter (isPrime . read) . permutationsOf $ ds |
||

+ | setsums [] 0 = [[]] |
||

+ | setsums [] _ = [] |
||

+ | setsums (x:xs) n |
||

+ | | x > n = setsums xs n |
||

+ | | otherwise = map (x:) (setsums (x:xs) (n-x)) ++ setsums xs n |
||

+ | |||

+ | partitions n = setsums (reverse [1..n]) n |
||

+ | |||

+ | fc :: [Integer] -> [Char] -> Integer |
||

+ | fc (p:[]) ds = priemPerms ds |
||

+ | fc (p:ps) ds = |
||

+ | sum [np y * fc ps (ds \\ y) | y <- combinationsOf p ds, np y /= 0] |
||

+ | where |
||

+ | np = priemPerms |
||

+ | -- here is the 'imperfection' correction method: |
||

+ | -- make use of duplicate reducing factors for partitions |
||

+ | -- with repeating factors, f.i. [1,1,1,1,2,3]: |
||

+ | -- in this case 4 1's -> factor = 4! |
||

+ | -- or for [1,1,1,3,3] : factor = 3! * 2! |
||

+ | dupF :: [Integer] -> Integer |
||

+ | dupF = product . map (product . enumFromTo 1 . fromIntegral . length) . group |
||

+ | |||

+ | main = do |
||

+ | print . sum . map (\x -> fc x digits `div` dupF x) $ parts |
||

+ | problem_118 = main |
||

</haskell> |
</haskell> |
||

Line 69: | Line 75: | ||

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_119 = undefined |
+ | import Data.List |

+ | digits n |
||

+ | {- 123->[3,2,1] |
||

+ | -} |
||

+ | |n<10=[n] |
||

+ | |otherwise= y:digits x |
||

+ | where |
||

+ | (x,y)=divMod n 10 |
||

+ | problem_119 =sort [(a^b)| |
||

+ | a<-[2..200], |
||

+ | b<-[2..9], |
||

+ | let m=a^b, |
||

+ | let n=sum$digits m, |
||

+ | n==a]!!29 |
||

</haskell> |
</haskell> |
||

== [http://projecteuler.net/index.php?section=problems&id=120 Problem 120] == |
== [http://projecteuler.net/index.php?section=problems&id=120 Problem 120] == |
||

− | Finding the maximum remainder when (a − 1)n + (a + 1)n is divided by a2. |
+ | Finding the maximum remainder when (a − 1)<sup>n</sup> + (a + 1)<sup>n</sup> is divided by a<sup>2</sup>. |

Solution: |
Solution: |
||

<haskell> |
<haskell> |
||

− | problem_120 = undefined |
+ | fun m=div (m*(8*m^2-3*m-5)) 3 |

+ | problem_120 = fun 500 |
||

</haskell> |
</haskell> |
||

− | [[Category:Tutorials]] |
+ | |

− | [[Category:Code]] |
+ | I have no idea what the above solution has to do with this |

+ | problem, even though it produces the correct answer. I suspect |
||

+ | it is some kind of red herring. Below you will find a more holy |
||

+ | mackerel approach, based on the observation that: |
||

+ | |||

+ | 1. (a-1)<sup>n</sup> + (a+1)<sup>n</sup> = 2 if n is odd, and 2an if n is even (mod a<sup>2</sup>) |
||

+ | |||

+ | 2. the maximum of 2an mod a<sup>2</sup> occurs when n = (a-1)/2 |
||

+ | |||

+ | I hope this is a little more transparent than the solution |
||

+ | proposed above. Henrylaxen Mar 5, 2008 |
||

+ | |||

+ | <haskell> |
||

+ | maxRemainder n = 2 * n * ((n-1) `div` 2) |
||

+ | problem_120 = sum $ map maxRemainder [3..1000] |
||

+ | </haskell> |

## Latest revision as of 08:07, 23 February 2010

## Contents |

## [edit] 1 Problem 111

Search for 10-digit primes containing the maximum number of repeated digits.

Solution:

import Control.Monad (replicateM) -- All ways of interspersing n copies of x into a list intr :: Int -> a -> [a] -> [[a]] intr 0 _ y = [y] intr n x (y:ys) = concat [map ((replicate i x ++) . (y :)) $ intr (n-i) x ys | i <- [0..n]] intr n x _ = [replicate n x] -- All 10-digit primes containing the maximal number of the digit d maxDigits :: Char -> [Integer] maxDigits d = head $ dropWhile null [filter isPrime $ map read $ filter ((/='0') . head) $ concatMap (intr (10-n) d) $ replicateM n $ delete d "0123456789" | n <- [1..9]] problem_111 = sum $ concatMap maxDigits "0123456789"

## [edit] 2 Problem 112

Investigating the density of "bouncy" numbers.

Solution:

import Data.List isIncreasing x = show x == sort (show x) isDecreasing x = reverse (show x) == sort (show x) isBouncy x = not (isIncreasing x) && not (isDecreasing x) findProportion prop = snd . head . filter condition . zip [1..] where condition (a,b) = a >= prop * fromIntegral b problem_112 = findProportion 0.99 $ filter isBouncy [1..]

## [edit] 3 Problem 113

How many numbers below a googol (10100) are not "bouncy"?

Solution:

import Array mkArray b f = listArray b $ map f (range b) digits = 100 inc = mkArray ((1, 0), (digits, 9)) ninc dec = mkArray ((1, 0), (digits, 9)) ndec ninc (1, _) = 1 ninc (l, d) = sum [inc ! (l-1, i) | i <- [d..9]] ndec (1, _) = 1 ndec (l, d) = sum [dec ! (l-1, i) | i <- [0..d]] problem_113 = sum [inc ! i | i <- range ((digits, 0), (digits, 9))] + sum [dec ! i | i <- range ((1, 1), (digits, 9))] - digits*9 -- numbers like 11111 are counted in both inc and dec - 1 -- 0 is included in the increasing numbers

Note: inc and dec contain the same data, but it seems clearer to duplicate them.

it is another way to solution this problem:

binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y)) prodxy x y=product[x..y] problem_113=sum[binomial (8+a) a+binomial (9+a) a-10|a<-[1..100]]

## [edit] 4 Problem 114

Investigating the number of ways to fill a row with separated blocks that are at least three units long.

Solution:

-- fun in p115 problem_114=fun 3 50

## [edit] 5 Problem 115

Finding a generalisation for the number of ways to fill a row with separated blocks.

Solution:

binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y)) prodxy x y=product[x..y] fun m n=sum[binomial (k+a) (k-a)|a<-[0..div (n+1) (m+1)],let k=1-a*m+n] problem_115 = (+1)$length$takeWhile (<10^6) [fun 50 i|i<-[1..]]

## [edit] 6 Problem 116

Investigating the number of ways of replacing square tiles with one of three coloured tiles.

Solution:

binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y)) prodxy x y=product[x..y] f116 n x=sum[binomial (a+b) a|a<-[1..div n x],let b=n-a*x] p116 x=sum[f116 x a|a<-[2..4]] problem_116 = p116 50

## [edit] 7 Problem 117

Investigating the number of ways of tiling a row using different-sized tiles.

Solution:

fibs5 = 0 : 0 :1: 1:zipWith4 (\a b c d->a+b+c+d) fibs5 a1 a2 a3 where a1=tail fibs5 a2=tail a1 a3=tail a2 p117 x=fibs5!!(x+2) problem_117 = p117 50

## [edit] 8 Problem 118

Exploring the number of ways in which sets containing prime elements can be made.

Solution:

digits = ['1'..'9'] -- possible partitions voor prime number sets -- leave out patitions with more than 4 1's -- because only {2,3,5,7,..} is possible -- and the [9]-partition because every permutation of all -- nine digits is divisable by 3 test xs |len>4=False |xs==[9]=False |otherwise=True where len=length $filter (==1) xs parts = filter test $partitions 9 permutationsOf [] = [[]] permutationsOf xs = [x:xs' | x <- xs, xs' <- permutationsOf (delete x xs)] combinationsOf 0 _ = [[]] combinationsOf _ [] = [] combinationsOf k (x:xs) = map (x:) (combinationsOf (k-1) xs) ++ combinationsOf k xs priemPerms [] = 0 priemPerms ds = fromIntegral . length . filter (isPrime . read) . permutationsOf $ ds setsums [] 0 = [[]] setsums [] _ = [] setsums (x:xs) n | x > n = setsums xs n | otherwise = map (x:) (setsums (x:xs) (n-x)) ++ setsums xs n partitions n = setsums (reverse [1..n]) n fc :: [Integer] -> [Char] -> Integer fc (p:[]) ds = priemPerms ds fc (p:ps) ds = sum [np y * fc ps (ds \\ y) | y <- combinationsOf p ds, np y /= 0] where np = priemPerms -- here is the 'imperfection' correction method: -- make use of duplicate reducing factors for partitions -- with repeating factors, f.i. [1,1,1,1,2,3]: -- in this case 4 1's -> factor = 4! -- or for [1,1,1,3,3] : factor = 3! * 2! dupF :: [Integer] -> Integer dupF = product . map (product . enumFromTo 1 . fromIntegral . length) . group main = do print . sum . map (\x -> fc x digits `div` dupF x) $ parts problem_118 = main

## [edit] 9 Problem 119

Investigating the numbers which are equal to sum of their digits raised to some power.

Solution:

import Data.List digits n {- 123->[3,2,1] -} |n<10=[n] |otherwise= y:digits x where (x,y)=divMod n 10 problem_119 =sort [(a^b)| a<-[2..200], b<-[2..9], let m=a^b, let n=sum$digits m, n==a]!!29

## [edit] 10 Problem 120

Finding the maximum remainder when (a − 1)^{n} + (a + 1)^{n} is divided by a^{2}.

Solution:

fun m=div (m*(8*m^2-3*m-5)) 3 problem_120 = fun 500

I have no idea what the above solution has to do with this
problem, even though it produces the correct answer. I suspect
it is some kind of red herring. Below you will find a more holy
mackerel approach, based on the observation that:

1. (a-1)^{n} + (a+1)^{n} = 2 if n is odd, and 2an if n is even (mod a^{2})

2. the maximum of 2an mod a^{2} occurs when n = (a-1)/2

I hope this is a little more transparent than the solution proposed above. Henrylaxen Mar 5, 2008

maxRemainder n = 2 * n * ((n-1) `div` 2) problem_120 = sum $ map maxRemainder [3..1000]