Difference between revisions of "Euler problems/131 to 140"

From HaskellWiki
Jump to navigation Jump to search
Line 45: Line 45:
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
  +
import List
problem_134 = undefined
 
  +
  +
merge xs@(x:xt) ys@(y:yt) = case compare x y of
  +
LT -> x : (merge xt ys)
  +
EQ -> x : (merge xt yt)
  +
GT -> y : (merge xs yt)
  +
  +
diff xs@(x:xt) ys@(y:yt) = case compare x y of
  +
LT -> x : (diff xt ys)
  +
EQ -> diff xt yt
  +
GT -> diff xs yt
  +
  +
primes, nonprimes :: [Integer]
  +
primes = [2,3,5] ++ (diff [7,9..] nonprimes)
  +
nonprimes = foldr1 f . map g $ tail primes
  +
where f (x:xt) ys = x : (merge xt ys)
  +
g p = [ n*p | n <- [p,p+2..]]
  +
  +
dign x=(+1)$floor$logBase 10$fromInteger x
  +
  +
euler x1 x2 x3 y1 y2 1=(x3,y2)
  +
euler x1 x2 x3 y1 y2 y3
  +
=euler y1 y2 y3 t1 t2 t3
  +
where
  +
(k,t3)=divMod x3 y3
  +
t1=x1-k*y1
  +
t2=x2-k*y2
  +
-- find a ,b
  +
-- mod (x*a) y = 1
  +
-- mod (y*b) x = 1
  +
congrue x y |x>y=euler 1 0 x 0 1 y
  +
|otherwise =(a,b)
  +
where
  +
(b,a)=congrue y x
  +
--fastfun 7=1219
  +
fastfun x
  +
|x==1=0
  +
|p1>1000000=0
  +
|otherwise= a*d+p1
  +
where
  +
p1=primes!!x
  +
p2=primes!!(x+1)
  +
dp=p2-p1
  +
d=10^dign p1
  +
dmod=mod d p2
  +
eu=(+p2)$fst$congrue dmod p2
  +
a=mod (eu*dp) p2
  +
  +
groups=1000
  +
  +
funsum k=sum[fastfun a|a<-[1+k*groups..groups*(k+1)]]
  +
  +
google num
  +
-- write file to change bignum to small num
  +
=if (num>79)
  +
then return()
  +
else do appendFile "file.log" $(show$funsum num) ++" "++(show num) ++"\n"
  +
google (num+1)
  +
-- first use main to make file.log
  +
-- then run problem_134
  +
main=google 0
  +
  +
  +
split :: Char -> String -> [String]
  +
split = unfoldr . split'
  +
  +
split' :: Char -> String -> Maybe (String, String)
  +
split' c l
  +
| null l = Nothing
  +
| otherwise = Just (h, drop 1 t)
  +
where (h, t) = span (/=c) l
  +
  +
sToInt x=((+0).read) $head$split ' ' x
  +
 
problem_134=do
  +
x<-readFile "file.log"
  +
let y=sum$map sToInt $lines x
  +
print y
 
</haskell>
 
</haskell>
   

Revision as of 09:38, 18 December 2007

Problem 131

Determining primes, p, for which n3 + n2p is a perfect cube.

Solution:

primes=sieve [2..]
sieve (x:xs)=x:sieve [y|y<-xs,mod y x>0]
primeFactors n = factor n primes
    where
        factor _ [] = []
        factor m (p:ps) | p*p > m        = [m]
                        | m `mod` p == 0 = p : factor (m `div` p) (p:ps)
                        | otherwise      = factor m ps
 
isPrime n = case (primeFactors n) of
                (_:_:_)   -> False
                _         -> True
problem_131 =
    length $ takeWhile (<1000000) 
    [x|
    a<-[1 .. ],
    let x=(3*a*(a+1)+1),
    isPrime x]

Problem 132

Determining the first forty prime factors of a very large repunit.

Solution:

problem_132 = undefined

Problem 133

Investigating which primes will never divide a repunit containing 10n digits.

Solution:

problem_133 = undefined

Problem 134

Finding the smallest positive integer related to any pair of consecutive primes.

Solution:

import List

merge xs@(x:xt) ys@(y:yt) = case compare x y of
    LT -> x : (merge xt ys)
    EQ -> x : (merge xt yt)
    GT -> y : (merge xs yt)
    
diff  xs@(x:xt) ys@(y:yt) = case compare x y of
    LT -> x : (diff xt ys)
    EQ -> diff xt yt
    GT -> diff xs yt
 
primes, nonprimes :: [Integer]
primes    = [2,3,5] ++ (diff [7,9..] nonprimes) 
nonprimes = foldr1 f . map g $ tail primes
    where f (x:xt) ys = x : (merge xt ys)
          g p = [ n*p | n <- [p,p+2..]]

dign x=(+1)$floor$logBase 10$fromInteger x  

euler x1 x2 x3 y1 y2 1=(x3,y2) 
euler x1 x2 x3 y1 y2 y3 
    =euler y1 y2 y3 t1 t2 t3
    where
    (k,t3)=divMod x3 y3
    t1=x1-k*y1
    t2=x2-k*y2
-- find a ,b
-- mod (x*a) y = 1
-- mod (y*b) x = 1
congrue x y |x>y=euler 1 0 x 0 1 y
    |otherwise =(a,b)
    where
    (b,a)=congrue y x
--fastfun 7=1219
fastfun x
    |x==1=0
    |p1>1000000=0
    |otherwise= a*d+p1 
    where
    p1=primes!!x
    p2=primes!!(x+1)
    dp=p2-p1
    d=10^dign p1
    dmod=mod d p2
    eu=(+p2)$fst$congrue dmod p2
    a=mod (eu*dp) p2

groups=1000

funsum k=sum[fastfun a|a<-[1+k*groups..groups*(k+1)]]

google num
-- write file to change bignum to small num
  =if (num>79)
      then return()
      else do appendFile "file.log" $(show$funsum num)  ++"  "++(show num) ++"\n"
              google (num+1)
-- first use main to make file.log
-- then run problem_134
main=google 0


split :: Char -> String -> [String]
split = unfoldr . split'
 
split' :: Char -> String -> Maybe (String, String)
split' c l
  | null l = Nothing
  | otherwise = Just (h, drop 1 t)
  where (h, t) = span (/=c) l
 
sToInt x=((+0).read) $head$split ' ' x
 
problem_134=do
    x<-readFile "file.log"
    let y=sum$map sToInt $lines x
    print  y

Problem 135

Determining the number of solutions of the equation x2 − y2 − z2 = n.

Solution:

import List
primes :: [Integer]
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
 
primeFactors :: Integer -> [Integer]
primeFactors n = factor n primes
    where
        factor _ [] = []
        factor m (p:ps) | p*p > m        = [m]
                        | m `mod` p == 0 = p : factor (m `div` p) (p:ps)
                        | otherwise      = factor m ps
 
isPrime :: Integer -> Bool
isPrime 1 = False
isPrime n = case (primeFactors n) of
                (_:_:_)   -> False
                _         -> True
fstfac x = [(head a ,length a)|a<-group$primeFactors x]
fac [(x,y)]=[x^a|a<-[0..y]]
fac (x:xs)=[a*b|a<-fac [x],b<-fac xs]
factors x=fac$fstfac x
fastfun x
    |mod x 4==3=[a|a<-factors x,a*a<3*x]
    |mod x 16==4=[a|let n=div x 4,a<-factors n,a*a<3*n]
    |mod x 16==12=[a|let n=div x 4,a<-factors n,a*a<3*n]
    |mod x 16==0=[a|let n=div x 16,a<-factors n,a*a<3*n]
    |otherwise=[]

slowfun x =[a|a<-factors x,a*a<3*x,let b=div x a,mod (a+b) 4==0]

problem_135 =[a|a<-[1..groups],(length$fastfun a)==10]

Problem 136

Discover when the equation x2 − y2 − z2 = n has a unique solution.

Solution:

-- fastfun in the problem 135
groups=1000000
pfast=[a|a<-[1..5000],(length$fastfun a)==1]
pslow=[a|a<-[1..5000],(length$slowfun a)==1]
-- find len pfast=len pslow+2
-- so sum file.log and +2
problem_136 b=[a|a<-[1+b*groups..groups*(b+1)],(length$fastfun a)==1]
google num
-- write file to change bignum to small num
  =if (num>49)
      then return()
      else do appendFile "file.log" ((show$length$problem_136 num)  ++ "\n")
              google (num+1)
main=google 0

Problem 137

Determining the value of infinite polynomial series for which the coefficients are Fibonacci numbers.

Solution:

-- afx=x/(1-x-x^2)=n
--   ->5*n^2+2*n+1=d^2
--   ->let k=10*n+2
--   ->20*d^2=k^2+16
--   ->5*d^2=k^2+4
--   ->let d k is even
--   ->5*d^2=k^2+1
--   ->let d k is odd
--   ->5*d^2=k^2+4

import Data.List
findmin d = d:head [[n,m]|m<-[1..10],n<-[1..10],n*n==d*m*m+1]
findmin_s d = d:head [[n,m]|m<-[1..10],n<-[1..10],n*n==d*m*m-1]
findmu d y= d:head [[n,m]|m<-[1..10],n<-[1..10],n*n==d-y*m]
mux2 [d,a, b]=[d,a,-b]
mult [d,a, b] [_,a1, b1]=d:[a*a1+d*b*b1,a*b1+b*a1]
pow 1 x=x
pow n x =mult x $pow (n-1) x 
    where
    mult [d,a, b] [_,a1, b1]=d:[a*a1+d*b*b1,a*b1+b*a1]
fun =[c|a<-[1..20],[_,b,_]<-powmu a,let bb=abs(b),mod bb 5==1,let c=div bb 5]
powmu n =
    [a,b]
    where
    c=pow n $findmin 5
    x1=findmu 5 4
    x2=mux2 x1
    a=mult c x1 
    b=mult c x2
fun2=[c|a<-[1..20],let[_,b,_]=pow a $findmin_s 5,let bb=b*2,mod bb 5==1,let c=div bb 5]
problem_137 =(!!14)$sort $(++fun)$fun2

Problem 138

Investigating isosceles triangle for which the height and base length differ by one.

Solution:

problem_138 = undefined

Problem 139

Finding Pythagorean triangles which allow the square on the hypotenuse square to be tiled.

Solution:

problem_139 = undefined

Problem 140

Investigating the value of infinite polynomial series for which the coefficients are a linear second order recurrence relation.

Solution:

problem_140 = undefined