Difference between revisions of "Euler problems/141 to 150"

From HaskellWiki
Jump to navigation Jump to search
(rv: vandalism)
(change view to problems)
Line 1: Line 1:
== [http://projecteuler.net/index.php?section=view&id=141 Problem 141] ==
+
== [http://projecteuler.net/index.php?section=problems&id=141 Problem 141] ==
 
Investigating progressive numbers, n, which are also square.
 
Investigating progressive numbers, n, which are also square.
   
Line 35: Line 35:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=142 Problem 142] ==
+
== [http://projecteuler.net/index.php?section=problems&id=142 Problem 142] ==
 
Perfect Square Collection
 
Perfect Square Collection
   
Line 92: Line 92:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=143 Problem 143] ==
+
== [http://projecteuler.net/index.php?section=problems&id=143 Problem 143] ==
 
Investigating the Torricelli point of a triangle
 
Investigating the Torricelli point of a triangle
   
Line 204: Line 204:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=144 Problem 144] ==
+
== [http://projecteuler.net/index.php?section=problems&id=144 Problem 144] ==
 
Investigating multiple reflections of a laser beam.
 
Investigating multiple reflections of a laser beam.
   
Line 212: Line 212:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=145 Problem 145] ==
+
== [http://projecteuler.net/index.php?section=problems&id=145 Problem 145] ==
 
How many reversible numbers are there below one-billion?
 
How many reversible numbers are there below one-billion?
   
Line 263: Line 263:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=146 Problem 146] ==
+
== [http://projecteuler.net/index.php?section=problems&id=146 Problem 146] ==
 
Investigating a Prime Pattern
 
Investigating a Prime Pattern
   
Line 269: Line 269:
 
<haskell>
 
<haskell>
 
import List
 
import List
find2km :: Integral a => a -> (a,a)
 
find2km n = f 0 n
 
where
 
f k m
 
| r == 1 = (k,m)
 
| otherwise = f (k+1) q
 
where (q,r) = quotRem m 2
 
 
millerRabinPrimality :: Integer -> Integer -> Bool
 
millerRabinPrimality n a
 
| a <= 1 || a >= n-1 =
 
error $ "millerRabinPrimality: a out of range ("
 
++ show a ++ " for "++ show n ++ ")"
 
| n < 2 = False
 
| even n = False
 
| b0 == 1 || b0 == n' = True
 
| otherwise = iter (tail b)
 
where
 
n' = n-1
 
(k,m) = find2km n'
 
b0 = powMod n a m
 
b = take (fromIntegral k) $ iterate (squareMod n) b0
 
iter [] = False
 
iter (x:xs)
 
| x == 1 = False
 
| x == n' = True
 
| otherwise = iter xs
 
 
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a
 
pow' _ _ _ 0 = 1
 
pow' mul sq x' n' = f x' n' 1
 
where
 
f x n y
 
| n == 1 = x `mul` y
 
| r == 0 = f x2 q y
 
| otherwise = f x2 q (x `mul` y)
 
where
 
(q,r) = quotRem n 2
 
x2 = sq x
 
 
mulMod :: Integral a => a -> a -> a -> a
 
mulMod a b c = (b * c) `mod` a
 
squareMod :: Integral a => a -> a -> a
 
squareMod a b = (b * b) `rem` a
 
powMod :: Integral a => a -> a -> a -> a
 
powMod m = pow' (mulMod m) (squareMod m)
 
 
isPrime x=millerRabinPrimality x 2
 
isPrime x=millerRabinPrimality x 2
 
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]]
 
--isPrime x=foldl (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]]
Line 354: Line 308:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=147 Problem 147] ==
+
== [http://projecteuler.net/index.php?section=problems&id=147 Problem 147] ==
 
Rectangles in cross-hatched grids
 
Rectangles in cross-hatched grids
   
Line 362: Line 316:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=148 Problem 148] ==
+
== [http://projecteuler.net/index.php?section=problems&id=148 Problem 148] ==
 
Exploring Pascal's triangle.
 
Exploring Pascal's triangle.
   
Line 380: Line 334:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=149 Problem 149] ==
+
== [http://projecteuler.net/index.php?section=problems&id=149 Problem 149] ==
 
Searching for a maximum-sum subsequence.
 
Searching for a maximum-sum subsequence.
   
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
  +
#include<stdio.h>
problem_149 = undefined
 
  +
#define N 2000
  +
#define max(a,b) ((a) > (b) ? (a) : (b))
  +
int s[4000001];
  +
int MaxSubsequenceSum(int s[] , int n) {
  +
int j;
  +
int ThisSum, MaxSum ;
  +
ThisSum = MaxSum = 0;
  +
for ( j=0; j<n ; j++)
  +
{
  +
ThisSum += s[j];
  +
if (ThisSum> MaxSum)
  +
MaxSum = ThisSum;
  +
else if (ThisSum < 0)
  +
ThisSum = 0;
  +
}
  +
return MaxSum;
  +
}
  +
long long Generate(int ind){
  +
long long k = ind;
  +
if (ind <= 55)
  +
return ((100003 - 200003*k + 300007*k*k*k) % 1000000) - 500000;
  +
return (s[k-24]+s[k-55]+1000000)%1000000-500000;
  +
  +
}
  +
int main()
  +
{
  +
int sums=0;
  +
int maxx=0;
  +
for (int i=1;i<4000001;i++){
  +
s[i]=(int)(Generate(i));
  +
}
  +
printf("%d %d \n",s[10],s[100]);
  +
int ks[N],kss[N];
  +
for (int k=0;k<N;k++){
  +
for(int b=0;b<N;b++)
  +
{
  +
ks[b]=s[k*N+b+1];
  +
kss[b]=s[b*N+k+1];
  +
}
  +
sums=MaxSubsequenceSum(ks,N);
  +
sums=max(sums,MaxSubsequenceSum(kss,N));
  +
maxx=max (maxx,sums);
  +
}
  +
int ksi,ksj, x,y,y1;
  +
for (int k=-N+1;k<N;k++){
  +
ksi=ksj=0;
  +
for(int b=0;b<N;b++)
  +
{
  +
x=k+b;
  +
y=b;
  +
y1=N-1-b;
  +
if (x>-1 && x<N && y>-1 && y<N)
  +
ks[ksi++]=s[x*N+y+1];
  +
if (x>-1 && x<N && y1>-1 && y1<N)
  +
kss[ksj++]=s[x*N+y1+1];
  +
}
  +
sums=MaxSubsequenceSum(ks,ksi);
  +
sums=max(sums,MaxSubsequenceSum(kss,ksj));
  +
maxx=max (maxx,sums);
  +
}
  +
printf("%d\n",maxx);
  +
}
  +
problem_149 = main
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=150 Problem 150] ==
+
== [http://projecteuler.net/index.php?section=problems&id=150 Problem 150] ==
 
Searching a triangular array for a sub-triangle having minimum-sum.
 
Searching a triangular array for a sub-triangle having minimum-sum.
   

Revision as of 02:07, 4 February 2008

Problem 141

Investigating progressive numbers, n, which are also square.

Solution:

import Data.List
intSqrt :: Integral a => a -> a
intSqrt n
    | n < 0 = error "intSqrt: negative n"
    | otherwise = f n
    where
        f x = if y < x then f y else x
            where y = (x + (n `quot` x)) `quot` 2
isSqrt n = n==((^2).intSqrt) n
takec a b =
    two++takeWhile (<=e12) 
    [sq| c1<-[1..], let c=c1*c1,let sq=(c^2*a^3*b+b^2*c) ]
    where
    e12=10^12
    two=[sq|c<-[b,2*b],let sq=(c^2*a^3*b+b^2*c) ]
problem_141=
    sum$nub[c|
    (a,b)<-takeWhile (\(a,b)->a^3*b+b^2<e12) 
        [(a,b)|
        a<-[2..e4],
        b<-[1..(a-1)]
        ],
    gcd a b==1,
    c<-takec a b,
    isSqrt c
    ]
    where
    e4=120
    e12=10^12

Problem 142

Perfect Square Collection

Solution:

import List
isSquare n = (round . sqrt $ fromIntegral n) ^ 2 == n
aToX (a,b,c)=[x,y,z]
    where
    x=div (a+b) 2
    y=div (a-b) 2
    z=c-x
{-
 -                                2    2    2
 -                               a  = c  + d
 -                                2    2    2
 -                               a  = e  + f
 -                                2    2    2
 -                               c  = e  + b
 -   let b=x*y  then 
 -                                             (y + xb)
 -                                          c= ---------
 -                                                 2
 -                                             (-y + xb)
 -                                          e= ---------
 -                                                 2
 -                                             (-x + yb)
 -                                          d= ---------
 -                                                 2
 -                                             (x + yb)
 -                                          f= ---------
 -                                                 2
 -
 - and 
 -                                2    2    2
 -                               a  = c  + d
 - then 
 -                                   2    2    2  2
 -                              2  (y  + x ) (x  y  + 1)
 -                             a = ---------------------
 -                                           4
 -
 -}
problem_142 = sum$head[aToX(t,t2 ,t3)|
    a<-[3,5..50],
    b<-[(a+2),(a+4)..50],
    let a2=a^2,
    let b2=b^2,
    let n=(a2+b2)*(a2*b2+1),
    isSquare n,
    let t=div n 4,
    let t2=a2*b2,
    let t3=div (a2*(b2+1)^2) 4
    ]

Problem 143

Investigating the Torricelli point of a triangle

Solution:

import Data.List
import Data.Array.ST
import Data.Array
import qualified Data.Array.Unboxed as U
import Control.Monad
 
mkCan :: [Int] -> [(Int,Int)]
mkCan lst = map func $ group $ insert 3 lst
            where
              func ps@(p:_)
                | p == 3    = (3,2*l-1)
                | otherwise = (p, 2*l)
                  where
                    l = length ps

spfArray :: U.UArray Int Int
spfArray
    = runSTUArray
    (do ar <- newArray (2,13397) 0
        let loop k
                | k > 13397 = return ()
                | otherwise = do writeArray ar k 2
                                 loop (k+2)
        loop 2
        let go i
              | i > 13397 = return ar
              | otherwise
                = do p <- readArray ar i
                     if (p == 0)
                        then do writeArray ar i i
                                let run k
                                      | k > 13397 = go (i+2)
                                      | otherwise
                                        = do q <- readArray ar k
                                             when (q == 0)
                                                  (writeArray ar k i)
                                             run (k+2*i)
                                run (i*i)
                        else go (i+2)
        go 3)
 
factArray :: Array Int [Int]
factArray
    = runSTArray
    (do ar <- newArray (1,13397) []
        let go i
              | i > 13397 = return ar
              | otherwise = do let p = spfArray U.! i
                                   q = i `div` p
                               fs <- readArray ar q
                               writeArray ar i (p:fs)
                               go (i+1)
        go 2)
 
sdivs :: Int -> [(Int,Int)]
sdivs s
    = filter ((<= 100000) . uncurry (+)) $ zip sds' lds'
      where
        bd = 3*s*s
        pks = mkCan $ factArray ! s
        fun (p,k) = take (k+1) $ iterate (*p) 1
        ds = map fun pks
        (sds,lds) = span ((< bd) . (^2)) . sort $ foldr (liftM2 (*)) [1] ds
        sds' = map (+ 2*s) sds
        lds' = reverse $ map (+ 2*s) lds

pairArray :: Array Int [Int]
pairArray
    = runSTArray
    (do ar <- newArray (3,50000) []
        let go s
              | s > 13397 = return ar
              | otherwise
                = do let run [] = go (s+1)
                         run ((r,q):ds)
                            = do lst <- readArray ar r
                                 let nlst = insert q lst
                                 writeArray ar r nlst
                                 run ds
                     run $ sdivs s
        go 1)

select2 :: [Int] -> [(Int,Int)]
select2 []     = []
select2 (a:bs) = [(a,b) | b <- bs] ++ select2 bs
 
sumArray :: U.UArray Int Bool
sumArray
    = runSTUArray
    (do ar <- newArray (12,100000) False
        let go r
              | r > 33332 = return ar
              | otherwise
                = do let run [] = go (r+1)
                         run ((q,p):xs)
                            = do when (p `elem` (pairArray!q))
                                      (writeArray ar (p+q+r) True)
                                 run xs
                     run $ filter ((<= 100000) . (+r) . uncurry (+)) $
                             select2 $ pairArray!r
        go 3)
 
main :: IO ()
main = writeFile "p143.log"$show$ sum [s | (s,True) <- U.assocs sumArray]
problem_143 = main

Problem 144

Investigating multiple reflections of a laser beam.

Solution:

problem_144 = undefined

Problem 145

How many reversible numbers are there below one-billion?

Solution:

import List

digits n 
{-  123->[3,2,1]
 -}
    |n<10=[n]
    |otherwise= y:digits x 
    where
    (x,y)=divMod n 10
-- 123 ->321
dmm=(\x y->x*10+y)
palind n=foldl dmm 0 (digits n) 

isOdd x=(length$takeWhile odd x)==(length x)
isOdig x=isOdd m && s<=h
    where
    k=x+palind x
    m=digits k
    y=floor$logBase 10 $fromInteger x
    ten=10^y
    s=mod x 10
    h=div x ten

a2=[i|i<-[10..99],isOdig i]
aa2=[i|i<-[10..99],isOdig i,mod i 10/=0]
a3=[i|i<-[100..999],isOdig i]
m5=[i|i1<-[0..99],i2<-[0..99],
      let i3=i1*1000+3*100+i2,
      let i=10^6*   8+i3*10+5,
      isOdig i
   ]

fun i
    |i==2  =2*le aa2
    |even i=(fun 2)*d^(m-1)
    |i==3  =2*le a3
    |i==7  =fun 3*le m5
    |otherwise=0
    where
    le=length
    m=div i 2
    d=2*le a2

problem_145 = sum[fun a|a<-[1..9]]

Problem 146

Investigating a Prime Pattern

Solution:

import List
isPrime x=millerRabinPrimality x 2
--isPrime x=foldl   (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]]
six=[1,3,7,9,13,27]
allPrime x=foldl (&&) True [isPrime k|a<-six,let k=x^2+a]
linkPrime [x]=filterPrime x
linkPrime (x:xs)=[y|
    a<-linkPrime xs,
    b<-[0..(x-1)],
    let y=b*prxs+a,
    let c=mod y x,
    elem c d]
    where
    prxs=product xs
    d=filterPrime x

filterPrime p=
    [a|
    a<-[0..(p-1)],
    length[b|b<-six,mod (a^2+b) p/=0]==6
    ]
testPrimes=[2,3,5,7,11,13,17,23]
primes=[2,3,5,7,11,13,17,23,29]
test =
    sum[y|
    y<-linkPrime testPrimes,
    y<1000000,
    allPrime (y)
    ]==1242490
p146 =[y|y<-linkPrime primes,y<150000000,allPrime (y)]
problem_146=[a|a<-p146, allNext a]
allNext x=
    sum [1|(x,y)<-zip a b,x==y]==6
    where
    a=[x^2+b|b<-six]
    b=head a:(map nextPrime a)
nextPrime x=head [a|a<-[(x+1)..],isPrime a]
main=writeFile "p146.log" $show $sum problem_146

Problem 147

Rectangles in cross-hatched grids

Solution:

problem_147 = undefined

Problem 148

Exploring Pascal's triangle.

Solution:

triangel 0 = 0
triangel n 
    |n <7 =n+triangel (n-1)  
    |n==k7 =28^k 
    |otherwise=(triangel i) + j*(triangel (n-i))
    where
    i=k7*((n-1)`div`k7)
    j= -(n`div`(-k7))
    k7=7^k
    k=floor(log (fromIntegral n)/log 7)
problem_148=triangel (10^9)

Problem 149

Searching for a maximum-sum subsequence.

Solution:

#include<stdio.h>
#define N 2000
#define   max(a,b)   ((a)   >   (b)   ?   (a)   :   (b))
int s[4000001];
int MaxSubsequenceSum(int s[] , int n) {
    int j;
    int ThisSum, MaxSum ;
    ThisSum = MaxSum = 0;
    for ( j=0; j<n ; j++)
    {
        ThisSum += s[j];
        if (ThisSum> MaxSum)
            MaxSum = ThisSum;
        else if (ThisSum < 0)
            ThisSum = 0;
    }
    return MaxSum;
}
long long Generate(int ind){
    long long k = ind;
    if (ind <= 55) 
        return  ((100003 - 200003*k + 300007*k*k*k) % 1000000) - 500000;
    return (s[k-24]+s[k-55]+1000000)%1000000-500000;

}
int main()
{
    int sums=0;
    int maxx=0;
    for (int i=1;i<4000001;i++){
        s[i]=(int)(Generate(i));
    }
    printf("%d  %d \n",s[10],s[100]);
    int ks[N],kss[N];
    for (int k=0;k<N;k++){
        for(int b=0;b<N;b++)
        {  
            ks[b]=s[k*N+b+1]; 
            kss[b]=s[b*N+k+1]; 
        }
        sums=MaxSubsequenceSum(ks,N);
        sums=max(sums,MaxSubsequenceSum(kss,N));
        maxx=max (maxx,sums);
    }
    int ksi,ksj, x,y,y1;
    for (int k=-N+1;k<N;k++){
        ksi=ksj=0;
        for(int b=0;b<N;b++)
        {  
            x=k+b;
            y=b;
            y1=N-1-b;
            if (x>-1 && x<N && y>-1 && y<N)
                ks[ksi++]=s[x*N+y+1];
            if (x>-1 && x<N && y1>-1 && y1<N)
                kss[ksj++]=s[x*N+y1+1];
        }
        sums=MaxSubsequenceSum(ks,ksi);
        sums=max(sums,MaxSubsequenceSum(kss,ksj));
        maxx=max (maxx,sums);
    }
    printf("%d\n",maxx);
}
problem_149 = main

Problem 150

Searching a triangular array for a sub-triangle having minimum-sum.

Solution:

problem_150 = undefined