Personal tools

Euler problems/141 to 150

From HaskellWiki

< Euler problems
Revision as of 02:07, 4 February 2008 by Lisp (Talk | contribs)

Jump to: navigation, search

Contents

1 Problem 141

Investigating progressive numbers, n, which are also square.

Solution:

import Data.List
intSqrt :: Integral a => a -> a
intSqrt n
    | n < 0 = error "intSqrt: negative n"
    | otherwise = f n
    where
        f x = if y < x then f y else x
            where y = (x + (n `quot` x)) `quot` 2
isSqrt n = n==((^2).intSqrt) n
takec a b =
    two++takeWhile (<=e12) 
    [sq| c1<-[1..], let c=c1*c1,let sq=(c^2*a^3*b+b^2*c) ]
    where
    e12=10^12
    two=[sq|c<-[b,2*b],let sq=(c^2*a^3*b+b^2*c) ]
problem_141=
    sum$nub[c|
    (a,b)<-takeWhile (\(a,b)->a^3*b+b^2<e12) 
        [(a,b)|
        a<-[2..e4],
        b<-[1..(a-1)]
        ],
    gcd a b==1,
    c<-takec a b,
    isSqrt c
    ]
    where
    e4=120
    e12=10^12

2 Problem 142

Perfect Square Collection

Solution:

import List
isSquare n = (round . sqrt $ fromIntegral n) ^ 2 == n
aToX (a,b,c)=[x,y,z]
    where
    x=div (a+b) 2
    y=div (a-b) 2
    z=c-x
{-
 -                                2    2    2
 -                               a  = c  + d
 -                                2    2    2
 -                               a  = e  + f
 -                                2    2    2
 -                               c  = e  + b
 -   let b=x*y  then 
 -                                             (y + xb)
 -                                          c= ---------
 -                                                 2
 -                                             (-y + xb)
 -                                          e= ---------
 -                                                 2
 -                                             (-x + yb)
 -                                          d= ---------
 -                                                 2
 -                                             (x + yb)
 -                                          f= ---------
 -                                                 2
 -
 - and 
 -                                2    2    2
 -                               a  = c  + d
 - then 
 -                                   2    2    2  2
 -                              2  (y  + x ) (x  y  + 1)
 -                             a = ---------------------
 -                                           4
 -
 -}
problem_142 = sum$head[aToX(t,t2 ,t3)|
    a<-[3,5..50],
    b<-[(a+2),(a+4)..50],
    let a2=a^2,
    let b2=b^2,
    let n=(a2+b2)*(a2*b2+1),
    isSquare n,
    let t=div n 4,
    let t2=a2*b2,
    let t3=div (a2*(b2+1)^2) 4
    ]

3 Problem 143

Investigating the Torricelli point of a triangle

Solution:

import Data.List
import Data.Array.ST
import Data.Array
import qualified Data.Array.Unboxed as U
import Control.Monad
 
mkCan :: [Int] -> [(Int,Int)]
mkCan lst = map func $ group $ insert 3 lst
            where
              func ps@(p:_)
                | p == 3    = (3,2*l-1)
                | otherwise = (p, 2*l)
                  where
                    l = length ps
 
spfArray :: U.UArray Int Int
spfArray
    = runSTUArray
    (do ar <- newArray (2,13397) 0
        let loop k
                | k > 13397 = return ()
                | otherwise = do writeArray ar k 2
                                 loop (k+2)
        loop 2
        let go i
              | i > 13397 = return ar
              | otherwise
                = do p <- readArray ar i
                     if (p == 0)
                        then do writeArray ar i i
                                let run k
                                      | k > 13397 = go (i+2)
                                      | otherwise
                                        = do q <- readArray ar k
                                             when (q == 0)
                                                  (writeArray ar k i)
                                             run (k+2*i)
                                run (i*i)
                        else go (i+2)
        go 3)
 
factArray :: Array Int [Int]
factArray
    = runSTArray
    (do ar <- newArray (1,13397) []
        let go i
              | i > 13397 = return ar
              | otherwise = do let p = spfArray U.! i
                                   q = i `div` p
                               fs <- readArray ar q
                               writeArray ar i (p:fs)
                               go (i+1)
        go 2)
 
sdivs :: Int -> [(Int,Int)]
sdivs s
    = filter ((<= 100000) . uncurry (+)) $ zip sds' lds'
      where
        bd = 3*s*s
        pks = mkCan $ factArray ! s
        fun (p,k) = take (k+1) $ iterate (*p) 1
        ds = map fun pks
        (sds,lds) = span ((< bd) . (^2)) . sort $ foldr (liftM2 (*)) [1] ds
        sds' = map (+ 2*s) sds
        lds' = reverse $ map (+ 2*s) lds
 
pairArray :: Array Int [Int]
pairArray
    = runSTArray
    (do ar <- newArray (3,50000) []
        let go s
              | s > 13397 = return ar
              | otherwise
                = do let run [] = go (s+1)
                         run ((r,q):ds)
                            = do lst <- readArray ar r
                                 let nlst = insert q lst
                                 writeArray ar r nlst
                                 run ds
                     run $ sdivs s
        go 1)
 
select2 :: [Int] -> [(Int,Int)]
select2 []     = []
select2 (a:bs) = [(a,b) | b <- bs] ++ select2 bs
 
sumArray :: U.UArray Int Bool
sumArray
    = runSTUArray
    (do ar <- newArray (12,100000) False
        let go r
              | r > 33332 = return ar
              | otherwise
                = do let run [] = go (r+1)
                         run ((q,p):xs)
                            = do when (p `elem` (pairArray!q))
                                      (writeArray ar (p+q+r) True)
                                 run xs
                     run $ filter ((<= 100000) . (+r) . uncurry (+)) $
                             select2 $ pairArray!r
        go 3)
 
main :: IO ()
main = writeFile "p143.log"$show$ sum [s | (s,True) <- U.assocs sumArray]
problem_143 = main

4 Problem 144

Investigating multiple reflections of a laser beam.

Solution:

problem_144 = undefined

5 Problem 145

How many reversible numbers are there below one-billion?

Solution:

import List
 
digits n 
{-  123->[3,2,1]
 -}
    |n<10=[n]
    |otherwise= y:digits x 
    where
    (x,y)=divMod n 10
-- 123 ->321
dmm=(\x y->x*10+y)
palind n=foldl dmm 0 (digits n) 
 
isOdd x=(length$takeWhile odd x)==(length x)
isOdig x=isOdd m && s<=h
    where
    k=x+palind x
    m=digits k
    y=floor$logBase 10 $fromInteger x
    ten=10^y
    s=mod x 10
    h=div x ten
 
a2=[i|i<-[10..99],isOdig i]
aa2=[i|i<-[10..99],isOdig i,mod i 10/=0]
a3=[i|i<-[100..999],isOdig i]
m5=[i|i1<-[0..99],i2<-[0..99],
      let i3=i1*1000+3*100+i2,
      let i=10^6*   8+i3*10+5,
      isOdig i
   ]
 
fun i
    |i==2  =2*le aa2
    |even i=(fun 2)*d^(m-1)
    |i==3  =2*le a3
    |i==7  =fun 3*le m5
    |otherwise=0
    where
    le=length
    m=div i 2
    d=2*le a2
 
problem_145 = sum[fun a|a<-[1..9]]

6 Problem 146

Investigating a Prime Pattern

Solution:

import List
isPrime x=millerRabinPrimality x 2
--isPrime x=foldl   (&& )True [millerRabinPrimality x y|y<-[2,3,7,61,24251]]
six=[1,3,7,9,13,27]
allPrime x=foldl (&&) True [isPrime k|a<-six,let k=x^2+a]
linkPrime [x]=filterPrime x
linkPrime (x:xs)=[y|
    a<-linkPrime xs,
    b<-[0..(x-1)],
    let y=b*prxs+a,
    let c=mod y x,
    elem c d]
    where
    prxs=product xs
    d=filterPrime x
 
filterPrime p=
    [a|
    a<-[0..(p-1)],
    length[b|b<-six,mod (a^2+b) p/=0]==6
    ]
testPrimes=[2,3,5,7,11,13,17,23]
primes=[2,3,5,7,11,13,17,23,29]
test =
    sum[y|
    y<-linkPrime testPrimes,
    y<1000000,
    allPrime (y)
    ]==1242490
p146 =[y|y<-linkPrime primes,y<150000000,allPrime (y)]
problem_146=[a|a<-p146, allNext a]
allNext x=
    sum [1|(x,y)<-zip a b,x==y]==6
    where
    a=[x^2+b|b<-six]
    b=head a:(map nextPrime a)
nextPrime x=head [a|a<-[(x+1)..],isPrime a]
main=writeFile "p146.log" $show $sum problem_146

7 Problem 147

Rectangles in cross-hatched grids

Solution:

problem_147 = undefined

8 Problem 148

Exploring Pascal's triangle.

Solution:

triangel 0 = 0
triangel n 
    |n <7 =n+triangel (n-1)  
    |n==k7 =28^k 
    |otherwise=(triangel i) + j*(triangel (n-i))
    where
    i=k7*((n-1)`div`k7)
    j= -(n`div`(-k7))
    k7=7^k
    k=floor(log (fromIntegral n)/log 7)
problem_148=triangel (10^9)

9 Problem 149

Searching for a maximum-sum subsequence.

Solution:

#include<stdio.h>
#define N 2000
#define   max(a,b)   ((a)   >   (b)   ?   (a)   :   (b))
int s[4000001];
int MaxSubsequenceSum(int s[] , int n) {
    int j;
    int ThisSum, MaxSum ;
    ThisSum = MaxSum = 0;
    for ( j=0; j<n ; j++)
    {
        ThisSum += s[j];
        if (ThisSum> MaxSum)
            MaxSum = ThisSum;
        else if (ThisSum < 0)
            ThisSum = 0;
    }
    return MaxSum;
}
long long Generate(int ind){
    long long k = ind;
    if (ind <= 55) 
        return  ((100003 - 200003*k + 300007*k*k*k) % 1000000) - 500000;
    return (s[k-24]+s[k-55]+1000000)%1000000-500000;
 
}
int main()
{
    int sums=0;
    int maxx=0;
    for (int i=1;i<4000001;i++){
        s[i]=(int)(Generate(i));
    }
    printf("%d  %d \n",s[10],s[100]);
    int ks[N],kss[N];
    for (int k=0;k<N;k++){
        for(int b=0;b<N;b++)
        {  
            ks[b]=s[k*N+b+1]; 
            kss[b]=s[b*N+k+1]; 
        }
        sums=MaxSubsequenceSum(ks,N);
        sums=max(sums,MaxSubsequenceSum(kss,N));
        maxx=max (maxx,sums);
    }
    int ksi,ksj, x,y,y1;
    for (int k=-N+1;k<N;k++){
        ksi=ksj=0;
        for(int b=0;b<N;b++)
        {  
            x=k+b;
            y=b;
            y1=N-1-b;
            if (x>-1 && x<N && y>-1 && y<N)
                ks[ksi++]=s[x*N+y+1];
            if (x>-1 && x<N && y1>-1 && y1<N)
                kss[ksj++]=s[x*N+y1+1];
        }
        sums=MaxSubsequenceSum(ks,ksi);
        sums=max(sums,MaxSubsequenceSum(kss,ksj));
        maxx=max (maxx,sums);
    }
    printf("%d\n",maxx);
}
problem_149 = main

10 Problem 150

Searching a triangular array for a sub-triangle having minimum-sum.

Solution:

problem_150 = undefined