Personal tools

Euler problems/161 to 170

From HaskellWiki

Jump to: navigation, search

Contents

1 Problem 161

Triominoes

Solution:

problem_161 = undefined

2 Problem 162

Hexadecimal numbers

Solution:

problem_162 = undefined

3 Problem 163

Cross-hatched triangles

Solution:

problem_163 = undefined

4 Problem 164

Numbers for which no three consecutive digits have a sum greater than a given value.

Solution:

addDigit x = [[sum [x !! b !! c | c <- [0..9-a-b]] | b <- [0..9-a]] | a<-[0..9]]
x3 = [[10-a-b | b <- [0..9-a]] | a <- [0..9]]
x20 = iterate addDigit x3 !! 17
problem_164 = sum [x20 !! a !! b | a <- [1..9], b <- [0..9-a]]

5 Problem 165

Intersections

Solution:

bbsGen x = (x * x) `mod` 50515093
 
bbsSeq = iterate bbsGen 290797
 
tValues = map (`mod` 500) (tail bbsSeq)
 
lineSeg n = take 4 (drop n tValues)
 
lineSegs' n = lineSeg n : lineSegs' (n + 4)
lineSegs = lineSegs' 0
 
implicitLine :: [Integer] -> (Integer, Integer, Integer)
implicitLine [x1,y1,x2,y2] = (a, b, d) where
	a = y2 - y1
	b = -(x2 - x1)
	d = x1*a + y1 * b
 
within :: (Ord a, Num a, Integral b) => a -> b -> b -> Bool
within a b c | b > c = within a c b
			 | otherwise = a >= fromIntegral b && a <= fromIntegral c
 
withinSeg :: (Ord a, Num a) => a -> a -> [Integer] -> Bool
withinSeg x y l@[x1,y1,x2,y2] = within x x1 x2 && within y y1 y2 && not (endpoint x y l)
 
endpoint :: (Ord a, Num a) => a -> a -> [Integer] -> Bool
endpoint x y [x1,y1,x2,y2] = ((x == fromIntegral x1) && (y == fromIntegral y1)) ||
                             ((x == fromIntegral x2) && (y == fromIntegral y2))
 
boundingBoxOverlap l1@[l1x1,l1y1,l1x2,l1y2] l2@[l2x1,l2y1,l2x2,l2y2]
				| min l1x1 l1x2 > max l2x1 l2x2 = False
				| max l1x1 l1x2 < min l2x1 l2x2 = False
				| min l1y1 l1y2 > max l2y1 l2y2 = False
				| max l1y1 l1y2 < min l2y1 l2y2 = False
				| otherwise = True
 
intersect :: (Fractional a, Ord a) => [Integer] -> [Integer] -> (Bool, a, a)
intersect l1 l2 | boundingBoxOverlap l1 l2 && 
                  d /= 0 && 
                  withinSeg x y l1 && withinSeg x y l2 = (True, x, y)
				| otherwise = (False, 0, 0)
	where
		(a1, b1, d1) = implicitLine l1
		(a2, b2, d2) = implicitLine l2
		d = fromIntegral (a1*b2 - a2*b1)
		x = fromIntegral (b2 * d1 - b1 * d2) / d
		y = fromIntegral (a1 * d2 - a2 * d1) / d
 
listIntersects l [] = []
listIntersects l (l1:ls) | b = [(x,y)] ++ (listIntersects l ls)
						  | otherwise = listIntersects l ls
						  where (b, x, y) = intersect l l1
 
allIntersectsList [] = []
allIntersectsList (l:ls) = listIntersects l ls ++ allIntersectsList ls
 
problem_165 = length . quickSort . allIntersectsList $ take 5000 lineSegs
 
quickSort :: Ord a => [(a,a)] -> [(a,a)]
quickSort [] = []
quickSort (l:ls) = quickSort (filter (< l) ls) ++ 
                   [l] ++ 
                   quickSort (filter (> l) ls)

6 Problem 166

Criss Cross

Solution:

problem_166 = 
    sum [ product (map count [[0, c, b-d, a-b-d], 
            [0, b-a, c+d-a, b+d-a], 
            [0, -b-c, a-b-c-d, -c-d],
            [0, a, d, c+d]])|
        a <- [-9..9], 
        b <- [-9+a..9+a],
        c <- [-9..9],
        d <- [-9+a-c..9+a-c]]
    where
    count xs 
        |u<l=0 
        |otherwise=u-l+1
        where
        l = -minimum xs 
        u = 9-maximum xs

7 Problem 167

Investigating Ulam sequences

Solution:

problem_167 = undefined

8 Problem 168

Number Rotations

Solution:

problem_168 = undefined

9 Problem 169

Exploring the number of different ways a number can be expressed as a sum of powers of 2.

Solution:

fusc' 0=(1,0)
fusc' n
    |even n=(a+b, b)
    |odd n=(a,a+b)
    where
    (a,b)=fusc' $div n 2
fusc =fst.fusc'
problem_169=fusc (10^25)

10 Problem 170

Find the largest 0 to 9 pandigital that can be formed by concatenating products.

Solution:

problem_170 = undefined