Difference between revisions of "Euler problems/171 to 180"

From HaskellWiki
Jump to navigation Jump to search
(add problem 171)
m
 
(23 intermediate revisions by 10 users not shown)
Line 2: Line 2:
 
Finding numbers for which the sum of the squares of the digits is a square.
 
Finding numbers for which the sum of the squares of the digits is a square.
   
  +
{{sect-stub}}
Solution:
 
<haskell>
 
#include <stdio.h>
 
 
static int result = 0;
 
 
#define digits 20
 
static long long fact[digits+1];
 
static const long long precision = 1000000000;
 
static const long long precision_mult = 111111111;
 
 
#define maxsquare 64 /* must be a power of 2 > digits * 9^2 */
 
 
static inline int issquare( int n )
 
{
 
for( int step = maxsquare/2, i = step;;)
 
{
 
if( i*i == n ) return i;
 
if( !( step >>= 1 ) ) return -1;
 
if( i*i > n ) i -= step;
 
else i += step;
 
}
 
}
 
 
static inline void dodigit( int d, int nr, int sum, long long c, int s )
 
{
 
if( d )
 
for( int n = 0; n <= nr; c *= ++n, s += d, sum += d*d )
 
dodigit( d-1, nr - n, sum, c, s );
 
else if( issquare( sum ) > 0 )
 
result = ( s * ( fact[digits] / ( c * fact[nr] ) )
 
/ digits % precision * precision_mult
 
+ result ) % precision;
 
}
 
 
int main( void )
 
{
 
fact[0] = 1;
 
for( int i = 1; i < digits+1; i++ ) fact[i] = fact[i-1]*i;
 
dodigit( 9, digits, 0, 1, 0 );
 
printf( "%d\n", result );
 
return 0;
 
}
 
problem_171 = main
 
</haskell>
 
   
 
== [http://projecteuler.net/index.php?section=problems&id=172 Problem 172] ==
 
== [http://projecteuler.net/index.php?section=problems&id=172 Problem 172] ==
Line 85: Line 41:
 
Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements.
 
Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements.
   
  +
{{sect-stub}}
Solution:
 
<haskell>
 
problem_174 = undefined
 
</haskell>
 
   
 
== [http://projecteuler.net/index.php?section=problems&id=175 Problem 175] ==
 
== [http://projecteuler.net/index.php?section=problems&id=175 Problem 175] ==
Line 106: Line 59:
 
l=length k
 
l=length k
 
p175 x y=
 
p175 x y=
init$foldl (++) "" [a++","|
+
concat $ intersperse "," $
a<-map show $reverse $filter (/=0)$findRat x y]
+
map show $reverse $filter (/=0)$findRat x y
 
problems_175=p175 123456789 987654321
 
problems_175=p175 123456789 987654321
 
test=p175 13 17
 
test=p175 13 17
Line 131: Line 84:
 
Integer angled Quadrilaterals.
 
Integer angled Quadrilaterals.
   
  +
{{sect-stub}}
Solution:
 
<haskell>
 
problem_177 = undefined
 
</haskell>
 
   
 
== [http://projecteuler.net/index.php?section=problems&id=178 Problem 178] ==
 
== [http://projecteuler.net/index.php?section=problems&id=178 Problem 178] ==
 
Step Numbers
 
Step Numbers
  +
Solution:
 
  +
Count pandigital step numbers.
 
<haskell>
 
<haskell>
  +
import qualified Data.Map as M
problem_178 = undefined
 
  +
  +
data StepState a = StepState { minDigit :: a
  +
, maxDigit :: a
  +
, lastDigit :: a
  +
} deriving (Show, Eq, Ord)
  +
  +
isSolution (StepState i a _) = i == 0 && a == 9
  +
neighborStates m s@(StepState i a n) = map (\x -> (x, M.findWithDefault 0 s m)) $
  +
[StepState (min i (n - 1)) a (n - 1), StepState i (max a (n + 1)) (n + 1)]
  +
  +
allStates = [StepState i a n | (i, a) <- range ((0, 0), (9, 9)), n <- range (i, a)]
  +
initialState = M.fromDistinctAscList [(StepState i i i, 1) | i <- [1..9]]
  +
stepState m = M.fromListWith (+) $ allStates >>= neighborStates m
  +
numSolutionsInMap = sum . map snd . filter (isSolution . fst) . M.toList
  +
numSolutionsOfSize n = sum . map numSolutionsInMap . take n $ iterate stepState initialState
  +
  +
problem_178 = numSolutionsOfSize 40
 
</haskell>
 
</haskell>
   
 
== [http://projecteuler.net/index.php?section=problems&id=179 Problem 179] ==
 
== [http://projecteuler.net/index.php?section=problems&id=179 Problem 179] ==
 
Consecutive positive divisors.
 
Consecutive positive divisors.
  +
See http://en.wikipedia.org/wiki/Divisor_function for a simple
Solution:
 
  +
explanation of calculating the number of divisors of an integer,
  +
based on its prime factorization. Then, if you have a lot of
  +
time on your hands, run the following program. You need to load
  +
the Factoring library from David Amos' wonderful Maths library.
  +
See: http://www.polyomino.f2s.com/david/haskell/main.html
  +
 
<haskell>
 
<haskell>
  +
import Factoring
problem_179 = undefined
 
  +
import Data.List
  +
  +
nFactors :: Integer -> Int
  +
nFactors n =
  +
let a = primePowerFactorsL n
  +
in foldl' (\x y -> x * ((snd y)+1) ) 1 a
  +
  +
countConsecutiveInts l = foldl' (\x y -> if y then x+1 else x) 0 a
  +
where a = zipWith (==) l (tail l)
  +
  +
problem_179 = countConsecutiveInts $ map nFactors [2..(10^7 - 1)]
  +
  +
main = print problem_179
  +
 
</haskell>
 
</haskell>
   
  +
This is all well and good, but it runs very slowly. (About 4
== [http://projecteuler.net/index.php?section=problems&id=180 Problem 180] ==
 
  +
minutes on my machine) We have to factor every number between 2
  +
and 10^7, which on a non Quantum CPU takes a while. There is
  +
another way!
   
  +
We can sieve for the answer. Every number has 1 for a factor.
  +
Every other number has 2 as a factor, and every third number has
  +
3 as a factor. So we run a sieve that counts (increments)
  +
itself for every integer. When we are done, we run through the
  +
resulting array and look at neighboring elements. If they are
  +
equal, we increment a counter. This version runs in about 9
  +
seconds on my machine. HenryLaxen May 14, 2008
  +
  +
<haskell>
  +
{-# OPTIONS -O2 -optc-O #-}
  +
import Data.Array.ST
  +
import Data.Array.Unboxed
  +
import Control.Monad
  +
import Control.Monad.ST
  +
import Data.List
  +
  +
r1 = (2,(10^7-1))
  +
  +
type Sieve s = STUArray s Int Int
  +
  +
incN :: Sieve s -> Int -> ST s ()
  +
incN a n = do
  +
x <- readArray a n
  +
writeArray a n (x+1)
  +
  +
incEveryN :: Sieve s -> Int -> ST s ()
  +
incEveryN a n = mapM_ (incN a) [n,n+n..snd r1]
  +
  +
sieve :: Int
  +
sieve = countConsecutiveInts b
  +
where b = runSTUArray $
  +
do a <- newArray r1 1 :: ST s (STUArray s Int Int)
  +
mapM_ (incEveryN a) [fst r1 .. (snd r1) `div` 2]
  +
return a
  +
  +
countConsecutiveInts :: UArray Int Int -> Int
  +
countConsecutiveInts a =
  +
let r1 = [fst (bounds a) .. snd (bounds a) - 1]
  +
in length $ filter (\y -> a ! y == a ! (y+1)) $ r1
  +
  +
main = print sieve
  +
</haskell>
  +
  +
  +
== [http://projecteuler.net/index.php?section=problems&id=180 Problem 180] ==
  +
Rational zeros of a function of three variables.
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
  +
import Data.Ratio
problem_180 = undefined
 
  +
  +
{-
  +
After some algebra, we find:
  +
f1 n x y z = x^(n+1) + y^(n+1) - z^(n+1)
  +
f2 n x y z = (x*y + y*z + z*x) * ( x^(n-1) + y^(n-1) - z^(n-1) )
  +
f3 n x y z = x*y*z*( x^(n-2) + y^(n-2) - z^(n-2) )
  +
f n x y z = f1 n x y z + f2 n x y z - f3 n x y z
  +
f n x y z = (x+y+z) * (x^n+y^n-z^n)
  +
Now the hard part comes in realizing that n can be negative.
  +
Thanks to Fermat, we only need examine the cases n = [-2, -1, 1, 2]
  +
Which leads to:
  +
  +
f(-2) z = xy/sqrt(x^2 + y^2)
  +
f(-1) z = xy/(x+y)
  +
f(1) z = x+y
  +
f(2) z = sqrt(x^2 + y^2)
  +
  +
-}
  +
  +
unique :: Eq(a) => [a] -> [a]
  +
unique [] = []
  +
unique (x:xs) | elem x xs = unique xs
  +
| otherwise = x : unique xs
  +
  +
-- Not quite correct, but I don't care about the zeros
  +
ratSqrt :: Rational -> Rational
  +
ratSqrt x =
  +
let a = floor $ sqrt $ fromIntegral $ numerator x
  +
b = floor $ sqrt $ fromIntegral $ denominator x
  +
c = (a%b) * (a%b)
  +
in if x == c then (a%b) else 0
  +
  +
-- Not quite correct, but I don't care about the zeros
  +
reciprocal :: Rational -> Rational
  +
reciprocal x
  +
| x == 0 = 0
  +
| otherwise = denominator x % numerator x
  +
  +
problem_180 =
  +
let order = 35
  +
range :: [Rational]
  +
range = unique [ (a%b) | b <- [1..order], a <- [1..(b-1)] ]
  +
fm2,fm1,f1,f2 :: [[Rational]]
  +
fm2 = [[x,y,z] | x<-range, y<-range,
  +
let z = x*y * reciprocal (ratSqrt(x*x+y*y)), elem z range]
  +
fm1 = [[x,y,z] | x<-range, y<-range,
  +
let z = x*y * reciprocal (x+y), elem z range]
  +
f1 = [[x,y,z] | x<-range, y<-range,
  +
let z = (x+y), elem z range]
  +
f2 = [[x,y,z] | x<-range, y<-range,
  +
let z = ratSqrt(x*x+y*y), elem z range]
  +
result = sum $ unique $ map (\x -> sum x) (fm2++fm1++f1++f2)
  +
in (numerator result + denominator result)
  +
 
</haskell>
 
</haskell>

Latest revision as of 01:49, 13 February 2010

Problem 171

Finding numbers for which the sum of the squares of the digits is a square.

Problem 172

Investigating numbers with few repeated digits.

Solution:

factorial n = product [1..toInteger n]

fallingFactorial x n = product [x - fromInteger i | i <- [0..toInteger n - 1] ]

choose n k = fallingFactorial n k `div` factorial k

-- how many numbers can we get having d digits and p positions
p172 0 _ = 0
p172 d p 
    | p < 4 = d^p
    | otherwise = 
        (p172' p) +  p*(p172' (p-1)) + (choose p 2)*(p172' (p-2)) + (choose p 3)*(p172' (p-3))
    where
    p172' = p172 (d-1)
 
problem_172= (p172 10 18) * 9 `div` 10

Problem 173

Using up to one million tiles how many different "hollow" square laminae can be formed? Solution:

problem_173=
    let c=div (10^6) 4
        xm=floor$sqrt $fromIntegral c
        k=[div c x|x<-[1..xm]]
    in  sum k-(div (xm*(xm+1)) 2)

Problem 174

Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements.

Problem 175

Fractions involving the number of different ways a number can be expressed as a sum of powers of 2. Solution:

sternTree x 0=[]
sternTree x y=
    m:sternTree y n  
    where
    (m,n)=divMod x y
findRat x y
    |odd l=take (l-1) k++[last k-1,1]
    |otherwise=k
    where
    k=sternTree x y
    l=length k
p175 x y= 
    concat $ intersperse "," $
    map show $reverse $filter (/=0)$findRat x y
problems_175=p175 123456789 987654321
test=p175 13 17

Problem 176

Rectangular triangles that share a cathetus. Solution:

--k=47547 
--2*k+1=95095 = 5*7*11*13*19
lst=[5,7,11,13,19]
primes=[2,3,5,7,11]
problem_176 =
    product[a^b|(a,b)<-zip primes (reverse n)]
    where
    la=div (last lst+1) 2
    m=map (\x->div x 2)$init lst
    n=m++[la]

Problem 177

Integer angled Quadrilaterals.

Problem 178

Step Numbers

Count pandigital step numbers.

import qualified Data.Map as M

data StepState a = StepState { minDigit  :: a
                             , maxDigit  :: a
                             , lastDigit :: a
                             } deriving (Show, Eq, Ord)

isSolution (StepState i a _) = i == 0 && a == 9
neighborStates m s@(StepState i a n) = map (\x -> (x, M.findWithDefault 0 s m)) $
    [StepState (min i (n - 1)) a (n - 1), StepState i (max a (n + 1)) (n + 1)]

allStates    = [StepState i a n | (i, a) <- range ((0, 0), (9, 9)), n <- range (i, a)]
initialState = M.fromDistinctAscList [(StepState i i i, 1) | i <- [1..9]]
stepState m  = M.fromListWith (+) $ allStates >>= neighborStates m
numSolutionsInMap    = sum . map snd . filter (isSolution . fst) . M.toList
numSolutionsOfSize n = sum . map numSolutionsInMap . take n $ iterate stepState initialState

problem_178 = numSolutionsOfSize 40

Problem 179

Consecutive positive divisors. See http://en.wikipedia.org/wiki/Divisor_function for a simple explanation of calculating the number of divisors of an integer, based on its prime factorization. Then, if you have a lot of time on your hands, run the following program. You need to load the Factoring library from David Amos' wonderful Maths library. See: http://www.polyomino.f2s.com/david/haskell/main.html

import Factoring
import Data.List

nFactors :: Integer -> Int
nFactors n =
  let a = primePowerFactorsL n
  in foldl' (\x y -> x * ((snd y)+1) ) 1 a

countConsecutiveInts l = foldl' (\x y -> if y then x+1 else x) 0 a
  where a = zipWith (==) l (tail l)

problem_179 =  countConsecutiveInts $ map nFactors [2..(10^7 - 1)]

main = print problem_179

This is all well and good, but it runs very slowly. (About 4 minutes on my machine) We have to factor every number between 2 and 10^7, which on a non Quantum CPU takes a while. There is another way!

We can sieve for the answer. Every number has 1 for a factor. Every other number has 2 as a factor, and every third number has 3 as a factor. So we run a sieve that counts (increments) itself for every integer. When we are done, we run through the resulting array and look at neighboring elements. If they are equal, we increment a counter. This version runs in about 9 seconds on my machine. HenryLaxen May 14, 2008

{-# OPTIONS -O2 -optc-O #-}
import Data.Array.ST
import Data.Array.Unboxed
import Control.Monad
import Control.Monad.ST
import Data.List

r1 = (2,(10^7-1))

type Sieve s = STUArray s Int Int

incN :: Sieve s -> Int -> ST s ()
incN a n = do
  x <- readArray a n
  writeArray a n (x+1)

incEveryN :: Sieve s -> Int -> ST s ()
incEveryN a n = mapM_ (incN a)  [n,n+n..snd r1]

sieve :: Int
sieve = countConsecutiveInts b
  where b = runSTUArray $
            do a <- newArray r1 1 :: ST s (STUArray s Int Int)
               mapM_ (incEveryN a) [fst r1 .. (snd r1) `div` 2]
               return a

countConsecutiveInts :: UArray Int Int -> Int                        
countConsecutiveInts a =
  let r1 = [fst (bounds a) .. snd (bounds a) - 1]
  in length $ filter (\y -> a ! y == a ! (y+1)) $ r1

main = print sieve


Problem 180

Rational zeros of a function of three variables. Solution:

import Data.Ratio

{-
  After some algebra, we find:
   f1 n x y z = x^(n+1) + y^(n+1) - z^(n+1)
   f2 n x y z = (x*y + y*z + z*x) * ( x^(n-1) + y^(n-1) - z^(n-1) )
   f3 n x y z = x*y*z*( x^(n-2) + y^(n-2) - z^(n-2) )
   f n x y z = f1 n x y z + f2 n x y z - f3 n x y z
   f n x y z = (x+y+z) * (x^n+y^n-z^n)
Now the hard part comes in realizing that n can be negative.  
Thanks to Fermat, we only need examine the cases n = [-2, -1, 1, 2]
Which leads to:

f(-2) z = xy/sqrt(x^2 + y^2)
f(-1) z = xy/(x+y)
f(1)  z = x+y
f(2)  z = sqrt(x^2 + y^2)

-}

unique ::  Eq(a) => [a] -> [a]
unique [] = []
unique (x:xs) | elem x xs = unique xs
              | otherwise = x : unique xs

-- Not quite correct, but I don't care about the zeros
ratSqrt :: Rational -> Rational
ratSqrt x = 
  let a = floor $ sqrt $ fromIntegral $ numerator x
      b = floor $ sqrt $ fromIntegral $ denominator x
      c = (a%b) * (a%b)
  in if x == c then (a%b) else 0

-- Not quite correct, but I don't care about the zeros
reciprocal :: Rational -> Rational
reciprocal x 
  | x == 0 = 0
  | otherwise = denominator x % numerator x

problem_180 =
  let order = 35
      range :: [Rational]            
      range = unique [ (a%b) | b <- [1..order], a <- [1..(b-1)] ]
      fm2,fm1,f1,f2 :: [[Rational]]
      fm2 = [[x,y,z] | x<-range, y<-range, 
            let z = x*y * reciprocal (ratSqrt(x*x+y*y)), elem z range]
      fm1 = [[x,y,z] | x<-range, y<-range, 
            let z = x*y * reciprocal (x+y), elem z range]
      f1  = [[x,y,z] | x<-range, y<-range, 
            let z = (x+y), elem z range]
      f2  = [[x,y,z] | x<-range, y<-range, 
            let z = ratSqrt(x*x+y*y), elem z range]            
      result = sum $ unique $ map (\x -> sum x) (fm2++fm1++f1++f2)
  in (numerator result + denominator result)