Personal tools

Euler problems/21 to 30

From HaskellWiki

< Euler problems(Difference between revisions)
Jump to: navigation, search
(Problem 25: restore old solution to problem 25 to avoid gratuitous complexity)
Line 64: Line 64:
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
import Data.List
+
valid ( i, n ) = length ( show n ) == 1000
fib x
+
| x==0 = 0
+
problem_25 = fst . head . filter valid . zip [ 1 .. ] $ fibs
| x==1 = 1
+
where fibs = 1 : 1 : 2 : zipWith (+) fibs ( tail fibs )
| odd x = (fib (d+1))^2 + (fib d)^2
 
| otherwise = (fib (d+1))^2-(fib (d-1))^2
 
where d = x `div` 2
 
 
phi = (1+sqrt 5)/2
 
 
dig x = floor ((fromInteger x-1) * log 10 / log phi)
 
 
problem_25 = head [a | a<-[dig num..], fib a >= limit]
 
where num = 1000
 
limit = 10^(num-1)
 
 
</haskell>
 
</haskell>
   

Revision as of 19:05, 20 February 2008

Contents

1 Problem 21

Evaluate the sum of all amicable pairs under 10000.

Solution:

--http://www.research.att.com/~njas/sequences/A063990
problem_21 = sum [220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368]

2 Problem 22

What is the total of all the name scores in the file of first names?

Solution:

import Data.List
import Data.Char
problem_22 =
    do input <- readFile "names.txt"
       let names = sort $ read$"["++ input++"]"
       let scores = zipWith score names [1..]
       print . show . sum $ scores
  where score w i = (i *) . sum . map (\c -> ord c - ord 'A' + 1) $ w

3 Problem 23

Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.

Solution:

--http://www.research.att.com/~njas/sequences/A048242
import Data.Array 
n = 28124
abundant n = eulerTotient n - n > n
abunds_array = listArray (1,n) $ map abundant [1..n]
abunds = filter (abunds_array !) [1..n]
 
rests x = map (x-) $ takeWhile (<= x `div` 2) abunds
isSum = any (abunds_array !) . rests
 
problem_23 = putStrLn . show . foldl1 (+) . filter (not . isSum) $ [1..n]

4 Problem 24

What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?

Solution:

import Data.List 
 
fac 0 = 1
fac n = n * fac (n - 1)
perms [] _= []
perms xs n= x : perms (delete x xs) (mod n m)
  where m = fac $ length xs - 1
        y = div n m
        x = xs!!y
 
problem_24 = perms "0123456789" 999999

5 Problem 25

What is the first term in the Fibonacci sequence to contain 1000 digits?

Solution:

valid ( i, n ) = length ( show n ) == 1000
 
problem_25 = fst . head . filter valid . zip [ 1 .. ] $ fibs
    where fibs = 1 : 1 : 2 : zipWith (+) fibs ( tail fibs )

6 Problem 26

Find the value of d < 1000 for which 1/d contains the longest recurring cycle.

Solution:

problem_26 = head [a | a<-[999,997..], and [isPrime a, isPrime $ a `div` 2]]

7 Problem 27

Find a quadratic formula that produces the maximum number of primes for consecutive values of n.

Solution:

problem_27 = -(2*a-1)*(a^2-a+41)
  where n = 1000
        m = head $ filter (\x->x^2-x+41>n) [1..]
        a = m-1

8 Problem 28

What is the sum of both diagonals in a 1001 by 1001 spiral?

Solution:

problem_28 = sum (map (\n -> 4*(n-2)^2+10*(n-1)) [3,5..1001]) + 1

9 Problem 29

How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?

Solution:

import Control.Monad
problem_29 = length . group . sort $ liftM2 (^) [2..100] [2..100]

10 Problem 30

Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.

Solution:

--http://www.research.att.com/~njas/sequences/A052464
problem_30 = sum [4150, 4151, 54748, 92727, 93084, 194979]