Euler problems/21 to 30

From HaskellWiki
< Euler problems
Revision as of 13:46, 22 January 2008 by Lisp (talk | contribs)
Jump to navigation Jump to search

Problem 21

Evaluate the sum of all amicable pairs under 10000.

Solution:

problem_21 = 
    sum [n |
    n <- [2..9999],
    let m = eulerTotient  n,
    m > 1,
    m < 10000,
    n ==  eulerTotient  m
    ]

Problem 22

What is the total of all the name scores in the file of first names?

Solution:

import Data.List
import Data.Char
problem_22 = do
    input <- readFile "names.txt"
    let names = sort $ read$"["++ input++"]"
    let scores = zipWith score names [1..]
    print $ show $ sum $ scores
    where
    score w i = (i *) $ sum $ map (\c -> ord c - ord 'A' + 1) w

Problem 23

Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.

Solution:

import Data.Array 
n = 28124
abundant n = eulerTotient n - n > n
abunds_array = listArray (1,n) $ map abundant [1..n]
abunds = filter (abunds_array !) [1..n]

rests x = map (x-) $ takeWhile (<= x `div` 2) abunds
isSum = any (abunds_array !) . rests

problem_23 = putStrLn $ show $ foldl1 (+) $ filter (not . isSum) [1..n]

Problem 24

What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?

Solution:

import Data.List 
 
fac 0 = 1
fac n = n * fac (n - 1)
perms [] _= []
perms xs n=
    x:( perms ( delete x $ xs ) (mod n m))
    where
    m=fac$(length(xs) -1)
    y=div n m
    x = xs!!y
 
problem_24 =  perms "0123456789"  999999

Problem 25

What is the first term in the Fibonacci sequence to contain 1000 digits?

Solution:

import Data.List
fib x
    |x==0=0
    |x==1=1
    |x==2=1
    |odd x=(fib (d+1))^2+(fib d)^2
    |otherwise=(fib (d+1))^2-(fib (d-1))^2
    where
    d=div x 2

phi=(1+sqrt 5)/2
dig x=floor( (fromInteger x-1) * log 10 /log phi)
problem_25 = 
    head[a|a<-[dig num..],(>=limit)$fib a]
    where
    num=1000
    limit=10^(num-1)

Problem 26

Find the value of d < 1000 for which 1/d contains the longest recurring cycle.

Solution:

next n d = (n `mod` d):next (10*n`mod`d) d

idigs n = tail $ take (1+n) $ next 1 n

pos x = map fst . filter ((==x) . snd) . zip [1..]

periods n = let d = idigs n in pos (head d) (tail d)

problem_26 = 
    snd$maximum [(m,a)|
    a<-[800..1000] ,
    let k=periods a,
    not$null k,
    let m=head k
    ]

Problem 27

Find a quadratic formula that produces the maximum number of primes for consecutive values of n.

Solution:

eulerCoefficients n 
  = [((len, a*b), (a, b)) 
      | b <- takeWhile (<n) primes, a <- [-b+1..n-1],
        let len = length $ takeWhile (isPrime . (\x -> x^2 + a*x + b)) [0..],
        if b == 2 then even a else odd a, len > 39]
 
problem_27 = snd . fst . maximum . eulerCoefficients $ 1000

Problem 28

What is the sum of both diagonals in a 1001 by 1001 spiral?

Solution:

problem_28 = sum (map (\n -> 4*(n-2)^2+10*(n-1)) [3,5..1001]) + 1

Problem 29

How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?

Solution:

import Control.Monad
problem_29 = length . group . sort $ liftM2 (^) [2..100] [2..100]

Problem 30

Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.

Solution:

import Data.Array
import Data.Char
 
p = listArray (0,9) $ map (^5) [0..9]
 
upperLimit = 295277
 
candidates = 
    [ n |
    n <- [10..upperLimit],
    (sum $ digits n) `mod` 10 == last(digits n),
    powersum n == n
    ]
    where 
    digits n = map digitToInt $ show n
    powersum n = sum $ map (p!) $ digits n
		  
problem_30 = sum candidates