Euler problems/61 to 70

From HaskellWiki
< Euler problems
Revision as of 02:54, 15 December 2009 by Newacct (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 61

Find the sum of the only set of six 4-digit figurate numbers with a cyclic property.

Solution:

import Data.List
 
permute [] = [[]]
permute xs = concatMap (\x -> map (x:) $ permute $ delete x xs) xs
 
figurates n xs = extract $ concatMap (gather (map poly xs)) $ map (:[]) $ poly n
  where gather [xs] (v:vs) 
          = let v' = match xs v
            in if v' == [] then [] else map (:v:vs) v'
        gather (xs:xss) (v:vs) 
          = let v' = match xs v
            in if v' == [] then [] else concatMap (gather xss) $ map (:v:vs) v'
        match xs (_,v) = let p = (v `mod` 100)*100 in sublist (p+10,p+100) xs
        sublist (s,e) = takeWhile (\(_,x) -> x<e) . dropWhile (\(_,x) -> x<s)
        link ((_,x):xs) = x `mod` 100 == (snd $ last xs) `div` 100
        diff (x:y:xs) = if fst x /= fst y then diff (y:xs) else False
        diff [x]      = True
        extract = filter diff . filter link
        poly m = [(n, x) | (n, x) <- zip [1..] $ takeWhile (<10000) 
                                               $ scanl (+) 1 [m-1,2*m-3..], 
                                     1010 < x, x `mod` 100 > 9]
 
problem_61 = sum $ map snd $ head $ concatMap (figurates 3) $ permute [4..8]

Problem 62

Find the smallest cube for which exactly five permutations of its digits are cube.

Solution:

import Data.List
import Data.Maybe
a = map (^3) [0..10000]
b = map (sort . show) a
c = filter ((==5) . length) . group . sort $ b
Just d = elemIndex (head (head c)) b
problem_62 = toInteger d^3

Problem 63

How many n-digit positive integers exist which are also an nth power?

Solution:

problem_63=length[x^y|x<-[1..9],y<-[1..22],y==(length$show$x^y)]

Problem 64

How many continued fractions for N ≤ 10000 have an odd period?

Solution:

import Data.List
 
problem_64  =length $ filter id $ map solve $ [2..9999] \\ (map (^2) [2..100])
 
solve n = even $ length $ cont n 0 1
 
cont :: Int -> Int -> Int -> [Int]
cont r n d = m : rest
    where
    m = truncate ((sqrt (fromIntegral r) + fromIntegral n ) / fromIntegral d)
    a = n - d * m
    rest = if d == 1 && n /= 0
           then []
           else cont r (-a) ((r - a ^ 2) `div` d)

Problem 65

Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.

Solution:

import Data.Char
import Data.Ratio
 
e = 2 : concat [ [1, 2*i, 1] | i <- [1..] ]
 
fraction [x] = x%1
fraction (x:xs) = x%1 + 1/(fraction xs)

problem_65 = sum $ map digitToInt $ show $ numerator $ fraction $ take 100 e

Problem 66

Investigate the Diophantine equation x2 − Dy2 = 1.

Solution:

intSqrt :: Integral a => a -> a
intSqrt n
    | n < 0 = error "intSqrt: negative n"
    | otherwise = f n
    where
        f x = if y < x then f y else x
            where y = (x + (n `quot` x)) `quot` 2
problem_66 = 
    snd$maximum [ (x,d) | 
    d <- [1..1000],
    let b = intSqrt d,
    b*b /= d, -- d can't be a perfect square
    let (x,_) = pell d b b 
    ]

pell d wd b = piter d wd b 0 1 0 1 1 0
piter d wd b i c l k m n 
    | cn == 1 = (x, y)
    | otherwise = piter d wd bn (i+1) cn k u n v
    where 
    yb = (wd+b) `div` c
    bn = yb*c-b
    cn = (d-(bn*bn)) `div` c
    yn  | i == 0 = wd
        | otherwise = yb
    u = k*yn+l -- u/v is the i-th convergent of sqrt(d)
    v = n*yn+m
    (x,y)   | odd (i+1) = (u*u+d*v*v, 2*u*v)
            | otherwise = (u,v)

Problem 67

Using an efficient algorithm find the maximal sum in the triangle?

Solution:

problem_67 = readFile "triangle.txt" >>= print . solve . parse
parse = map (map read . words) . lines
solve = head . foldr1 step
step [] [z] = [z]
step (x:xs) (y:z:zs) = x + max y z : step xs (z:zs)

Problem 68

What is the maximum 16-digit string for a "magic" 5-gon ring?

Solution:

import Data.List
permute []      = [[]]
permute list = 
    concatMap (\(x:xs) -> map (x:) (permute xs))
    (take (length list) 
    (unfoldr (\l@(x:xs) -> Just (l, xs ++ [x])) list))
problem_68 = 
    maximum $ map (concatMap show) poel 
    where
    gon68 = [1..10]
    knip = (length gon68) `div` 2
    (is,e:es) = splitAt knip gon68
    extnodes = map (e:) $ permute es
    intnodes = map (\(p:ps) -> zipWith (\ x y -> [x, y])
        (p:ps) (ps++[p])) $ permute is
    poel = [ concat hs |
            uitsteeksels <- extnodes,
            organen <- intnodes,
            let hs = zipWith (:) uitsteeksels organen,
            let subsom = map sum hs,
            length (nub subsom) == 1 ]

Problem 69

Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.

Solution:

{-phi(n) = n*(1-1/p1)*(1-1/p2)*...*(1-1/pn)
n/phi(n) = 1/(1-1/p1)*(1-1/p2)*...*(1-1/pn)
(1-1/p) will be minimal for a small p and 1/(1-1/p) will then be maximal
 -}
primes=[2,3,5,7,11,13,17,19,23]
problem_69=
    maximum [c|
    b<-tail $ inits primes,
    let c=product b,
    c<10^6
    ]

Note: credit for arithmetic functions is due to David Amos.

Problem 70

Investigate values of n for which φ(n) is a permutation of n.

Solution:

import Data.List
isPerm a b = null $ show a \\ show b
flsqr n x=x<(floor.sqrt.fromInteger) n
pairs n1 = 
    maximum[m|a<-gena ,b<-genb,let m=a*b,n>m,isPerm m$ m-a-b+1]
    where
    n=fromInteger n1
    gena = dropWhile (flsqr n)$  takeWhile (flsqr (2*n))  primes
    genb = dropWhile (flsqr (div n 2))$  takeWhile (flsqr n)  primes

problem_70= pairs (10^7)