Personal tools

Euler problems/71 to 80

From HaskellWiki

< Euler problems(Difference between revisions)
Jump to: navigation, search
Line 102: Line 102:
   
 
Solution:
 
Solution:
This is only slightly harder than [[Euler problems/31 to 40#39|problem 39]]. The search condition is simpler but the search space is larger.
 
 
<haskell>
 
<haskell>
  +
import Data.Array
  +
  +
triplets =
  +
[p |
  +
n <- [2..706],
  +
m <- [1..n-1],
  +
gcd m n == 1,
  +
let p = 2 * (n^2 + m*n),
  +
odd (m + n),
  +
p <= 10^6
  +
]
  +
  +
hist bnds ns =
  +
accumArray (+) 0 bnds [(n, 1) |
  +
n <- ns,
  +
inRange bnds n
  +
]
  +
 
problem_75 =
 
problem_75 =
length . filter ((== 1) . length) $ group perims
+
length $ filter (\(_,b) -> b == 1) $ assocs arr
where perims = sort [scale*p | p <- pTriples, scale <- [1..10^6 `div` p]]
+
where
pTriples = [p |
+
arr = hist (12,10^6) $ concatMap multiples triplets
n <- [1..1000],
+
multiples n = takeWhile (<=10^6) [n, 2*n..]
m <- [n+1..1000],
 
even n || even m,
 
gcd n m == 1,
 
let a = m^2 - n^2,
 
let b = 2*m*n,
 
let c = m^2 + n^2,
 
let p = a + b + c,
 
p <= 10^6]
 
 
</haskell>
 
</haskell>
   
Line 147: Line 164:
   
 
Solution:
 
Solution:
 
Same as problem 76 but using array instead of lists to speedup things.
 
 
<haskell>
 
<haskell>
 
import Data.Array
 
import Data.Array
Line 174: Line 189:
   
 
Solution:
 
Solution:
 
A bit ugly but works fine
 
 
<haskell>
 
<haskell>
import Data.List
+
import Data.Char (digitToInt, intToDigit)
  +
import Data.Graph (buildG, topSort)
  +
import Data.List (intersect)
 
 
problem_79 :: String -> String
+
p79 file=
problem_79 file =
+
(+0)$read . intersect graphWalk $ usedDigits
map fst $
 
sortBy (\(_,a) (_,b) ->
 
compare (length b) (length a)) $
 
zip digs order
 
 
where
 
where
nums = lines file
+
usedDigits = intersect "0123456789" $ file
digs =
+
edges = concat . map (edgePair . map digitToInt) . words $ file
map head $ group $
+
graphWalk = map intToDigit . topSort . buildG (0, 9) $ edges
sort $ filter (\c -> c >= '0' && c <= '9') file
+
edgePair [x, y, z] = [(x, y), (y, z)]
prec = concatMap (\(x:y:z:_) -> [[x,y],[y,z],[x,z]]) nums
+
edgePair _ = undefined
order =
+
map (\n -> map head $
+
problem_79 = do
group $ sort $ map (\(_:x:_) -> x) $
+
f<-readFile "keylog.txt"
filter (\(x:_) -> x == n) prec) digs
+
print $p79 f
main=do
 
f<-readFile "keylog.txt"
 
print$problem_79 f
 
 
</haskell>
 
</haskell>
   
Line 198: Line 211:
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
import Data.List ((\\))
+
import Data.Char
+
problem_80=
hundreds :: Integer -> [Integer]
+
sum [f x |
hundreds n = hundreds' [] n
+
a <- [1..100],
  +
x <- [intSqrt $ a * t],
  +
x * x /= a * t
  +
]
 
where
 
where
hundreds' acc 0 = acc
+
t=10^202
hundreds' acc n = hundreds' (m : acc) d
+
f = (sum . take 100 . map (flip (-) (ord '0') .ord) . show)
where
 
(d,m) = divMod n 100
 
 
squareDigs :: Integer -> [Integer]
 
squareDigs n = p : squareDigs' p r xs
 
where
 
(x:xs) = hundreds n ++ repeat 0
 
p = floor $ sqrt $ fromInteger x
 
r = x - (p^2)
 
 
squareDigs' :: Integer -> Integer -> [Integer] -> [Integer]
 
squareDigs' p r (x:xs) =
 
x' : squareDigs' (p*10 + x') r' xs
 
where
 
n = 100*r + x
 
(x',r') =
 
last $ takeWhile
 
(\(_,a) -> a >= 0) $
 
scanl (\(_,b) (a',b') -> (a',b-b')) (0,n) rs
 
rs = [y|y <- zip [1..] [(20*p+1),(20*p+3)..]]
 
 
sumDigits n = sum $ take 100 $ squareDigs n
 
 
problem_80 :: Integer
 
problem_80 =
 
sum $ map sumDigits
 
[x|x <- [1..100] \\ [n^2|n<-[1..10]]]
 
 
</haskell>
 
</haskell>

Revision as of 12:22, 20 January 2008

Contents

1 Problem 71

Listing reduced proper fractions in ascending order of size.

Solution:

-- http://mathworld.wolfram.com/FareySequence.html 
import Data.Ratio ((%), numerator,denominator)
fareySeq a b
    |da2<=10^6=fareySeq a1 b
    |otherwise=na
    where
    na=numerator a
    nb=numerator b
    da=denominator a
    db=denominator b
    a1=(na+nb)%(da+db)
    da2=denominator a1
problem_71=fareySeq (0%1) (3%7)

2 Problem 72

How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?

Solution:

Using the Farey Sequence method, the solution is the sum of phi (n) from 1 to 1000000.

groups=1000
eulerTotient n = product (map (\(p,i) -> p^(i-1) * (p-1)) factors)
    where factors = fstfac n
fstfac x = [(head a ,length a)|a<-group$primeFactors x] 
p72 n= sum [eulerTotient x|x <- [groups*n+1..groups*(n+1)]]
problem_72 = sum [p72 x|x <- [0..999]]

3 Problem 73

How many fractions lie between 1/3 and 1/2 in a sorted set of reduced proper fractions?

Solution:

import Data.Array
twix k = crude k - fd2 - sum [ar!(k `div` m) | m <- [3 .. k `div` 5], odd m]
    where
    fd2 = crude (k `div` 2)
    ar = array (5,k `div` 3) $
          ((5,1):[(j, crude j - sum [ar!(j `div` m) | m <- [2 .. j `div` 5]])
                      | j <- [6 .. k `div` 3]])
    crude j = 
        m*(3*m+r-2) + s
        where
            (m,r) = j `divMod` 6
            s = case r of
                  5 -> 1
                  _ -> 0
 
problem_73 =  twix 10000

4 Problem 74

Determine the number of factorial chains that contain exactly sixty non-repeating terms.

Solution:

import Data.List
explode 0 = []
explode n = n `mod` 10 : explode (n `quot` 10)
 
chain 2    = 1
chain 1    = 1
chain 145    = 1
chain 40585    = 1
chain 169    = 3
chain 363601 = 3
chain 1454   = 3
chain 871    = 2
chain 45361  = 2
chain 872    = 2
chain 45362  = 2
chain x = 1 + chain (sumFactDigits x)
makeIncreas 1 minnum  = [[a]|a<-[minnum..9]]
makeIncreas digits minnum  = [a:b|a<-[minnum ..9],b<-makeIncreas (digits-1) a]
p74=
    sum[div p6 $countNum a|
    a<-tail$makeIncreas  6 1,
    let k=digitToN a,
    chain k==60
    ]
    where
    p6=facts!! 6
sumFactDigits = foldl' (\a b -> a + facts !! b) 0 . explode
factorial n = if n == 0 then 1 else n * factorial (n - 1)
digitToN = foldl' (\a b -> 10*a + b) 0 .dropWhile (==0)
facts = scanl (*) 1 [1..9]
countNum xs=ys
    where
    ys=product$map (factorial.length)$group xs 
problem_74= length[k|k<-[1..9999],chain k==60]+p74
test = print $ [a|a<-tail$makeIncreas 6 0,let k=digitToN a,chain k==60]

5 Problem 75

Find the number of different lengths of wire can that can form a right angle triangle in only one way.

Solution:

import Data.Array
 
triplets = 
    [p | 
    n <- [2..706],
    m <- [1..n-1],
    gcd m n == 1, 
    let p = 2 * (n^2 + m*n),
    odd (m + n),
    p <= 10^6
    ]
 
hist bnds ns = 
    accumArray (+) 0 bnds [(n, 1) |
        n <- ns,
        inRange bnds n
        ]
 
problem_75 = 
    length $ filter (\(_,b) -> b == 1) $ assocs arr
    where
    arr = hist (12,10^6) $ concatMap multiples triplets
    multiples n = takeWhile (<=10^6) [n, 2*n..]

6 Problem 76

How many different ways can one hundred be written as a sum of at least two positive integers?

Solution:

Here is a simpler solution: For each n, we create the list of the number of partitions of n whose lowest number is i, for i=1..n. We build up the list of these lists for n=0..100.

build x = (map sum (zipWith drop [0..] x) ++ [1]) : x
problem_76 = (sum $ head $ iterate build [] !! 100) - 1

7 Problem 77

What is the first value which can be written as the sum of primes in over five thousand different ways?

Solution:

Brute force but still finds the solution in less than one second.

counter = foldl (\without p ->
                     let (poor,rich) = splitAt p without
                         with = poor ++ 
                                zipWith (+) with rich
                     in with
                ) (1 : repeat 0)
 
problem_77 =  
    find ((>5000) . (ways !!)) $ [1..]
    where
    ways = counter $ take 100 primes

8 Problem 78

Investigating the number of ways in which coins can be separated into piles.

Solution:

import Data.Array
 
partitions :: Array Int Integer
partitions = 
    array (0,1000000) $ 
    (0,1) : 
    [(n,sum [s * partitions ! p|
    (s,p) <- zip signs $ parts n])|
    n <- [1..1000000]]
    where
        signs = cycle [1,1,(-1),(-1)]
        suite = map penta $ concat [[n,(-n)]|n <- [1..]]
        penta n = n*(3*n - 1) `div` 2
        parts n = takeWhile (>= 0) [n-x| x <- suite]
 
problem_78 :: Int
problem_78 = 
    head $ filter (\x -> (partitions ! x) `mod` 1000000 == 0) [1..]

9 Problem 79

By analysing a user's login attempts, can you determine the secret numeric passcode?

Solution:

import Data.Char (digitToInt, intToDigit)
import Data.Graph (buildG, topSort)
import Data.List (intersect)
 
p79 file= 
    (+0)$read . intersect graphWalk $ usedDigits
    where
    usedDigits = intersect "0123456789" $ file
    edges = concat . map (edgePair . map digitToInt) . words $ file
    graphWalk = map intToDigit . topSort . buildG (0, 9) $ edges
    edgePair [x, y, z] = [(x, y), (y, z)]
    edgePair _         = undefined
 
problem_79 = do
    f<-readFile  "keylog.txt"
    print $p79 f

10 Problem 80

Calculating the digital sum of the decimal digits of irrational square roots.

Solution:

import Data.Char
problem_80=
    sum [f x |
    a <- [1..100],
    x <- [intSqrt $ a * t],
    x * x /= a * t
    ]
    where
    t=10^202
    f = (sum . take 100 . map (flip (-) (ord '0') .ord) . show)