Hask
From HaskellWiki
(Difference between revisions)
(→Hask is not Cartesian closed: strict product) 
Benmachine (Talk  contribs) (id is a function :)) 

(5 intermediate revisions by one user not shown)  
Line 1:  Line 1:  
−  '''Hask''' refers to a [[Category theorycategory]] with types as objects and functions between them as morphisms. However, its use is ambiguous. Sometimes it refers to Haskell (''actual '''Hask'''''), and sometimes it refers to some subset of Haskell where no values are bottom and all functions terminate (''platonic '''Hask'''''). The reason for this is that platonic '''Hask''' has lots of nice properties that actual '''Hask''' does not, and is thus easier to reason in. There is a faithful functor from platonic '''Hask''' to actual '''Hask''' allowing programmers to think in the former to write code in the latter. 
+  '''Hask''' is the [[Category theorycategory]] of Haskell types and functions. 
−  == Definition == 
+  The objects of '''Hask''' are Haskell types, and the morphisms from objects <hask>A</hask> to <hask>B</hask> are Haskell functions of type <hask>A > B</hask>. The identity morphism for object <hask>A</hask> is <hask>id :: A > A</hask>, and the composition of morphisms <hask>f</hask> and <hask>g</hask> is <hask>f . g = \x > f (g x)</hask>. 
−  
−  The objects of '''Hask''' are Haskell types, and the morphisms from objects <hask>A</hask> to <hask>B</hask> are Haskell functions of type <hask>A > B</hask>. The identity morphism for object <hask>A</hask> is <hask>id :: A</hask>, and the composition of morphisms <hask>f</hask> and <hask>g</hask> is <hask>f . g = \x > f (g x)</hask>. 

== Is '''Hask''' even a category? == 
== Is '''Hask''' even a category? == 

Line 39:  Line 39:  
 <hask>data Either a b 
 <hask>data Either a b 

= Left a  Right b</hask> 
= Left a  Right b</hask> 

−   <hask>data (a,b) = (,) a b</hask> 
+   <hask>data (a,b) = 
−   <hask>data P a b = P !a !b</hask> 
+  (,) { fst :: a, snd :: b}</hask> 
+   <hask>data P a b = 

+  P {fstP :: !a, sndP :: !b}</hask> 

 
 

! scope="row"  Requirement 
! scope="row"  Requirement 

Line 78:  Line 78:  
<br /><hask>sndP . u = g</hask> 
<br /><hask>sndP . u = g</hask> 

 
 

−  ! scope="row"  Platonic candidate 
+  ! scope="row"  Candidate 
 <hask>u1 r = case r of {}</hask> 
 <hask>u1 r = case r of {}</hask> 

 <hask>u1 _ = ()</hask> 
 <hask>u1 _ = ()</hask> 

Line 96:  Line 96:  
<br /><hask>g _ = undefined</hask> 
<br /><hask>g _ = undefined</hask> 

 <hask>r ~ ()</hask> 
 <hask>r ~ ()</hask> 

−  <br /><hask>f _ = undefined</hask> 
+  <br /><hask>f _ = ()</hask> 
−  <br /><hask>g _ = ()</hask> 
+  <br /><hask>g _ = undefined</hask> 
 
 

! scope="row"  Alternative u 
! scope="row"  Alternative u 

Line 115:  Line 115:  
 <hask>u1 _ = (undefined,undefined)</hask> 
 <hask>u1 _ = (undefined,undefined)</hask> 

<br /><hask>u2 _ = undefined</hask> 
<br /><hask>u2 _ = undefined</hask> 

−   <hask>g _ = ()</hask> 
+   <hask>f _ = ()</hask> 
−  <br /><hask>(fstP . u1) _ = undefined</hask> 
+  <br /><hask>(fstP . u1) _ = undefined</hask> 
 style="background: red;" 
 style="background: red;" 

! scope="row"  Result 
! scope="row"  Result 

Line 128:  Line 128:  
== "Platonic" '''Hask''' == 
== "Platonic" '''Hask''' == 

−  Because of these difficulties, Haskell developers tend to think in some subset of Haskell where types do not have bottom values. This means that it only includes functions that terminate, and typically only finite values. The corresponding category has the expected initial and terminal objects, sums and products. Instances of Functor and Monad really are endofunctors and monads. 
+  Because of these difficulties, Haskell developers tend to think in some subset of Haskell where types do not have bottom values. This means that it only includes functions that terminate, and typically only finite values. The corresponding category has the expected initial and terminal objects, sums and products, and instances of Functor and Monad really are endofunctors and monads. 
== Links == 
== Links == 
Latest revision as of 20:35, 13 September 2012
Hask is the category of Haskell types and functions.
The objects of Hask are Haskell types, and the morphisms from objectsA
B
A > B
A
id :: A > A
f
g
f . g = \x > f (g x)
Contents 
[edit] 1 Is Hask even a category?
Consider:
undef1 = undefined :: a > b undef2 = \_ > undefined
Note that these are not the same value:
seq undef1 () = undefined seq undef2 () = ()
undef1 . id = undef2
f
g
f x = g x
x
undef1
undef2
[edit] 2 Hask is not Cartesian closed
Actual Hask does not have sums, products, or an initial object, and()
Initial Object  Terminal Object  Sum  Product  Product  

Type  data Empty 
data () = () 
data Either a b = Left a  Right b 
data (a,b) = (,) { fst :: a, snd :: b} 
data P a b = P {fstP :: !a, sndP :: !b} 
Requirement  There is a unique function
u :: Empty > r 
There is a unique function
u :: r > () 
For any functions
f :: a > r g :: b > r there is a unique function u :: Either a b > r such that: u . Left = f u . Right = g 
For any functions
f :: r > a g :: r > b there is a unique function u :: r > (a,b) such that: fst . u = f snd . u = g 
For any functions
f :: r > a g :: r > b there is a unique function u :: r > P a b such that: fstP . u = f sndP . u = g 
Candidate  u1 r = case r of {} 
u1 _ = () 
u1 (Left a) = f a u1 (Right b) = g b 
u1 r = (f r,g r) 
u1 r = P (f r) (g r) 
Example failure condition  r ~ () 
r ~ () 
r ~ () f _ = () g _ = () 
r ~ () f _ = undefined g _ = undefined 
r ~ () f _ = () g _ = undefined 
Alternative u  u2 _ = () 
u2 _ = undefined 
u2 _ = () 
u2 _ = undefined 

Difference  u1 undefined = undefined u2 undefined = () 
u1 _ = () u2 _ = undefined 
u1 undefined = undefined u2 undefined = () 
u1 _ = (undefined,undefined) u2 _ = undefined 
f _ = () (fstP . u1) _ = undefined 
Result  FAIL  FAIL  FAIL  FAIL  FAIL 
[edit] 3 "Platonic" Hask
Because of these difficulties, Haskell developers tend to think in some subset of Haskell where types do not have bottom values. This means that it only includes functions that terminate, and typically only finite values. The corresponding category has the expected initial and terminal objects, sums and products, and instances of Functor and Monad really are endofunctors and monads.