Personal tools

Haskell Quiz/Geodesic Dome Faces/Solution Jkramar

From HaskellWiki

< Haskell Quiz | Geodesic Dome Faces(Difference between revisions)
Jump to: navigation, search
m
m
Line 47: Line 47:
 
-- triangle-faced polyhedron with vertices at vs
 
-- triangle-faced polyhedron with vertices at vs
 
faces :: (Real a) => [V3 a] -> [Tri a]
 
faces :: (Real a) => [V3 a] -> [Tri a]
faces vs = filter isFace $ orient <$> tris vs where
+
faces vs = filter isFace $ orient <$> tris where
 
orient t@(V a b c) = if (signum$det t)==1 then t else V a c b
 
orient t@(V a b c) = if (signum$det t)==1 then t else V a c b
tris xs = (\[a,b,c]->V a b c) <$> (chooses xs!!3)
+
tris = (\[a,b,c]->V a b c) <$> chooses vs!!3
 
farth (V a b c) = maximum.(dot ((a.-b) `cross` (a.-c))<$>)
 
farth (V a b c) = maximum.(dot ((a.-b) `cross` (a.-c))<$>)
isFace t@(V a b c) = farth t [a,b,c] == farth t vs
+
isFace t = farth t (toList t) == farth t vs
   
 
-- each triangle side is broken into n pieces, unlike in the problem statement,
 
-- each triangle side is broken into n pieces, unlike in the problem statement,

Revision as of 20:26, 17 November 2008

This problem seems to be strongly IO-bound, so actually computing the geodesic faces is not too time-sensitive. Hence there is time for computing the faces from the vertices by trying each triple of vertices to check if it's a face. (In the problem statement, the data for each polyhedron includes a list of the faces, not just the vertices.)

Originally this program represented vectors with ordinary tuples, and in some places that was definitely more understandable. But of course it's more fun this way.

import Prelude hiding (sum, foldr1, foldr, maximum, mapM_)
import Control.Applicative
import Data.Foldable
 
data V3 a = V !a !a !a deriving (Read,Show)
instance Foldable V3 where foldr f x (V a b c) = f a$f b$f c x
instance Functor V3 where fmap f (V a b c) = V (f a) (f b) (f c)
instance Applicative V3 where
  pure a = V a a a
  V f g h <*> V a b c = V (f a) (g b) (h c)
type Tri a = V3 (V3 a)
 
(.+) :: (Num a) => V3 a -> V3 a -> V3 a
(.+) = liftA2 (+)
 
(.-) :: (Num a) => V3 a -> V3 a -> V3 a
(.-) = liftA2 (-)
 
(.*) :: (Num a) => a -> V3 a -> V3 a
(.*) = fmap.(*)
 
dot :: (Num a) => V3 a -> V3 a -> a
dot = (sum.).liftA2 (*)
 
cross :: (Num a) => V3 a -> V3 a -> V3 a
cross (V x y z) (V x' y' z')=V (y*z'-z*y') (z*x'-x*z') (x*y'-y*x')
 
det :: (Num a) => V3 (V3 a) -> a
det (V a b c) = (a `cross` b) `dot` c
 
-- matrix multiplication
mmul :: (Num a) => V3 (V3 a) -> V3 (V3 a) -> V3 (V3 a)
mmul t = fmap$foldr1 (.+).(<*>t).fmap (.*)
 
-- chooses xs!!n gives the combinations of n elements from xs
chooses :: [a] -> [[[a]]]
chooses = foldr consider$[[]]:repeat [] where
  consider x cs = zipWith (flip (++)) cs$map (x:)<$>[]:cs
 
-- inefficient function to generate all the positively-oriented faces of the
-- triangle-faced polyhedron with vertices at vs
faces :: (Real a) => [V3 a] -> [Tri a]
faces vs = filter isFace $ orient <$> tris where
  orient t@(V a b c) = if (signum$det t)==1 then t else V a c b
  tris = (\[a,b,c]->V a b c) <$> chooses vs!!3
  farth (V a b c) = maximum.(dot ((a.-b) `cross` (a.-c))<$>)
  isFace t = farth t (toList t) == farth t vs
 
-- each triangle side is broken into n pieces, unlike in the problem statement,
-- where they use n+1 for some reason
shatter :: (Fractional a) => Int -> Tri a -> [Tri a]
shatter n t = mmul t'<$>coords where
  basis = V (V 1 0 0) (V 0 1 0) (V 0 0 1)
  fwd = [(V k j (n-1-k-j).+) <$> basis|k<-[0..n-1], j<-[0..n-1-k]]
  bwd = [(V k j (n+1-k-j).-) <$> basis|k<-[1..n], j<-[1..n-k]]
  t' = ((1/fromIntegral n).*)<$>t
  coords = (fmap fromIntegral<$>)<$>fwd++bwd
 
geode :: (RealFloat a) => [V3 a] -> Int -> [Tri a]
geode vs n = fmap normize<$>(shatter n=<<faces vs) where
  normize v = (1/sqrt (dot v v)).*v
 
cyc :: V3 a -> [V3 a]
cyc (V a b c) = [V a b c, V b c a, V c a b]
 
tetrahed :: (Floating a) => [V3 a]
tetrahed = [V (x*sqrt 1.5) (-sqrt 2/3) (-1/3)|x<-[-1,1]]++
  [V 0 (2*sqrt 2/3) (-1/3), V 0 0 1]
 
octahed :: (Num a) => [V3 a]
octahed = cyc =<< [V x 0 0|x<-[-1,1]]
 
icosahed :: (Floating a) => [V3 a]
icosahed = cyc =<< [V x (y*(1+sqrt 5/2)) 0|x<-[-1, 1], y<-[-1, 1]]
 
main :: IO ()
main = mapM_ print (geode octahed 51::[Tri Double])