Personal tools

Haskell Quiz/SimFrost/Solution Dolio

From HaskellWiki

< Haskell Quiz | SimFrost(Difference between revisions)
Jump to: navigation, search
m (formatting)
m (generalize z)
Line 60: Line 60:
 
part = unfoldr (fmap (first z) . splitAtM 2) . map (unfoldr $ splitAtM 2)
 
part = unfoldr (fmap (first z) . splitAtM 2) . map (unfoldr $ splitAtM 2)
 
where
 
where
z [x, y] = zipWith (\a b -> [a, b]) x y
+
z = foldr (zipWith(:)) $ repeat []
   
 
unpart :: [[Region a]] -> [[a]]
 
unpart :: [[Region a]] -> [[a]]

Revision as of 00:37, 19 March 2007


This solution is based solely on list processing. The main datatype, Region a, is simply an alias for a. At each step, the region is broken into sub-regions (the 2x2 squares), each is rotated or frozen appropriately, and then the sub-regions are combined back into a single region.

The text output follows the Ruby Quiz convention of ' ' for vacuum, '.' for vapor and '*' for ice. A '|' is added on the left side of each line of the grid to distinguish them from separator lines.

The default output of this program is a number of PPM images of each step in the process. They are called frostNNN.ppm, where NNN starts from 100.

This code makes use of the random monad and the splittable random monad.

{-# OPTIONS -fno-monomorphism-restriction -fglasgow-exts #-}
 
module Main where
 
import Data.List
 
import Control.Arrow
import Control.Monad
import Control.Monad.Instances
 
import System
import System.Random
 
import MonadRandom
import PPImage
 
data Content = Frost | Vapor | Vacuum deriving (Eq, Bounded, Enum)
data Direction = L | R deriving (Eq, Bounded, Enum, Show)
 
instance Random Direction where
    random = randomR (minBound, maxBound)
    randomR = (first toEnum .) . randomR . (fromEnum *** fromEnum)
 
instance Random Content where
    random = randomR (minBound, maxBound)
    randomR = (first toEnum .) . randomR . (fromEnum *** fromEnum)
 
instance Show Content where
    show Frost = "*"
    show Vapor = "."
    show Vacuum = " "
 
type Region a = [[a]]
 
shift, unshift :: [a] -> [a]
shift   = liftM2 (:) last init
unshift = liftM2 (++) tail (return . head)
 
rotateR :: (MonadRandom m) => Region a -> m (Region a)
rotateR = flip liftM getRandom . flip r
 where r R = transpose . reverse
       r L = reverse . transpose
 
splitAtM :: (MonadPlus m) => Int -> [a] -> m ([a], [a])
splitAtM _ [] = mzero
splitAtM n xs = return $ splitAt n xs
 
part :: Region a -> [[Region a]]
part = unfoldr (fmap (first z) . splitAtM 2) . map (unfoldr $ splitAtM 2)
 where
 z = foldr (zipWith(:)) $ repeat []
 
unpart :: [[Region a]] -> [[a]]
unpart = join . (map $ foldr1 (zipWith (++)))
 
freeze :: Region Content -> Region Content
freeze = map (map f)
 where f Vacuum = Vacuum ; f _ = Frost
 
anyR :: (a -> Bool) -> Region a -> Bool
anyR = (or .) . map . any
 
vaporous, frosty :: Region Content -> Bool
vaporous = anyR (== Vapor)
frosty = anyR (== Frost)
 
randomRegion :: (MonadRandom m) => Int -> Int -> m (Region Content)
randomRegion n m = do r <- replicateM (n - 1) rv
                      rs <- replicateM (m - 1) (replicateM n rv)
                      return $ insert (div m 2) (insert (div n 2) Frost r) rs
 where
 insert n e l = let (h, t) = splitAt n l in h ++ e : t
 rv = getRandomR (Vapor, Vacuum)
 
update, update' :: (MonadRandom m) => Region Content -> m (Region Content)
update = liftM unpart . mapM (mapM op) . part
 where op r = if frosty r then return $ freeze r else rotateR r
 
update' = liftM unodd . update . odd
 where
 odd = shift . map (shift)
 unodd = unshift . map (unshift)
 
process :: (MonadRandomSplittable m) => Region Content -> m [Region Content]
process r = liftM (r:) $ step r
 where
 stepper g f r
    | not (vaporous r) = return []
    | otherwise        = do r' <- g r
                            -- The 'splitRandom' is key.
                            -- Allows the generations to be lazily generated.
                            rs <- splitRandom $ f r' 
                            return (r':rs)
 step  = stepper update step'
 step' = stepper update' step
 
main = do [n, m] <- fmap (map read) getArgs
          if odd n || odd m
             then putStrLn "Dimensions must be even."
             else randomRegion n m >>= process
                                   >>= mapM_ output . zip [100..]
                                                    . map ppmRegion
 
output :: (Integer, PPM) -> IO ()
output (n, ppm) = writeFile ("frost" ++ show n ++ ".ppm") (show ppm)
 
showRegion :: Region Content -> String
showRegion = unlines . map ('|':) . map join . map (map show)
 
ppmRegion :: Region Content -> PPM
ppmRegion r = PPM pix h w 255
 where
 pix = map (map f) r
 h   = length r
 w   = head . map length $ r
 f Vacuum = black
 f Frost  = white
 f Vapor  = blue

The following is some auxiliary code to output PPM images of the results:

module PPImage ( Point
               , Image
               , Color(..)
               , PPM(..)
               , red
               , yellow
               , green
               , cyan
               , blue
               , magenta
               , black
               , white
               , pixelate )
    where
 
type Point = (Double, Double)
type Image a = Point -> a
 
data Color = Color { r :: Int, g :: Int, b :: Int }
 
data PPM = PPM {
                pixels :: [[Color]],
                height :: Int,
                width :: Int,
                depth :: Int
               }
 
instance Show Color where
    show (Color r g b) = unwords [show r, show g, show b]
 
instance Show PPM where
    show pg =  "P3\n"
            ++ show h ++ " " ++ show w ++ "\n"
            ++ show d ++ "\n"
            ++ (unlines . map unlines . map (map show) . pixels $ pg) ++ "\n"
     where h = height pg
           w = width pg
           d = depth pg
 
black   = Color   0   0   0
red     = Color 255   0   0
yellow  = Color 255 255   0
green   = Color   0 255   0
cyan    = Color   0 255 255
blue    = Color   0   0 255
magenta = Color 255   0 255
white   = Color 255 255 255
 
pixelate n m d (x0, x1) (y0, y1) i = PPM pixels m n d
 where
 pixels = [ i (x, y) | x <- px, y <- py ]
 dx = (x1 - x0) / fromIntegral n
 dy = (y0 - y1) / fromIntegral m
 px = take n $ iterate (+dx) x0
 py = take m $ iterate (+dy) y1