Personal tools

Monoid

From HaskellWiki

(Difference between revisions)
Jump to: navigation, search
(refer to uses)
m (Links fixed)
(One intermediate revision by one user not shown)
Line 5: Line 5:
 
* numbers under addition or multiplication
 
* numbers under addition or multiplication
 
* Booleans under conjunction or disjunction
 
* Booleans under conjunction or disjunction
* sets under union
+
* sets under union or intersection
 
* functions from a type to itself, under composition
 
* functions from a type to itself, under composition
   
A Monoid class is defined in [http://www.haskell.org/ghc/dist/current/docs/libraries/base/Data-Monoid.html Data.Monoid], and used in [http://www.haskell.org/ghc/dist/current/docs/libraries/base/Data-Foldable.html Data.Foldable] and in the Writer monad.
+
Note that in most of these cases the operation is also commutative, but it need not be; concatenation and function composition are not commutative.
  +
  +
A Monoid class is defined in [http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Monoid.html Data.Monoid], and used in [http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Foldable.html Data.Foldable] and in the Writer monad.
   
 
The monoid interface enables a number of algorithms, including parallel algorithms and tree searches, e.g.:
 
The monoid interface enables a number of algorithms, including parallel algorithms and tree searches, e.g.:

Revision as of 13:56, 7 February 2012

This article is a stub. You can help by expanding it.

A monoid is an algebraic structure with an associative binary operation that has an identity element. Examples include:

  • lists under concatenation
  • numbers under addition or multiplication
  • Booleans under conjunction or disjunction
  • sets under union or intersection
  • functions from a type to itself, under composition

Note that in most of these cases the operation is also commutative, but it need not be; concatenation and function composition are not commutative.

A Monoid class is defined in Data.Monoid, and used in Data.Foldable and in the Writer monad.

The monoid interface enables a number of algorithms, including parallel algorithms and tree searches, e.g.:

Generalizations of monoids feature in Category theory, for example: