Personal tools

Parsing a simple imperative language

From HaskellWiki

Revision as of 15:40, 19 January 2010 by MichalTerepeta (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This tutorial will present how to parse a subset of a simple imperative programming language called WHILE (introduced in a book "Principles of Program Analysis" by Nielson, Nielson and Hankin). It includes only a few statements and basic boolean/arithmetic expressions, which makes it a nice material for a tutorial.

Contents

1 Imports

First let's specify the name of the module:

> module ParseWhile where

And then import the necessary libraries:

> import System.IO
> import Control.Monad
> import Text.ParserCombinators.Parsec
> import Text.ParserCombinators.Parsec.Expr
> import Text.ParserCombinators.Parsec.Language
> import qualified Text.ParserCombinators.Parsec.Token as Token

2 The language

The grammar for expressions is defined as follows:

a  ::= x | n | - a | a opa a

b  ::= true | false | not b | b opb b | a opr a

opa ::= + | - | * | /

opb ::= and | or

opr ::= > | <

Note that we have three groups of operators - arithmetic, booloan and relational ones.

And now the definition of statements:

S  ::= x := a | skip | S1; S2 | ( S ) | if b then S1 else S2 | while b do S

We probably want to parse that into some internal representation of the language (abstract syntax tree). Therefore we need to define the data structures for the expressions and statements.

3 Data structures

We need to take care of boolean and arithmetic expressions and the appropriate operators. First let's look at the boolean expressions:

> data BExpr = BoolConst Bool
>            | Not BExpr
>            | BBinary BBinOp BExpr BExpr
>            | RBinary RBinOp AExpr AExpr
>             deriving (Show)

Binary booloan operators:

> data BBinOp = And | Or deriving (Show)

Relational operators:

> data RBinOp = Greater | Less deriving (Show)

Now we define the types for arithmetic expressions:

> data AExpr = Var String
>            | IntConst Integer
>            | Neg AExpr
>            | ABinary ABinOp AExpr AExpr
>              deriving (Show)

And arithmetic operators:

> data ABinOp = Add
>             | Subtract
>             | Multiply
>             | Divide
>               deriving (Show)

Finally let's take care of the statements:

> data Stmt = Seq [Stmt]
>           | Assign String AExpr
>           | If BExpr Stmt Stmt
>           | While BExpr Stmt
>           | Skip
>             deriving (Show)

4 Lexer

Having all the data structures we can go on with writing the code to do actual parsing. First of all we create the language definition using Haskell's record

syntax and the constructor
emptyDef
(from
Text.ParserCombinators.Parsec.Language
):
> languageDef =
>   emptyDef { Token.commentStart    = "/*"
>            , Token.commentEnd      = "*/"
>            , Token.commentLine     = "//"
>            , Token.identStart      = letter
>            , Token.identLetter     = alphaNum
>            , Token.reservedNames   = [ "if"
>                                      , "then"
>                                      , "else"
>                                      , "while"
>                                      , "do"
>                                      , "skip"
>                                      , "true"
>                                      , "false"
>                                      , "not"
>                                      , "and"
>                                      , "or"
>                                      ]
>            , Token.reservedOpNames = ["+", "-", "*", "/", ":="
>                                      , "<", ">", "and", "or", "not"
>                                      ]
>            }

This creates a language definition that accepts the C-style comments, requires that the identifiers start with a letter, and end with alphanumeric characters. Moreover there is a number of reserved names, that cannot be used by the identifiers.

Having the above definition we can create a lexer:

> lexer = Token.makeTokenParser languageDef

lexer contains a number of lexical parsers, that we can us to parse identifiers, reserved words/operations, etc. Now we can select/extract them in the following way:

> identifier = Token.identifier lexer -- parses an identifier
> reserved   = Token.reserved   lexer -- parses a reserved name
> reservedOp = Token.reservedOp lexer -- parses an operator
> parens     = Token.parens     lexer -- parses surrounding parenthesis:
>                                     --   parens p
>                                     -- takes care of the parenthesis and
>                                     -- uses p to parse what's inside them
> integer    = Token.integer    lexer -- parses an integer
> semi       = Token.semi       lexer -- parses a semicolon
> whiteSpace = Token.whiteSpace lexer -- parses whitespace

This isn't really necessary, but should make the code much more readable (also this is the reason why we used the qualified import of

Text.ParserCombinators.Parsec.Token
). Now we can use them to

parse the source code at the token level. One of the nice features of these parsers is that they take care of all whitespace after the tokens.

5 Main parser

As already mentioned a program in this language is simply a statement, so the main parser should basically only parse a statement. But remember to take care of initial whitespace - our parsers only get rid of whitespace after the tokens!

> whileParser :: Parser Stmt
> whileParser = whiteSpace >> statement

Now because any statement might be actually a sequence of statements separated

by semicolon, we use
sepBy1
to parse at least one statement. The

result is a list of statements. We also allow grouping statements by the parenthesis, which is useful, for instance, in the while loop.

> statement :: Parser Stmt
> statement =   parens statement
>           <|> sequenceOfStmt
 
> sequenceOfStmt =
>   do list <- (sepBy1 statement' semi)
>      -- If there's only one statement return it without using Seq.
>      return $ if length list == 1 then head list else Seq list

Now a single statement is quite simple, it's either an if conditional, a while

loop, an assignment or simply a skip statement. We use
<|>
to express choice. So
a <|> b
will first try parser
a

and if it fails (but without actually consuming any input) then parser

b
will be used. Note: this means that the order is important.
> statement' :: Parser Stmt
> statement' =   ifStmt
>            <|> whileStmt
>            <|> skipStmt
>            <|> assignStmt

If you have a parser that might fail after consuming some input, and you still

want to try the next parser, you should look into
try
combinator. For instance
try p <|> q
will try parsing with
p
and if it fails, even after consuming the input, the
q
parser will be used as if nothing has been consumed by
p
.

Now let's define the parsers for all the possible statements. This is quite straightforward as we just use the parsers from the lexer and then use all the necessary information to create appropriate data structures.

> ifStmt :: Parser Stmt
> ifStmt =
>   do reserved "if"
>      cond  <- bExpression
>      reserved "then"
>      stmt1 <- statement
>      reserved "else"
>      stmt2 <- statement
>      return $ If cond stmt1 stmt2
 
> whileStmt :: Parser Stmt
> whileStmt =
>   do reserved "while"
>      cond <- bExpression
>      reserved "do"
>      stmt <- statement
>      return $ While cond stmt
 
> assignStmt :: Parser Stmt
> assignStmt =
>   do var  <- identifier
>      reservedOp ":="
>      expr <- aExpression
>      return $ Assign var expr
 
> skipStmt :: Parser Stmt
> skipStmt = reserved "skip" >> return Skip

6 Expressions

What's left is to parse the expressions. Fortunately Parsec provides a very easy way to do that. Let's define the arithmetic and boolean expressions:

> aExpression :: Parser AExpr
> aExpression = buildExpressionParser aOperators aTerm
 
> bExpression :: Parser BExpr
> bExpression = buildExpressionParser bOperators bTerm

Now we have to define the lists with operator precedence, associativity and what constructors to use in each case.

> aOperators = [ [Prefix (reservedOp "-"   >> return (Neg             ))          ]
>              , [Infix  (reservedOp "*"   >> return (ABinary Multiply)) AssocLeft]
>              , [Infix  (reservedOp "/"   >> return (ABinary Divide  )) AssocLeft]
>              , [Infix  (reservedOp "+"   >> return (ABinary Add     )) AssocLeft]
>              , [Infix  (reservedOp "-"   >> return (ABinary Subtract)) AssocLeft]
>               ]
 
> bOperators = [ [Prefix (reservedOp "not" >> return (Not             ))          ]
>              , [Infix  (reservedOp "and" >> return (BBinary And     )) AssocLeft]
>              , [Infix  (reservedOp "or"  >> return (BBinary Or      )) AssocLeft]
>              ]

In case of Prefix operators it is enough to specify which one should be parsed and what is the associated data constructor. Infix operators are defined similarly, but it's necessary to add information about associativity. Note that the operator precedence depends only on the order of the elements in the list.

Finally we have to define the terms. In case of arithmetic expressions, it is quite simple:

> aTerm =  parens aExpression
>      <|> liftM Var identifier
>      <|> liftM IntConst integer

However, the term in a boolean expression is a bit more tricky. In this case, a term can also be an expression with relational operator consisting of arithmetic expressions.

> bTerm =  parens bExpression
>      <|> (reserved "true"  >> return (BoolConst True ))
>      <|> (reserved "false" >> return (BoolConst False))
>      <|> rExpression

Therefore we have to define a parser for relational expressions:

> rExpression =
>   do a1 <- aExpression
>      op <- relation
>      a2 <- aExpression
>      return $ RBinary op a1 a2
 
> relation =   (reservedOp ">" >> return Greater)
>          <|> (reservedOp "<" >> return Less)

And that's it. We have a quite simple parser able to parse a few statements and arithmetic/boolean expressions.

7 Notes

If you want to experiment with the parser inside ghci, these functions might be handy:

> parseString :: String -> Stmt
> parseString str =
>   case parse whileParser "" str of
>     Left e  -> error $ show e
>     Right r -> r
 
> parseFile :: String -> IO Stmt
> parseFile file =
>   do program  <- readFile file
>      case parse whileParser "" program of
>        Left e  -> print e >> fail "parse error"
>        Right r -> return r

Now you can simply load the module in ghci and then do

ast <- parseFile "<filename>"
to parse a file and get the

result if parsing was successful. If you already have a string with

the program, you can use
parseString
.