# Roman numerals

### From HaskellWiki

(Category:Mathematics) |
(simpler without type mangling?) |
||

Line 79: | Line 79: | ||

roman (undefined :: (M (M (X (L (V (I (I (I O)))))))))] |
roman (undefined :: (M (M (X (L (V (I (I (I O)))))))))] |
||

</haskell> |
</haskell> |
||

+ | |||

+ | == With data constructors == |
||

+ | |||

+ | I think there is also some simpler solution using |
||

+ | <haskell> |
||

+ | data RomanDigit a = |
||

+ | O -- 0 |
||

+ | | I a -- 1 |
||

+ | | V a -- 5 |
||

+ | | X a -- 10 |
||

+ | | L a -- 50 |
||

+ | | C a -- 100 |
||

+ | | D a -- 500 |
||

+ | | M a -- 1000 |
||

+ | </haskell> |
||

+ | if not only an enumeration of digits which can be used in a regular list. |
||

+ | |||

[[Category:Idioms]] |
[[Category:Idioms]] |

## Revision as of 14:53, 8 November 2006

The system of **Roman numerals** is a numeral system originating in ancient Rome, and was adapted from Etruscan numerals. The system used in classical antiquity was slightly modified in the Middle Ages to produce the system we use today. It is based on certain letters which are given values as numerals.

## 1 Oneliner

This is a nearly-completely points-freed expression which evaluates a given Roman numeral as a String to the corresponding Int. The folded function is not points-freed for ease of reading, and it would also need an `if' function which needs separate definition.

import Data.Maybe (fromJust) romanToInt :: String -> Int romanToInt = fst . foldr (\p (t,s) -> if p >= s then (t+p,p) else (t-p,p)) (0,0) . map (fromJust . flip lookup (zip "IVXLCDM" [1,5,10,50,100,500,1000]))

## 2 Roman (type-)numerals

The function `roman' here infers the value of the Roman numeral from the type of its first argument, which in turn is left unevaluated, and returns it as an Int.

{-# OPTIONS_GHC -fglasgow-exts #-} module Romans where class Roman t where roman :: t -> Int data O -- 0 data I a -- 1 data V a -- 5 data X a -- 10 data L a -- 50 data C a -- 100 data D a -- 500 data M a -- 1000 instance Roman O where roman _ = 0 instance Roman (I O) where roman _ = 1 instance Roman (V O) where roman _ = 5 instance Roman (X O) where roman _ = 10 instance Roman (I a) => Roman (I (I a)) where roman _ = roman (undefined :: (I a)) + 1 instance Roman a => Roman (I (V a)) where roman _ = roman (undefined :: a) + 4 instance Roman a => Roman (I (X a)) where roman _ = roman (undefined :: a) + 9 instance Roman (I a) => Roman (V (I a)) where roman _ = roman (undefined :: (I a)) + 5 instance Roman (V a) => Roman (V (V a)) where roman _ = roman (undefined :: (V a)) + 5 instance Roman (I a) => Roman (X (I a)) where roman _ = roman (undefined :: (I a)) + 10 instance Roman (V a) => Roman (X (V a)) where roman _ = roman (undefined :: (V a)) + 10 instance Roman (X a) => Roman (X (X a)) where roman _ = roman (undefined :: (X a)) + 10 instance Roman a => Roman (X (L a)) where roman _ = roman (undefined :: a) + 40 instance Roman a => Roman (X (C a)) where roman _ = roman (undefined :: a) + 90 instance Roman a => Roman (X (D a)) where roman _ = roman (undefined :: a) + 490 instance Roman a => Roman (L a) where roman _ = roman (undefined :: a) + 50 instance Roman (I a) => Roman (C (I a)) where roman _ = roman (undefined :: (I a)) + 100 instance Roman (V a) => Roman (C (V a)) where roman _ = roman (undefined :: (V a)) + 100 instance Roman (X a) => Roman (C (X a)) where roman _ = roman (undefined :: (X a)) + 100 instance Roman (L a) => Roman (C (L a)) where roman _ = roman (undefined :: (L a)) + 100 instance Roman (C a) => Roman (C (C a)) where roman _ = roman (undefined :: (C a)) + 100 instance Roman a => Roman (C (D a)) where roman _ = roman (undefined :: a) + 400 instance Roman a => Roman (C (M a)) where roman _ = roman (undefined :: a) + 900 instance Roman a => Roman (D a) where roman _ = roman (undefined :: a) + 500 instance Roman a => Roman (M a) where roman _ = roman (undefined :: a) + 1000 -- Example type: XVI ~> X (V (I O)); MCMXCIX ~> M (C (M (X (C (I (X O)))))) powersoftwo = [roman (undefined :: (I (I O))), roman (undefined :: (I (V O))), roman (undefined :: (V (I (I (I O))))), roman (undefined :: (X (V (I O)))), roman (undefined :: (X (X (X (I (I O)))))), roman (undefined :: (L (X (I (V O))))), roman (undefined :: (C (X (X (V (I (I (I O)))))))), roman (undefined :: (C (C (L (V (I O)))))), roman (undefined :: (D (X (I (I O))))), roman (undefined :: (M (X (X (I (V O)))))), roman (undefined :: (M (M (X (L (V (I (I (I O)))))))))]

## 3 With data constructors

I think there is also some simpler solution using

data RomanDigit a = O -- 0 | I a -- 1 | V a -- 5 | X a -- 10 | L a -- 50 | C a -- 100 | D a -- 500 | M a -- 1000

if not only an enumeration of digits which can be used in a regular list.