# Sinc function

### From HaskellWiki

(Difference between revisions)

(Category:Mathematics) |
(Category:Mathematics) |
||

Line 7: | Line 7: | ||

{- Boosted from Boost http://www.boost.org/boost/math/special_functions/sinc.hpp -} |
{- Boosted from Boost http://www.boost.org/boost/math/special_functions/sinc.hpp -} |
||

sinc :: (RealFloat a) => a -> a |
sinc :: (RealFloat a) => a -> a |
||

− | sinc x | (abs x) >= taylor_n_bound = (sin x)/x |
+ | sinc x = |

− | | otherwise = 1 - (x^2/6) + (x^4/120) |
+ | if abs x >= taylor_n_bound |

+ | then sin x / x |
||

+ | else 1 - x^2/6 + x^4/120 |
||

where |
where |
||

taylor_n_bound = sqrt $ sqrt epsilon |
taylor_n_bound = sqrt $ sqrt epsilon |
||

</haskell> |
</haskell> |
||

+ | [[Category:Code]] |
||

[[Category:Mathematics]] |
[[Category:Mathematics]] |

## Latest revision as of 16:35, 15 November 2006

The sinc function, , is a useful function that is a little tricky to implement because it becomes as x approaches 0. Here is an implementation taken from the Boost library.

epsilon :: RealFloat a => a epsilon = encodeFloat 1 (fromIntegral $ 1-floatDigits epsilon) {- Boosted from Boost http://www.boost.org/boost/math/special_functions/sinc.hpp -} sinc :: (RealFloat a) => a -> a sinc x = if abs x >= taylor_n_bound then sin x / x else 1 - x^2/6 + x^4/120 where taylor_n_bound = sqrt $ sqrt epsilon