Personal tools

Template haskell/Instance deriving example

From HaskellWiki

(Difference between revisions)
Jump to: navigation, search
m
m
Line 1: Line 1:
+
First some type synonyms to make the code more readable
 
 
<haskell>
 
<haskell>
type Func_name = Name
+
type Constructor = (Name, [(Maybe Name, Type)]) -- the list of constructors
type Constructor = (Name, [(Maybe Name, Type)])
+
type Cons_vars = [ExpQ] -- A list of variables that bind in the constructor
type Cons_vars = [ExpQ]
+
type Function_body = ExpQ
type Function_body = ExpQ
 
 
type Gen_func = Constructor -> Cons_vars -> Function_body
 
type Gen_func = Constructor -> Cons_vars -> Function_body
  +
type Func_name = Name -- The name of the instance function we will be creating
  +
-- For each function in the instance we provide a generator function
  +
-- to generate the function body (the body is generated for each constructor)
 
type Funcs = [(Func_name, Gen_func)]
 
type Funcs = [(Func_name, Gen_func)]
  +
</haskell>
   
<Haskell>
+
The main reusable function. We pass it the list of functions to
  +
generate the functions of the instance
  +
  +
<haskell>
 
-- construct an instance of class class_name for type for_type
 
-- construct an instance of class class_name for type for_type
 
-- funcs is a list of instance method names with a corresponding
 
-- funcs is a list of instance method names with a corresponding
Line 21: Line 25:
 
(map (gen_clause gen_func) constructors)
 
(map (gen_clause gen_func) constructors)
 
</haskell>
 
</haskell>
  +
  +
A helper function of the above.
   
 
<haskell>
 
<haskell>
Line 45: Line 51:
 
unCapalize (x:y) = (toLower x):y
 
unCapalize (x:y) = (toLower x):y
 
</haskell>
 
</haskell>
  +
  +
An example use of the above instance builder.
  +
We use it like this
  +
  +
<haskell>$(gen_render ''Body)</haskell>
  +
  +
and it produces the following
  +
  +
{-
  +
instance TH_Render Body where
  +
render (NormalB exp) = build 'normalB exp
  +
render (GuardedB guards) = build 'guardedB guards
  +
-}
  +
   
 
<haskell>
 
<haskell>

Revision as of 19:09, 28 August 2006

First some type synonyms to make the code more readable

type Constructor = (Name, [(Maybe Name, Type)]) -- the list of constructors
type Cons_vars = [ExpQ] -- A list of variables that bind in the constructor
type Function_body = ExpQ 
type Gen_func = Constructor -> Cons_vars -> Function_body
type Func_name = Name   -- The name of the instance function we will be creating
-- For each function in the instance we provide a generator function
-- to generate the function body (the body is generated for each constructor)
type Funcs = [(Func_name, Gen_func)]

The main reusable function. We pass it the list of functions to generate the functions of the instance

-- construct an instance of class class_name for type for_type
-- funcs is a list of instance method names with a corresponding
-- function to build the method body
gen_instance :: Name -> TypeQ -> [Constructor] -> Funcs -> DecQ
gen_instance class_name for_type constructors funcs = 
  instanceD (cxt [])
    (appT (conT class_name) for_type)
    (map func_def funcs) 
      where func_def (func_name, gen_func) 
                = funD func_name -- method name
                  -- generate function body for each constructor
                  (map (gen_clause gen_func) constructors)

A helper function of the above.

-- Generate the pattern match and function body for a given method and
-- a given constructor. func_body is a function that generations the
-- function body
gen_clause :: (Constructor -> [ExpQ] -> ExpQ) -> Constructor -> ClauseQ
gen_clause func_body data_con@(con_name, components) = 
      -- create a parameter for each component of the constructor
   do vars <- mapM var components
      -- function (unnamed) that pattern matches the constructor 
      -- mapping each component to a value.
      (clause [(conP con_name (map varP vars))]
            (normalB (func_body data_con (map varE vars))) [])
       -- create a unique name for each component. 
       where var (_, typ) 
                 = newName 
                   $ case typ of 
                     (ConT name) -> toL $ nameBase name
                     otherwise   -> "parm"
               where toL (x:y) = (toLower x):y
 
unCapalize :: [Char] -> [Char]
unCapalize (x:y) = (toLower x):y

An example use of the above instance builder. We use it like this

$(gen_render ''Body)

and it produces the following

{- instance TH_Render Body where

  render (NormalB exp) = build 'normalB exp
  render (GuardedB guards) = build 'guardedB  guards 

-}


-- Generate an intance of the class TH_Render for the type typName
gen_render :: Name -> Q [Dec]
gen_render typName =
  do (TyConI d) <- reify typName -- Get all the information on the type
     (type_name,_,_,constructors) <- typeInfo (return d) -- extract name and constructors                  
     i_dec <- gen_instance (mkName "TH_Render") (conT type_name) constructors
                      -- generation function for method "render"
                      [(mkName "render", gen_render)]
     return [i_dec]  -- return the instance declaration
             -- function to generation the function body for a particular function
             -- and constructor
       where gen_render (conName, components) vars 
                 -- function name is based on constructor name  
               = let funcName = makeName $ unCapalize $ nameBase conName 
                 -- choose the correct builder function
                     headFunc = case vars of
                                     [] -> "func_out"
                                     otherwise -> "build" 
                      -- build 'funcName parm1 parm2 parm3 ...
                   in appsE $ (varE $ mkName headFunc):funcName:vars -- put it all together
             -- equivalent to 'funcStr where funcStr CONTAINS the name to be returned
             makeName funcStr = (appE (varE (mkName "mkName")) (litE $ StringL funcStr))

And some borrowed helper code taken from Syb III / replib 0.2

typeInfo :: DecQ -> Q (Name, [Name], [(Name, Int)], [(Name, [(Maybe Name, Type)])])
typeInfo m =
     do d <- m
        case d of
           d@(DataD _ _ _ _ _) ->
            return $ (simpleName $ name d, paramsA d, consA d, termsA d)
           d@(NewtypeD _ _ _ _ _) ->
            return $ (simpleName $ name d, paramsA d, consA d, termsA d)
           _ -> error ("derive: not a data type declaration: " ++ show d)
 
     where
        consA (DataD _ _ _ cs _)    = map conA cs
        consA (NewtypeD _ _ _ c _)  = [ conA c ]
 
        paramsA (DataD _ _ ps _ _) = ps
        paramsA (NewtypeD _ _ ps _ _) = ps
 
        termsA (DataD _ _ _ cs _) = map termA cs
        termsA (NewtypeD _ _ _ c _) = [ termA c ]
 
        termA (NormalC c xs)        = (c, map (\x -> (Nothing, snd x)) xs)
        termA (RecC c xs)           = (c, map (\(n, _, t) -> (Just $ simpleName n, t)) xs)
        termA (InfixC t1 c t2)      = (c, [(Nothing, snd t1), (Nothing, snd t2)])
 
        conA (NormalC c xs)         = (simpleName c, length xs)
        conA (RecC c xs)            = (simpleName c, length xs)
        conA (InfixC _ c _)         = (simpleName c, 2)
 
        name (DataD _ n _ _ _)      = n
        name (NewtypeD _ n _ _ _)   = n
        name d                      = error $ show d
 
simpleName :: Name -> Name
simpleName nm =
   let s = nameBase nm
   in case dropWhile (/=':') s of
        []          -> mkName s
        _:[]        -> mkName s
        _:t         -> mkName t