Personal tools

Type composition

From HaskellWiki

(Difference between revisions)
Jump to: navigation, search
(+cats)
(Code: changed type names for better support from haddock & ghc)
Line 6: Line 6:
 
Comments & suggestions, please. [[User:Conal|Conal]] 23:16, 8 March 2007 (UTC)
 
Comments & suggestions, please. [[User:Conal|Conal]] 23:16, 8 March 2007 (UTC)
   
== Code, first draft ==
+
== Code ==
   
 
<haskell>
 
<haskell>
{-# OPTIONS -fglasgow-exts #-}
+
{-# OPTIONS -fglasgow-exts -cpp #-}
  +
  +
----------------------------------------------------------------------
 
-- Various type constructor compositions and instances for them.
 
-- Various type constructor compositions and instances for them.
 
-- References:
 
-- References:
-- [1] [http://www.soi.city.ac.uk/~ross/papers/Applicative.html Applicative Programming with Effects]
+
-- [1] \"Applicative Programming with Effects\"
  +
-- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>
  +
----------------------------------------------------------------------
   
module Control.Compose ((:.:)(..), (:.::)(..), (::.:)(..), App(..)) where
+
module Control.Compose
  +
( Cofunctor(..)
  +
, Compose(..), onComp
  +
, StaticArrow(..)
  +
, Flip(..)
  +
, ArrowAp(..)
  +
, App(..)
  +
) where
   
 
import Control.Applicative
 
import Control.Applicative
Line 20: Line 20:
 
import Data.Monoid
 
import Data.Monoid
   
-- | Often useful for \"acceptors\" (consumers, sinks) of values.
+
-- | Often useful for /acceptors/ (consumers, sinks) of values.
 
class Cofunctor acc where
 
class Cofunctor acc where
 
cofmap :: (a -> b) -> (acc b -> acc a)
 
cofmap :: (a -> b) -> (acc b -> acc a)
   
-- | Composition of type constructors: unary & unary. Called "g . f"
 
-- in [1], section 5.
 
newtype (g :.: f) a = T_T { runT_T :: g (f a) }
 
   
instance (Functor g, Functor f) => Functor (g :.: f) where
+
-- | Composition of type constructors: unary & unary. Called \"g . f\" in
fmap f (T_T m) = T_T (fmap (fmap f) m)
+
-- [1], section 5, but GHC won't parse that, nor will it parse any infix
  +
-- type operators in an export list. Haddock won't parse any type infixes
  +
-- at all.
  +
newtype Compose g f a = Comp { unComp :: g (f a) }
  +
  +
-- | Apply a function within the 'Comp' constructor.
  +
onComp :: (g (f a) -> g' (f' a')) -> ((Compose g f) a -> (Compose g' f') a')
  +
onComp h (Comp gfa) = Comp (h gfa)
  +
  +
instance (Functor g, Functor f) => Functor (Compose g f) where
  +
fmap h (Comp gf) = Comp (fmap (fmap h) gf)
  +
  +
instance (Applicative g, Applicative f) => Applicative (Compose g f) where
  +
pure = Comp . pure . pure
  +
Comp getf <*> Comp getx = Comp (liftA2 (<*>) getf getx)
  +
  +
-- instance (Functor g, Cofunctor f) => Cofunctor (Compose g f) where
  +
-- cofmap h (Comp gf) = Comp (fmap (cofmap h) gf)
  +
  +
-- Or this alternative. Having both yields "Duplicate instance
  +
-- declarations".
  +
instance (Cofunctor g, Functor f) => Cofunctor (Compose g f) where
  +
cofmap h (Comp gf) = Comp (cofmap (fmap h) gf)
  +
   
instance (Applicative g, Applicative f) => Applicative (g :.: f) where
 
pure = T_T . pure . pure
 
T_T getf <*> T_T getx = T_T (liftA2 (<*>) getf getx)
 
   
 
-- standard Monoid instance for Applicative applied to Monoid
 
-- standard Monoid instance for Applicative applied to Monoid
instance (Applicative (f :.: g), Monoid a) => Monoid ((f :.: g) a) where
+
instance (Applicative (Compose g f), Monoid a) => Monoid (Compose g f a) where
 
{ mempty = pure mempty; mappend = (*>) }
 
{ mempty = pure mempty; mappend = (*>) }
   
instance (Functor g, Cofunctor f) => Cofunctor (g :.: f) where
+
-- | Composition of type constructors: unary with binary.
cofmap h (T_T gf) = T_T (fmap (cofmap h) gf)
+
newtype StaticArrow f (~>) a b = Static { unStatic :: f (a ~> b) }
   
-- Or this alternative. Having both yields "Duplicate instance
+
instance (Applicative f, Arrow (~>)) => Arrow (StaticArrow f (~>)) where
-- declarations". How to decide between these instances?
+
arr = Static . pure . arr
-- instance (Cofunctor g, Functor f) => Cofunctor (g :.: f) where
+
Static g >>> Static h = Static (liftA2 (>>>) g h)
-- cofmap h (T_T gf) = T_T (cofmap (fmap h) gf)
+
first (Static g) = Static (liftA first g)
   
  +
-- For instance, /\ a b. f (a -> m b) =~ StaticArrow f Kleisli m
   
-- | Composition of type constructors: unary & binary. Called
 
-- "StaticArrow" in [1], section 6.
 
   
newtype (f :.:: (~>)) a b = T_TT { runT_TT :: f (a ~> b) }
+
-- | Composition of type constructors: binary with unary.
   
instance (Applicative f, Arrow (~>)) => Arrow (f :.:: (~>)) where
+
newtype ArrowAp (~>) f a b = ArrowAp {unArrowAp :: f a ~> f b}
arr = T_TT . pure . arr
 
T_TT g >>> T_TT h = T_TT (liftA2 (>>>) g h)
 
first (T_TT g) = T_TT (liftA first g)
 
   
-- For instance, /\ a b. f (a -> m b) =~ f :.:: Kleisli m
+
instance (Arrow (~>), Applicative f) => Arrow (ArrowAp (~>) f) where
  +
arr = ArrowAp . arr . liftA
  +
ArrowAp g >>> ArrowAp h = ArrowAp (g >>> h)
  +
first (ArrowAp a) =
  +
ArrowAp (arr splitA >>> first a >>> arr mergeA)
   
  +
instance (ArrowLoop (~>), Applicative f) => ArrowLoop (ArrowAp (~>) f) where
  +
-- loop :: UI (b,d) (c,d) -> UI b c
  +
loop (ArrowAp k) =
  +
ArrowAp (loop (arr mergeA >>> k >>> arr splitA))
   
-- | Composition of type constructors: unary & binary.
 
 
-- Wolfgang Jeltsch pointed out a problem with these definitions: 'splitA'
 
-- Wolfgang Jeltsch pointed out a problem with these definitions: 'splitA'
 
-- and 'mergeA' are not inverses. The definition of 'first', e.g.,
 
-- and 'mergeA' are not inverses. The definition of 'first', e.g.,
Line 64: Line 60:
 
-- a reformulation or a clarification of required properties of the
 
-- a reformulation or a clarification of required properties of the
 
-- applicative functor @f@.
 
-- applicative functor @f@.
 
newtype ((~>) ::.: f) a b = TT_T {runTT_T :: f a ~> f b}
 
 
instance (Arrow (~>), Applicative f) => Arrow ((~>) ::.: f) where
 
arr = TT_T . arr . liftA
 
TT_T g >>> TT_T h = TT_T (g >>> h)
 
first (TT_T a) =
 
TT_T (arr splitA >>> first a >>> arr mergeA)
 
 
instance (ArrowLoop (~>), Applicative f) => ArrowLoop ((~>) ::.: f) where
 
-- loop :: UI (b,d) (c,d) -> UI b c
 
loop (TT_T k) =
 
TT_T (loop (arr mergeA >>> k >>> arr splitA))
 
   
 
mergeA :: Applicative f => (f a, f b) -> f (a,b)
 
mergeA :: Applicative f => (f a, f b) -> f (a,b)
Line 93: Line 76:
   
 
-- | Type application
 
-- | Type application
newtype App f a = App { runApp :: f a }
+
newtype App f a = App { unApp :: f a }
   
 
-- Example: App IO ()
 
-- Example: App IO ()

Revision as of 16:37, 16 March 2007

1 Introduction

I'd like to get some forms of type composition into a standard library. Below is my first shot at it. I'm using these definitions in a new version of Phooey.

Comments & suggestions, please. Conal 23:16, 8 March 2007 (UTC)

2 Code

{-# OPTIONS -fglasgow-exts -cpp #-}
 
----------------------------------------------------------------------
-- Various type constructor compositions and instances for them.
-- References:
-- [1] \"Applicative Programming with Effects\"
-- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>
----------------------------------------------------------------------
 
module Control.Compose
  ( Cofunctor(..)
  , Compose(..), onComp
  , StaticArrow(..)
  , Flip(..)
  , ArrowAp(..)
  , App(..)
  ) where
 
import Control.Applicative
import Control.Arrow hiding (pure)
import Data.Monoid
 
-- | Often useful for /acceptors/ (consumers, sinks) of values.
class Cofunctor acc where
  cofmap :: (a -> b) -> (acc b -> acc a)
 
 
-- | Composition of type constructors: unary & unary.  Called \"g . f\" in
-- [1], section 5, but GHC won't parse that, nor will it parse any infix
-- type operators in an export list.  Haddock won't parse any type infixes
-- at all.
newtype Compose g f a = Comp { unComp :: g (f a) }
 
-- | Apply a function within the 'Comp' constructor.
onComp :: (g (f a) -> g' (f' a')) -> ((Compose g f) a -> (Compose g' f') a')
onComp h (Comp gfa) = Comp (h gfa)
 
instance (Functor g, Functor f) => Functor (Compose g f) where
  fmap h (Comp gf) = Comp (fmap (fmap h) gf)
 
instance (Applicative g, Applicative f) => Applicative (Compose g f) where
  pure                   = Comp . pure . pure
  Comp getf <*> Comp getx  = Comp (liftA2 (<*>) getf getx)
 
-- instance (Functor g, Cofunctor f) => Cofunctor (Compose g f) where
--   cofmap h (Comp gf) = Comp (fmap (cofmap h) gf)
 
-- Or this alternative.  Having both yields "Duplicate instance
-- declarations".
instance (Cofunctor g, Functor f) => Cofunctor (Compose g f) where
  cofmap h (Comp gf) = Comp (cofmap (fmap h) gf)
 
 
 
-- standard Monoid instance for Applicative applied to Monoid
instance (Applicative (Compose g f), Monoid a) => Monoid (Compose g f a) where
  { mempty = pure mempty; mappend = (*>) }
 
-- | Composition of type constructors: unary with binary.
newtype StaticArrow f (~>) a b = Static { unStatic :: f (a ~> b) }
 
instance (Applicative f, Arrow (~>)) => Arrow (StaticArrow f (~>)) where
  arr                   = Static . pure . arr
  Static g >>> Static h = Static (liftA2 (>>>) g h)
  first (Static g)      = Static (liftA first g)
 
-- For instance, /\ a b. f (a -> m b) =~ StaticArrow f Kleisli m
 
 
-- | Composition of type constructors: binary with unary.
 
newtype ArrowAp (~>) f a b = ArrowAp {unArrowAp :: f a ~> f b}
 
instance (Arrow (~>), Applicative f) => Arrow (ArrowAp (~>) f) where
  arr                     = ArrowAp . arr . liftA
  ArrowAp g >>> ArrowAp h = ArrowAp (g >>> h)
  first (ArrowAp a)       =
    ArrowAp (arr splitA >>> first a >>> arr mergeA)
 
instance (ArrowLoop (~>), Applicative f) => ArrowLoop (ArrowAp (~>) f) where
  -- loop :: UI (b,d) (c,d) -> UI b c
  loop (ArrowAp k) =
    ArrowAp (loop (arr mergeA >>> k >>> arr splitA))
 
-- Wolfgang Jeltsch pointed out a problem with these definitions: 'splitA'
-- and 'mergeA' are not inverses.  The definition of 'first', e.g.,
-- violates the \"extension\" law and causes repeated execution.  Look for
-- a reformulation or a clarification of required properties of the
-- applicative functor @f@.
 
mergeA :: Applicative f => (f a, f b) -> f (a,b)
mergeA ~(fa,fb) = liftA2 (,) fa fb
 
splitA :: Applicative f => f (a,b) -> (f a, f b)
splitA fab = (liftA fst fab, liftA snd fab)
 
 
-- | Flip type arguments
newtype Flip (~>) b a = Flip (a ~> b)
 
instance Arrow (~>) => Cofunctor (Flip (~>) b) where
  cofmap h (Flip f) = Flip (arr h >>> f)
 
 
-- | Type application
newtype App f a = App { unApp :: f a }
 
-- Example: App IO ()
instance (Applicative f, Monoid m) => Monoid (App f m) where
  mempty = App (pure mempty)
  App a `mappend` App b = App (a *> b)
 
{-
-- We can also drop the App constructor, but then we overlap with many
-- other instances, like [a].
instance (Applicative f, Monoid a) => Monoid (f a) where
  mempty = pure mempty
  mappend = (*>)
-}

3 Comments